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ABSTRACT

Location information of people is valuable for many applications including logistics,

healthcare, security and smart facilities. This dissertation focuses on localization of people

in wireless sensor networks using radio frequency (RF) signals, specifically received signal

strength (RSS) measurements. A static sensor network can make RSS measurements of

the signal from a transmitting badge that a person wears in order to locate the badge.

We call this kind of localization method radio device localization. Since the human body

causes RSS changes between pairwise sensor nodes of a static network, we can also use

RSS measurements from pairwise nodes of a network to locate people, even if they are not

carrying any radio device. We call this device-free localization (DFL).

The first contribution of this dissertation is to radio device localization. The human

body has a major effect on the antenna gain pattern of the transmitting badge that the

person is wearing, however, existing research on device localization ignores this effect. In

this work, the gain pattern due to the effect of the human body is experimentally measured

and represented by a first-order gain pattern model. A method is presented to estimate

the model parameters from multiple received signal strength (RSS) measurements. An

alternating gain and position estimation (AGAPE) algorithm is proposed to jointly estimate

the orientation and the position of the badge using RSS measurements at known-position

anchor nodes. Lower bounds on mean squared error (MSE) and experimental results are

presented that both show that the accuracy of position estimates can be greatly improved by

including orientation estimates in the localization system. Finally, a new tracking filter that

accepts orientation estimates as input is developed, which is called the orientation-enhanced

extended Kalman filter (OE-EKF). Experimental results show that this new method using

the localization estimates from AGAPE algorithm improves tracking accuracy in radio

device localization systems.

In the field of DFL, this dissertation has two major contributions: (1) improving the

robustness of variance-based DFL methods that can locate human motion; (2) developing

a new DFL system that is capable of locating both moving and stationary people without

using “empty-room” offline calibration. For the first contribution, two robust estimators



for variance-based radio tomographic imaging (VRTI) – subspace variance-based radio

tomography (SubVRT), and least squares variance-based radio tomography (LSVRT) are

proposed. Human motion in the vicinity of a wireless link causes variations in the link

received signal strength (RSS). DFL systems, such as VRTI, use these RSS variations in

a static wireless network to locate and track people in the area of the network. However,

intrinsic motion, such as branches moving in the wind and rotating or vibrating machinery,

also causes RSS variations which degrade the performance of a localization system. The

first robust estimator SubVRT uses subspace decomposition, and the second estimator

LSVRT uses a least squares formulation on the “empty-room” calibration measurements.

Experimental results show that both estimators reduce localization root mean squared error

by about 40% compared to VRTI. In addition, the Kalman filter tracking results from both

estimators are more robust to large errors compared to tracking results from VRTI. The

second contribution in DFL is a new localization system, which we call kernel distance-based

radio tomographic imaging (KRTI). Since many DFL systems including VRTI cannot locate

stationary people, we present and evaluate a system that can locate stationary and moving

people, with or without calibration, by quantifying the difference between two histograms of

signal strength measurements. From five experiments, we show that our KRTI localization

system performs better than the state-of-the-art device-free localization systems in different

non-line-of-sight environments.

iv
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CHAPTER 1

INTRODUCTION

Wireless communication devices have become increasingly small, low-cost and common

in recent years due to the advances in radio, micro-electronic and embedded system tech-

nologies. People have imagined to network thousands or tens of thousands of wireless devices

together for numerous applications. The concepts of “ubiquitous computing,” “smart dust”

and “wireless sensor network” are representative examples of this imagination, which have

been studied extensively in academia, and which are gradually becoming developed into

products in industry.

Wireless sensor networks have potential applications ranging from environmental and

industrial monitoring to medical applications, smart home and facilities. For example, a

network of various gas sensors can be used to monitor air pollution and send monitoring

data wirelessly to a data processing center. As another example, a wireless sensor network

deployed in a hospital tracks different medical equipment with radio frequency identification

(RFID) tags attached for logistic purposes. Localization is one of the most important

techniques for applications such as elder care, security and smart facilities [2, 3, 4]. Knowing

the location information of people has significant benefits for these applications. For

example, we would like to know where a physician or a patient is in a hospital. In rescue

scenarios, one of the most important tasks is to find the locations of victims. While for

some scenarios, we can expect people to participate in the localization system by wearing

a device that can be used to locate them; for many scenarios, we cannot expect people to

carry any device, such as in the rescue scenario or the intruder detection scenario.

This dissertation investigates localization of a person who is, or is not carrying a radio

device, using a wireless sensor network. When people carry devices, such as mobile phones

or RFID badges, human sensing and localization can be achieved by using extrinsic traits

defined as traits from objects and devices carried by a person. Besides extrinsic traits,

intrinsic traits of people that arise from human activity or human presence can also be used

to sense and locate people. Before discussing these two different sensing and localization
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methods, the terms sensor, localization and people are first explained to define the generality

of the problem in this dissertation.

First, we use standard radio devices for sensing purposes; thus sensor in “wireless

sensor network” means commercially available off-the-shelf radio sensor. The radio sensor

essentially requires only a radio transceiver plus a microcontroller for memory storage and

simple processing. For example, TelosB mote [5] with a radio transceiver chip CC2420 and a

microcontroller Texas Intruments (TI) MSP430 is used in many experiments in this disserta-

tion. Also used in this dissertation is TI’s USB dongle node with a system-on-chip CC2531

which integrates the functions of radio transceiver and microcontroller [6]. A wireless sensor

network is composed by many such simple radio sensors, and we call them “nodes” of a

network. To organize and collect data from these nodes, each node is programmed with a

token passing protocol called “Spin” [7] in this dissertation.

Second, localization is the process of estimating the location of certain object, that is,

the spatial coordinates of an object from certain measurements and certain models. We

know that no measurements are perfectly accurate. For example, instrument noise exists for

all kinds of measurements made by different instruments. As another example, electronic

devices are affected by thermal noise. Physical models come from our observations and

measurements of certain phenomena, and usually involve simplifications so that we can

use mathematical tools to quantitatively describe physical variables that we are interested.

In many situations, we can only use statistical models to quantify variables due to the

complexity of the real-world phenomena. Thus, a localization problem is essentially an

estimation problem using imperfect measurements and models. In this dissertation, we use

radio signal strength measurements and statistical models to solve localization problems in

a 2-D network area. All work presented in the dissertation could be extended to localization

in a 3-D domain, however, that is not the focus of this dissertation.

For locating a person wearing certain radio devices, we use the received signal strength

(RSS) measurements received by all sensor nodes from the device and a statistical path

loss model to relate RSS with distance. We call this kind of localization “radio device

localization” in this dissertation. An illustration of radio device localization is shown in

Figure 1.1. The locations of all network nodes are assumed known, thus they are often called

“reference nodes” or “anchor nodes.” In this dissertation, we use the term anchor nodes to

be consistent. For localization of people without carrying any radio devices, we use pairwise

RSS measurements from all anchor nodes in a network. Since all nodes communicate with

each other, a wireless mesh network is formed covering an area, as shown in Figure 1.2.
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A person “disturbs” the pairwise RSS between each two nodes, and we use the changes of

all pairwise RSS measurements from a network to infer the location of the person. Since

the person does not need to carry any device, we call this kind of localization “device-free

localization.”

Finally, this dissertation focuses on localization of people. While both radio device

localization and device-free localization methods presented in this dissertation may be

applied to locate objects like hospital equipment, we focus our attention particularly on

people in this dissertation. We perform measurements to quantify the effects of the human

body on RSS, and we perform experiments to locate people walking or standing motionlessly

at different environments. Although all the methods presented in the dissertation are

capable of locating multiple people in a sensor network, we focus on localization of a single

person here.

To summarize, this dissertation focuses on estimating the location of a single person

with or without carrying any radio sensor using statistical models and standard RSS

measurements. The traditional radio device localization and the emerging device-free

localization techniques are discussed in details next in Section 1.1. Then, the contributions

of this dissertation are presented in Section 1.2. Finally, the outline of the dissertation is

listed in Section 1.3.

1.1 Radio frequency localization techniques

Many sensor techniques can be used in localization of people, such as the optical camera,

infrared sensor, acoustic sensor, etc. However, one common disadvantage of these sensor

techniques is they are limited in line-of-sight conditions, that is, these sensing methods

cannot penetrate obstacles such as walls. This dissertation is focused on RF techniques.

In particular, we use standard radio nodes to sense the environment and to locate either

a node worn by a person or a person without wearing any radio node. We discuss radio

device localization and device-free localization in this section.

1.1.1 Radio device localization

The traditional radio device localization techniques use various measurements from radio

devices for localization. Specifically, angle-of-arrival (AOA) and distance related measure-

ments are often used in radio device localization [8]. The accuracy of AOA measurements

is limited by factors such as the directivity of the antenna, the shadowing and multipath

effect. Distance related measurements include one-way or roundtrip time-of-arrival (TOA)

measurements, time-difference-of-arrival (TDOA) measurement and received signal strength
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(RSS) measurement. While both TOA and TDOA measurements require accurate clocks

and time synchronization, RSS measurement is a standard feature in most wireless devices,

it does not require a highly accurate clock as required by TOA and TDOA, and requires

no additional hardware like antenna array for AOA measurements.

This dissertation focuses on using RSS measurements in localization. People often use

another term, “received signal strength indicator” (RSSI), which is an indication of the

power level of RF signal received by the antenna. According to IEEE 802.11 standard [9],

“RSSI is intended to be used in a relative manner,” and has a integer value of 0 through

a maximum number. Since the 802.11 standard does not define any relationship between

RSSI value and RSS in dBm, wireless device manufacturers provide their own relationship.

In this dissertation, we use RSS to represent received power level in dBm.

For RSS-based localization, there are generally two categories of localization methods:

model-based and fingerprint-based methods. Fingerprint-based methods are also called RSS

profiling [8]. It requires a radio map to be built by a person carrying a radio device at each

possible location before the real-time localization operation. This map-building is called

the offline training period, when all RSS measurements from links between the radio device

and all anchor nodes in a network (shown as the dash lines in Figure 1.1) are recorded.

Then during the online localization period, the new RSS measurements from all those links

are compared with the radio map, and the location with the closest matching of RSS is

chosen as the localization result. The fingerprint-based method requires extensive effort in

building a radio map during the training period.

The model-based method provides an alternative. The basic idea is to relate the RSS

measurement with the distance between a transmitter (TX) and a receiver (RX) based

on certain statistical model. Then, certain estimation method like maximum likelihood

estimation (MLE) is used to locate the radio transmitter from RSS measurements between

the transmitter and all anchor nodes of a network [10]. A general model for the dBm power

Pi received at anchor node i from a transmitter t, is the log-distance model [11]:

Pi = Π0 − 10np log10

(
di
d0

)
+ ζ (1.1)

where Π0 is the received power in dBm at a reference distance d0, np is the pathloss exponent,

di = ‖zi−zt‖ is the distance between anchor node i at coordinate zi and transmitter badge

t at coordinate zt, and ζ includes the model error plus measurement noise including the

multipath effect. Note that for previous model-based methods, it is assumed that the

antenna gain pattern is isotropic, that is, the radiation pattern of the antenna is assumed

to be uniform in all directions. The isotropic antenna gain pattern is an over-simplified
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assumption, and this dissertation shows the research progress in removing this unrealistic

assumption to improve localization accuracy.

In summary, this dissertation focuses on model-based RSS localization of a person

wearing an active RFID badge. An illustration of such radio device localization is shown in

Figure 1.1. RSS measurements between the RFID badge and all anchor nodes of a network

are used to estimate the distances from the badge to anchor nodes from a certain model

such as 1.1, and the distance estimates from RSS measurements are further used to infer the

location of the RFID badge. Chapter 2 discusses the details of the radio device localization,

and all symbols used in Chapter 2 and their meanings are listed in Table 1.4.

1.1.2 Device-free localization

An emerging localization technique is to use radio signal changes caused by human body

to locate people who do not carry any radio devices [12, 13, 14, 15]. Since this new technique

does not require people to wear any devices, people call it “device-free localization” [16],

“passive localization” [14], or “sensorless sensing” [17]. In this dissertation, the term device-

free localization (DFL) is used.

Like radio device-based localization, different RF measurements can be used in DFL.

Ultra-wideband (UWB) measurements including the amplitude, time delay and phase of

the radio signal can be used to infer the properties of a static environment and changes in

the environment caused by moving people or objects. However, the UWB equipments are

usually expensive, and are primarily used in military applications today. RSS measurements

provide an alternative, they are inexpensive and available in standard wireless devices.

Different RSS-based DFL studies have achieved localization results with surprising accuracy

[14, 18, 15].

For these RSS-based DFL methods, there are two categories: fingerprint-based methods

and model-based methods. Like fingerprint-based radio device localization methods, a radio

map needs to be built on a training period before the real-time operation. During the

training period, RSS measurements are recorded on all links in a network as a person

stands in a known position, which becomes a fingerprint for a person being at that location.

Fingerprints are recorded as the person is moved to each possible position in the environ-

ment. During real-time operation, the current RSS measurement is compared to all of the

fingerprints, and the person is estimated to be at the position with the closest matching

fingerprint [19, 20, 21].

In this dissertation, we focus on model-based DFL methods, which we also call “radio

tomographic localization.” The advantage of model-based methods, such as those reported
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in [22, 15, 23, 24, 25, 26] is that these methods do not require training, in which a person

needs to stand at each possible location in an area. These methods use an elliptical model

to relate people’s location to different forms of RSS measurements y. For example, [22]

use the model to relate the location of a person with the absolute RSS changes from an

“empty-room” calibration, in which no people are present in the network area. The model

is based on the fact that if a person stands inside an elliptical area covered by a link between

two nodes, the person has certain effect on the RSS link measurement; otherwise, there is

no effect from the person. The model relating y with the image x that represents either

human presence or human motion in an area is written as:

y = Wx + n (1.2)

where n is an L × 1 noise vector including model error and measurement noise, and W is

an L × P matrix representing the weighting of each voxel in x on each link measurement.

The model expressed in W is formulated as:

Wl,p =
1√
dil,jl

{
φ if dil,p + djl,p < dil,jl + dw

0 otherwise
(1.3)

where dil,jl is the Euclidean distance between two sensors il, jl on link l located at zs,il and

zs,jl ; djl,p is the Euclidean distance between sensor jl and zp, the center coordinate of voxel

p; dil,p is the Euclidean distance between sensor il and voxel p; dw is a tunable parameter

controlling the ellipse width, and φ is a constant scaling factor.

For different radio tomographic localization methods, y represents different forms of

RSS measurements. For example, in shadowing-based RTI [22], y represent the absolute

RSS change from the empty-room calibration measurement. For variance-based RTI [15],

it represents the RSS variance. For SubVRT [23] and LSVRT [27] discussed in Chapter 3,

y is the RSS variance caused by extrinsic motion, which is defined as motion of people that

enter and leave the environment. RSS variance caused by intrinsic motion defined as the

motion of objects that are intrinsic parts of the environment is treated as noise, and not

included in y. For histogram difference-based RTI [28] discussed in Chapter 4, y is certain

histogram difference metric such as kernel distance [29] between two RSS histograms.

Once we have the model W and certain forms of RSS measurements y, a radio to-

mographic image x̂ can be estimated by solving an inverse problem, that is, estimate x

given y and W . Since we focus on single person localization in this dissertation, from the
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radio tomographic image estimate x̂, the position of the person is estimated as the center

coordinate of the pixel with maximum value. That is,

ẑ = rq where q = arg max
p

x̂p

where x̂p is the pth element of vector x̂. For convenience, different notations used in

Chapters 3 and 4 of this dissertation are included in Tables 1.5 and 1.6.

1.2 Contributions

This dissertation has contributions in both radio device localization and device-free

localization. For radio device localization, most previous methods make the assumption that

transmitter badges attached to objects or carried by people have isotropic gain patterns.

However, even when a transmitter badge has an antenna that is considered isotropic, the

person or object has considerable effect on the badge’s radiation pattern. The major

contribution of this work in radio device localization is to develop models and methods

to handle, and in fact benefit from, the removal of the unrealistic isotropic gain pattern

assumption. Specifically, the gain pattern of transmitter antenna due to the effect of

the human body is experimentally measured and represented by a first-order model. An

alternating gain and position estimation (AGAPE) algorithm is proposed to jointly estimate

the orientation and the position of the badge using RSS measurements at known-position

anchor nodes. Lower bounds on mean squared error (MSE) and experimental results

both show that the accuracy of position estimates can be greatly improved by including

orientation estimates in the localization system. Finally, a new extended Kalman filter that

accepts orientation estimates as input is developed for tracking people.

For device-free localization (DFL), this dissertation has two major contributions. First,

variance-based radio tomographic localization is found to be sensitive to all kinds of motion

including intrinsic motion and extrinsic motion. Intrinsic motion is defined as motion from

objects that are intrinsic part of the environment, while extrinsic motion is the motion from

people or objects that enter and leave the environment. When the impact of the intrinsic mo-

tion is stronger than that of the extrinsic motion, the previous method in [15] does not work.

Two robust estimators are proposed that use “empty-room” calibration measurements to

capture the effect of intrinsic motion and then to remove or reduce its impact. The second

contribution in the area of DFL is a new radio tomographic localization method which uses

the histogram difference between two RSS histograms to locate people. Not like the earth

mover’s distance, which involves solving a transportation optimization problem, the kernel

distance directly compares the difference between two histograms smoothed by a kernel
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function, so it can be calculated much faster and is preferred for a real-time application like

RTI. The new method, called kernel distance-based radio tomographic imaging (KRTI),

is capable of locating both moving and stationary people in multipath-rich environments.

In addition, simple filtering of online RSS measurements allows one to keep a long-term

histogram in memory without significant computational complexity, and also enables online

calibration instead of offline empty-room calibration.

To summarize, the work presented in this dissertation has contributions in both radio

device localization and device-free localization. The contributions are classified into the

following categories, and listed below together with the reporting publication reference

numbers and chapter numbers in this dissertation.

• Observations: Observe the bias of active RFID badge localization with isotropic gain

pattern assumption ([1] and Chapter 2). Observe how intrinsic motion, such as motion

of tree leaves, increases RSS variation in a way that is “noise” to a variance-based

DFL system, and discover the noise has a spatial signature, which can be removed by

the subspace decomposition method ([23] and Chapter 3).

• Measurements: Perform experiments at different environments to measure the effect

of the orientation (facing direction) of a human body on the RSS from a transmitter

badge worn by a person ([1] and Chapter 2). Perform experiments at indoor and

outdoor environments to study the performance of different DFL methods ([23, 30, 31]

and Chapters 3 and 4).

• Model: Based on the measurements, propose a first-order model to quantify the

human body effect on the gain pattern of an RFID transmitter ([1] and Chapter 2).

• Theory: Derive the Bayesian Cramér-Rao bound (CRB) [32] for the joint estimation

problem. Comparison with CRB derived with an isotropic gain pattern assump-

tion [10] shows that the accuracy of position estimates can be greatly improved by

including orientation estimates in the localization system ([1] and Chapter 2).

• Signal processing algorithms: Develop an alternating gain and position estimation

(AGAPE) algorithm [1] to jointly estimate RFID badge location and badge gain pat-

tern ([1] and Chapter 2). Develop a robust tracking algorithm, orientation-enhanced

extended Kalman filter (OE-EKF) that accepts orientation estimate as input to track

people wearing RFID badges in RF sensor networks ([1] and Chapter 2).
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• Statistical signal processing methods: Propose two robust estimators, subspace

variance-based radio tomography (SubVRT) [23] and least square variance-based radio

tomography (LSVRT) [30] to reduce the impact of noise caused by intrinsic motion

([23], [30] and Chapter 3).

• System: Propose a new device-free localization system called kernel distance-based

RTI (KRTI) [31], which uses the kernel distance between two RSS histograms (short-

term histogram and long-term histogram) to locate both moving and stationary

people. Propose to use exponentially weighted moving average (infinite impulse

response filter) on long-term histogram built during online period so that KRTI does

not require “empty-room” offline calibration, and can be implemented without much

computational complexity ([31] and Chapter 4).

• Demonstration: Demonstrate the real-time implementation of SubVRT ([33] and

Chapter 3) and KRTI ([28] and Chapter 4).

Two journal papers (one published and the other submitted), two conference papers

(one published and the other in review), two demo abstracts and one technical report have

resulted from this work. The names and reference numbers of these publications are listed

as follows:

• Y. Zhao, N. Patwari, P. Agrawal, and M. G. Rabbat, “Directed by directionality:

Benefiting from the gain pattern of active RFID badges,” IEEE Transactions on

Mobile Computing, vol. 11, pp. 865-877, May 2012. ([1])

• Y. Zhao and N. Patwari, “Noise reduction for variance-based device-free localization

and tracking,” in Proc. of the 8th IEEE Conf. on Sensor, Mesh and Ad Hoc

Communications and Networks (SECON’11), Salt Lake City, Utah, U.S., June 2011

(acceptance rate: 27%). ([23])

• Y. Zhao and N. Patwari, “Demo abstract: Noise reduction for variance-based radio

tomographic localization,” in Proc. of the 8th IEEE Conf. on Sensor, Mesh and Ad

Hoc Communications and Networks (SECON’11), Salt Lake City, Utah, U.S., June

2011. ([33])

• Y. Zhao and N. Patwari, “Robust estimators for variance-based device-free localization

and tracking,” Tech. Rep. arXive:1110.1569v1, Arxiv.org, Oct. 2011. ([27])

• Y. Zhao and N. Patwari, “Robust estimators for variance-based tag-free localization

and tracking,” IEEE Transactions on Signal Processing, Jan. 2012 (submitted). ([30])
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• Y. Zhao and N. Patwari, “Demo abstract: Histogram distance-based radio tomo-

graphic localization,” in Proc. of the 11th International Conference on Information

Processing in Sensor Networks (IPSN’12), Beijing, China, April, 2012. ([28])

• Y. Zhao, N. Patwari, J. M. Phillips, and S. Venkatasubramanian, “Radio tomographic

imaging and tracking of stationary and moving people via histogram difference,” the

8th International Conference on emerging Networking EXperiments and Technologies

(CoNEXT), June 2012 (submitted). ([31])

1.3 Outline of the dissertation

After this introduction chapter, the details of contributions of this work are presented

in the following three chapters. Chapter 2 includes all work on radio based localization.

