1,212 research outputs found

    An Indoor Navigation System Using a Sensor Fusion Scheme on Android Platform

    Get PDF
    With the development of wireless communication networks, smart phones have become a necessity for people’s daily lives, and they meet not only the needs of basic functions for users such as sending a message or making a phone call, but also the users’ demands for entertainment, surfing the Internet and socializing. Navigation functions have been commonly utilized, however the navigation function is often based on GPS (Global Positioning System) in outdoor environments, whereas a number of applications need to navigate indoors. This paper presents a system to achieve high accurate indoor navigation based on Android platform. To do this, we design a sensor fusion scheme for our system. We divide the system into three main modules: distance measurement module, orientation detection module and position update module. We use an efficient way to estimate the stride length and use step sensor to count steps in distance measurement module. For orientation detection module, in order to get the optimal result of orientation, we then introduce Kalman filter to de-noise the data collected from different sensors. In the last module, we combine the data from the previous modules and calculate the current location. Results of experiments show that our system works well and has high accuracy in indoor situations

    All Source Sensor Integration Using an Extended Kalman Filter

    Get PDF
    The global positioning system (GPS) has become an ubiquitous source for navigation in the modern age, especially since the removal of selective availability at the beginning of this century. The utility of the GPS is unmatched, however GPS is not available in all environments. Heavy reliance on GPS for navigation makes the warfighter increasingly vulnerability as modern warfare continues to evolve. This research provides a method for incorporating measurements from a massive variety of sensors to mitigate GPS dependence. The result is the integration of sensor sets that encompass those examined in recent literature as well as some custom navigation devices. A full-state extended Kalman filter is developed and implemented, accommodating the requirements of the varied sensor sets and scenarios. Some 19 types of sensors are used in multiple quantities including inertial measurement units, single cameras and stereo pairs, 2D and 3D laser scanners, altimeters, 3-axis magnetometers, heading sensors, inclinometers, a stop sign sensor, an odometer, a step sensor, a ranging device, a signal of opportunity sensor, global navigation satellite system sensors, an air data computer, and radio frequency identification devices. Simulation data for all sensors was generated to test filter performance. Additionally, real data was collected and processed from an aircraft, ground vehicles, and a pedestrian. Measurement equations are developed to relate sensor measurements to the navigation states. Each sensor measurement is incorporated into the filter using the Kalman filter measurement update equations. Measurement types are segregated based on whether they observe instantaneous or accumulated state information. Accumulated state measurements are incorporated using delayed-state update equations. All other measurements are incorporated using the numerically robust UD update equations

    Recent Advances in Indoor Localization Systems and Technologies

    Get PDF
    Despite the enormous technical progress seen in the past few years, the maturity of indoor localization technologies has not yet reached the level of GNSS solutions. The 23 selected papers in this book present the recent advances and new developments in indoor localization systems and technologies, propose novel or improved methods with increased performance, provide insight into various aspects of quality control, and also introduce some unorthodox positioning methods

    A Survey of Positioning Systems Using Visible LED Lights

    Get PDF
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.As Global Positioning System (GPS) cannot provide satisfying performance in indoor environments, indoor positioning technology, which utilizes indoor wireless signals instead of GPS signals, has grown rapidly in recent years. Meanwhile, visible light communication (VLC) using light devices such as light emitting diodes (LEDs) has been deemed to be a promising candidate in the heterogeneous wireless networks that may collaborate with radio frequencies (RF) wireless networks. In particular, light-fidelity has a great potential for deployment in future indoor environments because of its high throughput and security advantages. This paper provides a comprehensive study of a novel positioning technology based on visible white LED lights, which has attracted much attention from both academia and industry. The essential characteristics and principles of this system are deeply discussed, and relevant positioning algorithms and designs are classified and elaborated. This paper undertakes a thorough investigation into current LED-based indoor positioning systems and compares their performance through many aspects, such as test environment, accuracy, and cost. It presents indoor hybrid positioning systems among VLC and other systems (e.g., inertial sensors and RF systems). We also review and classify outdoor VLC positioning applications for the first time. Finally, this paper surveys major advances as well as open issues, challenges, and future research directions in VLC positioning systems.Peer reviewe

    Optimizing Indoor Location Based Tracking through Proper Filter Selection and Wireless Sensor Network Design

    Get PDF
    Indoor positioning system (IPS) is a topic that is coming up more and more for various reasons, such as allowing companies to track important objects using radio frequency identification (RFID) and employees with Bluetooth devices inside a facility. Geofencing is one of the biggest topics with IPS and is meant to limit access to a network in specified areas. Devices that incorporate indoor tracking are not initially precise when objects and employees are on the move. This movement requires devices to have a reliable filter for noise and package lose. For this paper, the comparison between extended Kalman filters and unscented Kalman filter in a controlled environment will help indicate which is ideal for IPS tracking. Both filters will be applied and compared on location accuracy metrics. The proper design of the wireless network is also crucial for having an effective IPS method. This will show the difference in wireless networks and how the initial design will lead to greater chance of success for IPS

