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Abstract

A REVIEW OF NETWORK LOCATION THEORY AND MODELS

Selin Damla Erdoğan

M.S. in Industrial Engineering

Supervisor: Prof. Barbaros Ç. Tansel

June 2004

In this study, we review the existing literature on network location problems.

The study has a broad scope that includes problems featuring desirable and

undesirable facilities, point facilities and extensive facilities, monopolistic and

competitive markets, and single or multiple objectives. Deterministic and

stochastic models as well as robust models are covered. Demand data

aggregation is also discussed. More than 500 papers in this area are reviewed

and critical issues, research directions, and problem extensions are emphasized.

Keywords: Survey, Network, Location.
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Özet

SERİM ÜZERİNDE YERLEŞTİRME TEORİSİ VE MODELLERİ

Selin Damla Erdoğan

Endüstri Mühendisliği Yüksek Lisans

Tez Yöneticisi: Prof. Barbaros Ç. Tansel

Haziran 2004

Bu çalışmada serim üzerindeki yerleştirme problemlerini eleştirel bir bakış

açısıyla inceledik. Çalışmanın kapsamı geniş olup tek ya da çok amaçlı, istenen

ve istenmeyen tesisleri, nokta tesislerini ve alanlı tesisleri, tekelci ve rekabetci

modelleri içermektedir.  Belirli ve rastsal modellere ek olarak sağlam (robust)

modeller kapsanmıştır. Talep verilerinin indirgenmesi de tartışılmıştır. Bu

alanda 500’den fazla makale gözden geçirilmiş ve kritik konular, araştırma

yönleri ve problem uzantıları öne çıkarılmıştır.

Anahtar Kelimeler: Literatür Taraması, Serim, Tesis Yerleştirme
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C h a p t e r  1

INTRODUCTION

Location problems began receiving the attention of scientists with

the work of Weber (1909) who studied the problem of locating a

warehouse in the plane on which the customers are spatially distributed

with the objective of minimizing the total walking distance of customers to

the facility. The network version of the problem in which customers and

the facility are located on an underlying network, which usually represents

a real world transportation system with arcs corresponding to the roads and

nodes corresponding to intersections of roads has become popular with the

seminal work of Hakimi (1964). Location problems attracted many

researchers and thousands of papers and hundreds of books are published

in this area. Actually, location problems and closely related layout and

routing problems honestly deserve this extensive interest because there

exist many real world problems that can be modeled as location problems.

Location problems have many variants. Fifty four variants have

been defined in the overview paper of Brandeau and Chiu (1989). There

exist other problems not considered in this work but can be found in other

sources. The variants arise according to the type of the objective function,

nature of the demand for the service, nature of the supply of the service,

type of the underlying structure such as plane, network, or some special

structure, number of facilities to be placed, etc. There exist valuable
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surveys, books and bibliographic studies related to the location problems

such as Francis and White (1974), Lea (1978), Handler and Mirchandani

(1979), Francis, McGinnis, and White (1983), Tansel, Francis, and Lowe

(1983), Daskin (1985), Domschke and Drexl (1985), Brandeau and Chiu

(1989), Mirchandani and Francis (1990), and Hamacher and Nickel (1998).

The last 40 years of the location research has been summarized by Francis

(1997) who has contributed valuable work in this area. This work is

recommended for those who are new to this area and need to be inspired by

a story of success.

We believe, regardless of the fact that the first author is the chair of

our faculty and the supervisor of this thesis, that the paper by Tansel,

Francis and Lowe (1983) is a benchmark in the literature on network

location problems that covers all of the previous work before 1983. This

paper has given the idea that a newer version of the work may be beneficial

for researchers who would like to get access to a comprehensive summary

of the work in the area. This thesis is a literature survey on network

location problems to accomplish this goal. We first considered writing a

survey of all problems in the location area including both the planar and

network problems but we only had a limited time of 10 months. Thus, we

decided to restrict ourselves to network problems but mentioned the work

on planar problems whenever the concepts became hard to explain without

doing so. We have reviewed more than 500 papers written between 1909

and 2004 on network location problems. Unfortunately, we are far from

being complete because there exist more than a thousand papers in the area

and many of which are presented in conferences or available only as

technical reports. Nevertheless, we have made our best to cover the most

important part in this thesis. In this chapter, we will provide the notation
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used in the rest of thesis and briefly introduce the problems covered in this

work.

1.1 Definitions and Notation:

In all of the problems in this thesis, we are given an embedded

network N, which represents the transportation system at hand. Network N

= (V, E) consists of the node set V = {v1, v2, …, vn}and the edge set E = {e1,

e2, …, em}. Associated with each edge ei there is a positive number li, called

the length of edge ei. A distance function d(.,.) is defined on pairs of points

of the network with d(x,y) denoting the length of a shortest path from point

x to point y. The function d(.,.) satisfies the properties of nonnegativity,

symmetry, and triangular inequality: i.e. d(x,y)  ≥ 0 with d(x,y)  = 0 iff x=y,

d(x,y) = d(y,x), d(x,y) + d(y,z) ≥ d(x,z) ∀x,y,z ∈ N. Consequently, the

network N with distance function d(.,.) constitutes a well-defined metric

space and the function d(x, y) is a continous function of x on N for a fixed

point y.

An n by n distance matrix  = [dij] is associated with each network

N where dij=d(vi, vj) ∀ i, j. The distance matrix can be computed in O(n3)

for general networks and in O(n2) for tree networks. We assume that the

distance matrix has already been computed and present the results on

computational complexity without considering the computational time for

the distance matrix.

Let X denote a compact subset of N (finite or infinite). The distance

from a point y to a set X ⊆ N is defined to be the length of a shortest path
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prom y to a nearest element in X, and is denoted by ),(min),( yxdXyD
Xx∈

= .

When we aim to locate p facilities on N, we use the set X={x1,…,xp}⊆ N if

it is the case that the facilities are indistinguishable from each other in their

service characteristics and that there exist no capacity restrictions on the

facilities. Otherwise, we use the notation X=[ x1,…,xp] ⊆ Np to denote a

vector of n distinguishable facilities and refer to it as a location vector. In

most of the problems, the facilities may be located on any point on the

network, whereas sometimes the facilities are restricted to a subset of the

network, which is called the candidate set or the supply set and is denoted

by S.

We are also given a set of customers or existing facilities, denoted

by ∆, that are distributed along the network and require service from the

facilities at some cost. Usually the customers are located on the nodes of

the network, whereas in some problems the customers are located along the

edges of the network in which case the demand is called continuous.

We will denote general networks by N, tree networks by T, and

path networks by P in order to save space.

Additional notation and definitions will be provided in each chapter

in the light of the problem at hand. Although it is possible to design a

notation system, which can be used through the entire study, we prefer not

doing so for the sake of simplicity and clarity.
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1.2 Network Location Problems:

We consider locating a number of facilities on a network with

different objective functions. Each objective function gives rise to a new

problem and each problem is studied in a specific chapter. Namely,

Chapter 2 considers the network location problems with minimax

objective. We locate p facilities on the network, so that the maximum of

the distances between facilities and customers are minimized. The

minimax problems are related to the location of emergency services such

as ambulance terminals, fire stations, police centers, etc. These facilities

are usually public facilities and the service quality is much more important

than the total cost of the system. The infamous p-center problem and its

variants are studied in this chapter.  Chapter 3 considers the network

location problems with minisum objective. We locate p facilities on the

network, so that the sum of the weighted distances between facilities and

customers is minimized. The minisum problems are related to the location

of repetitive distibution services such as warehouses, postal services etc.

These facilities are usually private organizations and the organization pays

for the transportation expenses. The notorious p-median problem and its

variants are studied in this chapter. Chapter 4 includes the network location

problem in which the distances between the facilities and the customers

and the facilities themselves are restricted. The minisum and minimax

problems with distance constraints are included. Chapter 5 considers the

multiobjective network location problems specifically the centdian

problem in which the minisum and minimax objectives are simultaneously

considered. These problems are used for facilities in which both the quality

of the service and the total cost of the system are important as in, for

example, pizza delivery systems. Chapter 6 considers the location of
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undesirable facilities such as waste disposal sites, nuclear reactors, power

stations, etc. In these problems, customers desire to be as far away from

facilities as possible. The dispersion and defense problems are among the

problems mentioned in this chapter. Chapter 7 is different from the

previous chapters in the sense that the facilities considered in this chapter

are not single point facilities but network structures such as edges, paths,

cycles, subnetworks, etc. The problems in this chapter are closely related to

routing problems but the location aspect is emphasized in our work.

Chapter 8 deals with the location of facilities when there exist competition

between the facilities. These models are used by firms that enter a market

in which more than one organization provides service and the customers

are willing to be served by any organization such as restaurants,

supermarkets, etc. Chapter 9 considers the robust network location

problems in which the data is not known deterministically or statistically

but only interval or set estimates of the parameters or discrete scenarios are

provided. The minimax regret approach is introduced in detail in this

chapter. The errors introduced into the previous models because of demand

point aggregation is studied in Chapter 10 together with methods to

eliminate aggregation errors. This chapter is important because real world

data is available in huge data sets and aggregation is a must for tractable

analysis. We conclude with a summary chapter in which the literature on

every problem considered in previous chapters is summarized in tables and

important facts are restressed.



MINIMAX FACILITY LOCATION ON NETWORKS

7

C h a p t e r  2

MINIMAX FACILITY
LOCATION ON NETWORKS:

In this chapter we deal with facility location problems on networks

in which the cost of providing service to customers is the maximum of

transportation costs from the facilities to customers. Facilities are to be

located so as to minimize the cost of providing service. Such location

problems usually arise in location of emergency service facilities such as

hospitals, police stations, and fire stations.

Assume the facilities are identical and uncapacitated. Let S and ∆

be subsets of the network N with S denoting the set of points on which new

facilities can be located and ∆ denoting the set of customers that require

service from facilities. Let X={x1,..,xp} ⊆ S be the set of new facility

locations. Let fδ(.) be a nondecreasing function defined on nonnegative

reals for each δ ∈ ∆ and define the function F(.) by:

)),((max)( XDfXF δδδ ∆∈
=  The minimax multifacility location problem

(MMLP) on network N is stated as follows: Find X* ⊆ S such that |X*| = p

and F(X*) ≤ F(X)  ∀X ⊆ S for which |X| = p.

When facilities are not identical (nonhomogenous), they provide

different services and a customer may require service from some or all new
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facilities. The nonhomogenous MMLP may be stated as follows: Find X* =

(x1*, x2*,…,xp*) ∈ Sp (where Sp is the p-fold Cartesian product of S by

itself) such that G(X*) ≤ G(X) ∀X ∈ Sp where

)),((maxmax)(
1 iipi

xdgXG δδδ ∆∈≤≤
= and )),(( ii xdg δδ is a nondecreasing function

defined for each δ ∈ ∆ and i ∈ {1,2,…,p}. This problem is equivalent to p

independent single facility problems because each facility may be

optimally located without considering other facilities.

When there exist an interaction between facilities, the problem is

called the MMLP with facility interactions or MMLP with mutual

communication. It may be stated as follows: Find X* = (x1*, x2*,…,xp*) ∈

Sp such that H(X*) ≤ H(X) ∀X ∈ Sp where

))},((max)),,((maxmax{)( 2

1

1

,1 jiijpjiiipi
xxdhxdhXH

≤<≤∆∈≤≤
= δδδ

and

)),((1 δδ ii xdh , )),((2
jiij xxdh  are nondecreasing functions ∀ i, j,and δ.

2.1  Problem variations:

The cost functions used in MMLP are usually linear. The p facility

linear minimax facility location problems are specifically called the p-

center problems. In the p-center problem: δδδ δδ aXDwXDf += ),()),((

where wδ is the associated weight of demand point δ and aδ is the addend

associated with that point. When wδ = c for some constant c ∈ ℜ for all δ,

the problem is referred to as “unweighted” while it is referred to as

“weighted” otherwise. When aδ = 0 for all δ, the problem is called the p-

center “without addends” while it is the problem “with addends” otherwise.
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Nonlinear functions have also been used as cost functions and some of the

analysis is similar to the linear case.

When the demand set ∆ is restricted to a finite set (e.g. the vertex

set V), the problem is referred to as “discrete” whereas when the demands

are generated by all the points on the network, the problem is referred to as

“continuous”. Similarly, when the facilities are to be located only at the

vertices of network, i.e. S=V, the problem is referred to as “vertex-

restricted” whereas it is referred to as “absolute” when the facilities can be

located on any point of the network.

Solution procedures and theoretical results differ with respect to the

particular choice of the sets S and ∆. Furthermore, for special values of the

parameter p, especially for p = 1 and p = 2, efficient polynomial

algorithms and notable theoretical results are provided. These results have

formed useful starting points for other values of p. The problem has been

widely studied for special networks, especially acyclic networks, and some

of the problems which are NP-complete on general networks have been

solved in polynomial time by exploiting the special network structure. So,

the methodology of approaching and solving MMLP depends on the

supply and demand sets, the value of the parameter p, and the structure of

the network, suggesting a 4-entry classification that will be used in this

chapter. This classification may also be extended to cover the problems

with linear / nonlinear cost functions, with / without addends, homogenous

/ nonhomogenous facilities, with / without mutual communication.

The problem as we have shown has many variants and additional

cases may be defined by using probabilistic demands, probabilistic edge
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lengths, dynamic networks, and so on. In this chapter, we will survey the

relevant literature by focusing on complexity issues, algorithms and

solvability of many problems. Some extensions and research directions

will also be introduced throughout the chapter.

2.2  Inverse problems to MMLP:

In MMLP, we are given a specified number p and aim to find

optimal locations of p facilities in order to minimize some objective

function value. The related feasibility (recognition) version of the problem

can be defined as follows: Given a value r, determine whether or not there

exists a feasible location of p facilities with objective function value less

than or equal to r. This latter problem is polynomially equivalent to the

original problem, i.e. if a polynomial algorithm is devised for the

feasibility problem, a polynomial algorithm can also be devised for the

original problem. Researchers usually use the feasibility version of the

problem to devise polynomial algorithms to minimax multifacility

problems. In fact, the minimum value of r such that the corresponding

feasibility problem has a solution is the optimal objective value of the

original MMLP.

From a different view, given a real number r, the following

problem is the inverse problem (called the related cover problem) of a

standard homogeneous MMLP:

Min p

s.t. |X| = p

X ⊆ S
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F(X) ≤ r

Let the value of the optimal solution of the p-center problem be rp

and that of the inverse problem be q(r) for a given real r. If we are trying to

solve a p facility MMLP, and  q(r)> p then rp  is greater than r; otherwise,

it is smaller than or equal to r.

It is obvious that if we can restrict the possible objective function

values to a discrete set R and have a polynomial algorithm for the inverse

problem then we can find the optimal objective function value to the

homogeneous MMLP by applying a standard search method on the set R in

polynomial time.

2.3  The Literature:

In this section we present a review of the literature. We find it

appropriate to classify the problems according to the number of facilities

and underlying network structure (the last two entries of the classification).

The sections are organized as follows:

Figure 1: Organization of Chapter2

Sec. 2.3.5
Sec. 2.3.4

Sec. 2.3.3
Sec. 2.3.2

Sec. 2.3.1

MMLP

Single facility Multiple facilities

General
Networks

Tree
Networks

Almost
Tree
Networks

General
Networks

Tree
Networks
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Each section presents the results on vertex-restricted discrete

problems, absolute discrete problems and continuous problems, in the

stated order.

2.3.1 1-facility | General Networks: (S/∆/1/N)

Although the first minimax facility location problem was proposed

more than a century ago for V/V/1/N in a graph theoretical context (Jordan,

1869), the facility location problems have not taken much attention until

Hakimi’s seminal paper (Hakimi, 1964). Hakimi (1964) precisely defined

the (vertex-restricted) center and absolute center of a network and opened a

new era of research in operations research. The vertex-restricted 1-center

problem (V/V/1/N) is not very interesting for the researchers because one

can always solve it by using the distance matrix . In fact for any set of

nonlinear cost functions fi(d(vi,.)), a matrix  = {dij’ = fj(d(vi,vj))} can be

constructed in ))((
1
∑
=

n

i
i nntO  time where ti(n) is the complexity of

evaluating function fi. For example if fi(d(vi,.)) is the distance function

itself or the weighted distance function,  can be computed in O(n2) time.

Then, using , the maximum entry in each column can be found and the

column with the minimum maximal entry is the optimal location of the

facility for V/V/1/N. Once is at hand, the center location can be found in

O(n2) time, so the V/V/1/N problem is solvable in ))}(({
1

2∑
=

+
n

i
i nntnO time

for any cost function.

Following Hakimi (1964), the absolute center of a graph is a point

x0 of N such that )(),(max),(maxmin 0011
xFxvdwxvdw iiniiiniNx

==
≤≤≤≤∈

. According
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to our notation, the absolute center problem is an N/V/1/N problem with

weighted linear cost functions. The absolute center of a graph is found by

localizing the search to edges of the graph. A local absolute center of an

edge is a point that minimizes the objective function value when the

candidate location set is restricted to the specific edge. Once a local

optimum is found for every edge, the local center with minimum objective

function can be selected as the global optimal center. In fact, the search

space for the entire network can be reduced to local centers, which are

finite in number. The local center on an edge can be found by observing

the function F(x) on the edge. This function is piecewise linear with at

most n(n-1)/2 breakpoints. The candidate locations are at the breakpoints

or on the endpoints of an edge. Hakimi (1964) suggested an enumeration

technique for all edges and all candidate points of each edge. The

complexity of complete enumeration is O(n3m) where m is the number of

edges. Later, Hakimi, Schmeichel, and Pierce (1978) proposed an

O(mn2logn) algorithm which implements Hakimi’s algorithm more

efficiently. The complexity of the algorithm is improved by a factor of n

for the unweighted case. Kariv and Hakimi (1979) improved the

complexity bound on the problem by searching a subset of breakpoints,

namely the “suspected points” on each edge. Suspected points are

breakpoints where linear functions of opposite signs intersect. Their

algorithm solves weighted 1-center on general graphs in O(mnlogn) and

unweighted 1-center in O(mn) time. The computational improvement is

due to effective search of local optima for each edge. For the unweighted

problem Minieka (1981) suggests an O(n3) algorithm, which is different in

nature than previous algorithms. The algorithm does not make use of the

point to vertex cost functions but make use of the distance matrix only.
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When the cost function is not linear but it is a nonlinear convex

function, Hooker (1986) proposes a general-purpose algorithm. Hooker

(1986) divides each edge of a general graph into treelike segments.

Treelike segments are partial maximal arcs on which each distance

function d(vi, .) is linear. Any two points x and y lie on a treelike segment if

and only if every shortest path from these two points to any vertex vi are

the same except the portion of the segment between x and y. The cost

function F(x) is convex on each treelike segment. F(x) has a local

minimum on every edge which can be found by solving a convex program

on a line. It is proven that there exists at most O(n) treelike segments on

each arc. Further refinements can be made using some segment elimination

techniques. Shier and Dearing (1983) studied a nonlinear unified model

that includes the weighted 1-center and 1-median problems as special

cases. Directional derivatives are defined for these problems on networks.

A directional derivative is the amount of change in the objective function

value when the location of the facility if shifted by a small amount. The

locally optimal solutions are identified using directional derivatives on

both general and tree networks. Although for the linear cases the results are

not very surprising but a repetition of some well-known results, the paper

is valuable because it presents a completely different point of view to the

nonlinear problems.

Some very simple edge elimination techniques are used in absolute

center problems. In fact lower bounds on local centers is devised for each

edge and edges with lower bounds greater than known feasible solutions

are eliminated. Christofides (1975), Handler (1974), Odoni (1974) and

Halpern (1979) make use of elimination techniques and achieve

computational improvements in terms of CPU times. Halpern (1979)
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generates a stronger bound than previous ones. Sforza (1990) also proposes

a very efficient algorithm for absolute 1-center problem which makes use

of an edge elimination technique and solves the problem in O(mnlogn) and

O(kmnlogn) time for unweighted and weighted networks, respectively,

where k is a factor depending on the precision level and weight distribution

for weighted networks. Although Sforza’s algorithm does not improve the

complexity of the algorithm by Kariv and Hakimi (1979), which is the best

known bound for the problem, it is more effective in CPU time, since it

eliminates more than 80% of the edges.

The terms general center and continuous center are being used for

the N/N/1/N problem. Although there exists definitional differences

between general and continuous centers, it can be proven that they are

equivalent for the single facility case. The general center of a network N is

a point whose maximum distance to a farthest point on each edge is

minimized. So, in a sense, general centers serve edges of a network instead

of individual points of the network. A continuous center of a network is a

point whose maximum distance to any point on the network is minimized.

Minieka (1977) showed that Hakimi’s algorithm for the absolute1-center

could be modified to find the general absolute 1-center by making a change

in the definition of the distance function. The distance function d(x,y) is

changed with a new edge distance function d’(x,ei) which is the distance

between point x and the farthest point on edge ei. It is also shown in Frank

(1967a) that N/N/1/N problem can be solved using Hakimi’s algorithm

from a different point of view.

The problem V/N/1/N received very little attention. Minieka (1977)

proves that this problem can be solved by constructing a new distance
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matrix )],([' ''
jieij evddD ==  and finding the vertex which minimizes the

objective function value using the same technique for V/V/1/N. Thus, the

demand set although stated as continuous can be reduced to a finite set

consisting of the most distant points of each edge from each vertex.

2.3.2 1-facility | Tree Networks: (././1/T)

The distance function d(x,a) has a special property on tree networks

which provides the opportunity to devise very simple and elegant

algorithms. The function d(x,a) is convex for any point a on a network N if

and only if the network N is a tree (Dearing, Francis, and Lowe; 1976). The

convexity of the function d(x,a) means that for any fixed point a on T and x

on a path joining points y and z; d(x,a) ≤ λd(y,a) + (1-λ)d(z,a) ∀λ ∈ [0,1].

Because of the convexity of the distance function, any local optimum is a

global optimum in T for linear cost functions. This property and the

algorithms devised for tree networks are very important in location theory

because they provide insight for more general networks. Moreover, it’s

known that for some single-facility location problems (including absolute

center problem), there exist equivalent spanning tree problems (Dearing

and Francis, 1974). Solution procedures for tree networks play a crucial

role in such general network problems.

Goldman (1972a) proposed a decomposition algorithm for

networks involving bridges (a bridge is an edge whose removal divides the

network into two components). This procedure divides a network into two

components by removing a bridge and finds which of the two components

involves the absolute center. When the network is a tree, an O(n2)

algorithm is proposed. When the network has cyclic components but also
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at least one bridge it either decomposes the network into a cyclic

component, which contains the weighted absolute center, or finds the

optimum weighted absolute center of the network. Handler (1973) proved

that the absolute center of an unweighted tree is the midpoint of a longest

path in the tree. The absolute and vertex-restricted 1-center of a tree is

found in O(n) time. Halfin (1974) modified Goldman’s algorithm for

unweighted tree networks with addends and found the absolute and vertex

restricted 1-center of a tree in O(n) time. In fact, Lin (1975) showed that

addends could be incorporated into a network by adding artificial nodes

connected to each node by an edge of length equal to the addend.

Therefore, addends do not increase the complexity of the algorithms. The

weighted absolute 1-center problem with addends on tree networks was

solved by Dearing and Francis (1974). They proved that the optimum

objective function value of an absolute center problem on a weighted tree

network is a value αst defined as follows:
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The absolute center of a tree network occurs at a point x on the path

joining some two vertices s and t where wsd(vs,x) + as = wtd(vt,x) + at. In

fact, αst is a lower bound for the weighted absolute center value for general

networks. The computation of αst together with critical vertices s and t

takes O(n2) time. Hakimi, Schmeichel, and Pierce (1978) proposed an

algorithm which has a time complexity of O(n(r+1)) where r is an integer

and r ≤ n – 1 for this problem. Kariv and Hakimi (1979) proposed an

algorithm, which reduces the search of the absolute 1-center and the vertex

restricted 1-center to subtrees of a tree until a single edge remains. The
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algorithm is similar to Goldman (1969), but because it selects the centroid

of the remaining part of the tree as the break point, it does not enumerate

all edges of the tree. Once the subtree, which involves the center, is

reduced to a single edge, local center on that edge is found for absolute

center or vertices of the edge are compared for vertex-restricted center. The

algorithm takes O(nlogn) time for weighted trees. Hedetniemi, Cockayne,

and Hedetniemi (1981) suggests an O(n) algorithm for vertex-restricted 1-

center on unweighted tree networks using a canonical representation of tree

networks. In this representation, the nodes of the tree are labeled so that

each node is connected exactly with one node with a smaller index. This

labeling is useful for implementation of algorithms. Although, the time

complexity of the algorithm does not suggest an improvement on

Handler’s algorithm the data structure suggested is useful in terms of

tractability. Megiddo (1983) solved the weighted absolute center problem

in tree networks in O(n) time. The algorithm first selects the centroid of the

tree and evaluates the cost function for every vertex adjacent to the

centroid. Then because the function is convex on any path, it finds which

subtree contains the weighted center of the tree among all the subtrees

identified by the centroid. These steps are similar to the algorithm by Kariv

and Hakimi (1979) but Megiddo (1983) disregards some of the vertices

from further consideration in objective function by using the following

observation: Given a real number t and a point of the tree, whether the

center lies within a distance t or not of this point can be found in linear

time.

The nonlinear version of the problem with strictly increasing cost

functions fi is considered by Dearing (1977) and Francis (1977). Similar
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results to Dearing and Francis (1974) is obtained. Let bst be defined as

follows:

{ })],([)(max 111
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bst is a lower bound on the objective function value for general networks

and it is attainable for tree networks. The calculation of bst  together with

definition of the range and domain of the function (fi
-1 + fj

-1)-1 may be quite

cumbersome for some functions.

N/N/1/T problems are equivalent to N/V/1/T problems on

unweighted trees because once the vertices of an edge are covered; the

interior points of the edge are necessarily covered. Nevertheless, problems

with continuous demand on each edge with associated demand weight

functions may be an area of research.

2.3.3 Exploiting the Block Structure: 1-facility | Special graphs other

than trees:

For the networks, which are more general than trees, Goldman’s

reduction algorithm finds the cyclic component in which absolute center

lies. Similarly, Chen, Francis, and Lowe (1988) proposed an algorithm for

linear and nonlinear cost functions. The algorithm constructs the block

diagram of the graph (a block is a maximal subgraph that cannot be

disconnected by removing a vertex together with its adjacent edges and the

block diagram of a graph is a graph with additional vertices representing

each block and edges between each block and its vertices. A block diagram

is always a tree). The algorithm directs the edges one by one from nodes of
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the block diagram to the central node or to the block that consists of the

central point. The algorithm is useful for graphs containing more than one

block. Assuming evaluating fi(.) is O(n), the complexity of the algorithm is

O(n.min{b,αlogb}) where α is the maximum number of cut points in any

block and b is the number of blocks. If the algorithm ends with a block,

algorithm of Kariv and Hakimi (1979) may be used for example to locate

the absolute center in the block for the linear cost function. Otherwise

Hooker (1986)’s treelike segments may be used for increasing convex

functions as stated by the authors. Nevertheless, if we have other nonlinear

cost functions, finding the location of the single facility in the block is still

a hard problem to be solved.

The algorithms exploiting the block structure may be very useful

for cactus graphs, which are graphs in which every block with three or

more vertices is a cycle. For example, the complexity bound in Chen,

Francis, and Lowe (1988) is O(nlogn) for cactus networks. A polynomial

time algorithm of complexity bound O(n) is devised for special cactus

networks: the cactus networks which are homeorphic to a 3-cactus

(Kincaid and Lowe, 1990). The algorithm transforms these special graphs

to trees in which point to point distances are preserved. The paper is

insightful although it solves a very special class of problems.