A first-order model is proposed to quantify the effect of the facing direction of a human

body on RSS based on results from a measurement campaign. Then the AGAPE algorithm

is proposed to jointly estimate the location of a transmitter and the gain pattern of the

antenna. Also included in this chapter is the Bayesian CRB, the orientation enhanced

Kalman filter and experimental results. Chapter 3 discusses the improvement of variance-

based DFL methods. Two robust estimators, SubVRT and LSVRT, are discussed in detail

in this chapter. The new DFL method, kernel distance-based RTI, is presented in Chapter

4, and all DFL methods to date are compared. In each of the above three chapters, different

experiments are performed to evaluate the performance of proposed methods. The names

and descriptions of these experiments in each chapter are summarized in Tables 1.1, 1.2

and 1.3. Finally, Chapter 5 concludes this dissertation. The research contributions are

summarized, and topics for future research are discussed.
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Figure 1.1: Illustration of radio device localization of a person in a sensor network.
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Figure 1.2: Illustration of device-free localization of a person in a sensor network.
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Table 1.1: Experiments used in Chapter 2 (first reported in [1]).

Experiment name Description

Experiment 1 Outdoor experiment with a square path

Experiment 2 Outdoor experiment with a rectangular path

Experiment 3 Outdoor experiment with a square path

Table 1.2: Experiments used in Chapter 3.

Experiment name Description

Experiment 1 Through-wall experiment reported in [15]

Experiment 2 Through-wall experiment reported in [23]

Table 1.3: Experiments used in Chapter 4.

Experiment name Description

Experiment 1 Through-wall experiment reported in [16]

Experiment 2 Through-wall experiment reported in [15]

Experiment 3 Through-wall experiment reported in [31]

Experiment 4 Through-wall experiment reported in [31]

Experiment 5 Indoor experiment reported in [16]

Table 1.4: Symbols used in Chapter 2.

Symbol Meaning

Pi Received power at anchor node i from the transmitter badge

di Distance between anchor node i and the transmitter badge

np Pathloss exponent

Π0 Received power in dBm at a reference distance d0

η Model error plus noise in the log-distance and gain pattern model

αi Angle between anchor node i and the transmitter badge

g(αi) Gain pattern of the transmitter badge at angle αi
G1 Directionality of the gain pattern

G(k) Complex-valued the kth Fourier series component of g(α)

β Orientation of the transmitter badge

N Number of RSS measurements received from the transmitter badge

zt True location of a transmitter badge

ẑ Location estimate of a person or a badge

s State vector of the Kalman filter

x Measurement vector of the Kalman filter

w Measurement noise of the Kalman filter

u Process noise of the Kalman filter
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Table 1.5: Symbols used in Chapter 3.

Symbol Meaning

L Number of directional links of a network

P Number of pixels of a network area

N Number of radio nodes of a network

m Length of the window of a windowed variance

sl,t RSS measurement from link l at time t

yl,t RSS variance from link l at time t

x Vector of human motion

yr Vector of L link measurements in real-time operation

yc Vector of L link measurements in offline calibration

ŷ Intrinsic signal component of y

ỹ Extrinsic signal component of y

z True location of a person

ẑ Location estimate of a person

zs,il Location of sensor node il of link l

n Measurement noise plus intrinsic motion

σ2
x Variance of human motion

α Regularization parameter

Q Tikhonov matrix

k Numbers of principal components

s State vector of the Kalman filter

r Measurement vector of the Kalman filter

v Measurement noise of the Kalman filter

w Process noise of the Kalman filter

σ2
w Process noise parameter in the Kalman filter

σ2
v Measurement noise parameter in the Kalman filter
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Table 1.6: Symbols used in Chapter 4.

Symbol Meaning

hn RSS histogram at time n

yn RSS measurement at time n

p Short-term histogram

q Long-term histogram

L Number of directional links of a network

M Number of pixels of a network area

N Number of RSS measurements in a histogram h

β Forgetting factor of the exponentially weighted moving average

x Vector of human presence

d Vector of histogram difference from L links

z True location of a person

ẑ Location estimate of a person

K 2-D kernel matrix

sil Location of the node il
ri Center coordinate of the ith pixel

η User-defined detection threshold

βp Forgetting factor for the short-term histogram

βq Forgetting factor for the long-term histogram

σE Epanechnikov kernel width parameter

σG Gaussian kernel width parameter



CHAPTER 2

RADIO DEVICE LOCALIZATION

2.1 Abstract

Tracking of people via active badges is important for location-aware computing and for

security applications. However, the human body has a major effect on the antenna gain

pattern of the device that the person is wearing. In this chapter, the gain pattern due to

the effect of the human body is experimentally measured and represented by a first-order

directional gain pattern model. A method is presented to estimate the model parameters

from multiple received signal strength (RSS) measurements. An alternating gain and

position estimation (AGAPE) algorithm is proposed to jointly estimate the orientation and

the position of the badge using RSS measurements at known-position anchor nodes. Lower

bounds on mean squared error (MSE) and experimental results are presented that both show

that the accuracy of position estimates can be greatly improved by including orientation

estimates in the localization system. Next, we propose a new tracking filter that accepts

orientation estimates as input, which we call the orientation-enhanced extended Kalman

filter (OE-EKF), which improves tracking accuracy in active RFID tracking systems. 1

2.2 Introduction

Received signal strength (RSS)-based radio localization and tracking of people and assets

has significant benefits for logistics, security, and safety [2, 4]. Most RSS-based methods

make the assumption that transmitter badges attached to objects or carried by people have

isotropic gain patterns. However, even when a transmitter badge has an antenna that is

considered isotropic, the person or object has considerable effect on the badge’s radiation

by: absorbing power, altering the antenna impedance and thus its radiation efficiency,

and distorting the antenna gain pattern [34, 35]. In this chapter, we develop models and

1This chapter contains copyrighted material, reprinted with permission from Y. Zhao, N. Patwari, P.
Agrawal, and M. G. Rabbat, “Directed by directionality: Benefiting from the gain pattern of active RFID
badges,” IEEE Transactions on Mobile Computing, vol. 11, pp. 865-877, May 2012.
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methods to handle, and in fact benefit from, the removal of the unrealistic isotropic gain

pattern assumption.

Real-world directional gain patterns are problematic for both fingerprint-based and

model-based RSS localization algorithms. In fingerprint-based localization, exhaustive

calibration measurements are performed in the environment of interest, in which a person

carries a transmitter to each location, and perhaps each facing direction, while its RSS is

measured [2, 36]. The gain pattern that existed during the calibration period is assumed to

hold for all transmitter badges, regardless of to what object or person they are attached. In

model-based algorithms, a model relating RSS and path length is assumed [10] or estimated

from training measurements [37]. When the gain pattern is no longer isotropic, in some

directions, the RSS will increase, while in some other directions, the RSS will decrease.

Based on the data, model-based algorithms will infer that the transmitter is closer to

receivers which measured larger RSS and will thus produce estimates which are biased

towards directions of high gain in the gain pattern. In this chapter, we focus on improving

the robustness of model-based algorithms to real-world directional gain patterns.

In localization experiments, we find that position estimates are often biased because of a

nonisotropic gain pattern. An example is shown in Figure 2.1. In an experiment described

in Section 2.4.5.1, a person wears a transmitter badge on his chest, and is located using the

model-based maximum likelihood estimation (MLE) algorithm that assumes isotropic gain

pattern [10], which we call the naive MLE algorithm. When the person wearing the badge

is facing North, the badge position estimate is biased to the North of its actual position; if

the person is headed East, the badge position estimate is biased to the East of its actual

postion, etc. Essentially, the naive MLE estimates that the badge is closer to receivers that

measure more power, and receivers in the direction the person is facing receive more power

than would be predicted by an isotropic model.

Previous studies have focused on characterizing the effects of a human body’s location

and orientation on RSS measurements [2, 38, 39, 40, 41]. However, we are unaware of

research progress in the effort to include gain pattern in model-based RSS localization

algorithms. We demonstrate progress in this direction.

To develop an improved model-based algorithm, we first require a model for the di-

rectionality of a transmitter badge when worn by a person or attached to an object. We

focus on the problem of a transmitter badge worn by a person. However, we believe that

tags attached to large objects will generally experience nonisotropic gain patterns as well, so

extensions to other types of tagged objects are feasible. We perform experiments to measure
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the variation of RSS as a function of the person’s orientation (i.e., facing direction). Based

on the results, we propose a first-order model to capture most of the variation in the

gain pattern as a function of user orientation. We also present a method to estimate user

orientation and directionality from ordinary RSS measurements collected by the network.

Next, we include the gain pattern model in the RSS-distance model to jointly estimate

the position and orientation of people in RF sensor networks. An alternating gain and

position estimation (AGAPE) algorithm is developed to jointly estimate the position, ori-

entation, and gain pattern of the badge. Experimental results show that the root mean

squared error (RMSE) can be greatly reduced by including the orientation estimate in the

localization. For example, in one experiment, the RMSE from the naive MLE algorithm is

2.65 meters, while the RMSE from the proposed algorithm is 0.87 meters, a 67% reduction.

It is not obvious that a nonisotropic gain pattern can benefit coordinate localization,

because of the required additional “nuisance” parameters which must be estimated. We

provide theoretical results that show that having a gain pattern is not an impediment

for localization algorithms – the existence of a directional gain pattern can actually reduce

position error. For this result, we derive the Bayesian Cramér-Rao bound (Bayesian CRB)

for joint estimation of orientation and position. The Bayesian CRB provides the lower bound

on the mean squared error (MSE) of any estimator [32]. Comparison between the Bayesian

CRB and CRB derived with an isotropic gain pattern assumption [10] shows that joint

estimation of orientation and position may outperform (result in lower MSE) estimation of

position alone in the isotropic case.

We also present results that show that tracking is improved by joint position and

orientation estimation. Regardless of whether one uses the gain pattern in a localization

algorithm or not, it is often important to track a badge’s position over time to reduce

uncertainty in an object or person’s path. When a person wears a transmitter badge in

a consistent location on their body, we can infer from their orientation which direction

they will be moving, since people tend to walk forward (much more than backwards or

sideways). We include this intuition to develop a Kalman tracking method which uses

orientation estimates as input, which we call the orientation-enhanced extended Kalman

filter (OE-EKF). Traditional Kalman filters and extended Kalman filters use only coordinate

estimates as input, even though they are used to estimate velocity (and thus direction).

Our OE-EKF is distinct because it uses estimated orientation as an input, in addition

to providing estimated velocity. We find knowing orientation can also help improve the

accuracy of tracking.
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In summary, the contribution of this chapter is to show that real-world nonisotropic gain

patterns of transmitter badges are not a problem to be ignored, but a means to improved

localization and tracking performance. We propose a first-order gain pattern model and

validate it from a set of measurements. We develop an algorithm to estimate gain pattern

from RSS measurements, and an alternating gain and position estimation algorithm. The

Bayesian CRB for the joint estimation problem is derived and compared to that for position

estimation with isotropic gain patterns. Finally, an orientation-enhanced extended Kalman

filter is implemented to track mobile users in RF sensor networks.

The rest of this chapter is organized as follows: Section 2.3 proposes a method to

estimate the gain pattern of a transmitter badge. Section 2.4 investigates joint position

and orientation estimation, including experimental and theoretical results. Section 2.5

investigates tracking, using standard Kalman filters and a new OE-EKF method. Related

work is presented in Section 2.6, and finally we conclude in Section 2.7.

2.3 Models

Any improvement of model-based RSS localization algorithms must begin with statistical

models that are based on real-world measurements. In this section, we present measurement-

based models for the gain pattern of a transmitter badge worn by a person. A transmitter

in close proximity to a human body is strongly affected by that proximity. Human tissue

absorbs power sent in its direction and distorts the gain pattern of the transmitter [34, 35].

A general model for the dBm power Pi received at anchor node i from transmitter badge

t, is the log-distance model [11]. Including the transmitter gain pattern, the dBm power Pi

is modeled as

Pi = P0 − 10np log10

(
di
d0

)
+ g(αi) + η (2.1)

where P0 is the received power in dBm at a reference distance d0, np is the pathloss exponent,

di = ‖zi−zt‖ is the distance between anchor node i at coordinate zi and transmitter badge

t at coordinate zt, αi is the angle between anchor node i and the badge, g(αi) is the gain

pattern in dB of the transmitter badge at angle αi, and η is the model error plus noise. In

practice, we estimate np and P0 using the received power measurements between pairs of

anchor nodes. Assuming known anchor node coordinates, we estimate np and P0 via linear

regression, as in [10].

Naive model-based localization algorithms use g(αi) = 0 for all αi. We propose to include

a nonzero g(αi) in (2.1). Note that the function must be periodic since g(αi) = g(αi + 2π)

for any αi. Any real-world gain pattern will depend on the person and the badge, and will
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look somewhat random; however, we hope to capture the major features of g(αi) that will

be largely accurate for the average person.

Section 2.3.1 presents a measurement campaign to characterize average behavior of gain

patterns. Based on these measurements, we formulate a model in Section 2.3.2 and evaluate

the model in Section 2.3.3.

2.3.1 Measurements

We perform several experiments to quantify the effect of the orientation (facing direction)

of a human body on the RSS measured from the transmitter that the person is wearing.

We use two Crossbow TelosB nodes operating at 2.4 GHz. One node (node 1) is placed on

a stand, and the other one (node 2) is worn by a person, hanging in the middle of his chest.

While keeping the distance between these two nodes the same, the person wearing node 2

turns 45 degrees every 20 seconds. Node 2 transmits about 20 times per second, and the

RSS at node 1 is recorded on a laptop. Thus about 400 RSS measurements are recorded

for each of the eight different orientations. The above experiment is repeated eight times

by five different people wearing the badge in the student recreation building and an empty

parking lot at the University of Utah. The distances between the two nodes are varied from

1.5 to 5.0 meters in these eight different experiments. A total of 25,600 measurements are

recorded.

As expected, individual measured gain patterns are unique. Figure 2.2(a) shows the

measurements from two different experiments. In both experiments, the minimum RSS are

at either 180 degrees or 145 degrees, and the maximum RSS are at 0 degrees or 315 degrees.

The mean gain pattern, averaged across all experiments, is shown in Figure 2.2(b). We see

that if the person’s orientation is 180 degrees, i.e. the human body blocks the line-of-sight

(LOS) path between node 1 and node 2, the gain pattern is close to the minimum. If the

person is facing node 1, i.e., an orientation of 0 degrees, then the gain pattern is about

20 dB higher than at its lowest point. The average gain pattern closely resembles a cosine

function with period 360 degrees and amplitude 10 dB.

We note that the variation we see in received power as a function of angle due to the

presence of the human is similar to results from other measurement studies [36, 40].

2.3.2 Gain pattern model

Based on the results of the measurements, we propose a model for the gain pattern ĝ(α),

as a cosine function with period 360 degrees.

ĝ(α) = G1 cos(α− β) (2.2)
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where β is the orientation (direction of maximum gain) of the badge (see Figure 2.3),

and G1 ≥ 0 is the magnitude of the cosine function in dB. We also refer to G1 as the

directionality, because high G1 indicates that badge’s pattern is highly directive in one

direction, while G1 = 0 indicates no directionality, i.e., the badge is an isotropic radiator 2.

There are two main reasons to use the model of (2.2). First, the model represents the

two most important characteristics observed in the measurements, regardless of path length

or person wearing the badge: that the gain is higher in the direction the person is facing,

and lower in the direction opposite. In an RF sensor network with several anchor nodes,

suppose a user wearing a badge stands halfway between node j and node k facing node k,

as shown in Figure 2.3. Then, based on our measurements, the mean RSS value of node k

would be greater than that of node j, although the distances between the badge and these

two nodes are the same.

The second reason to use (2.2) is that it is a first-order model for any periodic function,

and for these data in particular, the measurements show a single order captures the vast

majority of the angular variation. Any function with period 2π has a Fourier series

representation as a sum of sines and cosines at frequencies that are integer multiples of

1
2π :

g(α) =
1

2π

∞∑
k=−∞

G(k)ej2πkα

where G(k) are the complex-valued Fourier series components [43]. When g(α) is purely

real, then G(−1) and G(1) are complex conjugates, and thus G(−1) + G(1) = 2R {G(1)},

where R is the real operator. As a result,

g(α) =
1

2π
G(0) +

1

π
R

{ ∞∑
k=1

G(k)ej2πkα

}
. (2.3)

The model of (2.2) is simply the first harmonic of an arbitrary gain pattern measurement.

That is, we include only the k = 1 term in (2.3).

2.3.3 Gain pattern model evaluation

When measuring the gain pattern at discrete values of αi, i = 0, 1, ...N−1, we require the

discrete Fourier transform (DFT) instead of the Fourier series. However, the same principle

applies – the cosine with period 2π is the first-order approximation of the gain function.

2The standard definition of directivity is related to the maximum gain across both elevation and azimuth
angles; here we consider only azimuth angles, effectively assuming the maximum directive gain is along the
azimuth [42].
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Specifically, for the gain pattern at angle αi, the discrete-time exponential representation

is given by

g(αi) =
1

N

N−1∑
k=0

G(k)ejαik

=
1

N
G(0) +

2

N
R

{
M∑
k=1

G(k)ejαik

}

=
1

N
G(0) +

2

N

M∑
k=1

|G(k)| cos (∠G(k) + αik) (2.4)

where M =
N

2
, and αi =

2πi

N
, for N equally spaced measurements. In the measurement

experiments, we had N = 8.

The mean gain G(0) is simply the average of all of the differences (which we call the

model error) between Pi and the log-distance path loss model, that is, P0−10np log10(di/d0).

Because np and P0 are determined by linear regression, they tend to make the model error

zero mean. Thus we assume that G(0) = 0 dB because any mean model error would have

been removed by the linear regression. Then, the gain pattern from an M order model can

be estimated as:

ĝM (αi) =
2

N

M∑
k=1

|G(k)| cos (∠G(k) + αik) . (2.5)

The first-order model including only the k = 1 term in (2.5), is

ĝ(αi) =
2

N
|G(1)| cos(∠G(1) + αi). (2.6)

To evaluate the first-order model for the gain pattern at discrete values, we use it to recover

the mean gain pattern (shown in Figure 2.2(b)) obtained from eight experiments of the

measurement campaign. We also use the zero-order model, i.e., with only DC component

G(0) in (2.4), and the second, third, fourth order models to recover the actual gain pattern.

The relative approximation errors are shown in Figure 2.4. We see that if we only use the

DC component G(0), the relative approximation error is 100%. If we use the first-order

model, the relative error decreases dramatically to less than 30%. If we use higher order

models, the relative error continues to decrease, but only decreases slightly as more DFT

terms G(k) are added. We note that, using a zero-order model with G(0) = 0 is equivalent

to using an isotropic gain pattern assumption. Figure 2.4 shows that the approximation

error from the first-order model is about 70% less than that from the zero-order model.

So the first-order model is much more accurate than the zero-order model with isotropic

gain pattern assumption. Although using higher order models can further reduce the
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approximation error, the reduction of error is not so significant compared to the reduction

from the zero-order model to the first-order model. Using higher order models also requires

more parameters, which increases the problem of overfitting. Thus, we propose to use the

first-order sinusoidal model to quantify the effect of the human body orientation on RSS

measurements.

2.4 Localization using orientation

2.4.1 Problem statement

In this section, we focus on 2-D position estimation using RSS measurements. For

a network with N anchor nodes and one badge (we use one badge to simplify notation,

but extension to multiple badges is possible), the position estimation problem corresponds

to the estimation of the coordinates of the badge zt = [xt, yt]
T . However, from (2.2),

two parameters in the gain pattern model must be estimated. So we include these two

parameters as nuisance parameters, and the unknown parameter vector θ becomes:

θ = [zTt , β,G1]T (2.7)

where β is the orientation of the badge, and G1 is the directionality of the gain pattern.

2.4.2 Baseline algorithm

To estimate both the badge position and the gain pattern, a baseline algorithm –

4-D maximum likelihood estimation (MLE) algorithm is introduced here for algorithm

comparison and analysis.

As discussed in Section 2.3, the received dBm power Pi is modeled as (2.1). Assuming

the RSS values Pi are independent Gaussian with variance σ2, and mean µ(θ) = P0 −

10np log10(di/d0) + g(αi), one can show that the MLE of the badge position is:

θ̂MLE = arg max
θ

N−1∑
i=0

(Pi − µ(θ))2. (2.8)

One way to find the MLE solution is to use the grid search method. For example, the TI

CC2431 uses a 2-D grid search method to find the MLE coordinate estimate for the isotropic

gain pattern case [44]. However, as the dimension of the estimation parameter vector θ

increases, the computation time of grid search increases exponentially. Since we have four

parameters in θ, a 4-D grid search method can be used to obtain the MLE solution for

analysis, but the high computation cost prohibits it from real time applications. To jointly

estimate the position and the gain pattern, a different algorithm must be used.
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2.4.3 Gain pattern estimator

Before we propose the algorithm to jointly estimate the position and the gain pattern,

we first introduce a gain pattern estimator, assuming we know the badge position zt.

