14 research outputs found

    Minmax sink location problem on dynamic cycle networks

    Get PDF
    We address both 1 and k sink location problems on dynamic cycle networks. Our 1-sink algorithms run in O(n) and O(nlogn) time for uniform and general edge capacity cases, respectively. We improve the previously best known O(nlogn) time algorithm for single sink introduced by Xu et al. [Xu et al. 2015] with uniform capacities. When k¿1, we improve two results [Benkoczi et al. 2017] for both with uniform and arbitrary capacities by a factor of O(logn). Using the same sorted matrices optimization framework originally devised by Frederickson and Johnson and employed by [Benkoczi et al. 2017], our algorithms for the k-sink problems have time complexities of O(nlogn) for uniform, and O(nlog3 n) for arbitrary capacities. Key to our results is a novel data structure called a cluster head forest, which allows one to compute batches of queries for evacuation time efficiently

    Algorithms for weighted coloring problems

    Get PDF
    In this thesis, we studied a generalization of vertex coloring problem (VCP). A classical VCP is an assignment of colors to the vertices of a given graph such that no two adjacent vertices receive the same color. The objective is to find a coloring with the minimum number of colors. In the first part of the thesis, we studied the weighted version of the problem, where vertices have non-negative weights. In a weighted vertex coloring problem (WVCP) the cost of each color depends on the weights of the vertices assigned to that color and equals the maximum of these weights. Furthermore, in WVCP, the adjacent vertices are assigned different colors, and the objective is to minimize the total cost of all the colors used. We studied WVCP and proposed an O(n^2 log n) time algorithm for binary trees. Additionally, we studied WVCP in cactus paths. We proposed sub-quadratic and quadratic time algorithms for cactus paths. We studied a min-max regret version of the robust optimization where the weight of each vertex v is in the interval [w v , w v ]. The objective of is to find a coloring that has the minimum regret value. We proposed a linear time algorithm for robust coloring on bipartite graphs with uniform upper bound and arbitrary lower bound weights on the vertices. We also gave an integer linear programming (ILP) for the robust weighted vertex coloring problem (RWVCP). We solved a relaxation of the ILP formulation using column generation. We also gave an algorithm based on the branch and price method. Lastly, we performed experiments to study the quality of our algorithms.School of graduate studies, University of Lethbridge, PIMS, NSER

    A review of network location theory and models

    Get PDF
    Cataloged from PDF version of article.In this study, we review the existing literature on network location problems. The study has a broad scope that includes problems featuring desirable and undesirable facilities, point facilities and extensive facilities, monopolistic and competitive markets, and single or multiple objectives. Deterministic and stochastic models as well as robust models are covered. Demand data aggregation is also discussed. More than 500 papers in this area are reviewed and critical issues, research directions, and problem extensions are emphasized.Erdoğan, Damla SelinM.S

    Ordered Weighted Average optimization in Multiobjective Spanning Tree Problem

    Get PDF
    Rework adversely impacts the performance of building projects. In this study, data were analyzed from 788 construction incidents in 40 Spanish building projects to determine the effects of project and managerial characteristics on rework costs. Finally, regression analysis was used to understand the relationships among contributing factors and to develop a model for rework prediction. Interestingly, the rework prediction model showed that only the original contract value (OCV) and the project location in relation to the company’s headquarters contributed to the regression model. Project type, type of organization, type of contract, and original contract duration (OCD), which represents the magnitude and complexity of a project, were represented by the OCV. This model for rework prediction based on original project conditions enables strategies to be put in place prior to the start of construction, to minimize uncertainties, to reduce impacts on project cost and schedule, and, thus, to improve productivity.Peer ReviewedPostprint (author's final draft

    29th International Symposium on Algorithms and Computation: ISAAC 2018, December 16-19, 2018, Jiaoxi, Yilan, Taiwan

    Get PDF

    Mathematical models for the design and planning of transportation on demand in urban logistics networks