2.3.4 p>1 | General Networks

Most of the MMLP’s are hard problems on general networks

although they are relatively easy on tree networks. Kariv and Hakimi

(1979) proved that the absolute and vertex-restricted p-center problems are

NP-Complete even if the network is a planar unweighted network with unit
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edge lengths and maximum vertex degree of three. Although the problem

is NP-Complete for general p, it is polynomial when p is given. The

vertex-restricted unweighted p-center problem is solvable by means of

solving a finite number of set-cover problems, because the objective

function value of the p-center problem must be one of the O(n2) vertex-to-

vertex distances. Similarly, it is shown that there exists “finite dominating

sets”, finite sets that include all candidate facility locations, for many

network location problems, including some members of the MMLP.

Hooker, Garfinkel, and Chen (1991) suggested a unified technique to

identify these finite dominating sets for many problems. Specifically, for p-

absolute center problem, it is shown that “edge bottleneck points” (the

unique points on each edge for which two distance functions d(vi,.) and

d(vj,.) are equal and not both decreasing in the same direction) together

with vertices of the network form a finite dominating set for unweighted

networks, (Minieka, 1970). For the weighted problem, Kariv and Hakimi

(1979) identified “suspected points” on each edge (where the weighted

distance functions of opposite signs intersect). With each dominating set

identified for each problem, a finite set of numbers R (which consists of the

distances between each candidate location point and each vertex) is also

identified. Then set-cover problems with radius r ∈ R can be solved.

Unfortunately the possible number of candidate points is O(n2m) and set-

cover problems involving O(n2m) variables may be hard to solve with

known Integer Programming (IP) techniques.

Minieka (1970) suggested an algorithm that relies on solving a

number of set-covering algorithms for increasing values of r. Garfinkel,

Neebe, and Rao (1977) solved p-center problems using Minieka’s ideas but

they reduced the search space by first using a heuristic to find an upper
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bound on r. They disregarded the candidate points with relative radius

greater than r, effectively decreasing the number of variables of the

associated set-cover problem. Christofides and Viola (1971) gave an

iterative algorithm for finding absolute p-centers on weighted and

unweighted graphs. They did not identify finite dominating sets. Instead,

for each r, feasible regions on each edge are constructed to cover all

vertices and a minimal set of locations is chosen in these feasible regions

by solving a set-covering problem. This approach may be useful for

problems with distance constraints since the feasible regions may be

changed without changing the entire procedure. Toregas, Swain, Revelle,

and Bergman (1971) solved the vertex restricted p-center problem by

solving a series of set-covering problems. They also added cuts to each set

cover problem to resolve fractional solutions when needed.

Kariv and Hakimi (1979) provided an O(mpn2p-1logn) algorithm for

p-center on general graphs. They used the fact that facilities must be

chosen from a finite dominating set and in an optimal solution each facility

is associated with a subnetwork for which it is the 1-center. They choose p-

1 arbitrary candidate locations and solve for the pth one. The algorithm is

improved by a factor of logn for the unweighted case. Moreno (1986)

provided a O(mpnp+1logn) bound for the p-center problem. Tamir (1988)

improved previous bounds by combining the algorithms of Kariv and

Hakimi (1979) and Moreno (1986) and obtained bounds of O(mpnplog2n) ,

and O(mpnplogn) for the weighted and unweighted cases, respectively.

Further improvement is made by using dynamic data structures and the

unweighted p-center problem can be solved in O(mpnp-1log3n) time.

Tamir’s algorithm obtains the objective function value dynamically as it

passes from one candidate set of locations to another and it uses the fact
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that in an optimal solution each facility may be associated with a unique

edge. As we have mentioned before, the algorithms devised for the p-

center problem usually rely on solution of a series of set covering

problems. This fact is used by Elloumi, Labbé, and Pochet (2004) in

devising a new IP formulation for the problem. The LP-relaxation of this

formulation generates better lower bounds for the problem than previous

models. The paper includes polynomial algorithms to generate lower and

upper bounds for the problem and solves instances up to 1817 using Cplex

7.0. Although the model has been developed for discrete spaces, it can be

used for both absolute and vertex-restricted problems by using finite

dominating sets.

When the cost function is a nonlinear convex function, Hooker

(1989) proposes an algorithm, which is practical for small values of p. The

algorithm divides the edges into treelike segments and for each

combination of p treelike segments, locates the p facilities optimally via

solving a number of easy linear and nonlinear programs on these segments.

It enumerates all possible combinations of p segments. It also introduces an

upper bounding technique to eliminate some of the combinations.

Although the algorithm becomes intractable when the number of facilities

exceeds four, the ideas introduced may be useful in further research.

The continuous p-center problem (N/N/p/N) is NP-Hard on general

graphs even if the graph is a bipartite planar graph of maximum degree 4

with unit edge lengths (Reduction from minimum dominating set problem

in Megiddo and Tamir, 1983). Tamir (1985) showed that the objective

function value rp of a continuous p-center problem with positive integer

edge lengths is a rational rp = p1/p2 where p1, p2 are positive integers and
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link i. Using this result, he showed that the continuous r-covering problem

is equivalent to the continuous p-center problem, and a finite algorithm

may be devised for the continuous p-center problem that requires the

solution of a series of continuous r-covering problems. A continuous r-

covering problem is to locate p centers on a network so that every point of

the network is within a distance r of a center. Handler and Rozman (1982)

also suggested an approximation algorithm for the continuous p-center

problem via solving some discrete problems and approximating the

continuous p-center value. As Tamir (1985) stated the number of

continuous r-covering problems may be quite large to solve the problem

optimally so one can be satisfied with approximation algorithms instead.

Tamir (1987) proved that rp is of the form T/2q where T is the length of a

Eulerian tour of a subnetwork of N which is from a special set of

subnetworks and q∈ {1,..,2p}.  It is shown that the continuous p-center

problem can be solved via solving O(logp+logd) continuous r-covering

problems where d is the total of edge lengths. Gurevich, Stockmeyer, and

Vishkin (1984) state that the r-covering problem is solvable in O(nlogn)

time for a class of graphs which have the property that each nontrivial

biconnected component is homeorphic to either a cycle or a cycle with a

chord (a chord is an edge joining two nonconsecutive vertices of a path or

cycle and two graphs are homeomorphic if one can be obtained from  the

other by inserting new nodes along existing edges). So, continuous p-

center problem is solvable in this class of graphs.  

Minieka (1977) introduced the general p-center problem in which

every edge is a demand point and must be covered by a single center. He
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shows that the number of candidate locations can be reduced to a finite set

when the ordinary distance functions are replaced with edge distance

functions as in the single facility case.

The p-center problems are very hard problems on general graphs,

so it would be appropriate to make use of heuristics. Unfortunately, it is

impossible to have a worst-case bound tighter than twice the optimum for

any p-center problem. Hochbaum and Shmoys (1985) devised a “best

possible” 2-approximation algorithm for the problem and showed that

finding a better algorithm is NP-Hard. In fact, their heuristic has been

useful in many other problems. The heuristic solutions were successfully

used in branch-and-bound algorithms for some instances of the problem.

Hsu and Nemhauser (1979) also proved that finding any approximation

algorithm with a performance guarantee better than 2 implies P=NP for

general networks.

Dyer and Frieze (1985) devised an O(nm) heuristic for the vertex-

restricted p-center problem which  generates solutions no more than

min(3,1+α) times the optimum, where 
ipi
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unweighted, the algorithm is a 2-approximation algorithm that is the best

possible for vertex-restricted p-center problems. Plesnik (1987) modified

this algorithm for absolute p-center problems.

Handler and Rozman (1985) suggested an approximation algorithm

for the absolute and continuous p-center problems which may be viewed as

a column and row generation generating algorithm. Although the

procedure converges to the optimal solution in a finite number of steps for
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the absolute p-center problem, it lacks this property for the continuous

problem.

A vertex-closing approach to the vertex-restricted problem was

proposed by Martinich (1988). In this method, instead of choosing vertices

which have facilities, vertices which do not have facilities are chosen.

Although a worse case bound is not proposed for the heuristic it is shown

that in most of the test instances it finds the optimum solution. The paper

includes two polynomial algorithms which have complexity bounds of

O(m2) and O(mlogm). The first method is faster in the average in contrast

with the higher complexity bound. Lower and upper bounds and theorems

to prove optimality of the solutions are included in the analysis. Although

Hochbaum and Shmoys (1985) have a worse case guarantee for the same

problem, Martinich (1988) finds better solutions for most of the instances.

Bozkaya and Tansel (1998) provided a heuristic, which is different

from above approximation algorithms. They prove that for any network N,

there exists a spanning tree T* of N, such that the absolute p-center of T* is

also an absolute center of N. It is shown that finding a finite subset of

spanning trees which involve T* is as hard as the original problem. They

used two special classes of spanning trees and made an experimental study

on these trees.

2.3.5 p > 1 | Tree Networks:

Handler (1978) considered the absolute 2-center (N/V/2/T) and

continuous 2-center (N/N/2/T) problems and devised O(n) algorithms for

both problems. He solved three 1-center problems instead of solving a 2-
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center problem. Although his algorithm is elegant for the 2-center case it

does not seem possible to extend the algorithm to p > 2. Hakimi,

Schmeichel, and Pierce (1978) devised an O(np-1) algorithm for the

absolute p-center problem on unweighted tree networks. Kariv and Hakimi

(1979) presented an O(n2logn) algorithm for absolute and vertex restricted

p-center problems on trees (weighted or unweighted). For unweighted trees

they also presented an O(nlogp-2n) algorithm for absolute p-center (3≤p<n)

and an O(nlogp-1n) algorithm for vertex-weighted p-center (2≤p<n). Kariv

and Hakimi’s algorithms use the fact that the objective function value rp

must be one of the following O(n2) values:
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For each value αij, a covering algorithm devised in the same paper is used.

The covering algorithm is O(n) and a binary search is performed on the set

of possible values of rp. Megiddo and Tamir (1983) presented an O(n log2n

loglogn) algorithm for the weighted absolute p-center problem. An

O(nlogn) algorithm is presented by Frederickson and Johnson (1983) for

unweighted case. Megiddo, Tamir, Zemel, and Chandrasekaran (1981)

solved the vertex-restricted p-center in O(nlog2n) time. For relatively small

values of p, Jaeger and Kariv (1985) devised an algorithm of O(pnlogn) for

the vertex-restricted and absolute p-center problems on weighted tree

networks. When p<logn for the vertex-restricted p-center problem and

p<lognloglogn for the absolute p-center problem, this algorithm performs

better than previous algorithms.
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Shaw (1999) presented a unified column generation approach for a

class of facility location problems on trees and presented a multipurpose

algorithm for these problems. This algorithm gives a complexity bound of

O(n2logn) for p-center problems on weighted tree networks.

The nonlinear version of the problem with strictly increasing and

continuous cost functions was considered in Tansel, Francis, Lowe, and

Chen (1982). The model also included upper bounds on the distances

between customers and facilities. They provided an O(n4logn) algorithm

based on solving a series of O(n2) covering problems. The dual of the

center problem and dual of the covering problem is presented and solved in

this paper.

For the continuous p-center problems (N/N/p/T); Chandrasekaran

and Daughety (1978) showed the problem is polynomially solvable. They

provided an O(n) algorithm for solving the r-cover problem on the tree

networks, but did not specify a polynomial algorithm for continuous p-

center. Chandrasekaran and Tamir (1980) proved that the objective

function value rp of continuous p-center problem belongs to the following

set:
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The cardinality of possible values of rp is O(n2p). Chandrasekaran and

Tamir (1980) proposed an O(min(n2log2p, n2logn + plog2n)) algorithm for

continuous p-centers on trees via exploiting the special structure of the set

R. Chandrasekaran and Daughety (1981) improved this bound to O(n2p).
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This bound is further improved by Megiddo, Tamir, Zemel, and

Chandrasekaran (1981) to an algorithm of complexity O(min(n2logp,

pnlog2n)). Frederickson and Johnson (1983) devised an algorithm of

O(n.min(p,n)log(max(p/n,n/p))) time complexity. Megiddo and Tamir

(1983) devised an algorithm of O(nlog3n) complexity. Their algorithm is

the first algorithm which has a complexity bound independent from

parameter p. They find the objective function value of rp by constructing an

interval (α,β), which includes rp and contracting this interval to rp by

solving a number of covering problems.

The p-center problem is also extended to the conditional case.

Conditional p-center problem arises when p1 facilities are already located

on the network and p - p1 facilities are to be located, or more formally:

Given a set Y ⊆ N, |Y| = p1, find a set Z*: Z* ⊆ N, |Z*| = p2, p = p1+p2 and
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. Minieka (1977) first considered the

conditional 1-center problem. He considered the vertex-restricted, absolute

and continuous versions of the problem and showed that the algorithms for

unconditional problems can also be used for the conditional problems. For

the multiple conditional centers, Kariv and Hakimi (1979) can be used.

Drezner (1989) also solved the conditional p-center problem with an

algorithm that requires the solution of O(log n) unconditional p-center

problems. Drezner’s observation is true for problems on the Euclidean

plane, for rectilinear distances in the plane and for problems on general or

tree networks. Berman and Simchi-Levi (1990) showed that the conditional

p-center problem could be solved by solving an unconditional (p+1)-center

problem.

2.4 Problem Extensions:
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2.4.1. Directed Networks

Most of the minimax facility location problems have been solved

on undirected networks. Although this assumption simplifies the analysis,

it may be unrealistic for many transportation networks. Handler (1984)

considered the absolute p-center problem on directed networks. It is shown

that there exists an optimal solution, which is a subset of the vertices of the

directed network. So the p-center problem on directed networks can be

solved by methods that solve vertex-restricted problems on undirected

networks.

2.4.2. Capacitated facilities

In minimax problems we have considered so far, it is assumed that

the facilities are uncapacitated. This assumption is not restrictive in most of

the situations because these problems usually deal with locations of

emergency centers and not many emergency cases occur at the same time.

Nevertheless all these facilities have well defined capacity restrictions and

there may be cases when the capacity restrictions are tight such as war

situations, disasters, and etc. Jaeger and Goldberg (1994) are the first to

consider capacity restrictions on the p-center problem. They proposed an

algorithm for the p-center problem on tree networks when the facility

capacities are identical. The algorithm, similar to the uncapacitated

versions, solves a series of capacitated covering problems in order to solve

the capacitated center problem. Since the capacitated covering problem can

be solved in O(n2) time, it is shown that for both vertex-restricted and

absolute centers the algorithm requires O(n) times more effort than the
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uncapacitated version. Any algorithm for an uncapaciated p-center problem

combined with the algorithm for the capacitated covering problem would

yield a polynomial algorithm for the capacitated version of that problem.

Problems with unequal facility capacities and on more general graphs than

trees may be studied as stated by the authors.

2.4.3. Round-trip problems

The round trip p-center problem can be defined as follows: Given a

network N and a finite set of pairs of existing facilities, minimize the

maximum transportation cost where costs are linear or nonlinear increasing

functions of the round-trip distance from a nearest new facility. The round-

trip distance is the distance traveled by a vehicle that departs from its

depot, visits a pair of customers and returns to its depot. The problem first

solved by Chan and Francis (1976) for the single facility case on tree

networks. The analysis was similar to Dearing and Francis (1974). They

proved a lower bound on the objective function value for general networks

which is attainable for tree graphs. Kolen (1985) solved the problem for

multiple facilities by solving a series of round-trip covering problems. The

round-trip covering problem is the problem of finding the minimum

number of depots such that each round trip cost is less than or equal to a

specified number. The covering problem is solved in O(nm) time where m

is number of existing customer pairs. The center problem can be solved in

polynomial time using the solutions of a set of covering problems. The

details of the algorithms together with duality results may be found in

Kolen and Tamir (1984) and in the book Discrete Location Theory by

Francis and Mirchandani (1985).
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2.5 New Problems:

Four new 1-center problems are introduced in Peeters (1998).

These problems do not minimize the distance between the facility and a

farthest demand point but minimizes the distance of a facility to the kth

farthest or nearest demand point. Let mink denote the kth smallest element

in a set. Let ∆ denote the demand set as usual. Note that ∆  is restricted to a

subset of vertices for these problems. The vertex-restricted lower-k 1-

center problem is to find a vertex v* ∈ V such that v* solves

),(minmin
1 i

k

ni
vdw δδδ ∆∈≤≤

.

The absolute lower-k 1-center problem is to find a vertex x* ∈ N such that

x* solves

),(minmin xdwk

Nx
δδδ ∆∈∈

.

Two other problems, the vertex-restricted and absolute upper-k 1-

center problems introduced are equal to lower-(|∆|-k) 1-center problems, so

their definitions are omitted. Peeters (1998) introduces an algorithm of

O(n|∆|logn + |∆|m) for the weighted vertex-restricted problems and

unweighted absolute center problems. The algorithm solves the problems

when distance matrix is being calculated and finds the optimum before all

entries in is found. When ∆ = V and k = 1, the upper-k 1-center problem

is identical to the 1-center problem. Thus, 1-center problems are solvable

in O(n2logn + n2m) time without calculating the distance matrix using this

algorithm. The ideas in this paper may be extended to the case with

multiple facilities.
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Chaudhuri, Garg, and Ravi (1998) defined the (vertex-restricted) k-

neighbour p-center problem as follows: Find a subset X* of V such that |X*|

= p and *),(max),(maxmin
*

||

XvdXvd pXVvpXVv
pX

VX −∈−∈
=
⊆

= , where dp(v, X) is the

distance between v and its pth nearest center in X. This model may be

useful when facilities are subject to failures and at most k facilities fail at

the same time. A best possible 2-approximation algorithm based on an

extension of Hochbaum and Shmoys (1985) is presented.

Hochbaum and Pathria (1997) generalized the vertex restricted p-

center problem to the Set p-Center problem. In this problem, the nodes

from which the p servers are to be selected are partitioned into k sets and

the number of servers selected from each set must be within a specified

range. When there exist 2 vertices in each partition, the problem is called

the p-Pair Center problem and is introduced by Hudec (1991). Hochbaum

and Pathria (1997) proved that the problem is NP-Complete. Furthermore,

finding an ε-approximation algorithm with ε < 2 is not possible unless

P=NP. They also provided a 3-approximation algorithm for the problem.

Hochbaum and Patria (1998) introduced the (vertex-restricted) k-

network p-center problem, which is defined as follows: Given k sets of

weights on a complete network N, let Nj=(V, Ej) represent jth network, for

j=1,..,k, with edge e having length le
j in Nj. Find a set X* ⊆V such that X*

minimizes ),(maxmax
11

XvD ijkjni ≤≤≤≤
 where ),(min),(

1 rijprij xvdXvD
≤≤

=  with

dj(vi,xr) denoting the length of a shortest path between vi and xr computed

relative to Nj=(V, Ej). The problem is NP-complete and a 2-approximation

algorithm is provided for k=2 in the paper. This problem may be

appropriate to model some situations in which the network structure
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changes in time. For example, if the network is a city transportation

system, the time spent on different edges of the network may change with

the time of the day and a city planner may want to consider all possible

instances of the network.

A summary of the literature on minimax facility location problems

can be found in the following tables:

Table 1: Literature on Single Facility Minimax Location Problems on

General Networks

Author Year Problem Summary

Hakimi 1964 Vertex-restricted
1-center

Definition
O(n2) algorithm using D

Hakimi 1964 Absolute 1-center Definition
O(n3m) algorithm

Hakimi,
Schemeichel,
and Pierce

1978 Absolute 1-center O(mn2logn) algorithm for
weighted problem
O(mnlogn) algorithm for
unweighted problem

Kariv and
Hakimi

1979 Absolute 1-center O(mnlogn) algorithm for
weighted problem
O(mn) algorithm for
unweighted problem

Minieka 1981 Absolute 1-center O(n3) algorithm
Hooker 1986 Absolute 1-center

with nonlinear
cost function
(convex)

Treelike segments

Christofides
Handler
Odoni
Halpern
Sforza

1975
1974
1974
1979
1990

Absolute 1-center Edge elimination tech.

O(mnlogn) for unweighted,
O(kmnlogn) for weighted
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Minieka 1977 Vertex-restricted,
absolute general
(continuous) 1-
center

Intoduce edge-to-point
distance function and
modify Hakimi’s algorithm

Frank 1967 Continuous 1-
center

Modify Hakimi’s algorithm

Table 2: Literature on Single Facility Minimax Location Problems on Tree

Networks

Author Year Problem Summary
Goldman 1972 Weighted

absolute 1-center
O(n2) algorithm

Handler 1973 Unweighted
absolute and
vertex-restricted
1-center

O(n) algorithm that locates
the center on the midpoint
of the longest path

Halfin 1974 Unweighted
absolute 1-center

O(n) algorithm

Dearing and
Francis

1974 Weighted
absolute 1-center

O(n2) algorithm
Find αst

Hakimi,
Schemeichel,
and Pierce

1978 Weighted
absolute 1-center

O(n(r+1)) algorithm

Kariv and
Hakimi

1979 Weighted
absolute 1-center

O(nlogn) algorithm

Hedetniemi,
Cockayne, and
Hedetniemi

1981 Unweighted
vertex-restricted
1-center

O(n) algorithm
Canonical representation

Megiddo 1983 Weighted
absolute 1-center

O(n) algorithm

Dearing
Francis

1977
1977

Nonlinear 1-
center

Find bst
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Table 3: Literature on Single Facility Minimax Location Problems on

Special Networks

Author Year Problem Summary
Goldman 1972 Graphs with more

than 1 block
Decomposition algorithm

Chen, Francis,
and Lowe

1988 Graphs with more
than 1 block

Block diagram,
O(nmin{b,αlogb}) alg.

Chen, Francis,
and Lowe

1988 Cacti O(nlogn)

Kincaid and
Lowe

1990 Cacti homeorphic
to a 3-cactus

O(n) algorithm

Table 4: Literature on p-Facility Minimax Location Problems on General

Networks

Author Year Problem Summary
Kariv and
Hakimi

1979 Absolute and
vertex-restricted
p-center

NP-Complete for general p

Minieka 1970 Unweighted
absolute p-center

Identification of a finite
dominating set
Solved via solving of set-
cover problems

Garfinkel,
Neebe, and
Rao

1977 Unweighted
absolute p-center

Solution of a reduced
number of set-cover
problems

Christofides
and Viola

1971 Unweighted and
weighted absolute
p-center

Feasible regions on each
edge
Solution of set-cover prob.

Toregas,
Swain,
Revelle, and
Bergman

1971 Vertex-restricted
p-center

Solution of set-cover
problems
Cutting planes

Kariv and
Hakimi

1979 Weighted
absolute p-center

Finite dominating set
O(mpn2p-1logn)
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Moreno 1986 Weighted
absolute p-center

O(mpnp+1logn)

Tamir 1988 Unweighted and
weighted absolute
p-center

O(mpnplogn) – unweighted
O(mpnplog2n) - weighted

Hooker 1989 Nonlinear convex
objective function

Trrelike segments

Megiddo and
Tamir

1983 Continuous p-
center

NP-Complete for general p

Tamir 1985 Continuous p-
center, integer
link lengths

Rational objective function
value
Solution of finite number of
continuous r-cover prob.

Tamir 1987 Continuous p-
center

Solution of O(logp+logd)
continuous r-cover prob

Minieka 1977 General p-center Edge distance functions
Handler and
Rozman

1982 Continuous p-
center

Approximation algorithm
using discrete problems

Hochbaum and
Shmoys

1985 p-center 2-approximation algorithm

Hsu and
Nemhauser

1979 p-center 2-approximation algorithm

Dyer and
Frieze

1985 Vertex-restricted
p-center

O(nm) heuristic
min(3, 1+α)-approximation

Handler and
Rozman

1985 Absolute and
continuous p-
center

Approximation algorithm
Finite convergence for the
absolute problem

Martinich 1888 Vertex-restricted
p-center

Vertex-closing heuristic

Bozkaya and
Tansel

1998 Absolute p-center Spanning trees
Experimental study

Table 5: Literature on p-Facility Minimax Location Problems on Tree

Networks

Author Year Problem Summary
Handler 1978 Absolute and

continuous 2-
center

O(n) algorithm
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Hakimi,
Schmeichel,
and Pierce

1978 Absolute p-
center

O(np-1) algorithm

Kariv and
Hakimi

1979 Absolute and
vertex-restricted
p-center

O(n2logn) algorithm for
weighted trees
O(nlogp-2), O(nlogp-1) for
unweighted trees for absolute
and restricted cases, resp.

Megiddo and
Tamir

1983 Weighted
absolute p-center

O(n log2n loglogn) algorithm

Frederickson
and Johnson

1983 Unweighted
absolute p-center

O(nlogn) algorithm

Megiddo,
Tamir, Zemel,
Chandrasekaran

1983 Vertex-restricted
p-center

O(nlog2n) algorithm

Jaeger and
Kariv

1985 Absolute and
vertex-restricted
p-center

O(pnlogn) algorithm

Shaw 1999 Weighted p-
center

O(n2logn) column generation
algorithm

Tansel, Francis,
Lowe, Chen

1982 Strictly
increasing
nonlinear cost
function and
distance
constraints

O(n4logn) algorithm

Chandrasekaran
and Daughety

1978 Continuous p-
center

Polynomially solvable

Chandrasekaran
and Tamir

1980 Continuous p-
center

O(n2p) possible values of
objective function

Chandrasekaran
and Tamir

1980 Continuous p-
center

O(min(n2log2p, n2logn +
plog2n)) algorithm

Chandrasekaran
and Daughety

1981 Continuous p-
center

O(n2p) algorithm

Megiddo,
Tamir, Zemel,
Chandrasekaran

1981 Continuous p-
center

O(n.min(p,n)log(max(p/n,n/p)))
algorithm

Megiddo and
Tamir

1983 Continuous p-
center

O(nlog3n) algorithm

Minieka 1977 Conditional p-
center

Unconditional algorithms can
be used
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Drezner 1989 Conditional p-
center

Solution of O(log n)
unconditional p-center
problems

Berman and
Simchi-Levi

1990 Conditional p-
center

Solution of an unconditional
(p+1)-center problem.
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C h a p t e r  3

MINISUM FACILITY
LOCATION ON NETWORKS:

In this chapter we deal with facility location problems on networks

in which the cost function is the total cost of servicing every customer.

This type of objective function is usually referred to as the minisum

objective. As stated by ReVelle, Marks, and Liebman (1970), most of the

private facility problems involve cost functions that are easily measurable

in monetary values and the minisum type objective is widely used in

private sector problems. We assume that the number of facilities to be

located is a priori known. This results in a budget constraint that can be

expressed in terms of the number of facilities instead of monetary units

under the assumption that the facility establishment costs are essentially

identical for all facilities.

In classical network location problems, customers are assumed to

be located at discrete points of a network (usually on the nodes). If there

are demand points on the links, the node set can be expanded to include

such points. Nevertheless, in real world distribution systems such as postal

services, traffic highway service systems, and household services, the

customers may be continuously distributed on some or all links of the

network. Replacing link demands with aggregated demands at discrete

points of the network may be an oversimplification of the real problem. In
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this chapter, we deal with both discrete and continuous demands on

networks. Moreover, the demand configuration of the network as well as

the lengths of the links of the network may change over time. These types

of networks are time varying or stochastic in nature and we deal with both

time varying, deterministic and stochastic networks.

If the demand is generated by the nodes of the network, let fi(.) be a

nondecreasing function defined on nonnegative reals for each vi ∈ V. Let

)),(()( XvDfXF ii
i
∑= , we define the multifacility minisum location

problem as follows: Find X* ⊆ N such that |X*| = p and F(X*) ≤ F(X)  ∀X

⊆ N for which |X| = p. If a nonnegative weight wi is associated with each

demand node vi and the cost function fi(.) is a linear cost function with

slope wi, the problem is the well-known absolute p-median problem of

Hakimi (1965). The weight wi can be interpreted as the product of the

volume of demand at vi and the unit transportation cost.