By comparing (2.6) and (2.2) in Section 2.3, we find the two model parameters β and

G1 of the gain pattern can be calculated as:

β = −∠G(1)

G1 =
2

N
|G(1)|. (2.9)

Thus to estimate the gain pattern, the DFT term G(1) needs to be calculated first.

In the measurement experiments discussed in Section 2.3.1, it was possible to measure

the gain at equally spaced angles. In real deployments, anchor nodes will make mea-

surements at a variety of nonequally spaced angles αi, depending on badge and anchor

node positions. The most common way to estimate the spectral content in a signal using

nonequally spaced samples is simply to apply the DFT to the available samples [45]. Thus

we estimate G(k) as:

G(k) =

N−1∑
i=0

g(αi)e
−jαik. (2.10)

To calculate g(αi) in (2.10), rewriting (2.1), we have:

g(αi) = Pi − P0 + 10np log10

di
d0

(2.11)

where αi is the angle between anchor node i and badge

αi = atan

(
yi − yt
xi − xt

)
.

Note we need only G(1) for the first-order model of (2.2). This calculation of G(1) requires

only N complex multiplies and adds, where N is the number of RSS measurements received

for a badge. This low complexity is important to minimize the computational complexity

of the localization algorithm.

2.4.4 Alternating gain and position estimator

In the gain pattern estimator, we assumed known badge position, which in general, is

unknown. For joint position and gain pattern estimation, in this section, we propose an

alternating gain and position estimation (AGAPE) algorithm to efficiently estimate both

the position and orientation of the user wearing a badge in an RF sensor network.

The basic idea of this algorithm is to first estimate the position of the badge, and

take advantage of the first-order sinusoidal model to calculate the gain pattern parameters.
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Given the gain pattern, we use the RSS-distance model (2.1) to reestimate the position of

the badge. The algorithm iterates until a misfit function is minimized. We note that the

proposed AGAPE algorithm is a form of alternating minimization method [46].

The flowchart of the AGAPE algorithm is shown in Figure 2.5, and the detailed proce-

dure is discussed here. For the first step, assuming the gain pattern is isotropic, we use the

naive MLE method to estimate the badge position based on the RSS-distance model in [10].

The MLE solution can be found via a conjugate gradient algorithm [10], here, we use a 2-D

grid search method in the position estimation step to avoid the local minima problem from

a numerical method. Again, we note that 2-D MLE grid search can be accomplished quickly

in hardware [44]. The output of the position estimation step, we refer to as ẑt.

The next step is the orientation estimation step. Given an estimated position, we

calculate the gain pattern g(αi) from the RSS-distance model (2.1)

g(αi) = Pi − P0 + 10np log10

‖ẑt − zi‖
d0

. (2.12)

And then, G(1) is calculated from (2.10). After that, the orientation β is estimated from

the phase angle of G(1), and the directionality G1 is estimated from the magnitude of G(1),

as given in (2.9). Finally, we use the estimated β̂ and Ĝ1 in the RSS-distance model to

estimate the position of the badge ẑt again.

The steps of position estimation and orientation estimation repeat until the following

misfit function is minimized:

Φ =

N∑
i=1

(
Pi − P̂i

)2
(2.13)

where P̂i is the RSS estimate at anchor node i, which is calculated from the RSS-distance

model (2.1) using estimated badge position ẑt, and estimated gain parameters β̂ and Ĝ1.

We do not study convergence results for the AGAPE algorithm. Since minimizing (3.12)

corresponds to a nonlinear least squares problem, we expect that AGAPE will be trapped

in local minima. To avoid reporting local minima, we rerun the algorithm from different

initial conditions. We fix the initial values of G1 to a nonzero value, set the initial values of

β to a combination of four different orientations, i.e., 0, 90, 180, and 270 degrees, perform

AGAPE for each initial condition and choose the result with the minimum misfit function

as the final result.
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2.4.5 Experiment and results

2.4.5.1 Experiment description

Three localization experiments are performed in a 6.4 m by 6.4 m area outside the

Merrill Engineering Building of the University of Utah. This grassy area is near trees and

3 m away from the building wall. The area is surrounded by 28 TelosB anchor nodes

deployed at known locations on stands at 1 m height. The nodes are programmed with

TinyOS program Spin [7] to allow collection and recording of pairwise RSS measurements.

First, we measure pairwise RSS measurements between anchor nodes. Since the locations

of the anchor nodes are known, we use the measured RSS and the link length to estimate

the np and P0 parameters of the log-distance model of (2.1). Then, a person wears a TelosB

node in the middle of his chest, and walks on a marked path at a constant speed of about

0.5 m/s. We ensure a constant speed using a metered path and a metronome. For example,

in one experiment (Experiment 1), a person walks twice around a marked square path. Since

the square path is marked and the person walks at a constant speed, the actual positions

of the person are known at all times. Also, the person always walks forward in a straight

line along each side of the square path, so the orientation of the badge is always identical to

his walking direction. In the other two experiments (Experiments 2 and 3), another TelosB

node is worn by another person. He walks on a marked rectangular path and a marked

square path, respectively in Experiments 2 and 3. The actual positions and orientations

of the badge during these experiments are both known, so we can compare them with the

position and orientation estimates from the AGAPE algorithm.

2.4.5.2 Experimental results

For Experiment 1, the estimated orientations are shown in Figure 2.6, together with the

actual walking directions (badge orientations). The orientation estimates generally agree

well with the actual orientations. The deviations from the actual orientations are generally

less than 30 degrees. However, sometimes when the person is turning, the bias is larger

than 30 degrees. This may be due to the fact that the algorithm uses RSS measurements

from 28 anchor nodes to estimate the person’s orientations, and at the turning points, RSS

measurements may be a mix of those recorded before, after and during turning.

The cumulative distribution function (CDF) of the orientation estimation error is shown

in Figure 2.7. The median error from the AGAPE algorithm is about 10 degrees, and more

than 90% errors are below 30 degrees. Also shown in Figure 2.7 is the CDF of orientation

error from the MLE 4-D grid search method. The MLE 4-D grid search method searches

every 10 degrees for the MLE solution of the orientation. While the grid search method
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takes much more time (on the order of 10 times more than the AGAPE algorithm in our

Python implementation), the estimates are not more accurate than those from AGAPE.

The median error from the grid search method is also 10 degrees.

Besides the orientation of the badge, another nuisance parameter G1 is also estimated.

The average value of the estimated G1 is 12, which suggests that the directionality of the

gain of the transmitter badge worn by this particular person in this particular environment

is about 12 dB. This value is consistent with the results from our measurement campaign

discussed in Section 2.3.1.

The most important result that we are interested in is the performance of position

estimation. The CDF of the position estimation error is shown in Figure 2.8. The median

error of the position estimates is about 0.61 m, and about 90% of the estimation error is

below 1.22 m. However, for the naive MLE method, the median error is 2.60 m, which

is about 4.3 times larger than that from AGAPE. From the comparison of the CDFs,

we see that significant improvement is made if we include the orientation estimate in the

localization.

We also compare the root mean squared error (RMSE) of the position estimates, which

is defined as:

RMSE =

√√√√ 1

K

K−1∑
k=0

(x̂t
(k) − x0)2 + (ŷt

(k) − y0)2 (2.14)

where x̂t
(k), ŷt

(k) are estimated coordinates at time k, and x0, y0 are actual coordinates.

The RMSEs from the AGAPE algorithm of all three experiments are listed in Table 2.1.

Also listed are the RMSEs from the naive MLE 2-D method, and the RMSEs from the

MLE 4-D grid search method. We see that for Experiment 1, the RMSE from AGAPE

is 0.87 m, which is similar to the MLE 4-D grid search method. However, the MLE 4-D

grid search method, due to its computational complexity, is not a real time algorithm. The

RMSE from the naive MLE 2-D method with an isotropic gain pattern assumption is 2.64

m. So for Experiment 1, the RMSE from AGAPE is reduced by 67.2% compared to the

MLE 2-D method. For Experiments 2 and 3, the RMSEs are reduced by 65.4% and 68.9%,

respectively.

2.4.5.3 Effect of number of anchor nodes

In the three experiments discussed above, we use 28 anchor nodes to locate a badge in

a 6.4 m by 6.4 m square area. In some applications, we may not be able to have so many

anchor nodes. To see the effect of node number on the localization accuracy of the AGAPE
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algorithm, we perform the following tests by using RSS measurements from only a fraction

of all anchor nodes.

In the first test – Test 1, we use RSS measurements from different numbers of equally

spaced anchor nodes to locate the badge. For example, using the data collected in Experi-

ment 2, we first choose the RSS measurements from four anchor nodes at each corner of the

square area. As expected, the localization is not very accurate, the RMSE of the position

estimate is 3.36 m, and the RMSE of the orientation estimate is 40 degrees. Next, we use

the RSS measurements from those anchor nodes whose ID numbers are multiples of 1, 2,

3 and 4 (since the anchor nodes are placed in a numerically increasing order around the

experimental area, these anchor nodes are equally spaced). The RMSEs of the position and

orientation estimates are shown as dots (•) in Figure 2.9(a) and (b), respectively. We see

that as the node number increases, the RMSEs of position and orientation estimates both

decrease. When the node number increases to fourteen, the RMSE of the position estimate

decreases to 1.30 m, and the RMSE of the orientation estimate decreases to 18 degrees.

Further increase of anchor nodes will continue to decrease the RMSEs; however, there are

diminishing returns.

In practical scenarios, anchor nodes may not be equally spaced. Thus in Test 2, we use

RSS measurements from randomly chosen anchor nodes. For example, we randomly choose

four anchor nodes, and run AGAPE using the RSS measurements from these nodes. We

repeat the above procedure 100 times, and each time calculate the RMSEs of the position

and orientation estimates. Similarly, we randomly choose seven, ten, fourteen and twenty

anchor nodes. The average RMSEs are shown as squares (�), and the RMSE standard

deviations are shown as error bars in Figure 2.9. From Figure 2.9(b), we see that the

average orientation RMSEs in Test 2 are all larger than the RMSEs in Test 1. For position

RMSEs shown in Figure 2.9(a), the average RMSEs in Test 2 are generally larger than the

RMSEs in Test 1, except for the extreme case when the number of anchor nodes is four.

Thus, the AGAPE algorithm generally performs better if the anchor nodes are equally

spaced. However, the AGAPE algorithm is not very sensitive to the effect of anchor nodes

being nonequally spaced. In fact, the differences between the position RMSEs in Test 1 and

the average position RMSEs in Test 2 are always less than 0.4 m.

Finally, we compare the performance of the naive MLE 2-D method with the AGAPE

algorithm using randomly chosen nodes. As shown in Figure 2.9(a), the MLE 2-D method

is not very sensitive to the number of anchor nodes. However, the average position RMSEs

from the MLE 2-D method are always larger than those from the AGAPE algorithm for
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different numbers of anchor nodes.

2.4.6 Estimator lower bounds

One might think that the introduction of an additional unknown gain pattern model

would increase the lower bound of the variance of an estimator. To see if that is true, we

derive the Bayesian CRB [32] by including the gain pattern model parameters as nuisance

parameters. We use the Bayesian CRB, because we have prior knowledge of the gain

directionality G1. We show that the CRB with an isotropic gain pattern assumption derived

in [10] is a special case of the Bayesian CRB derived in this chapter. Then we compare the

Bayesian CRB with and without isotropic gain pattern assumption. Our comparison shows

that the introduction of a gain pattern model decreases the lower bound on the variance of

a position estimator.

2.4.6.1 Bayesian CRB

The gain pattern model expressed in (2.2) can be rewritten as:

g(αi) = GI cosαi +GQ sinαi (2.15)

where GI = G1 cosβ, GQ = G1 sinβ.

To derive the Bayesian CRB, we assume that the orientation of the badge β is uniformly

distributed in the range of 0 to 2π, because the orientation of the person wearing the badge

is arbitrary. Next, we assume the in-phase component GI and quadrature component GQ of

G1 are i.i.d. Gaussian distributed with zero means and variance σ2
G. GI and GQ are affected

by many different aspects of the person’s shape and size, and the badge placement, and thus

may, by a central limit argument, be close to Gaussian. This assumption is equivalent to the

assumption that G1 is Rayleigh distributed [47], which agrees with our prior knowledge of

G1: (1) G1 must be nonnegative and thus cannot be modeled as Gaussian or any distribution

with infinite negative support; (2) G1 may be small but is unlikely to be exactly zero for a

person wearing a badge; and (3) G1 is very unlikely to have very large values, since gain is

related to (human) size. Improvement upon this distributional assumption must come from

a population study with many participants, which we suggest for future research.

The Bayesian CRB is also called the Van Trees bound, or the MSE bound [32], it is

given by:

var(θ) ≥ (ID + IP )−1 (2.16)
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where θ = [zTt , GI , GQ]T , ID is the Fisher information matrix, and IP is the prior informa-

tion matrix [32]. Note that we only include the prior information of the gain pattern, no

prior information of the badge position is included in the derivation of the Bayesian CRB.

All the elements in ID can be expressed as:

[ID]mn = −EP
[
ED

(
∂2 ln fD
∂θm∂θn

)]
(2.17)

where ED is the expectation with respect to data, EP is the expectation with respect to

prior information of θ, and fD is the joint PDF of measurements Pi, which are assumed to

be independent Gaussian with mean µ(θ) and variance σ2.

The elements of IP can be written as:

[IP ]mn = −EP
(
∂2 ln fP
∂θm∂θn

)
(2.18)

where fP is the PDF of the prior information of θ.

As shown in the supplemental material, the information matrix ID + IP can be written

as:

ID + IP = Iθ =

[
A11 A12

A21 A22

]
(2.19)

where

A11 =

[
Jxx +Mxy Jxy +Nxy

Jxy +Nxy Jyy +Myx

]
(2.20)

A12 = A21 =

[
Kxx Kxy

Kxy Kyy

]
(2.21)

A22 =

[
Lxx Lxy
Lxy Lyy

]
(2.22)

where Jxx = J(∆xit,∆xit), Kxx = K(∆xit,∆xit), Lxx = L(∆xit,∆xit), Mxx = M(∆xit,∆xit),

Nxx = N(∆xit,∆xit), and ∆xit = xi − xt, and

J(u, v) =
c2

σ2N

N−1∑
i=0

u

d2
it

v

d2
it

(2.23)

K(u, v) =
c

σ2N

N−1∑
i=0

uv

d3
it

(2.24)

L(u, v) =
1

σ2N

N−1∑
i=0

u

dit

v

dit
+

1

σ2
G

(2.25)

M(u, v) =
σ2
G

σ2N

N−1∑
i=0

(
1

d2
it

+
u4

d6
it

+
u2v2

d6
it

− 2
u2

d4
it

)
(2.26)

N(u, v) =
σ2
G

σ2N

N−1∑
i=0

(
u3v

d6
it

+
v3u

d6
it

− 2
uv

d4
it

)
(2.27)

where c =
10np
ln 10

.
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2.4.6.2 Comparison with related literature

In related literature [10], a CRB is derived assuming the gain pattern is isotropic.

In terms of the Bayesian CRB derived in this chapter, the gain pattern term in the

RSS-distance model is assumed to be zero. Since the RSS-distance model used in [10]

can be considered as a special case of the RSS-distance model used here with g(αi) = 0,

the Bayesian CRB derived here should be the same as the CRB derived in [10] when σ2
G

approaches zero. This is shown next.

By using the blockwise matrix inversion, the inverse of the Fisher Information matrix

can be written as:

I−1
θ =

[
F−1

11 −A−1
11 A12F

−1
22

−F−1
22 A21A

−1
11 F−1

22

]
(2.28)

where F11 = A11 −A12A
−1
22 A21 and F22 = A22 −A21A

−1
11 A12.

In the limit as σ2
G → 0, Mxy, Myx, Nxy all become zero, so we have:

lim
σ2
G→0

A11 =

[
Jxx Jxy
Jxy Jyy

]
, J (2.29)

lim
σ2
G→0

A22 =

[
Lxx Lxy
Lxy Lyy

]
=∞. (2.30)

Thus, F11 = A11, and F−1
22 = 0. So the inverse of the Fisher information matrix becomes:

lim
σ2
G→0

I−1
θ =

[
J−1 0

0 0

]
. (2.31)

Notice that (2.29) is the same as (10) in [10], which assumes isotropic gain pattern. This

proves that the CRB derived in [10] is a special case of the Bayesian CRB derived here, and

if σ2
G approaches zero, the Bayesian CRB converges to the CRB derived previously.

2.4.6.3 Discussion

From (2.23) to (2.27), we see that the Bayesian CRB not only depends on radio channel

parameters np and σ2, but also depends on gain pattern parameter σ2
G. Once we have

these three parameters, we can calculate the Bayesian CRB for an L m by L m square area

surrounded by four anchor nodes located at each corner.

Using the same channel parameters as [10] (np/σ = 1.7), the Bayesian CRBs with

two different σ2
G are shown in Figure 2.10. As expected, if σ2

G is very close to zero, e.g.,

σ2
G = 0.0001, the Bayesian CRB is identical to the CRB derived in [10], as shown in

Figure 2.10(a). If σ2
G is not close to zero, e.g., σ2

G = 1, the Bayesian CRB is shown in

Figure 2.10(b). From the comparison of Figure 2.10(a) and (b), we see that the maximum
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value and minimum value of Bayesian CRB are both lower than the CRB with an isotropic

gain pattern assumption. If we introduce the “average RMSE bound” as the average value

of the square root of the Bayesian CRB bounds over this L m by L m area, the average

RMSE bound for σ2
G = 1 is 0.29 m, which is also lower than the 0.30 m average RMSE

bound with σ2
G = 0.0001.

Further, the average RMSE bounds with different σ2
G are shown in Figure 2.11. Since

higher σ2
G represents higher directionality G1, we see that the RMSE bound is lower if the

directionality of the gain pattern is higher. Note that we assume the number of anchor

nodes that can receive the signal transmitted from the badge stays fixed for all σ2
G.

In sum, we conclude that the RMSE bound with a directional gain pattern assumption

could be lower than the RMSE bound with an isotropic gain pattern assumption. For the

directional gain pattern case, we would benefit more, i.e., have a lower RMSE bound from

a gain pattern with a higher directionality, if the number of nodes that can hear the badge

stays fixed.

2.5 Tracking

In this section, we introduce an improved tracking method that takes advantage of the

user’s orientation estimate from the AGAPE algorithm, and that people generally walk

in the direction they are facing. We develop a novel Kalman filter which additionally

tracks user orientation, and uses this to further improve coordinate tracking. Traditional

Kalman filters and extended Kalman filters use only coordinate estimates as input, even

though they are used to estimate velocity (and thus direction). Our orientation enhanced

extended Kalman filter (OE-EKF) is distinct because it uses estimated orientation as an

input, in addition to providing estimated velocity. We also compare the tracking results from

traditional Kalman filters and our OE-EKF. The results show that without any additional

measurements, the OE-EKF is noticeably more robust to large errors.

2.5.1 Kalman filter

In the traditional Kalman filter, the current state vector, which in this case includes both

mobile’s position and velocity, is related with the previous state by the following model:

s[n] = As[n− 1] + u[n] (2.32)

where the state vector s = [Px, Py, Vx, Vy]
T , the driving noise u = [0, 0, ux, uy]

T , and matrix

A is:



32

A =


1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1

 . (2.33)

For the traditional Kalman filter without orientation in the measurement vector, the

observation model is:

x[n] = Hs[n] + w[n] (2.34)

where the measurement vector x = [x̂t, ŷt]
T is from the coordinate estimates from the

AGAPE algorithm. The measurement noise w = [wx, wy]
T , and the observation matrix H

is:

H =

[
1 0 0 0
0 1 0 0

]
. (2.35)

2.5.2 Orientation-enhanced extended Kalman filter

As discussed in Section 2.4.4, the AGAPE algorithm can produce both position and

orientation estimates of a mobile person. Here, we propose a novel Kalman filter that uses

the output of the AGAPE algorithm as input to the tracking algorithm. If we include

the mobile person’s orientation in the Kalman filter, the state model (2.32) remains the

same. However, the observation model becomes nonlinear, because the orientation cannot

be explicitly expressed as a linear function of the state vector. Thus the extended Kalman

filter must be used. Since we add orientation information in the measurement vector, we

call it orientation-enhanced extended Kalman filter (OE-EKF).

The observation model of the OE-EKF is:

x[n] = h(s[n]) + w[n] (2.36)

where h is the nonlinear function relating state vector s to measurement vector x.