    Get PDF
    Falta palabras claveThe freight-transport industry has made enormous progress in the development and application of logistics techniques that has transformed its operation, giving raise to impressive productivity gains and improved responsiveness to its consumers. While the separation of passenger and freight traffic is a relatively new concept in historic terms, recent approaches point out that most freight-logistics techniques are transferable to the passenger-transport industry. In this sense, passenger logistics can be understood as the application of logistics techniques in urban contexts to the passenger-transport industry. The design of an urban logistic network integrates decisions about the emplacement, number and capacities of the facilities that will be located, the flows between them, demand patterns and cost structures that will validate the profitability of the process. This strategic decision settles conditions and constraints of latter tactical and operative decisions. In addition, different criteria are involved during the whole process so, in general terms, it is essential an exhaustive analysis, from the mathematical point of view, of the decision problem. The optimization models resulting from this analysis require techniques and mathematical algorithms in constant development and evolution. Such methods demand more and more a higher number of interrelated elements due to the increase of scale used in the current logistics and transportation problems. This PhD dissertation explores different topics related to Mathematical models for the design and planning of transportation on demand in urban logistics networks. The contributions are divided into six main chapters since and, in addition, Chapter 0 offers a basic background for the contents that are presented in the remaining six chapters. Chapter 1 deals with the Transit Network Timetabling and Scheduling Problem (TNTSP) in a public transit line. The TNTSP aims at determining optimal timetables for each line in a transit network by establishing departure and arrival times of each vehicle at each station. We assume that customers know departure times of line runs offered by the system. However, each user, traveling later of before their desired travel time, will give rise to an inconvenience cost, or a penalty cost if that user cannot be served according to the scheduled timetable. The provided formulation allocates each user to the best possible timetable considering capacity constraints. The problem is formulated using a p-median based approach and solved using a clustering technique. Computational results that show useful applications of this methodology are also included. Chapter 2 deals with the TNTSP in a public transit network integrating in the model the passengers' routings. The current models for planning timetables and vehicle schedules use the knowledge of passengers' routings from the results of a previous phase. However, the actual route a passenger will take strongly depends on the timetable, which is not yet known a priori. The provided formulation guarantees that each user is allocated to the best possible timetable ensuring capacity constraints. Chapter 3 deals with the rescheduling problem in a transit line that has suffered a eet size reduction. We present different modelling possibilities depending on the assumptions that need to be included in the modelization and we show that the problem can be solved rapidly by using a constrained maxcost- ow problem whose coe_cient matrix we prove is totally unimodular. We test our results in a testbed of random instances outperforming previous results in the literature. An experimental study, based on a line segment of the Madrid Regional Railway network, shows that the proposed approach provides optimal reassignment decisions within computation times compatible with real-time use. In Chapter 4 we discuss the multi-criteria p-facility median location problem on networks with positive and negative weights. We assume that the demand is located at the nodes and can be different for each criterion under consideration. The goal is to obtain the set of Pareto-optimal locations in the graph and the corresponding set of non-dominated objective values. To that end, we first characterize the linearity domains of the distance functions on the graph and compute the image of each linearity domain in the objective space. The lower envelope of a transformation of all these images then gives us the set of all non-dominated points in the objective space and its preimage corresponds to the set of all Pareto-optimal solutions on the graph. For the bicriteria 2-facility case we present a low order polynomial time algorithm. Also for the general case we propose an efficient algorithm, which is polynomial if the number of facilities and criteria is fixed. In Chapter 5, Ordered Weighted Average optimization problems are studied from a modeling point of view. Alternative integer programming formulations for such problems are presented and their respective domains studied and compared. In addition, their associated polyhedra are studied and some families of facets and new families of valid inequalities presented. The proposed formulations are particularized for two well-known combinatorial optimization problems, namely, shortest path and minimum cost perfect matching, and the results of computational experiments presented and analyzed. These results indicate that the new formulations reinforced with appropriate constraints can be effective for efficiently solving medium to large size instances. In Chapter 6, the multiobjective Minimum cost Spanning Tree Problem (MST) is studied from a modeling point of view. In particular, we use the ordered median objective function as an averaging operator to aggregate the vector of objective values of feasible solutions. This leads to the Ordered Weighted Average Spanning Tree Problem (OWASTP), which we study in this work. To solve the problem, we propose different integer programming formulations based in the most relevant MST formulations and in a new one. We analyze several enhancements for these formulations and we test their performance over a testbed of random instances. Finally we show that an appropriate choice will allow us to solve larger instances with more objectives than those previously solved in the literature.Premio Extraordinario de Doctorado U

    Sublinear Computation Paradigm

    Get PDF
    This open access book gives an overview of cutting-edge work on a new paradigm called the “sublinear computation paradigm,” which was proposed in the large multiyear academic research project “Foundations of Innovative Algorithms for Big Data.” That project ran from October 2014 to March 2020, in Japan. To handle the unprecedented explosion of big data sets in research, industry, and other areas of society, there is an urgent need to develop novel methods and approaches for big data analysis. To meet this need, innovative changes in algorithm theory for big data are being pursued. For example, polynomial-time algorithms have thus far been regarded as “fast,” but if a quadratic-time algorithm is applied to a petabyte-scale or larger big data set, problems are encountered in terms of computational resources or running time. To deal with this critical computational and algorithmic bottleneck, linear, sublinear, and constant time algorithms are required. The sublinear computation paradigm is proposed here in order to support innovation in the big data era. A foundation of innovative algorithms has been created by developing computational procedures, data structures, and modelling techniques for big data. The project is organized into three teams that focus on sublinear algorithms, sublinear data structures, and sublinear modelling. The work has provided high-level academic research results of strong computational and algorithmic interest, which are presented in this book. The book consists of five parts: Part I, which consists of a single chapter on the concept of the sublinear computation paradigm; Parts II, III, and IV review results on sublinear algorithms, sublinear data structures, and sublinear modelling, respectively; Part V presents application results. The information presented here will inspire the researchers who work in the field of modern algorithms

    LIPIcs, Volume 251, ITCS 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 251, ITCS 2023, Complete Volum

    LIPIcs, Volume 261, ICALP 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 261, ICALP 2023, Complete Volum
    corecore