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Abstract

In this thesis, we studied a generalization of vertex coloring problem (VCP). A classical

VCP is an assignment of colors to the vertices of a given graph such that no two adjacent

vertices receive the same color. The objective is to find a coloring with the minimum

number of colors. In the first part of the thesis, we studied the weighted version of the

problem, where vertices have non-negative weights. In a weighted vertex coloring problem

(WVCP) the cost of each color depends on the weights of the vertices assigned to that color

and equals the maximum of these weights. Furthermore, in WVCP, the adjacent vertices

are assigned different colors, and the objective is to minimize the total cost of all the colors

used. We studied WVCP and proposed an O(n2 logn) time algorithm for binary trees.

Additionally, we studied WVCP in cactus paths. We proposed sub-quadratic and quadratic

time algorithms for cactus paths.

We studied a min-max regret version of the robust optimization where the weight of

each vertex v is in the interval [wv,wv]. The objective of is to find a coloring that has the

minimum regret value. We proposed a linear time algorithm for robust coloring on bipartite

graphs with uniform upper bound and arbitrary lower bound weights on the vertices. We

also gave an integer linear programming (ILP) for the robust weighted vertex coloring prob-

lem (RWVCP). We solved a relaxation of the ILP formulation using column generation. We

also gave an algorithm based on the branch and price method. Lastly, we performed exper-

iments to study the quality of our algorithms.
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Chapter 1

Introduction

In this chapter of the thesis, we introduce the classical vertex coloring problem with its

weighted generalization. In the subsequent sections, we offer the motivation to study this

problem. An outline of the next chapters of the thesis is also provided.

1.1 Graph Coloring Problem

Graph coloring is a well known and extensively researched subject in the field of graph

theory. It is defined as an assignment of colors to elements of graphs subject to certain

constraints. It has many applications and conjectures which are studied by various math-

ematicians and computer scientists around the world. Graph coloring dates back to the

middle of the nineteenth century, where the original problem was to color an administrative

map of England by counties using only 4 colors [31], with the added constraints of assign-

ing different colors to adjacent counties sharing a border. From there, the coloring problem

was further generalized and expanded to a political map. This introduced the famous four

coloring problem: is it possible to color any political map, satisfying the above constraints,

using only four colors? The problem was solved by Appel and Haken [3] in 1976 using a

computer program.

Two types of graph coloring problems have been considered in the literature: an edge

coloring problem and a vertex coloring problem. An edge coloring problem assigns a color

to each edge such that no two adjacent edges share the same color. Among these two graph

coloring problems, the vertex coloring problem (VCP) has been extensively studied. In the

1



1.2. MOTIVATION

Figure 1.1: An example of the graph coloring problem where χ(G) = 2

VCP, a graph G = (V,E) is given, where V is the set of vertices, E is the set of edges, and

the objective is to find the minimum number of colors for vertices such that no two adjacent

vertices are assigned the same color. The minimum number of colors needed for a graph

is also known as the chromatic number of the graph (χ(G)). Computing χ(G) is one of the

original NP-complete problems on Karp’s list of the twenty-one problems.

We studied weighted version of the vertex coloring problem, where nodes have non-

negative weights. In a weighted vertex coloring problem (WVCP) the cost of each color

depends on the weights of the vertices assigned to that color and equals the maximum of

these weights. Furthermore, in WVCP, the adjacent vertices are assigned different colors,

and the objective is to minimize the total cost of all the colors used. The WVCP is also

known to be NP-complete as the problem reduces to the determination of the chromatic

number when all the weights are unitary.

Lastly, we also studied robust weighted vertex coloring problem (RWVCP). In the ro-

bust version, the uncertainty in the weights is represented using an interval, where the

weight is chosen from the interval. No assumptions are made about the underlying prob-

ability distribution. A particular assignment of values to the weights from the intervals is

called a scenario. The goal is to find a coloring X for which the difference between the cost

of X under the worst-possible scenario and the cost of the optimal coloring for that scenario

is minimized. Computing the optimal cost of a scenario requires solving the chromatic

number problem, which is NP-complete.

1.2 Motivation

There are a number of motivations for this study of the problem. One of the applica-

tions of WVCP is on the scheduling of jobs with conflicts in a multiprocessor environment

2



1.2. MOTIVATION

[68]. When scheduling jobs onto a processor, the jobs accessing the same resource are not

scheduled together. Furthermore, each job has a different processing time. The different

processing times can be treated as weights and the objective of minimizing makespan (the

time difference between start and the finish time of the jobs) can be modeled as WVCP.

One such generalization is batch scheduling where an edge of the graph represents conflicts

between pairs of jobs that cannot be processed in the same batch [39]. The problem of

batch scheduling naturally occurs in distributed systems [39].

WVCP arises in the scheduling of data transmissions in a time division multiple access

(TDMA) wireless network [59, 64]. One example of such TDMA technology is the World-

wide Interoperability for Microwave Access (WiMAX) standard which is responsible for a

large portion of the data mobility services today. The WiMAX standard does not specify

any channel allocation algorithms. This is to allow the most flexible and efficient use of

resources possible. Moreover, the duration of the time slots in the WiMAX standard need

not be uniform. Given a set of clients with different bandwidth requirements, a channel

allocation scheme in a mesh network (see [2] for the definition of mesh network ) using

WiMAX technology seeks to group the transmissions in such a way that interference does

not occur and the channel is used efficiently. Such a schedule can be obtained by solving the

WVCP problem in the interference graph for the network. The vertex weights correspond

to the bandwidth requirements for the devices participating in the communication. In par-

ticular, line, ring, and tree topologies are commonly used in telecommunication networks

[52], hence our results on trees and cactus paths may be of interest in this domain as well.

The Matrix Decomposition Problem in Time Division Multiple Access Traffic Assign-

ment can also be modeled as WVCP. The matrix decomposition problem arises in the con-

text of satellite communication systems optimization. In this problem, a square N ×N

matrix T with m nonzero entries (traffic matrix) is decomposed into k matrices such that

there is at most one non-zero element in each column and row, and each non-zero entry of

T appears in one and only one matrix of the decomposition. The cost of the sub-matrix

3



1.3. CONTRIBUTIONS

is determined by the maximum of its non-zero elements. The objective is to minimize the

total cost of the decomposition. This problem can be modeled as WVCP. The non-zero

entries correspond to the vertices, and there is an edge when two entries are from the same

row or the same column of T . A color in this graph corresponds to a sub-matrix and its

weight is determined by the maximum weight of some vertex. Thus, a search for an op-

timal matrix decomposition reduces to WVCP. Ribeiro et al. [73] have provided an exact

algorithm based on column generation and branch and bound (in the worst case these al-

gorithms have exponential running time). Prais et al.[70] proposed a heuristic approach

based on a Greedy Randomized Adaptive Search Procedure (GRASP). Another application

of WVCP is the dynamic storage allocation problem also known as the interval coloring

problem [15, 38].

1.3 Contributions

Throughout this thesis, we study two versions of the coloring problem: the WVCP

where each vertex weight is deterministic, and robust weighted vertex coloring problem

where each vertex weight form an interval. The objective in WVCP is to find a coloring

with minimum weight. The objective in RWVCP is to find a coloring with minimum regret

(see Chapter 5 for the definitions). Following are the two main studies in this thesis:

1. We studied the WVCP where the vertices have deterministic weights. For trees, the

exact complexity of the weighted vertex coloring problem is still open [51, 68]. The

problem most likely is not NP-complete as a sub-exponential algorithm is known [4].

Apart from from the algorithm by Kavitha et al.[51] on paths and the polynomial time

approximation scheme (PTAS) [68] on trees (see Definition 3.10 of Chapter 3), no

other results are known for trees. The only known method to solve WVCP in binary

trees is based on the list coloring algorithm [54]. The list coloring technique solves

the WVCP in binary trees in O(n4) time [54].

4



1.4. ORGANIZATION OF THE THESIS

• In this thesis, we provided a O(n2 logn) time algorithm for solving WVCP in

binary trees (Chapter 3).

• We also provide a O(n log2 n) time algorithm for solving WVCP in cactus paths

(Chapter 4).

A portion of this study appears in [11].

2. We studied the robust vertex coloring problem (RWVCP) where the weight of each

node v is in the interval [wv,wv]. Here, wv is the lower bound weight and wv is the

upper bound weight. A uniform instance is where all the vertices have the same

interval [w,w] associated with them.

• We propose a linear time algorithm for the robust coloring of bipartite graphs

with uniform upper bound and arbitrary lower bound weights on the vertices.

• We formulate the RWVCP problem as an integer programming (IP) formulation

where the variables and the constraints are exponential in number. We gave a

math-heuristic method based on column generation and local search.

• We also describe a branch and price inexact method to obtain an integral color-

ing.

• Lastly, we provide a quadratic programming formulation to determine a worst

case scenario, given robust coloring.

To the best of our knowledge, this is the first empirical study of RWVCP. A portion

of this study appears in [10].

1.4 Organization of The Thesis

In Chapter 2 we define the various terms used in this thesis.

5



1.4. ORGANIZATION OF THE THESIS

In Chapter 3 we study the WVCP problem on binary trees and gave a O(n2 logn) al-

gorithm. This is an improvement over the current best algorithm with running time O(n4).

The main technique used here is prune and search with dynamic programming.

In Chapter 4 we further extend the algorithm of Kavitha et al. [51] to solve WVCP in

cactus paths.

In Chapter 5 we provide a mathematical formulation for the min-max regret problem,

RWVCP. In this chapter, we provide a heuristic based on column generation and local

search. We gave a method based on branch and price to obtain an integral solution. We also

show how to model the problem of determination of the worst case scenario as a quadratic

program. We gave a linear time algorithm for RWVCP on a bipartite graph with uniform

upper bound and the arbitrary lower bound weight on vertices.

We conclude in Chapter 6 with some open problems.

6



Chapter 2

Definitions and Notations

In this chapter, we define various terms that are used throughout the thesis. The definitions

provided in this chapter can be found in the literature [27].

2.1 Basic Definitions

The graph G = (V,E) in this thesis is simple and finite graph comprising a set V of

vertices together with a set E of edges. We denote by n = |V |, the number of vertices, and

m = |E|, the number of edges. When two vertices are the end points of the same edge, they

are called adjacent. The neighbors of a vertex mean the vertices that are adjacent.

Definition 2.1 (Subgraph). Let H be a graph with vertex set V (H) and edge set E(H), and

let G be a graph with vertex set V (G) and edge set E(G). We say that H is a subgraph of G

if V (H)⊆V (G) and E(H)⊆ E(G).

Definition 2.2 (Induced Subgraph). A subgraph H of G is called induced, if for any two

vertices u,v in H, u and v are adjacent in H if and only if they are adjacent in G.

The neighborhood of a vertex v∈V in a graph G is the induced subgraph of G consisting

of all vertices adjacent to v. The degree dG(v)= d(v) of a vertex v of a graph G is the number

of edges incident to the vertex. The maximum degree of G is ∆(G) = max{d(v) : v ∈V}.

Definition 2.3 (Independent Set). An independent set is a set of vertices I such that, no two

vertices from I are adjacent.

7
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A path is a graph P = (V,E) of the form V = {v0,v1, ...vn} and E =

{(v0,v1),(v1,v2),(v2,v3), ...,(vn−1,vn)} where the vertices vi are all distinct. The vertices

v0 and vn are the end vertices, and vertices v1,v2, ...,vn−1 are internal vertices. The path P

is denoted by (v0,v1, ...,vn).

Definition 2.4 (Connected Graph). A graph is defined as a connected graph if there is a

path between every pair of vertices.

2.1.1 Vertex Coloring

A vertex coloring of graph G is a mapping c : V (G)→ X . The elements of X are colors;

the set of vertices of one color form a color class α. If |X | = k, we say that c is k-coloring

(often we use X = {1,2, ...,k}). A coloring is proper or feasible if adjacent vertices have

different colors. A graph is k-colorable if it has a feasible k-coloring. The chromatic number

χ(G) is the least k such that G is k-colorable. In a feasible coloring, each color class forms

an independent set. Hence, a k-coloring may also been seen as a partition of vertex set into

k disjoint independent sets: αi = {v : c(v) = i} where 1 ≤ i ≤ k. A bipartite graph can be

colored with 2-colors.

2.1.2 Upper Bound on Chromatic Number

The most widespread algorithm to obtain an upper bound on χ(G) is the greedy algo-

rithm [61]. In a greedy coloring, we consider the vertices in a specific order v1,v2, ...,vn.

The algorithm assigns vi, the smallest available color not used by vi’s neighbors in

v1,v2, ...,vi−1, and introduces a new color if needed.

Theorem 2.5 (Upper bound on χ(G) [14]). Given a graph G, χ(G)≤ 1+∆ where ∆ is the

maximum degree in G.

Proof. The above greedy coloring produces a proper coloring, since we are careful to avoid

conflicts each time we color a new vertex. As each vertex has at most ∆ neighbors, we will

8
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always have at least one choice of a color that is less than ∆+ 1; therefore, this creates a

proper coloring of G that uses at most ∆+1 colors. Hence, χ(G)≤ 1+∆.

The bound of ∆+1 is a weak upper bound on χ(G) and choosing the vertex ordering is

an issue. We can use Brooks’ Theorem [14] to determine whether the chromatic number is

∆+1 or not. Indeed there is a vertex ordering relative to which the greedy algorithm yields

an optimal coloring. But there are n! possible orderings and it is difficult to find a good

one. For any k ≥ 3, it is NP-complete to decide if a graph on n vertices is k-colorable [36].

It is easy to decide if a graph is 1-colorable since such a graph has no edges. Determining

whether a graph is 2-colorable graph can also be done in polynomial time using breadth-first

search [19]. Lund and Yannakakis [58] have shown that it is NP-hard to approximate the

chromatic number within nε for some positive constant ε unless P = NP. The best known

approximation algorithm for a general graph is that of Karger et al. [47]. The current best

approximation ratio for a 3-colorable graph is n0.2111 [7].

Theorem 2.6 (Brooks’ Theorem [14]). For any connected undirected graph G with max-

imum degree ∆, χ(G) ≤ ∆ unless G is a complete graph or an odd cycle, in which case

χ(G) = ∆+1.

2.1.3 Applications

The vertex coloring problem (VCP) has many applications in the field of engineering,

including scheduling [55], timetabling [25], register allocation [16], frequency assignment

[35] and in communication networks [77]. For a survey on vertex coloring problems see

[61].

2.2 Weighted Vertex Coloring Problem (WVCP)

Let G(V,E) be an undirected graph where V is the vertex set and E the edge set and

each v ∈V has a positive weight wv. Let X be a feasible coloring of G, and let α1,α2...,αk

9
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be color classes. For any color class α of G, we define w(α) = max{wv|v ∈ α} to be the

weight of a color class (or simply the weight of a color). The weighted vertex coloring

problem, first introduced by Guan and Zhu [38], is to find a proper k-coloring of vertices

of G so as to minimize the sum of the weights of the color class, i.e. find a coloring that

minimizes ∑
k
i=1 w(αi) [68].

We first establish some properties in bipartite graphs. The following theorems help us to

establish bounds on the number of colors needed in a bipartite graph and the distribution of

weights of color classes in an optimal coloring. We first consider the claim by Pemmaraju

et al. [68] on color class weight.

Lemma 2.7. Let G be a bipartite graph. In any optimal weighted coloring , let

{α1,α2, ...,αk} be color classes of G with wi = w(αi) and w1 ≥ w2... ≥ wk, we have that

wi ≥ ∑
k
j=i+1 w j, i = 1,2, ...k−1.

Proof. By contradiction, suppose wi < ∑
k
j=i+1 w j. We know that, bipartite graphs can be

properly colored by two colors. The weight of this two coloring is at most 2wi because the

weight of each color class is at most wi if wi is the maximum weight in the graph. However,

the optimal coloring has weight ∑
k
i wi. Hence, 2wi = wi +wi < wi +∑

k
j=i+1 w j = ∑

k
j=i w j,

which is a contradiction.

Next is a greedy algorithm proposed by Guan and Zhu [38] for the upper bound on the

number of colors for weighted graphs.

Lemma 2.8. Let G be the vertex weighted graph with the maximum degree ∆, then the

number of colors needed in any optimal coloring of WVCP is ∆+1.

Proof. Let {α1,α2, ...,αk} be an optimal k-coloring of G. Let wi = w(αi) and w.l.o.g let

w1 ≥ w2...≥ wk. To obtain a contradiction, suppose that k > ∆+1. For each vertex v ∈ αk,

there is a color class αi : i < k such that v has no neighbors in αi. Re-color every vertex v

in αk with the color i, the color class to which v has no neighbors. This recoloring does not
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increase the weight of the coloring. We now have a coloring with smaller number of colors

with no larger weight. Iterate the argument till k = ∆+1.

2.3 List Coloring

Another generalization of the vertex coloring problem is list coloring problem. In the

list coloring problem, a possible list of colors is assigned to each vertex of a graph and

every vertex can have a different list of colors, L(v). Vertices can take colors only from the

associated lists in any proper colorings.

Problem 1. (List Coloring Problem) [54]: Given a graph G = (V,E) and a list of colors

L(v) for every vertex v ∈ V , does there exist an assignment of colors f (v) for each vertex

v ∈V in such a way that f (v) ∈ L(v) and f is feasible coloring?

The job scheduling problem can be modeled as a list coloring problem. Here, the ver-

tices represent the machines, and the lists represent possible jobs. Each job requires some

non-sharable resource to run, and if two jobs require the same resource, they cannot run

simultaneously and hence an edge [72]. A coloring partitions the jobs into independent

sets. The set of jobs in each color class can run simultaneously.

List coloring is NP-complete even if all lists have length three [54]. Furthermore,

Kratochvil et al. [54] proved that list coloring remains NP-complete even if: each color

x ∈⋃
v∈V L(v) occurs in at most three sets L(v), each vertex v ∈V has degree at most three,

and G is a planar graph.

Let G(V,E) be a vertex-weighted undirected graph where each v ∈ V has associated a

positive weight wv. Given weights w1≥w2≥ ...wk, we can construct a list coloring problem

as follows. The colors are 1,2, ...,k, each node v with weight wv ≥ wi cannot be assigned

color i, all the other colors (such that wv ≤ wi) are in the list L(v). A feasible solution to the

list coloring problem has cost w1+w2+ ...+wk. The problem now reduces to enumeration

of the weights which can be done using dynamic programming and search. The ideas are

from [68].

11



2.4. LINEAR PROGRAMMING (LP)

In the following sections, we explain an exact method to solve WVCP in a graph. The

exact method is based on linear programming and branch and bound.

2.4 Linear Programming (LP)

The topic of linear programming is extensively studied in computer science and mathe-

matics, and covered in many books [17, 67]. In this section, we provide standard definitions

related to linear programming and refer to [17, 67, 22, 40] for proof of the statements. The

simplex algorithm, which was created by Dantzig, is a popular method for solving linear

programs [22].

Definition 2.9 (Objective Function). An optimal function is the linear function representing

cost to be maximized of minimized subject to the constraints.