If the mobile person is moving forward, then the orientation β of that person can be

expressed as the arctangent of the ratio of Y component of velocity to X component of

velocity. If the mobile person is moving backward, then there is a 180 degrees difference

between β and the arctangent function. Because in most situations people move forward,

his or her orientation can be expressed as:

β = atan

(
Vy
Vx

)
(2.37)

where Vy and Vx are Y component and X component of velocity, respectively.
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To avoid the ambiguity of π or −π from arctangent function, instead of directly using

β, we use cosβ and sinβ in the measurement vector. So for the extended Kalman filter,

the measurement vector becomes:

x = [Px, Py, cosβ, sinβ]T . (2.38)

Accordingly, h(s) in the new measurement model equation becomes:

h(s) =

Px, Py, Vx√
V 2
x + V 2

y

,
Vy√

V 2
x + V 2

y

T . (2.39)

Then the Jacobian matrix can be written as:

J =
∂h(s)

∂s
=


1 0 0 0
0 1 0 0
0 0 J33 J34

0 0 J43 J44

 (2.40)

where

J33 = ∂
∂Vx

(
Vx/
√
V 2
x + V 2

y

)
J34 = ∂

∂Vy

(
Vx/
√
V 2
x + V 2

y

)
J43 = ∂

∂Vx

(
Vy/
√
V 2
x + V 2

y

)
J44 = ∂

∂Vy

(
Vy/
√
V 2
x + V 2

y

)
.

Once we have the Jacobian matrix, the OE-EKF is implemented following the basic equa-

tions in [48].

2.5.3 Experimental results

Using the same data collected from the outdoor experiments discussed in Section 2.4.5.2,

and using the output of the AGAPE algorithm, we apply the Kalman filter and OE-EKF

to track the person wearing the badge.

For Experiment 1, the position tracking results from the Kalman filter and OE-EKF

are shown in Figure 2.12. We see that due to the lack of previous measurements, the first

position tracking result is more than 1 meter away from the actual position for both the

Kalman filter and the OE-EKF. However, as more and more measurements are available,

the tracking errors become generally less than 0.5 meters.

From the comparison of the Kalman filter and OE-EKF tracking results, we see that

with the help of orientation estimates from the AGAPE algorithm, the position tracking
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from the OE-EKF is more accurate than that from the Kalman filter. We note that if the

variance of orientation estimate is set to be a very large number, then the tracking result

from the OE-EKF is almost identical to that of the Kalman filter. That is, if little weight is

given to the observation of the orientation, our OE-EKF is simplified to the Kalman filter.

The orientation tracking results from the OE-EKF are shown in Figure 2.13. Compared

to the orientation estimates from the AGAPE algorithm, the estimated orientations from

the OE-EKF are closer to the actual orientation when the user is walking along a straight

line. However, at each corner of the square path, when the user changes direction suddenly

by 90 degrees, the OE-EKF needs several measurements to adjust orientation estimates to

the correct directions. This overshoot problem at points of high acceleration is very common

for a Kalman filter tracking method, and can be minimized with more complicated models

of movement dynamics and measurement noise [49], however, these are not in the scope of

this dissertation.

To quantify the improvement that the gain pattern and the orientation estimate from

the AGAPE algorithm can make in tracking, the RMSEs from the following three tracking

methods are listed in Table 2.2.

• KF without gain: the Kalman filter using position estimate from the naive MLE

method with an isotropic gain pattern assumption.

• KF with gain: the Kalman filter using position estimate from AGAPE.

• OE-EKF: the extended Kalman filter using both position and orientation estimates

from AGAPE.

From Table 2.2, we see that the RMSEs from KF without gain method are all above

2.0 m for three experiments. For KF with gain method, which only uses position estimates

from AGAPE as input, the average RMSE of the three experiments is 0.53 m. Since both

the position estimate and orientation estimate from the AGAPE algorithm are used in

OE-EKF, the RMSEs from OE-EKF method are further reduced compared to KF with

gain method for all three experiments.

The CDFs of the position tracking errors from these three tracking methods are shown in

Figure 2.14. The median error for KF without gain method is about 2.3 m, while the median

errors for KF with gain and OE-EKF methods are both about 0.4 m. However, OE-EKF

method has 95% of tracking errors less than 0.76 m, while KF with gain method has 95% of

tracking errors less than 0.90 m. In this case, OE-EKF shows 16.7% improvement. Using
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the 95 percentile of errors shows the robustness to large errors. The experimental results

show that OE-EKF is more robust to large errors without any additional measurements.

In OE-EKF, we assume that people walk forward with the badge on their front. If

badges were consistently worn on a different side, that side could be estimated and the

tracking algorithm adjusted accordingly. If this assumption was often violated (e.g., if the

person walked backwards or sideways), KF with gain method would likely perform better

than OE-EKF.

2.6 Related work

In wireless sensor network localization, many kinds of measurements can be used: angle

of arrival (AOA), time of arrival (TOA), time difference of arrival (TDOA), received signal

strength (RSS), etc [8]. This work uses estimated angle (orientation) of the badge in the

position estimation; however, it is not like the AOA-based localization. In AOA-based

localization, anchor nodes measure the angle from which power arrives at a receiver using

a directional antenna. We do not use any directional antenna – anchor nodes only measure

RSS. Moreover, we estimate a user’s facing direction (orientation), not the direction to any

other device. For RSS-based localization, many algorithms have been proposed to improve

the localization accuracy [3, 37, 50]. The performance of RSS-based localization algorithms

are limited by the irregularities in measured RSS. Variation in RSS is caused by the presence

of multipath, shadowing caused by the presence of obstacles in the environment, and also

nonuniformity of the antenna gain pattern [51, 52]. Little effort has been made towards

including gain pattern in model-based RSS localization algorithms.

Many localization studies have already shown the effect of human body orientation

on RSS measurements [2, 38, 39, 40]. Kaemarungsi and Krishnamurthy [40] examine the

effects of the human body orientation on RSS measurements using four different user’s

orientations (facing North, West, South and East). Their experiments show that the mean

RSS of one orientation, at which the user body blocks the LOS could be more than 9.0 dB

lower than that of another orientation. Experiments performed by [36] measure the RSS

every 45 degrees while a person carrying a mobile device turns around. Their experimental

results show that the RSS increases nearly 15 dB in case of a direct LOS between a receiver

and an access point. In this chapter, we also perform a measurement campaign to study

the variation of RSS as a function of user orientation. The results of our measurement

campaign agree with the findings of [36], and we further provide a model that quantifies

RSS measurements as a function of user orientations.

Other research has independently determined that user orientation is significant in
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improving the localization accuracy [53, 54]. However, these methods determine the effect

of the user orientation based on a separate training campaign, which consumes significant

human effort and time. This chapter provides a statistical model to quantify the effect of

human body orientation on RSS, which could simplify the fingerprint database construc-

tion. Thus our work can improve model-based localization, and is also complementary to

fingerprint-based localization.

2.7 Conclusion

In this chapter, we model the variation of RSS due to the human body as a cosine

function of the orientations of the body, and we propose a first-order sinusoidal model that

is useful for user orientation estimation from multiple RSS measurements. We implement

the AGAPE algorithm to estimate both the position and the orientation of the user. We also

implement an OE-EKF by including orientation estimate in tracking. Experimental results

show that estimating the nonisotropic gain pattern can greatly improve both localization

and tracking of people in RF sensor networks.
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Figure 2.1: Position estimate error due to nonisotropic gain pattern (anchor node positions
(•); actual badge positions (�); MLE estimates (�); walking directions (⇒)).
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Figure 2.2: Human body effect on gain pattern (RSS from mean). (a) Measured gain
patterns and 1−σ error bars in two different experiments (Gain pattern at each orientation
is averaged over about 400 measurements during a period of 20 seconds); (b) Average over
all measured data (Gain pattern is maximum when person is facing 0 degrees to the other
sensor).
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Figure 2.3: Gain pattern of a badge in a network.
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Figure 2.4: Relative approximation error vs. model order (number 0 corresponds to the
isotropic gain model, number 1 corresponds to the first-order model; the approximation
error is relative to the error of the isotropic gain model).

Figure 2.5: Flowchart of the AGAPE algorithm.
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Figure 2.6: Mobile’s actual orientations (�) and orientation estimates (•) (time for each
sample is about 0.4 seconds).
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Figure 2.8: CDF of position estimation error.
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Figure 2.9: Effect of node number on estimation error. (a) Position estimation error; (b)
Orientation estimation error. (Test 1 uses equally spaced anchor nodes, and Test 2 uses
randomly chosen anchor nodes)
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Figure 2.10: Lower bounds. (a) Lower bound with σ2
G = 0.0001 (minimum value: 0.27,

maximum value: 0.38); (b) Lower bound with σ2
G = 1 (minimum value: 0.05, maximum

value: 0.36).

Figure 2.11: RMSE bounds as a function of σ2
G.
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Figure 2.12: Position estimates (a) from KF (�); (b) from OE-EKF (•) (Only the first
round tracking results from Experiment 1 are shown here).
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Figure 2.13: Orientation estimates (a) from OE-EKF (•); (b) from AGAPE (N).
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Table 2.1: Experimental localization results: RMSEs from MLE (2-D), MLE (4-D) and
AGAPE.

RMSE (in meter) MLE (2-D) MLE (4-D) AGAPE

Experiment 1 2.64 0.92 0.87

Experiment 2 2.98 0.98 1.03

Experiment 3 2.80 0.86 0.87

Table 2.2: Experimental tracking results: RMSEs from KF without gain, KF with gain
and OE-EKF.

RMSE (in meter) KF without gain KF with gain OE-EKF

Experiment 1 2.25 0.50 0.44

Experiment 2 2.63 0.57 0.56

Experiment 3 2.37 0.52 0.46



CHAPTER 3

ROBUST ESTIMATORS FOR VARIANCE

BASED DEVICE-FREE LOCALIZATION

3.1 Abstract

Human motion in the vicinity of a wireless link causes variations in the link received sig-

nal strength (RSS). Tag-free localization systems, such as variance-based radio tomographic

imaging (VRTI), use these RSS variations in a static wireless network to locate and track

people in the area of the network, even through walls. However, intrinsic motion, such as

branches moving in the wind and rotating or vibrating machinery, also causes RSS variations

which degrade the performance of a localization system. In this chapter, we propose and

evaluate two estimators to reduce the impact of the variations caused by intrinsic motion.

One estimator uses subspace decomposition, and the other estimator uses a least squares

formulation. Experimental results show that both estimators reduce localization root mean

squared error by about 40% compared to VRTI. In addition, the Kalman filter tracking

results from both estimators have errors less than 1.3 m, 97% of the time, more than 60%

improvement compared to tracking results from VRTI. 1

3.2 Introduction

As an emerging technology, tag-free localization using radio frequency (RF) sensor

networks has potential application in detecting intruders in industrial facilities, and helping

police and firefighters track people inside a building during an emergency [55]. In these

scenarios, people to be located cannot be expected to participate in the localization system

by carrying radio tags, thus standard radio localization techniques are not useful for these

applications.

1This chapter contains copyrighted material, reprinted with permission from Y. Zhao and N. Patwari,
“Noise reduction for variance-based device-free localization and tracking,” in Proc. of the 8th IEEE Conf.
on Sensor, Mesh and Ad Hoc Communications and Networks (SECON’11), Salt Lake City, Utah, U.S.,
June 2011 and Y. Zhao and N. Patwari, “Robust estimators for variance-based device-free localization and
tracking,” Tech. Rep. arXive:1110.1569v1, Arxiv.org, Oct. 2011.
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Various RF measurements including ultra-wideband (UWB) and received signal strength

(RSS) have been proposed and applied to detect, locate and track objects and people who

do not carry radio tags in an environment [12, 13, 56, 14, 57, 15]. Compared to cameras

and infrared sensing methods, RF sensors have the advantage of penetrating nonmetal

walls and smoke [55]. While UWB measurements are expensive, RSS measurements are

inexpensive and available in standard wireless devices, and have been used in different tag-

free localization studies with surprising accuracy [14, 18, 15]. These RSS-based localization

methods essentially use a windowed variance of RSS measured on static links. For example,

[15] deploys an RF sensor network around a residential house and uses sample variance

during a short window to track people walking inside the house; [18] places RF sensors on

the ceiling of a room, and track people using the RSSI dynamic, which is essentially the

variance of RSS measurements, with and without people moving inside the room. In this

chapter we focus on using RSS measurements to locate and track human motion. We use

windowed variance to describe the various functions of RSS measurements recently used in

different localization studies [14, 18, 15, 58, 59], and we call these methods variance-based

tag-free localization methods.

For variance-based localization methods, variance can be caused by two types of motion:

extrinsic motion and intrinsic motion. Extrinsic motion is defined as the motion of people

and other objects that enter and leave the environment. Intrinsic motion is defined as

the motion of objects that are intrinsic parts of the environment, objects which cannot

be removed without fundamentally altering the environment. If a significant amount of

windowed variance is caused by intrinsic motion, then it may be difficult to detect extrinsic

motion. For example, rotating fans, leaves and branches swaying in wind, and moving or

rotating machines in a factory all may impact the RSS measured on static links. Also, if RF

sensors are vibrating or swaying in the wind, their RSS measurements change as a result.

Even if the receiver moves by only a fraction of its wavelength, the RSS may vary by several

orders of magnitude as a result of small-scale fading [60, 61]. We call variance caused by

intrinsic motion and extrinsic motion, the intrinsic signal and extrinsic signal, respectively.

We consider the intrinsic signal to be “noise” because it does not relate to extrinsic motion

which we wish to detect and track.

This work is motivated by our inability to achieve the performance of 0.6 m average

tracking error reported in [15] in a repeat of the identical experiment in May, 2010. Our new

experiment was performed at the same location and using the identical hardware, number

of nodes, and software. Yet, in the new experiment, variance-based radio tomographic
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imaging (VRTI) does not always locate the person walking inside the house as accurately

as reported in [15]. Sometimes the position estimate error is as large as six meters, as

shown in Figure 3.8. Investigation of the experimental data quickly indicates the reason for

the degradation: periods of high wind. Consider the RSS measurements recorded during

the calibration period, when no people are present inside the house. From the calibration

measurements of [15], the standard deviations of RSS measurements are generally less than

2 dB. However, the RSS measurements from our May 2010 experiment are quite variable, as

shown in Figure 3.1. The RSS standard deviation can be up to 6 dB in a short time window.

Considering there is no person moving inside the house, that is, no extrinsic motion during

the calibration period, the high variations of RSS measurements must be caused by intrinsic

motion, in this case, wind-induced motion.

The variance caused by intrinsic motion can affect both model-based and fingerprint-

based localization methods. To apply various tag-free localization methods in practical

applications, the intrinsic signal needs to be identified and removed or reduced. Since

intrinsic motion is an intrinsic part of an environment, we assume calibration measurements

contain the type of intrinsic motion that we experience during the real-time operation. We

use calibration measurements and propose two methods to improve the robustness of VRTI.

The first method uses the subspace decomposition method, which has been used in spectral

estimation, sensor array processing, and network anomaly detection [62, 63, 64, 65]. We

apply this method to VRTI, which leads to a new estimator we refer to as subspace variance-

based radio tomography (SubVRT) [23]. Inspired by the fact that SubVRT makes use of

the covariance matrix of link measurement and significantly reduces the impact of intrinsic

motion, in this chapter, we formulate a least squares (LS) solution [66] for VRTI which uses

the inverse of the covariance matrix. We call this method least squares variance-based radio

tomography (LSVRT). While both SubVRT and LSVRT are significantly more robust to

intrinsic motion than VRTI, the advantage of LSVRT over SubVRT is that it can change its

parameters automatically from calibration measurements, thus we do not need to manually

tune any parameter, like k must be tuned in SubVRT.

The contribution of this chapter is to propose and compare two estimators – SubVRT

and LSVRT to reduce the impact of intrinsic motion in tag-free localization systems.

Experimental results show that both estimators reduce the root mean squared error (RMSE)

of the location estimate by more than 40% compared to VRTI. Further, we use the Kalman

filter to track people using localization estimates from SubVRT and LSVRT. The cumulative

distribution functions (CDFs) of the tracking errors show that the tracking results from
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SubVRT have 97% of errors less than 1.4 m, a 65% improvement compared to VRTI, while

97% of tracking errors from LSVRT are less than 1.2 m, a 70% improvement.

The rest of this chapter is organized as follows: Section 4.3 discusses the subspace

decomposition method and least squares method for noise reduction in tag-free localization.

Section 4.4 describes the experiments, Section 4.5 shows the experimental results, and

Section 3.5 investigates the Kalman filter tracking. Related work is presented in Section

3.6, and the conclusion is given in Section 4.6.

In this section, we formulate a variance-based tag-free localization problem, introduce

the subspace decomposition method, and propose our SubVRT estimator. After that, we use

the measurement covariance matrix in a least squares (LS) formulation and propose another

estimator, LSVRT. Finally, we discuss the connection between these two estimators.

3.2.1 Problem statement

For an RF sensor network with N sensors (radio transceivers) deployed at static lo-

cations, we use zs,j to denote the coordinate of sensor j. Each sensor makes an RSS

measurement with many other sensors, and we use sl,t to denote the RSS measured at node

il sent by node jl at time t, where il and jl are the receiver and transmitter number for link

l, respectively. Time t is discretized, thus t ∈ Z. We assume constant transmitter power

so that changes in sl,t are due to the channel, not to the transmitter. Then we denote the

windowed RSS variance as:

yl,t =
1

m− 1

m−1∑
i=0

(s̄l,t − sl,t−i)2 (3.1)

where m is the length of the window, and s̄l,t = 1
m

∑m−1
i=0 sl,t−i is the sample average in this

window period.

Consider that the network has L directional links on which we measure signal strength

(in general, L ≤ N(N − 1)). We let y(t) = [y1,t, y2,t, · · · , yL,t]T be the vector of windowed

RSS variance from all L links at time t. If we do not need to represent time, we simplify the

notation to y = [y1, y2, · · · , yL]T . Then we use yc to denote the calibration measurements

collected during the calibration period, when no people are present in the environment; and

we use yr to denote the measurements from the real-time operation period. The goal of

tag-free localization is to locate people during real-time operation.

For VRTI, a model-based localization method, the presence of human motion within

P voxels of a physical space is denoted by x = [x1, x2, ..., xP ]T , where xi = 1 if extrinsic
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motion occurs in voxel i, and xi = 0 otherwise. Work in [15] has shown the efficacy of a

linear model that relates the motion image x to the RSS variance yr:

yr = Wx + n (3.2)

where n is an L × 1 noise vector including intrinsic motion and measurement noise, and

W is an L × P matrix representing the weighting of motion in each voxel on each link

measurement. The weighting of voxel p on link l is formulated as [15]:

Wl,p =
1√
dil,jl

{
φ if dil,p + djl,p < dil,jl + dw

0 otherwise
(3.3)

where dil,jl is the Euclidean distance between two sensors il, jl on link l located at zs,il and

zs,jl ; djl,p is the Euclidean distance between sensor jl and zp, the center coordinate of voxel

p; dil,p is the Euclidean distance between sensor il and voxel p; dw is a tunable parameter

controlling the ellipse width, and φ is a constant scaling factor.

Once we have the forward model, the localization problem becomes an inverse problem:

to estimate P dimensional position vector x from L dimensional link measurement vector

yr. Certain regularization methods are necessary for this ill-posed inverse problem, and it

is shown in [15] that submeter localization accuracy can be achieved by using the Tikhonov

regularization. Thus, we use the Tikhonov regularized VRTI solution, which is given as:

x̂ = Π1yr

Π1 = (W TW + αQTQ)−1W T (3.4)

where Q is the Tikhonov matrix, and α is a regularization parameter.

3.2.2 Subspace decomposition method

3.2.2.1 Subspace decomposition

The subspace decomposition method has been widely used in spectral estimation, sensor

array processing, etc. [62, 65] to improve estimation performance in noise. It is closely

related to principal component analysis (PCA), which is widely used in finding patterns in

high dimensional data [67].

From the L-dimensional calibration measurement vector yc, we may estimate its covari-

ance matrix Cyc as:

Cyc =
1

M − 1

M−1∑
t=0

(y(t)
c − µc)(y

(t)
c − µc)

T = AAT (3.5)
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where M is the number of sample measurements, y
(t)
c is the calibration measurement

vector yc at time t, µc = 1
M

∑M−1
t=0 y

(t)
c is the sample average, and A = 1√

M−1
[y

(0)
c −

µc, · · · ,y
(M−1)
c − µc] is an L×M matrix.

Instead of directly performing singular value decomposition (SVD) on Cyc , we perform

SVD on an M ×M matrix ATA [68]:

ATAvi = γivi (3.6)

where vi is the eigenvector corresponding to the eigenvalue γi. Right multiplying A on both

sides of (3.6), we obtain [68]:

AATAvi = γiAvi (3.7)

From (3.7), we see ui = Avi is the ith eigenvector and γi is the ith eigenvalue of Cyc .

If the eigenvalues are in descending order, the first principal component u1 points in the

direction of the maximum variance in the measurement, the second principal component

u2 points in the direction of the maximum variance remaining in the measurement, and so

on. If the first few eigenvalues are much larger than the others, then most of the variance

in the measurements can be captured by these principal components.

We perform PCA on calibration measurements from two sets of experiments as described

in Section 4.4. The eigenvalues of Cyc from these experiments are shown in Figure 3.6.

Because there is more intrinsic motion in Experiment 2, we see that the largest eigenvalue

from Experiment 2 is almost twice as large as that from Experiment 1. We also see that

for Experiment 1, the first four eigenvalues are much larger than the other eigenvalues,

thus the corresponding eigenvectors can capture most of the variation in the measurements.

However, for Experiment 2, there are more large-valued eigenvalues, and more eigenvectors

are necessary to represent the major variation in the measurements. From the scree plot,

we decide how many principal components, k, are necessary to capture the majority of the

variations. Then, we use a lower dimensional space spanned by these principal components

to represent the space containing the majority of the intrinsic signal measurements. This

is the basic idea of the subspace decomposition method, which we discuss next.