    Map matching by using inertial sensors: literature review

    Get PDF
    This literature review aims to clarify what is known about map matching by using inertial sensors and what are the requirements for map matching, inertial sensors, placement and possible complementary position technology. The target is to develop a wearable location system that can position itself within a complex construction environment automatically with the aid of an accurate building model. The wearable location system should work on a tablet computer which is running an augmented reality (AR) solution and is capable of track and visualize 3D-CAD models in real environment. The wearable location system is needed to support the system in initialization of the accurate camera pose calculation and automatically finding the right location in the 3D-CAD model. One type of sensor which does seem applicable to people tracking is inertial measurement unit (IMU). The IMU sensors in aerospace applications, based on laser based gyroscopes, are big but provide a very accurate position estimation with a limited drift. Small and light units such as those based on Micro-Electro-Mechanical (MEMS) sensors are becoming very popular, but they have a significant bias and therefore suffer from large drifts and require method for calibration like map matching. The system requires very little fixed infrastructure, the monetary cost is proportional to the number of users, rather than to the coverage area as is the case for traditional absolute indoor location systems.Siirretty Doriast

    Adaptive Indoor Pedestrian Tracking Using Foot-Mounted Miniature Inertial Sensor

    Get PDF
    This dissertation introduces a positioning system for measuring and tracking the momentary location of a pedestrian, regardless of the environmental variations. This report proposed a 6-DOF (degrees of freedom) foot-mounted miniature inertial sensor for indoor localization which has been tested with simulated and real-world data. To estimate the orientation, velocity and position of a pedestrian we describe and implement a Kalman filter (KF) based framework, a zero-velocity updates (ZUPTs) methodology, as well as, a zero-velocity (ZV) detection algorithm. The novel approach presented in this dissertation uses the interactive multiple model (IMM) filter in order to determine the exact state of pedestrian with changing dynamics. This work evaluates the performance of the proposed method in two different ways: At first a vehicle traveling in a straight line is simulated using commonly used kinematic motion models in the area of tracking (constant velocity (CV), constant acceleration (CA) and coordinated turn (CT) models) which demonstrates accurate state estimation of targets with changing dynamics is achieved through the use of multiple model filter models. We conclude by proposing an interactive multiple model estimator based adaptive indoor pedestrian tracking system for handling dynamic motion which can incorporate different motion types (walking, running, sprinting and ladder climbing) whose threshold is determined individually and IMM adjusts itself adaptively to correct the change in motion models. Results indicate that the overall IMM performance will at all times be similar to the best individual filter model within the IMM

    Doctor of Philosophy

    Get PDF
    dissertationLocation information of people is valuable for many applications including logistics, healthcare, security and smart facilities. This dissertation focuses on localization of people in wireless sensor networks using radio frequency (RF) signals, speci cally received signal strength (RSS) measurements. A static sensor network can make RSS measurements of the signal from a transmitting badge that a person wears in order to locate the badge. We call this kind of localization method radio device localization. Since the human body causes RSS changes between pairwise sensor nodes of a static network, we can also use RSS measurements from pairwise nodes of a network to locate people, even if they are not carrying any radio device. We call this device-free localization (DFL). The rst contribution of this dissertation is to radio device localization. The human body has a major e ect on the antenna gain pattern of the transmitting badge that the person is wearing, however, existing r

    Improving Accuracy in Ultra-Wideband Indoor Position Tracking through Noise Modeling and Augmentation

    Get PDF
    The goal of this research is to improve the precision in tracking of an ultra-wideband (UWB) based Local Positioning System (LPS). This work is motivated by the approach taken to improve the accuracies in the Global Positioning System (GPS), through noise modeling and augmentation. Since UWB indoor position tracking is accomplished using methods similar to that of the GPS, the same two general approaches can be used to improve accuracy. Trilateration calculations are affected by errors in distance measurements from the set of fixed points to the object of interest. When these errors are systemic, each distinct set of fixed points can be said to exhibit a unique set noise. For UWB indoor position tracking, the set of fixed points is a set of sensors measuring the distance to a tracked tag. In this work we develop a noise model for this sensor set noise, along with a particle filter that uses our set noise model. To the author\u27s knowledge, this noise has not been identified and modeled for an LPS. We test our methods on a commercially available UWB system in a real world setting. From the results we observe approximately 15% improvement in accuracy over raw UWB measurements. The UWB system is an example of an aided sensor since it requires a person to carry a device which continuously broadcasts its identity to determine its location. Therefore the location of each user is uniquely known even when there are multiple users present. However, it suffers from limited precision as compared to some unaided sensors such as a camera which typically are placed line of sight (LOS). An unaided system does not require active participation from people. Therefore it has more difficulty in uniquely identifying the location of each person when there are a large number of people present in the tracking area. Therefore we develop a generalized fusion framework to combine measurements from aided and unaided systems to improve the tracking precision of the aided system and solve data association issues in the unaided system. The framework uses a Kalman filter to fuse measurements from multiple sensors. We test our approach on two unaided sensor systems: Light Detection And Ranging (LADAR) and a camera system. Our study investigates the impact of increasing the number of people in an indoor environment on the accuracies using a proposed fusion framework. From the results we observed that depending on the type of unaided sensor system used for augmentation, the improvement in precision ranged from 6-25% for up to 3 people
    corecore