Definition 2.10 (Constraints). Constraints in a linear programming is a system of linear

inequalities.

Definition 2.11 (Convex set [40]). A set S ∈ Rm is called a convex set if ∀x,y ∈ S and

λ ∈ [0,1], λx+(1−λ)y ∈ S.

Before we further discuss the simplex method, let us consider a linear program:

min cT x (2.1)

subject to: Ax≥ b, (2.2)

x≥ 0 (2.3)

where x = (x1,x2, ...,xn) are the variables, c = (c1,c2, ...,cn) are the coefficients of the

objective function, A is a m ∗ n matrix, and b = (b1,b2, ...,bm) are constants. A feasible

region is the set of all possible points that satisfy the problem’s constraints 2.2 and 2.3. A

linear program can be feasible or infeasible depending on whether a solution exists. The
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values of x that satisfy all the constraints are the feasible values. A linear program is un-

bounded if, and only if, for every M ∈R there exists a feasible solution x with cT x≥M. The

values of xi are the vertices or the extreme points of the polytope if the subset of column

vectors Ai corresponding to non-zero entries of x are linearly independent [67]. Such an

extreme point is also called a basic feasible solution (BFS). An optimal solution to a linear

program is the feasible solution with the largest objective function value (for a maximiza-

tion problem) or the smallest objective function value (for a minimization problem). In the

next paragraph, we introduce the simplex method which is a popular method for solving

linear programs.

Let us again consider the linear program given in equations 2.1 to 2.2 and transform it

into standard form by introducing a variable s j, j = 1,2, ...m (also called a slack variable)

for each constraint, which is:

min cT x (2.4)

subject to: Ax− s = b, (2.5)

x≥ 0,s≥ 0 (2.6)

A subset of column B of a constraint matrix A is called basis, if the matrix of columns

corresponding to B, i.e. AB, has linearly independent rows; in other words, AB is non-

singular. Similarly, a solution x is called a basic if there is basis B such that x j = 0 for j 6= B

and xB = A−1
B b. If the solution x is also feasible, i.e. A−1

B b ≥ 0 in addition to basic, then

it is called a basic feasible solution. In a basic solution, (n−m) zero valued variables (n

variables and m constraints) are non-basic variables and remaining m variables are basic

variables.

The simplex method that works on the standard form, is an iterative algorithm that

starts with a basic feasible solution and moves a neighboring basic feasible solution which
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improves the objective function value. In each iteration, we need a variable that enters the

basis and a variable that leaves the basis. There are numerous rules for the entering and

leaving variables [17, 75]. In the next part of this section, we introduce the dual program.

Consider a linear program (we call it primal) of the following type:

min
n

∑
j=1

c jx j (2.7)

subject to:
n

∑
j=1

ai jx j ≥ bi, ∀1≤ i≤ m (2.8)

x j ≥ 0, ∀1≤ j ≤ n (2.9)

The dual program of the above linear program is given below:

max
m

∑
i=1

biyi (2.10)

subject to:
m

∑
i=1

ai jyi ≤ c j, ∀1≤ j ≤ n (2.11)

yi ≥ 0, ∀1≤ i≤ m (2.12)

The following weak duality theorem and strong duality theorem are very useful and the

proof of these theorems can be found in the book by Vanderbei [75] :

Theorem 2.12 (Weak duality theorem). If (x1,x2, ...,xn) is feasible for the primal and

(y1,y2, ...,yn) is feasible for dual, then ∑
i

yibi ≤ ∑
j

c jx j.

Theorem 2.13 (Strong duality theorem). If the primal has an optimal solution

(x∗1,x
∗
2, ...,x

∗
n), then the dual also has an optimal solution, (y∗1,y

∗
2, ...,y

∗
n) such that ∑

i
y∗i bi =

∑
j

c jx∗j .

We assume the primal and the dual given by equations (2.7 - 2.9) and (2.10 - 2.12)
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respectively.

2.4.1 Column Generation

The column generation method is another method to solve a linear programming (LP)

with exponentially many variables by iteratively adding variables. This method is also

known as Dantzig-Wolfe decomposition [21]. Column generation is based on the fact that

in the simplex method, the solver does not need access to all the variables of the problem

simultaneously. A solver begins with a particular subset of the constrained variables, called

the basis, and then uses the reduced cost method to determine which other variables to

use in order to improve the current solution [17]. For a survey of column generation see

[57, 26]. We will use the matrix notation (for more detail, see Chvatal [17]).

Let the columns of A corresponding to the basic variables xB and non-basic variables xN

be AB and AN , respectively. In standard form Ax = b, this equation can be written as:

ABxB +ANxN = b (2.13)

which can further be written as:

ABxB = b−ANxN (2.14)

Since the square matrix AB is non-singular, we can multiply both sides of equation 2.14

by A−1
B to obtain:

xB = A−1
B b−A−1

B ANxN (2.15)
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Similarly, we can represent the cost vector c in terms of cB and cN for basic and non-

basic variables respectively. The objective function then becomes cBxB+cNxN . Substituting

for xB in the objective function we get:

z = cB(A−1
B b−A−1

B ANxN)+ cNxN = cBA−1
B b+(cN− cBA−1

B AN)xN (2.16)

Replacing AB by B as a basis matrix, the dictionary is:

xB = B−1b−B−1ANxN (2.17)

z = cBB−1b+(cN− cBB−1AN)xN (2.18)

From the above dictionary (2.17 - 2.18), it can be seen that the cost of non-basic

variables is cN − cBB−1AN where cBB−1 is the values of the dual variables. Thus,

cN−cBB−1AN = cN−yAN , is the reduced cost for the non-basic variables. The expression

of reduced cost (r) on column j of the dictionary is given by r j = c j− yA j. For a mini-

mization problem, the stopping criteria for the simplex algorithm is that the cost of all the

reduced cost variables is non-negative. Whenever there is a column with negative reduced

cost: the column is a candidate to enter the basis in the next step of the iteration. Thus, the

main idea of column generation is to first consider the restricted LP with few variables in the

primal basis called the master problem. After optimally solving the master problem, we

will know the value of the dual variables. Then, we ask the question: is there a column j not

currently in the master problem, such that its reduced cost r j in current basic feasible solu-

tion is negative? The answer depends on the coefficients a and c since r j = c j−∑
m
i=1 ai jy j.

If the answer is “NO”, the current master problem is optimal. Furthermore, if the answer is

“YES” we insert the column with negative reduced cost into the master problem and repeat

the same process again. In algorithm 1, we list the basic steps of the column generation
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procedure [21]. Note that in step 5, we can also find a column with most negative reduced

cost.

Algorithm 1 Column Generation
1: Create an initial basic feasible solution
2: while True do
3: Solve the master problem
4: Solve the subproblem
5: Find the column with the most negative reduced cost and add it to the master prob-

lem
6: Exit the algorithm if there is no column with a negative reduced cost
7: end while

In the following Example 2.4.2, we describe a solution to WVCP using the column

generation procedure.

2.4.2 Example

We describe how to solve WVCP using the column generation procedure. Let us be-

gin with the formulation of VCP and extend it to WVCP. Mehrotra et al. [63] provide

an exact method for solving VCP using the column generation approach and branch and

bound which is known as branch and price. Each variable in their formulation represents

an independent set in a graph. Since there are an exponential number of independent sets,

during computation a large number of columns are generated. These columns are gener-

ated by solving a subproblem. Hence, the column generation method involves formulating

the master problem as a set covering problem [76] and the column generation subproblem

as the weighted independent set problem. The drawback to this technique is that it only

solves small to moderate size instances exactly because of the difficult subproblem and the

sophisticated branching rules. Malaguti et al. [60] extend this method and give a heuristic

for solving larger instances. They give two branching procedures and integrate the exact

method and a heuristic method to obtain better upper bounds on VCP. In this illustration,

we use the formulation given by Malaguti et al. [59] for WVCP. The formulation is as

follows: let wh be the weight of a color class, h be a color, and xvh be a binary variable that
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represents whether a vertex v is assigned the color h or not.

min
n

∑
h=1

zh (2.19)

subject to: zh ≥ wv ∗ xvh, ∀v ∈V,h = 1...n (2.20)
n

∑
h=1

xvh = 1, ∀v ∈V (2.21)

xuh + xvh ≤ 1, (u,v) ∈ E,h = 1...n (2.22)

xvh ∈ {0,1},zh ≥ 0 (2.23)

The relaxed LP of above formulation is:

min
n

∑
h=1

zh (2.24)

subject to: zh ≥ wv ∗ xvh, ∀v ∈V,h = 1...n (2.25)
n

∑
h=1

xvh = 1, ∀v ∈V (2.26)

xuh + xvh ≤ 1, (u,v) ∈ E,h = 1...n (2.27)

xvh ≥ 0,zh ≥ 0 (2.28)

Constraints (2.25) ensure that the weight of the coloring equals the maximum weight of

any vertex, constraints (2.26) force every vertex to be assigned exactly one color, and con-

straints (2.27) ensure that no adjacent vertices are assigned the same color. This formulation

considers h = ∆+1 number of colors to begin with.

The drawback of this model (2.24 - 2.28) as noted in [59] is that the solution space con-

tains many optimal solutions due to symmetries and the continuous relaxation of this model

usually produces weak lower bound on the optimal solution value. To address these draw-
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backs, we formulate WVCP as the set cover problem and we use column generation pro-

cedure to handle the exponential number of variables. Let X be the family of independent

sets (color classes). For each color class α ∈ X , we introduce a binary variable xα taking

value 1 if all the vertices of α receive the same color. Moreover, let wα = max{wv : v ∈ α}.

Following is a set cover based ILP for WVCP.

min ∑
α∈X

wαxα (2.29)

subject to: ∑
α∈X :v∈α

xα ≥ 1, ∀v ∈V (2.30)

xα ∈ {0,1} (2.31)

max ∑
v∈V

πv (2.32)

subject to: ∑
v:v∈α

πv ≤ wα, ∀α ∈ X (2.33)

πv ≥ 0,∀v ∈V (2.34)

Constraints 2.30 guarantee a proper coloring. Constraints 2.31 are the integrality con-

straint. We call the above formulation (2.29-2.31) the master problem. To solve the master

problem, we consider a subfamily of all the independent sets of G. By solving the restricted

relaxed master problem to optimality we obtain the dual values π∗v ,v ∈V , of the dual vari-

ables associated with the constraints (2.30). The dual of the above relaxed formulation

(2.29 - 2.31) is given in the formulation (2.32 - 2.34).

The variables (independent sets) to be added to the restricted master problem correspond

to the violated dual constraints. We need to solve one subproblem for each wv to find

such a violated constraint. One method is to formulate a generic subproblem which find
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a color class α∗ for which (2.33) is violated, that is, a color class of total weight larger

than wv in G = (Vw,Ew), which is the subgraph of G induced by the subset of vertices

Vw = {v : wv ≤wα}. Thus, for each wv, the subproblem can be represented by the following

ILP, where binary variables zv : v ∈Vw, take the value 1 when vertex v belongs to α∗ and 0

otherwise.

max ∑
v∈Vw

π
∗
vzv (2.35)

subject to: zv + zv′ ≤ 1, ∀(v,v′) ∈ Ew (2.36)

zv ∈ {0,1} (2.37)

Constraints 2.36 specify that no two adjacent vertices receive the same color. ILP in

(2.35 - 2.37) is the maximum weighted independent set problem (MWISP). Note that this

problem is NP-hard for general graphs [37]. If the optimal solution of relaxed MWISP,

restricted to vertices v∈Vw, has a value greater than wv, then we have found an independent

set with negative reduced cost. We add this negative reduced column to the restricted master

problem and iterate. If there are no columns with negative reduced cost produced by the

solution of relaxed MWISP then the relaxed restricted model (2.29 -2.31) is optimal. To

solve several MWISPs to optimality in a sequence is a time-consuming task. However, we

do not need to solve the problem to optimality when new columns with negative reduced

cost is available. Optimality of the subproblems is required only to certify that such columns

with negative reduced cost do not exist [60].

2.5 Notations

Throughout this thesis, the vertices of the graphs are associated with positive integral

weights. Table 2.1 below explains the notation used throughout this thesis.

We use all the above definitions and concepts throughout this thesis. In the next chapter,
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Table 2.1: Notations

Symbol Description
G Graph
T Tree
V Vertex Set
E Edge Set
α Color Class

w(α) Weight of Color Class
∆ Maximum Degree of a Graph
χ Chromatic Number
X Coloring
wv Weight of Vertex v

L(v) List of Colors for v
S(v) Feasible Weight Set
Φ Set of Coloring
s A Scenario
R Regret
Z Minimum Regret
w2 Weight of Color Class 2
w3 Weight of Color Class 3
w0

2 Global Lower Bound of Color Class 2
A Constraint Matrix
AB Basis Matrix
AN Non-Basis Matrix

OPT Optimal Solution
∩ Intersection
∪ Union

we describe WVCP on binary trees using the concept of list coloring and dynamic program-

ming. Moreover, we use linear programming concept in the solution of a min-max regret

optimization problem described in Chapter 5.
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Chapter 3

Weighted Vertex Coloring in Binary
Trees

In the last decade, weighted vertex coloring problem (WVCP) piqued the interest of an

increasing number of researchers. Aside from its importance in practice, the problem has

some special combinatorial characteristics. WVCP is a generalization of the vertex color-

ing problem but the presence of weights and the structure of the objective function poses

new technical challenges. For example, WVCP is NP-hard even for graphs for which the

chromatic number of a problem is easy, such as bipartite and chordal graphs.

In this chapter 1, we study WVCP in binary trees. First, we provide the related works

on WVCP. Then we propose an algorithm with improved time complexity for balanced

binary trees using the list coloring approach. In the entire chapter, we consider connected

graph. However, the problem is still open for disconnected graphs. Although, we can

optimally color the connected components of a disconnected graphs individually and merge

the coloring to obtain a coloring of the whole graph, there always remains a possibility of

finding different coloring of lesser weight by changing the color of a dominant vertex (a

dominant vertex is a vertex with the maximum weight in a color class).

1This is joint work with Robert Benkoczi and Daya Ram Gaur, and appeared in [11], [20].
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3.1 Preliminaries

3.1.1 Definition

Definition 3.1 (Weighted vertex coloring problem (WVCP) [38]). Given a vertex-weighted

undirected graph G, find a feasible coloring X of G for which the weight of X is minimum.

When wv = 1 for all v∈V , WVCP reduces to the proper vertex coloring problem (VCP).

It follows that WVCP is strongly NP-hard [37].

Definition 3.2 (Acyclic Graph). A graph that contains no cycles is defined as an acyclic

graph.

A tree is an undirected graph that is both connected and acyclic. A tree T in which one

vertex has been designated the root r is termed as a rooted tree. In a rooted tree, the parent

of a vertex is the vertex connected to it on the path to the root and every vertex except the

root has a unique parent. A child of a vertex v is a vertex of which v is the parent. A leaf

vertex in a tree has degree 1. The height of a vertex v is the length of the longest path from

v to a leaf.

Definition 3.3 (Binary Tree). A binary tree is a tree in which each vertex has at most two

children. These children are referred as the left child and the right child.

Definition 3.4 (Subtree). A subtree of a tree T is a subgraph of T that is also a tree.

Definition 3.5 (Balanced Binary Tree). For any vertex in a balanced binary tree, the height

of its left subtree differs from the height of its right subtree by at most 1.

Tree Traversal

Tree traversal is the process of visiting each vertex in a tree data structure exactly once.

There are three ways to traverse a tree:

1. Pre-order traversal: In this traversal method, the root is visited first, then the left

subtree and finally the right subtree.
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2. In-order traversal: In this traversal method, the left subtree is visited first, then the

root and later the right subtree.

3. Post-order traversal: In this traversal method, the root is visited last. First, we traverse

the left subtree, then the right subtree and finally the root vertex.

Definition 3.6 (Tree Decomposition [12]). A tree decomposition of tree T is a collection

of subtrees D(T ) of T such that:

• T ∈ D(T )

• ∀T1,T2 ∈ D(T ), either T1 and T2 are disjoint or one is strictly contained in the other.

An element of D(T ) is called a component of the decomposition.

Definition 3.7 (Height of a decomposition [12]). The height of a decomposition D(T ) is

the maximum cardinality of a subset of the component C ⊆ D(T ) whose elements strictly

contain one another,

height(D(T )) = max{|C| : C = {T1,T2, ...,Tk},T1 ⊂ T2 ⊂ ...Tk}

Definition 3.8 (Tree Width). The tree-width of a graph is defined as the minimum width of

any tree decomposition.

Definition 3.9 (Partial k-trees). A partial k-tree is a type of graph with tree width at most k.

Definition 3.10 (Polynomial-time approximation scheme (PTAS) [24]). Let Π be an NP-

hard optimization problem with objective function fΠ. The algorithm A is an approximation

scheme for Π if, on input (I,e), where I is an instance of Π and e > 0 is an error parameter,

it outputs a solution s such that:

1. fΠ(I,e)≤ (1+ ε)∗OPT if Π is a minimization problem

2. fΠ(I,e)≥ (1− ε)∗OPT if Π is a maximization problem
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An approximation scheme A is called a polynomial time approximation scheme (PTAS)

if, for each fixed ε > 0, its running time is bounded by a polynomial in the size of the in-

stance I and exponential with respect to 1
ε
. A fully polynomial time approximation scheme

(FPTAS) is a scheme where the running time of A is bounded polynomially in both the size

of the instance I and by 1
ε
.

Definition 3.11 (Skinny Trees [51]). A tree in which the set of vertices of degree at least 3

forms an independent set.

Definition 3.12 (Hereditary Class). A class G of graphs is hereditary, if for any G ∈ G ,

every induced subgraph of G is also in G .

Definition 3.13 (Planar Graph). A graph is called planar if it can be drawn on the plane

without any edge crossings.

Definition 3.14 (Pt Free Graph [42]). Graphs that do not contain paths of length t− 1 as

induced subgraph.

Definition 3.15 (Split Graph). A split graph is a graph in which the vertices can be parti-

tioned into a clique and an independent set.

3.1.2 Related Works

Guan and Zhu [38] ask the question whether it is possible to find an efficient algorithm

for WVCP in a tree. They give a O(nr+1) algorithm for a weighted graph with bounded tree

width k and the number of colors r. There are a few partial answers including a PTAS in

partial k-trees [68, 28] and a polynomial time algorithm in the path and skinny trees [51].

But there are no efficient algorithms for other classes of trees.

Pemmaraju et al. [68] show that WVCP in bipartite graphs is NP-hard. Additionally,

they also give the 8/7 approximation algorithm in bipartite graphs and a polynomial-time

approximation scheme (PTAS) for trees (see Definition 3.10). The PTAS is based on the

list coloring approach and the weight of a vertex depends upon a scaling function. The
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feasibility of a coloring is checked by dynamic programming on trees which takes O(n)

time [68]. In the same paper, Pemmaraju et al. [68] also give a 4c-approximation algorithm

for a general graph where c ∈R. The algorithm orders the vertices in non-decreasing order

of weights and performs a greedy coloring. The authors in [68] assume an existence of a

c-approximation algorithm for coloring. Escoffier et al. [28] also gave a PTAS on partial

k-trees and a constant factor approximation algorithm in hereditary classes (e.g. planar

graphs, planar triangle free graphs, line graphs of bipartite graphs) of k-colorable graphs.