In subspace decomposition, we divide all the principal components into two sets: Û =

[u1,u2, · · · ,uk] and Ũ = [uk+1,uk+2, · · · ,uL]. Then, we decompose the measurement space

into two lower dimensional subspaces spanned by Û and Ũ . Since the variance during the

calibration period is caused by intrinsic motion, that is, the variance captured by Û is

intrinsic signal, we call the subspace spanned by Û the intrinsic subspace, and the other

subspace spanned by Ũ the extrinsic subspace. Once the two subspaces are constructed, we
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can decompose the measurement vector y into two components – intrinsic signal component

ŷ and extrinsic signal component ỹ:

y = ŷ + ỹ (3.8)

Since the principal components are orthogonal, the intrinsic signal component ŷ and the

extrinsic signal component ỹ can be formed by projecting y onto the intrinsic subspace and

the extrinsic subspace, respectively:

ŷ = ΠIy = Û ÛTy (3.9)

ỹ = ΠEy = (I − Û ÛT )y (3.10)

where ΠI = Û ÛT is the projection matrix for the intrinsic subspace, and ΠE = I − ΠI is

the projection matrix for the extrinsic subspace.

Using the procedures discussed above, we decompose the windowed RSS variance mea-

surements yc from the calibration period of Experiment 2 into intrinsic signal component

ŷc and extrinsic signal component ỹc. We test a range of principal component number

k in constructing the intrinsic subspace. The decomposed intrinsic and extrinsic signal

components for measurement on one link l = 588 using different k are shown in Figure 3.3.

We see that if all principal components are used in constructing Û , that is, k = L, then

ŷc is equivalent to the original measurement ŷc = yc, while ỹc is zero. If the first 100

principal components are used, since they capture most of the variance in the measurement,

from Figure 3.3(b) we see ŷc is almost the same as the original measurement. If we

only use the first 40 eigenvectors, ŷc still matches the original measurement, as shown

in Figure 3.3(a). That is, the first 40 principal components are sufficient to capture the

majority of the variations in the measurements. Since each of the principal components

used to construct the intrinsic subspace is an eigenvector of the covariance matrix of the

network measurements, and each element in an eigenvector is from an individual link, we

refer these eigenvectors as “eigen-networks.”

In the above subspace decomposition derivation, we perform SVD on the matrix ATA

instead of AAT . For a network with N sensors, there are O(N2) pairwise links, and the

covariance matrix Cyc is an N2 × N2 matrix. Since the computational complexity of

performing SVD on a L×L matrix is O(L3) [69], that is, O(N6) for Cyc , directly performing

SVD on high dimensional covariance matrix requires too much computation that increases

quickly with N . Since the number of sample measurements is generally much lower than

the number of links, M < N2, this method greatly reduces the computational complexity

of performing SVD from O(N6) to O(M3).
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3.2.2.2 SubVRT algorithm

The key idea of SubVRT is to use the decomposed extrinsic signal component of the

measurements in VRTI. We project the real-time measurement vector yr onto the extrinsic

subspace to obtain the extrinsic signal component ỹr = (I − Û ÛT )yr. Then, we replace yr

in (3.4) with ỹr and obtain the solution of SubVRT:

x̂ = Π2yr where Π2 = (W TW + αQTQ)−1W TΠE (3.11)

From (3.11), we see that the solution is a linear transformation of the measurement vector.

The transformation matrix Π2 is the product of the transformation matrix Π1 in (3.4)

with the projection matrix for the extrinsic subspace ΠE : Π2 = Π1ΠE . Since the trans-

formation matrix Π2 does not depend on instantaneous real-time measurements, it can be

pre-calculated, and it is easy to implement SubVRT for real-time applications.

We note that a major difference from VRTI is that SubVRT needs calibration, which

results in ΠE that is unique to the environment. However, calibration only requires that

no extrinsic motion is present in the environment. In contrast to fingerprint-based DFL

methods, SubVRT does not require training, i.e., that a person (or combinations of people)

stands at all possible locations. Possible online calibration of SubVRT, and the trade-offs

between calibration duration and localization accuracy, are left as future research topics.

3.2.3 Least squares method

SubVRT performs SVD on the calibration measurement covariance matrix. Here, we

introduce our LSVRT estimator formulated as a least squares (LS) solution, which uses the

inverse of the covariance matrix.

3.2.3.1 Formulation

To derive the least squares solution to the linear model expressed in (3.2), the cost

function can be written as [66]:

J(x) = ‖Wx− yr‖2Cn
+ ‖x− xa‖2Cx

(3.12)

= (yr −Wx)TC−1
n (yr −Wx) + (x− xa)

TC−1
x (x− xa)

where ‖n‖2Cn
indicates weighted quadratic distance nTC−1

n n, Cn is the covariance matrix

of n, xa is the prior mean of x, and Cx is the covariance matrix of x.

Taking the derivative of (3.12) and setting it to zero results in the LSVRT solution:

x̂LS = (W TC−1
n W + C−1

x )−1(W TC−1
n yr + C−1

x xa). (3.13)
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Since the prior information xa can be included in the tracking period, here we assume xa

is zero, then (3.13) becomes:

x̂LS = Π3yr

Π3 = (W TC−1
n W + C−1

x )−1W TC−1
n . (3.14)

The LSVRT formulation can be also justified from a Bayesian perspective. If we assume yr

conditioned on x is Gaussian distributed with mean Wx and covariance matrix Cn, and x

is Gaussian distributed with mean xa and covariance matrix Cx, maximizing the posteriori

distribution p(x|yr) is equivalent to minimizing the cost function in (3.12). Thus the LS

solution (3.13) can also be seen as the maximum a posteriori (MAP) solution under the

Gaussian assumptions.

3.2.3.2 Covariance matrix Cn

From the LSVRT solution (3.13), we see that the inverse of the covariance matrix

Cn (a.k.a., the precision matrix) is needed. We may use the sample covariance matrix

if the sample size M of the calibration measurements is greater than the number of link

measurements L. However, for an RF sensor network with L (on the order of thousand)

directional links, M (on the order of hundred) is typically less than L. Thus, for high

dimensional problems, the sample covariance matrix becomes an ill-posed estimator, it

cannot be inverted to compute the precision matrix.

For high dimensional covariance matrix estimation problems, many types of regularized

covariance matrix estimators have been proposed [70, 71]. Here, we use the Ledoit-Wolf

estimator, which is a linear combination of the sample covariance matrix and a scaled

identity matrix, and is shown to be asymptotically optimal for any distribution [70]:

Cn = νµI + (1− ν)C∗n (3.15)

where C∗n is the sample covariance matrix, µ is the scaling parameter for the identity matrix

I, and ν is the shrinkage parameter that shrinks the sample covariance towards the scaled

identity matrix. Since there is no extrinsic motion during calibration period, that is, x = 0,

thus yc = n, and we approximate C∗n = Cyc . Then we follow the procedures in [70]

to calculate parameters ν and µ from the calibration measurements. From the Bayesian

perspective, this covariance matrix estimator can be seen as the combination of the prior

information and sample information of the covariance matrix.
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3.2.3.3 Covariance matrix Cx

The LSVRT solution also requires the covariance matrix Cx. As a means to generate a

general statistical model for Cx, we assume that the positions of people in the environment

can be modeled as a Poisson process. Poisson processes are commonly used for modeling

the distribution of randomly arranged points in space.

Analysis of Poisson point processes leads to a covariance function that is approximately

exponentially decaying [72], and the exponential spatial covariance model is shown to be

effective to locate people in an RF sensor network [15]. Thus, in this chapter, we use an

exponentially-decaying function as the covariance matrix of the human motion.

Cx =
σ2
x

δ
exp

(
−‖xj − xi‖l2

δ

)
(3.16)

where σ2
x is the variance of the human motion, δ is a space constant, and ‖xj − xi‖l2 is the

Euclidian distance between xi and xj .

3.2.4 Discussion

The SubVRT estimator and the LSVRT estimator are closely related. LSVRT needs to

calculate the inverse of the covariance matrix Cn, while SubVRT needs to perform SVD on

the sample covariance matrix Cyc . In this section, we show connections between these two

estimators.

First, for SubVRT, once we choose the parameter k, we can find a diagonal matrix

S = diag

0, 0, · · · , 0,︸ ︷︷ ︸
k

1, 1, · · · , 1

 such that USUT = I − Û ÛT . Then, the project matrix

for the SubVRT solution can be rewriten as:

Π2 = (W TW + αQTQ)−1W TUSUT . (3.17)

For the LSVRT solution (3.14) and the Ledoit-Wolf covariance estimator in (3.15), if we

approximate C∗n = Cyc , then the inverse of Cn can be written as:

C−1
n =

1

νµ
I +

1

1− ν
C−1
yc
. (3.18)

Substituting (3.5) in (3.18), we express C−1
n in terms of Λ:

C−1
n = Uc1(Λ−1 + c2I)UT (3.19)

where c1 = 1
1−ν , and c2 = 1−ν

νµ . Replacing the second C−1
n in (3.14) by (3.19), the project

matrix for the LSVRT solution becomes:

Π3 = (W TC−1
n W + C−1

x )−1W TUc1(Λ−1 + c2I)UT . (3.20)
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Now we compare the two projection matrices (3.17) and (3.20) in the SubVRT and

LSVRT solutions. From the latter part of (3.20), we see that LSVRT uses c1(Λ−1 + c2I)

to give less weights to the linear combinations of measurements in the eigen-space with

high variance (large eigenvalues). For SubVRT, the diagonal matrix S in (3.17) is used to

directly remove eigenvectors that correspond to the first k largest eigenvalues. From the

former part of (3.17) and (3.20), we see that the inverse of the covariance matrix C−1
x in the

LSVRT solution plays the same role of regularization as the term αQTQ in the SubVRT

solution. We also see that the LSVRT estimator includes the precision matrix C−1
n as a

weight matrix in W TC−1
n W , while the SubVRT estimator just uses W TW .

3.3 Experiments

We use measurements from two sets of experiments in this chapter. We use the data set

from the measurements conducted in March, 2009 reported by [15]. We call this data set

Experiment 1. The second experiment is a new experiment performed in May, 2010 at the

same residential house, which we call Experiment 2. In both experiments, 34 TelosB nodes

are deployed outside the living room of the house. As shown in Figure 3.5, eight nodes are

placed on the table in the kitchen, six nodes are placed on boards extended outside the

windows of the living room. The other 20 nodes are all placed on polyvinyl chloride (PVC)

stands outside the house. All 34 nodes are programmed with TinyOS program Spin [7],

and a basestation connected to a laptop is used to collect pairwise RSS measurements from

these nodes.

Both experiments are performed using the following procedure. Before people start to

walk in the living room, a calibration is performed with no people (no extrinsic motion) in

the experimental area. The duration of the calibration period of Experiment 1 is about 47

seconds, and M = 140 measurements are recorded for each link; while for Experiment 2,

M = 170 measurements are recorded for each link during a 57 second calibration period.

Compared to L = 1122 directional links, M is much smaller than L. Next, a person walks

around a marked path (A-B-C-D as shown in Figure 3.17) in the living room at a constant

speed of about 0.5 m/s, using a metronome and a metered path so that the position of

the person at any particular time is known. Note that the transmission interval between

two nodes is set by the Spin protocol so that three link measurements are recorded each

second to match the speed of human motion. For faster human motion, we can increase the

transmission frequency at the cost of more power consumption.

These two through-wall experiments use the same hardware and software, and are
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performed following the same procedure. However, the main difference between these

two experiments is the season. Experiment 1 is performed on a clear winter day, while

Experiment 2 is performed on a windy day in late spring. As shown in our video [73]

(a snapshot is shown in Figure 3.4(a)), there are no leaves on branches and no wind is

observed during Experiment 1. However, from the video recorded during Experiment 2

(one snapshot is shown in Figure 3.4(b)), we observe that wind causes grass, leaves and

branches to sway [73]. The wind also causes the PVC stands supporting the nodes to move.

The swaying of leaves and branches and the movement of the PVC stands are intrinsic

parts of the environment, which cannot be avoided, even when no people are present in the

environment. Thus, the difference between Experiments 1 and 2 is that Experiment 2 has

more intrinsic motion.

3.4 Results

3.4.1 Eigenvalues and eigen-networks

First, we perform PCA as described in Section 3.2.2 on calibration measurements from

Experiments 1 and 2. The eigenvalues of Cyc from these two experiments are shown in

Figure 3.6. Because there is more intrinsic motion in Experiment 2, we see that the largest

eigenvalue from Experiment 2 is almost twice as large as that from Experiment 1. We

also see that for Experiment 1, the first four eigenvalues are much larger than the other

eigenvalues, thus the corresponding eigenvectors can capture most of the variation in the

measurements. However, for Experiment 2, there are more large-valued eigenvalues, and

more eigenvectors are necessary to represent the major variation in the measurements.

Since each of the principal components used to construct the intrinsic subspace is an

eigenvector of the covariance matrix of the network measurements, and each element in an

eigenvector is from an individual link, we refer these eigenvectors ui as “eigen-networks.”

The first eigen-network u1 = [u11, u12, · · · , u1L]T points in the direction of the maximum

variance of the calibration measurements yc, we show the first eigen-network u1 graphically

in Figure 3.7. We see the links with u1l values higher than 30% of the maximum value

are all in the lower right side of the house. This is consistent with our observation that

the intrinsic motion of the leaves and branches on the tree located to the right side of

the house causes significant variations in the RSS measured on links likely to have RF

propagation through the branches and leaves. Note that links with high u1l values all have

at least one end point near the tree. In particular, links which are likely to see significant

diffraction around the bottom-right corner of the house have high u1l values. The leaves and
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branches almost touch this corner, as seen in Figure 3.4(b). Not only do these links measure

high RSS variance during the calibration period, they do so simultaneously. That is, the

fact that these links have high positive u1l values indicates that when one of these links

experiences increased RSS variance, the other links also measure increased RSS variance.

Thus, the first eigen-network u1 becomes a spatial signature for intrinsic motion-induced

RSS variance. When we see this linear combination in yr, we should attribute it to intrinsic,

rather than extrinsic motion. These observations about the source of RSS variance on links

support the idea that intrinsic motion in the environment causes increased RSS variance

simultaneously on multiple links.

3.4.2 Localization results

Now, we evaluate VRTI, SubVRT and LSVRT using measurements from Experiments 1

and 2. From these three estimators, we obtain reconstructed motion images, and the

position of the moving person can be estimated by finding the center coordinate of the

voxel with maximum value. Specifically, a localization estimate is defined as:

ẑ = zq where q = arg max
p

x̂p

where zq is the center coordinate of voxel q, and x̂p is the pth element of the estimate

x̂ = [x̂1, x̂2, ..., x̂P ]T from (3.4), (3.11) or (3.14). Then, the localization error is defined as:

eloc = ‖ẑ− z‖l2 , where z is the actual position of the person, and l2 indicates the Euclidean

norm.

The VRTI estimates of Experiment 2 are shown in Figure 3.8. For clarity, we only show

the actual/estimated positions when the person walks the last round of the square. We find

that due to the impact of intrinsic motion, some estimates of VRTI are greatly biased to the

right side of the experimental area (i.e., five estimates with more than 4.0 m error, as shown

in Figure 3.8). However, for SubVRT and LSVRT, the impact of intrinsic motion is greatly

reduced. As shown in Figure 3.9 and Figure 3.10, the estimates from SubVRT and LSVRT

are more accurate than VRTI. There are no estimate errors larger than 2.0 m. Note that for

both VRTI and SubVRT, some estimates are outside the house. The algorithms presented

do not include any prior information of the house map or physical barriers which would

prevent certain trajectories. Incorporation of prior knowledge of an indoor environment

might be used to obtain better estimates, but at the expense of requiring more information

to deploy the system.

Quantatively, we compare the localization errors from VRTI, SubVRT and LSVRT for

the full data set. The comparison between VRTI and SubVRT is shown in Figure 3.11,
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and the comparison between VRTI and LSVRT is shown in Figure 3.12. The localization

errors from SubVRT are all below 1.8 m. For VRTI, there are several estimates with errors

above 3.0 m. These large errors are due to the impact of intrinsic motion on static link

measurements. Specifically, we compare the localization errors during a period with strong

wind, from sample index 205 to 221, as shown in the inset of Figure 3.11. During this period,

the average localization error from VRTI is 3.0 m, while the average error from SubVRT

is 0.62 m, a 79% improvement, and for LSVRT, it is only 0.50 m, a 83% improvement.

Note that these two experiments only last for several minutes. For long-term deployment,

environmental conditions may change and the performance of our system may degrade.

Thus, periodical re-calibration may be necessary to capture environmental changes during

a long-term deployment.

We also compare the RMSE of the estimates, which is defined as the square root of the

average squared localization error over the course of the entire experiment. The RMSEs

from the two experiments are summarized in Table 3.1. For Experiment 1, the RMSE from

VRTI is 0.70 m, while the RMSE from SubVRT is 0.65 m, a 7.0% improvement and the

RMSE from LSVRT is 0.63 m, a 9.6% improvement. Note that there is not much intrinsic

motion in Experiment 1, our SubVRT and LSVRT estimators still outperform VRTI. This

shows that these two estimators are robust to other noise effects, such as RSS measurement

noise due to nonideal hardware components. For Experiment 2, the RMSE from VRTI is

1.26 m, while SubVRT and LSVRT are more robust to impact of intrinsic motion. The

RMSE from SubVRT is 0.74 m, a 41.3% improvement, and the RMSE from LSVRT is

0.69 m, a 45.3% improvement.

3.4.3 Discussion

The parameters that we use in VRTI, SubVRT and LSVRT are listed in Table 3.2. We

show the effect of the number of nodes on these three algorithms. We also discuss the effects

of the number of principal components k and the covariance matrix parameter σ2
x on the

performances of SubVRT and LSVRT, respectively.

To see the effect of node numbers on the localization performance, we run VRTI,

SubVRT and LSVRT algorithms using RSS measurements from only a randomly chosen

subset N less than the 34 total nodes used in Experiment 1. For example, when we use

N = 20 nodes, we randomly choose 20 of the measured nodes, and then run our algorithms

using the RSS measurements collected between pairs of these 20 nodes. For each N , we

repeat the above procedure 100 times, and each time calculate the RMSEs of the position

estimates. The average RMSEs and the RMSE standard deviations of the three algorithms
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from Experiment 1 are shown in Figure 3.13, for N = 20 to 34 (a node density of 0.27 per

m2 to 0.47 per m2). We find if we only use 26 nodes (L = 650) to cover this 9 m by 8 m

area, the average RMSEs from three algorithms are all above 2 m. Comparing results from

N = 26 vs. N = 32, the RMSE reduces by a factor of 3− 3.6 for the three methods. For all

methods, increasing N may lead to diminishing returns beyond N = 32. We also find that

the performance of LSVRT is consistently better than SubVRT and VRTI independent of

numbers of nodes.

An important parameter for SubVRT is the number of principal components used to

construct the intrinsic subspace. As discussed in Section 3.2.2, the first k components are

used to calculate the projection matrix for the intrinsic subspace ΠI . If k = 0, ΠI = 0,

then Π1 = Π2, SubVRT is simplified to VRTI. The RMSEs of SubVRT using a range of k

are shown in Figure 3.14. Since the first eigen-network u1 captures the strongest intrinsic

signal, when k = 1, the RMSE of Experiment 2 decreases substantially from 1.26 m to

0.82 m. Since Experiment 1 has less intrinsic motion, the RMSE decreases from 0.70 m

when k = 0 to 0.65 m when k = 4, a less substantial decrease. We note that as k increases,

more and more information in the measurement is removed, and the RMSE stops decreasing

dramatically, and even increases, at certain k. This is because when k becomes very large,

the information removed also contains a great amount of signal caused by extrinsic (human)

motion. Thus, the performance of SubVRT could be degraded if k is chosen to be too large.

The parameter k is a tradeoff between removing intrinsic motion impact and keeping useful

information from extrinsic motion. For experiments without much intrinsic motion, such as

Experiment 1, we choose a small k. However, for Experiment 2, with strong impact from

intrinsic motion, we use a large k. As listed in Table 3.2, we use k = 4 and k = 36 for

Experiments 1 and 2, respectively.

An advantage of LSVRT over SubVRT is that LSVRT can change its parameters

automatically based on calibration measurements, thus we do not need to manually tune

parameters like k in SubVRT. Thus, we only investigate parameter σ2
x in LSVRT, which

plays the same role of the regularization parameter α in SubVRT. From Figure 3.15, we

see the RMSE from LSVRT reaches the minimum at 0.63 m, when σ2
x = 0.001 and m = 4.

However, the RMSEs from LSVRT are shallow functions of σ2
x in the range from 10−4 to

10−1. That is, LSVRT is not sensitive to this parameter in a wide range.
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3.5 Tracking

In this section, we apply a Kalman filter to the localization estimates shown in Sec-

tion 3.4.2 to better estimate moving people’s positions over time. Then, we compare

the tracking results from VRTI with those from SubVRT and LSVRT, and show that

the Kalman filter tracking results from SubVRT and LSVRT are more robust to large

localization errors.