3.1  Nodal Optimality Results:

Although absolute p-medians of a network can be located on the

interior points of the links as well as on the nodes of the network, it is

known that there exists at least one optimal solution which locates all

facilities on the nodes of the network for certain cost functions. Hakimi

(1964) showed that there exists an absolute median of a network on the

vertices. He also proposed an algorithm to find the absolute 1-median of a

network using the distance matrix based on the nodal optimality result. His

algorithm is a complete enumeration technique with a time complexity of

O(n2). The nodal optimality result is very easy to grasp because the
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distance function from a fixed point in the network to a variable point in a

link is a piecewise linear concave function with at most two pieces. The

total distance from finitely many demand points to a facility on an edge is

again concave which attains its minimum on one of the end points, i.e. the

nodes of the network. The same result is extended to the absolute p-median

problem by Hakimi (1965). The result is again easy to grasp because every

facility in an optimal p-median of a network is a 1-median of a

subnetwork. A complete enumeration algorithm, which searches all the p-

cardinality subsets of the node set, is provided by Hakimi (1965). The

algorithm becomes intractable for large values of p and n. The complete

enumeration has time complexity of O(np+1p). Goldman and Meyers

(1965) have proved the same result with a more general concave cost

function. Levy (1967) extended the nodal optimality result to the case

when p facilities are to be located which have capacity restrictions

independent of the specific facility location. The cost functions are concave

with respect to the distance from the nearest facility. The result follows

from the concavity of the cost and the distance functions. The results can

further be extended to the cases with variable number of facilities, concave

establishment and processing costs. The concavity assumptions are not too

restrictive because the cost functions are actually concave in most of the

real world problems. It is assumed that more than one facility can be

placed on a node of the network otherwise the nodal optimality results are

not valid.  Goldman (1969) used a more general objective function. In

Goldman’s model, there is a material flow between pairs of nodes via

facilities and the cost assigned to each flow is dependent on the particular

source and destination pair and the direction of the shipment. All the

transportation costs are assumed to be concave with respect to the distance

and nodal optimality is proved for the cases when the materials can flow
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through only one facility or more than one facility. Also multiple

commodities, which are processed at different facilities during the

transportation process, are considered and nodal optimality results are

conjectured to be extended to these problems. When the commodities can

be processed at two identical facilities, the problem is a primitive version

of the hub-location problem that is extensively studied in the recent years

(Campbell, 1996; O'Kelly, Bryan, Skorin-Kapov, and Skorin-Kapov, 1996;

Tansel and Kara, 2000). Hakimi and Maheshwari (1971) followed

Goldman (1969) and proved the conjectured nodal optimality result for

multiple commodities and multiple processing stages. They further proved

that the result holds when the facilities are capacitated and multiple

facilities are allowed on a single node. Independent from Hakimi and

Maheshwari (1971), Wendell and Hurter (1973) generalized the results in

Goldman (1969). Wendell and Hurter (1973) studied a more generalized

problem, which involves multiple commodities, directed arcs, multiple

facilities on a point and multiple processing steps. Nodal optimality results

are proven. Also conditions that allow nonnodal facility locations and

relations that restrict the optimal locations to nodes (conditions that do not

allow nonnodal locations) are discussed. This problem is very general and

flexible which can be used to represent real world problems.

For the 1-median problem on stochastic networks in which demands

are probabilistic, Frank (1966) defined the maximum probability absolute

R-median of a graph to be a point such that the total weighted distance

stays within an allowable limit R with maximum probability. It is shown

that there exist graphs for which none of the maximum probability medians

of the graph is on one of its nodes, so the nodal optimality results fail to

hold for stochastic networks with probabilistic demands. Frank (1966) has
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presented methods to find the local maximum probability medians of a

graph on an edge. Methods to handle the case, when the probability

distributions for demands are not known a priori but sample data is

available for the demands, are also provided. The solution techniques may

be quite cumbersome if the probability distribution at hand is complex.

Moreover, if the random variables representing the demands are not

independently distributed the analysis becomes intractable. Nevertheless,

Frank (1967b) studied problems with dependent probabilistic demands,

which follow a joint normal distribution. It is shown that the medians are

not necessarily on the nodes and methods for finding the local absolute

maximum probability medians are provided. The extension of the results

by Frank (1966, 1967) to the multiple facilities case is not straightforward.

Mirchandani and Odoni (1979a) extended the nodal optimality results

of Hakimi (1965) and Levy (1967) for stochastic networks in which the arc

lengths are random variables with known discrete probability distributions.

It is shown that when the cost function is concave there exists an optimal

solution on the nodes. The result is valid for directed stochastic networks

and for three different types of facilities such as inward facilities (facilities

to which customers arrive), outward facilities (from which servers travel to

customers) and facilities that are both inward and outward. Representing

each state of the network with a deterministic network and taking the

expected value of the total travel time over all states handle the

stochasticity. When the number of states is not large, the problem is easily

solved.

Mirchandani and Odoni (1979b) introduced the supporting medians,

which are new facilities to be located on the network to support the
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existing facilities. These new facilities behave like hubs but the destination

is always an old facility. The customers either directly go to the old facility

where they will receive the service or go to the new facility and are

transferred to the old facility with a reduced cost. It is shown that there is

always one set of optimal supporting medians on the nodes of the network.

Also the conditional p-median problem, which is the problem of locating

new facilities identical to the old facilities, is considered in this paper and it

is also proven that there exists an optimal set of conditional medians on the

nodes of the network. When only one facility that is either a supporting

median or a conditional median is to be located simple algorithms are

provided by Mirchandani and Odoni (1979b).

In most of the median models, it is assumed that there exists at least

one server at the nearest facility at the time when a service request arises.

Nevertheless, when the demands and service times are random, and the

facilities have limited number of servers, this assumption may fail to hold.

When all of the servers at a facility are busy and a request arises, the

request may be directed to another facility that has an available server or it

may be placed in a queue, which is depleted with respect to some queuing

principle. This type of networks is referred to as congested networks and

the median problem on this type of netwoks is referred to as the median

problem with congestion (Berman and Larson, 1982). The objective

function in this problem is to minimize the expected response time (instead

of expected travel time) associated with a random service request, where

response time is the sum of travel time and queuing delay. It is shown in

Berman, Larson, and Chiu (1985) that when one facility with exactly one

server working as an M/G/1 queue is to be located, the nodal optimality

results fail and the facility may be placed on an interior point of a link and
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a vertex solution for this problem may not exist. The result is valid for both

general networks and tree networks. Only for a very restricted case in

which service time is very large compared to the travel time and demands

arise with a Poisson distribution, the nodal optimality results hold for

multiple facilities and different server preference relations (Berman and

Larson, 1982).

3.2  Absolute p-Median on General Networks:

It is shown that finding an absolute p-median of a network is NP-hard

even when the network is a planar graph of maximum vertex degree 3

(Kariv and Hakimi, 1979). Based on the nodal optimality results we have

discussed in the previous section, the absolute p-median has been

formulated as the following ILP:
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In the formulation above, Xij is equal 1 if demand at node i is serviced

by a facility at node j and Xjj is equal to 1 if there exists a facility at node j.

The cost coefficient cij is the cost of serving node i from the facility at node

j. This formulation is an adaptation (ReVelle and Swain, 1970) of the ILP

for Fixed Charge Location Problem by Balinski (1961). It is also a
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constrained version of the Uncapacitated Facility Location Problem

(UFLP), which has been widely investigated in the literature. The

interested reader is referred to Francis and Goldstein (1974) for an

extensive survey of the problem. The LP-relaxation of the formulation is

very widely used to provide lower bounds in branch-and-bound algorithms.

It generates strong lower bounds for Euclidean, network and tree models

and provides results within 0.3 percent of the optimal objective function

value almost surely when the number of nodes goes to infinity (Ahn,

Cooper, Cornuejols, and Frieze, 1988). Many integer linear programming

techniques, especially branch and bound, Lagrangean relaxation and dual

ascent procedures are provided for the p-median problem based on this

formulation. The interested reader is referred to Fisher (1981) for an

extensive survey of Lagrangean relaxation technique. There also exists a

large number of heuristics available in the literature. We will first go over

the exact algorithms in the literature in the following subsection and then

briefly survey the available heuristics.

3.2.1 Exact Algorithms for p-Median on General Networks:

ReVelle and Swain (1970) solved the problem using LP-relaxation

and branch-and-bound. Järvinen, Rajala, and Sinervo (1972) also

presented a branch-and-bound algorithm for the problem. Their branching

rule is first opening n facilities on all nodes, and taking vertices away from

the facility set one at a time. At most n-p vertices are removed. Lower

bounds are calculated for each facility set with more than p facilities and

any feasible solution with p facilities constitute an upper bound. Garfinkel,

Neebe, and Rao (1974) presented another algorithm, which is based on

solving the LP-relaxation of the ILP formulation of the problem. The LP-
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relaxation is solved using a decomposition algorithm and in case of

noninteger termination, integrality is achieved using group theoretics and

dynamic recursion. This approach has some advantages over the classical

branch-and-bound algorithms when there are degenerate cases and many

alternative solutions of the LP-relaxation of the problem. Narula, Ogbu,

and Samuelsson (1977) provided a very simple algorithm based on lower

bounding via Lagrangean relaxation and subgradient optimization

methods. The bounding procedure finds the optimal solution for nearly all

practical problems. An important theoretical and algorithmic study related

to the Uncapacitated Facility problem is the exceptional paper by

Cornuejols, Fisher, and Nemhauser (1977). The problem is solved using a

three-step procedure. A greedy heuristic is first used to obtain an upper

bound followed by generation of lower bounds by means of a Lagrangean

dual. If needed, a third phase that is a classical branch-and-bound

procedure is used to solve the problem to optimality. Upper bounds on the

deviation of (upper and lower) bounds from the optimal objective value are

presented in the paper. This algorithm is very insightful and successful

compared to the previous methods and the study has been very useful for

solving p-median problems. A generalized p-median problem in which

facilities have different establishment costs is solved by Mavrides (1979).

This problem is again a UFLP with the constraint on the number of

facilities to be located. A Lagrangean relaxation of the problem with

relaxing the constraint on the number of facilities is solved using available

UFLP techniques. The algorithm may be useful if the corresponding UFLP

can be solved efficiently. Very successful methods exist for UFLP, among

which the dual ascent procedures initiated by Erlenkotter’s famous

algorithm stand out. Galvão (1980) proposed another branch-and-bound

algorithm, which uses a heuristic to solve the dual of the LP-relaxation of
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the problem. This dual solution provides a lower bound to the p-median

problem and it is easily embedded into the branch-and-bound procedure.

Medium-sized problems are solved using this algorithm.

Boffey and Karkazis (1984) have reported that they have solved a

p-median problem with n=206 and p=45. They solved the p-median

problem by solving a series of UFLPs with varying fixed facility costs. At

each iteration, a UFLP is solved and if the number of medians is larger

(smaller) than p, fixed cost for facility establishment is increased

(decreased). If the solution of the UFLP does not result in exactly p

facilities after adjustment of fixed costs, a branch-and-bound algorithm is

used to reach optimality. The p-median problem is extended to the case in

which the facilities have different types, each providing a different service.

The problem cannot be decomposed into independent subproblems because

there can be at most one facility at each node. Nevertheless, solving each

subproblem and integrating the subproblems as needed handles the general

p-median problem. Christofides and Beasley (1982) solved p-median

problems involving up to 200 vertices using Lagrangean relaxation and

subgradient optimization. Beasley (1985) improved the algorithm by using

a powerful supercomputer. He solved large p-median problems with up to

900 vertices and 90 facilities. This is the largest problem solved to

optimality in the literature to the best of our knowledge. Mirchandani,

Oudjit, and Wong (1985) provided a very successful exact algorithm for

the p-median problem, which is called the Nested Dual Approach. This is a

Lagrangean Dual based solution technique which utilizes Erlenkotter’s

dual ascent procedure and dual simplex algorithm as subroutines. They

have reported that problems up to 200 vertices have been solved using this

technique. The paper also extends the problem into a multidimensional
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one, in which travel times may be stochastic, multiple services and

multiple commodities are allowed and multiple minisum objectives are

considered. In fact these multidimensional models may be expressed as p-

median models with a larger set of nodes. The transformation is insightful

and easy to grasp.

The exact algorithms provided above depend on the assumption

that the cost function is a linear or concave function of distance. When the

cost function is a convex function of distance, then the nodal optimality

results fail to hold and the algorithms above are invalid for minisum

facility location problems. For this type of cost functions, Hooker (1986)

proposed a general-purpose algorithm for single facility problems

including p-median with convex nonlinear cost functions. Hooker divides

each edge into treelike segments on which distance functions to each node

are linear. The minisum problem is solved on each treelike segment and

methods to eliminate some of the segments are also presented. The

algorithm is extended to multiple facilities case in subsequent work by

Hooker (1989), which again makes use of treelike segments and solves the

problem on each set of p treelike segments.

3.2.2 Heuristics for p-Median on General Networks:

Maranzana (1964) provided a very fast heuristic. The heuristic

selects p nodes to be facility nodes, assigns the remaining nodes to the

nearest facilities, finds the 1-median of the subnetwork composed of nodes

assigned to the same facility, and finally finds a new set of facility

locations. The procedure iterates until no improvement is possible.

Although the heuristic is dependent on the initial solution and optimality is
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not guaranteed, this heuristic is the fastest heuristic devised for the p-

median problem. While it does not provide very good solutions, it can be

used with many initial solutions to have a reasonable upper bound.

Teitz and Bart (1968) provided a 1-opt heuristic. This heuristic

starts with an initial set of p facilities and then relocates one of the facilities

to another vertex not in the facility set, which provides the best

improvement in the objective function. This heuristic is very fast and has

been often used in order to obtain initial feasible solutions in exact

techniques. Goodchild and Noronha (1983) provided another 1-opt

heuristic whose search strategy is different than Teitz and Bart (1968). This

heuristic is likely to find different local solutions than the previous

heuristic. Whitaker (1983) also provided a greedy exchange heuristic but

his method does not allow multiple starts so is not very useful for finding

good solutions.

Captivo (1991) provided three different heuristics. The first

heuristic is a greedy heuristic based on a very simple idea. It places the first

facility on the 1-median of the network and second facility to the node,

which decreases the total travel cost at most. This process is repeated until

all medians are located. The heuristic is improved using ideas of

Maranzana (1964) that every local solution found is improved by finding

the 1-median of the nodes assigned to a facility and replacing this facility

with the new median. The heuristic iterates until no further improvement is

possible. This heuristic has a time complexity of O(n2p). The second

heuristic is a dual based heuristic that provides solutions to the dual of the

LP-relaxation for which the obtained objective function values are lower

bounds for the problem. The heuristic is a dual ascent procedure similar to
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Erlenkotter’s (1978) procedure. This procedure provides better bounds than

Galvão (1980). The third heuristic constructs a primal solution based on

the best dual solution using Complementary Slackness conditions. The

primal heuristic is very fast and provides good bounds, whereas the primal-

dual heuristic provides very good solutions but is very time consuming.

Later on, a series of heuristics are proposed and implemented (Rushton and

Kohler, 1973; Densham and Rushton, 1992a, 1992b), which makes use of

efficient data structures and clever search strategies. These heuristics are

very fast but Teitz and Bart (1968) still provide better bounds. These

heuristics do not provide 1-opt solutions so an additional pass is required to

guarantee optimality as stated by Horn (1996). Horn provided comparisons

and comments on the p-median heuristics that may be useful for the

interested reader.

Metaheuristics have been successfully applied to p-median

problems in recent years and promise even better results in the coming

years with new technologies and computational improvements. An

efficient implementation of tabu search for the p-median problem is

provided by Rolland, Schilling, and Current (1997). Tabu search is very

successful in terms of good solutions and computation time compared to

many previous heuristics such as Goodchild and Noronha (1983) and

Densham and Rushton (1992a, 1992b). Two genetic algorithms are

provided by Bozkaya, Zhang, and Erkut (2002) and Alp, Erkut, and

Drezner (2003). First paper provides experimental results that suggest that

convergence is slow whereas the second one presents results within 0.1%

of the optimum in 85% of the test instances in short time. The p-median

problem has also been solved using Heuristic Concentration (HC) methods.

HC is a two stage heuristic. In the first stage, an initial set of solutions is
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constructed using a heuristic method (usually an exchange heuristic) by

starting the heuristic at systematic or random initial points. The best

solutions of this set form the Concentration Set for the problem. Stage two

restricts the potential facility sites to the sites observed in the solutions in

the Concentration Set and solves the model. Usually exact techniques are

used in stage two. For example Rosing and Revelle (1997), Rosing (1998),

and Rosing, Revelle, Rolland, Schilling, and Current (1998) use ILP

formulations and exact solution techniques for the second stage of HC

heuristic. In contrast to these papers, Rosing, Revelle, and Schilling (1999)

use another heuristic, which is in fact a two stage heuristic, to generate

solutions from the Concentration Set in the second stage of an HC for the

p-median problem. This heuristic is referred to as a gamma heuristic

because it involves three heuristic stages. In fact this metaheuristic can be

very useful to provide good solutions for some large p-median problems

because it reduces the search space dramatically at the second stage in

addition to the fact that it is very simple and fast.

3.2.3 Conditional p-medians of a General Network:

Consider the problem of locating p facilities with minisum

objective on a network on which there already exist q facilities. This

problem is the conditional p-median problem defined as: Given a set Y ⊆

N, |Y| = q, find a set Z* ⊆ N, |Z*| = p, and

.),(minarg
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ZYvDwZ  Minieka (1980) solved the problem

when a single facility is to be located on a network with a number of

existing facilities. The author redefined the entries of the distance matrix

and solved the problem with known techniques for the unconditional
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problems. For the case when multiple conditional facilities are to be

located, Drezner (1995) proposed a heuristic, which requires the solution

of multiple unconditional problems. Berman and Simchi-Levi (1990)

solved the problem on general networks by solving a (p+1)-median

problem with one more auxiliary new facility representing the total effect

of all old facilities.

3.3  Absolute p-Median Problem on Tree Networks:

Although the absolute p-median problem is NP-hard on general

networks, it is polynomialy solvable on tree networks. Studying the

problem on tree networks is useful for a number of reasons. First of all

studying the problem on a simpler structure provides insight on the general

structure. Secondly, solving the problem on simple components of the

general network, for example the spanning trees of the network, provides

upper bounds on the objective function value of the general problem. Last

but not the least important, most of the widely studied real-world systems

like transportation networks across countries or telecommunication

networks have just a few cycles and can be well approximated by tree

networks.

The work on simple networks, which in turn gave rise to very

simple and elegant algorithms for such networks was probably initiated by

the work of Goldman and Witzgall (1970). It is proved in this paper that a

“gated” subnetwork of a network containing half or more than half of the

total demand must include at least one optimal 1-median location. The

subnetwork S is gated if there exists a function g: N-S → S such that for

each x∈N-S and s∈S, there exists a point g(x) in S, satisfying d(x, s) = d[x,
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g(x)] + d[g(x), s]. This observation reduces the search for the optimal 1-

median of a network to a subnetwork satisfying the conditions above. The

result is valuable in tree networks, cacti, and networks with many blocks

because these networks involve gated subnetworks. Goldman (1972b)

presented a less restrictive version of the observation in Goldman and

Witzgall (1970) in that a near optimal solution is localized into a subregion

of the network, which includes nearly half of the demand. Goldman (1971)

devised a very simple O(n) algorithm for tree networks based on the

observations above. His algorithm starts with a tip node of a tree network.

If the weight of this node is smaller than half of the total weight, it is

deleted from the tree with its associated link and its weight is added to the

weight of the node adjacent to it. The process is repeated at most n times

until a node with demand weight more than or equal to the half of the total

demand is found. This node is a 1-median of the tree network. The

algorithm is very simple because it does not require the calculation of the

shortest path distances of the network, which itself takes O(n2) time.

Goldman (1971) also proposed an algorithm to locate the 1-median of a

network with only one cycle and introduced a decomposition procedure for

more general networks, which either locates the 1-median of the network

or reduces the search to a cyclic component of the network. Chen, Francis,

Lawrence, Lowe, and Tufekci (1985) developed an algorithm based on that

of Goldman (1971) that either finds the 1-median of the network or finds a

block that contains all the 1-medians of the network. The block graph of

the network is obtained and the 1-median problem is solved on this block

graph using Goldman’s algorithm. Although the complexity of the

algorithm is O(n), the construction of the block graph, which is O(m) (as

stated by Aho, Hopcroft, and Ullman, 1976), dominates the complexity.
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Another important observation about median location on tree

networks is stated by Kariv and Hakimi (1979): finding a 1-median of a

tree is equivalent to finding a w-centroid of the tree. The w-centroid of a

tree is a vertex v0 whose removal from the tree, divides the tree into deg(v0)

components such that maximum total weight on its components is

minimum among all vertices of the tree.

The 2-median problem on tree networks has been investigated by

Mirchandani and Oudjit (1980). The main contribution of the paper is the

observation that for deterministic tree networks the path connecting the 2-

medians of a network passes through the 1-median of the network. An

efficient algorithm which has computational complexity of O(n2) is

presented based on this information. The algorithm is a link-deletion

method, which deletes one link of the tree at each iteration and finds 1-

medians of the resulting two components. This link- deletion method has

the same time complexity with the general p-median algorithms that will

be discussed in the following paragraph for p=2 but it is computationally

more efficient. The problem is also solved on probabilistic tree networks in

which the link lengths change in discrete time intervals. The tree has a

finite number of states with associated probabilities of occurrence. It is

observed that for the probabilistic single facility case Goldman’s algorithm

solve the problem because the link lengths do not enter the algorithm.

Nevertheless, for the 2-median problem the facility that serves a demand

point changes with the state of the network and the algorithms devised for

deterministic cases do not work. An algorithm is presented by Mirchandani

and Oudjit (1980) for the probabilistic trees. Although the computational

complexity of the algorithm is equal to that of complete enumeration, the
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computation time is reported to be less in practice than that of complete

enumeration.

An O(n3p2) algorithm for finding the p-median of a tree is proposed

by Matula and Kolde (1976). Kariv and Hakimi (1979) presented a

dynamic programming based algorithm for this problem. The algorithm

calculates distance sums over different subtrees of the tree network with k

medians (1 ≤ k ≤ p) at the first stage and calculates the p-median value by

backtracking in the second stage. The algorithm has a time complexity of

O(n2p2) which had been the best complexity bound for years until Tamir

(1996) improved the bound to O(n2p). Tamir’s algorithm is again a

dynamic programming algorithm and it solves more general problems in

which each facility may be assigned a fixed establishment cost. So Tamir’s

algorithm also solves UFLP on tree networks in the same time bound. We

note that both dynamic programming algorithms by Tamir (1996) and

Kariv and Hakimi(1979) can be used to solve for the conditional p-

medians of a tree network Another algorithm which has a complexity

bound of O(n3p) is also provided by Hsu (1982), but this algorithm is

dominated by both Kariv   and Hakimi(1979) and Tamir (1996). We also

note that the p-median problem on a path network is solved by Hassin and

Tamir (1991) in O(np).

3.4  The p-Median Problem with Mutual Communication:

The facility location problems that involve interactions between

pairs of new facilities and between new facilities and existing one are

referred to as problems with mutual communication. The problem can be

formally stated as follows: Given nonnegative and nondecreasing functions
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fij(.) and gjk(.), find X* = (x1*, x2*,…,xp*) ∈ Np such that H(X*) ≤ H(X) ∀X

∈ Np where ∑∑ +=
kjkj

kjjk
ji

jiij xxdgxvdfXH
π:,,

)),(()),(()( . When the

functions fij(.) and gjk(.)  are linear with nonnegative slopes wij and vjk, then

the cost function can be expressed as
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and the problem is referred to as the p-median problem with mutual

communication. The p-median problem with mutual communication is NP-

hard on general networks (Kolen, 1982), the result being valid even if the

network is a simple triangle (Tamir, 1993).  It is already known that there

exists an optimal solution to this problem on the vertices of the network.

The problem is first defined by Dearing, Francis, and Lowe (1976) with

distance constraints. It is shown in the same paper that the objective

function is convex for all data choices if and only if the underlying network

structure is a tree.

The p-median problem on tree networks with mutual

communication is studied by Dearing and Langford (1975) by embedding

the tree network into a Euclidean space and solving the problem with

techniques developed for rectilinear problems in the Euclidean space.

Picard and Ratliff (1978) solved the problem by solving a sequence of

minimum cut problems. Each cut problem corresponds to an edge of the

tree so n-1 problems are solved. Removal of each edge e identifies two

subtrees T1(e) and T2(e). For each edge of the tree an auxiliary network is

constructed which has p nodes corresponding to the new facilities, a source

node representing the total demand of subtree T2(e), and a sink node for

total demand in T1(e). The capacity of the arc between new facility nodes i

and j is vij and the capacity of the arc between source s (sink t) and new
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facility node j is ∑
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w ). Kolen (1982) solved the problem

using an algorithm based on the fact that in an optimal p-median solution

no subset of facility locations can be moved to adjacent vertices such that

the objective function value improves.

It is shown that the p-median problem on tree networks with mutual

communication and distance constraints can be expressed as a

mathematical program (Erkut, Francis, Lowe, and Tamir, 1989). Based on

this result, the problem is solved using duality theory and column

generation algorithms. These solution techniques on tree networks provide

insight into devising solution algorithms for general networks as well.

Erkut, Francis, and Lowe (1988) studied the problem on general networks

and computed strong lower and upper bounds on the objective function

value. The problem is transformed into a linear program based on

separation conditions by Francis, Lowe, and Ratliff (1978). Because the

separation conditions are only necessary but not sufficient conditions for

general networks, the resulting LP is only a relaxation of the original

problem. The solution of the LP provides a lower bound on the objective

value. The problem is exactly solved for an arbitrary set of spanning trees

of the network to yield upper bounds. These bounds may be useful in

branch-and-bound algorithms in order to solve the problem to optimality.

Tamir (1993) provided an O((p3+n)logn+np) algorithm for the problem on

tree networks that is based on solving local problems. Each local problem

is a classical minimum cut problem and is related to an edge of the tree. A

restricted version of the problem in which facility sites are restricted to

proper subsets of the node set is also introduced. It is shown that this

restricted problem is NP-hard even on tree networks and it is only

polynomial for path networks.
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Xu, Francis, and Lowe (1994) provided an O(p3(n+b)) algorithm

for the p-median problem with mutual communication on general networks

which either locates each facility to a vertex or restricts it to be in a

particular block of the network, where b is the number of blocks of the

network. The algorithm transforms the original problem data into the block

graph of the network.

The p-median facility location problems with mutual

communication are hard problems on general networks, so researchers

exploit special structures of the problem. The algorithms discussed above

exploit the special structure of the network and make use of convexity

results on the trees. There are also algorithms which solve the problem on

general networks in reasonable time. These second type of algorithms

exploit the special structure of the interaction graph instead of the network

itself. The interaction graph is an auxiliary graph composed of p nodes

representing the new facilities to be located. There exists an arc between

new facility nodes NFi and NFj if the interaction cost vij is positive.

Chhajed and Lowe (1992a) solved the p-median problem with mutual

communication on general graphs when the interaction graph is a series-

parallel graph. Following the definition by Richey (1989), a graph is

series-parallel if it can be reduced to an arc by repeated application of the

following operations: series reduction (any node u such that deg(u) = 2 is

deleted with its adjacent arcs and a new arc is placed between its adjacent

vertices), cut reduction (if q is a pendant node adjacent to node u and there

exists another node v which is also adjacent to u, q is deleted and a new arc

is placed between u and v), and parallel reduction (any two arcs adjacent to

the same two nodes are replaced by a new arc). Reformulating it as a graph
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theoretic node selection problem solves the problem. Chhajed and Lowe

(1992b) solved the p-median problem with mutual communication on

general graphs when the interaction graph is a Halin graph. A graph is

called a Halin graph if there exists a tree with vertex degrees other than

two and a cycle which connects the pendant vertices of this tree embedded

into the network. The problem is solved using a graph reduction technique,

which reduces the Halin graph to a series-parallel graph and solves the

problem on the corresponding graph using the techniques in Chhajed and

Lowe (1992a). When number of candidate locations for each new facility

is at most λ, the algorithm has a time complexity of O(pλ6). This bound is

equal to O(pn6) for the regular p-median problem with mutual

communication. The results can be extended to networks with interaction

graphs, which are more general than Halin graphs. A generic algorithm,

which solves many multifacility problems including p-median problem

with mutual communication is also provided by Chhajed and Lowe (1994).