These algorithms rely on enumeration and provide little intuition on approaches to design

approximations for WVCP on other types of graphs.

For trees, the complexity of WVCP is still open, whereas, for path graphs, a polynomial

time algorithm exists [51]. A path can be colored with at most three colors [51]. Hence,

the polynomial time algorithm is as follows: fix the value of w(α1) = maxv∈V{wv}; find a

lower bound on w(α2); color all the vertices with weights greater than the lower bound of

w(α2) using color 1; find the minimum weight vertex between two successive vertices vi

and v j colored with color 1 and color it with color 3. Next, sort the vertices colored 3 in non-

decreasing order and iterate through all to find the smallest value for color 2. In summary,

the algorithm divides a path into subpaths separated by vertices that are colored 3. The

complete path is recreated by merging sub-paths one by one. At the time of merging the

sub-paths, the value of 2nd is updated. Finally, the minimum of w(α1)+w(α2) is returned

as an optimal solution. For skinny trees, two sets of weights are created: weights greater

than the lower bound on color 2 (H), and the weights equal or smaller to the lower bound

on color 2 (L). Again, iterating through all the values of L and transferring those weights

into H gives various candidate solutions for w(α2),w(α3) pairs. The optimal solution is the

one with the minimum value of
3
∑

i=1
w(αi).

Recently, Araujo et al. [4] gave a O(nθ(logn)) algorithm for trees based on enumerating

the set of all weights of the colors on a feasible solution, where n is the number of vertices.

This result shows that the problem of finding WVCP in trees cannot be reduced to other
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NP-complete problem due to the presence of a sub-exponential algorithm [4].

de Werra et al. [24] proved that WVCP in planar graphs and P8 free bipartite graphs

are NP-complete. They also gave O(n|w| logn) time algorithm for P5 free bipartite graph

and PTAS for a split graph where |w| is the number of distinct weights in the graph. In

the same paper, they provide an 8/7 approximation algorithm for WVCP in the bipartite

graphs. Similarly, Hoang et al. [43] give an O(n3) time algorithm for (P5,P5) free graphs.

Recently, Hsu and Chang [44] give another upper bound on the number of colors needed in

an optimal coloring of WVCP. Their upper bound is based on the ratio of the weight of the

heaviest vertex to the weight of the least heavy vertex.

158911 1 4 15

v1 v2 v3 v4 v5 v6 v7

Figure 3.1: Two coloring is not optimal. Greedy is not optimal.

In the following sections, we restrict the maximum degree of a tree to three and propose

an O(n2 logn) time algorithm for WVCP in binary trees.

Overview of WVCP in Binary Trees

In binary trees, the maximum degree of a vertex is three, therefore at most four colors

are needed in an optimal solution to the WVCP. This immediately gives an O(n4) algorithm

for binary trees using the list coloring. Let wi = w(αi) represent the cost of color class i,

we assume that w1 ≥ w2 ≥ w3 ≥ w4. Certainly, fewer than four colors may be used in

an optimal solution to the WVCP, in which case we set w4 = 0, or even w3 = w4 = 0 as

appropriate.

We enumerate all possible values for w2,w3 and w4 for fix w1 = max
v∈V

wv. There are

O(n3) such tuples. For each vertex v ∈ V , we assign a list of allowed colors based on the

weight wv of the vertex and the values wi, as follows: L(v) = {i : wv ≤ wi}. If the list

coloring admits a feasible solution, then this solution is also a feasible WVCP coloring
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with cost w1 +w2 +w3 +w4. Testing whether a list coloring problem is feasible in a tree

graph can be done in O(n) time [45]. Hence, this algorithm has O(n4) time complexity.

We can easily obtain an O(n3 logn) algorithm for weighted binary trees if we enumerate

values w2 and w3 and use binary search to find the smallest value of w4 that admits a feasible

list coloring.

Our approach is different. Rather than enumerating the values wi with 1 ≤ i ≤ 4 and

test feasibility with a procedure for list coloring, we compute the set of values of wi for

which list coloring is feasible. We call this set of values the feasible weight set. In the next

section, we characterize this set, and we show that its complexity is linear in the size of the

tree.

3.2 Dynamic Programming

Before we proceed further, we describe a dynamic programming algorithm which we

use throughout. The dynamic programming algorithm examines the previously solved sub-

problems and recursively combine their solutions to give the best solution (see Figure 3.2).

For a given tree, the subproblems are defined over subtrees. Hence, this method is efficient

for trees because the interaction between the connected subtree and rest of the tree occurs

only through an edge.

One algorithm to solve an optimal VCP on a tree T rooted at v with a list of color

L(v) on each vertex, is to enumerate all L(v) colors in each vertex and return the feasible

coloring. However, the disadvantage of this approach is to compute the same feasible col-

orings at each subtree multiple times. We can reduce this repeated computation in each

subtree by saving the feasible coloring at each subtree and use this information to color a

parent. Moreover, we can apply this approach to weighted trees, where we compute the

minimum weighted coloring at each subtree and use this information to compute the min-

imum weighted coloring of a parent vertex of the subtree. In the following section, we

describe the process of computing feasible weight sets in each subtree.
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Optimal coloring of the subtree

Root of the tree

Subtree

Figure 3.2: Dynamic Programming example

3.3 Feasible weight sets

Consider a vertex weighted balanced binary tree T = (V,E,W ) where W : V → N. Let

W (T ) denote the set of weights. Let Tv be a subtree of T . We wish to represent the set

of weight values wi : 1 ≤ i ≤ 4 for subtree Tv, ∆ ≤ 3 for which there is a feasible optimal

coloring of T with color class cost wi, and w1 ≥w2 ≥w3 ≥w4. Naturally, w1 = max
v∈V

w(v) is

fixed. Additionally, we find a lower bound of w2 (see Lemma 3.19) and fix a start value of

w2. For a fixed w1,w2, we are concerned with representing the set of values for w3 and w4.

We represent F(v,w2) by points in the two dimensional space with coordinate axis w3 and

w4 (see Figure 3.3). Let F(v,w2) = {(w3,w4) ∈W : W = W (T )×W (T ) and ∃ coloring

with w1,w2,w3,w4 for Tv} be a feasible weight set for a fixed w2. Because w3 ≥ w4, the

feasible set is contained in the upper triangular region. There are O(n) possible choices for

w3 ≤ w2 and w4 ≤ w2 and therefore, the size of F(v,w2) is O(n2). The important point here

is that, although the size is O(n2) we can represent this set by a geometric construction with

complexity O(n).

We discuss few properties of F(v,w2) to help build our intuition. Fix a w2. We first

remark that the point Q = (w2,w2) ∈ F(v,w2). This is because there is a feasible coloring

with w3 = w4 = w2. In this case, there are two types of vertices in T : vertices v with

wv > w2 which must be colored 1, and vertices with wv ≤ w2 which can be colored with

any color. If the choice of w2 leads to a feasible solution, then the vertices colored 1 must
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form an independent set. If we remove these vertices from T , we obtain a forest which can

be colored with any two colors from the set of allowed colors {2,3,4}.

w3

O

P Q
w2

w4

(2, 3)

(w2, w2)

w4 w3

w3 ≥ w4

Feasible Region

Figure 3.3: The region in w3 - w4 space enclosing the feasible weight set.

Another interesting point is the origin O in Figure 3.3. The origin is part of F(v,w2) if

and only if there exists a feasible two coloring with color weights w1 and w2. Of course, this

is not true for all values of w2. Given the two observations above, F(v,w2) corresponds to a

set of points inside4OPQ possibly separated from the origin by a polygonal line which we

call the boundary line of the feasible weight set (Figure 3.6). We characterize this boundary

line and claim that it has a complexity of O(n). To do this, we first prove the following

lemma.

Lemma 3.16. Let W (T ) denote the set of weights. Let A = (a,b) be a point that belongs

to F(v,w2). Then any point Z = (x,y) with x ∈W (T ), y ∈W (T ), x ≥ a, and y ≥ b also

belongs to F(v,w2).

Proof. If the list coloring problem is feasible for point A (w3 = a and w4 = b), then it must

also be feasible for point Z since the list of allowed colors for the list coloring instance at

point Z contains the lists of allowed colors from the instance at point A.
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Feasible Region

(w′
3, w

′
4)

Figure 3.4: List Coloring region when a color is fixed

Feasible Region

(w3, w4)

(w′
3, w

′
4)

Figure 3.5: Change in the boundary line when the
weight of one color is fixed and other is decreased

w2

w′
4

w3

w′′
3

w′′
4

w′
3

B

L′

L

S(v)

B′ F (v, w2)

(x′, y′)

Figure 3.6: Boundary line for the feasible weight set.

Definition 3.17 (x−y monotone polygonal line [71]). A polygonal line segment is a mono-

tone, if there is a straight line L such that every line perpendicular to L intersects the line

segment at most once. If L coincides with both x-axis and y-axis then the polygonal line

segment is called x− y monotone polygonal line.

For any fixed w2, there is a smallest value of w3 and a smallest value of w4(w′4). Con-

sider a point B in Figure 3.6 with coordinate (wB
3 ,w

′
4). From Lemma 3.16, all points with

w2 ≥ w3 ≥ wB
3 and w4 = w′4 are feasible, so there is a point B′ with minimum w3 = w′3 and

w4 = w′4. Consider the points A′ = (x′,y′) such that the coloring is infeasible and w3 < x′

and w4 < y′. From Lemma 3.16, it follows that there is at most one such point for each

vertical line with w4 ∈W (T ) and horizontal line with w3 ∈W (T ). Moreover, the feasible

weight set is the union of the sets Z(A′) = {(w3,w4)|w3 ≥ x′,and,w4 ≥ y′} (see Figures 3.4

-3.6). Hence the point (B′,L′) is the corner point of x−y monotone polygonal line. For this

reason, we also call the boundary line the staircase line. If the origin is part of the feasible
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weight set, we consider a portion of the vertical line segment [OP] to be on the boundary

line (see Figure 3.3). The feasible weight set is the set of O(n2) points inside 4OPQ. We

now claim the following corollary to Lemma 3.16 that defines our representation of the

feasible weight set.

Corollary 3.18 (Feasible weight set). The feasible weight set for a fixed value of w2 is

uniquely determined by the boundary line (staircase) S(v,w2) (for simplicity S(v)) that

starts at horizontal line w3 = w2 and ends at diagonal line w3 = w4.

We first define a size as the number of corner points in a boundary line. A direct conse-

quence of Corollary 3.18 is that the size of a boundary line is O(n). This is because there

are O(n) vertices colored 3 and a boundary line contains at most one corner point for each

w3.

3.4 An Exact Algorithm for Balanced Binary Trees

3.4.1 The dynamic programming algorithm (DP)

We now describe our algorithm for solving WVCP on vertex weighted balanced binary

trees. Consider binary tree T rooted at an arbitrary vertex r. For a vertex v ∈ V , let Tv

represent the subtree rooted at v. Let Si(v) denote the set of corner points of the staircase

line for the feasible weight set of tree Tv when v is colored with i. For a fixed w2 we

will compute the staircase line Si(v) of Tv for all v ∈ V in a bottom up manner, under the

restriction that vertex v receives color i for 1≤ i≤ 4.

Starting at the leaf vertices, we recursively compute the feasible weight sets represented

by Si(v) until we obtain Si(r) for all 1≤ i≤ 4. We find the optimal solution to the WVCP

by computing the cost w3 +w4 at each point in the feasible weight set Si(r) for all values

of i and retain the point with the minimum value. This computation requires O(n) time

because the size of Si(r) is O(n) and 1 ≤ i ≤ 4. We then repeat the algorithm for the next

value of w2 and so on.
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We can start our enumeration at the lowest value for w2 and then we can increase w2

until w1 = w2. The following Lemma proved in [51] provides a lower bound on w2.

Lemma 3.19. In any graph for every valid coloring, we must have w2≥max{min(wu,wv) :

(u,v) ∈ E}.

Proof. By contradiction, suppose w2 < max{min(wu,wv) : (u,v) ∈ E}. It means there is an

edge e ∈ E such that wv > w2 and wu > w2. As weights higher than w2 are in color class 1,

we have to color both u and v with color 1. This coloring violates the coloring constraint,

therefore it is a contradiction.

It is tempting to consider that this lower bound (is tight) for w2 is the cost of color 2

in the optimal solution for WVCP. We describe an example that shows the lower bound

weight of w2 is not the optimal cost of color 2 in WVCP. Consider the path in Figure 3.1;

in this example, we need at most three colors. If we use the 2 colors, then the weight of

the coloring is 15+ 15 = 30. We have w1 = 15 and w2 ≥ 9. One option for 3-coloring is

to take the minimum weight of w2 and again determine the minimum weight of w3 based

on the fixed value of w2 and w1. This value for w3 is the smallest value among the subset

of vertices with weight smaller than w2. In this example, when w2 is 9 then all the vertices

with weight greater than 9 are colored 1 so the cost is 15+9+8= 32. However, the optimal

weight is 15+11+1 = 27 with w1 = 15, w2 = 11 and w3 = 1.

The pseudocode is described in Algorithm 2. In the following sections, we describe

how the feasible weight set for leaf vertices is determined and how it is computed at internal

vertices.

3.4.2 Feasible weight sets for leaf vertices

Let v ∈V be a leaf vertex. We have the following cases.

Case 1: wv > w2. Then v must be colored 1 and Si(v) = /0 for i ≥ 2 and S1(v) corre-

sponds to the points of the line segment [OP] in Figure 3.7 (no restriction).
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Algorithm 2 WVCP in a balanced Binary Tree
Require: Tree T , weight function w and root r
Ensure: A weighted coloring R of the vertices of T

1: Compute w1 = maxv{wv}
2: Compute the lower bound on color 2 i.e w′2
3: R← /0

4: for all w2 ∈ {wv : wv ≥ w′2} do
5: for all v ∈V in post-order do
6: if v is a leaf vertex then
7: Compute the feasible weight sets Si(v) for 1≤ i≤ 4 using the base case.
8: else
9: Compute the feasible weight sets Si(v) for 1≤ i≤ 4 recursively given Si(x),

Si(y) at the children x,y of v.
10: end if
11: end for
12: Find the best solution R′ in Si(r) for all values of i.
13: Update the solution R if w2 +(∑i wi : wi ∈ R′) is better.
14: end for
15: return w1 +(∑i wi : wi ∈ R)

Case 2: wv ≤w2. Then S1(v) and S2(v) again correspond to the corner points of the line

segment [OP], no restriction. However, S3(v) corresponds to the corner points of staircase

line in Figure 3.8 and S4(v) corresponds to the corner points of staircase line in Figure 3.9.

w3

w4O

P

w2

Figure 3.7: The staircase line is segment [OP].
w3

w4O

P w2

wv

Figure 3.8: Base case for S3(v)

w3

w4O

P w2

wv

Figure 3.9: Base case for S4(v)
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3.4.3 Recursive computation of feasible weight sets

Let v be a subtree with children x and y. We now consider the computation of feasible

weight sets represented by line Si(v) = S j(x)∩Sk(y) for all j = 1, ..,4,k = 1, ..4 available at

the vertices x and y (refer to Section 3.4.4 for intersection operations). We have two cases

depending on the value of parent vertex wv.

Case 1: wv > w2. In this case vertex v must be colored 1 and Si(v) = /0 for all i ≥ 2.

S1(v) is computed as follows. We first combine the feasible weight sets S j(x) and Sk(y) to

obtain a temporary feasible set which we denote by I jk(v) (see Figure 3.11). We take the

feasible weight points that are common to both S j(x) and Sk(y) to obtain the feasible weight

set at parent vertex v assuming colors j and k, both different from 1 at the children x and

y. We perform the intersection operation because a feasible set of values for w3 and w4 is

feasible for the combination of jk colors.

I jk(v) = S j(x)∩Sk(y), j 6= 1,k 6= 1. (3.1)

There are at most nine different feasible weight sets I jk(v) for all values of j and k. We

are interested in the feasible sets with minimum cost, so we obtain the final feasible set

S1(v) by computing the union of the nine staircase lines (see Figure 3.12). We can use the

union operation because a feasible set of values for w3 and w4 is feasible for at least one

combination of jk colors. The union operation explained in Section 3.4.4 is:

S1(v) =
⋃

j 6=1,k 6=1

I jk(v). (3.2)

Case 2: wv ≤ w2. This case is similar to Case 1, except that the feasible weight sets are

additionally intersected by points in region greater than wv based on color i. If i = 3 then

the feasible weight sets of the children are intersected with points in the region {w3 ≥ wv}

when computing the temporary feasible weight sets I jk(v). Similarly, if i = 4 then the

feasible weight sets are intersected with points in the region {w3 ≥ wv} and {w4 ≥ wv}
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1

2 4

v

x y

Figure 3.10: A subtree Tv and its children Tx and Ty

w2

w4

Feasible region

w3

Sj(x)

Sk(y)

O

P
Q

Infeasible region

Ijk(v)

Figure 3.11: Combining the feasible weight sets S j(x)
and Sk(y).

w2

w4

Feasible region

w3

S1(v)

O

P
Q

Infeasible region

Ijk(y)

Ijk(x)

Figure 3.12: Computing S1(v) from the nine tempo-
rary staircase lines I jk(v); only two temporary staircase
lines are depicted.

when calculating the temporary feasible weight sets I jk(v):

I jk(v) = S j(x)∩Sk(y), j 6= 2,k 6= 2 (3.3)

I jk(v) = S j(x)∩Sk(y)∩points in the region{w3 ≥ wv}, j 6= 3,k 6= 3 (3.4)

I jk(v) = S j(x)∩Sk(y)∩points in the region{w3 ≥ wv}∩

points in the region{w4 ≥ wv}, j 6= 4,k 6= 4 (3.5)

The process of calculating union for each Si(v) : i≥ 2 is same as before.
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3.4.4 Intersection and Union Operations

Let S1 and S2 are two staircase lines where S1 has m and S2 has l corner points. Let

S1 = {(wi
3,w

i
4) : 1≤ i≤m} and S2 = {(w j

3,w
j
4) : 1≤ j≤ l} are the corner points in S1 and S2

respectively. Similarly, let points (w2,w
0i
4 ) and (w2,w

0 j
4 ) be the starting points of S1 and S2

respectively. Again, we suppose SI
12 be the corner points on a staircase line that represents

the intersected region. To determine the corner points of SI
12, we begin with the starting

point P = (w2,max{w0i
4 ,w

0 j
4 }), which is a point on the w2 line (see Figure 3.13). After

obtaining P, we begin a walk on the staircase S1 or S2 that contains P, as SI
12. If both S1 and

S2 contain P, SI
12 could be either S1 or S2. An outsider is a staircase line that doesn’t include

the point P. While calculating an intersection region, we always ignore the outsider because

the boundary lines of each subtree are not feasible for both subtrees. Suppose S2 contains

P and we walk through the corner points of S2 as SI
12 until the outsider intersects. Let S1 be

the outsider which contains a point R = (wi
3,w

i
4) and Q = (w j

3,w
j
4) be a point in S2. Now,

the conditions for the intersection of these two points are: w j
3 ≤ wi

3 and w j
4 ≥ wi

4. Hence,

the intersection point is U = (min{w j
3,w

i
3},max{w j

4,w
i
3}). If the intersection condition is

satisfied then we reverse the role of the outsider and SI
12. Thus, S2 becomes the outsider and

S1 becomes SI
12. We repeat this process until we reach the diagonal line ( w3 = w4 line).