3.5.1 Kalman filter

In the state transition model of the Kalman filter, we include both position (Px, Py) and

velocity (Vx, Vy) in the Cartesian coordinate system in the state vector s = [Px, Py, Vx, Vy]
T ,

and the state transition model is:

s[t] = Gs[t− 1] + w[t] (3.21)

where w = [0, 0, wx, wy]
T is the process noise, and G is:

G =


1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1

 . (3.22)

The observation inputs r[t] of the Kalman filter are the localization estimates from VRTI,

SubVRT or LSVRT at time t, and the observation model is:

r[t] = Hs[t] + v[t] (3.23)

where v = [vx, vy]
T is the measurement noise, and H is:

H =

[
1 0 0 0
0 1 0 0

]
. (3.24)

In the Kalman filter, vx and vy are zero-mean Gaussian with variance σ2
v , wx and wy are

zero-mean Gaussian with variance σ2
w [48]. The parameters σ2

v and σ2
w of the measurement

noise and process noise are listed in Table 3.2.

3.5.2 Tracking results

We use the Kalman filter described above to track the positions of the person. The

cumulative distribution functions (CDFs) of the tracking errors from Experiment 2 are

shown in Figure 3.16. We see that the Kalman filter tracking results from VRTI have many

more large errors than SubVRT and LSVRT. 97% of the tracking errors from VRTI are

less than 3.91 m, while 97% of the tracking errors from SubVRT are less than 1.36 m, a



63

65.2% improvement, and 97% of the errors from LSVRT are less than 1.15 m, a 70.6%

improvement. We use the 97th percentile of errors to show the robustness of the tracking

algorithm to large errors, and the CDFs show the tracking results from SubVRT and LSVRT

are more robust to these large errors.

We also compare the RMSEs of the tracking results from VRTI, SubVRT and LSVRT,

which are listed in Table 3.3. For Experiment 1, the tracking RMSEs from SubVRT

and LSVRT are both 0.57 m, a 13.6% improvement compared to the RMSE of 0.66 m

from VRTI. For Experiment 2, the tracking RMSE from SubVRT is reduced by 40.5% to

0.72 m compared to 1.21 m RMSE from VRTI, and the RMSE from LSVRT is reduced

by 45.5% to 0.66 m. We note that the tracking RMSEs from VRTI, SubVRT and LSVRT

of Experiment 2 are both larger than Experiment 1 due to the impact of intrinsic motion.

However, for VRTI the tracking RMSE from Experiment 2 has a 83.3% increase compared

to Experiment 1, while for SubVRT and LSVRT, they only increases 26.3% and 15.8%,

respectively. The tracking RMSEs from SubVRT and LSVRT are more robust to the

impact of intrinsic motion. Finally, the Kalman filter tracking results of Experiment 2 from

SubVRT and LSVRT are shown in Figure 3.17. For Experiment 2 with significant intrinsic

motion, the Kalman filter results using SubVRT and LSVRT estimates can still track a

person with submeter accuracy.

3.5.3 Discussion

In the Kalman filter, the process noise parameter σ2
w should be chosen according to

the dynamics of the movement. For example, for tracking vehicles, σ2
w should be set to a

large value. The measurement noise parameter σ2
v depends on how accurate the observation

inputs are. Here, we choose σ2
w based on the speed of moving people in typical homes, and

we test the effect of using different σ2
v on the tracking errors. The tracking RMSEs from

SubVRT for Experiments 1 and 2 are shown as functions of σ2
v in Figure 3.18. If σ2

v is too

large, the Kalman filter gives very small weights to observation inputs. On the other hand,

for very small measurement noise parameter, the system dynamic model contributes little

to the Kalman filter. Thus, the RMSE reaches the minimum when an appropriate balance

between observation inputs and dynamic model is found. We also note from Figure 3.18

that for both Experiments, the RMSEs are shallow functions of σ2
v in a wide range from

0.001 to 20. That is, if we give sufficient weights to the observation inputs, which are the

localization estimates from SubVRT and LSVRT, our Kalman filter tracking results are not

very sensitive to the measurement noise parameter.
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3.6 Related work

For localization and mapping in wireless sensor networks, different measurements, algo-

rithms and frameworks have been proposed [14, 18, 58, 15, 16, 74]. For RSS-based localiza-

tion methods, there are essentially two types of algorithms: fingerprint-based algorithms and

model-based algorithms. Like fingerprint-based real-time location service (RTLS) systems,

fingerprint-based tag-free localization methods use a database of training measurements,

and estimate people’s locations by comparing the measurements during the online phase

with the training measurements [18, 58, 20]. Since a separate training measurement dataset

is necessary, fingerprint-based method needs substantial training effort. As the number

of people to be located increases, the training requirement increases exponentially. Since

fingerprint-based methods need a “radio map” from training period, it is not applicable for

emergency scenarios, in which training data may not be available.

Model-based algorithms [15, 22, 25] provide another approach. A forward model is

used to relate measurements with unknown people’s positions, and the localization problem

can be solved as an inverse problem. An advantage of a model-based algorithm is that it

does not need training measurements, however, sufficient link measurements are necessary

to solve the inverse problem. The mean-based radio tomographic imaging (RTI) uses the

attenuation effect of the human body to locate stationary and moving people in outdoor

environments [22]. However, this method does not perform well in nonLOS multipath-

rich environments. For indoor environments where multipath is common, variance-based

radio tomographic imaging (VRTI) [15] can locate moving people without any training or

calibration measurements. Thus, VRTI can be used in emergency situations for police and

firefighters. However, VRTI cannot locate people if they stand still without any motion,

and it is sensitive to other motion in the environment.

Our SubVRT and LSVRT estimators are proposed to improve the robustness of a

variance-based localization method. Both estimators need offline calibration when no people

are present in the environment to capture the intrinsic motion. From our experience over

many experiments, a trained eye can look at an unlabelled plot of RSS over time on a link

and identify when a human was obstructing the link vs. when no human was present. Thus,

we believe that one may develop online algorithms to identify time periods as either with or

without extrinsic motion, for example, by solving a hidden Markov model [75]. Using such

algorithms, we could build models for intrinsic motion during online operation. Finally, the

subspace decomposition and least squares-based formulations similar to those presented in

this chapter may be used to improve the performance of mean-based RTI. We leave this for
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future research.

3.7 Conclusion

In this chapter, we propose to use subspace decomposition and least squares estimation

to reduce noise in RSS variance-based tag-free localization and tracking. We discuss how

intrinsic motion, such as moving leaves, increase measured RSS variance in a way that

is “noise” to a localization system. The signal caused by intrinsic motion has a spatial

signature, which can be removed by the subspace decomposition method. We apply the

subspace decomposition method to the variance-based localization method, a new estimator

we call SubVRT. We also propose an LSVRT estimator that does not need manually tuning

parameters as in SubVRT. Experimental results show that SubVRT and LSVRT can reduce

localization RMSE by more than 40%. We further apply a Kalman filter on SubVRT and

LSVRT estimates for tracking. We find the tracking results from SubVRT and LSVRT are

much more robust to large errors.
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Figure 3.1: Intrinsic signal measurements: RSS measurements from three links during the
calibration period (when no people are present in the environment) of one experiment, in
which we observe significant wind-induced intrinsic motion.

Figure 3.2: Scree plot.
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(a)

(b)

(c)

Figure 3.3: Effect of principal component number, k, on noise reduction (a) k = 40; (b)
k = 100; (c) k = L. As k increases, more of the measurement on link l = 588 is attributed
to noise, until at k = L, all of the measurement is considered to be noise.
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Figure 3.4: Pictures of two experiments (a) Experiment 1 and (b) Experiment 2.
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Figure 3.5: Experimental layout of Experiment 2. The shade area is covered by tree
branches and leaves. All 34 nodes are outside the living room with four walls, seven nodes
are in the kitchen, the other nodes are outside the house.
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Figure 3.6: Scree plot.
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Figure 3.7: First eigen-network: Links with u1l > 30% of maxl u1l.
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Figure 3.8: Estimates from VRTI using measurements recorded when a person walks the
last round of the square path in Experiment 2.
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Figure 3.9: Estimates from SubVRT using the same measurements as used in Figure 3.8.
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Figure 3.10: Estimates from LSVRT using the same measurements as used in Figure 3.8.
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Figure 3.11: Estimate errors from VRTI and SubVRT.



72

0 50 100 150 200 250
Sample index

0

1

2

3

4

5

6

P
o
si

ti
o
n

e
st

im
a
te

e
rr

o
rs

(m
)

VRTI

LSVRT

206 208 210 212 214 216 218 2200

1

2

3

4

5

6

Figure 3.12: Estimate errors from VRTI and LSVRT.
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Figure 3.13: Localization RMSEs from Experiment 1 vs. numbers of nodes.
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Figure 3.16: CDFs of tracking errors.
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Figure 3.17: Kalman filter tracking results of Experiment 2 from SubVRT (a) and LSVRT
(b).
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Table 3.1: Localization RMSEs from VRTI, SubVRT and LSVRT.

Methods VRTI SubVRT LSVRT

Results RMSE RMSE Improvement RMSE Improvement

Exp. 1 0.70 0.65 7.0% 0.63 9.6%

Exp. 2 1.26 0.74 41.3% 0.69 45.3%

Table 3.2: Parameters in VRTI, SubVRT, LSVRT and Kalman filter.

Parameter Value Description

α 100 Regularization parameter

m 4 Window length to calculate variance

k 4, 36 Numbers of principal components in Exp. 1, 2

σ2
x 0.001 Variance of human motion

σ2
w 2 Process noise parameter

σ2
v 5 Measurement noise parameter

Table 3.3: Tracking RMSEs from VRTI, SubVRT and LSVRT.

Methods VRTI SubVRT LSVRT

Results RMSE RMSE Improvement RMSE Improvement

Exp. 1 0.66 0.57 13.6% 0.57 13.6%

Exp. 2 1.21 0.72 40.5% 0.66 45.5%



CHAPTER 4

HISTOGRAM DIFFERENCE-BASED

DEVICE-FREE LOCALIZATION

4.1 Abstract

Device-free localization systems pinpoint and track people in buildings using changes

in the signal strength measurements made on wireless devices in the building’s wireless

network. It has been shown that such systems can locate people who do not participate in

the system by wearing any radio device, even through walls, because of the changes that

moving people cause to the static wireless network. However, many such systems cannot

locate stationary people. We present and evaluate a system that can locate stationary

or moving people, with or without calibration, by quantifying the difference between two

histograms of signal strength measurements. From five experiments, we show that our kernel

distance-based radio tomographic localization system performs better than the state-of-the-

art device-free localization systems in different non-line-of-sight environments.

4.2 Introduction

Localization of people using wireless sensor networks has significant benefits in elder

care, security, and smart facility applications [2, 4, 55]. Standard “radio localization”

systems locate a transmitter tag, or allow a receiver to estimate its position [2, 8]. For

these mentioned applications, it is critical to be able to locate all people, regardless of

whether they carry a radio device. In this chapter, we explore “network RF environment

sensing” (NRES), that is, using a static wireless network to create an image map of the

people and objects and thus locate them in an area of interest based on the changes they

cause in the radio frequency (RF) environment. An extensive review of reported NRES

research can be found in [55]. NRES is also called “device-free localization” [16], “passive

localization” [14], or “sensorless sensing” [17]. Unlike infrared or thermal, RF penetrates

nonmetal walls, and thus NRES is useful for emergency applications. For example, in a
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hostage situation, police could deploy wireless devices outside of the building and learn in

real time where people are located in the building, information that may save live.

An emerging NRES technique is to monitor the received signal strength (RSS) on links

in a deployed static network and to use the changes in RSS to infer the location of the people

in the deployment area [12, 13, 14, 15]. As opposed to multistatic ultra-wideband (UWB)

radar [12] or MIMO radar [57], RSS-based NRES requires no specialized radar hardware,

and thus can be implemented with standard wireless networks and devices. We focus on

such RSS-based NRES systems in this chapter.

Although different NRES systems have been reported and tested, existing methods fail

in particular situations. A common method is to use the change in mean in RSS on a

link to indicate the shadowing from a person obstructing the link [76]. Shadowing-based

radio tomographic imaging (RTI) uses links’ changes in RSS mean values to estimate the

shadowing loss field in the area of the wireless network [77, 22, 26, 24]. Shadowing-based

RTI works well in line-of-sight (LOS) environments. In non-LOS areas, the assumption that

RSS will decrease when a person is on the line between transmitter and receiver (the link

line) fails. On a non-LOS link, the RSS may increase, decrease, or both, while a person is

located on the link line [15], thus shadowing-based RTI fails in non-LOS environments.

Variance-based NRES methods use the variance of RSS measurements to locate human

motion [18, 15]. These methods perform well even in non-LOS environments because a

moving person changes the RSS of links as she crosses through them, increasing the RSS

variance, even when the change in mean of RSS is close to zero. However, a stationary

person does not change the RSS, thus variance-based methods cannot locate her.

One contribution of this work is to use histogram difference to quantify the change in

RSS distribution caused by a person, rather than the change in mean or variance. Using

histogram difference allows us to locate a person who is stationary or moving, and who

is in a LOS environment or non-LOS environment. In short, mean and variance are just

two aspects of a random variable; a good histogram difference quantifies the changes in

mean, variance and other distribution features, in one metric. There are many histogram

difference metrics available. In information theory, the Kullback-Leibler divergence (KLD),

also known as relative entropy, is a nonsymmetric measure of the difference between two

distributions. From its expression, we see that it is essentially the average of the logarithmic

difference between two probability distributions. However, it is not symmetric, that is,

the KLD from distribution p1 to p2 is generally not the same as that from p2 to p1.

And also, when a distribution has zero-valued elements in the denominator, this metric
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suffers from the divide-by-zero problem. As another metric, the earth mover’s distance

(EMD) is a symmetric distance measure of histogram difference. Intuitively, if the two

histograms are interpreted as two ways of moving a certain amount of earth, the EMD

is the minimum work of changing from one way to the other. Thus, it involves solving a

transportation optimization problem, and it requires high computation complexity. Finally,

the kernel distance is another symmetric distance metric, which has many nice mathematical

properties. The kernel distance is essentially an empirical estimate of a statistic called

maximum mean discrepancy (MMD) defined in [78]. A conceptual explanation of MMD

is that it is the least upper bound of the difference between two function means. The key

aspect of the kernel distance is that it can be interpreted as an L2 distance between two

histograms or two sets of points embedded in a vector space, i.e., a Hilbert space. Thus, it

is relatively easy to calculate without much computatoinal cost. In this chapter, we explore

histogram difference metrics including the Kullback-Leibler divergence (KLD) [79] and the

kernel distance [29].

Some fingerprint-based methods use histograms of RSS for purposes of NRES [19, 20].

During calibration, RSS histograms are recorded on all links in a network as a person

stands in a known position, which becomes a fingerprint for a person being at that location.

Fingerprints are recorded as the person is moved to each possible position in the environment

(and the “empty-room” case, when no person is in the environment). During operation, the

current RSS histogram is compared to all of the fingerprints, and the person is estimated

to be at the position with the closest matching fingerprint [19, 20]. These methods require

calibration at each possible person location (or each combination of persons’ locations in

the case of multiple people), which may be extensive. In contrast, shadowing-based RTI

requires only a single empty-room calibration, and variance-based methods do not require

any calibration.

In general, histogram difference-based NRES methods require a single empty-room

calibration, similar to shadowing-based RTI methods. However, a second main contribution

of this work, we show that for our proposed NRES system, an empty-room calibration can

be replaced with a “long-term histogram” which is calculated during operation, regardless

of the presence or absence of people. By enabling online calibration, we allow the NRES

system to operate without any empty-room calibration, and thus be used for emergency

applications in which operators do not know a priori whether an area is empty or not. We

show that simple filtering of online RSS measurements using an IIR filter allows one to keep a

long-term histogram in memory without significant computational complexity. This filtered
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long-term histogram is close enough to the histogram which would have been measured in

an empty-room calibration to perform as well as with empty-room calibration. In fact,

in situations in which the environment has changed since the empty-room calibration, the

long-term histogram is closer to a true empty-room measurement, and NRES performs

better with it than with the offline empty-room calibration. Compared to an FIR filter

that requires more memory to store filter coefficients, the IIR filter used in this work only

requires two coefficients. Besides, by using the iterative formulation of the IIR filter in the

calculation of kernel distance, the computation complexity of kernel distance is reduced

from O
(
N2
)

to O (N) where N is the range of the RSS histogram.

In sum, the contribution of this chapter is to provide a complete framework for RSS-

based environmental inference, including real-time calibration, that enables localization of

both moving and stationary people in both LOS and non-LOS environments. We explore

this framework using reported measurement sets and new measurement sets we collected

for this purpose. We evaluate detection, imaging, and tracking using our framework.

The results show that some links’ RSS measurements do not change while a person

crosses the link line, so using any single link for NRES is unreliable. However, in an

N -node wireless network, there is redundancy from the O
(
N2
)

links in the network, and

one can reliably locate people in the environment. We formulate a new NRES method

that estimates a map of human presence from kernel distances in the network, which we

call kernel distance-based radio tomographic imaging (KRTI). We then test tracking a

single person in the area using a Kalman filter. Experimental results show that KRTI can

locate moving people more accurately than VRTI [15] and SubVRT [23]. For localization

of stationary people, KRTI also outperforms a sequential Monte Carlo method [16] both in

localization accuracy and computational efficiency.

The rest of the chapter is organized as follows. Section 4.3 first introduces two types

of RSS histograms and defines two histogram differences, then describes how we use these

metrics to detect, map and track a person in the area of a wireless network. Section 4.4

describes experiments used in this chapter, and Section 4.5 shows the detection, localization

and tracking results. We conclude in Section 4.6.

4.3 Methods

In this section, we first describe how we calculate short-term and long-term RSS his-

tograms, and show human presence could increase the difference between these two his-

tograms. Then we define two metrics to measure histogram difference, and we formulate

detection, imaging, localization and tracking via histogram difference.
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Commercial wireless devices return a discrete-valued RSS value with each received

packet. We denote the RSS of the ith packet as yi. We assume there is a finite set of

possible RSS values, of size N . For example, if a device measures RSS in a range from

ymin to ymax dBm and quantization is 1 dBm, then N = ymax − ymin + 1. Without loss of

generality, we refer to the RSS integer as a number in the range 0, . . . , N − 1.

We assume that there is a network with L links, and packets are transmitted repeatedly

and regularly on each link, so that RSS measurements can be made.

4.3.1 Short-term and long-term histograms

In our proposed method, a link is characterized by a histogram h of its recent RSS

measurements. The kth element of vector h, that is, hk, is the proportion of time that RSS

integer k is measured on the link. At time n, we denote this histogram as hn, and calculate

it as a filtered version, or weighted average, of RSS measurements:

hn =
∑
i

wn,iIyi (4.1)

where yi is the RSS at time i, I is an N -length indicator vector, and wn,i is the weight

for Iyi . The indicator vector Iyi is one in element corresponding to the RSS integer yi and

zero in all other elements. Essentially, Iyi is an instantaneous histogram based only on the

current measurement, and hn is a weighted average or filtered version of past instantaneous

histograms.

We test two different weighting schemes to compute hn, an offline uniform window, or

an exponentially weighted moving average (EWMA). The EWMA scheme has weights,

wn,i =

{
β(1− β)n−i i ≤ n
0 otherwise

, (4.2)

where 0 < β < 1 is the forgetting factor. A higher β increases the importance of the most

recent measurements in the histogram estimate. The EWMA is an infinite impulse response

(IIR) filter, in which hn is calculated as,

hn = (1− β)hn−1 + βIyn . (4.3)

In this way, only the current RSS value yn and previous histogram hn−1 are necessary to

calculate the current histogram. Further, computation of (4.3) requires N multiplies and a

single add. Thus we use the EWMA scheme for all histograms that are computed online,

to minimize computational and memory complexity.

A histogram is short-term or long-term based on the chosen weights wn,i. For the

EWMA filter, the long-term histogram (LTH) would use a lower β, thus providing more
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weight to past measurements, than the short-term histogram (STH). In the next sections,

we denote the LTH as q and the STH as p.

The offline uniform window has weight wn,i given as,

wn,i =

{
1
T 0 ≤ i ≤ T
0 otherwise

. (4.4)

If we substitute (4.4) into (4.1), we see that the first T RSS values are given equal weight to

calculate the histogram. As is clear from the fact that wn,i is not a function of current time

n, the histogram computed from offline empty-room calibration does not change over time.

We use (4.4) to implement the empty-room calibration, that is, we compute the long-term

histogram q from (4.4) when we want to test how our system would have performed if

calibrated using data from an initial test period (from 0 to T ) when no person was in the

area. The offline uniform window is used purely to compare results when using the proposed

online LTH vs. the offline empty-room LTH.

Examples shown in Figure 4.1 show how the STH and LTH differ for two example links.

The empty-room LTH, computed from T = 141 and the offline uniform window, shows a

consistent value of -64 dBm on the link in Figure 4.1(a). Two online STHs are shown, both

computed with β = 0.9, when a person is present on the link line and when no person is

on the link line. With no person present, the STH is nearly identical to the empty-room

LTH. When a person stands still on the link line, the STH shows a consistent RSS of -68

dBm. In Figure 4.1(b), a similar effect is seen — the STH with no person on the link line is

nearly the same as the empty-room LTH. Note also the “STH with person” in this figure is

from a time when the person is moving across (rather than standing still on) the link line,

and two different RSS values are present in the STH.

Finally, note that Figure 4.1(b) shows the similarity between the online (EWMA-based)

LTH and the offline empty-room LTH. The online LTH, computed from EWMA with a

forgetting factor β = 0.05 does show some nonzero probabilities of other RSS values (e.g.,

-41, -43, -45, . . .), however, the probabilities of these values are very close to zero. It is the

fact that these LTHs are very similar which allows us to replace the empty-room calibration,

which requires knowing that no person is in the area for a period of time, with an LTH

calculated online while people are present and moving in the area.