This study is mainly an extension of the results in the aforementioned

papers by the two authors. An O(np) algorithm is presented for the same

problem on tree networks when the interaction graph is series-parallel by

Chhajed and Lowe (1992c) which is based on the O(np3) algorithm for tree

graphs by Kolen (1986). This algorithm exploits both the special structure

of the network and the interaction graph.

3.5  The p-Median Problem with Continuous Link Demands:

 In the classical median location problems we have considered

above, the nodes of the network generate demands. Nevertheless, in many

real world problems the demand is generated by the customers who are
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continuously distributed on the links of the network. The aggregation of

the link demands to nodes results in unsatisfactory models.

Minieka (1977) introduced the first general median problem in

which links of the network generate demands and each link is served by a

facility by serving the most distant point on the link from the facility. The

regular point-to-point distances are replaced by the point-to-edge distances,

which is equal to the distance between the point and the most distant point

on the edge. The nodal optimality results fail for this type of problems. An

algorithm is devised for the single facility case by Minieka (1977) but the

extension to the p-facility case remained unsolved until Hansen and Labbé

(1989) provided an O(m2) algorithm for the problem where m is the

number of edges. In this paper, it is shown that the possible facility

locations on a network can be restricted to the union of the vertex set and

the set of middle points of edges. A linear algorithm for finding the set of

all general continuous medians of a tree network is also provided. The

conditional general p-median problem can also be solved using these

algorithms.

Chiu (1987) generalized the 1-median problem to a continuous 1-

median problem on a network with discrete demands at the nodes of the

network and continuous demands on the links. The formal definition of the

1-median problem with continuous link demands is as follows: Given a

network N=(V, L) with node set V and link set L, let l’ denote the length of

link l, hi denote the fraction of demands originating from node i, and fl’

denote the fraction of demands originating from link l. Obviously,

∑ ∑
∈ ∈

=+
Vi Ll

li fh 1' . The demand that arises on link l is assumed to have a

general distribution function fl(y) for demand y∈(0, l’). The demands
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generated by links are weighted by probability in this formulation. The

objective is to find a point x* ∈ N such that D(x*) ≤ D(x) for all x ∈ N,

where ∑ ∑ ∫
∈ ∈ ∈

+=
Vi Ll ly

llii dyyfyxdfxvdhxD )(),('),()(   . The nodal optimality

results fail for the continuous problems. The function D(x) is analytically

investigated in Chiu(1987). It is unfortunately neither convex nor concave

even if it is restricted to the points between two breakpoints of an edge

(Note that a breakpoint of an edge is a point y for which d(vi, y) = d(vj, y)

for two nodes vi and vj and both of the distance functions are not

decreasing in the same direction). Nevertheless, one can find the local

optima in every region between two breakpoints using nonlinear

programming techniques and find the global solution by investigating all

the local optima. Unfortunately there are O(n3) breakpoints and if the

density function is not very simple, such as a uniform distribution, the

analysis becomes intractable even for small values of n. A heuristic that

locates the facility on one of the breakpoints is suggested by Chiu (1987)

which may be useful if the function D(x) can easily be evaluated. The

objective function D(x) is convex on any path of a tree network. This

convexity property has led to an algorithm for the 1-median problem with

continuous link demands on tree networks (Chiu, 1987). The algorithm is

very similar to Goldman’s 1-median algorithm on tree networks.

Brandeau, Chiu, and Batta (1986) considered the 2-median problem

on tree networks with continuous link demands. They have presented an

algorithm for general demand distributions which converges to a local

minima based on a sequential location and allocation procedure and the

fact that the continuous 1-median of the network lies on the path

connecting any pair of optimal 2-medians of the network. Mirchandani and
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Oudjit (1980) provided this result for discrete problems. Their proof is also

valid for continuous 2-medians. The algorithm finds all local minima and

chooses the global minimum among them.

Cavalier and Sherali (1986) solved the continuous p-median

problem on path networks when the demand is distributed by a uniform

probability distribution function on the links of the network. The algorithm

relies on solving very easy linear programs to find all local optima and

selects the global solution. The problem is also solved for p=2 on tree

networks by solving 2-median problems on several paths of the tree

network. A reduction on the number of paths to be considered is also

presented. The problem with uniform distribution of demand is also

considered by Nkansah and David (1986) on general networks. It is shown

that the interior points of an edge may be omitted from the search space if

the edge belongs to a circuit. Analogous conditions are presented when the

distribution is more general than the uniform distribution but additional

assumptions are imposed on the model. This result is further clarified by

Batta and Palekar (1987) who showed that for general networks whose

edges belong to at least one circuit, the search may be restricted to the

nodes of the network. We believe that these results may further be

extended to graphs with many blocks using block diagrams.

3.6 Capacitated p-Median Problem on a Network:

The capacitated p-median problem arises when there exists capacity

restrictions on the total demand assigned to each facility. This problem is a

restriction of the Capacitated Facility Location Problem in which the

number of facilities is a priori set to a fixed number p. The problem is
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known to be NP-hard (Garey and Johnson, 1979). The problem is studied

under different names such as Capacitated Warehouse Problem and Sum-

of-Stars Clustering Problem as stated by Maniezzo, Mingozzi, and

Baldacci (1998). The problem is also being studied as a set-partitioning

problem with side constraints. Pirkul (1987) proposed a branch-and-bound

algorithm based on Lagrangean relaxation for the problem. Neebe and Rao

(1983) proposed another exact algorithm for the problem based on set

partitioning with side constraints formulation. Hansen, Jaumard, and

Sanlaville (1994) and Baldacci, Maniezzo, Mingozzi, and Ricciardelli

(1995) also provided exact algorithms for the problem.

Mulvey and Beck (1984) provided two heuristic algorithms for the

problem. The heuristics are location-allocation procedures similar to

Maranzana (1964) but the local search criterion is different. Osman and

Christofides (1994) presented another heuristic for the problem, which is a

hybid of the two metaheuristics Simulated Annealing and Tabu Search. An

additional heuristic that is a multistart procedure, based on the solutions of

a series of generalized assignment problems and local search, is devised by

Maniezzo, Mingozzi, and Baldacci (1998). They also provided a bionomic

algorithm which is a metaheuristic similar to Genetic Algorithms but

allows diversification of children. The bionomic algorithm outperforms

many previous metaheuristics.

The problem is also studied for continuous link demands. A

capacitated 2-median problem with continuous link demands is formulated

by Sherali and Nordai (1988) on tree networks. Certain optimality

conditions are provided for the problem. The search space is reduced to a
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limited subset of the tree network based on presented optimality conditions

and localization results.

3.7 Further Remarks and Conclusions:

The median problem and related minisum facility location

problems have attracted the interest of researchers for the last 40 years.

Several problems are defined as extensions of these problems. Slater

(1981) defined the S-median of a network as the set of points providing

service to demands generated by subnetworks of the network. A

subnetwork is served when the point that is nearest to the facility is served.

The S-median of a tree network is found in O(n) time by Slater (1981).

Minieka (1983b) defined the pendant medians of a network to be a set of p

points on the network that minimizes the total distance to the vertices that

are actually pendant vertices of the minimum spanning tree of the network.

For tree networks, this problem is easy to solve with Goldman’s algorithm

by assigning zero weight to vertices that are not pendant. Nevertheless, the

problem is not very easy on general networks. Nodal optimality results do

not hold for the problem and although no NP-completeness result is

provided, devising polynomial time algorithms for the problem is

conjectured to be impossible.

In classical p-median problems, one level of facilities is considered.

Nevertheless, many real world distribution systems consist of many facility

layers such as factories, warehouses, customers, and suppliers. Facility

location problems with many layers of facilities are usually referred to as

hierarchical facility location problems. Narula (1986) presents an inclusive

survey of hierarchical location problems that deals with different types of
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hierarchy. Application areas are also discussed to be varying from location

of emergency services to waste disposal centers. Serra and ReVelle (1993,

1994) deal with pq-median problems in which two levels of facilities each

with median objective are being located. The problem is modeled as a

mixed integer program by Serra and ReVelle (1993).  Heuristics are

proposed for the two-level biobjective model by Serra and ReVelle (1994)

and Alminyana, Borras, and Pastor (1998).

The fuzzy models have been widely studied in recent years. A

fuzzy formulation of the p-median problem is proposed by Canos, Ivorra,

and Liern (1999) and Canos, Ivorra, and Liern (2001). An algorithm based

on Hakimi (1965) is proposed for the fuzzy problem by Canos, Ivorra, and

Liern (1999).

Models that deal with improving the network structure are also

being developed recently. In these models, facilities have already been

located and adding new arcs or decreasing transportation costs improves

the total cost of serving customers. These problems are called inverse

location problems and promise large application areas because location

problems are long run problems and even if they are solved to optimality

under certain conditions at a point in time, they become suboptimal over

time if the network structure changes. Interested readers are referred to

Berman, Ingco, and Odoni (1992) and Zhang, Liu, and Ma (2000) for

reverse problems. Wang, Batta, Bhadury, and Rump (in press) also deal

with facility location problems which improve the network by

simultaneous opening of new facilities and closing of old ones. These

problems arise in reformation procedures of global companies.
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The literature on minisum facility locaion problems is summarized

below:

 Table 6: Nodal Optimality Results For Absolute Multifacility Minisum

Location Problems

Author Year Problem Nodal optimality
Hakimi 1964 1-median Yes
Hakimi 1965 p-median Yes
Goldman and
Meyers

1965 p-facility minisum problems
with concave cost functions

Yes

Levy 1967 p-facility minisum problems
with concave cost functions
and capacity restrictions

Yes

Goldman 1969 General model in which cost
function is concave and
depends on the source and
destination pairs

Yes

Hakimi and
Maheshwari

1971 General model in which cost
function is concave, facilities
are capacitated and there exist
multiple commodities and
multiple processing stages

Yes

Wendell and
Hurter

1973 General model in which cost
function is concave, facilities
are capacitated and there exist
multiple commodities, multiple
processing stages and directed
arcs

Yes

Frank 1966 maximum probability absolute
R-median

No

Frank 1967 maximum probability absolute
R-median (demands follow
joint normal distribution)

No

Mirchandani
and Odoni

1979 1-median with random discrete
demands (directed/undirected)

Yes

Mirchandani 1979 Supporting p-median and Yes
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and Odoni Conditional p-median
Berman,
Larson, Chiu

1985 1-median which is a M/G/1
queue

No

Table 7: Literature on Exact Solution Techniques for p-Facility Minisum

Location Problems on General Networks

Author Year Problem Summary
ReVelle and Swain 1970 p-median Branch-and-Bound
Järvinen, Rajala,
and Sinervo

1972 p-median Branch-and-Bound and
upper bounds

Garfinkel, Neebe,
and Rao

1974 p-median LP-relaxation,
decomosition, group
theoretics, and dynamic
recursion

Narula, Ogbu,
Samuelsson

1977 p-median Lagrangean relaxation and
subgradient optimization

Cornuejols, Fisher,
Nemhauser

1977 p-median Greedy heuristic,
Lagrangean relaxation and
B&B

Mavrides 1979 p-median with
different fixed
costs

UFLP techniques and
Lagrangean relaxation

Galvão 1980 p-median B&B and a heuristic for
Lagrangean relaxation

Boffey and
Karkazis

1984 p-median
(n=206, p=45)

A series of UFLPs with
varying fixed facility costs

Christofides and
Beasley

1982 p-median
(n≤200)

Lagrangean relaxation and
subgradient optimization

Beasley 1985 p-median
(n≤900, p≤90)

Supercomputer

Mirchandani,
Oudjit, and Wong

1985 p-median
(n≤200)

Nested Dual Approach

Hooker 1986 1-median with
convex cost
functions

Treelike segments and
convex programming

Hooker 1989 p-median with
convex cost
functions

Treelike segments, convex
programming and segment
elimination techniques



MINISUM FACILITY LOCATION ON NETWORKS

70

Table 8: Literature on Approximate Solution Techniques for p-Facility

Minisum Location Problems on General Networks

Author Year Problem Summary
Maranzana 1964 p-median Fast heuristic
Teitz and Bart 1968 p-median 1-opt heuristic

Fast and widely used
Goodchild and
Noronha

1983 p-median 1-opt heuristic

Whitaker 1983 p-median Greedy exchange heuristic
Captivo 1991 p-median Three heuristics:

Primal (O(n2p)) dual, and
primal-dual

Rushton and Kohler
Densham,  Rushton

1973
1992

p-median Efficient heuristics and
data structures

Rolland, Schilling,
and Current

1997 p-median Tabu search

Rosing and Revelle
Rosing
Rosing, Revelle,
Rolland, Schilling,
and Current
Rosing, Revelle, and
Schilling

1997
1998
1998

1999

p-median Heuristic concentration

Table 9: Literature on p-Facility Minisum Location Problems on Tree

Networks

Author Year Problem Summary
Goldman and
Witzgall

1970
1972

1-median Localization theorems

Goldman 1971 1-median O(n) algorithm
Kariv and Hakimi 1979 1-median Equal to w-centroid
Mirchandani and
Oudjit

1980 2-median O(n2) algorithm
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Matula and Kolde 1976 p-median O(n3p2)  algorithm
Hsu 1982 p-median O(n3p)  algorithm
Kariv and Hakimi 1979 p-median O(n2p2)  algorithm
Tamir 1996 p-median O(n2p)  algorithm

Table 10: Literature on p-Facility Minisum Location Problems with Mutual

Communication

Author Year Problem Summary

Kolen 1982 p-median with
mutual comm.

NP-hard on general
networks

Dearing, Francis,
and Lowe

1976 p-median with
mutual comm. and
distance constraints
on trees

The objective function
is convex if and only if
the underlying network
structure is a tree

Dearing and
Langford

1975 p-median with
mutual comm. on
trees

Embedding into
Euclidean space

Picard and Ratliff 1978 p-median with
mutual comm. on
trees

Solving a sequence of
minimum cut problems

Erkut, Francis,
Lowe, and Tamir

1989 p-median with
mutual comm. and
distance constraints
on trees

Expressed as an MP,
solved using duality
and column generation

Erkut, Francis, and
Lowe

1988 p-median with
mutual comm. and
distance constraints
on general
networks

Computed strong lower
and upper bounds on
the objective function
value

Tamir 1993 p-median with
mutual comm. and
distance constraints
on trees

O((p3+n)logn+np)
algorithm

Xu, Francis, and
Lowe

1994 p-median problem
with mutual comm.
on general network

O(p3(n+b)) algorithm
which localizes the
solution

Chhajed and Lowe 1992 p-median problem
with mutual comm.

Reformulating as a
graph theoretic node
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on N when the
interaction graph is
series-paralel and
Halin

selection problem

Chhajed and Lowe 1992 p-median problem
with mutual comm.
on T when the
interaction graph is
series-paralel

O(np) algorithm
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C h a p t e r  4

DISTANCE CONSTRAINED
FACILITY LOCATION
PROBLEM ON NETWORKS:

The distance constraints arise when there exist upper and / or lower

bounds on the distances between facilities and customers and pairs of

facilities. When facilities are identical, the following distance constraints

are used:

uDCuXD .1,),( ∆∈∀≤ δδ δ

lDClXD .1,),( ∆∈∀≥ δδ δ

uDCXxuxxd
xxXx

.2,)',(min
','

∈∀≤
≠∈

lDCXxlxxd
xxXx

.2,)',(min
','

∈∀≥
≠∈

If facilities are nonhomogeneous:

unDCpiuxd ii .1},..,1{,,),( ∈∆∈∀≤ δδ δ

lnDCpilxd ii .1},..,1{,,),( ∈∆∈∀≥ δδ δ

unDCpjiuxxd ijji .21,),( ≤<≤≤

lnDCpjilxxd ijji .21,),( ≤<≤≥
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The distance constraints may arise in many real world applications.

For example, if the facilities are identical and there exists a customer δ that

must be served by a facility no more (less) than a distance uδ (lδ) away,

then constraint DC1.u (DC1.l) is included to the model. If facilities are not

identical then upper and lower bounds are specified for each customer-

facility pair and constraints nDC1.u and nDC1.l are in effect. Similarly, it

may be preferable to have at least one more facility within a distance u

from any facility (when facilities are subject to breakdowns) or it may be

undesirable to have facilities close to each other within a distance l (when

there is high competition between facilities or facilities are mutually

obnoxious), then constraints DC2.u and DC2.l are used for homogeneous

facilities. In the nonhomogeneous case, distances between pairs of facilities

may be bounded and constraints nDC2.u and nDC2.l are used. Motivating

examples from the real world can be found in Francis, Lowe, and Ratliff

(1978), Tansel, Francis, and Lowe (1980), Tansel, Francis, Lowe, and

Chen (1982), Erkut, Francis, and Tamir (1992) and Tansel and

Yesilkokcen (1993, 1996).

4.1  The Literature:

Although distance constrained network location problems may

have lower and upper bounds as we have mentioned before, the related

literature focuses on the problem with nonhomogeneous facilities and

upper bounds on distance functions. This is the problem that involves

locating p facilities on N so as to satisfy upper bounds on distances

between pairs of new facilities and pairs of new and existing facilities.

Formally, the problem is defined as follows: Given the nonempty sets IC

and IB and the positive upper bounds cij and bjk, find a location vector X in
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Nm, if it exists, such that d(xi, vj)≤cij, (i, j)∈IC, and d(xj, xk)≤bij, (j, k)∈IB.

The distance constrained facility location problem is closely related to the

multifacility minimax facility location problem with mutual

communication between facilities. In fact the distance-constrained problem

is the recognition form of the later problem. If there exists a polynomial

algorithm for the distance constrained problem, there also exists a

polynomial algorithm for the minimax problem with mutual

communication between facilities. Solving a series of the distance-

constrained problems usually solves the later problem.

The problems are NP-hard on general networks (Kolen, 1986), but

there exist polynomial algorithms for tree networks. It is shown that the

distance constraints define convex sets for all data choices if and only if the

underlying network is a tree (Dearing, Francis, and Lowe, 1976). Based on

this result, Francis, Lowe, and Ratliff (1978) provided the necessary and

sufficient conditions, called the separation conditions, for the distance

constraints to be consistent for tree networks. In order to obtain the

separation conditions, an auxiliary network NBC is constructed. NBC

consists of n vertices E1,..,En denoting the existing facilities and p vertices

N1,…,Np denoting p new facilities. There exists an arc (Ni, Ej) of length cij

for every (i, j)∈IC and an arc (Ej, Ek) of length bjk for every (j, k)∈IB. If

network NBC is not connected the problem can be decomposed into a

number of independent problems with a smaller number of constraints, so

we assume that NBC is connected. The separation conditions state that the

problem is consistent if and only if d(vj, vk)≤L(Ej, Ek) where L(Ej, Ek)

denote the length of a shortest path between existing facilities Ej and Ek in

network NBC. The separation conditions are necessary for general networks

for consistency but they are not sufficient while sufficiency also holds for
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tree networks. Francis, Lowe, and Ratliff (1978) provided an algorithm

called the Sequential Location Procedure (SLP) which has a computational

complexity of O(p(p+n)). This algorithm is extended by Tansel, Francis,

and Lowe (1980). The relations between tight separation conditions

(Separation conditions that hold as an equality, i.e. d(vj, vk)=L(Ej, Ek)) and

the solution of multifacility minimax problems are highlighted. It is also

shown that SLP is a best order algorithm that solves the distance

constrained problem. That is, any other algorithm must have a worse case

time complexity of O(p(p+n). Averbakh and Berman (1996) solved a more

generalized version of this problem on tree networks. The model locates p

distinguishable facilities on a tree network subject to upper bounds on

interfacility distances. There exist no customers in the model. A feasible

region that is not necessarily connected is given for each facility. The

feasible regions are assumed to be chosen according to customer locations.

A Sequential Location Scheme similar to SLP is presented together with

conditions for feasibility. It is shown that when the set of feasible regions

for each faciliy is finite the feasible facility locations can be found in

O(np2) time if a feasible solution exists. Erkut, Francis, and, Lowe (1989)

showed how to develop a mathematical model of the problem using

separation conditions. This program solves the problem optimally when the

network is a tree; it provides a lower bound otherwise. When the facilities

are to be located at the vertices of the graph and the facility interactions

induce a series-parallel graph, polynomial algorithms are devised by

Chhajed and Lowe (1992a, 1992b). A generic polynomial algorithm which

solves several location problems including multifacility minimax problem

with mutual communication between facilities is also developed later by

Chhajed and Lowe (1994) when the facility interactions again induce a

series-parallel graph.
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When the facility interactions induce a tree network Tansel and

Yesilkokcen (1993, 1996) provide a polynomial algorithm to find the

feasible regions of a distance-constrained facility location problem with

upper bounds. The concept of feasible regions may be very useful in taking

managerial decisions. The distance-constrained problem in which facility

interactions induce a tree network further extended by Tansel (1994) to

cases which include both upper and lower bounds on the interfacility

distances. A Sequential Capture/Intersection Procedure similar to SLP is

provided for the problem that finds the feasible regions for each facility in

the first phase and locates facilities in these regions in the second phase.

Erkut, Francis, and Tamir (1992) solved the multifacility minimax

problem with facility interactions and distance constraints in polynomial

time (O[mn(m+nlogm)+n3logn]) for tree networks. Observe that although

the distance-constrained facility location problem is equivalent to the

MMLP with facility interactions, the MMLP with facility interactions and

distance constraints is a different and harder problem.

Moon and Chaudhry (1984) provide a valuable survey on distance

constrained network location problems. They assume that facilities are

indistinguishable and provide a classification scheme and integer

programming formulations of many problems, which may be useful to

stimulate research in this area.

The results presented in this chapter are summarized below:
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Table 11: Literature on Distance Constrained Location Problems on

Networks

Author Year Problem Summary
Kolen 1986 Distance-constrained

facility location
NP-hard on general
networks

Dearing, Francis,
and Lowe

1976 Distance-constrained
facility location

Convexity on tree
networks

Francis, Lowe, and
Ratliff

1978 Distance-constrained
facility location

Separation conditions
Sequential Location
Procedure O(p(p+n))

Tansel, Francis, and
Lowe

1980 Distance-constrained
Facility Location

Extended Sequential
Location Procedure

Erkut, Fracis, and,
Lowe

1989 Distance-constrained
facility location

Mathematical
programming models

Chhajed and Lowe 1992
1994

MMLP with mutual
comm. when
interaction graph is
series-paralel

Polynomial
algorithms

Tansel and
Yesilkokcen

1993
1996

Distance-constrained
facility location when
interaction graph is
tree

Polynomial algorithm
to find the feasible
regions

Averbakh and
Berman

1996 Distance-constrained
facility location on
trees

Sequential Location
Scheme
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C h a p t e r  5

MULTIOBJECTIVE NETWORK

LOCATION PROBLEMS:

The minimax (center type) and minisum (median type) problems

are widely studied in network location theory. Minimax objective is used

in locating emergency services in order to minimize the worst case cost

whereas minisum objective is used in locating services that provide regular

service such as daily delivery services, in order to minimize the average

travel cost. We have outlined the numerous applications, models, exact and

approximate algorithms related to these problems in the previous chapters.

Although we are able to solve very large instances of these single objective

models, modeling real world problems using only one objective seems

unrealistic for many cases. For example, it might be useful to minimize the

average travel cost provided that the worse case cost is not too high.

Otherwise the facility may provide different types of services, which have

different demand weights and transportation costs, and multiple minisum

or minimax objectives may be used at the same time. Furthermore when

the network is dynamic in the sense that the parameters such as customer

demands and link lengths are subject to change at finite and discrete points

in time, multiple objectives each corresponding to a time interval may be

minimized simultaneously. Although multiobjective models have wide
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application areas, there are few studies on these models compared to single

objective models. This is mainly because it is hard to combine the

objectives in a reasonable way. Two common methods are used to handle

multiobjectivity: weighted objective function and constrained single

objective function. We will deal with problems with both center and

median objectives in the rest of the chapter.

5.1  Center - Median Biobjective Models:

The biobjective network location problems with minimax and

minisum objectives are referred to as the “cent-dian” or “medi-center”

problems. Halpern (1976), who used a convex combination of the two

objective functions, first introduced the cent-dian problem. The medi-

center problem was initially studied as a median problem in which

maximum travel cost to the customers is constrained. Both problems are

biobjective models in which two antagonistic objectives are optimized and

closely related to each other as Halpern (1980) states. We will refer to both

of the problems as the cent-dian problem. The single facility cent-dian

problem may be formally stated as follows: Given a network N=(V, E), let

∑
∈

=
Vv

iim
i

xvdwxz ),()( and ),(max)( xvduxz iiVvc
i∈

=  denote median and center
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Halpern (1980) showed that the problems P2 and P3 are dual to

each other in the sense that given an optimal solution x* with objective

function value zm(x) to P2 with parameter µ, this solution is also an optimal

solution to P3 with objective function value µ and parameter θ = zm(x) and

vice versa. Solving problem P2 for all values of µ ∈[zm
*, zc

*] yields all

nondominated solutions of the biobjective problem. It is also shown by

Halpern (1980) that P1 is a special case of the other two constrained

problems in the sense that the solutions generated for P1 for all values of

λ∈[0,1] are included in the solution set to the other two problems.

P1 is solved for tree networks by Halpern (1976) for all values of λ.

He showed that the 1-cent-dian of a tree network is on the path between the

1-center and a 1-median of the tree. Furthermore it is either a vertex on this

path or the absolute center itself. He explicitly characterized the location of

the 1-cent-dian for all values of λ using a simple algorithm. He also

showed that the 1-cent-dian problem might be transformed to a median

problem on a larger network. Handler (1985) solved P2 on tree networks

for all possible values of µ using a simple algorithm. He also showed that

the two objectives could be combined by a median model in which locating

a facility far away from individual customers is penalized by the cost

function itself. For example, using an exponential cost function, which

severely penalizes the placement of a facility far away from the customer,

may be useful. Handler solved this model with single median objective

with exponential cost functions on tree networks. Halpern (1978) solved

P1 on general networks for all values of λ. He characterized the cent-dian

function on general graphs and showed that it lies on a path between the

center and the median of the graph. He also showed that the function

attains its minimum on an edge on one of the finite number of points called
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breakpoints. He enumerated all possible breakpoints using an upper bound

for eliminating some entire edges. His work is very insightful for

understanding the problem on general graphs. He also showed how to

transform the problem to a median problem with increased number of

vertices and edges.

The cent-dian problems may also be extended to cases in which

multiple facilities are to be located. The multiple facility cent-dian problem

referred to as the p-cent-dian problem may be formally stated as follows:

Given a network N=(V, E) where V is the vertex set and E is the edge set,

let X be a set of p points, and ∑
∈

=
Vv

iim
i

XvDwXz ),()( and

),(max)( XvDuXz iiVvc
i∈

=  denote median and center functions respectively.

The cent-dian problem is the problem of finding a solution X* ⊆ N, X*=

p to one of the following three problems:
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Hooker, Garfinkel, and Chen  (1991) presented a theoretical result

that the finite dominating set for the 1-cent-dian problem which is the

union of vertex set and breakpoints is at the same time a dominating set for

the p-cent-dian problem. Nevertheless, Perez-Brito, Moreno-Perez, and

Rodriguez-Martin (1998) presented a counterexample for the 2-cent-dian

problem. They defined a new finite dominating set which consists of the

vertex set, the breakpoints and the extreme points whose range is equal to
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the range of a breakpoint or to the distance between two vertices (the range

of a breakpoint is the distance between two identifying vertices). This

finite dominating set consists of O(m2n3) points where m is the number of

edges and n is the number of vertices. They also developed algorithms for

the 2-cent-dian problem for general networks and tree networks which has

time complexities of O(m2n4)  and O(n2), respectively. The algorithm on

tree networks is a link deletion method whereas the one for general

networks is a clever implicit enumeration technique.