Lastly, the point in the diagonal line which has the maximum value for w4 is the end point

of SI
12. We provide the pseudocode for the intersection operation in Algorithm 3.

w2
S1 S2

U

P

Q

R

IntersectionRegion

Figure 3.13: Calculate the intersection region of two staircase functions
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Algorithm 3 Intersection between S1 and S2

Require: Staircases S1, S2 given by their corner points, l, m, (w2,w
0i
4 ) and (w2,w

0 j
4 )

Ensure: Find the feasible weight set R that represent SI
12, R contains corner points

1: Obtain the starting point P = (w2,max{w0i
4 ,w

0 j
4 }) in S1 and S2

2: R← P
3: if S2 contains P then
4: SI

12 = S2
5: S1 is the outsider
6: else
7: SI

12 = S1
8: S2 is the outsider
9: end if

10: Consider next points (wi
3,w

i
4) and (w j

3,w
j
4) from S1 and S2 respectively

11: while wi
3 6= wi

4 and w j
3 6= w j

4 do
12: if w j

3 ≤ wi
3 and w j

4 ≥ w j
3 then

13: R← (min{w j
3,w

i
3},max{w j

4,w
i
3})

14: if SI
12 = S1 then

15: SI
12 = S2

16: S1 is outsider
17: else
18: SI

12 = S1
19: S2 is outsider
20: end if
21: end if
22: end while
23: return R
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Analysis: Each intersection points on staircase line can be charged to the vertex whose

weight is responsible for the line segment in the staircase line. These vertices are obtained

when we traverse the boundary of the feasible weight set from the horizontal w2 line to

the diagonal line only once. For each pair of corner points on the given staircase lines, if

there is an intersect on vertical or horizontal with the boundary line then those intersection

points are considered as corner points on the new staircase line. Algorithm 3 computes

these new corner points in O(n) time because we are traversing any one staircase line only

once. Given the above discussion, we claim the following lemma.

Lemma 3.20. An intersection operation between a pair of staircase lines given by their

corner points requires O(n) time.

We use a similar approach to find the union of feasible weight sets. Suppose SU
12 is the

staircase line representing the union operation. We consider all the points on the outsider

to be in SU
12 and if intersection occurs between S1 and S2 we change the role of the outsider.

The pseudocode for a union operation is in Algorithm 4.

3.4.5 Analysis

We know that the complexity of the boundary of the feasible weight sets is linear in the

size of the tree they are defined on. From algorithms 3 and 4, we notice that the number of

steps needed to compute union or intersection of feasible weight sets is proportional to the

total complexity of the boundary lines of the feasible sets being merged. The lines are x-y

monotone, and one can carefully traverse the two lines in the same direction and compute

their union in an amortized constant time per point visited. As there are a constant number

of feasible weight sets in a balanced binary tree at every vertex, we can obtain the union

of all these feasible weight sets in O(n) time. Given the above discussion, we claim the

following lemma.

Lemma 3.21. An union operation between a pair of staircase lines requires O(n) time.
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3.4. AN EXACT ALGORITHM FOR BALANCED BINARY TREES

Algorithm 4 Union between S1 and S2

Require: Staircases S1, S2 given by their corner points, l, m, (w2,w
0i
4 ) and (w2,w

0 j
4 )

Ensure: Find the feasible weight set R that represent SU
12, R contains corner points

1: Obtain the starting point P = (w2,min{w0i
4 ,w

0 j
4 }) in S1 and S2

2: R← P
3: if S2 contains P then
4: SU

12 = S2
5: S2 is outsider
6: R← S2
7: else
8: SU

12 = S1
9: S1 is outsider

10: R← S1
11: end if
12: Consider next points (wi

3,w
i
4) and (w j

3,w
j
4) from S1 and S2 respectively

13: while wi
3 6= wi

4 and w j
3 6= w j

4 do
14: if w j

3 ≤ wi
3 and w j

4 ≥ w j
3 then

15: if S1 is outsider then
16: SU

12 = S1
17: R← S1
18: else
19: SU

12 = S2
20: R← S2
21: end if
22: end if
23: end while
24: return R
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w2

w4

Feasible

w3

an optimal point

region

Figure 3.14: The optimal (w3,w4) pair returned by the boundary of W2.

Computing WVCP at the root r of a balanced binary tree: Starting at the leaf vertices,

we recursively compute the feasible weight sets represented by Si(v) until we obtain Si(r)

for all 1≤ i≤ 4. We find the optimal solution to the WVCP by computing the cost w3+w4

at each corner point in the feasible weight set Si(r) for all values of i and retain the point

with the minimum value (see Figure 3.14). This computation requires O(n) time because

the size of the boundary line is O(n). We then repeat the algorithm for the next value of w2

and so on. For each fixed w2 we have the minimum for w3+w4 and we consider the w2 that

gives us minimum value for w1 +w2 +w3 +w4. We can thus state the following theorem.

Theorem 3.22. Algorithm 2 correctly computes the optimal solution to WVCP. The running

time of algorithm 2 on balanced binary trees is O(n2 logn).

Proof. The correctness proof is standard. The intersection and the union operation take

O(n) time. There are O(n) candidate values for w2 and the height of a balanced binary tree

is O(logn). For each fixed w2, O(n logn) number of operations are required to calculate the

minimum w3 +w4. Hence, the result follows immediately.

3.5 Example

In this example, we illustrate algorithm 2. Let us consider the tree in Figure 3.15. Let d

and e be the leaf vertices and a be the root vertex. The weight of color 1 is 4 and the lower
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d e

1

1

4a

b

c

4 4

Figure 3.15: An example of a binary tree

w3

Fixed w2

w4

1

d or e is colored 1

w3

φ

1 Fixed w2

w4

d or e is colored 2
w3

φ

1 Fixed w2

w4

d or e is colored 3

w3

φ

1 Fixed w2

w4

d or e is colored 4

Figure 3.16: Base Case of vertices d and e

bound for the color 2 is 1. Hence, color 2 can take the weight 1 or 4. First, fix the weight

of color 2 to 1. Since the weight of color 2 is fixed, the weight of color 3 and 4 can not be

greater than the fixed weight of color 2.

The base case for vertices d and e is given in the Figure 3.16. The symbol φ in the

figures is the empty staircase line. The staircase lines for the vertex d and e, when one is

colored with color 2, 3 and 4 are φ because the weight of the vertex d or e is greater than

w0
2. So vertices d and e cannot be colored with color 2,3 and 4.

Figures 3.17, 3.18, 3.19 and 3.20 show the staircase functions when the leaf vertices

takes different color combinations. Each figure is the staircase line obtained after the inter-

section of vertices d and e.
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w3

Fixed w2

w4

1

11

w3

Fixed w2

w4

1

12

w3

Fixed w2

w4

1

13

w3

Fixed w2

w4

1

14

Figure 3.17: The staircase functions obtained by the combination of the fixed color 1 with other colors
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1
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φ

1 Fixed w2
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w3

φ

1 Fixed w2

w4
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w3

φ

1 Fixed w2

w4

24

Figure 3.18: The staircase functions obtained by the combination of the fixed color 2 with other colors
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w4

1

31

w3

φ

1 Fixed w2

w4

32

w3

φ

1 Fixed w2

w4

33

w3

φ

1 Fixed w2

w4

34

Figure 3.19: The staircase functions obtained by the combination of the fixed color 3 with other colors
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φ
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w3

φ

1 Fixed w2
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w3

φ

1 Fixed w2
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Figure 3.20: The staircase functions obtained by the combination of the fixed color 4 with other colors
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w3

φ

1 Fixed w2

w4

wv color 1

w3

Fixed w2

w4

1

wv color 2

w3

Fixed w2

w4

1

wv color 3

w3

Fixed w2

w4

1

wv color 4

Figure 3.21: The union of staircase functions after the intersection when vertex c is fixed to color 1,2,3 and 4

w3

Fixed w2

w4

1

Fixed color 1: child color 2

w3

Fixed w2

w4

1

Fixed color 1: child color 3
w3

Fixed w2

w4

1

Fixed color 1: child color 4

Figure 3.22: The staircase functions when the vertex a is fixed to color 1

Since the weight of c is equal to w0
2, c can be colored with any color 1,2,3 and 4. When

vertex c is colored i, then the child cannot be colored with color i. Hence, for a fixed color

i, all combinations except the combination containing i are present. For example, if c is

colored 1 then the staircase for d and e are shown in Figures 3.17, 3.18, 3.19, 3.20 except

the combination that has color 1, are present.

After obtaining all the 9 staircase functions for each color taken by vertex c, we perform

the union operation to obtain the single staircase line for each fixed color. The staircase lines

for each fixed color are shown in Figure 3.21. The staircase line for vertex b is same as the

one for vertex c because c is the only children of b and the weight is equal.

The weight of the vertex a is greater than w0
2. Hence, vertex a can only be colored 1.

The staircase lines are given in the Figure 3.22. We take the union of these three staircase

lines and the final staircase line is shown in Figure 3.23. The minimum values fpr w3 +w4
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w3

Fixed w2

w4

1

Figure 3.23: Final staircase function of a obtained by the union of all the staircase functions

for a fixed value of w2 = 1 is shown in Figure 3.23 are 1 and 0. Therefore, the weight of the

coloring for w2 = 1 is 4+1+1+0 = 6. We repeat the same process for w2 = 4 and obtain

the weight of the coloring.

3.6 An Efficient Algorithm for Arbitrary Binary Trees

The above analysis can be extended further to arbitrary binary trees if we use a spe-

cial tree decomposition called the Spine Decomposition (SD) [12]. There are several tree

decomposition mentioned in the literature and among them is a centroid decomposition

[18].

3.6.1 Centroid Decomposition (CD)

Definition 3.23 (Centroid of a tree). Let n be the total number of vertices in a given tree T .

A centroid is a vertex v whose removal splits the given tree into a number of components

Ti, where each of the component Ti contains no more than n/2 vertices.

The process to obtain a centroid of a tree begins by picking an arbitrary vertex as the

root. Then, we use a depth first search strategy (DFS) to compute the size of each subtree.

After finding the size of each subtree, we traverse from the root to the largest subtree until

we reach a vertex v where no subtree has the size greater than n/2. This vertex v is the cen-

troid of the tree. Further, we recursively decompose each of the new tree formed and attach

their centroids as children to our root. Thus, a new centroid tree is formed from the given
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root

Level 1 vertices

leaf vertices
a

b

c d e f

g

h

i

e

c

a b d g i i

f

Figure 3.24: Centroid decomposition of a tree

tree T . Hence, the height of the centroid in the centroid decomposition is O(logn) [12].

Figure 3.24 shows an example of the centroid decomposition. Many tree based problems

use centroid decomposition, e.g. nearest neighbor searching [8], p-center problem [62].

A major drawback of centroid decompositions is that centroids in successive subtrees

are unrelated because we cannot control the representation of the path between two cen-

troids. That means, we can infer no knowledge about the centroid of subtree Ti by knowing

the centroid of subtree Tj if Ti ⊂ Tj. But in our WVCP we need control over such a path

because of the interaction between coloring of vertices in a subtree and the outside world.

In addition, we need to make sure that whatever we compute at some lower level in the

decomposition remains valid at higher levels too. Hence, we use a spine decomposition

instead of centroid decomposition. The spine decomposition is proposed by Benkoczi [12].

We use spine decomposition to obtain an algorithm with improved running time on binary

trees.
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rT

rSD

124212

Tx

Ty

y

x

vi

ui

T (ui)

Figure 3.25: Spine Decomposition; the spine is represented by solid lines and the search tree is represented
by thin lines [12].

3.6.2 Spine Decomposition (SD)

In the Spine Decomposition [12], we decompose the given rooted binary tree recursively

into two or more subtrees called components. The decomposition is determined by a path

computed in such a way that no component adjacent to this path is excessively large in size.

This fact allows the decomposition to be balanced and this path is called the spine.

We build a leaf vertex in a balanced binary search tree on top of the spine. We construct

the search tree in such a way that traversing the SD from the root of the search tree to an

arbitrary tree vertex takes O(logn) steps regardless of the topology of the tree.

More precisely, consider a binary tree T rooted at a vertex rT . We construct a path

from rT to a leaf such that the next vertex on this path has the most number of leaves

associated with it. Furthermore, if v0 = rT ,v1,v2, ...,vk are the vertices on the path, if Nl(v)

denotes the number of leaves hanging from v, then we have Nl(vi+1) ≥ Nl(vi). The path

v0 = rT ,v1,v2, ...,vk is the spine. Removal of the spine creates k disconnected components.

Let T (ui) be one of those components rooted at ui where ui is adjacent to spine vertex vi (in

other words vi is the parent spine vertex of ui) and is not the spine vertex itself (see nodes
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ui and vi in Figure 3.25). Let µ(vi) be the number of vertices in T (ui). We create a binary

search tree with vertices vi as leaves, and we associate this tree with the spine. The root

of the search tree is connected to the parent vertex of ui. The search tree is constructed

by considering the components with many leaves near to the root and is made balanced

using the weight µ(vi). Here, balance condition states that difference between the number

of vertices between the two subtrees is at most 1. After creating the search trees for all

the spines, we traverse the tree using only the search trees. The search tree traversal is as

follows: start the traversal at root vertex rSD of the balanced binary search tree then the

search tree is traversed until leaf vi on the spine is reached; the next search tree vertex is

the root of the search tree constructed for T (ui). A path connecting any two search trees

vertices is called a super-path. Let us denote the super-path by γ(x,y) between the search

tree vertices x and y. The properties of SD are given below by are from [12].

Theorem 3.24. The length of any super-path γ(x,y) in the SD is O(logn) where n is the

number of vertices of the input tree T .

Theorem 3.25. The spine decomposition can be constructed in O(n) time using O(n) space.

xy

z

rSD

Spine

Search Tree

Super Path

Internal Nodes of Search Tree

Leaves of Search Tree

Figure 3.26: Spine Decomposition; x and y are leaves of the search tree
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3.6.3 A WVCP algorithm for arbitrary binary trees - the general approach

In this section, we describe the dynamic program used to obtain the feasible weight

sets on a binary tree using spine decomposition. The approach of the algorithm is virtually

identical to the one for balanced binary trees. We compute feasible weight sets in a bottom-

up fashion, and we find the optimal solution from the feasible weight sets at the root.

We provided pseudocode for solving the WVCP in a binary tree in Algorithm 5. In the

following sections, we describe how the feasible weight sets for leaf vertices is determined

and how it is recursively computed at internal nodes.

Algorithm 5 WVCP in a Binary Tree
Require: Tree T , weight w and root r
Ensure: An optimal weighted coloring R of the vertices of T

1: Compute w1 = maxv{wv}
2: Compute the lower bound w′2 on color 2
3: Compute the spine decomposition of T
4: R← /0

5: for all w2 ∈ {wv : wv ≥ w′2} do
6: for all v ∈V in post-order do
7: if v is a leaf vertex then
8: Compute the feasible weight sets Si(v) for 1≤ i≤ 4 using the base case.
9: else

10: Compute recursively the feasible weight sets Si j(v) for 1≤ i, j≤ 4 from two
spine vertices x,y of v.

11: end if
12: end for
13: Find the best solution R′ in Si j(r) for all values of i, j.
14: Update the solution R if w2 +(∑i wi : wi ∈ R′) is better.
15: end for
16: return Return w1 +(∑i wi : wi ∈ R) is better.

3.6.4 Feasible Weight Sets

The feasible weight sets are associated with the internal vertices of the search trees of the

SD (see Figure 3.26) where the vertex z is the internal vertex of the search tree and it is not

the part of the original tree T ). Additionally, these sets are determined by the tree vertices

that are descendants of the internal search tree vertex (see Figure 3.26 where x and y are
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the descendants of z and the feasible weight sets of z are obtained from the feasible weight

sets of x and y). These subtrees have a particular structure, they attach to the tree T using

at most two vertices and not one as in the case of balanced binary trees (see Figure 3.26).

This means that the dynamic programming algorithm computes a feasible weight set, that

corresponds to colors assigned, using at most two spine vertices (see Equation 3.8). This

adjacency of spine vertices increases the number of feasible weight sets to at most 16 per

node, which is larger but still constant. The recursive computation steps remain essentially

the same as before except that there are more cases to consider.

v

A search tree Tv on a spine

spine pathleaf node

u

Figure 3.27: A leaf vertex in a decomposed tree

Base Case:

First, we describe the base case for computing the feasible weight sets at the leaf vertices

(spine vertices) of balanced search tree. Let v be a leaf vertex and Tv be a search tree of a

spine rooted at u (see Figure 3.27). As we can see in the Figure 3.27, u and v are connected

with an edge. Suppose the feasible sets I jk for u are recursively computed and given to us.

We begin with fixing color i : 1 ≤ i ≤ 4 to v. Due to the coloring constraints, if we fix the

color of v to i then we cannot color u with i. So, for each i on v, we first find the union of

all feasible weight sets, i.e.,
⋃

j 6=i,k 6=i
I jk and obtain feasible weights for v based on wv. Let w2

be the fixed value on color 2.

Case 1: wv > w2. If this is the case, v must be colored 1. Hence, S1(v) =
⋃

j 6=1,k 6=1
I jk and

Si(v) = φ for all i = 2,3,4.

Case 2: wv ≤ w2. If this the case, v can be colored with any of the four colors. Here,
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S1(v) =
⋃

j 6=1,k 6=1
I jk and S2(v) =

⋃
j 6=2,k 6=2

I jk. If i = 3 feasible weight sets are intersected with

points in the region {w3 ≥ wv}. Similarly, if i = 4, feasible weight sets are intersected by

w3 ≥wv and w4 ≥wv. In i = 4 we intersect feasible weight sets with the points in the region

{w3 ≥ wv} because w3 ≥ w4. Therefore,

S3(v) = {
⋃

j 6=3,k 6=3

I jk}∩points in the region{w3 ≥ wv}, (3.6)

S4(v) = {
⋃

j 6=4,k 6=4

I jk}∩points in the region{w3 ≥ wv}∩points in the region{w4 ≥ wv}

(3.7)

Recursive Steps: In SD, leaf vertices are adjacent to each other (see Figure 3.28). As

stated earlier, this adjacency increases the number of feasible weight sets to at most 16 per

vertex in the binary search tree. We describe different cases needed to calculate the feasible

weight sets at the internal vertices of the binary search tree in SD. The intersection and the

union operations are same as in Section 3.4.4.