Next, we formalize our discussion of the differences between histograms by defining two

histogram difference metrics.
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4.3.2 Histogram difference

There are many ways to measure the difference D(p,q) between two histograms p and

q. The earth mover distance is a popular way of comparing two histograms. However,

it involves solving an optimal transportation problem and thus is too computationally

expensive for a real-time NRES system. Here, we choose another well known metric, the

Kullback-Leibler divergence (KLD) [79]. We also propose to use the kernel distance, which

has been recently applied in computational geometry [80].

4.3.2.1 Definitions

The Kullback-Leibler divergence between two histograms p and q can be calculated

as [79]:

DKL(p,q) =
∑
k

pk log
pk
q̃k
, (4.5)

where q̃k = max(ε,qk)∑
k max(ε,qk) , and ε is a small number that we use to avoid any divide-by-zero.

Note that we investigate the effect of ε later in Section 4.5.4.

The kernel distance between p and q is calculated as [29]:

DK(p,q) = pTKp + qTKq− 2pTKq, (4.6)

where K is an N by N kernel matrix from a 2-D kernel function, and ()T indicates transpose.

There are two commonly used kernel functions. One commonly used kernel is the Gaussian

kernel, defined as:

K(yj , yk) = exp

(
−|yj − yk|

2

σ2
G

)
, (4.7)

where yj and yk are the jth and kth elements, and σ2
G is the kernel width parameter.

Another common kernel is the Epanechnikov kernel, which is optimal in the sense that it

minimizes asymptotic mean integrated squared error [81],

K(yj , yk) =
3

4

(
1− |yj − yk|

2

σ2
E

)
I|yj−yk|≤σE , (4.8)

where Ia is the indicator function, Ia = 1 where a is true and zero otherwise, and σ2
E is

the kernel width parameter. We investigate both kernel functions, and they achieve similar

performance.
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4.3.2.2 Efficient implementation

The computation of (4.6) has O
(
N2
)

multiplication and add operations. We show in

the following that the kernel distance can be calculated with only O (N) operations. First,

we use the fact that K
1
2 is a symmetric matrix K

1
2 = (K

1
2 )T to change formulation (4.6)

to the standard Euclidean distance:

DK(p,q) = (K
1
2p)TK

1
2p + (K

1
2q)TK

1
2q− 2(K

1
2p)TK

1
2q

= ‖K
1
2p−K

1
2q‖2, (4.9)

where ‖ · ‖ indicates the Euclidean distance. Letting u = K
1
2p, v = K

1
2q, we obtain,

DK(p,q) = ‖u− v‖. (4.10)

Now, consider the online computation of the kernel distance at time n, that is, DK(pn,qn),

where both LTH and STH are calculated using the EWMA method in (4.3). Instead of

updating pn and qn each time n, we can reduce computational complexity by instead

updating un and vn, that is, u and v at time n > 0, using the same EWMA method:

un = (1− βp)un−1 + βpK
1
2 Iyn

vn = (1− βq)vn−1 + βqK
1
2 Iyn , (4.11)

where yn is the RSS at time n, βp is the forgetting factor for u, and βq is the factor for v.

The term K
1
2 Iyn is simply the kth column of matrix K

1
2 , where k is the index of the RSS

yn in the histogram, and thus does not require any multiplications. Thus (4.11) requires

O (N) multiplies and adds.

Note that initial values v0 and u0 must be given. We assume that the system has been

running prior to n = 0 and use the LTH histogram of these initial measurements to initialize

v0 and u0. The current kernel distance at time n is calculated as,

DK(un,vn) = ‖un − vn‖. (4.12)

This formula for dn is identical to DK(pn,qn) except that it requires O (N), rather than

O
(
N2
)
, multiplies and adds.

4.3.2.3 Examples

Consider the example histograms in Figure 4.1. For Figure 4.1(a), DK(p,q) = 0.83

between the LTH and the STH with a person on the link line, if we use the Epanechnikov

kernel with σ2
E = 30. Without any people on the link line, DK(pn,qn) = 0, since the STH
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is the same as the LTH. For the moving people case in Figure 4.1(b), DK(pn,qn) = 1.2

between the LTH and the STH with people, while DK(pn,qn) = 0.2 if no people near

the link. These two examples show that the presence of a stationary and moving person

significantly increases the kernel distance.

As another example, we show in Figure 4.2 both the RSS, yn, and kernel distance,

DK(pn,qn), for a period of time in which a person crosses the link twice. Kernel distance

is very close to zero except when the person crosses the link at n = 23 and n = 120, when

it exceeds 1.0. Note that 0 ≤ DK(pn,qn) ≤ 2. The kernel distance indicates clearly the

link crossings by its high value.

4.3.3 Detection of a person on link line

In this section, we quantify the ability of RSS histogram difference to detect a person

on a link line. As we find out, not all links are able to detect line crossings.

First, we define what we mean by a person being on a link line. We denote the

transmitting node and receiving node of link l as il and jl, with coordinates sil and sjl ,

respectively. We denote the person’s true location as z. Our definition of “person on the

link line” (POLL) is that the person’s center coordinate z is in an ellipse of excess path

length λ > 0 with foci at the node locations, that is,

POLL : ‖sil − z‖+ ‖sjl − z‖ < ‖sil − sjl‖+ λ. (4.13)

Note that we use λ = 0.06m in our results, so that the elliptical area includes only positions

very close to the line between the two nodes.

We want to decide between two hypotheses, H0 that the NPOLL condition is true, and

H1 that POLL is true. To avoid making assumptions about the distribution of histogram

differences given H0 or H1, we simply suggest that histogram differences will be higher

under H1 than under H0. Thus, we decide whether we believe NPOLL or POLL is true by

comparing the histogram difference to a threshold:

D(pl,ql)
H1

≷
H0

η, (4.14)

where η is a user-defined detection threshold, pl and ql are the STH and LTH from link

l, respectively, and D(pl,ql) is calculated from either KLD or kernel distance. Detection

results are shown in Section 4.5.1.
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4.3.4 Histogram difference radio tomography

Let d = [d0, . . . , dL−1]T denote a histogram difference vector with L directional link

histogram distances, dl = D(pl,ql). Let x = [x0, . . . , xM−1]T denote an image vector,

where xm is a measure of the current presence of a person or object in pixel m that was

not typically present in the past. In other words, xm is the “novelty” of human presence

in pixel m. We assume that d can be expressed as a linear combination of x, as has been

assumed for other RTI systems [76, 77, 22, 26, 24, 15]:

d = Wx + n, (4.15)

where n is a vector of measurement noise and model error. We use the elliptical weight

model W given in [22, 15], in which the weight Wl,m for pixel m is nonzero only if the pixel

center is in an ellipse with foci at the link transmitter and receiver locations.

A radio tomographic image x̂ be estimated from histogram difference measurements d

using:

x̂ = (W TC−1
n W + C−1

x )−1W TC−1
n d, (4.16)

where Cx is the covariance matrix of x, and Cn is the covariance matrix of the link

measurement noise. Here we use a least squares formulation, which has been shown to

outperform the Tikhonov regularization method [27]. The covariance matrix of the link

measurement noise, Cn, is not generally known here, thus we assume the noise vector has

i.i.d. elements. Thus Cn becomes an identity matrix multiplied by σ2
n. We propose to use

the following modified least squares formulation:

x̂ = ΠKd where ΠK = (W TW + σ2
nC
−1
x )−1W T . (4.17)

We model the scaled image covariance the same as in [27], where the (i, j) element of σ2
nCx

is given by [
1

σ2
n

Cx

]
i,j

=
σ2

δ
exp

(
−‖rj − ri‖

δ

)
, (4.18)

where σ2 = σ2
x/σ

2
n is the ratio of variance of human presence σ2

x to the variance of noise σ2
n,

which we use as a regularization parameter, δ is a correlation distance parameter, ri and rj

are the center coordinates of the ith and jth pixels, and ‖ · ‖ indicates Euclidian distance.

From (4.17) we see the image estimate is the product of d with a projection matrix ΠK

which can be calculated ahead of time. This product can be calculated in real-time.

In Section 4.5.4, we compare the performance of KLD and kernel distance for calculation

of d in (4.17), and show that the kernel distance consistently outperforms the KLD. Thus

we generally call our method kernel distance-based radio tomographic imaging, or KRTI.
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4.3.5 Localization and tracking

In this section, we describe how to use the image in (4.17) to perform localization and

tracking, which is the focus of this chapter. We assume, for localization and tracking

purposes, that only one person is present in the network area. When multiple people are

in the area, they can be seen in the KRTI image, however, multitarget tracking from the

image estimate is a very difficult problem and is not the focus of this chapter. We assume

that if our contributions improve tracking performance with one person in the network,

then future multitarget tracking methods will also benefit.

From the KRTI image estimate x̂, the position of the person is estimated as the center

coordinate of the pixel with maximum value. That is,

ẑ = rq where q = arg max
p

x̂p

where x̂p is the pth element of vector x̂ from (4.17). The localization error of this estimate

is defined as: eloc = ‖ẑ− z‖, where z is the actual position of the person.

To increase accuracy when locating moving people, we apply a Kalman filter to the

localization estimates to track people’s locations over time. In the state transition model of

the Kalman filter, we include both mobile people’s location and velocity in the state vector,

and the observation inputs of the Kalman filter are the localization estimates. We use the

same Kalman filter implementation as in [23].

We evaluate both localization and tracking performance in Section 4.5.

4.4 Experiments

In this section, we describe experiments that we use in evaluating our new framework.

In our experiments, we use TelosB nodes and we program nodes with a token passing

protocol [7] so that at any particular time, only one node is broadcasting while all the other

nodes are measuring pairwise RSS. All nodes are operating on the 26th channel of IEEE

802.15.4. A basestation connected to a laptop listens to the broadcast on that channel and

collects RSS measurements from these nodes.

Experiments 1 and 2 are performed on a calm day by Wilson et al. [15]. 34 radio

nodes are deployed outside the living room of a residential house with a deployment area

of about 9 m by 8 m [15]. During the first experiment (Experiment 1), they ask a person

to stand motionless at 20 different known locations inside the living room. Experiment 2

is performed on the same day with the same settings, but the task is to locate a person

walking inside the living room. A person walks around a marked path at a constant speed

using a metronome so that the location of the person at any particular time is known. An
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important fact about Experiment 2 is after recording offline calibration measurements, a

node (node ID 32) on the PVC stand was moved to a different location. This system change

affects the system performance, which we discuss later.

The third and fourth experiments (Experiment 3 and Experiment 4) are new datasets,

performed on a windy day at the same location as before. Since a recent study [23]

demonstrated the degrading effect of wind-induced motion on a variance-based localization

system, we choose a windy day and we also place three rotating fans at three locations in the

living room to create more motion to increase the background noise. Experiments 3 and 4

are performed in the same condition, and both are used to locate a person walking inside the

house. The difference is that we observe significant environmental difference between the

offline calibration period and the online localization period in Experiment 4. During offline

calibration period, wind blows strongly causing a lot of RSS variations, but it becomes much

weaker during online period. We investigate the effect of system and environment changes

on the system performance in Section 4.5.5.

The last experiment (Experiment 5) is performed by Wilson et al. [16] in the University

of Utah bookstore in an area of about 12 m by 5 m with 34 nodes deployed on book shelves

and display tables. In this experiment, a person walks clockwise around a known path twice

from Point A to Point D as shown in the experimental layout Figure 4.3(a). The bookstore

environment is cluttered with shelves, tables and books, as shown in Figure 4.3(b).

In sum, the first four experiments are performed at the same environment and are

all ”through-wall” experiments with nodes deployed outside walls. All five experimental

environments should be multipath-rich environments.

4.5 Results

In this section, we first evaluate detection via histogram difference, then we show imaging

and localization results of a stationary person. After that, we show localization and tracking

results of a moving person. Finally, we discuss the performance of using KLD and kernel

distance, we also discuss the effect of environment and system change on KRTI performance.

4.5.1 Detection results

We first quantify the ability of histogram difference to distinguish whether a person is

on the link line (POLL) or not (NPOLL). We use the EWMA scheme to calculate both

long-term histogram q and short-term histogram p. We use data from Experiment 1 and

parameters as given in Table 4.2.
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First, we record all kernel distances during H0 (NPOLL). The distribution of DK(pn,qn)

given H0 is shown in Figure 4.4(a). Approximately half of kernel distances are zero, and

the vasty majority are below 0.5. For the data recorded on links where H1 (POLL) is true,

the kernel distance distribution is shown in Figure 4.4(b). Now, fewer kernel distances are

zero, down to 20%; however, this means that we have no chance of detecting the person

standing on the link line for 20% of links.

From the distributions of DK(pn,qn) given H0 and H1, we calculate the receiver op-

erating characteristic (ROC) curve in Figure 4.4(c). Even for a probability of false alarm

(PFA) of 40%, the probability of detection is below 80%. Similarly, we test the use of KLD

as the difference metric, with the resulting ROC curve shown in Figure 4.4(c). For low

PFA, kernel distance has higher detection performance, while for high PFA, KLD performs

better.

The results show the difficulties in detecting human presence using only one link’s RSS

data. This motivates the use of a network of many links, rather than just a single linke, in

order to infer the presence and location of people in an area.

4.5.2 Imaging and localization of a stationary person

In this section, we demonstrate that KRTI can not only locate moving people, but also

stationary people, a major advantage of KRTI over variance-based methods [15, 18]. We

use measurements from Experiment 1, in which a person stands motionless inside a house,

and compare imaging results from KRTI and VRTI [15]. In Figure 4.5(a), the KRTI image

has relatively high pixel values near the true location of the person, and the pixel with

maximum value is very close to the true location. Since a stationary human body does not

cause much RSS variance, VRTI cannot correctly image the person’s location, as shown

in Figure 4.5(b). Note that we use the EWMA scheme for both long-term and short-term

histograms, and the kernel distance, with parameters listed in Table 4.2.

A recent method able to locate a stationary person in a multipath-rich environment is

the sequential Monte Carlo (SMC) approach developed by [16]. The method of [16] requires

an empty-room (offline) calibration, and is substantially more computational complex than

the KRTI method. Further, across experiments, we show that KRTI is more accurate in

localization. We run SMC using three hundred particles using data from Experiment 1. In

Experiment 1, a person sequentially stands at each of 20 known locations for a constant

period τ . At each location we have about 50 KRTI estimates. For these twenty locations,

we calculate the overall average error ēloc =
∑20

i=1 ‖ẑa−z‖, where ẑa is the average location

estimates from KRTI and SMC during period τ . The average location estimates ẑa from
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KRTI are shown in Figure 4.6, in which the line between the average estimate (shown as

triangle) and the true location (shown as cross) indicates the estimation error. We see the

errors from KRTI are generally below 1 m, more accurate than the results from SMC shown

in Figure 10 of [16]. The average error ēloc from SMC is 0.83 m, while ēloc from KRTI

is 0.71 m, a 14.5% reduction. On the same 2.4 GHz Core 2 Duo processor-based laptop,

it takes 0.03 seconds to produce one estimate from our KRTI Python code, while it takes

three to four minutes to produce one SMC location estimate. Thus, KRTI outperforms

SMC both in accuracy and computational efficiency.

4.5.3 Localization and tracking of a moving person

Besides the improvement on imaging and locating stationary people, KRTI also provides

better performance for locating moving people. Now we compare KRTI with two variance-

based methods, VRTI [15] and SubVRT [23]. We run KRTI, VRTI and SubVRT on data

from Experiments 2 - 5, and calculate the root mean squared error (RMSE), which is defined

as the square root of the average squared localization error. As shown in Table 4.3, our KRTI

can achieve submeter localization accuracy in all experiments. Particularly, for Experiment

3, performed on a windy day, the RMSE from VRTI is 2.1 m, while the RMSE from KRTI

is 0.69 m, a 67% improvement. For Experiment 2, performed on a calm day, SubVRT

has a better performance than KRTI (0.65 m vs. 0.78 m RMSE for KRTI). Since SubVRT

uses offline empty-room calibration measurements to estimate the noise covariance [23], we

expect it to perform particularly well during windy conditions. KRTI does not use such

empty-area calibration. However, KRTI significantly outperforms SubVRT, by 30-35%, in

all other experiments. Particularly, in Experiment 4, in which the environment changes

between the offline calibration and the online measurements, SubVRT does not perform

well. However, KRTI uses online measurements to build the long-term histogram, thus is

not significantly affected by offline measurements. The RMSE of KRTI is 0.76 m in this

case, a 33% improvement on SubVRT. We discuss the effect of environmental changes in

more detail in Section 4.5.5. For Experiment 5, due to the strong multipath environment

of the cluttered bookstore (as shown in Figure 4.3(b)), neither VRTI nor SubVRT perform

very well. However, KRTI is particularly robust to non-LOS environments and achieves

0.73 m RMSE, a similar error as in other experiments. To summarize, KRTI does not just

use RSS variance or RSS mean. Instead, it uses histogram difference to include both the

effect of a stationary person and a moving person. It is particularly robust to the multipath

environment, working just as well in strong multipath environments.

Finally, we show the Kalman filter tracking results of Experiment 5 in Figure 4.7. We
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see that tracking results have highest errors when the person is far from the closest radio

node. For example, the tracking error is about 1 m when the person is located at the upper

left corner of the path. However, KRTI with a Kalman filter is capable of tracking a person

in a large multipath-rich environment with submeter accuracy in general. We also compare

the cumulative distribution functions (CDFs) of tracking errors from KRTI and VRTI in

Figure 4.8. For VRTI, 95% of tracking errors are below 1.7 m, while 95% of errors from

KRTI are below 1.2 m, a 29% improvement. We also see the median tracking RMSE from

VRTI is 1.0 m, while it is 0.6 m for KRTI, a 40% improvement.

4.5.4 Kernel distance vs. KLD

In this section we compare kernel distance and Kullback-Leibler divergence (KLD) as

histogram difference metrics in localization. Using an Epanechnikv kernel defined in (4.8),

we test different kernel width parameters σ2
E . Figure 4.9 shows that KRTI performance

is not sensitive to this parameter. RMSEs from Experiments 2 and 3 are both shallow

functions of σ2
E , as long as σ2

E ≥ 10. A wider kernel makes the distance more robust to

measurement noise, whereas a narrower kernel makes it more sensitive to the noise because

it does not smooth the nearby measurements as much to act similarly with respect to the

distance.

To calculate KLD, we use parameter ε in (4.5) to avoid division by zero. As shown in

Figure 4.10, if ε < 0.1, the localziation RMSE is only mildly sensitive to this parameter.

However, from a comparison of Experiments 2 and 3, the RMSEs when using KLD are

generally above 0.8 m, while most RMSEs from kernel distance are below 0.8 m. From

Figure 4.9 and Figure 4.10, we see both histogram difference metrics can achieve submeter

localization accuracy, however, kernel distance is less sensitive to its parameter σ2
E , and

consistently outperforms KLD in localization accuracy.

4.5.5 Effects of environment and system changes

In the above tests, we use the EWMA filter to calculate the online LTH q. We can also

use the offline empty-room calibration in order to calculate the LTH. We compare the two

in this section.

Note that if the environment changes or sensors change positions after the offline empty-

room calibration, the changes diminish system performance. As described in Section 4.4,

the location of a single node is accidentally changed after the offline empty-room calibration

period in Experiment 2, prior to the online period. Even if a receiver node moves by only

a fraction of its wavelength, its measured RSS values may vary by tens of dB as a result
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of small-scale fading [61]. We apply the offline empty-room LTH in KRTI to generate the

image in Figure 4.12, in which a person is walking and is at the position indicated by the

cross. The figure shows two hot spot areas – besides the one close to the true location of

the person, there is another one at the lower left corner of the network, close to node 32

indicated by the red circle. A similar false image, not shown, is seen during Experiment 4,

in which the environment changes after the offline empty-room calibration. We avoid this

false image problem by using the EWMA for online calculation of the LTH.

In our KRTI method, we use solely the EWMA filter for online calculation of both long-

term and short-term histograms. We do, however, require initialization of the histograms

at time zero. In real-time operation, we would simply run the system for a short period

to allow the LTH to “settle” prior to using its results. For experiments, we do not have

a settling period, and instead, we initialize the LTH with the (uniform windowed) average

over the empty-room measurements, that is, the offline LTH. Our online LTH then quickly

“settles” to the LTH of the online measurements.

We see the relative RMSE performance of empty-room LTH (offline FIR) vs. online LTH

(online EWMA) in Table 4.4. We see that the online LTH is as good or better than the

offline LTH in every case. While the RMSEs are similar in Experiments 3 and 5, the online

LTH performs significantly better for Experiments 2 and 4, for which there were either

sensor position changes or environmental changes between the empty-room calibration and

the online operation, as described earlier. Since the offline empty-room measurements are

used to initialize the online LTH, the effect of corrupted link measurements is present at

the very beginning of the online period in Experiment 4. However, after updating the LTH

for a while, KRTI image can clearly show the location of the person, since more online

measurements replace offline calibration measurements. If we control the updating speed

appropriately by choosing βq = 0.05, the “online EWMA” method can achieve submeter

accuracy for all experiments. Since Experiments 3 and 5 do not have much environment

and system change effect, both methods have similar performance.