The finite dominating set for the p-cent-dian problem is shown to

be the same as the one for the 2-cent-dian problem defined above by Perez-

Brito, Moreno-Perez, Rodriguez-Martin (1997). Garfinkel and Hooker

(1998) also identified the finite dominating set for the p-cent-dian problem,

thereby correcting the misunderstanding in Hooker, Garfinkel, and Chen

(1991). All the work above considered the cent-dian problems when the

imbedded center problems are unweighted, i.e. ui = 1 for all i. Tamir,

Perez-Brito, and Moreno-Perez (1998) studied the weighted problem on

tree networks. They formulated the p-cent-dian problem as a restricted p-

median problem and identified the finite dominating set for the problem.

They solved the problem on tree networks in O(pn4) time and on path

networks in O(pn3) time using the O(pn2) algorithm for the p-median

problem by Tamir (1996).

The cent-dian problem is also extended to the location of structured

facilities such as subtrees and paths on a network. Interested reader is

referred to Averbakh and Berman (1999) for locating a cent-dian path on a

tree network and Tamir, Puerto, and Perez-Brito (2002) for locating a cent-

dian subtree on a tree network.
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The models for the median and center problems gave rise to many extended

problems. Same extensions may be considered for the cent-dian problems in

the future. For example, the p-cent-dian problem may be investigated on

stochastic networks, under capacity restrictions on the facilities or with

continuously distributed demand along the links of the network. The results

on centdian problems are summarized below:

Table 12: Literature on p-Centdian Problems on Networks

Author Year Problem Summary
Halpern 1976

1978
1-centdian on trees Definition

Solved convex
combination problem

Halpern 1980 1-centdian on trees Equivalence of
constrained and
convex combination
problems

Handler 1985 1-centdian on trees Solved constrained
version

Perez-Brito,
Moreno-Perez,
Rodriguez-Martin

1998 2-centdian Finite dominating set
O(m2n4)  for N
O(n2)  for T

Perez-Brito,
Moreno-Perez,
Rodriguez-Martin

1997 p-centdian Finite dominating set

Tamir, Perez-Brito,
and Moreno-Perez

1998 p-centdian O(pn4) for T
O(pn3) for P

5.2 Other Multiobjective Models:

Lowe (1978) considered the location of a single facility on a tree

network with multiple objectives. Methods to find efficient solutions are

provided when the objective functions are convex.
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Tansel, Francis, and Lowe (1982) studied a biobjective MMLP on

tree networks in which the objectives are minimizing the maximum

distance between customers and new facilities and minimizing the

maximum distance between pairs of new facilities. The efficient frontier of

the problem is constructed and the problem is extended to the case with

with more than two objectives.
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C h a p t e r  6

UNDESIRABLE FACILITY
LOCATION ON NETWORKS:

The literature on location theory is dominated by problems that deal

with desirable facilities. These models are used to locate facilities such as

schools, police stations, fire stations, hospitals, and supermarkets. The

objectives used in these models usually involve minimization of a function

of distance or time between the facilities and potential customers.

Nevertheless, there exist other types of facilities such as landfills, nuclear

power stations, military bases, and chemical factories that are necessary

but undesirable for the common householders. Such facilities may produce

hazardous wastes, produce high levels of noise, and explode by accident or

military attack. The location theory has been studying the location of such

undesirable facilities since late 80’s and very successful results have been

obtained.

The location of undesirable facilities is typically more complicated

than their desirable counterparts. Usually a sound measure of undesirability

is not available to the analyst. Instead, it is assumed that undesirability can

be expressed as a function of the distance between the facilities and

customers. It is typical that there are multiple objectives in the location of

undesirable facilities such as minimizing the undesirable effects to the

customers and minimizing the travel costs from/to the facility. The location
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decision generates routing problems in the transportation network because

the materials transported from/to an undesirable facility are usually

hazardous and their transportation must be handled carefully in order to

guarantee minimum risk to environment and society. Location-routing

problems are studied widely and the interested reader may consult the

survey papers by Erdogan, Erdogan, and Tansel (2003), Min, Jayaraman,

and Srivastava (1998), and Laporte (1988).

Many undesirable facility location models involve dispersion of

facilities from each other and from the customers. Such dispersion

strategies are useful when facilities that are mutually undesirable are being

located. For example, when military bases are being located they are

dispersed as much as possible in order to eliminate the effects to the others

of an attack on one of the bases. Similarly, the franchises of a burger chain

should be dispersed in order to reduce competitiveness between the

franchises of the same chain. Dispersion has also applications in decision

analysis using multiple objectives (in that the nondominated set of

solutions may be quite large and a representative set of solutions, which are

far apart from each other, may be presented to the decision maker);

marketing a set of products with diverse set of attributes; and providing

multiple diverse set of starting points to a heuristic (Chandra and

Halldorsson, 2000).

In this chapter, we survey the location of undesirable facilities on

networks. Many problems, especially the ones involving air pollution,

noise, and risk of explosion, are more appropriate to study with the planar

models because most of the hazardous effects spread through a

geographical space without following any network structure. Nevertheless,
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there may also be cases such as location of prisons, which cause crime to

households or location of franchises, which are affected by the network

structure. We investigate problems that involve the maximization of a

function of distances between new facilities and existing facilities and/or

between pairs of new facilities. The resulting models together with the

algorithms devised for general networks and special networks are

presented in the subsequent sections.

The analytical models devised for both planar and network

problems are presented in the survey paper of Erkut and Neuman (1989).

This paper presents a classification scheme for undesirable facility

location, which we find very useful to fully understand the area. This paper

is a milestone in the undesirable facility location, which presents past

research, provides insight on the models and opens new research areas.

6.1  Maxisum Facility Location on Networks:

6.1.1 Single Facility:

The single facility maxisum dispersion problem locates a facility on

a network such that the total of weighted distances from the existing

facilities to the new facility are minimized. The model can be expressed as

follows: Given a network N = (V, E), find a point x* in N such that x* ∈

∑
∈∈ Vv

iiNx
i

vxdw ),(maxarg . The single facility maxisum dispersion problem is

similar to the absolute median problem on networks and it is sometimes

referred to as the maxian or antimedian problem. Unfortunately, the vertex

optimality results do not hold for the maxisum dispersion problem.
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The problem has been first studied by Church and Garfinkel

(1978). They have shown that there exists a finite set of points, which is

the union of bottleneck points and vertices of degree one, which contain a

solution to the maxisum problem. When the network is a tree, the solution

should be on one of the pendant vertices of the tree. The authors present an

O(n3) algorithm to find the 1-maxian point on a general graph based on

these observations which finds local maxima on each edge. A very similar

approach is presented by Minieka (1983a), which characterizes the solution

of the single facility maxisum dispersion problem on undirected and

directed networks, for vertex-restricted and absolute cases. It is well known

that the objective function is a piecewise linear concave function when

restricted to a single edge. Tamir (1991) proposed an O(n) algorithm to

solve the local problem on an edge using the algorithm by Zemel (1984)

which yields an O(nm) algorithm for the maxisum dispersion problem on

general networks.

The methods by Church and Garfinkel (1978) and Minieka (1983)

yield O(n2) algorithms when the network is a tree. Ting (1984) presented

an O(n) algorithm for the single facility maxisum problem on tree

networks. The algorithm is elegant and makes use of a special

representation of the tree network.

6.1.2 Multiple Facilities:

The single facility models for the maxisum dispersion problem may

be extended to locate multiple facilities on a network. Nevertheless, when

the facilities are located with respect to existing customers without
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considering facility interactions, the model would locate all facilities on a

single point, which solves the single facility model. It is obvious that such

a model does not make sense because usually undesirable facilities affect

each other and locating them on a single point would harm both the new

facilities and the existing facilities severely. Multiple facility maxisum

models locate p facilities on a network such that the total weighted distance

between the pairs of new facilities plus the total distance between new and

existing facilities are maximized. Such problems are also referred to as p-

maxian problems (Erkut, Baptie, and Hohenbalken, 1990). The p-maxian

problem can be expressed as follows: Given a network N = (V, E) find a set

X* = {x1*,…,xp*} in N such that

X* ∈ ∑∑ ∑∑+
=∈ i j i j

jiijjiijpXNX
xxdxvd ),(),(maxarg

,
βα

When αij = 0, i.e. there exists no existing facilities in the system, the

problem is referred to as the p-defense-sum problem or the maxisum

dispersion problem (Kuby, 1987). We will refer to the problems involving

existing facilities as p-maxian problems and problems not involving

existing facilities as p-defense-sum problems from this point on.

It is stated by Erkut, Baptie, and Hohenbalken (1990) that the p-

defense-sum problem is proven to be NP-hard by Hansen and Moon

(1988). Tamir (1991) also showed that the p-defense-sum problem is NP-

hard on general graphs even if the graph is as simple as a single edge, by

reduction from the Maximum Cut Problem. He also showed that the

unweighted or homogeneous p-defense-sum problem in which βij =1, is

NP-hard on general graphs via reducing the problem to the Independent Set

Problem.
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The p-defense-sum problem has been studied by Kuby (1987). The

author formulated the problem as a binary IP for discrete cases, which

involve the vertex-restricted network problems as well. He used a standard

solver to solve the model for instances with 25 nodes and 10 new facilities.

Although Kuby (1987) is important because it involves the first

mathematical formulation of the model, it is not practically possible to

solve large instances of the problem using standard solvers.

Erkut, Baptie, and Hohenbalken (1990) presented a very effective

branch-and-bound technique to solve the vertex-restricted p-maxian

problem. They provided upper bounds via solving a set of easy knapsack

problems and lower bounds using a simple but very effective heuristic. The

algorithm can be used to solve the p-defense-sum problem as well.

For the absolute p-maxian problem, Tamir (1991) provided an

O(mpn) algorithm, which solves a local problem on every p subset of edges

using the algorithm provided by Zemel (1984).

A special case of p-defense-sum problem with βij = 1, referred to as

the homogeneous problem, is studied by Ting (1988) and Hansen and

Moon (1988). They presented O(n2) algorithms for the problem on tree

networks for absolute and vertex-restricted cases.

Similarly, a special case of the p-maxian problem which is referred

to as the homogeneous problem and satisfies αij = αi for all j and βij = 1 ∀ i,

j is studied by Tamir (1991) on tree networks. An O(np) algorithm is

presented for the problem which is also an improvement for the
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homogeneous p-defense-sum algorithms mentioned above. Tamir (1991)

stated that the complexity of the algorithm further reduces to O(n) when

the tree is a star using the result by Ibaraki and Katoh (1988).

The maxisum problems on general networks are very hard

problems, so heuristic methods are used for the general graphs. As we

mentioned above, Erkut, Baptie, and Hohenbalken (1990) provided a

greedy heuristic for the discrete case, which makes use of a neighborhood

search at each iteration. This heuristic is very simple and successful which

is surprising with respect to the hardness of the problem. Ravi,

Rosenkrantz, and Tayi (1994) showed that this heuristic is a 4-

approxiamation algorithm and no algorithm which has a performance

guarantee less than 2 can be devised for the problem unless P = NP.

Kincaid (1992) presented two metaheuristics for the problem, namely,

Simulated Annealing and Tabu Search. He also presented a computational

experiment on the best values of the parameters to be used in the design of

the heuristics. It is observed empirically that Tabu Search provides better

results than the Simulated Annealing or greedy algorithm of Erkut et. al

(1990).

6.2  Maximin Facility Location on Networks:

6.2.1 Single Facility:

The single facility maximin problem is to locate a facility on a

network such that the minimum weighted distance from the new facility to

the existing facilities are maximized. The problem can be expressed as
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follows: Given a network N = (V, E) and a set of existing facilities F, find

x* in N such that x* ∈ ),(minmaxarg xidwiFiNx ∈∈
.

When the existing facilities are on the vertices of the network and

the weights wi are equal to one, the problem is trivially solved in O(m) time

by locating the facility at the midpoint of the longest edge in the network.

When the existing facilities are on the pendant vertices of a tree and

weights are again equal, the problem is solved in O(n) time by a simple

algorithm by Moon (1989).

The weighted maximin problem on a path network was solved in

O(n3) time by Drezner and Wesolowsky (1985). This bound is improved

by Tamir (1988) to O(nlogn) using special data structures. Burkard,

Dollani, Lin, and Rote (1998) provided a linear time algorithm for this

problem. The algorithm is based on the division of the objective function

into two parts which are piecewise linear functions along the path. An

algorithm to solve the problem on star networks in O(n) time is also

provided. In this algorithm, a linear program is solved which is developed

based on observations obtained for path networks. It is also shown that the

problem can be solved in O(n+blogn) time in an extended star where b is

the number of branches (an extended star is a tree which has a single vertex

with degree greater than 2 and the paths from this vertex to the pendant

vertices are called the branches of the tree).

Tamir (1991) showed that for a tree network the objective function

value of a 1-maximin problem is an element of the following finite set: R =

{ }1
),(

11 nji
ww
vvd

ji

ji ≤≠≤
+ −− } The 1-maximin problem may be solved by
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the related anticover problem, in that the objective function value of the 1-

maximin problem is the largest element z* in this set for which there exists

a point x in N which is at least z*/αi distance away from each vertex vi. The

problem is solved in O(nlog2n) by constructing a binary search on the

members of this set and an O(n) algorithm for the anticover problem. The

relationship between the anticenter and anticover problems is analogous to

the relation between center and cover problems. Burkard, Dolloni, Lin, and

Rote (1998) provide an O(nlogn) algorithm which is a modification of the

algorithm by Tamir (1991). It is shown that, when the weights wi are equal

to each other the problem is solved in linear time, by Burkard, Dolloni,

Lin, and Rote (1998).

When the existing facilities are on the vertices of the network and

the weights are not all equal to one at the same time, the problem in solved

in O(nm) time independently by Melachrinoudis and Zhang (1999) and

Berman and Drezner (2000). The algorithm by Berman and Drezner is

simple and depends on finding the local maximum on each edge via

solving an easy LP.

Welch and Salhi (1997) proposed a different formulation for an

undesirable facility spreading air pollution to its surroundings by using a

pollution dispersion model where the relationship between pollution levels,

distance and wind strength is considered. The usage of pollution dispersion

model had first appeared in Karkazis (1991). However, his model

minimizes the sum of dispersed air pollution in the plane whereas Welch

and Salhi’s (1997) model minimizes the maximum amount of air pollution

spread on a network. They also placed a minimum distance constraint to
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prevent locating the facility in the immediate neighborhood of a node with

a relatively smaller weight.

6.2.2 Multiple Facilities:

The single facility maximin problem on networks can be

generalized to the case of multiple facilities. Due to similar reasons for the

maxisum problem, the multiple facilities maximin problem involves not

only the interaction between new and existing facilities but also the

interaction between pairs of facilities. The multiple facilities maximin

problem is the problem of selecting p points on a network such that the

minimum weighted distance between pairs of new facilities and between

new and old facilities is maximized. Formally, the problem may be stated

as follows: Given a network N = (V, E), find a set X* = {x1
*,…,xp

*} in N

such that

X* ∈ )},(min),,(minmin{maxarg
,,, jiijjijiijjipXNX

xxdxvd βα
=∈

When βij=∞, the interaction between pairs of facilities are not

considered and new facilities are located such that the minimum weighted

distance from the existing facilities is maximized. This problem is referred

to as anti-p-center by Klein and Kincaid (1994). The problem is

polynomially solvable and an O(nm2) algorithm is provided for the discrete

case for all values of p.

The multifacility maximin problem is widely investigated when

there are no existing facilities and the objective is to disperse the new

facilities as much as possible on the network. This problem is called the p-

dispersion problem. The p-dispersion problem is related to the well-known
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p-center problem. It is shown that these two problems are strongly dual to

each other on tree networks, i.e. the objective function value of a solution

to a p-dispersion problem is twice the objective function value of a (p-1)-

center problem on the same tree network (Shier, 1977). The duality is weak

for general networks, in that twice the objective function value of a (p-1)-

center problem provides an upper bound for the objective function value of

a solution to a p-dispersion problem (Tamir, 1991). The duality results are

extended to problems with nonlinear cost functions by Tansel, Francis,

Lowe, and Chen (1982). The results are also valid when the existing and

new facilities are restricted to discrete subsets of the network as shown by

Chandrasekaran and Tamir (1980, 1982). The p-dispersion problem is

equivalent to the r-separation problem. Given a real r, the r-separation

problem is the problem of finding a feasible set of p points, which are at

least r units apart from each other. The p-dispersion problem can be solved

by solving a series of r-separation problems.

Erkut (1990) proved that the discrete (vertex-restricted) p-

dispersion problem is NP-Hard on general networks via reduction from the

Clique Problem. The discrete p-dispersion problem was first solved by

Kuby (1987). Kuby (1987) provided an IP formulation and solved the

problem using a standard solver. Erkut (1990) provided a branch-and-

bound algorithm for this problem using a heuristic to obtain lower bounds.

This is a two-stage heuristic that constructs a greedy solution in the first

stage and improves the solution using neighborhood search in the second

stage. Ravi, Rosenkrantz, and Tayi (1994) show that this heuristic in fact

has a performance guarantee of 2 and devising an algorithm with a better

performance guarantee proves P = NP. White (1991) provides a “First

Point Outside the Neighborhood” heuristic (FPON) for the problem. In this
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heuristic, a solution is constructed for a real number r such that in each

iteration the first point in the list that is at least r units away from the

preselected points is added to the solution. The number r is changed until a

solution of p units is found. White (1991) shows that this heuristic has a

performance guarantee of 2 for certain values of p and 3 for all p. Erkut,

Ulkusal, and Yenicerioglu (1994) provides a valuable survey and

computational study based on their experiments with 10 different

heuristics. It is observed that Simulated Annealing is very effective for the

p-dispersion problem and a combination of several heuristics may improve

the results severely. Simulated Annealing and Tabu Search heuristics are

used by Kincaid (1992) for the discrete p-dispersion problem and yield

very good solutions. The heuristics for these problems are very successful

because there exists multiple optima for the maximin facility location

problems and the chance to stop at an optimal solution is very high

compared to other models such as maxisum facility location models.

The continuous (absolute) p-dispersion problem on general

networks are NP-hard even if the problem is homogeneous, i.e. βij=1

(Tamir, 1991). It is also shown that if there exists a polynomial time ε-

approximation with ε<2/3, then P = NP (Tamir, 1991). Tamir (1991)

provides an approximation algorithm with a performance guarantee of 1/2

for the homogeneous problem. The algorithm is very simple since it begins

with an arbitrary point and selects the farthest point from the preselected

points at each iteration.

The maximin facility location problems that involve existing

facilities are called the p-anti-center-dispersion problems (Erkut, 1990) in

order to distinguish them from the p-dispersion problem that do not
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involve existing facilities. The absolute p-anti-center-dispersion problems

are NP-hard on general graphs even if the graph consists of a single edge

(Tamir, 1991). The unweighted p-anti-center-dispersion problems can be

solved by solving a series of r-anticover problems. Given r, r-anticover

problem finds the maximum number of points on a network such that the

points are at least r units apart from each other and from existing facilities.

The r-anticover problem is solved by Moon and Goldman (1989) on tree

networks but this algorithm is very complicated to be used in a solution

procedure. Chandrasekaran and Daughety (1981) provide an O(nolgn)

algorithm for the problem and solve the related anticenter problem in

polynomial time. Tamir (1991) presents a linear time algorithm for the r-

anticover problem that yields even more efficient algorithms for tree

networks. The discrete p-anti-center-dispersion problem on a general graph

is solved by Erkut (1990) using a branch-and-bound algorithm and

efficient bounding procedures.

6.3  Other Single Objective Models:

Although the literature on single objective undesirable facility

location on networks is dominated by maxisum and maximin objectives,

other models are devised to handle undesirability. The maximin model is a

conservative approach that maximizes the worst-case performance and the

maxisum model can result in a solution in which some undesirable

facilities are located in the neighborhood of a community center or another

facilty. Based on similar arguments, new models of dispersion are

necessary to handle a broad range of situations.
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The p-defense problem, first defined by Moon and Chaudry (1984),

can be expressed as follows: Given N = (V, E), find a set X* = {x1
*,…,xp

*}

in N such that X* ∈ ),(minmaxarg
, jiijijipXNX

xxdβ
≠=∈

∑ . This model is not as

conservative as the p-dispersion problem and do not allow new facilities to

be very close to each other like the p-defense-sum problem. This model is

formulated as an IP by Erkut and Neuman (1991) and solved using a

branch-and-bound technique. Tamir (1991) solved this problem on tree

networks in O(p2n3) time. Erkut and Neuman (1991) defined another new

problem, which will be referred to as the p-dispersion-sum problem. This

problem is defined as follows: Given N = (V, E), find a set X* = {x1
*,…,xp

*}

in N such that X* ∈ ),(minmaxarg
, jiij

jipXNX
xxdβ∑

=∈
. This problem is also

solved by Erkut and Neuman (1991) by branch-and-bound. A two-stage

(greedy-pair wise interchange) heuristic is devised for both models, which

is very effective in terms of producing optimal and near optimal solutions

in a short time. Although these models are devised for cases that do not

involve existing facilities, the models can easily be extended to include

existing facilities and the algorithms devised can be used for these

extended models.

Another model, which is an extension of the p-defense-sum model,

which includes existing facilities, is given by Ting (1988). This model is

different from the p-maxian model because it incorporates only the

distance between an existing facility and the nearest new facility as

opposed to the p-maxian problem which includes distances between every

pair of new and existing facilities. The model can be expressed as follows:

Given N = (V, E), find a set X* = {x1
*,…,xp

*} in N such that X* ∈
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),(),(maxarg
, jiij

i j
i

i
ipXNX

xxdXvD βα ∑∑∑ +
=∈

. Tamir (1991) presents an

O(p2n2) algorithm for this problem on trees.

Chandra and Halldorsson (2000) suggests a new unified model,

which includes the previous models (p-dispersion, p-defense-sum), the

models introduced in this section (p-defense, p-dispersion-sum) and gives

rise to new models. The paper presents new approximation algorithms and

performance analysis for a broad range of problems.

Most of the literature on location theory is based on certain

assumptions on the network parameters. The demand weights and

distances are assumed to be nonnegative constants which is considered to

be the normal interpretation. Nevertheless, allowing negative weights on a

network gives rise to flexible models in which a facility may be considered

as a desirable facility for some existing facilities whereas it may be

undesirable for some others. For example, an airport is highly desirable for

an industrial organization that imports and exports a high volume of goods,

but it is undesirable for a householder. Burkard and Krarup (1998) studied

the 1-median problem with positive/negative weights on a cactus and

developed an O(n) algorithm for the problem. The algorithm makes use of

the block diagram of the graph and finds the local minimum in each block.

When the objective is to minimize the sum of minimum weighted distances

of existing facilities from the new facilities, the 2-median of a pos/neg

weighted tree, star and path is found in O(n2), O(nlogn), and O(n) times,

respectively by Burkard, Cela, and Dollani (2000). Algorithms devised for

the p-median problem are also provided in this paper, which may be quite

intuitive for the interested reader.
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6.4  Minimum Covering Problem on Networks:

The minimum covering problem is to find a location for a new

facility on a network such that the total weight of existing facilities within

a specified distance is minimized. Formally, given a real number r, find a

point x* in N such that x* ∈ ∑
∈

∈ ),(

minarg
rxNi

iNx
w where N (x, r) = {y: d(x, y) ≤ r}.

The minimum covering problem is trivial if and only if the longest

edge in the network is at least twice the covering distance long (2r). In this

case the optimum location of the facility will be on the mid-point of such

an edge. The first paper to model the location of an obnoxious facility on a

network using the minimum-covering criterion is by Sung and Joo (1993).

They state that the objective function of the model is continuous piecewise

concave and there is at least one optimum point. Using this property an

efficient solution algorithm is derived. Then being unaware of Sung and

Joo (1994), Berman, Drezner and Wesolowsky (1996) studied the same

problem. Their paper includes an analysis of the problem, identification of

special cases where the problem is easily solved, an algorithm to solve the

problem in general based on identifying the optimal segment on each edge,

and a sensitivity analysis with respect to the covering distance r.

6.5  Multiobjective Models:

The undesirable facility location is multiobjective in nature. The

single facility models we have considered above aim to locate the

undesirable facilities as far away from the population centers and from

each other as possible. Nevertheless, minimizing the undesirable effects
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usually results in very high transportation costs and travel times. Thus the

solutions to the single objective models are usually impractical for

applications. For undesirable facilities location, multiobjective models are

used in order to locate the facilities safely and cheaply.

Multiobjective models are also widely used to locate semi-desirable

facilities, whose desirable and undesirable effects are perceived to be

equal. Semi-desirable facility models are necessarily multiobjective in

nature because the facilities must be sufficiently far away to guarantee

safety and near enough to guarantee accessibility. Airports are typical

examples for semi-desirable facilities.

Ratick and White (1988) was probably the first who developed a

multiobjective model for locating undesirable facilities. Their model

included facility size and risk factors as well as cost. They developed an IP

model of the problem and solved the problem using a standart solver. This

model is important because it provides valuable insight on undesirable

facility location.

Zhang and Melachrinoudis (2001) studied a biobjective maximin-

maxisum objective model. Both objective functions are piecewise linear

and concave. The edges are divided into segments, which are analogous to

Hooker’s treelike segments (1986) and an algorithm based on elimination

of inefficient edge segments is proposed. The proposed algorithm runs in

O(n2logn) time for unweighted trees, and in max{O(n3), O(|R|logn)} for

weighted trees, where |R| is the number of intersection points of the line

segments. On a general network the algorithm runs in
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max{O(mn2),O((mn+|R|)log(mn))} for both the unweighted and weighted

cases.

Hamacher, Labbé, Nickel and Skriver (2002) proposed a

multiobjective model for the semi-desirable facilities. They considered q

minisum and / or maxisum objectives. They stated that the objective

functions are all piecewise linear, and they partitioned the network into

segments where the objective functions are linear. The solution method is

based on pairwise comparisons of these segments. They proposed that this

algorithm could also be applied to maximin-minimax biobjective problem.

They also considered the biobjective version of the problem (q=2) as a

special case and provided an efficient algorithm. The problem is also

considered on directed networks.

Skriver and Andersen (2000) provided a general biobjective semi-

desirable facility location model which minimizes the transportation cost

and obnoxiousness at the same time for both the planar and the network

problems. For the network case they proposed an algorithm, which is on

fact a modification of the BSSS (Big Square Small Square) method. They

modified the BSSS method by dividing edges into sub-edges instead of

dividing the big squares into small squares.