Case 1: As shown in Figure 3.28, we calculate the feasible weight sets of a parent

vertex of the binary search tree that is connected to the leaf vertices x and y. We color v, 12

possible ways. Let S j(x) : j = 1, ...,4 represent the feasible weight sets for the leaf vertex x

and Sk(y) : k = 1, ...,4 represents the feasible weight sets for the leaf y.

S jk(v) = S j(x)∩Sk(y),∀ j,∀k, j 6= k (3.8)

Case 2: This case is used to calculate the feasible weight sets of the parent vertex v

whose immediate neighbor is a leaf vertex in SD and y is any intermediate vertex in the

binary search tree (see Figure 3.29). Let p = 1, ...,4 and q = 1, ...,4:

Spq(v) =
⋃
j 6=p

(Sp(x)∩S jq(y)) (3.9)
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x y

v

Spine

Binary Tree

Figure 3.28: Vertex x and vertex y are the leaf the SD and v is the vertex of the binary search tree

y

v

x

T1

Figure 3.29: Vertex x is the leaf of SD and vertex y is any internal vertex in the binary search tree. T1
represents the components hanging on the spine vertices

Case 3: We calculate the feasible weight sets of the root of the binary search tree when

the feasible weight sets at the leaf vertices x and y are given (see Figure 3.30).

Spq(v) =
⋃
j 6=k

(Sp j(x)∩Skq(y)) (3.10)

x y

v

T1 T2

Figure 3.30: Vertex x and vertex y are internal vertices of the binary search tree and T1 and T2 are the
components hanging of the spine vertices
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Root r of binary trees: Starting from the leaf vertices of a spine, we recursively compute

the feasible weight sets represented by Si j(v) on each internal node in the search tree for all

1 ≤ i ≤ 4. Feasible weight sets at the root of the internal search tree represent the feasible

weight set of a spine path. Hence, the feasible weight sets computed at the root of the

internal search tree of one spine can be used to calculate the feasible weight set for another

spine, using this super path. We recursively compute the feasible weight sets for all the

spines, up to the root vertex of the search tree. We find the optimal solution to WVCP

by computing the cost w3 +w4 at each corner point in the feasible weight set Si j(r) for

all i and j values and retaining the point with the minimum value (see Figure 3.14). We

then repeat the algorithm for the next value of w2 and so on. For each fixed w2 we have the

minimum w3+w4 and we know the minimum of w2+w3+w4 and we choose the minimum

of w2 +w3 +w4 among all w2.

Theorem 3.26. The WVCP problem in binary trees can be solved optimally in time

O(n2 logn).

Proof. We build a spine decomposition for a given tree in O(n) time (from Theorem 3.25).

We can perform the union and the intersection operations on the feasible weight sets in

O(n) time (see Section 3.4.4). The height of the decomposed tree is O(logn). Hence, for

each w2 we are performing O(n logn) operations to calculate feasible weight sets in the root

of the search tree. Lastly, there are O(n) choices for w2. Therefore, the running time for

WVCP in binary trees is O(n2 logn).

In the next chapter, we extend the concept of feasible weight sets for cactus graphs.

53



Chapter 4

Weighted Vertex Coloring in Cactus
Paths

In this chapter 2, we extend our results on binary trees to cactus paths. Cactus graphs have

many applications. For instance, we can model the combination of a bus network and a ring

network as a cactus graph. These structures are frequently seen in Local Area Networks

(LAN) [53]. Cactus graphs have also been studied in graph theory [41]. We begin with

the definitions. Next, we exploit some properties of the cactus path to obtain the feasible

weight sets.

4.1 Preliminaries

A cycle is a graph C = (V,E) where V = {v0,v1, ...vn} and E =

{(v0,v1),(v1,v2),(v2,v3), ...,(vn−1,vn),(vn,v0)}, the vertices vi are all distinct. Each

vertex v ∈ V is associated with a positive weight wv. If there are an even (odd) number of

vertices, then we call the graph an even (odd) cycle (see Figure 4.1). We begin by giving

the bound on the number of colors needed in any optimal solution to WVCP for cycles.

By using the result from Guan and Zhu [38], we can state that,

Lemma 4.1. Every weighted even cycle graph C has an optimal WVCP using at most 3

colors and every weighted odd cycle graph C has an optimal WVCP using exactly 3 colors.

Definition 4.2 (Cactus Graph). A cactus graph G = (V,E) is a connected graph in which

any two cycles have at most one vertex in common. Likewise, every edge in a cactus graph
2This is joint work with Robert Benkoczi and Daya Ram Gaur, and appeared in [11].
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Figure 4.1: The odd and even vertices weighted cycle. The optimal WVCP on (a) is 16+4+2 = 22 and (b) is
16+3+2=21.
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1
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Figure 4.2: A 4-colorable cactus path where weight 8 receives color 1, weight 4 receives color 2, weight 2
receives color 3, and weight 1 receives color 4 and the optimal cost is 15

belongs to at most one cycle [23].

Definition 4.3 (Contraction of A Cycle). A contraction of a cycle C in a cactus graph G is

the replacement of C with a single vertex v such that the incident edges incident on C are

now incident on v. The resulting graph has one cycle less.

Definition 4.4 (Cactus Path). We call a cactus graph a cactus path, if contracting all of its

cycles results in a path graph.

In this chapter, we consider cactus paths with the maximum degree three. Results of

Guan and Zhu [38] imply that a cactus path with the maximum degree three may need at

most 4 colors in any optimal coloring of WVCP. We consider Figure 4.2 to illustrates this

above result. The cheapest three coloring has cost 16, whereas, the four coloring has cost

15.
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4.2 Weighted Vertex Coloring Problem (WVCP) on Cactus Paths

We now establish several properties that characterize the optimal solution to the WVCP

in cactus paths with maximum degree three. These features are essential in establishing the

correctness of the proposed algorithm.

Lemma 4.5. Let G be a graph with maximum degree ∆. If all of the maximum degree

vertices of G have neighbors with degree < ∆, then the optimal solution to WVCP uses at

most ∆ colors.

Proof. Let 1,2, ..,∆ be the colors and let w1 ≥ w2 ≥ ... ≥ w∆ where wi is the weight of

the ith color. Suppose we use color ∆+ 1 and w∆ ≥ w∆+1. Consider any vertex u that is

colored ∆+1. If u has degree ∆−1, then one color from set {1,2...,∆} is not used by any

of its neighbors. Thus, we can color u with this missing color without increasing the cost

of coloring. We can apply this process repeatedly to re-color all the ∆− 1 degree vertices

with colors from set {1,2...,∆}.

So, the only remaining vertices are of degree ∆ which may be assigned color ∆+1. Let

v be such vertex (see Figure 4.3). All we need is that one color between 1 and ∆ is not

used by its neighbors. Let us assume that the neighbors of v are assigned all of the colors in

the set {1, ...∆}. Let u be the neighbor colored ∆. By the structure of G, we know that the

degree of u < ∆. One of the neighbors of u is v and there are at most ∆−2 other neighbors

of u; hence one of the colors from set {1,2..∆−1} is missing from u’s neighborhood. Thus,

we can change the color of u from ∆ to one of the missing colors from set {1,2, ..∆− 1}.

The cost of the optimal solution doesn’t increase after re-coloring u. We can repeat this

process for all the neighbors of v that are colored with color ∆. Hence, ∆ is eliminated from

v’s neighborhood, and v can be colored ∆.

Corollary 4.6. If the optimal solution to WVCP on a cactus path with the maximum degree

three uses exactly four colors, then at least two vertices with the maximum degree are

adjacent.
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u

v

u

w

Figure 4.3: Coloring the graph with ∆ number of colors

u v

Figure 4.4: Two maximum degree vertices adjacent to each other

Proof. Suppose that no ∆ degree vertices are independent. According to Lemma 4.5, this

cactus path can be colored with 3 colors. Therefore, the optimal solution to WVCP on a

cactus path with the maximum degree three uses exactly four colors if the maximum degree

vertices are not independent.

4.2.1 Outline of the algorithm on cactus paths

In this section, we give a brief description of the algorithm for cactus paths with maxi-

mum degree three. We begin with the definition of the boundary vertices and the component

formed by the vertices of degree three in a cactus path.

Definition 4.7 (Boundary Vertex). A boundary vertex is a vertex of degree greater three in

a cactus path.

The removal of boundary vertices disconnects a cycle into components. This removal

leaves components that are either paths or isolated vertices (see Figure 4.5). A component
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is simply a path with the boundary vertices as the two end vertices and has maximum degree

2. When we take the union of components with its boundary vertex, we can get paths or at

most two cycles. The approach used to calculate the feasible weight sets in a path can be

applied to components. Furthermore, the union of the feasible weight sets of components

gives the feasible weight sets for a cycle.

We begin by separating the cycles of a cactus path into two different components. We

compute the feasible weight sets for each component using Algorithm described in Sec-

tion 4.2.2 (see Figure 4.6). After obtaining the feasible weight sets for each component,

we merge the feasible weight sets to get the feasible weight sets of the cycle (merging is

calculating union and intersection operations described in Section 3.4.4 of Chapter 3. For

simplicity, we associate a vertex with each cycle and path in the components of the cactus

path (see Figure 4.5). Next, we build a balanced binary tree whose leaves are the nodes

just created (see Figure 4.8). The internal nodes of the tree are associated with the feasible

weight sets corresponding to the subgraph induced by the union of the components that are

descendants of the internal tree node. As discussed in the previous sections, we consider at

most three colors where wi represents the cost of color i and w1 ≥ w2 ≥ w3 for the case of

a cactus path whose maximum degree vertices forms an independent set. We merge these

feasible weight sets, in a bottom-up fashion to obtain the feasible weight sets of an internal

node. At the root of the tree, we obtain the feasible weight sets for the entire cactus path.

We recover the optimal (w2,w3) pair by processing this global weight set in the same way

we did for the binary trees.

We extend the above process of computing feasible weight sets in a cactus path which

requires at most four colors in the optimal coloring. Unlike the algorithm for trees, we fix

the weight of the fourth color, and we represent feasible weight sets for each component

in w2- and w3- axis in the 2D graph. We then consider a new value for the weight of the

fourth color and compute an optimal w2 +w3 at the root of the search tree. It can be shown

with amortized analysis that the total amount of work to update the feasible weight sets is
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Node for the pathNode for the Cycle

Fix the color of these boundary nodes

Figure 4.5: A node representing a cycle or a path

Two Components

w2

w3

w2 ≥ w3

Figure 4.6: Two components of a cycle preprocessed
with the algorithm [51]

O(n logn) if the cactus path is 3-colorable and O(n2 logn) if the cactus path is 4-colorable

(see Section 4.2.3). Before giving details, we describe an essential property of a cactus

path.

Lemma 4.8. Suppose wmax = max
v∈V
{wv} and w2 be a lower bound on color class 2 in a

cactus path. Suppose w2 = wmax. If all the cycles in the cactus path are even cycles, then

the two coloring is an optimal weighted coloring, and if any one of the cycles is odd cycle

then a three coloring is the optimal weighted coloring.

Proof. Let all the cycles be even. Let the number of colors be three and let {α1,α2,α3} be

an optimal coloring. Let wi = w(αi) and w1 ≥ w2,≥ w3. Suppose 3 colors are needed ina

an optimal coloring. As we know from Corollary 4.6, w2 = wmax means there exist an edge

e ∈ E such that the adjacent nodes have the maximum weight. Let v and u be nodes of e.

Among the 3 colors, let v ∈ α1 and u ∈ α2. Hence, the weight of the optimal 3-coloring is:

wα1 +wα2 +wα3

= 2wmax +wα3,

(4.1)

An even cycle can be feasibly colored with two colors. Hence, if we use only two colors

to color the cycle, the weight of the two coloring is:
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wα1 +wα2 = 2wmax (4.2)

The cost of coloring {α1,α2,α3} is greater than the cost of the 2-coloring. Therefore,

2-coloring is the optimal coloring for a cactus path containing only even weighted cycles

when w2 = wmax.

Similarly, we examine the odd cycles. Since two of the adjacent vertices have wmax

weights respectively, we can always color these two vertices by two colors. Hence, the

weight of these two colors is 2wmax. We can always select the smallest weight in each odd

cycle as the weight of color 3 in each cycle. It can be shown that this 3-coloring is the

optimal coloring for a cactus path containing odd cycles with w0
2 = wmax, also 4-coloring

has a smaller weight.

In the following sections, we assume w2 < wmax. We first describe a procedure to com-

pute the feasible weight sets on paths using Kavitha et al. algorithm [51]. After calculating

the feasible weight sets on a path, we use a similar process to calculate the feasible weight

sets on the components obtained by removing the maximum degree vertices in the cactus

path.

4.2.2 Brief overview of Kavitha et al. [51] algorithm on a path

The algorithm by Kavitha et al. [51] solves WVCP on a path graph. As the given graph

is a path, at most three colors are needed in an optimal coloring. Let wi be the weight

of color i. The idea behind the algorithm is to enumerate the weight of 3 and obtain the

minimum sum of w1 +w2 weights for each choice of color 3. We first fix the weight of

color 1 to wmax = maxv{wv}, then we find the minimum weight for color 2 for each choice

of w3. The next question is, which vertices should be colored 3. We use the lower bound

on color 2 (w2) (see Lemma 3.19 of Chapter 3). All the vertices which have the weight
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greater than w2 are assigned color 1 and they form an independent set. Let us consider

two successive vertices that are colored 1. If there is an odd number of vertices between

two successive vertices that are colored 1 then we can color the intermediated vertices with

only two colors. Hence, 2-coloring is the optimal coloring. However, if there are an even

number of vertices between two successive color 1 vertices, then we need color 3. We

choose vertices to color 3, as the minimum weight vertex between every successive pair of

color 1 vertices. In summary, the algorithm divides a path into subpaths separated by color

3 vertices. The complete path is created by merging subpaths one by one. At the time of

merging the subpaths, w2 is updated along with w3. Finally, minimum of [w1,w2,w3] is

returned.

Let {z1, ...,zr} be the set of color 3 vertices. These color 3 vertices decompose the

path into the sequence ρ0,z1,ρ1, ...,ρr−1,zr,ρr, where each ρi is a sub-path of the original

path, zv ∈ V is a color 3 vertex and ui ∈ ρ is a color 1 vertex. We provide pseudocode in

Algorithm 6 for calculating feasible weight sets for a path. The following symbols are used

in the description of the algorithm:

* αi is the ith color class

* w2 is the lower bound on α2

* w2 is the weight of α2

* w3 is the weight of α3

* ui is the ith color 1 vertex

* zi is the ith color 3 vertex

* ρi is the ith sub-path of path P

* Ω is the set of odd-indexed vertices

* Σ is the set of even-indexed vertices
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* ωρ = max
v∈ρ∩Ω

{w(v)} is the maximum weight among odd-indexed vertices in ρ

* σρ = max
v∈ρ∩Σ

{w(v)} is the maximum weight among even-indexed vertices in ρ

* Q is a priority queue data structure

* R is a list data structure

Algorithm 6 Construct a feasible weight set for a path
Require: Path P, weight function w

Ensure: Feasible weight set of P

1: Calculate wmax such that w(α1) = wmax = maxv∈V wv

2: Find the lower bound on color 2 i.e w2

3: Visit the path from left to right identifying color 1 nodes u0, ...,ur s.t. w(u j)> w0
2

4: For each i = 1, ...,r find a vertex zi with minimum weight (in ui−1, ...,ui)

5: Decompose path into subpaths ρ0,z1,ρ1, ...,ρr1,zr,ρr and compute ωρi and σρi for each

i = 0, ...,r.

6: w0
3← max

1≤i≤r
w(zi)

7: Q← queue containing the vertices zi in non-increasing order of w(zi)

8: R← (w0
2,w

0
3)

9: for all i = 1, ...,r do

10: z← dequeue first vertex from Q

11: let ρ′ and ρ′′ be the subpaths on each side of z in the current path decomposition

12: replace ρ′,z,ρ′′ with a new sub-path ρ in the path decomposition

13: compute ωρi and σρi from w(z),σρ′i
,ωρ′i

,σρ′′i
and ωρ′′i

14: wi
2←max{min{σρ,ωρ},wi−1

2 }

15: wi
3← weight of the next z-vertex in Q

16: R← (wi
2,w

i
3)

17: end for

18: return R
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4.2.3 Running Time

Theorem 4.9. The running time of Algorithm 6 is O(n logn).

Proof. The initial path decomposition and the first coloring [wmax,w0
2,w

0
3] can be computed

in O(n) time. We maintained this path decomposition in a linked list. We maintain a pointer

to each color 3 vertex. We build a priority queue Q of each color 3 vertex which requires

sorting. The sorting of color 3 vertices can be performed in O(n logn) using heap sort [32].

The merging of two adjacent subpaths requires O(1) time. Each iteration removes one color

3 vertex from Q, so the running time to iterate all color 3 vertices is O(r). We can update R

by inserting a pair (w2,w3) in O(1) time. Hence, our algorithm runs in O(n logn) time.

4.2.4 A Case When Boundary Vertices Are Independent

In this section, we propose an algorithm for cactus paths when the boundary vertices

of components are independent. Such cactus paths require at most three colors (from

Lemma 4.5) in any optimal coloring.

Basis step

In this section, we use the Algorithm 6 with the restriction that the boundary vertices

are colored with predetermined colors. Let x and y be two boundary vertices of a compo-

nent(see Figure 4.7). We fix three color choices, for x and y and apply Algorithm 6 to a

component to obtain the feasible weight sets. Moreover, there are at most 9 combinations

to color x and y. Let us consider three different cases for x and y (see Figure 4.7).

Let w0
2 be the lower bound on color 2.

Case 1: x is colored 1

First, we determine all the vertices u ∈V : wu > w0
2 and color them 1. Let v be an adjacent

vertex of x. If wv > w0
2, then v is colored with color 1. This coloring is infeasible. To

remove this violation, we v as 2 and find a color 3 vertex between x and next vertex colored

1. While executing Step 13, we make sure that x is colored 1 and v is colored 2. We return
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x y

x y

Boundary vertices

Figure 4.7: Boundary node are fixed to some colors

the minimum w2 among odd-indexed or even-indexed vertices. However, if the adjacent

vertex is not colored 1, we do not color v by 2. We simply find w2 by executing Step 13 of

this particular subpath by coloring x as 1.

Case 2: x is colored 2

If x is colored 2, the lower bound on color 2 should be max{w0
2,wx}. We also make sure

that the adjacent vertex of x is colored 1 while performing the 2-coloring of the subpath that

contains x.

Case 3: x is colored 3

If x is colored 3, we make sure that the lower bound on color 2 is max{w0
2,wx}. Fur-

thermore, we compute w2 for all choices of w3 < wx. The similar reasoning also applies for

the vertex y when colored with color 1,2 and 3.