For KRTI using the online LTH, we test the effect of EWMA forgetting factor βq. The

RMSEs from KRTI with different βq values are shown in Figure 4.11. The RMSEs are very

shallow functions of βq and are all below 1 m in the range of 0.01 to 0.1. If βq is below 0.01,

the weight of the latest measurement becomes very small, that is, the update process of the

LTH is very slow. If βq = 0, it is equivalent to no update. At the other extreme, if βq is

too high, i.e., above 0.1, then the update speed becomes too fast. If βq approaches 1, then

almost all previous RSS measurements are removed from the memory. To keep sufficient
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history measurements in memory and also balance between these two extremes, we choose

βq = 0.05 as listed in Table 4.2. We also test the effect of EWMA factor βp for updating

the STH p, we find KRTI performance is best in the range of 0.8 to 1.

4.5.6 Discussion

Results from five different experiments show that our KRTI method has new features

that other methods do not. Moreover, KRTI demonstrates better performance in imaging,

localization and tracking. Compared with variance-based methods [15, 23], KRTI has the

ability of imaging a stationary person as well as a moving person. For tracking a moving

person, KRTI also outperforms VRTI and SubVRT. In addition, KRTI can use an EWMA

filter to update the long-term histogram continuously during an online period, and is more

robust to environmental and system changes. The advantage of KRTI over SMC [16] is

that KRTI does not require any empty-area offline calibration, and performs better both in

localization accuracy and computational efficiency. We know that shadowing-based radio

tomographic imaging (RTI) can locate both stationary and moving people at line-of-sight

(LOS) environments, but does not work at multipath-rich environments. To our knowledge,

KRTI is the first method that can locate both stationary and moving people in both LOS

and non-LOS environments without any offline calibration.

To summarize, KRTI has new properties that other methods do not. We list features of

different methods in Table 4.5.

4.6 Conclusion

In this chapter, we propose a new network RF environment sensing (NRES) framework

that uses histogram difference and online calibration to perform network RF sensing of

people. Specifically, we propose a kernel distance-based RTI (KRTI), which uses the

histogram distance between a short-term histogram and a long-term histogram to image

and locate a moving or stationary person. We explore the framework using three reported

measurement sets and two new measurement sets. We evaluate detection, imaging and

tracking using our framework. Our experimental results show that KRTI provides robust

imaging and tracking capabilities at multipath-rich environments, even though detection

from individual links is unreliable. Compared with previous NRES methods, our KRTI

is the only real-time method that is capable of imaging and locating both stationary and

moving people in both LOS and non-LOS environments without any empty-room offline

calibration.
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Figure 4.1: Long-term histogram (LTH) from offline calibration measurements and short-
term histograms (STH) with and without (a) a stationary person; (b) a moving person.
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Figure 4.2: RSS (×) and kernel distance (+) time series for a link which a person crosses
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Figure 4.4: Detection results of using histogram distance to detect a person on link line
or not (a) Kernel distance PDF from NPOLL; (b) Kernel distance PDF from POLL; (c)
ROC curve.
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Figure 4.5: Imaging results of a stationary person (true location shown as ×) from (a)
KRTI and (b) VRTI.
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Figure 4.6: KRTI location estimates of a person standing at twenty locations.
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Figure 4.7: Kalman filter tracking results for Experiment 5 (true path shown as dash line).
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Figure 4.8: Kalman filter tracking CDFs from VRTI and KRTI for Experiment 5.
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Figure 4.10: KLD parameter ε vs. RMSE from KRTI using KLD.
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Figure 4.11: EWMA coefficient βq vs. RMSE from KRTI.
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Table 4.1: Experimental datasets.

Name Task Description

Exp.1 stationary person calm day through-wall

Exp.2 moving person calm day through-wall

Exp.3 moving person windy day with fans

Exp.4 moving person environment changes

Exp.5 moving person at a cluttered bookstore

Table 4.2: Parameters used in detection and localization.

Parameter Value Description

σ2 50 Regularization parameter

δ 2 Space parameter (m)

σ2
E 30 Epanechnikov kernel width

ε 0.001 KLD parameter

βq 0.05 EWMA factor for v

βp 0.9 EWMA factor for u

Table 4.3: RMSEs of locating a moving person.

RMSE (m) Exp. 2 Exp. 3 Exp. 4 Exp. 5

VRTI 0.70 2.12 1.46 1.09

SubVRT 0.65 1.05 1.14 1.08

KRTI 0.78 0.69 0.79 0.74

Table 4.4: RMSEs from KRTI using online IIR and offline FIR methods.

RMSE (m) Exp. 2 Exp. 3 Exp. 4 Exp. 5

Offline FIR 1.49 0.74 5.02 0.74

Online EWMA 0.78 0.69 0.79 0.74

Table 4.5: Features of different NRES methods.

Features RTI VRTI SMC KRTI

Through-wall? No Yes Yes Yes

Online calibration? No NA No Yes

Stationary people? Yes No Yes Yes

Real-time? Yes Yes No Yes



CHAPTER 5

CONCLUSION

This dissertation is concluded with a summary of key research findings and opportunities

for future work.

5.1 Key findings

For localization of a person in a wireless sensor network, the human body has a consid-

erable effect on the RF signals transmitted from a radio device that the person is carrying.

The human body also affects wireless measurements from links in the vicinity of the person.

Both effects of the human presence are treated as “noise” in traditional real-time location

systems and wireless communication systems. This dissertation aims at using the human

body effects on radio signal and the correlated wireless measurements from many radio

devices in a network to improve the performance of localization systems with or without

requiring a person to carry radio devices. The key findings in radio device localization and

device-free localization are summarized next.

5.1.1 Radio device localization

The first few key findings involve radio device localization in which the localization

system requires people to wear active RFID badges. In many radio device localization

experiments, we find that position estimates are often biased because of a non-isotropic gain

pattern. If a person wears a transmitter badge on their chest, the position estimates from

model-based maximum likelihood estimators (MLE) that assume isotropic gain pattern are

often biased towards the directions that the person is facing. Essentially, the MLE estimates

that the badge is closer to receivers that measure more power, and receivers in the direction

the person is facing receive more power than would be predicted by an isotropic model.

To remove the unrealistic isotropic gain pattern assumption in model-based localization,

an empirical model for the directionality of a transmitter badge when worn by a person

is proposed and verified based on measurements performed by five different people at two
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different indoor and outdoor environments. Based on this empirical gain pattern model, we

find we can estimate the model parameters using only RSS measurements between anchor

nodes and the badge. We propose a gain pattern estimator assuming the location of the

badge is known. For joint position and gain pattern estimation, we propose an alternating

gain and position estimation (AGAPE) algorithm to efficiently estimate both the position

and orientation of a person wearing a badge in an RF sensor network. One might think

that the introduction of an additional unknown gain pattern model would increase the lower

bound of the variance of an estimator. We derive the Bayesian CRB [32] by including the

gain pattern model parameters as nuisance parameters. We show that the CRB with an

isotropic gain pattern assumption derived in [10] is a special case of the derived Bayesian

CRB, and the introduction of a gain pattern model decreases the lower bound on the

variance of a position estimator. After we have the location and orientation estimates of

a person, we develop a novel Kalman filter which additionally tracks user orientation, and

uses this to further improve coordinate tracking.

To summarize, the key findings in radio device localization are listed as follows:

• Find an empirical first-order gain pattern model that can represent the effect of the

orientation (facing direction) of a human body on the RSS from a transmitter badge

worn by the person based on the measurements performed in different environments.

• Propose a gain pattern estimator using only RSS measurements from a static wireless

sensor network.

• Propose an alternating gain and position estimation (AGAPE) algorithm [1] to jointly

estimate RFID badge location and badge gain pattern.

• Derive the Bayesian Cramér-Rao bound (CRB) [32] for the joint estimation prob-

lem. Comparison with CRB derived with an isotropic gain pattern assumption [10]

shows that the accuracy of position estimates can be greatly improved by including

orientation estimates in the localization system.

• Develop a robust tracking algorithm, orientation-enhanced extended Kalman filter

(OE-EKF) that accepts orientation estimate as input to track mobile users in RF

sensor networks.

5.1.2 Device-free localization

For device-free localization, the first few new findings are on the variance-based RTI.

We know variance-based DFL systems including VRTI use the fact that human motion
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in the vicinity of a wireless link causes RSS variations to locate and track people in the

area of the network. However, intrinsic motion, such as branches moving in the wind and

rotating or vibrating machinery, also causes RSS variations which degrade the performance

of a localization system.

The finding of the effect of intrinsic motion is from our inability to achieve the per-

formance of 0.6 m average tracking error reported in [15]. In a repeat of the identical

experiment at the same location and using the identical hardware, number of nodes, and

software, VRTI does not always locate the person walking inside the house as accurately

as reported in [15]. Investigation of the experimental data and video taken during the

experiments indicates the reason for the degradation: intrinsic motion caused by periods of

high wind.

Since intrinsic motion is an intrinsic part of an environment, we assume calibration

measurements contain the type of intrinsic motion that we experience during the real-time

operation. We use calibration measurements and propose two estimators to improve the

robustness of VRTI. The first one uses the subspace decomposition method, which has

been used in spectral estimation, sensor array processing, and network anomaly detection

[62, 63, 64, 65]. We apply this method to VRTI, which leads to a new estimator we refer

to as subspace variance-based radio tomography (SubVRT) [23]. Inspired by the fact that

SubVRT makes use of the covariance matrix of link measurement and significantly reduces

the impact of intrinsic motion, we also formulate a least squares (LS) solution [66] for

VRTI which uses the inverse of the covariance matrix. We call this estimator least squares

variance-based radio tomography (LSVRT). We find that by using the covariance matrix

from the offline calibration measurements, both estimators are significantly more robust to

intrinsic motion than VRTI. Experimental results show that both estimators reduce the

RMSE of the location estimate by more than 40% compared to VRTI.

A new device-free localization system, which we call kernel distance-based RTI (KRTI)

is another new finding in DFL. The motivation of this new DFL system is that many

DFL systems cannot locate stationary people in a multipath-rich environment. Instead

of using the absolute change and the variance of RSS measurement, we propose to use a

new metric – the histogram difference between two RSS histograms to be able to locate

both stationary and moving people. We explore different histogram difference metrics

including the Kullback-Leibler divergence (KLD) [79] and we find the kernel distance is

a good measure of histogram difference to locate people.

To be able to locate stationary people, KRTI requires an empty-room calibration as
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reference measurements, similar to shadowing-based RTI. However, a second finding of

this work is that we find an empty-room calibration can be replaced with a “long-term

histogram” which is calculated during localization operation, regardless of the presence or

absence of people. By enabling online calibration, we allow the DFL system to operate

without any empty-room calibration, and thus be used for emergency applications in which

operators do not know a priori whether an area is empty or not. We show that simple

filtering of online RSS measurements allows one to keep a long-term histogram in memory

without significant computational complexity. This long-term histogram is close enough to

the histogram which would have been measured in an empty-room calibration to perform

as well as with empty-room calibration.

In summary, the findings of this dissertation on DFL include:

• Observe how intrinsic motion, such as motion of tree leaves, increases RSS variation

in a way that is “noise” to a variance-based DFL system, and discover the noise has

a spatial signature, which can be removed by the subspace decomposition method.

• Propose two robust estimators, subspace variance-based radio tomography [23] and

least square variance-based radio tomography [30] to reduce the impact of the varia-

tions caused by intrinsic motion.

• Propose a new device-free localization method called kernel distance-based RTI [31],

which uses the kernel distance between two RSS histograms (short-term histogram and

long-term histogram) to locate both moving and stationary people. The exponentially

weighted moving average is used on long-term histogram built during online period so

that KRTI does not require “empty-room” offline calibration, and can be implemented

without much computational complexity.

5.2 Future work

This dissertation explores locating people in sensor networks using both radio device

localization method and device-free localization method. This section discusses the idea of

combining these two methods and possible future work in radio tomographic localization.

5.2.1 Joint radio device and device-free localization

One suggestion for future work is joint radio device localization and device-free local-

ization. Specifically, it is possible to combine the estimates from DFL with the AGAPE

algorithm to better locate people wearing active RFID transmitter badges. The AGAPE
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algorithm developed in [1] is capable of estimating both the location of the orientation (fac-

ing direction) of people wearing transmitter badges in an outdoor environment. However,

AGAPE suffers from an ambiguity problem. Since AGAPE has additional two parameters

– people orientation and gain pattern directionality to estimate besides people location,

severe multipath effects can cause AGAPE to converge to a wrong location estimate with a

wrong orientation estimate in indoor environments. To solve this ambiguity problem, it is

feasible to use location estimates from device-free localization methods, such as KRTI, in

the AGAPE algorithm. Since the location estimate is confined, AGAPE can estimate both

orientation and position without ambiguity in an indoor environment.

Since radio device localization like RFID localization provides identity of people carrying

radio devices, combining radio device localization with DFL enables locating and identifying

people for the multiple people localization scenario. For example, in the rescue scenario,

joint radio device and device-free localization is capable of locating and identifying firefight-

ers wearing RFID badges and victims without carrying any radio devices. However, it is

difficult to identify victims from firefighters by only looking at the estimated RTI images.

Another benefit of using estimates from DFL in radio device localization (AGAPE) is that

additional information of a person’s facing direction can be estimated as well. From a

human activity recognition perspective, the orientation information of people is helpful in

recognizing what kind of activities that people are doing. For example, if two people are

facing to each other in a short distance in a hallway, it is more likely that a conversation

is going on between them. Besides additional estimates of people’s orientations, location

estimates from radio device localization such as AGAPE and device-free localization like

KRTI can be combined to improve the localization accuracy. While small scale fading has

effects on both radio device localization and DFL, at certain environments with certain

network configurations (i.e., topology and number of nodes), DFL may perform better

than device-based localization, and at other conditions, it could be the opposite. It is an

interesting future work to investigate in what kind of conditions, DFL outperforms radio

device localization, and vice versa. Then certain data fusion method [82] can be used to

adaptively combine two methods for a better estimate based on different environments and

configurations.

However, practical issues also need to be addressed to combine two methods in real-world

localization systems. As illustrated in Figure 1.2, all pairwise links of a network are used

in a radio tomographic system. While for an emergency situation that does not last a long

time, the energy consumption is not an important issue. Collecting all link measurements
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from a large network with hundreds or thousands of nodes would consume a lot of energy

and is not practical for a real-time location system (RTLS) that is supposed to last for

months or years without changing batteries for radio sensors. Thus, an energy-efficient way

of performing DFL is also an interesting future research topic. Next, we focus on the future

work particularly on DFL.

5.2.2 Future work in DFL

As an emerging technology, device-free localization using wireless sensor networks has

many possible future research topics. Here, we only focus on model-based DFL method,

that is, radio tomographic localization.

The major advantage of radio tomographic localization over fingerprint-based DFL

method is that a statistical model is used to relate RSS measurements with the locations of

the human motion or human presence so that it is not necessary to have a training period in

which a person stands at each possible location in the network. However, the linear model

used in radio tomographic localization is just an approximation of the real-world human

motion or presence effects on RSS measurements. Recall the model as expressed in (1.3)

in Chapter 1. Essentially the model tells us that if a person is inside an elliptical area, the

human presence has certain effect (related to the link length and a scaling constant φ) on

the link RSS measurement; if not, then the person has no effect on that link. Although this

model is shown to be effective in both outdoor and indoor environments, the localization

performance of RTI still has space to be improved in certain situations. For example, from

many through-wall experiments performed at the same residential house, it is found that

if a person walks close to a big TV set in the living room, the variance-based methods

including VRTI, SubVRT and LSVRT cannot locate the person correctly within submeter

accuracy. Thus, it is an important future research topic to investigate the possible use of

other models in RTI. From previous RTI experiments, it is also found that the performance

of radio tomographic localization could be very sensitive to the choice of the elliptical

width parameter. At some environments, RTI performs better with a small elliptical width

parameter; at other environments, a big value should be used to achieve the best localization

performance. Thus it is important to be able to automatically choose model parameters of

RTI in the future.

In this dissertation, two robust estimators SubVRT and LSVRT are developed to im-

prove the robustness of the variance-based RTI. However, both estimators need offline

empty-room calibration measurements. For practical applications, especially in emergency

and rescue situations, an empty-room calibration is often not available. To be able to use the
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two robust estimators in those scenarios, it is necessary to identify the intrinsic motion from

online calibration period, in which people are present in the area. A recent study has used

background subtraction techniques from computer vision field to perform online calibration

of baseline RSS measurements in RF sensor networks [83]. Various background subtraction

methods are investigated including background subtraction with temporal background mod-

eling, foreground-adaptive background subtraction, and foreground-adaptive background

subtraction with Markov modeling of change labels. Thus, it is a possible future research

topic to use online calibration to capture intrinsic motion with the help of these background

subtraction methods.

Finally, in many indoor experiments, we have observed that if we place radio nodes on

the surface of walls with their radio antennas very close to the walls (almost touching the

walls), then the performance of RTI is not as good as when we place nodes a few inches

away from the walls. Sometimes RTI does not work at all if all radio nodes are too close to

the walls. A reasonable explanation is that walls can significantly change the gain pattern

of the radio antenna if the walls are in the near field of the antenna. As investigated in

Chapter 2 of the dissertation, if an active RFID node is worn by a person as a badge, the

human body significantly changes the gain pattern of the RFID node. Thus, for walls built

with concrete, the same effect happens to the radio nodes attached onto the walls. While

in RTI experiments and demonstrations, we can always place radio nodes a little further

away from the walls or any big obstacles, in real applications, it is convenient to simply

plug radio nodes to the power outlet on walls. For some applications such as surveillance

and monitoring, it is even desirable to place radio sensors inside walls so that intruders and

attackers cannot find them and the system is protected from possible attacks. Thus, it is

an important future topic to study how to remove or even use the effect of walls on the

gain pattern of radio nodes to improve the sensing ability and localization performance of

a radio tomographic system.



APPENDIX

DERIVATION OF INFORMATION

MATRIX

A.1 Derivation of information matrix

We derive the information matrix Iθ expressed in (19) in Section 3.6.1 of this submission.

As an example, we derive the first element [Iθ]11. From (19), we see [Iθ]11 = [ID]11 +

[IP ]11. So first, we calculate [ID]11 from (17).

The second derivative of the log-likelihood function w.r.t. xt is written as:
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where µ is short for µ(θ) = P0 − 10np log10( did0 ) + g(αi).
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The first derivative of µ to xt in (A.2) is:
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ln 10 , ∆xi = xi − xt, and ∆yi = yi − yt.

Next, we take the expectation w.r.t. prior knowledge EP to (A.2), and we have:

[ID]11 = EP

[
ED

(
∂2 ln fD
∂x2

t

)]
=

1

σ2N

[(
c
∆xit
d2
i

)2

+ f1(g)

]
(A.4)

where

f1(g) = σ2
G

(
1

d2
i

+
∆x4

i

d6
i

+
∆x2

i∆y
2
i

d6
i

− 2
∆x2

i

d4
i

)
.
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Since we have no prior knowledge of xt, [IP ]11 = 0. Thus the first element of the

information matrix [Iθ]11 becomes:

[Iθ]11 =
1

σ2N

[(
c
∆xit
d2
i

)2

+ f1(g)

]
. (A.5)

The other elements of the information matrix can be derived in a similar manner. One

difference in deriving [Iθ]mn for m ∈ {3, 4} and n ∈ {3, 4} is [IP ]mn is non-zero, because

prior knowledge of GI and GQ is available. For example, [IP ]33 is:

[IP ]33 = −EP
(
∂2 ln fP
∂G2

I

)
=

1

σ2
G

. (A.6)

Finally, since the information matrix is symmetric, all the elements in the upper trian-

gular of the information matrix are listed in the following:

[Iθ]11 =
1

σ2N

N−1∑
i=0

[(
c
∆xi
d2
i

)2

+ f1(g)

]
(A.7)

[Iθ]12 =
1

σ2N

N−1∑
i=0

[(
c
∆xi
d2
i

)(
c
∆yi
d2
i

)
+ f2(g)

]
(A.8)

[Iθ]13 =
1

σ2N

N−1∑
i=0

(
c
∆xi
d2
i

)(
∆xi
di

)
(A.9)

[Iθ]14 =
1

σ2N

N−1∑
i=0

(
c
∆xi
d2
i

)(
∆yi
di

)
(A.10)

[Iθ]22 =
1

σ2N

N−1∑
i=0

[(
c
∆yi
d2
i

)2

+ f3(g)

]
(A.11)

[Iθ]23 =
1

σ2N

N−1∑
i=0

(
c
∆yi
d2
i

)(
∆xi
di

)
(A.12)

[Iθ]24 =
1

σ2N

N−1∑
i=0

(
c
∆yi
d2
i

)(
∆yi
di

)
(A.13)

[Iθ]33 =
1

σ2N

N−1∑
i=0

(
∆xi
di

)2

+
1

σ2
G

(A.14)

[Iθ]34 =
1

σ2N

N−1∑
i=0

∆xi
di

∆yi
di

(A.15)

[Iθ]44 =
1

σ2N

N−1∑
i=0

(
∆yi
di

)2

+
1

σ2
G

(A.16)

where
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f2(g) = σ2
G

(
∆x3

i∆yi
d6
i

+
∆y3

i ∆xi
d6
i

− 2
∆xi∆yi
d4
i

)
f3(g) = σ2

G

(
1

d2
i

+
∆y4

i

d6
i

+
∆x2

i∆y
2
i

d6
i

− 2
∆y2

i

d4
i

)
.
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