The literature on undesirable facilty location is presented in the

following tables:



UNDESIRABLE FACILITY LOCATION ON NETWORKS

104

Table 13: Literature on Single Facility Maxisum Facility Location on

Networks

Author Year Summary
Church and
Garfinkel

1978 Finite dominating set
O(n3) algorithm for N
O(n2) algorithm for T

Minieka 1978 Characterized the
solution for directed
and undirected N
O(n2) algorithm for T

Tamir 1991 O(nm) algorithm for
N

Ting 1984 O(n) algorithm for T

Table 14: Literature on Multiple Facility Maxisum Facility Location on

Networks

Author Year Problem Summary
Hansen and Moon 1988 p-defense-sum NP-hard
Tamir 1991 p-defense-sum NP-hard even on a

single edge
Kubys 1987 Vertex-restricted p-

defense-sum
MP
Standard solver

Erkut, Baptie, and
Hohenbalken

1990 Vertex-restricted p-
maxian

B&B and heuristics

Tamir 1991 Absolute p-maxian O(mpn) algorithm
Ting
Hansen and Moon

1988
1988

Homogeneous p-
defense-sum on trees

O(n2) algorithm

Tamir 1991 Homogeneous p-
maxian on trees

O(np) algorithm for T
O(np) algorithm for
star networks

Ravi, Rosenkrantz,
and Tayi

1994 Maxisum problem on
general networks

Best heuristic can be
2-approximation

Kincaid 1992 Maxisum problem on
general networks

Simulated Annealing
and Tabu Search
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Table 15: Literature on Single Facility Maximin Facility Location on

Networks

Table 16: Literature on Multiple Facility Maximin Facility Location on

Networks

Author Year Problem Summary
Klein and Kincaid 1994 Vertex-restricted

anti-p-center
O(nm2) algorithm for
all p

Shier 1977 p-dispersion on trees Duality with p-center
Tansel, Francis, and
Lowe

1982 p-dispersion on trees
with nonlinear costs

Duality results

Tamir 1991 p-dispersion on N Duality with p-center
Chandrasekaran and
Tamir

1980
1982

Vertex-restricted p-
dispersion

Duality with p-center
Solving a series of r-
separation problems

Erkut 1990 Vertex-restricted p- NP-Hard on general

Author Year Problem Summary
Moon 1989 Unweighted maximin

problem when
customers are on
leafs of a tree

O(n)algorithm

Drezner and
Wesolowsky

1985 Weighted maximin
problem on a path

O(n3) algorithm

Tamir 1988 Weighted maximin
problem on a path

O(nlogn) algorithm

Burkard, Dollani,
Lin, and Rote

1998 Weighted maximin
problem on a star

O(n) algorithm

Tamir 1991 Weighted maximin
problem on trees

O(nlog2n) algorithm

Burkard, Dolloni,
Lin, and Rote

1998 Maximin problem on
trees

O(nlogn) –weighted
O(n) –unweighted

Melachrinoudis and
Zhang
Berman and Drezner

1999

2000

Weighted maximin
problem on general
networks

O(nm)  algorithm
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dispersion networks
Kuby 1987 Vertex-restricted p-

dispersion
IP formulation

Erkut 1990 Vertex-restricted p-
dispersion

B&B and heuristics

Ravi, Rosenkrantz,
and Tayi

1994 Vertex-restricted p-
dispersion

ε-approximation
(ε<2) proves P = NP

White 1991 Vertex-restricted p-
dispersion

First Point Outside
Neighborhood
heuristic

Erkut, Ulkusal, and
Yenicerioglu

1994 Vertex-restricted p-
dispersion

Computational
survey on heuristics

Kincaid 1992 Vertex-restricted p-
dispersion

Simulated Annealing
and Tabu Search

Tamir 1991 Absolute p-dispersion NP-hard
½-approximation alg.

Tamir 1991 Absolute p-anti-
center-dispersion

NP-hard on single
edge
Solving a series of r-
anticover problems

Chandrasekaran and
Daughety
Tamir

1981

1991

Absolute p-anti-
center-dispersion on
trees

Polynomial algorithm

Erkut 1990 Discrete p-anti-
center-dispersion

B&B and efficient
bounds
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C h a p t e r  7

STRUCTURE LOCATION
PROBLEMS ON NETWORKS:

We have studied in detail point location problems on networks in

the previous chapters. Although many facilities are very small compared to

the underlying structure in which they are placed and the point facility

assumption is valid for these facilities, there are other situations in which

facilities of large sizes are placed. Usually these facilities are network

structures such as paths, cycles, trees, subnetworks, etc. and the facilities

they represent are some kind of transportation or communication routes.

We refer to these problems as “Structure Location Problems”. An

alternative term is “Extensive Facility Location” used by Mesa and Boffey

(1996).

The literature on structure location problems is somewhat out of

order because the problems in this area are usually studied as vehicle

routing problems and the location aspect of the problems are undiscovered.

Beasley and Nascimento (1996) define a Vehicle Routing-Allocation

Problem that involves many of the problems we cover in our survey as

special cases. This paper constitutes a framework in understanding the

vehicle routing and location-allocation aspects of Structure Location

Problems. Mesa and Boffey (1996) and Hakimi, Schmeichel, and Labbè

(1993) provide surveys together with classification schemes on the



STRUCTURE LOCATION PROBLEMS ON NETWORKS

108

structure location problems and we provide an extension on these surveys

that include additional problem types as well as more recent papers. We

investigate problems that locate paths, trees, and cycles on a network.

Structure location problems are often biobjective in nature. Usually, the

first objective is the minimization / maximization of the length of the

facility to be placed whereas the second objective varies from problem to

problem. The second objective can be a covering type objective in that the

facility to be located should be within a prespecified distance of customers

while the number of customers covered is maximized or minimized. The

objective may also be the minimization / maximization of the total distance

of customers to the facility, which we will refer to as the distance

objective, or it may be the minimization / maximiation of the maximum

distance of customers to the facility, which we will refer to as the

eccentricity objective. There are also single objective problems in which

the length of the structure is fixed and one of three types of objectives

mentioned above is used as the single objective.

7.1  Covering Objective:

7.1.1 Covering Path Problems:

The Shortest Covering Path Problem (SCP) is the problem of

placing a path-shaped facility between two specified points on the network

such that all nodes are within a specified distance form the facility and the

length of the facility is minimized. SCP is a single objective problem first

defined by Current, Cohon and ReVelle (1984). This problem is observed

to be a synthesis of the well known Shortest Path and Set-Cover Location

Problems. Current, Cohon and ReVelle (1984) presented an ILP
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formulation of the problem and a branch-and-cut algorithm that utilizes

subtour elimination constraints. Two example problems are also solved.

Because of the clarity and conciseness of their exposition, this paper is

highly recommended for researchers who have limited familiarity with

branch-and-bound and constraint relaxation techniques. Later, algorithms

with better computational performance are presented for this problem by

Current, Pirkul, and Roland (1994).

Current, ReVelle, and Cohon (1985) introduced the Maximal

Covering Shortest Path Problem (MCSP) that is defined to be the

biobjective problem of finding a path between a given source and a

destination so as to minimize the path length and maximize the total

demand that is covered by the path. A demand is covered if it is on the path

or within a prespecified distance of the path. A special case is the Maximal

Population Shortest Path (MPSP) problem where the covering distance is

assumed to be zero. Boffey and Narula (1998) studied the 2-MPSP where,

instead of one path, two vertex disjoint paths are located between a source

and a destination. They presented two solution procedures based on the

ILP formulation of the problem. One of the procedures is the weighting

method (Lagrangean relaxation) and the other is the k-shortest path

method. They did not implement any of the procedures they have proposed

but presented valuable modeling insights on the possible extensions of the

problem.

The Minimum-Covering Shortest Path Problem (MinCSP) is

introduced by Current, Revelle, and Cohon (1988). MinCSP aims to locate

a path between two prespecified nodes in the network. The objectives are

simultaneous minimization of the length of the tour and of the total
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demand covered by the path. A node is covered if it lies within a given

distance from a closest node of the path. MinCSP has many applications in

hazardous materials transportation. Current, ReVelle, and Cohon  (1988)

presented an ILP formulation of the problem and solved a test problem

using the weighting method traditionally used in multiobjective

optimization. In their discussion of the related literature, they provided

many useful comments on various solution techniques of the problem.

7.1.2 Covering Tour Problems:

Current and Schilling (1989) formulated the Covering Tour

Problem (CTP). CTP is defined as follows: Given a network G = (V ∪ W,

E) where V is the set of nodes that can be visited and W is the set of nodes

that must be covered and a set T ⊆ V, where T is the set of nodes that must

be visited, CTP determines a minimum length tour or a Hamiltonian cycle

over a subset of V such that the tour contains all vertices of T and every

vertex of W is covered by the tour, i.e. lies within a prespecified distance

from a closest vertex of the tour. The problem has many application areas

in distribution and transportation models such as post box placement in a

neighbourhood. Gendreau, Laporte, and Semet (1997) formulated the CTP

as an ILP, analysed the corresponding polytope, and solved the integer

formulation by a branch-and-cut algorithm. Their algorithm works in a

reasonable amount of computation time even for very large networks

consisting of 600 nodes in total with 100 potential sites. The paper also

contains an efficient heuristic that provides results within 3% of optimal

objective value. This study is notable because the authors managed to find

the exact solution of such a large problem. Moreover, the identified

properties of the polytope and cutting planes that are generated may be
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useful in many related problems. Maniezzo, Baldacci, Boschetti, and

Zamboni (1999) provided another ILP formulation and applied three

metaheuristics to the problem. Motta, Ochi, and Martinhon (2001)

presented a reduction technique, which reduces the size of the problem

significantly. This technique can be useful in solving the problem

optimally or approximately. The Covering Tour model has application

areas in the planning of daily routes of mobile emergency services such as

police and ambulance patrols. As an example, this model has been

successfully used in a mobile health care system in Ghana by Hodgson,

Laporte, and Semet (1996).

Current and Schilling (1994) presented the biobjective Maximal

Covering Tour Problem (MCTP). In MCTP, a tour passing through p

nodes is found where one objective is to minimize the length of the tour

and the other is to maximize the total demand within some prespecified

travel distance from a tour node. ILP formulation of the problem is

presented in the paper.

Labbè, Laporte, and Soriano (1998) studied the Cycle Cover

Problem (CCP), which is defined to be the problem of covering all edges

of a graph with simple cycles consisting of at least three edges so as to

minimize the total length of cycles. They provided a lower bounding

procedure and six heuristics based on a relaxation of CCP that results in

well-known Chinese Postman Problem. Their heuristics produce optimal or

near-optimal solutions for the 100 test problems in a very short time.

7.1.3 Covering Tree Problems:



STRUCTURE LOCATION PROBLEMS ON NETWORKS

112

Kim, Lowe, Ward, and Francis (1989) considered the general

problem of finding a minimum length covering subgraph of a network.

They found that the minimum-covering subgraph of any network is always

a subtree. So, they renamed the problem as the Subtree r-Cover Problem.

They emphasized that the problem is NP-Hard for general networks, so

they focused on special networks. They provided efficient solution

methods via exploiting the special structure of the network whenever

possible. They devised a generic algorithm that exploits the structure and

specialized this algorithm to a polynomial time algorithm for cactus

graphs.

Kim, Lowe, Ward, and Francis (1990) studied the Subtree r-Cover

Problem on a tree network. They observed that the problem is very close to

the Point r-Cover Problem of Tansel, Francis, Lowe and Chen (1982). In

fact, an optimal minimum cost covering subtree of a tree can be found by

modifying the point r-cover algorithm of Tansel et al. (1982). The

algorithm simply finds all point covers and constructs a subtree whose

pendant vertices are the point covers. The modified algorithm runs in

O(m2) time where m is the number of edges. The paper also contains a

proof of optimality based on duality theorems.

Kim, Lowe, Tamir, and Ward (1996) studied the problem of

locating a tree-shaped central facility on a tree network and defined two

covering tree problems: Direct Subtree Covering Problem (DSCP) and

Indirect Subtree Covering Problem (ISCP). In DSCP a customer is covered

if it is a member of the facility and each uncovered customer pays a

penalty. The objective is to minimize the total cost associated with the

length of the facility and the sum of the penalties. An O(n) algorithm is
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given, based on dynamic programming, for the discrete case. In the

Indirect Subtree Covering problem, a customer is covered if it is within a

prespecified distance from the facility. Again, each uncovered customer

pays a penalty. The problem is solved in O(nlog2n) time for the discrete

case. The continuous cases for these problems in which subedges are

allowed can be handled by adding vertices corresponding to critical points.

Another related problem is the Maximal Direct Covering Tree

problem (MDCTP) introduced by Hutson and ReVelle (1989). They

defined MDCTP to be the problem of identifying a subtree of a given tree

network that minimizes the total cost of the subtree and maximizes the

total demand located at nodes covered by the subtree. Church and Current

(1993) later studied the MDCTP and gave an O(n2) exact algorithm based

on their ILP formulation. They also extended their formulation to various

cases with side constraints. They were able to solve test instances with 35

nodes in less than 5 CPU seconds.

7.2  Distance Objective:

7.2.1 Distance Path Problems:

Minieka (1985) studied the problem of finding an optimal location

of a path-shaped facility of a specified size in a tree network under

minimizing distance sum and maximizing distance sum objectives. The

structure to be located may contain partial arcs. The minimum distance

sum path (may be referred to as the median path in analogy to the point

median problem) and the maximum distance sum paths are located in

polynomial time.
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The Median Shortest Path Problem (MSPP) is a bi-criteria problem

introduced by Current, Revelle, and Cohon (1987). MSPP aims to

optimally locate a path between two prespecified nodes. One criterion is to

minimize the length of the path and the other one is to minimize the total

travel time required for nodes not on the path to reach a closest node on the

path. Current et al. (1987) gave an ILP formulation of the problem. They

introduced an algorithm called MONET which is basically a complete

enumeration algorithm based on the solution of the k-shortest path

problem. They identified nondominated solutions of a certain test problem

using both MONET and an exact branch-and-bound algorithm. Their

results show that, within a fixed amount of computation time, MONET is

able to generate many more nondominated solutions than the competing

branch-and-bound algorithm. Although the results are promising, more

experimentation is needed to reach a firmer conclusion.

When the objective is to minimize or maximize the total distance of

customers to the facility, locating multiple path-shaped facilities with a

given total length on a tree network is shown to be polynomial for fixed

number of facilities; it is NP-hard when the number of facilities is variable

and partial arcs are not allowed. Moreover, the problem is NP-hard on

general graphs for any number of facilities and even if partial arcs are

allowed. The case with partial arcs on tree graph is an NP-open problem

(Hakimi, Schemeichel, and Labbé, 1993).

7.2.2 Distance Tour Problems:
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The bi-criteria Median Tour Problem (MTP), introduced by Current

and Schilling (1994), is the “tour version” of the MSPP. In MTP a tour

passing through p nodes must be constructed so as to minimize the total

tour length and the total travel distance of the remaining customers not on

the tour to their closest nodes in the tour. Current and Schilling (1994)

emphasized that the problem has many application areas including, the

design of mobile service delivery systems, overnight parcel delivery, and

distributed computer networks. They provided an ILP formulation of the

problem. They provided an approximation algorithm for finding the

efficient frontier of the problem and applied the solution procedure to a

681-node network. The heuristic starts with a feasible solution, usually

optimal for one objective, and improves the solution with respect to the

remaining objective.

Labbé, Laporte, Rodriquez-Martin, and González (1999) solved

two versions of the MTP. The first problem seeks to minimize the total

cost of the tour and the total distance of customers to the tour whereas the

second problem seeks to minimize the tour length subject to an upper

bound on the total distance of customers to the tour. Efficient branch-and-

cut algorithms and heuristics are provided for both problems. Foulds,

Wilson, and Yamaguchi (2000) provided a branch-and-bound algorithm for

the problem depending on subtour elimination constraints and LP-

relaxation. Moreno Pérez, Moreno-Vega and Rodríguez Martín (2002)

provided a Tabu Search algorithm for the problem while Renaud, Boctor,

and Laporte (2004) provided two heuristics (one greedy and the other

being Genetic Algorithm) for this problem.

7.2.3 Distance Tree Problems:
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Minieka (1985) studied the problem of finding an optimal location

of a tree-shaped facility of a specified size in a tree network under

minimizing distance sum and maximizing distance sum objectives. The

structure to be located may contain partial arcs. The tree which minimizes

the distance sum is located in polynomial time whereas locating the tree

which maximizes the distance sum is NP-Hard as proved by Hakimi,

Schmeichel, and Labbè (1993). When the length of the tree is not specified

but restricted to be smaller than a given number the Tree Median Problem

arises. This problem is studied by Shigeno and Shioura (1995) who solved

the problem in which partial arcs are allowed in linear time by formulating

the problem as a continuous Knapsack Problem. The case in which the

partial arcs is not allowed is NP-Hard and can be formulated as a 0/1-

Knapsack Problem. Approximation algorithms can be devised using this

formulation for the problem.

Kim, Lowe, Tamir, and Ward (1996) presented the single objective

Median Subtree Location Problem (MSLP) in which the length of the tree-

shaped facility plus the total distance form the customers to the facility is

minimized. On a tree network, the MSLP is solved in O(n) time when the

subtree do not contain partial arcs. George and ReVelle (2003) solved the

biobjective MSLP on tree networks, where the first objective is the

minimization of the tree length whereas the second is the minimization of

the total weighted distance between the customers and tree-shaped facility.

Although the single objective case is easy to solve the biobjective problem

is harder. The authors present ILP formulations of the problem and solved

the problem using branch-and-bound and LP-relaxation techniques.
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The problem of locating multiple tree-shaped facilities is

considered by Hakimi, Schmeichel, and Labbé (1993) and it is shown that

the problem is NP-hard even on tree networks for both minimizing and

maximizing the distance sum objectives.

7.3  Eccentricity Objective:

Although the eccentricity objective is widely used in single point

location problems such as center problems, anticenter problems, dispersion

problems, etc., few studies exist in structure location theory that deal with

this objective.

7.3.1 Eccentricity Path Problems:

Minieka (1985) provided polynomial time algorithms for finding

the locations of path-shaped facilities of a specified length on a tree

network that minimizes or maximizes the maximum distance of any

customer to the facility. The solution is very simple for the minimum

ecentricity case and follows from the observation that the minimum

eccentricity path (or tree) must include the center of the tree. The problem

is extended to the multiple facilities case by Tamir and Lowe (1990) who

refer the problem as the Generalized p-Forest Problem. They provided a

polynomial algorithm for finding the location of p tree shaped facilities on

a tree network where the objective is minimizing or maximizing the

maximum distance traveled by the customers to a nearest facility and p is

fixed. When the facilities are located on a general network, the problem is

NP-Hard (Hakimi, Schmeichel, and Labbé, 1993).
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7.3.2 Eccentricity Cycle Problems:

The Cycle Center Problem (CCP) is defined by Foulds, Wilson, and

Yamaguchi (2000) as follows:  Given a network G = (V,E), identify a cycle

C in G that minimizes the maximum of the distances between any vertex

not in C to a closest vertex in C, such that C is of minimal length among all

such cycles. An ILP formulation of the problem is presented by the authors

and solved by branch-and-bound and subtour elimination constraints.

Although instances up to 25 nodes are solved, an efficient heuristic is

needed for larger instances.

7.3.3 Eccentricity Tree Problems:

Shioura and Shigeno (1995, 1997) studied the Tree Center

Problem, which is the problem of finding a subtree of a network such that

the maximum distance from other vertices of the network to the subtree is

minimized provided that the length of the subtree in smaller than a

prespecified value. They have formulated the problem as an ILP and

showed that it is equal to a Bottleneck Knapsack Problem when the

underlying graph is a tree network. The problem is solved in O(n) time

when the Subtree may or may not contain subedges. The case in which the

subtree cannot contain subedges is also solved by Minieka (1985) based on

the observation that the Subtree always contains the center of the problem.

The problem is extended to the multiple facilities case by Tamir and Lowe

(1990) and a polynomial time algorithm is provided for locating p tree-

shaped facilities on a tree network with the objective o minimization of the

maximum distance. This problem is NP-hard on general networks (Hakimi,
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Schmeichel, and Labbé, 1993). When the objective is maximizing the

maximum distance, the problem is polynomial (Hakimi, Schmeichel, and

Labbé, 1993) on tree networks and general networks.

A summary of the results presented in this chapter can be found in

the following tables:

Table 17: Literature on Structure Facility Location on Networks with

Covering Objective

Author Year Problem Summary
Current, ReVelle,
and Cohon

1984 Shortest Covering Path ILP formulation,
B&B

Current, Pirkul, and
Roland

1994 Shortest Covering Path B&B

Current, ReVelle,
and Cohon

1985 Maximal Covering
Shortest Path

Definition

Boffey and Narula 1998 Maximal Population
Shortest Path

ILP formulation
2 algorithms

Current, Revelle,
and Cohon

1988 Minimum-Covering
Shortest Path

ILP formulation

Current and
Schilling

1989 Covering Tour Definition

Gendreau, Laporte,
and Semet

1997 Covering Tour ILP, B&B
Polyhedral analysis

Maniezzo, Baldacci,
Boschetti, Zamboni

1999 Covering Tour Metaheuristics

Motta, Ochi, and
Martinhon

2001 Covering Tour Reduction
technique

Hodgson, Laporte,
and Semet

1996 Covering Tour Application in a
health care system

Current and
Schilling

1994 Maximal Covering
Tour

ILP formulation

Labbè, Laporte, and
Soriano

1998 Cycle Cover 6 heuristics

Kim, Lowe, Ward,
and Francis

1989 Minimum Length
Covering Subgraph

NP-Hard for
general networks
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O(n) for cacti
Kim, Lowe, Ward,
and Francis

1990 Subtree r-Cover on
trees

O(m2) algorithm

Kim, Lowe, Tamir,
and Ward

1996 Direct (Indirect)
Subtree Covering

O(n) [O(nlog2n)]
algorithm

Hutson and ReVelle 1989 Maximal Direct
Covering Tree of a tree

Definition

Church and Current 1993 Maximal Direct
Covering Tree of a tree

O(n2) algorithm

Table 18: Literature on Structure Facility Location on Networks with

Distance Objective

Author Year Problem Summary
Minieka 1985 Minimize (Maximize)

Distance Sum of a
Path-Shaped Facility

Polynomial
algorithms for tree
networks

Current, Revelle,
and Cohon

1987 Median Shortest Path ILP formulation
Complete enum.

Hakimi,
Schemeichel, Labbé

1993 Minimize (Maximize)
Distance Sum of Path-
and Tree-Shaped
Facilities

NP-hardness results

Current and
Schilling

1994 Median Tour ILP formulation
Heuristic

Labbé, Laporte,
Rodriquez-Martin,
and González

1999 Median Tour B&B
Heuristics

Foulds, Wilson, and
Yamaguchi

2000 Median Tour B&B

Moreno Pérez,
Moreno-Vega and
Rodríguez Martín

2002 Median Tour Tabu Search

Renaud, Boctor, and
Laporte

2004 Median Tour Genetic Algorithm

Shigeno and Shioura 1995 Tree Median on trees O(n) -continuous
NP-Hard –discrete

Kim, Lowe, Tamir, 1996 Median Subtree on O(n) algorithm
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and Ward trees (single objective)
George and ReVelle 2003 Median Subtree on

trees (biobjective)
ILP formulations
B&B

Table 19: Literature on Structure Facility Location on Networks with

Eccentricity Objective

Author Year Problem Summary
Minieka 1985 Minimize (Maximize)

Maximum Distance of
a Path- or Tree-Shaped
Facility

Polynomial
algorithms for tree
networks

Tamir and Lowe 1990 Generalized p-Forest Polynomial
algorithms for tree
networks

Foulds, Wilson, and
Yamaguchi

2000 Cycle Center ILP formulation
B&B

Shioura and Shigeno 1995
1997

Tree Center ILP formulation
O(n) –trees

Hakimi,
Schemeichel, Labbé

1993 Minimize (Maximize)
Maximum Distance of
Path- and Tree-Shaped
Facilities

NP-hardness results
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C h a p t e r  8

COMPETITIVE FACILITY
LOCATION ON NETWORKS:

Facility location decisions are quite complicated in the real world in

contrast to the simplicity of the proposed models in the literature. The

choice of a location depends on many factors such as customer demand

patterns, transportation costs, infrastructure, labor costs, environmental

issues, politics, accessibility to important facilities such as airports,

hospitals, etc. Basic models of location theory deal with problems in which

only demand configurations and transportation costs are involved. These

models generally assume that the organization that makes decisions to

locate its facilities is either a non-profit organization or it is monopolistic

in nature and no competitors who wish to provide the same products or

some substitute goods are available in the market. This assumption may

hold for some public services such as fire fighting or police coverage, but it

is virtually meaningless in modeling private sector where all companies

compete. In fact, competition is such an important factor in many

industries that it affects prices, quality, volume, trends, and even life styles.

Millions of dollars are spent for advertisements and promotions to create

and capture customer demand. It is obvious that facility location decisions

are highly affected by the competitive environment because the

organizations struggle to be close to the customers in order to attract them
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to their retailers or to be able to provide goods to demand points at lower

prices. Prices may in turn affect the demand weights and customers’

choices between facilities. Consequently, competitive location is a

complicated area of research that attracts the attention of economists,

geographers, and operations researchers.

In modeling competitive location problems, many assumptions are

made, so that the resulting models can be handled with available

mathematical and computational resources. These assumptions are various

and lead to many different models in the area. Unfortunately, every model

is unique and a slight change in a single assumption creates a new model

with completely unpredictable characteristics. We believe that the

assumptions proposed in these models induce a natural taxonomy for the

competitive location models and we follow the taxonomy presented below

which is similar to the taxonomy presented in the bibliographic study of

Eiselt, Laporte, and Thisse (1993). We extended this bibliography in light

of the survey papers by Eiselt and Laporte (1989a), Hakimi (1990),

Drezner (1995) and Plastria (2001). Based on this bibliography, we will

survey the papers in competitive location literature by focusing mainly on

the studies that involve network distances.

8.1  Taxonomy and Problem Features:

8.1.1 The space:

The first competitive location problem has been proposed for

locating two competing firms on a line segment by Hotelling (1929).

Although a long time passed since the first identification of the problem,
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many economists continue to study the problem in linear markets due to

the obvious simplicity of the problem. The papers on linear markets are

numerous (more than 60) and most of them appear in the economics

journals: Anderson (1987, 1988), Anderson and de Palma (1988),

Anderson, de Palma, and Thisse (1992), Anderson and Neven (1991), Artle

and Carruthers (1988), Asami, Fujita, and Thisse (1993), Beckman (1972),

Ben-Akiva, de Palma, and Thisse (1989), Bester (1989), Bonanno (1987),

Boyer, Lafont, Mahenc, and Moreau (1990), Boyer, and Moreau (1990),

Braid (1988), Capozza and Van Order (1980, 1989), Cremer, Marshand,

and Thisse (1991), D’Aspremont, Gabszewicz, and Thisse (1979), Dasci

and Laporte (forthcoming), de Palma, Ginsburgh, Labbé, and Thisse

(1989), de Palma, Ginsburgh, Papageorgiou, and Thisse (1985), de Palma,

Pontes and Thisse (1987), Eaton (1972, 1976), Eaton and Lipsey (1975,

1976, 1982), Economides (1986, 1989), Eiselt (1991), Fujita, Ogawa, and

Thisse (1988), Fujita and Thisse (1986), Ghosh (1996), Ghosh and

Buckanan (1988), Hamilton, Thisse, and Weskamp (1989), Kats (1987),

Lerner and Singer (1937), Osborne and Pitchik (1986, 1987), Shilonyi

(1981), Smithies (1941), Teitz (1968), and Weber (1990).

The problem also has been extended to employ other continuous

spaces such as circular markets, the plane and the m-dimensional real

space. The circular markets are appropriate to eliminate any boundary

effects induced by the linear bounded markets. Lerner and Singer (1937),

Eaton and Lipsey (1975), Salop (1979), Novshek (1980), Kats (1987,

1990), Economides (1989), and Kats and Thisse (1990) studied many

variants of competitive location problem on circular markets. The planar

problems are mostly studied by geographers to locate physical facilities.

The papers that study the problem in the plane are those of Beaumont
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(1980), Beckman (1972), Capozza and Van Order (1978), Carpenter

(1989), Drezner (1981), Drezner (1994), Drezner and Drezner (1997,

1998), Drezner, Drezner, and Eiselt (1996), Drezner, Drezner, and Shiode

(2002), Eaton and Lipsey (1975, 1976), Hamilton and Thisse (1992),

Hanjoul and Thill (1987), Hurter and Lederer (1985), Lederer and Hurter

(1986), Mills and Law (1964), Okabe and Aoyagy (1991), Okabe and

Suzuki (1987), Shaked (1982), and Wendell and McKelvey (1981).

Solving the problem in the plane is sometimes very tedious and

aggregation techniques are used for planar problems. Aggregation of

continuous demand into a finite number of points and how to reduce

aggregation error is discussed in Drezner and Drezner (1997).