After obtaining the feasible weight sets of upper and a lower component of a cycle (see

Figure 4.7), we intersect the feasible weight sets as described in Section 3.4.4 of Chapter 3

to obtain the feasible weight set of a cycle. We repeat this process for every cycle and path.

Finally, we associate the feasible weight sets, of the corresponding components, with each

leaf node in the balanced binary tree (see Figure 4.8).

64



4.2. WEIGHTED VERTEX COLORING PROBLEM (WVCP) ON CACTUS PATHS

Find feasible weight sets at the root of the tree

Search Tree

Figure 4.8: A search tree on the top of a Cactus Path

Shared node between x and y components

x component y component

x y

v

Figure 4.9: An internal nodes of the cactus path and it’s associate components

Recursive step

Once we obtain the feasible weight sets for each leaf in the balanced binary tree, we

proceed to obtain feasible weight sets of an internal node of the balanced binary tree (see

Figure 4.9). We recursively compute the feasible weight sets of an internal vertex, of the

balanced binary tree built on top of a cactus path, using the same intersection and union

operations as described in Section 3.4.4 of Chapter 3. Let v be the root and x and y be the

leaves of a subtree of the balanced binary tree (see Figure 4.9). Let the feasible weight sets

of child vertices x and y be Sαφ(x) : α,φ = {1,2,3} and Sβφ(y) : β = {1,2,3} respectively.

The feasible weight set of v is calculated as:

Sαβ(v) =
⋃

φ={1,2,3}
(Sαφ(x)∩Sφβ(y)) (4.3)
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We use the recursive procedure to compute the feasible weight sets up to the root of

the balanced binary tree. We recover the optimal (w2,w3) pair by processing each feasible

weight set at the root of the tree in the same way we did for the binary trees. Pseudocode

of an algorithm is given below:

Outline of the algorithm:

Algorithm 7 WVCP in a cactus path
1: Compute the components of the cactus path.

2: Compute the feasible weight set by traversing the balanced binary tree bottom-up.

3: Traverse the boundary of feasible weight sets to obtain the best solution. The best

solution is the corner points having a minimum w2 +w3.

4: Return the best solution

Running Time:

Since the complexity of the boundary of the feasible weight sets is linear in the size

of the corresponding cactus components, it can be shown that the entire computation takes

O(n logn) time.

Theorem 4.10. The WVCP problem in cactus paths, where all the maximum degree vertices

are independent, can be solved exactly in time O(n logn).

Proof. By Theorem 4.9, feasible weight sets of each component can be calculated in

O(n logn). We note that the height of a balanced binary tree is O(logn) and there are a

constant number of union and intersection operations at each internal node. However, each

union/intersection operation takes time proportional to the size of the components covered

by the internal node where the operations take place. Here, covered means the portion of

cactus path represented by an internal node of the tree. Hence, the union/intersection oper-

ation takes O(n) time since an internal node can cover at most O(n) nodes and we perform

these operations up to the root of the tree. The total time to compute an optimal solution to

WVCP for this particular cactus path is O(n logn).
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x y zw

v S(w, z)

Figure 4.10: A Cactus Path with the maximum degree vertices adjacent to each other

4.2.5 Case when the maximum degree vertices are adjacent

In this section, we consider a cactus path where the maximum degree vertices are ad-

jacent to each other (see Figure 4.10). This cactus path requires at most four colors in an

optimal coloring. One way to find the optimal coloring on these cactus paths is to represent

w4 in w2−w3 region. This representation is possible because all the other vertices other

than the maximum degree vertices are of degree two. When there are vertices with degree

two, optimal coloring can be obtained with at most three colors.

Observation 1: We can observe that the two neighbors of a color 3 vertex and a color

4 vertex are color 1 and color 2. Color 1 and color 2 vertices as neighbors of a ∆ = 3

degree 3 vertex forces color 3 to appear. This color 3 as well as color 1 and color 2 vertices

as neighbors of another adjacent degree 3 vertex forces, color 4 to appear in the optimal

solution (see Figure 4.2).

Lemma 4.11. Let G be a cactus path. If an optimal solution uses four colors then from any

pair of adjacent vertices of degree three, the vertex with the smallest weight receives color

4. If the weights are same, then any one of the vertices receives color 4.

Proof. Consider vertices x and y such that wx > wy (as shown in Figure 4.11). If wx = wy,
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x y

3 4

Figure 4.11: Interchange of colors

the weight of the optimal coloring remains the same for x and y. Let x be colored 4 and y

be colored 3. By observation 1, the neighbors of x and y are of color 1 and 2. Since x and

y have neighbors color 1 and 2, an interchange of colors between x and y does not violate

the coloring constraint and also does not increase the cost of coloring. Hence, the lemma

follows.

We now discuss an algorithm with running time O(n log2 n) and its limitations. We

begin with a list of vertices to be colored 4. The vertices are introduced one by one to

update a tree T obtained using Algorithm 7.

By Lemma 4.11, we can consider the minimum weight vertex among two maximum

degree vertices of a cycle as a color 4 candidate vertex. Let x be the color 4 vertex, and the

adjacent maximum degree vertex is the color 3 vertex. The idea is to color x 3, updating

the existing feasible weight from leaf to the root node of the balanced binary tree by the

introduction of the weight w3. Although we color x 3, we record this weight as color

4 weight. It seems there is an infeasibility of coloring, but we let this coloring conflict

happen because we are representing this weight in w2− axis and w3− axis 2D graph. This

new coloring of x creates a new case where one of the boundary vertices are colored 3.

We are adding this new combination as a feasible weight set in a leaf node of the balanced

binary tree. The process of creating feasible weight sets for a component is the same as

in Section 4.2.4. However, we can neglect color 4 vertex while running Algorithm 6 for

finding the feasible weight set of a component.
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Limitations: Let us again consider Figure 4.10. Let S(w,x) be the feasible weight sets of

a cycle with boundary vertices w and x, S(y,z) be feasible weight sets of a cycle with bound-

ary vertices y and z, S3(w,z) be feasible weight sets of v when three colors are used, and

S4(w,z) be feasible weight sets of v when fourth color is used. The recursive computation

of S3(w,z) is:

S3(w,z) =
⋃

0≤i≤3,i6= j

Si j(w,x)∩S ji(y,z),0≤ j ≤ 3 (4.4)

Let x be colored 4. Then S4(w,z) is computed as:

S4(w,z) = S3(w,z)∪{Si4(w,x)∩S ji(y,z)},∀i,∀ j, i 6= j, j 6= 4 (4.5)

By equation 4.5, an introduction of a color 4 vertex creates additional intersection and

union computation on the existing feasible weight sets. Let us consider Figure 4.12. The

first part of the figure shows the feasible weight set S3(w,x). However, after the introduction

of a color 4 vertex, the intersection region is determined by S3(y,z). We can use binary

search to compute the updated feasible weight set. That means we can obtain the updated

feasible weight set in time O(n logn) using binary search. As in Figure 4.12, the complexity

of computing an optimal point in a feasible weight set depends on the size of the feasible

weight set of next child in the binary search tree. Hence, keeping all the previous feasible

weight sets and applying binary search to obtain updated intersection and union points

requires more space and time. Therefore, it is an open question to obtain the O(n log2 n)

time for solving WVCP in cactus paths.

To mitigate the above limitation of updating the existing feasible weight sets, we can

create the feasible weight sets of the given tree from scratch for every w4. We first find

all the color 4 vertices. Then we create a balanced binary tree T . We obtain the minimum

weight using three colors (where w4 = 0) using Algorithm 7. We sort the color 4 vertices

in non-decreasing order and introduce one by one. In this case, boundary vertices are
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allowed to take color 4 hence, new combinations with color 4 are introduced. However,

these combinations are constant in number. When we fix the weight of a vertex v to color

4, then all the vertices whose weight is lesser than w4 may also be colored with color 4.

Moreover, we can easily find feasible weight sets of a component with a boundary vertex

having color 4. We can ignore this color 4 vertex and represent feasible weight sets in

w2−w3 region using Algorithm 6. We can ignore this weight because we have already

considered the maximum color 4 weight in the solution. The pseudocode for WVCP in a

cactus path is in Algorithm 8:

Algorithm 8 WVCP in a cactus path
1: Determine L i.e. the vertices that are candidates for the fourth color and sort them in

non-decreasing order

2: Create a balanced binary tree T

3: Use Algorithm 7 on T

4: R← traverse the boundary of the feasible weight sets at the root of T and return the

best solution 4.11.

5: for all w4 ∈ ({0}∪L) do

6: Create feasible weight sets on T

7: Traverse the boundary of the feasible weight sets to obtain the best solution for w4

8: Update R← best solution of w4.

9: end for

10: Return the best solution

Running Time

We know that the intersection or union operation of the feasible weight sets takes O(n)

time. These operations are performed a constant number of times since the coloring com-

binations are constant in numbers. As there are O(n) color 4 vertices and each update of w4

is performed up to the root of the balanced binary tree which has the height of O(logn), the
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w2

wmax

w3

w2

wmax

w3

without color 4 after introducing color 4

S4(w, x) S3(y, z)S3(y, z)
S3(w, x)

Figure 4.12: Feasible region before and after the introduction of w4.

optimal WVCP in cactus path takes O(n2 logn) time. Given the above discussion we can

state the following theorem:

Theorem 4.12. The WVCP problem in arbitrary cactus paths with maximum degree three

can be solved exactly in time O(n2 logn).

4.3 An Algorithm for Cycles

To the best of our knowledge, this is the first study of WVCP on odd cycles. By

Lemma 4.1, we need at most three colors to optimally color a weighted cycle. More-

over, a cycle resembles a path when we remove an edge. Thus, we can use Kavitha’s et

al. [51] algorithm (see Section 4.2.2) on weighted cycles. We modify Kavitha’s algorithm

slightly and propose an algorithm for a weighted cycle. The only modification to the algo-

rithm [51] is that we terminate Algorithm [51] before it processes the last vertex colored

3 in an odd cycle because odd cycles require exactly three colors (see Corollary 4.1). Let

wmax = maxv∈V be the weight of color class 1. We represent a coloring by [wmax,w2,w3].

Let [wmax,wi
2,w

i
3] be a candidate coloring. We first calculate an initial coloring

[wmax,w0
2,w

0
3]. The lower bound on color 2, (w0

2) is calculated as in Lemma 3.19 of Chap-

ter 3. Similarly, w0
3 is calculated as in Section 4.2.2. Our objective is to find the minimum

of wi
2 +wi

3. As in the path case, we decompose a cycle into subpaths ρ. Let ui : w(u)> w0
2

are vertices colored 1 and zi are vertices colored 3. Additional symbols are defined in

71



4.3. AN ALGORITHM FOR CYCLES

Section 4.2.2. Pseudocode follows:

Algorithm 9 Algorithms for cycles
Require: Cycle C, weight function w

Ensure: An optimal weighted coloring on cycles

1: Calculate wmax = maxv∈V wv

2: Find the lower bound on color 2 w0
2 ≥max{min(wu,wv) : (u,v) ∈ E}

3: For each i = 1, ...,r find a vertex zi with minimum weight (in ui−1, ...,ui)

4: Decompose a cycle into different subpaths ρ0,z1,ρ1, ...,ρr1,zr,ρr by taking a reference

vertex as a starting vertex, and compute ωρi and σρi for each i = 0, ...,r.

5: w0
3←max1≤i≤r w(zi)

6: Q← queue containing the vertices zi in non-increasing order of w(zi)

7: for all i = 1, ...,r do

8: if Cycle is Odd then

9: End the loop when i = r.

10: end if

11: z← dequeue the first vertex from Q

12: let ρ′ and ρ′′ be the subpaths on each side of z in the current path decomposition

13: replace ρ′,z,ρ′′ with a new sub-path ρ in the path decomposition

14: compute ωρi and σρi from w(z),σρ′i
,ωρ′i

,σρ′′i
and ωρ′′i

15: wi
2←max{min{σρ,ωρ},wi−1

2 }

16: wi
3← weight of the next z-vertex in Q

17: end for

18: return best coloring among the candidates [wmax,wi
2,w

i
3] for i = 0, ...,r

4.3.1 Correctness

Although the proof of the correctness of the algorithm in [51] are for paths, we show

that it still holds true for cycles.

72



4.3. AN ALGORITHM FOR CYCLES

Lemma 4.13. Every candidate triplet [wmax,wi
2,w

i
3] has a corresponding feasible coloring.

Proof. We will prove this using induction.

1. If i = 0, the initial coloring is [wmax,w0
2,w

0
3]. The initial coloring [wmax,w0

2,w
0
3] is

a feasible coloring because we can always color all z vertices with color 3 and u

vertices with color 1. The remaining vertices have weight at most w0
2, so coloring

these vertices with color 1 and color 2 gives a feasible coloring.

2. Suppose i > 0. The coloring induced by the path decomposition after the i−1st

iteration is [wmax,wi−1
2 ,wi−1

3 ] and is a feasible coloring. Let ith iteration dequeues

vertex z from the queue Q which has the weight wi−1
3 . The coloring at the end of ith

iteration differs from i−1th iteration by the nodes in ρ′,z,ρ′′, which are merged into

a new sub-path ρ. Thus the weight of color 2 is the maximum of wi−1
2 and the weight

of color 2 in an optimal 2-coloring of ρ, which is min{σρ,ωρ}. This is also true of

odd cycles because we did not dequeue the last color 3 vertex. Hence, we have a

feasible coloring for [wmax,wi
2,w

i
3].

It follows by induction that every candidate triplet [wmax,wi
2,w

i
3] has a corresponding feasi-

ble coloring

Lemma 4.14. Let i < r be such that wi
2 < wi+1

2 . For every feasible coloring [wmax,w2,w3]

if w2 < wi+1
2 then w3 ≥ wi

3.

Refer [51] for the proof of the above lemma.

Theorem 4.15. Algorithm 9 outputs an optimal weighted vertex coloring in cycles.

Proof. By Lemma 4.13, the coloring is a feasible coloring. To argue that the coloring is

optimal, we show that there is a candidate [wmax,wi
2,w

i
3] at least as good for any feasible

coloring [wmax,w2,w3]. If the optimal coloring of an even cycle is 2-coloring i.e. w2 ≥ wr
2

then our algorithm consider the candidate [wmax,wr
2,w

r
3 = 0] (at the last iteration the queue is
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empty). This candidate output is as good as [wmax,wi
2,w

i
3]. Otherwise, there exists 0≤ i < r

such that wi
2 ≤ w2 ≤ wi+1

2 (we know w2 ≥ w0
2). Finally, from Lemma 4.14, if w2 < wi+1

2

then w3 ≥ wi
3. Since algorithm outputs candidate solution [wmax,wi

2,w
i
3], the output is at

least as good as [wmax,w2,w3]. Hence, our algorithm outputs an optimal solution.

4.3.2 Running Time

The initial path decomposition and the first coloring [wmax,w0
2,w

0
3] can be computed in

O(n) time. We maintained this path decomposition in a circular linked list. We maintain a

pointer for each color 3 vertex. We build a queue Q for each color 3 vertex which requires

sorting. We can update the path decomposition of merging two adjacent subpaths in O(1)

time. Each iteration removes one color 3 vertex from Q, so the running time to iterate all

color 3 vertices is O(r). Hence, our algorithm runs in O(n) time except the time to sort

vertices. The sorting of color 3 vertices can be performed in O(n logn) using heap sort

[32]. Given the above discussion, we can state the following theorem.

Theorem 4.16. The WVCP problem in cycles can be solved exactly in time O(n logn).

In the next chapter, we study the weighted vertex coloring problem when weights are

uncertain.
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Chapter 5

Robust Weighted Vertex Coloring

In this chapter 3, we explain the min-max regret solution to the weighted vertex color-

ing problem (WVCP). We call this problem the robust weighted vertex coloring problem

(RWVCP).

5.1 Robust Optimization

Combinatorial optimization problems with uncertainty in the input parameters have

been studied by an increasing number of researchers because of their importance in prac-

tice. In classical optimization problems, it is assumed that the parameters are known in

advance. In reality, it is very difficult to obtain accurate data because of measurement or

estimation errors. Even a small uncertainty in the data may make the nominal optimal solu-

tion completely meaningless [9]. Two ways of modeling uncertainty are currently popular:

the stochastic approach and the worst case analysis approach (or robust approach). The

goal of these algorithms is to provide algorithms for minimizing the cost in the presence

of uncertainty. One approach provides a solution that has the smallest cost in expectation,

the other minimizes the adverse effects, i.e. the difference between the cost of the solution

returned and the optimal cost given a realization of the scenario minimized over all possible

scenarios.

In the stochastic approach [13], it is assumed that we have information about the under-

lying probability distribution, and the objective is to find the solution with good expected

3This is joint work with Robert Benkoczi and Daya Gaur, and appeared in [10].
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value. Various techniques are reviewed in [46] to handle this type of problem.

In the robust or the worst case approach, the uncertain parameters are from an inter-

val with an unknown probability distribution. For these parameters, the values lie between

known lower and upper bounds. Any particular assignment of values to the uncertain pa-

rameters in the allowed range is called a scenario. The goal is to find a “robust” solution”.

That is a solution X for which the difference between the cost of a solution X under the

worst possible scenario and the cost of the optimal solution for that scenario is minimized.

Computing the optimal cost of a scenario requires solving the deterministic version which

can be difficult.

5.1.1 Min-max Regret

Min-max regret optimization deals with the uncertainty in the objective function at the

time of solving the problem. The aim of the min-max regret is to find a feasible solution

that would minimize the worst-case loss. This loss may occur in the objective function

value because the solution is chosen before the actual realization of the objective function

is known. In other words, min-max regret aims at constructing solutions having the best

possible performance in the worst case [74].

5.1.2 Problem definition

Let G = (V,E,w) be a weighted graph where w : V → N be the weight function on

the vertices. Weight of each vertex v, lies in the interval [wv,wv]. Let Γ be the Cartesian

product of the uncertainty intervals [wv,wv],v ∈ V . An element s ∈ Γ is called a scenario,

where ws
v ≥ 0 is the weight of the vertex v under the scenario s. Let Φ be the set of all

the feasible colorings for G. If X ∈ Φ, then X is the partition of V into color classes

X = {α1,α2, ...,αk} such that αi is an independent set (color class) in G. For any color

class α, let ws(α) = max{ws
v|v ∈ α}. For a scenario s and a coloring X , the cost of the

weighted coloring is:
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F(s,X) = ∑
α∈X

max
v∈α
{ws

v} (5.1)

Let F∗(s) be the cost of the optimal solution under scenario s ∈ Γ, defined as:

F∗(s) = min
X∈Φ

F(s,X) (5.2)

Regret R(s,X) is defined as the difference between the weight of the coloring X under

scenario s and the optimal solution under scenario s:

R(s,X) = F(s,X)−F∗(s) (5.3)

The maximum regret of a feasible coloring X ∈Φ is given by:

Z(X) = max
s∈Γ
{F(s,X)−F∗(s)} (5.4)

For given X , any scenario s which maximizes the right hand side of (5.4) is called the

worst case scenario for X . Our objective is to find the coloring X among all the colorings

in Φ which minimizes Z(X),

min
X∈Φ

Z(X) (5.5)

5.1.3 Related Works

Kasperski et al. [49] in 2006 gave a 2-approximation algorithm for min-max regret opti-

mization problems for problems with specific objective functions. Their approach approach

can be applied to many interval versions of the basic combinatorial optimization problems,

such as the minimum spanning tree problem [6] [5], the shortest path problem [66] and the

assignment problem [48]. Their approach is based on the following fact: given a coloring

X and elements e, the worst case scenario for X is the one where e ∈ X have costs we and

all the other elements have costs we. Now, it is easy to determine a lower bound on the
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regret. The approximation algorithm always considers the solution to the midpoint interval

scenario. Additionally, Kasperski et al. [50] also gave a FPTAS (see Definition 3.10 of

Chapter 3) for the same set of problems. The FPTAS assumes the existence of a pseudo-

polynomial algorithm to find the regret of a given solution and a 2-approximation min-max

regret algorithm.