The m-dimensional real space is used by decision analysts to model

abstract entities, such as candidates in a political arena and products in the

attribute space. Few papers study these problems: Bester (1989), Choi,

DeSarbo, and Harker (1990), and MacLeod, Norman, and Thisse (1987,

1988).

The problem has also been widely studied by operations researchers

in discrete space, networks, and special networks such as trees. We discuss

these in some detail in the following sections.

8.1.2 Number of Competitors:

Although in most of the papers in the literature there exist only two

competing organizations, there are few studies that deal with more than

two competitors (players). Each competitor can locate any number of

facilities. Usually the number of facilities each player will locate is
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assumed to be fixed and known. In a few cases the number of players and

facilities are not known a priori but determined by the model itself, these

models are called “free-entrance” models in economics.

8.1.3 Pricing and other policies:

In many real world situations, companies compete with each other

not only via facility locations but also by determining their prices, quantity

of the product offered to the market, quality of the service offered and

size/type of the facilities to be located. The prices can be used as decision

variables, may be fixed or nonexistant (no price), may be fixed for every

customer at the facility with a transportation cost that is paid by each

customer to access the facility (mill price), may be fixed for all customers

with the transportation costs being paid by the facility (uniform delivered

price), or may be differently priced for different customers (spatial

discriminatory price). In addition to models that involve prices there exist

few models that include other variables such as volume, quantity, and

facility size. The interested reader may refer to Karkazis (1989) for a

multicriteria model that involves distance and quality as objective criteria

and location and facility levels as decision variables.

8.1.4 Rules of the competition:

Many researchers model the competitive location problems as

multiplayer games and find equilibrium solutions based on the assumptions

and rules of the game. The first rule that comes into one’s mind is about

the timing of the decisions. The models are divided into two main

categories: Simultaneous location and sequential location of facilities.
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When facilities are simultaneously located and prices are fixed or

nonexistant, a Cournot-Nash solution, which is widely used in game

theoretical models, is searched for. This is a solution for the game in which

no competitor has any incentive to relocate his facilities. If the competitors

play a dynamic game in which they can relocate their facilities in turn by

starting at any solution, the game may eventually reach an equilibrium

state, known as a Cournot-Nash solution, if such an equilibrium exists.

When facilities are simultaneously located and prices are variable,

there are two conventions to model the problems. The first variation is a

two-stage game in which the players simultaneously determine the

locations of the facilities at the first stage and they simultaneously

determine their prices in the second stage. The solution to this two-stage

game is referred to as the Subgame Perfect Nash Equilibrium. The term

“subgame” hints the fact that each stage is solved optimally using a

Cournot-Nash Equilibrium. The second method is to simultaneously

determine the locations and prices. Nevertheless, these models are very

complicated and there exist only a few studies concerning them.

When facilities are located sequentially, completely different games

arise. The entrance of firms is assumed to follow an order and the first

entering firm is referred to as the leader whereas the second one is called

the follower. Two different optimization problems arise in this situation:

the leader’s problem in which a firm enters a virgin market having the

knowledge that a second firm will enter the market soon but perhaps not

having perfect information about the configuration of future demands and

the follower’s problem in which a firm enters a market where there are
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already existing facilities. Many problematic issues arise in sequential

problems and assumptions must be clear and reasonable in these models.

For example, if the follower is allowed to locate facilities at the same

points where the leader has located its facilities and a customer equidistant

to two facilities splits its demand between old and new facilities then the

follower always guarantee to capture as many customers as the leader by

locating its facilities on top of the old facilities. In such a situation each

firm will prefer to enter a market as a follower and the business will be

over before it has been started. There must be some benefits for the leader

firms such as a time restriction, which prevents followers entering a market

until the leader harvests the initial fruits. The sequential location problems

and their solutions are referred to as Stackelberg Games and Stackelberg

Equilibriums, respectively. Hakimi (1983) used the terms centroid and

medianoid for the leader’s and follower’s problems under fixed or non-

existing prices, which is somehow confusing because the objectives are

quite different from the well-known median and center problems. Eiselt

and Laporte (1996) presented a very valuable survey on sequential location

problems including complexity results, discussions on modeling and

remarkable insights.

The objectives used in competitive location problems can be very

different. Usually firms aim to maximize their market capture (number of

customers patronizing their facilities). Other objectives such as minimizing

the follower’s market share for the leader firm, maximizing profits,

maximizing the probability that a given profit is attained and guaranteeing

half of the demand (voting games) may also be used in competitive

location problems.
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8.1.5 Customer Behavior:

The customers choose facilities according to some preference rules.

An attraction function, whose inputs are distance of the customer to the

facilities, quality of the facility expressed in some measures such as facility

size, parking lot availability, product variability, etc. is devised for each

customer and the choices are made based on this function. The customer

behavior may be binary (deterministic) in which each customer patronizes

the facility to which she is attracted most, or it may be based on customer

preferences (probabilistic) in which each facility can be patronized with

some probability which is inversely proportional with the distance and

directly proportional with the quality of the facility. These models are

sometimes referred to as Huff models. There are also models, which are

between the two models, referred to as the partially binary models where

each customer patronizes the nearest facility of each organization with

some probability function.

The tie breaking rules are especially important in binary models.

Ties may be broken in favor of existing facilities or new facilities (in

sequential models) or the demand may be divided between tied facilities

according to some function such as total market share of each organization,

etc.

The customer demand weights may also depend on the location of

facilities. When the demand is essential such as health services, bread,

education, etc., the demand weights are independent of the distance of the

facility to the customer. Nevertheless, for non-essential demand such as

entertainment, restaurants, parks, etc., the demand weight is a
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nonincreasing function of the distance to the facility and the models for

non-essential goods must involve the variable characteristics of the demand

weights. In fact, locating new facilities in some areas may also generate

new demand points, which is an untouched issue in the literature.

8.1.6 Information:

The information available for each player is also an important

factor for game theoretical models of competitive facility location. The

players may have complete information about the market or may have

perceptions of the market. If there is no full information, then competitors

must use some estimate of each other’s market perception in order to

develop concrete models. The value of information may be so high in some

games that firms pay money to discover each other. The value of the

information as well as how much information is needed to understand the

game are discussed in Eiselt (1998).

8.2  Simultaneous Entry Models:

8.2.1 Deterministic (Binary) Customer Preferences:

As we have mentioned before, the Cournot-Nash equilibrium

concept is used for the solution of competitive location problems with

simultaneous entry of the firms into the market. Tobin and Friezs (1986)

presented two models in which a firm enters a competitive market and the

location of the firm’s production site and the production amount are

decision variables. The firm entering the market is producing large

amounts of the product and the price is a function of the total quantity of
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the goods supplied to the market. A mathematical model, based on the

price equilibrium models, is presented in Harker (1986) with a nonlinear

objective function and linear constraints. It was computationally infeasible

to solve such a large nonlinear problem so it has been solved for many

different prices using a heuristic approach. The model is further developed

by Labbé and Hakimi (1991) in which two firms simultaneously enter the

market by opening one production site each. The firms first choose their

facilities’ locations then set production quantities. The price of the good is

a linear decreasing function of the total amount produced by both of the

firms. It is proved that a Subgame Perfect Nash Equilibrium always exists

and an O(n3) algorithm is provided to find the solution when the facility

sites are restricted to the vertices of the network.

Lederer (1986) presented a different model for two competing firms

entering a market simultaneously. The firms first design their networks,

then determine prices knowing each other’s network structure. This study

stands out because it is the unique study in competitive location literature

that involves the design of a network. The problem has application areas in

transportation and distribution sectors. It is shown that under certain

conditions Nash Equilibrium exists which is socially beneficial for

customers. This analysis is related to the studies of Lederer (1981) and

Lederer and Hurter (1986), which analyse discriminatory pricing and

location for problems in the plane.

Lederer and Thisse (1990) developed a model for two competitors

on a network when the locations are restricted to the vertices of the

network. First the firms determine their locations and the production

technology they will use on these facilities (there exists a finite number of
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technologies available), and then they set prices knowing each other’s

decisions. This is a two-stage game and the equilibrium is attained using a

Subgame Perfect Nash Equilibrium solution. The solution is again optimal

from the customers’ point of view and is somehow a generalized 2-median

of the network.

Fischer (2002) developed a model in which two competitors enter a

market by determining their facilities’ locations and their prices. The

demand weight for each customer is dependent on the price of the good

and every customer is charged a different price from other customers by

each facility. When the firms decide on the location and price at the same

time, the resulting model is nonlinear and hard to solve. On the other hand,

when the prices are adjusted after the location decisions, Nash Equilibrium

is reached. It is observed that firms try to avoid sharing markets.

8.2.2 Probabilistic Customer Preferences:

De Palma, Ginsburgh, Labbé, and Thisse (1989) studied the

problem when m firms enter the market. Each firm i opens mi facilities and

the customer demand is divided among the nearest facilities of each firm

according to some probability function that assigns higher probabilities to

nearer facilities. A dispersion factor is also included in the attraction

function that determines the level of different tastes in customer

preferences. When the customers’ preferences are diverse enough, it is

shown that Nash Equilibrium is reached when each firm locates its

facilities at the mi-medians of the network.
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8.3  Sequential Entry Models:

8.3.1 Deterministic (Binary) Customer Preferences:

Wendell and McKelvey (1981) studied the two-facility competitive

location problem from the leader’s point of view. They aimed to find a

point in the location space such that the leader guarantees at least as many

customers as the follower regardless of the follower’s location. Customers’

choice is solely dependent on the distance to the facility. This is also

referred as the Voting Game in which a candidate tries to guarantee half of

the votes in an election. Wendell and McKelvey (1981) studied the

problem on the line, in the plane, and on a network. Local and global

solutions are characterized and it is shown that a symmetry property holds

when a global optimum exists. It is shown that when the number of

vertices is odd, then the optimum solution occurs on a vertex of the graph.

The solution to this problem is also referred to as the Condorcet Solution in

some references (Hansen and Thisse, 1981; Hansen, Thisse, and Wendell,

1986). It is shown that the set of solutions to this problem (Condorcet

Solution), the 1-median problem and the two-facility competitive location

problem in which customer demands are divided between equidistant

facilities (Nash Solution or Plurality Solution) are equivalent on tree

networks because of the convexity of the distance function in tree networks

(Hansen and Thisse, 1981, Wendell and McKelvey, 1981). For general

networks Hansen, Thisse, and Wendell (1986) prove that the local

solutions to the three problems is equivalent where a local solution is a

solution which is optimal with respect to the points in a small

neighborhood around. Furthermore, the Condorcet solution is a 3-

approximatoin to the 1-median solution on a general network in the worse
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case (Hansen and Thisse, 1981). Bandelt (1985) characterized the networks

for which Condorcet Solutions and 1-medians coincide. The Condorcet

Solutions may not exist for some networks; instead a related solution

concept introduced by Simpson (1969) can be used. A Simpson Solution is

a point on the network which minimizes the largest total weight of demand

points closer to any other point. The Simpson Solution concept may be

useful when a leader aims to minimize the market capture of its follower.

Hansen and Labbé (1988) provided polynomial time algorithms to find

Condorcet and Simpson Solutions of a general network.

Megiddo, Zemel, and Hakimi (1983) introduced the Maximum

Coverage Location Problem. The problem aims to locate r facilities on a

network in which customers are being served by old facilities in order to

maximize the number of customers patronizing new facilities. The

locations of the old facilities are not considered but the critical distance at

which each customer wishes to switch from an old facility to a new facility

is known. The attraction function is dependent only on the distance and ties

are broken in favor of old facilities. The problem is NP-hard on general

graphs as shown by the authors by reducing from the Minimum

Dominating Set Problem. A finite dominating set is identified which is

order of O(n) for trees and O(mn) for general networks, where m is the

number of edges. An O(n2r) dynamic programming based algorithm is

provided for tree networks based on this observation. It is also noted that

when the objective is to capture the entire market and the number of

facilities to open is not known, the algorithms devised for the Covering

Problem can be used.
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The Maximum Coverage Problem becomes simpler when the

locations of old facilities are known. This problem is called the (rXp)-

medianoid problem and can be stated formally as follows: Given a network

N=(V, E) and a set Xp of p facilities already established on the network,

find a set of r facilities Yr
* on N  such that )(maxarg

,

*
prrYNYr XYWY

rr =∈
=

where ∑ <= }),(),()({)( prrr XvDYvDvwXYW . Finding the absolute and

vertex-restricted (rX1)-medianoid is NP-hard on general graphs as shown

by Hakimi (1983) and Hakimi (1990), respectively. Although the problem

is NP-hard for variable number of facilities, polynomial algorithms may be

devised when r is fixed. Megiddo, Zemel, and Hakimi (1983) provided an

O(nrmr/r!) algorithm for finding the  (rXp)-medianoid of a general graph.

Hakimi (1990) proved that the nodal optimality theorems do not hold for

the medianoid problems even the problem is as simple as a (1X1)-

medianoid. Megiddo, Zemel and Hakimi (1983) provided an O(mn)

algorithm for the (1X1)-medianoid problem.

Medianoid problems are the follower’s problems, but what about

the leaders? The problems of locating p facilities knowing that a follower

will locate r facilities in competition is called the (rp)-centroid problem

and formally defined as follows: Given a network N=(V, E) and a find the

set of p facilities Xp
* on N such that ))((maxarg *

,

*
ppr

pXNX
p XXYWX

pp =∈
=

where Yr
* is a (rXp)-medianoid. The (11)-centroid of a general graph

may not be on a vertex of the graph (Wendell and McKelvey, 1981;

Hakimi, 1983), but there always exist a (r1)-centroid that is a vertex for

r>1 (Hakimi, 1990). The (11)-centroid of a tree network is always on a

node and it is the 1-median of the tree (Slater, 1975; Wendell and
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McKelvey, 1981). The (11)-centroid of a general network was solved by

a O(m4m2logmnlogD) algorithm by Megiddo, Zemel, and Hakimi (1983),

where D is the total demand weight.  It is shown that finding absolute or

vertex-restricted (1p)-centroid of a general network and finding an

approximation algorithm with a performance guarantee to the problem is

NP-hard (Hakimi, 1990).

The (rp)-centroid and (rXp)-medianoid problems are extended to

the cases when the demands are nonessential and depend on the distance to

the facilities and demands are distributed according to customer

preferences. Several nodal optimality results together with important

insights of the problems is provided in Hakimi (1990). The paper also

provides insight on the multi-period games in which facilities may be

relocated and new rules of the game are introduced. The (rp)-centroid

problem is also analyzed for networks with stochastic demand weights. In

stochastic problems, it is assumed that the leader does not have complete

information on the future demand weights when the follower enters the

market. The stochastic (11)-centroid problem is solved by Shiode and

Drezner (2003) on tree networks based a nodal optimality result and

bisection search.

The vertex-restricted (rp)-centroid problem is referred to as the

Maximum Capture Problem by ReVelle (1986). The problem is formulated

as an IP, based on the classical Maximal Covering Problem by Church and

ReVelle (1974). Eiselt and Laporte (1989b) modified the model to include

attraction parameters. Their model assigns an attraction value to each

facility-customer pair based on the inverse square distance between them

and referred to as the “gravity” model. ReVelle and Serra (1991) modified
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the model to a dynamic one, which includes relocation of old facilities and

opening new facilities in each period. The model is further extended to

involve hierarchical facilities and competition at each level of hierarchy by

Serra, Marianov, and ReVelle (1992). It is also extended to involve

uncertain demand weights and two models are proposed for the problem.

The first model maximizes the minimum possible market capture, whereas

the second minimizes the maximum regret. A branch-and-bound algorithm

and a 1-opt heuristic are provided for the problem. The maximum capture

objective of the MaxCap Problem was modified to a preemptive one in

which the leader firm locates p facilities in order to minimize the

follower’s market capture where the follower also locates p facilities in

Serra and ReVelle (1994). When the two facilities are equidistant to a

customer, the market is shared so that the follower always guarantees

capturing half of the demand. An IP formulation is presented and two

heuristics are proposed. The first heuristic locates the leader’s p facilities

then solves the MaxCap Problem of follower’s to optimality using branch-

and-bound, then iterates by changing one of the leader’s facilities’

locations. This heuristic is in fact a 1-opt procedure. The second heuristic

uses another heuristic for the MaxCap Problem. The heuristics are

compared in terms computation time and solution quality. The algorithms

may also be used when the numbers of facilities each firm locates are

different from each other (Serra, Ratick, and ReVelle, 1996).

Dobson and Karmarkar (1987) studied a very different version of

the problem in which a leader firm chooses a set of points such that no

other firm can open a facility which is profitable. The number of facilities

is not known a priori but is a model parameter. Several versions of stability

are discussed and IP formulations are provided to identify stable sets. The



COMPETITIVE FACILITY LOCATION ON NETWORKS

138

problem is proven to be NP-hard and an enumeration algorithm is

presented.

Brandeau and Chiu (1994) solved a two-facility competitive

location problem on tree networks using a different attraction function,

which includes market externalities such as congestion at the facility, delay

time in the cashier queue, and etc. A facility’s attractiveness is inversely

proportional with the distance and market externality factor associated with

it. Ties are broken in the favor of the firm whose market share is greater.

The optimal solutions are characterized and an O(n2) algorithm is provided

to solve the problem on tree networks.  When the firms are equally

attractive for each customer, the solution is the 1-median of the tree.

The MaxCap or (rXp)-medianoid problem is solved by Dasci,

Eiselt, and Laporte (2002) on networks in which demand is distributed

along the edges. It is shown that (rXp)-medianoid problem is NP-hard on

general graphs with edge demands only. It is shown that an optimal

solution may not exist for the single facility case. Neverthless, a finite set

of O(nm) points is identified which includes all optimal or ε-optimal

solutions. An O(nm2) algorithm is presented to find optimal or suboptimal

solutions for the (1Xp)-medianoid problem with edge demands which is

similar to that of Megiddo, Zemel, and Hakimi (1983).

8.3.2 Probabilistic Customer Preferences:

The Condorcet Solutions are extended to involve probabilistic

customer preferences by Bauer, Domschke, and Pesch (1990, 1993). Two

competitive facilities are to be open on the network and the leader wants to
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locate its facility on a point that guarantees as many customers as the other

facility regardless of the follower’s location. It is shown that if there exists

an optimal solution, then at least one optimal location is on one of the

nodes of the network. An algorithm for providing optimal (if they exist)

and sub-optimal solutions is presented.

The MaxCap Problem is extended to include the probabilistic

customer preferences. The attraction function for each customer is not

known in advance but is a continuous random variable of distance (Benati,

1999). Under certain assumptions the problem is modeled as an IP. Two

brach-and-bound algorithms are provided for the problem based on

Lagrangean Relaxation and submodularity of the objective function,

respectively. The algorithms are very effective in that large instances of the

problem (100 nodes) are solved in a few seconds. Benati and Hansen

(2002) also studied this problem with a more general attraction function.

The resulting model is a special IP whose terms in the objective function

are ratios. The problem is new in the literature and proven to be NP-hard.

A branch-and-bound algorithm together with an efficient heuristic is

provided for the problem.

Colome and Serra (2001) compared 3 different probabilistic

MaxCap models with the deterministic MaxCap formulation. Based on

results obtained from test instances, it is discussed that when the

appropriate model to use is not be known in advance; the deterministic

model provides the minimum error.

As opposed to the Max Cap problem, consider a case when a firm

wants to enter a competitive market and the number of facilities to be
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opened in this market is not predetermined. In this case, a competitive

version of the Uncapacitated Facilitiy Location Problem arises. Benati

(2003) studied such a problem in which customer preferences are

heterogeneous and a probability function is used to represent the customer

behavior. The problem is modeled as a nonlinear integer program while the

objective function is concave and submodular. A branch-and-bound

algorithm is developed for instances smaller than 50 and a metaheuristic

similar to Heuristic Concentration of Rosing and Revelle (1997) is used for

larger instances.

The single facility MaxCap or (1Xp)-medianoid problem was

solved for networks in which demand is not only generated by the nodes of

the network but it is uniformly generated on the links of the network.

Okunuki and Okabe (2002) solved this problem when the customer

preferences are probabilistic and devised an O(n2logn) algorithm for

general networks.

Berman and Krass (2002) considered a competitive location model

with probabilistic customer preferences. Their model is different than

previous models because the customer demands change as new facilities

enter the market. The demand is affected in two ways: first it increases

because new firms create new demands called “market expansion” and

second and more familiar, the demand decreases because new facilities

share customers of old facilities owned by the same organization called

“cannibalization”. Berman and Krass (2002) characterize optimal and

suboptimal solutions to the problem considering variable expenditure

functions and market expansion and cannibalization effects.
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8.4  Flow-Intercepting Competitive Location Models:

In the real world, many customers go to retailers such as

supermarkets, gas stations on their way to home or office. They can either

make special purpose trips to facilities or they are intercepted by the

facility on their route to other destinations. This type of models is referred

to as Flow Intercepting Spatial Interaction models (Berman, Hogdson, and

Krass 1995). Berman and Krass (1998) studied the competitive version of

the Flow Intercepting model. The problem is solved via branch-and-bound

and a very efficient heuristic is provided for the model with worst-case

performance analysis. When customers make no special trips but only

intercepted by the facilities on their route, the problem is referred to as the

Flow-Capturing Problem (Hodgson, 1990). The competitive version is

solved by Wu and Lin (2003) who developed a mathematical model and a

greedy heuristic for the problem.

The literature on competitive facility location problems is

summarized below:

Table 20: Literature on Competitive Facility Location when Competitors

Simultaneously Enter the Market

Author Year Problem Summary
Harker 1986 Nonlinear, price

equilibrium model
Heuristic

Labbé and Hakimi 1991 2 firms, 2 facilities Subgame Perfect
Nash Equilibrium
O(n3) algorithm

Lederer 1986 2 firms, network design
and price setting

Nash Equilibrium
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Lederer and Thisse 1990 Vertex-restricted 2
firms including
production tech.

Subgame Perfect
Nash Equilibrium

Fischer 2002 2 firms when demand
weights are dependent
and price

Nash Equilibrium

De Palma,
Ginsburgh, Labbé,
and Thisse

1989 Multiple firms,
probabilistic customer
preferences

Nash Equilibrium

Table 21: Literature on Competitive Facility Location when Competitors

Sequentially Enter the Market

Author Year Problem Summary
Wendell and
McKelvey

1981 Voting Game Local and global
solutions are
characterized

Hansen and Thisse 1981 Voting Game Equal to 1-median
on trees

Simpson 1969 Voting Game Simpson Solution
Hansen and Labbé 1988 Voting Game Polynomial

algorithms for
Condorcet and
Simpson Solutions

Megiddo, Zemel,
and Hakimi

1983 Maximum Coverage NP-hard on general
graphs
Finite dominating
set
O(n2r) alg. for trees

Hakimi 1983
1990

(rXp)-medianoid NP-hardness results
O(nrmr/r!)
algorithm

Hakimi 1983
1990

(rp)-centroid NP-hardness results

Megiddo, Zemel and
Hakimi

1983 (1X1)-medianoid
(11)-centroid

O(mn) algorithm
O(m4m2logmnlogD)

Shiode and Drezner 2003 Stochastic (11)-
centroid

Nodal optimality
for trees

ReVelle 1986 Maximum Capture IP formulation
Eiselt and Laporte 1989 Maximum Capture IP formulation
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with attraction
parameters

ReVelle and Serra 1991 Dynamic Maximal
Covering

IP formulation

Serra, Marianov, and
ReVelle

1992 Hierarchical Maximal
Covering

IP formulation
Heuristics

Serra and ReVelle 1994 Preemptive Maximal
Covering

IP formulation
Heuristics

Dobson and
Karmarkar

1987 Unknown number of
facilities

IP formulations
Enumeration alg.

Brandeau and Chiu 1994 2 facility problem with
market externalities

O(n2) algorithm for
trees

Dasci, Eiselt, and
Laporte

2002 (rXp)-medianoid with
cont. link demands

O(nm2) algorithm
when r=1

Bauer, Domschke
and Pesch

1990
1993

Condorcet Solutions
with probabilistic
custumer preferences

Nodal optimality

Benati
Benati and Hansen

1999
2002

MaxCap with
probabilistic custumer
preferences

IP formulation
B&B

Colome and Serra 2001 MaxCap Compared binary
and probabilistic
models

Benati 2003 Unknown number of
facilities with
probabilistic customer
preferences

Nonlinear Integer
Program
B&B
Metaheuristics

Okunuki and Okabe 2002 (1Xp)-medianoid with
continous link demands
and probabilistic cust.
Preferences

O(n2logn)
algorithm

Berman and Krass 2002 Market expansion and
demand canibalization

Characterize
optimal and
suboptimal
solutions
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C h a p t e r  9

ROBUST FACILITY LOCATION
ON NETWORKS:

The reliability and validity of the location models used in decision

making depend on the data used. Although the models become much

simpler when the data is deterministic and accurate, it is nearly impossible

to expect to have deterministic data for many real world problems. One

primary reason for this is that most location decisions affect a long time

horizon so that the data used at the time of decision-making is just an

estimate of what is expected to occur in the future. The second reason is

that most of the data used in models such as demand volumes or travel

times are not deterministically known by the analyst but obtained by

statistical methods such as data sampling. In either case, the data at hand is

uncertain and may or may not obey an a priori available probability density

function. When the data follows a probability distribution, stochastic

programming may be used for modeling and solving these problems.

Nevertheless, when the data is totally random with no specific pattern then

a set of scenarios is used. The set of scenarios may be finite so that the

problem is solved via solving a number of problems on each scenario or

may be infinite in which case a lower and an upper bound is assumed to be

available for each parameter so that the realizations of each parameter is

assumed to be confined to an interval. In both situations, robust approaches
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may be appropriate in which the performance in a worst case scenario

according to some objective criterion is optimized.

9.1  Robustness:

When the data is uncertain, the decision maker may be pessimistic

and be concerned with the worst solutions in order to avoid serious failure

of the business. Furthermore, he may not only be concerned with the cost

function and how it varies with the actual realizations of model parameters

but also with the difference between the costs associated with the location

decision and the optimal decision that would have been made if the

parameters were perfectly known a priori to the decision. These concerns

give rise to robust approaches that aim to produce solutions that are not

very far away from the optimal decisions for every possible realization of

model parameters (scenario). A robust solution to a problem may be

interpreted as an ε-optimal solution for any realization of the parameters

(Averbakh and Berman, 2000b) and robust models try to minimize ε. Two

robust approaches are used in the literature:

Absolute robust criterion:  The maximum objective function value

among all possible scenarios is minimized. More formally, given a network

N=(V, E), a set S of scenarios consisting of all possible values of node

weights and edge lengths, a set of functions fs(.) which is the objective

function to be minimized under scenario s, and a set F which is the space

of all feasible solutions; the absolute robust problem is to find a set of

points X ⊆ N such that  )(maxminarg XfX sSsFX ∈∈
∈ .
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Robust deviation criterion (Minimax regret): The regret of a

location decision with respect to a scenario is defined to be the difference

between the objective function of the location decision and the optimal

objective function value associated with the scenario. The minimax regret

criterion looks for a location decision whose maximum regret among all

possible scenarios is minimum. More formally, given a network N=(V, E),

a set S of scenarios consisting of all possible values of node weights and

edge lengths, a set of functions fs(.) which is the objective function to be

minimized under scenario s, and the set F which is the space of all feasible

solutions; the minimax regret problem is to find a set of points X ⊆ N such

that  )]()([maxminarg *
sssSsFX

XfXfX −∈
∈∈

 where *
sX is an optimal solution

for the problem under scenario s.