Pereira et al. [69] studied the min-max regret for the set covering problem [76] with

uncertain costs for every subset. They give an exact algorithm based on the mixed-integer

programming (MILP) formulation. To solve the MILP, they initially consider a set of sce-

narios and apply Benders decomposition technique to obtain new constraints. The structure

of the worst case scenario is the same as the worst case scenario in [49]. The algorithm

is iterative and in every iteration, a constraint that violates the current solution is added to

the formulation. Other faster heuristics are also discussed in the same paper. Montemanni

et al. [65] provide a mathematical formulation for min-max regret for the robust traveling

salesman problem. Here, an uncertainty parameter is the distance between any two vertices

and this uncertainty is represented by an interval.

Definition 5.1 (Quadratic Assignment Problem (QAP) [56]). Given a set of n facilities and

a set of n locations. For each pair of locations, a distance is specified and for each pair of

facilities a weight or flow is specified (e.g., the amount of supplies transported between the

two facilities). The QAP problem is to assign all facilities to different locations with the

goal of minimizing the sum of the distances multiplied by the corresponding flows.

Recently, Feizollahi et al. [30] gave the MILP formulation for min-max regret for QAP

where the material flows between the facilities are uncertain. Here, a worst case scenario

is obtained by solving the deterministic QAP. Lastly, there are many research articles that

study robust optimization, a few of them are reviewed in [29], [78]. A survey of robust

optimization techniques is in [34] and [1].

Robust optimization is a very active area of research. One example of uncertainty is

the scheduling of transmissions in wireless networks, where traffic burst is commonplace.
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Robust optimization has found many applications in classical logistics, facility location, and

finance [34]. However, the structure of RWVCP is very different from that of the majority

of the robust problems studied in the literature. In the robust problems that we reviewed,

[30], [49], [69], once a solution is fixed, finding a worst case scenario usually leads to

an easier optimization problem. For RWVCP, finding a worst case scenario is intractable.

Moreover, the objective function of RWVCP employs the maximum operator because the

weight of a color class is determined by the maximum weight of a vertex. This operator

disallows distribution of the cost of the objective function among the elements that make up

a feasible solution. For this reason, the approach taken by Kasperski et al. [49] applied for

a large class of problems does not apply to RWVCP. We propose a math-heuristic based on

the column generation method and a local search heuristic for RWVCP. In the next section,

our results.

5.2 A Path Graph With Uncertain Weights

Example: Consider a weighted path shown in Figure 5.1. Here, the weight of each

vertex can take any integer value in [1,5]. One brute force algorithm to determine a color

with minimum regret is to compute Z(X), for each X . This requires computation of 54 ∗ k4

entries where k is the number of colors. There are 54 scenarios and O(k4) different colorings

for a choice of colors. In this example, we consider 2 and 3 as the choice of colors since

a weighted path can be colored with at most three colors. In general, this approach is not

practical because the number of scenarios is exponential in the number of vertices and for

a choice of colors there are an exponential number of ways of coloring. We classify the

scenarios into two types, those in which the weight of each vertex wv is either w or w, and

those scenarios for which w < w < w for some vertex v. We show that a scenario of the

later type does not determine Z(X) for any coloring X .

Lemma 5.2. Let G be a graph. If s is a worst case scenario then wv = wv or wv for each

vertex v.
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[1,2,3,4,5] [1,2,3,4,5] [1,2,3,4,5] [1,2,3,4,5]

v1 v2 v3 v4

Figure 5.1: A Weighted Path

Proof. Consider a worst case scenario s, such that for some vertex v, wv < wv < wv. Let

sv(sv) be the scenario obtained by changing the weight of vertex v, wv = wv(wv = wv) while

keeping all the other weights the same. We will show that either sv or sv has the same regret

as s, for any coloring X . Both sv and sv have one fewer vertex with value, wv < wv < wv.

Therefore this process can be iterated. Eventually we get a scenario in which for every

vertex v, wv = wv or wv = wv. By the definition of regret,

R(sv,X) = F(sv,X)−F∗(sv) = F(sv,X)−min
X∈φ

F(sv,X) (5.6)

R(sv,X) = F(sv,X)−F∗(sv) = F(sv,X)−min
X∈φ

F(sv,X) (5.7)

Also,

R(s,X) = F(s,X)−F∗(s) = F(s,X)−min
X∈φ

F(s,X) (5.8)

We consider two cases:

Case 1: Suppose vertex v determines the weight of some color class α in the X coloring

of s. In this case, to obtain a contradiction assume R(sv,X)< R(s,X). That is

F(sv,X)−min
X∈φ

F(sv,X)< F(s,X)−min
X∈φ

F(s,X) (5.9)

As vertex v determines the weight of some color class, F(sv,X) = F(s,X) + (wv−wv),

substituting this in equation (5.9) we get,
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F(s,X)+(wv−wv)−min
X∈φ

F(sv,X)< F(s,X)−min
X∈φ

F(s,X)

Further,

(wv−wv)< min
X∈φ

F(sv,X)−min
X∈φ

F(s,X) (5.10)

By changing the weight of one vertex by ε > 0, the maximum increase that we see in

F∗(s) for any scenario s, is ε. Therefore (5.10) is a contradiction.

Case 2: Suppose vertex v does not determine the cost of any color class α in coloring X .

We compare equations (5.6) and (5.8). To obtain a contradiction assume R(sv,X)< R(s,X).

F(sv,X)−min
X∈φ

F(sv,X)< F(s,X)−min
X∈φ

F(s,X) (5.11)

As vertex v does not determine the weight of any color class, F(sv,X)=F(s,X). Substi-

tuting this in equation (5.11) we get, min
X∈φ

F(sv,X)>min
X∈φ

F(s,X). Once again decreasing the

weight of a vertex, cannot increase the cost of F∗(s) therefore we have a contradiction.

Example: Let us number the vertices on the path 1,2,3,4. We denote the colors as R,

G, B. By Lemma 5.2 there are 24 worst case scenarios. Each solution entry in Table 5.1

is of the form F(s,X)/R(s,X). The last column is the cost of the optimal coloring of a

scenario s, F∗(s). The maximum regret over each column is shown in the second last row.

The robust coloring is the coloring with the minimum value in the last row, [RGRG] in this

case.

Let us first consider paths when all the vertices have the same uncertainty interval [w,w]

associated with them.

Lemma 5.3. If P is a path with the uniform uncertainty interval [w,w] at each vertex then

the 2-coloring is a robust solution.
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Table 5.1: Optimal Regret Calculation of the Path of Figure 5.1

aaaaaaaaaaa
Senarios

Colorings
RGRG RGBR RBGR RGRB F∗(s)

1111 2/0 3/1 3/1 3/1 2
1115 6/0 7/1 7/1 7/1 6
1151 6/0 7/1 7/1 7/1 6
1155 10/0 11/1 11/1 11/1 10
1511 6/0 7/1 7/1 7/1 6
1515 6/0 11/5 11/5 11/5 6
1551 10/0 11/1 11/1 11/1 10
1555 10/0 15/5 15/5 15/5 10
5111 6/0 7/1 7/1 7/1 6
5115 10/3 7/0 7/0 11/4 7
5151 6/0 11/5 11/5 7/1 6
5155 10/0 11/1 11/1 11/1 10
5511 10/0 11/1 11/1 11/1 10
5515 10/0 11/1 11/1 15/5 10
5551 10/0 15/5 15/5 11/1 10
5555 10/0 15/5 15/5 15/5 10
Z(X) 3 5 5 5

minZ(X) 3

Proof. Consider the regret matrix M as in Table 5.1 where the rows corresponds to the sce-

narios and columns to the colorings. Entry M(s,X) is R(s,X). Let M2 be the column cor-

responding to the unique 2-coloring of P. M2 is not identically zero, otherwise 2-coloring

is a robust solution. The maximum regret in column M2 is obtained when 2-coloring is not

optimal for some scenario s. The minimum cost of any 3-coloring of scenario s is at least

w+2w. And the max 2-coloring cost is at most 2w. Therefore the maximum regret in M2 is

2w− (w+2w)≤ w−2w. We will exhibit a scenario (w w w...w) for which any 3-coloring

has a larger than (w−2w) regret. The regret for scenario s′ = (w w w...w), is 3w−2w = w.

Therefore the regret of any 3-coloring is greater than 2-coloring i.e. w > (w− 2w). This

implies, 2-coloring is robust solution when a path has same uncertainty interval on each

vertex.

Lemma 5.4. If P is a path with an interval [wv,w] on each vertex v ∈V then the 2-coloring
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is robust coloring (uniform upper bound, possibly different lower bounds).

Proof. The proof is similar to Lemma 5.3. Let {α1,α2,α3} be three different color classes

with wi = w(αi) and w1 ≥ w2 ≥ w3. Assume that the vertices p and q determine the weight

of α2 and α3 in the optimal coloring of s and wp and wq be their lower bounds respectively.

The cost of any 3-coloring for scenario s is at least w+wp +wq. We know that the regret

value is not less than zero. Additionally, wi ≥
k
∑

j=i+1
w j : 1≥ i≥ k for an optimal k-coloring

in a bipartite graph [68]. Hence, (wp +wq)≤ w, if w1 = w. The 2-coloring cost is at most

2w. Therefore, the maximum regret of 2-coloring is 2w− (w+wp +wq)≤ w− (wp +wq).

Once again for a scenario (w w w...w) any 3-coloring has regret larger than w− (wp +wq).

The regret for scenario (w w w...w), is 3w−2w = w. Therefore, the regret of any 3-coloring

is greater than R2 i.e. w > (w− (wp +wq)). Hence, 2-coloring is a robust solution for a

path with uncertain interval [wv,w] associated with each vertex.

Lemma 5.5. If s is a worst case scenario and X is a coloring with k color classes then in

each color class there is exactly one vertex v with wv = wv and for all the other vertices u,

wu = wu.

Proof. Consider a worst case scenario s. Let X be the coloring with color classes α1, α2, ...

, αk. Let w(α j) be the weight of jth color class. Let wv be the weight of a vertex v in s. By

definition, w(α j) = max
v
{wv : v ∈ α j}. Let v with weight wv be the vertex that determines

the weight of color class α j. Let sv be the scenario obtained by changing the weight of

every vertex v′ 6= v : v′ ∈ α j to wv′ . By definition,

R(s,X) = F(s,X)−F∗(s) (5.12)

R(sv,X) = F(sv,X)−F∗(sv) (5.13)

Assume, for the sake of contradiction R(sv,X)< R(s,X). In scenario sv, the vertex that

determines the weight of a color class α j is unchanged, so we have F(s,X) = F(sv,X).
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On the other hand, if we decrease the weight of a vertex, the optimal cost will decrease or

remain the same. Hence F∗(sv)≤ F∗(s). Thus,

R(sv,X) = F(sv,X)−F∗(sv)

= F(s,X)−F∗(sv)

≥ F(s,X)−F∗(s)

= R(s,X)

(5.14)

a contradiction.

The following theorem is now evident.

Theorem 5.6. If P is a path, and each vertex has uncertainty in the interval [wv,w]. Then

robust coloring of P can be computed in O(n) time.

Proof. The weighted 2-coloring with minimum cost in a path can be easily computed in

O(n) using algorithm of Kavitha et al. [51]. Therefore, the proof follows from Lemma 5.4.

Theorem 5.7. If G is a bipartite graph, and each vertex has weight interval [wv,w] associ-

ated with it. Then 2-coloring is a robust coloring of G.

Proof. Bipartite graph is 2-colorable. The optimal coloring of a scenario with all weights

w is a 2-coloring because the coloring of a graph with uniform vertex weights is same as

the classical vertex coloring. Therefore, in the proof of Lemma 5.4 any k ≥ 3 coloring has

larger regret.

5.3 Mathematical Formulation of RWVCP

Our mathematical formulation of RWVCP is based on the WVCP model described in

Section 2.4.1 of Chapter 2. This WVCP model is proposed by Malaguti et al. [60] and it
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is based on the set covering formulation. The solution of WVCP is based on the column

generation method proposed by Mehotra and Trick [63]. The integral solution to WVCP is

obtained using branch and price method proposed by Furini and Malaguti [33].

Let X be the set of all the independent sets (color classes) of G, for each color class

α introduce a binary variable xα taking value 1 if the vertices of α receive the same color

otherwise xα is zero. Let wα = maxv∈α{wv} be the maximum weight of the vertices be-

longing to α. The mathematical formulation of WVCP based on the set cover formulation

is as follows:

min ∑
α∈X

wαxα (5.15)

subject to: ∑
α∈X :v∈α

xα ≥ 1, ∀v ∈V (5.16)

xα ∈ {0,1}, α ∈ X (5.17)

Constraints 5.16 specify proper coloring on the graph. Constraints 5.17 are the integral-

ity constraints.

We proposed an ILP formulation for the RWVCP based on above set covering formula-

tion. We describe a solution method for relaxed RWVCP formulation based on the column

generation method. Let us describe the symbols used in the RWVCP formulation.

Let Γ be the set of worst case scenarios. An independent set α with xα = 1 corresponds

to a color class in RWVCP. Let ws
v represent the weight of vertex v under a scenario s ∈ Γ

and F∗(s) represent the cost of the optimal solution to WVCP for a scenario s. Let r be a

variable representing the regret of the solution encoded by variables xα relative to the set of

worst case scenarios in Γ. The mathematical formulation of RWVCP is:
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min
r∈R

r (5.18)

subject to: r ≥ ∑
α∈X

xα max
v∈α
{ws

v}−F∗(s), ∀s ∈ Γ (5.19)

∑
α∈X :v∈α

xα ≥ 1, ∀v ∈V (5.20)

xα ∈ {0,1} (5.21)

The relaxed LP of the above formulation is:

min
r∈R

r (5.22)

subject to: r ≥ ∑
α∈X

xα max
v∈α
{ws

v}−F∗(s), ∀s ∈ Γ (5.23)

∑
α∈X :v∈α

xα ≥ 1, ∀v ∈V (5.24)

xα ≥ 0 (5.25)

Constraints 5.23 state that the regret of a scenario s under a fixed coloring is at most

r. Constraint 5.24 generates proper coloring. Lastly, constraints 5.25 are the integrality

constraints. We note that the cardinality of sets X and Γ is, in the worst case, exponential

in the problem size.

Let µs,s ∈ Γ and πv,v ∈ V be the dual variables corresponding to constraints 5.23 and

5.24 respectively. The dual of the above formulation (5.22- 5.25) is:
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max ∑
s∈Γ

(−µs)F∗(s)+ ∑
v∈V

πv (5.26)

subject to: ∑
s

µs ≤ 1, (5.27)

∑
v∈α

πv−∑
s

µs max
v∈α
{ws

v} ≤ 0, ∀α ∈ X (5.28)

πv,µs ≥ 0 (5.29)

Then, the column generation sub-problem is to find an independent set α∗ with mini-

mum reduced cost. We describe two mathematical models for solving the sub-problem to

find the column with the negative reduced cost.

5.3.1 Sub-problem

Method 1:

The formulation (5.30-5.32) is the maximum weighted independent set problem with

a modified objective function. This problem is NP-hard in general graphs (see Gary and

Johnson [37]).

max −∑
s∈Γ

µs max
v:zv=1

{ws
v}+ ∑

v∈V
πvzv (5.30)

subject to: zv + zv′ ≤ 1, ∀(v,v′) ∈ E (5.31)

zv ∈ {0,1} (5.32)

Constraints 5.31 specify no two adjacent vertices receive the same color. If the optimal

solution to the above relaxed formulation (5.30 - 5.32) has a value smaller than 0, the

independent set is added to the restricted master problem and we iterate. Otherwise, the

restricted model of (5.22 -5.25) is optimal. The difficulty in solving this sub-problem is due
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to the maximum operator in the objective function. In the worst case, we iterate all weights

of each scenario to obtain the column with negative reduced cost. This is the reason, we

describe the next sub-problem formulation.

Method 2:

The sub-problem formulation described above is linear in size because there are a linear

number of weights associated with each vertex. However, we have to iterate through all the

subgraphs related to each weight. Hence, we modify the objective function of Method 1 by

representing maxv:zv=1{ws
v} as a variable ys and added new constraints 5.35 such that the

weight of an independent set is always determined by the maximum weighted vertex.

min ∑
s∈Γ

µsys−∑
v∈V

πvzv (5.33)

subject to: zv + zv′ ≤ 1, ∀(v,v′) ∈ E (5.34)

ws
vzv ≤ ys, s ∈ Γ,v ∈V (5.35)

zv ∈ {0,1},ys ≥ 0 (5.36)

In the next section, we describe our algorithm based on the above formulations.

5.3.2 Outline of RWVCP Algorithm

Initial Scenarios: We consider an initial scenario (seo) to start with: weight wv on even

indexed vertices and wv on the odd indexed vertices.

Algorithm 10 RWVCP

1: Solve problem F∗(seo). Set Γ1 = {seo}
2: Solve the LP relaxation of the master problem (5.22 - 5.25) using the column generation

method. Let X∗ be the optimal coloring and r∗ be the optimal objective value .
3: Find a scenario Γ′ by local search method such that constraints 5.23 is violated.
4: Add the scenario Γ′ to the master problem and repeat step 2. Exit the algorithm if we

cannot improve the regret.
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5.3.3 Branch and Price

In each iteration of cutting plane, we convert a fractional solution to an integral solution

similar to Mehrotra and Trick [63] and Furini and Malaguti [33] ideas due to originally by

Zykov [79]. We first select a column with a maximum fractional value say, xαi , with αi ∈ X .

We then select two vertices u and v, non-adjacent to each other and apply branching rules.

We consider two branching rules. First branching rule assigns the same color to u and

v. This rule is modeled by replacing u and v with a single vertex l, with (l,o) ∈ E for

every vertex o for which either (u,o) ∈ E or (v,o) ∈ E. This branching can be written as

a constraint xu = xv. The second branching rule assigns different colors to u and v. This

rule is modeled by adding an edge between them. We represent this branching rule as a

constraint xu + xv ≤ 1. In case first case the graph has one less vertex, and in the second

case, the graph has an additional edge.