Robust problems became popular in recent years and many

problems in the field of optimization are solved based on the above

robustness criteria (Ben-Tal and Nemirovsky, 2002). Furthermore, new

robustness measures are introduced and used by researchers for many

problems. The state of the art on handling robust discrete problems is

presented by Kouvelis and Yu (1997) and the interested reader is referred

to this extensive book for further discussion on advantages of minimax

regret approach to problems with uncertain data. However, in location

problems on network the two criteria presented above are widely used and

few other measures are introduced. In fact, the literature on robust network

location problems is devoted to median and center type of problems with

absolute and deviation robust measures and we will focus only on these

problems in the following sections.
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9.2  p-Median Problem with Uncertain Data:

Tansel and Scheuenstuhl (1988) studied the 1-median problem

when the node weights are not known in advance but restricted to be in

specific intervals on tree networks. Three solution concepts are defined for

this problem; weak, strong and permanent solutions. A point is a weak

solution if it minimizes the total weighted distances from every vertex for

at least one scenario. A point is a permanent solution if it minimizes the

sum weighted distances from every vertex under all scenarios. Lastly, a

point is a strong solution if it minimizes the total weighted distances with

some positive probability. It is shown that the set of weak solutions

constitute a subtree of the tree and a linear time algorithm, which trims the

tree until the set of weak solutions remain, is presented. Furthermore, it is

shown that the permanent solution is either a vertex of the tree or it simply

does not exist. It is also shown that if a probability distribution function is

assumed for each point of the tree to be an optimal solution then the strong

solutions can be found by evaluating the vertices of the tree that belong to

the set of weak solutions. The concept of permanent solutions are further

extended by Demir, Tansel, and Scheuenstuhl (forthcoming) to unionwise

permanent solutions. A set of solutions is unionwise permanent if they

collectively behave like a permanent solution. Methods for finding

unionwise permanent solutions for the 1-median problem on tree networks

are presented. The unionwise solutions may be further examined by the

decision maker and a single point solution may be chosen among them.

These two papers are different than the other papers in the literature

according to the solution concepts used and a simple discussion about the

comparison of permanent solution and minimax regret solution concepts is

presented in this paper.
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Kouvelis, Vairaktakis, and Yu (1994) studied the robust 1-median

problem on a tree network when the data is imprecise. When the data is

discrete and is available in the form of a number of scenarios, the absolute

robust and minimax regret solutions can be found in O(sn) time, where s is

the number of possible scenarios and n is the number of nodes, based on

the facts that the median function on each edge for each scenario is linear,

and the objective function localized on an edge is the maximum of a set of

linear functions and is a convex piecewise linear function. When the data is

given as intervals for node and link lengths, a worst case scenario is

constructed for each point of the network which gives the worst objective

function value if a facility is placed on point x. It is shown that in every

worst case scenario the link lengths are equal to their upper bounds when

the network is a tree so the link lengths are considered to be deterministic

and set to their upper bounds. Furthermore, a finite set of scenarios is

identified which contains all worst case scenarios. It is shown by a simple

example that the nodal optimality results do not hold for robust problems.

When the location of the facility is restricted to the set of nodes, an O(n3)

algorithm is presented for the problem. When the location of the facility is

unrestricted an O(n4) algorithm is given. Chen and Lin (1998) studied the

same problem and shown that the vertex-restricted robust 1-median of a

tree belongs to the set of scenario medians and is a subset of V.

Furthermore the absolute (unrestricted) robust 1-median of a tree is on one

of the edges adjacent to the vertex-restricted robust 1-median so the search

for the restricted and unrestricted robust 1-median is reduced significantly.

An O(n3) algorithm is presented for the unrestricted case. The objective

function is convex on any path of the tree network as observed by

Averbakh and Berman (2000a) who proposed an improved O(n2) algorithm
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for the node-restricted problem. It is also possible to solve the restricted

and unrestricted problems by a complicated algorithm in O(nlog2n) time

(Averbakh and Berman, 1996) as stated by the authors themselves.

Averbakh and Berman (2000a) studied the robust 1-median

problem on general networks for the first time and presented the first

polynomial time algorithm for the problem when the demand weights are

uncertain and restricted to specified intervals but link lengths are

deterministic. The algorithm divides each edge into treelike segments on

which the objective function is convex and solves the problem in

O(mn2logn) time for the unrestricted case. It is shown that when the link

lengths are also uncertain and belong to specified intervals the problem is

strongly NP-hard on general networks (Averbakh, 2003).

Burkard and Dollani (1999) studied the robust 1-median problem

on tree networks when the vertex weights are given in intervals and may

assume negative values as well as positive ones. This problem may be

useful in modeling the location of obnoxious facilities. It is shown that

there exists at least one vertex that is optimal when the absolute robustness

criterion is used. This problem is handled by solving the problem on each

treelike segment on every edge. The time complexity of the algorithm is

linear. When the minimax regret approach is used instead of absolute

robust criterion, the problem is solved in O(n2) time. The number of

scenarios is reduced to a finite number and worst case scenarios are

identified for certain pairs of points on the network under each criterion.

Burkard and Dollani (1999) also introduced and solved the Dynamic

Robust 1-Median problem on tree networks in which the vertex and edge

weights are dynamically changing according to some variable, which
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represents the time, and node weights may assume negative and positive

values. It is shown that nodal optimality is not present in such problems.

The absolute robust problem is solved in linear time whereas the robust

deviation problem is solved in O(n2α(n)logn) where α(n) is the inverse

Ackermann function.

9.3  p-Center Problem with Uncertain Data:

The robust p-center problem is easily handled on networks when

only the node weights are uncertain and assume interval data. Averbakh

and Berman (1997) showed that the absolute robust p-center problem could

be solved by setting all node weights to their maximum values and solving

the resulting single p-center problem. Likewise the deviation robust

(minimax regret) p-center problem can be solved by solving n+1 p-center

problems on the network with each center problem corresponding to a

specific scenario. Thus the robust p-center problem with only uncertain

node weights is polynomialy solvable for the cases in which the p-center

problem is polynomialy solvable. This is also true for some other problems

with minimax objective (Averbakh, 2000).

The robust 1-center problem like the median version is shown to be

strongly NP-hard on general graphs when the vertex and link weights are

uncertain and only interval estimates of these parameters are available at

hand (Averbakh, 2003). The problem is studied on tree networks

extensively by Averbakh and Berman (2000b). For each point on the tree, a

worst case scenario is characterized in which the objective is the worst

when the facility is on this point and it is shown that the robust 1-center of

a tree is a unique point. An algorithm which finds the edge that contains
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the optimal solution in O(n2logn) time is presented, this algorithm of

course solves the node-restricted version in the same time whereas requires

more effort to find the unrestricted solution. The absolute problem is

solved in O(n6) time whose high computational complexity proves that the

problem is not such an easy one even on tree networks. The problem is

also solved in O(n2logn) time for the unweighted case in which the node

weights are deterministic and equal to 1 and link lengths are uncertain. The

results of Averbakh and Berman (2000b) are improved by Burkard and

Dollani (2002). Burkard and Dollani (2002) showed that the edge that

contains the optimal solution can be found in O(nlogn) time and when the

problem is unweighted the optimal solution on this edge can be placed in

linear time which results in an algorithm of O(nlogn) for the unweighted

case. Furthermore the authors showed that when the solution is restricted to

a single edge a finite number of worst case scenarios may be identified

which is in the order of O(n3) and the problem can be solved in O(n3logn)

time. This paper contains valuable discussion on the behavior of the

objective function and recommended for those who seek to grasp the

technical details of the problem.

9.4  Further Remarks:

There are few other models in the network location literature,

which involve uncertainty but are different than the models introduced

above. We would like to mention the ones that attracted our attention.

The models we have covered assume that the number of facilities to

be placed is known in advance. Nevertheless, there may be cases in which

the number of facilities to be placed is uncertain and a number of scenarios
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are given each corresponding to a different realization of the parameters:

the number of facilities to be placed and the node weights. Current, Ratick,

and ReVelle (1997) studied such a problem, which is referred to as the

NOFUN problem. Two versions of the problem are considered: the

stochastic one in which each scenario is assigned a probability of

occurrence and the expected opportunity loss is minimized and the robust

one in which the occurrence of the scenarios is totally random and the

maximum regret over all scenarios is minimized. ILP formulations are

presented for each model and complete enumeration is used to solve the

models.

Another model is presented by Daskin and Hesse (1997). This

model is called the α-reliable p-minimax regret model, which is developed

in order to avoid some disadvantages of minimax regret models. It is

discussed that the worst case or average case models are not realistic to be

used in the real world because the worst case model is too costly and the

average model is too risky for the real world. The α-reliable p-minimax

regret model is a hybrid approach that assigns probabilities to scenarios

and minimizes the maximum regret over a subset of scenarios whose total

probability of occurrence is greater than a threshold value α. The model is

formulated as an ILP and an 88-node instance of the model is solved using

branch-and-bound. We believe that this approach may be useful in many

applications and interested readers are referred to the paper in order to have

an idea of possible extensions and future research areas related to this

approach.

The last model we find important is by Killmer, Anandalingam, and

Malcolm (2001) who studied the location of a noxious facility on a
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network in which the demand weights, link lengths, and production costs

are uncertain. This problem is modeled as a nonlinear program and solved

using GAMS. The model is a multiobjective one, which minimizes

maximum regret and the expected cost simultaneously and provides

intuition for developing new hybrid models.

The literature presented in this chapter is summarized in the

following tables:

Table 22: Literature on Robust Minisum Facility Location on Networks

Author Year Problem Summary
Tansel and
Scheuenstuhl

1988 1-Median with
interval data

Weak, strong and
permanent solutions

Demir, Tansel, and
Scheuenstuhl

Coming 1-Median with
interval data

Unionwise
permanent solutions

Kouvelis,
Vairaktakis, and Yu

1994 Robust 1-median of
a tree

O(sn) – discrete
O(n3) – interval
data, vertex-
restricted
O(n4) – interval
data, absolute

Chen and Lin 1998 Robust 1-median of
a tree

O(n3) algorithm for
the absolute problem

Averbakh and
Berman

2000a Robust 1-median of
a tree

O(n2) – vertex-
restricted

Averbakh and
Berman

1996 Robust 1-median of
a tree

O(nlog2n))
algorithm

Averbakh and
Berman

2000a Robust 1-median of
a network

O(mn2logn)
algorithm

Averbakh 2003 Robust 1-median of
a network

NP-hardness results
when link lenghts
are also uncertain

Burkard and Dollani 1999 Robust 1-median of
a tree with pos/neg
weights

O(n) –absolute
robust
O(n) –minmax
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regret
Burkard and Dollani 1999 Dynamic robust 1-

median of a tree
with pos/neg
weights

O(n) –absolute
robust
O(n2α(n)logn) –
minmax regret

Table 23: Literature on Robust Minimax Facility Location on Networks

Author Year Problem Summary
Averbakh and
Berman

1997 Robust p-center Solving n+1 p-center
problems

Averbakh 2003 Robust p-center with
uncertain link length

NP-hardness results

Averbakh 2000b Robust p-center on
tree networks with
uncertain link length

O(n2logn) –
unweighted

Burkard and Dollani 2002 Robust p-center on
tree networks with
uncertain link length

O(nlogn) –
unweighted
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C h a p t e r  1 0

AGGREGATION METHODS FOR
LOCATION PROBLEMS:

We have reviewed the existing literature on location problems on

networks in the previous chapters. These problems are preferred by most of

the location analysts because their data requirements are not very high

compared to other location models. Usually, demand and distance data is

sufficient to describe a problem. Although considerable effort has been

devoted to the development of exact solution methods for these models,

relatively less attention has been given to the gathering and analysis of the

data used in these models. Most of the data sets are constructed without

having the specific model at hand so they are far away from being error

free and detailed enough for the specific problem. Moreover, most of them

are aggregated data and contain errors that are unknown to the analysts. It

is obvious that when the data sets include considerable deviations from the

actual data, the efforts paid to solve the model to optimality become

meaningless. On the other hand, most of the real world problems involve

millions of demand points so the data used must be aggregated into a

smaller data set. For example, when we need to locate emergency services

in a city, every household is a demand point and it is computationally

infeasible to solve a location problem with millions of demands.

Consequently, the demands are usually aggregated according to the postal
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codes. Of course, every aggregation scheme will introduce some error into

the model and there exists a trade off between data tractability and

accuracy. Aggregation is crucial to handle such problems but the error

induced must be controlled cleverly. That is the main reason why

aggregation models of location problems have received serious attention in

the last decade. The development of information technologies such as

Geographical Information Systems (GIS) that handle large amounts of data

with a user-friendly graphical interface has also dramatically increased the

importance of aggregation because unaggregated data is available for many

geographical areas and researchers have the opportunity to aggregate the

data themselves via having a high level of control on the error introduced

into the model. The interested reader is referred to Church (2002) for a

detailed discussion on the integration of location science and GIS. We feel

that concluding a survey on location problems without dealing with

aggregation issues will make it incomplete and this chapter is devoted to

fill this gap.

10.1 Aggregation Models:

Assume that we are solving a location problem on a very large

demand set P with m demand points and aim to locate n facilities on the

candidate facility sites (which can be same as or different than P). We

would like to decrease the number of demand points from m to q where q

is much smaller than m but greater than p so that the resulting problem is

nontrivial. We replace each demand point Pi in P with an aggregate point

Pi’ such that Pi’s are not necessarily different from each other and the

demand set P = {P1,…Pm} is aggregated into a smaller demand set P’

consisting of the aggregation points P’1,…P’q. If the original objective
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function is f(X, P), the objective function of the aggregated problem can be

denoted by  f(X, P’) where f(.,.) can be any function defined on any metric

space. The aggregation model is defined solely by the assignment of Pi to

Pi’.

Two types of errors are induced by the aggregation: the cost error

that results from the incorrectness of the objective function value and the

optimality error that results from the incorrectness of the facility locations

(Casillas, 1987). When the unaggregated data is available, the cost error

can be removed by using the original data but optimality error is serious in

that facilities may be far away from their true optimal locations and high

costs may be incurred due to this error. Most of the literature focuses on

reducing the optimality error which can be expressed as the problem of

bounding the cost error f(X, P) - f(X, P’) from above. It is shown by

Francis and Lowe (1992) that the error incurred is bounded above as

follows:

p-median problem: f(X, P) - f(X, P’)≤ Σ {wi D(Pi, Pi’): 1≤ i≤ m}

p-center problem: : f(X, P) - f(X, P’)≤ max {wi D(Pi, Pi’): 1≤ i≤ m}

Then, an ideal aggregation model should find the locations of aggregated

points, i.e Pi’s, so that the error bounds are minimized. Observe that the

error bounds are again p-median and p-center functions and minimizing the

error bounds require the solutions of larger location problems that have the

same structure as the original problem but with an increased number of

facilities to be located. This is referred to as the paradox of aggregation

after Francis and Lowe (1992). Although the aggregation model may not

be optimally solved, it can be approximately solved using the a priori

designed approximation algorithms for the original p-median and p-center

problems. Goodchild (1979) claimed that there exists no general rule for
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aggregation and a specific aggregation procedure must be devised for each

specific problem. Francis and Lowe (1992) also stress on this fact and

suggest exploiting problem structures to derive good approximation

schemes. Error bounds are derived for Conditional p-Median, Conditional

p-Center, Multifacility Minisum, Multifacility Minimax, Quadratic

Assignment, Supporting Median, Round-Trip, Cent-Dian, Obnoxious

Facility Location Problems by Francis, Lowe, and Tamir (1997, 2000).

These bound are valuable in that they can be used to develop good

aggregation methods for various location problems via exploiting the

problem structures. The paper includes a general method to derive

aggregate location models and their associated upper bounds for some

other problems not included above and constitutes a milestone in the

literature.

The optimality error decomposes into three types of error, called

source A, source B, and source C errors (Hillsman and Rhoda, 1978).

Source A errors are defined to be the sum of the differences between the

distances of the actual demand points to their nearest facilities and those of

the aggregated demand points to their nearest facilities. Source B errors are

special types of Source A errors. When a facility is placed on a point, the

distance between this facility and the demands aggregated into this point

are considered to be zero whereas it is strictly positive when unaggregated

data is used. Source B errors are the total of such errors for all facility

locations. Source C errors arise when demand points are not assigned to

the nearest facility because of aggregation. For the p-median problem,

methods to eliminate Source A and B errors are presented by Current and

Schilling (1987). They introduced a method based on replacing the

demand-weighted distance between an aggregated point and a facility with
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the demand-weighted distance between original demand points associated

with the aggregated point and the facility. Mirchandani and Reilly (1986)

proposed a method to eliminate Source A and B errors for zonal or

polygon-based problems. Hodgson and Neuman (1993) proposed a method

to reduce Source C errors in zonal problems. Based on methods by Current

and Schilling (1987) and Hodgson and Neuman (1993), a method to

eliminate all three types of errors is presented by Bowerman, Calamai, and

Hall (1999). Their method is an iterative method which applies Current and

Schilling’s method at the first stage to eliminate the Source A and B errors,

then the aggregated demand points are partitioned according to the selected

facility sites to form new set of aggregated points which does not contain

Source C errors. The process is repeated until all errors are eliminated.

Most of the studies related to aggregation are experimental in

nature in that an aggregation scheme is used to aggregate large problems

into smaller ones and errors are calculated using techniques like

simulation. The most common aggregation technique used is the centroid

aggregation in which the plane is divided into a number of zones and each

demand point in a zone is aggregated to the centroid of that zone. In fact

this aggregation scheme that comes into mind at first is a very effective

aggregation scheme for continuous p-median problems as discussed by

Plastria (1996). He showed that the weighted distance function to the

centroid is asymptotically equal to the continuous 1-median function in

most of the problems and centroid aggregation seems to be a reasonable

choice for demand aggregation. For the planar Euclidean p-median

problems, Zhao and Batta (1999) analytically studied the Source A, B, and

C errors using centroid aggregation scheme. They developed upper bounds

for each type of error for this aggregation scheme. This study stands out
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because it presents analytical results compared to widely known empirical

studies.

Francis, Lowe, and Rayco (1993, 1996) are probably the first

papers that devise aggregation schemes with known error bounds. They

proposed a Row-Column Aggregation for the p-Median problem called

MRC for problems in the plane with rectilinear distances. The algorithm

imposes a grid structure over the demand locations and adjusts the grid

spacing via solving simpler median problems on each coordinate. An

attainable error bound is derived for the method. The algorithm is of

polylogorithmic complexity in the number of demand points and the error

bound is not attained in most of the test problems used.  Similar to this

algorithm, a Transformed Row-Column Aggregation called TRC is

devised for the p-center problem in the plane with rectilinear distances by

Rayco, Francis, and Lowe (1995). The algorithm involves a 45° rotation of

the axes and imposes a grid structure on the demands. The grids are not

identical and the dimension of grids are found by solving simpler center

problems on the axes. An error bound is derived for the aggregation

procedure and conditions under which the bound is attainable are presented

in the paper. Computational experiments are conducted using this method

and it is observed that the error bound is attained in most of the test

instances, which is in direct contrast with the experimental results for the

p-median problem. The authors suggest that there exists self-cancellation

of errors in the p-median problem and it is more robust to aggregation than

the center problem. Francis and Rayco (1995) proposed an aggregation

scheme for the unweighted p-center problem in the plane with rectilinear

distances. The aggregation scheme is asymptotically optimal with respect

to the number of aggregate points in that the error bound converges to the
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bound in Rayco, Francis, and Lowe (1995) as the number of aggregate

points increases.  Another aggregation scheme for p-center problems in the

plane is presented by Rayco, Francis, and Tamir (1999) that imposes a grid

structure onto the plane consisting of identical diamonds of specified

dimensions. For the 1-median problem in the plane with rectilinear

distances, Francis, Lowe, Rayco, and Tamir (2000) proposed a new

representation of aggregation error called the maximum error. This is the

maximum of the errors associated with each possible location of new

facility. The authors use this new type of error because it allows the

analysis of self-cancellation effects involved in median type problems. A

new Row-Column Aggregation method is proposed which minimizes this

error for the single facility case. The aggregation algorithm proves to be

useful for the multifacility problems as well, as stated by the authors.

Interested readers are also referred to Erkut and Bozkaya (1999) for a more

detailed discussion on the aggregation issues on the p-median problem

including other new error functions.

Andersson, Francis, Normark, and Rayco (1995, 1998) presented

aggregation methods for the p-center and p-median problems on networks.

A row-column aggregation method is used at the first step of the algorithm

that is very similar to MRC and TRC. Then network problems are solved

on the largest component in each grid to find the aggregate points.

Computational experiments based on real world networks are presented in

the paper. Another aggregation approach for networks is presented by Zhao

and Batta (2000) for networks with continuous link demands. The nodes of

the network only represent the road intersections and discrete demands are

allowed on the links. First of all, it is shown that nodal solutions can be

used for this problem with an associated error in the objective function
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value. This error is dependent on the demands associated with links. For

such networks, they show that demands on some intervals of a link may be

aggregated into a single point on these intervals. It is shown that if the

intervals are taken to be between breakpoints on the links, the aggregation

procedure does not introduce any error to the original problem but reduces

the number of demand points from infinity to a finite number.

10.2 Conclusion:

As we have mentioned above aggregation problems arise frequently

in the location literature. Many experimental studies have shown that the

methods used in the aggregation seriously affect the final solution. In recent

years, errors incurred in the aggregation are studied analytically and error

bounds are derived for specific problems  (Francis, Lowe, and Tamir, 1997).

It is important to have an idea about how much we pay in terms of objective

function while reducing the size of the problem when we are comparing

different aggregation techniques. We believe that these studies will be useful

for researchers in developing better aggregation schemes for location

problems.  A review of the results can be found below:

Table 24: Literature on Aggregation Methods for Location Problems

Author Year Problem Summary
Casillas 1987 Aggregation errors Definition
Francis and Lowe 1992 Aggregation errors

in p-median and p-
center

Upper bounds
Paradox of
aggregation

Francis, Lowe, and
Tamir

1997
2000

Broad range of
problems

Upper bounds

Hillsman and Rhoda 1978 Aggregation errors Source A, B, and C
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errors
Current and
Schilling

1987 Aggregation errors Elimination of
Source A and B
errors

Mirchandani and
Reilly

1986 Aggregation errors
for zonal regions

Elimination of
Source A and B
errors

Hodgson and
Neuman

1993 Aggregation errors
for zonal regions

Elimination of
Source A and B
errors

Bowerman,
Calamai, and Hall

1999 Aggregation errors Elimination of
Source A, B and C
errors

Plastria 1996 Aggregation for
continuous p-median

Centroid aggregation

Zhao and Batta 1999 Aggregation for
continuous p-median

Upper bounds for
source A, B, and C
errors using centroid
aggregation scheme

Francis, Lowe and
Rayco

1993
1996

p-Median Row-Column
Aggregation

Rayco, Francis, and
Lowe

1995 p-Center Transformed Row-
Column Aggregation

Francis and Rayco 1995 Unweighted p-center Error bounds
Rayco, Francis, and
Tamir

1999 p-center Error bounds

Francis, Lowe,
Rayco, and Tamir

2000 1-median New error:
Maximum error

Erkut and Bozkaya 1999 Aggragation Survey
Andersson, Francis,
Normark, and
Rayco

1995
1998

p-center and p-
median on networks

A row-column
aggregation method

Zhao and Batta 2000 p-center and p-
median on networks
with continuous link
demands

Aggragation of
demand to nodes
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C h a p t e r  1 1

SUMMARY AND CONCLUSION

In this thesis, we have reviewed facility location problems on

networks. Although there exist some problems we have not mentioned due to

time limitations, we believe that we provide a broad perspective on problem

types, solution techniques, and computational results. There exist many

journals, conferences and technical reports all over the world and providing a

complete survey of the literature seems out of reach. Nevertheless, we hope

that we have covered most of the related work. We apologize to those

authors who have published in the area but have not been mentioned here.

We conclude the thesis by summarizing the literature we have reviewed in

the previous chapters and presenting some concluding remarks.

The facility location problems with the objective of minimizing the

maximum distance from the customers to the facilities are widely studied.

There exist mant variants of the problem including linear and nonlinear

versions, discrete demands and continuous demands, capacitated and

uncapacitated facilities, deterministic and stochastic data, etc. The problem is

well solved on tree networks. Most of the problem variants are solved via

identification of a finite set of points that include optimal facility locations

and solving a series of covering problems using the distances between

identified facility locations and demand points. The single facility case is

relatively easy and solved in general networks, tree networks, and special

networks such as cacti. The literature on single facility location problems
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with minimax objective on general networks, trees, and special networks is

presented in Table 1, Table 2, and Table 3, respectively.

The problem is proven to be NP-hard on general networks for general

p but polynomial algorithms are provided for given p when the cost

functions are linear. The literature for multiple facility location problems

with minimax objective on general networks and tree networks is

summarized in Table 4 and Table 5, respectively.

The continuous version of the minimax facility locations are

investigated widely when the demands are distributed uniformly on links of

the networks. These problems may be further extended to include more

general distribution functions instead of uniform distribution. Moreover, the

version of the problem with capacitated facilities is solved on tree networks

and this problem may be studied in more general networks.

The facility location problems with minisum objective are also

widely studied and well solved. The problems are NP-hard on general

networks. Nodal optimality results are provided for many variants of the

problem. We summarize the nodal optimality results in table 6.

Nodal optimality results give rise to integer programming

formulations of the problems and IP techniques are widely used to solve

multiple facility problems to optimality. The literature on exact methods to

solve minisum multifacility location problems on general networks are

presented in Table 7.

Although there exist algorithms that solve large instances of the

problem, these are usually very time consuming. Thus, approximation
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algorithms are important to solve problems and there exist many

approximation algorithms and metaheuristics for the problem some of which

are presented in Table 8.

The problems are relatively easy on tree networks and there exist

many efficient polynomial algorithms for the problem on tree networks that

are summarized in Table 9.

When there exist mutual interaction between the facilities, the

distances between the new facilities are also included in the objective

functions. These problems are hard on general networks but algorithms

exploiting either the network structure or the structure of the interaction are

provided. The literature on facility location problems with minisum objective

and mutual communication are provided in Table 10.

The minimax facility location problems with mutual communication

are closely related to the distance-constrained facility location problems that

are again solved via exploiting the structure of the problem. Polynomial

algorithms are provided for both problems on tree networks. You may refer

to Table 11 for the results on distance-constrained facility location problems.

The minisum and minimax objectives may not be appropriate for

every situation in the real world, so multiobjective models are used in which

minisum and minimax objectives are simultaneously used. These models are

solved via identification of a finite dominating set and multiobjective

optimization techniques. Although the problem is well solved on trees, the

problem on general networks may further be studied in the following years.
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The literature on biobjective minisum/minimax facility location models are

presented in Table 12.

The obnoxious facility location problems are also studied both on

general and tree networks. IP formulations and heuristics are widely used for

problems on general networks whereas polynomial algorithms are devised

for most of the problems on tree networks. The literature on obnoxious

facility location is summarized in Tables 13-16. We believe that the

objectives used in these models are not sophisticated enough to model the

obnoxiousness of the hazardous facilities, so models that can handle more

general situations can be developed in the future.

The location of structures on a network is closely related to vehicle

routing problems but the facility location perspective helps developing

efficient algorithms and proving NP-hardness results. A part of the literature

on Structure Location Problems with covering, distance, and eccentricity

objectives are presented in Tables 17-19. Most of the problems are solved on

tree networks but these problems can be extended to more general cases and

new problems can be defined in this area.

Competitive location models are very complicated. There exist many

problems in the literatue and many other problems can be defined by slightly

changing the assumptions. Although there exist some well solved problems

in the literature, most of the problems are untouched. We believe that this

area deserves more interest. New models may be developed and existing

models may be extended to more realistic cases. The literature in competitive

facilty location is summarized in Table 20 and Table 21.
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The robust approaches are popular in the recent years and many

models most of which use the minmax regret concept are developed for

facility location problems. The literature on robust median and center

problems are presented in Table 22 and Table 23. Robust solutions for other

facility location problems such as structure location problems and centdian

problems may also be developed in addition to the basic models presented in

the literature.

Table 24 presents results on aggregation techniques for location

problems. It is known that the aggragation technique to be used depends on

the problem at hand. Aggregation models for a few well-known location

problems are developed. New models for other location problems can be a

further research area.
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