Let X∗ be an optimal fractional solution to the master problem. The selection of u and

v is as follows: we choose u as the first vertex in a row i of α1 ∈ X∗ (α1 has the maximum

fractional value) whose upper bound weight is maximum among all the scenarios in the

current solution. Then, we determine another column α2 in current solution such that the

fractional value of α2 is same as the fractional value of α1 and the row i is set to 1. If such

column doesn’t exist, we find the column with a fractional value smaller than α1. Next, we

find a vertex v in a row of α2 which has upper bound lesser or equal to u.

5.4 Worst Case Scenario Given A Coloring

In this section, we discuss a formulation to compute the worst case scenario given a

coloring. We describe the process of calculating the regret. Let us first discuss the compact

formulation of WVCP given in [59]. Let zh be the weight of a color class, h a color and xvh

a binary variable that represents whether a vertex v is assigned the color h or not. Following

is an integer linear program.
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min
n

∑
h=1

zh (5.37)

subject to: zh ≥ wv ∗ xvh, ∀v ∈V,h = 1...n (5.38)
n

∑
h=1

xvh = 1, ∀v ∈V (5.39)

xuh + xvh ≤ 1, (u,v) ∈ E,h = 1...n (5.40)

xvh ∈ {0,1},zh ≥ 0 (5.41)

Constraints 5.38 ensure that the weight of a color class is the maximum weight of any

vertex in that color class. Constraints 5.39 ensure that every vertex is assigned exactly one

color. Constraints 5.40 ensure that adjacent vertices are assigned a different color. This

formulation considers h = ∆+1 number of colors.

Given a coloring X , let J be an independent set. Let c j be the weight of jth color class.

Let wv = wv+yv(wv−wv) for every v∈V and yv be a binary variable i.e. yv ∈ {0,1}, where

δv = (wv−wv). The quadratic formulation to compute the worst case scenario is:

max ∑
j∈J

c j−
n

∑
h=1

zh (5.42)

subject to:
∨
v∈ j

(c j ≤ wv + yv ∗δv),∀ j ∈ J (5.43)

zh ≥ (wv + yv ∗δv)∗ xhv,∀v ∈V,h = 1...n (5.44)
n

∑
h=1

xhv = 1,∀v ∈V (5.45)

xhu + xhv ≤ 1,(u,v) ∈ E,h = 1...n (5.46)

xhv ∈ {0,1},yv ∈ {0,1},zh ≥ 0,c j ≥ 0 (5.47)

Note that constraints 5.43 force the weight on each vertex to be either wv or wv and
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ensure that among all vertices in a color class, a maximum weighted vertex determines the

weight of the color class in the given coloring. Constraints 5.44 ensure that the weight of a

color class is the maximum weight of any vertex in that color class in the optimal coloring.

All other constraints are as before.

The above mathematical formulation is quadratic in nature. One way to solve a

quadratic program is to linearize it and solve it using LP method. In the following sub-

section, we describe the linearization method.

Linearization Method:

max ∑
j∈J

c j−
n

∑
h=1

zh (5.48)

subject to: c j ≤∑
v∈ j

β jv(wv + yv ∗δv),∀ j ∈ J (5.49)

zh ≥ wv ∗ xhv,∀v ∈V,h = 1...n (5.50)
n

∑
h=1

xhv = 1,∀v ∈V (5.51)

xhu + xhv ≤ 1,(u,v) ∈ E,h = 1...n (5.52)

xhv ∈ {0,1},yv ∈ {0,1},zh ≥ 0,c j ≥ 0,βv ∈ {0,1} (5.53)

We introduce a convex hull β jv in 5.43 to remove the disjunction between the con-

straints, so that a single vertex determine the maximum weight of the independent set. Due

to the introduction of β jv in constraints 5.43, constraints 5.49 again becomes quadratic.

Hence, we have to linearize constraints 5.49 and 5.50.

We know that if x and y are two binary variables then the product z = x ∗ y can be

replaced by the following three linear equations:
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z≥x+ y−1

z≤y

z≤x

(5.54)

Let phv = yv ∗xhv and q jv = β jv ∗yv. Thus, the above worst case quadratic programming

can be linearized as:

max ∑
j∈J

c j−
n

∑
h=1

zh (5.55)

subject to: c j ≤∑
v∈ j

(β jv ∗wv +q jv ∗δv), ∀ j ∈ J (5.56)

yv +β jv−q jv ≤ 1, ∀v,∀ j (5.57)

q jv ≤ β jv, ∀v,∀ j (5.58)

q jv ≤ yv, ∀v,∀ j (5.59)

∑
v∈ j

βv j = 1, ∀ j ∈ J (5.60)

zh ≥ wv ∗ xhv + phv ∗∆v, ∀v ∈V,h = 1...n (5.61)

phv ≥ yv + xhv−1, ∀v ∈V,h = 1...n (5.62)

phv ≤ yv, ∀v ∈V,h = 1...n (5.63)

phv ≤ xhv, ∀v ∈V,h = 1...n (5.64)
n

∑
h=1

xhv = 1, ∀v ∈V (5.65)

xhu + xhv ≤ 1, (u,v) ∈ E,h = 1...n (5.66)

yv ∈ {0,1},xhv ∈ {0,1},zh ≥ 0, phv ∈ {0,1},c j ≥ 0,qv ∈ {0,1},βv ∈ {0,1}

(5.67)
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In our experiment, we relax all the variables except yv because the value of yv determines

a worst case scenario. If we obtain the worst case scenario by taking wv if yv = 1 otherwise

consider wv if yv = 0. Furthermore, we use the above upper bound formulation in our

experiment to analyze the gap of our heuristic solution. In the next section, we describe a

local search heuristic to obtain worst case scenarios.

5.4.1 Local Search

Our LP formulation (5.22 - 5.25) consists of an exponential number of constraints and

an exponential number of variables. By using column generation, we can handle the expo-

nential number of variables, but the problem still lies in determining constraints (worst case

scenarios) for a given solution. We formulate LP (5.56- 5.64) to obtain a worst case sce-

nario, but the presence of artificial constraints on the formulation makes the solution very

fractional, hence the gap between the optimal regret and the regret returned by upper bound

formulation increases. On the other hand, the dependency of the worst case formulation

on the compact WVCP also restricts the use of the above formulation on larger instances.

Therefore, we need a faster heuristic to obtain worst case scenarios for the slave problem.

We choose local search heuristic which relies on neighborhood search for finding the worst

case scenario.

Before we proceed further with the local search heuristic, we assume that the master

problem is solved optimally. Then, to generate a new scenario s′ at Step (3) of our algo-

rithm 10 (see Figure 5.2), first we consider the constraint 5.23 corresponding to a scenario

s∗ that is tight (constraints ax ≤ b are tight if ax = b) for the optimal regret coloring X∗.

Given s∗, if X∗ is the current coloring with regret Z(X∗) and OPT as the optimal weighted

coloring of s∗, the new regret is obtained by Z(X) = F(s′,X∗)−OPT . If Z(X) > Z(X∗),

then the new scenario s′ is added as a constraint. Our goal is to use local search to find s′.

We consider three local search operators for finding the new scenario s′.

1. Add: In this technique, we increase the weight of some vertex v of s∗ to the upper
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bound if it is at lower bound.

2. Delete: In this technique, we decrease the weight of some vertex v of s∗ to the lower

bound if it is at upper bound.

3. Swap: We swap the weight between a pair of vertices in scenario s∗.

The overall steps of the algorithm are shown in Figure 5.2.

A graph with interval uncertainties

Restricted Master Problem Solved us-
ing Column Generation (RMPCG)

Solve RMPCG Fractionally

Solve Subprob-
lem to find
the column
with negative
reduced cost.
Column found?

Solution Inte-
gral?

Apply tow branch rule: merge and add
edge between two vertices.

Find scenarios based on the tight con-
straints using local search

Found Scenarios
with higher regret
than RMPCG?

Add Scenarios

Done

Add Column

Yes

No

Yes

No

No

Yes

Figure 5.2: An outline of RWVCP algorithm

5.5 Experimental Results

As RWVCP has not been studied empirically, to the best of our knowl-

edge no benchmark problems are available in the literature. For our empirical

study, we have selected some VCP instances available in the DIMACS collections

(http://mat.gsia.cmu.edu/COLOR02/). We also generate some instances on paths. The al-

gorithms are coded in Octave 3.8.1. All experiments were conducted on a UNIX machine
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with 8GB RAM and Intel i3 processor (1.9 GHZ, 3MB L3 cache). The algorithm has a

time limit of 7,200 seconds for each iteration of column generation and 7,200 seconds for

each iteration of the local search. If the regret value cannot be minimized or there are no

new scenarios generated, we terminate the algorithm. Given an instance I of VCP, we only

need to generate wv and wv, these values are generated uniformly at random in [1, 25]. The

instances follow:

a. Graph Coloring Instances

• Path-# : These are path instances with a symbol # representing the number of

vertices in a path.

• queen: These are the graphs from Donald Knuth’s Stanford GraphBase.

• myciel: These graphs are based on Mycielski transformation and are triangle

free.

• Insertions: These are a generalization of Myciel graphs.

• FullIns: These are also a generalization of Myciel graphs.

b. Coloring with Fixed Sets

qwhdec and qwhopt are the instances of coloring with fixed sets.

c. Bandwidth and Multicoloring Instances

These are the Geometric graphs generated by Michael Trick. Points are generated

in a 10,000 by 10,000 grid and are connected by an edge if they are close enough

together. GEOM and R50 are the instances of this class.

5.5.1 Implementation Details

We first consider the restricted master problem with a single scenario where each vertex

receives a distinct color. We solve this restricted master problem optimally using glpk

solver. After calculating the optimal solution of the restricted master problem, we find the
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dual solution and use the values of those dual variables in the sub-problem (5.33 -5.36) to

generate the columns. These columns are repeatedly added to the restricted master problem

until there are no negative reduced cost columns.

In the next step, a tight constraint (5.23) (a worst case scenario) with the maximum dual

is used. A local search is then performed to find a new worst case scenario s′. We have

implemented two techniques to obtain a new scenario s′:

1. A worst case scenario s′ is selected based on a fractional solution X . Here, we do not

use the branch and price procedure.

2. A worst case scenario s′ is selected based on an integral solution X , which is obtained

using a branch and price procedure.

In each such iteration, we generate multiple scenarios using local search that satisfy

Z′(X) > Z(X). After obtaining these constraints, we add them to the restricted master

problem. To speed up the column generation process, we reuse the previous columns in

each iteration. After we obtain a robust coloring by solving the LP formulation (5.22-5.25),

we use the worst case formulation (5.56 - 5.67) to determine the gap of the solution.

5.5.2 Numerical Results

In this section, we discuss the results on on paths and other test instances introduced

earlier. The following symbols are used in the tables:

* n is the number of vertices in the graph,

* r is the current regret (which is also the lower bound on the regret),

* BP is the regret value obtained using the branch and price technique,

* NC is the number colors in fractional solution,

* NCol is the number of columns in the final solution,
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* Cut is the number of cut (worst case scenarios),

* t is total time in seconds,

* UB is the upper bound regret value given by the worst case scenario formulation,

* (UB -r)/UB is the gap between the regret value returned by local search heuristic and

the worst case scenario formulation.

In our solution, we generate scenarios using local search method, so the obtained bounds

r, BP and UB are not valid bounds, but rather heuristic approximations.

In Table 5.2, we have presented the experimental results without the use of branch and

price method. We see that the running time depends on the number of vertices and also

on the number of worst case scenarios. Table 5.3 list the results when branch and price

method is used. In Figure 5.3, we show the difference between the running time of the

algorithm that uses branch price and the algorithm that does not use the branch and price

technique. As we increase the number of vertices, the algorithm spent more time in the

column generation and the generation of worst case scenarios. However, it takes less time

to calculate the UB but the space requirements grow exponentially with an increase in the

number of vertices.

We can also note that the regret values in Table 5.3 that use the branch and price method

are better than regret value in Table 5.2. By the use of branch and price method, we obtain

worst case scenarios (constraints) based on the integral solution. The difference between a

number of colors in a fractional solution and integral coloring can be high. Hence, worst

case scenarios obtained using a fractional solution may not be close to the worst case sce-

nario for a robust coloring.

In Figure 5.4, we compare the regret values between branch and price and upper bound

method on the DMACS library instances. Most of the time, branch and price technique pro-

vides better regret values compared to the worst case formulation using linearization. The

introduction of artificial constraints due to linearize the quadratic programming increase the
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Table 5.2: Results on standard instances without using branch and price

S.No. Group n r NC Ncol Bcut t(sec) UB UB t(sec) (UB-r)/UB

1 myciel3 11 20.1 16 33 41 12 74.1 0.128 0.73
2 GEOM20 20 47 79 441 877 11000 125 0.827 0.62
3 GEOM20a 20 58.2 42 215 194 406 135 0.9 0.57
4 myciel4 23 14.6 29 108 86 69.3 104 0.74 0.86
5 queen5 5 25 19.5 10 65 103 92.5 177 1.66 0.89
6 qwhdec.order5.holes10.1 25 44.4 36 171 211 635 161 2.81 0.72
7 GEOM30a 30 57.4 73 343 581 10900 191 2.23 0.7
8 1-Fullins 3 30 29.2 42 290 315 2100 86.2 6.85 0.66
9 queen6 6 36 49.9 52 180 475 6550 240 10.3 0.79

10 2-Insertions 3 37 10 52 390 453 11400 67.1 10.4 0.85
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Figure 5.3: Time comparison with and without branch and price

gap. Figure 5.5 compares the fractional regret, the regret obtained by the branch and price

method and the regret obtained by the linearize worst case scenario formulation. In most of

the cases, the regret value based on branch and price is smaller than the regret value based

on the quadratic formulation but larger than the fractional regret.

In Table 5.4, we present the experimental results on paths using a branch and price tech-

nique. Since paths are cycle free and the structure is simple, we are interested in examining

Table 5.3: Branch and price on library instances

S.No. Group n BP NC Ncol Bcut t(sec) UB UB t(sec)

1 myciel3 11 86.5 14 23 33 49.1 75.9 0.123
2 GEOM20 20 54 22 92 80 538 110 0.521
3 GEOM20a 20 218 19 80 37 334 132 0.896
4 myciel4 23 111 23 86 78 2820 97.9 1.02
5 queen5 5 25 64 10 59 75 2500 177 1.21
6 qwhdec.order5.holes10.1 25 77 31 97 100 13100 182 649
7 GEOM30a 30 65 33 96 115 19000 165 304
8 1-Fullins 3 30 38 28 117 108 15600 63 2.46
9 queen6 6 36 58.7 49 105 103 15400 258 15.5

10 2-Insertions 3 37 28.9 49 215 93 20700 85 7.46
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Figure 5.4: Regret comparison: branch and price (BP) and worst case regret (UB)
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Figure 5.5: Regret comparison: fractional regret (r), branch and price (BP) and worst case formulation regret
(UB)

99



5.5. EXPERIMENTAL RESULTS

Table 5.4: Results on pathsusing branch and price

S.No. Group n BP NC Ncol Bcut t(sec) UB UB t(sec) (UB-BP)/UB
1 Path-10 10 16 11 20 13 24.3 34.5 0.0467 0.54
2 Path-15 15 4 5 53 9 8.79 45 0.0824 0.91
3 Path-20 20 17 16 75 26 214 42.7 0.155 0.6
4 Path-25 25 13 8 119 48 1040 36.9 0.442 0.65
5 Path-30 30 5 11 244 33 790 57.3 0.53 0.91
6 Path-35 35 24 24 276 51 9410 56.1 0.996 0.57
7 Path-40 40 3 31 465 67 32900 55 1.44 0.95

the performance of our algorithm. The gap is very high for all the instances as for the stan-

dard library instances. We conclude that a better local search strategy to find the worst case

scenario or a better linearization technique can only improve the results.
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Chapter 6

Conclusion and Future Study

In this thesis, we studied the weight vertex coloring problem (WVCP) when the weights

are deterministic and uncertain. In particular, we give algorithms with better time com-

plexity for different classes of trees with deterministic weights. We gave an integer linear

programming approach to minimize the maximum regret for the robust version. We gave

the math-heuristic based on the ILP and local search. The following paragraphs summarize

our contributions.

Deterministic Weight Case: We studied the trees and cactus paths. We improve the run-

ning time of the algorithm for binary trees from O(n4) to O(n2 logn). Similarly, we studied

cactus paths with the bounded degree of 3, and propose sub-quadratic and quadratic time

algorithms. These results are obtained by a careful search over the region of all possible

feasible weights using the ideas from previous research [51, 68, 38].

Uncertain Weight Case: We studied the weighted coloring problem when the weights

are uncertain. We gave an ILP formulation for the robust weighted vertex coloring problem

(RWVCP). We describe a solution procedure based on column generation and local search.

We also provide an O(n) time algorithm for the robust coloring of bipartite graphs with

uniform upper bound and arbitrary lower bound uncertainties on vertices. We also describe

a branch and price method to obtain an integral robust solution. We also provide a quadratic

programming formulation to calculate the worst case scenario given a coloring.
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6.1 Future Study

To the best of our knowledge, this is the first systematic study of the robust weighted

coloring problem based on mathematical models. These results are interesting because

the traditional approximation results based on the mid-point scenario do not apply to this

problem. One of the key steps is to find a worst case scenario and we gave a quadratic

programming formulation. We believe this formulation can be improved with a better lin-

earization method. We also gave a local search heuristics to obtain the worst case scenario.

These heuristics can be studied further. Following are other avenues for advancing this

study.

6.1.1 Bound on the number of colors

It is an open problem to find a bound on the number of colors in an optimal robust

coloring. We believe that ∆+ 1 is an upper bound on the number of colors needed in any

optimal robust coloring. However, it is hard to prove this bound using the proof technique

of moving a vertex from k > ∆+ 1 color class to other k′ ≤ ∆+ 1 color classes. A new

coloring obtained after transferring a vertex may not give smaller regret value for all the

scenarios.

6.1.2 Worst Case Scenario

For the problem considered in the past, finding a worst case scenario for any given

solution was easy. In those problems, we obtain the worst case scenario by using wv, if

v is present in the solution and setting all other elements u to wu. We cannot apply this

simple strategy in RWVCP because all the elements are part of the solution and the cost of

the solution is determined by elements with the maximum weight. As a result, it is hard to

determine a specific vertex. We proposed a quadratic programming formulation to obtain

the worst case scenario, but the bound obtained by this formulation is very weak compared

to the optimal solution (see Figure 5.4 of Chapter 5). Hence, a better linearization technique

or a better formulation for a given coloring is needed.
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6.1.3 Lower Bound

Obtaining a good lower bound is also a difficult task. In the past, the difference between

two solutions is used to obtain the lower bound on the regret. However, we cannot apply

this approach directly. In our case, finding a worst case solution is a difficult problem.

Better lower bounds will help us prove approximation ratios in future.
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