4,043 research outputs found

    Cross-Language Question Re-Ranking

    Full text link
    We study how to find relevant questions in community forums when the language of the new questions is different from that of the existing questions in the forum. In particular, we explore the Arabic-English language pair. We compare a kernel-based system with a feed-forward neural network in a scenario where a large parallel corpus is available for training a machine translation system, bilingual dictionaries, and cross-language word embeddings. We observe that both approaches degrade the performance of the system when working on the translated text, especially the kernel-based system, which depends heavily on a syntactic kernel. We address this issue using a cross-language tree kernel, which compares the original Arabic tree to the English trees of the related questions. We show that this kernel almost closes the performance gap with respect to the monolingual system. On the neural network side, we use the parallel corpus to train cross-language embeddings, which we then use to represent the Arabic input and the English related questions in the same space. The results also improve to close to those of the monolingual neural network. Overall, the kernel system shows a better performance compared to the neural network in all cases.Comment: SIGIR-2017; Community Question Answering; Cross-language Approaches; Question Retrieval; Kernel-based Methods; Neural Networks; Distributed Representation

    Evaluation campaigns and TRECVid

    Get PDF
    The TREC Video Retrieval Evaluation (TRECVid) is an international benchmarking activity to encourage research in video information retrieval by providing a large test collection, uniform scoring procedures, and a forum for organizations interested in comparing their results. TRECVid completed its fifth annual cycle at the end of 2005 and in 2006 TRECVid will involve almost 70 research organizations, universities and other consortia. Throughout its existence, TRECVid has benchmarked both interactive and automatic/manual searching for shots from within a video corpus, automatic detection of a variety of semantic and low-level video features, shot boundary detection and the detection of story boundaries in broadcast TV news. This paper will give an introduction to information retrieval (IR) evaluation from both a user and a system perspective, highlighting that system evaluation is by far the most prevalent type of evaluation carried out. We also include a summary of TRECVid as an example of a system evaluation benchmarking campaign and this allows us to discuss whether such campaigns are a good thing or a bad thing. There are arguments for and against these campaigns and we present some of them in the paper concluding that on balance they have had a very positive impact on research progress

    Meeting of the MINDS: an information retrieval research agenda

    Get PDF
    Since its inception in the late 1950s, the field of Information Retrieval (IR) has developed tools that help people find, organize, and analyze information. The key early influences on the field are well-known. Among them are H. P. Luhn's pioneering work, the development of the vector space retrieval model by Salton and his students, Cleverdon's development of the Cranfield experimental methodology, Spärck Jones' development of idf, and a series of probabilistic retrieval models by Robertson and Croft. Until the development of the WorldWideWeb (Web), IR was of greatest interest to professional information analysts such as librarians, intelligence analysts, the legal community, and the pharmaceutical industry

    Improving Neural Question Answering with Retrieval and Generation

    Get PDF
    Text-based Question Answering (QA) is a subject of interest both for its practical applications, and as a test-bed to measure the key Artificial Intelligence competencies of Natural Language Processing (NLP) and the representation and application of knowledge. QA has progressed a great deal in recent years by adopting neural networks, the construction of large training datasets, and unsupervised pretraining. Despite these successes, QA models require large amounts of hand-annotated data, struggle to apply supplied knowledge effectively, and can be computationally ex- pensive to operate. In this thesis, we employ natural language generation and information retrieval techniques in order to explore and address these three issues. We first approach the task of Reading Comprehension (RC), with the aim of lifting the requirement for in-domain hand-annotated training data. We describe a method for inducing RC capabilities without requiring hand-annotated RC instances, and demonstrate performance on par with early supervised approaches. We then explore multi-lingual RC, and develop a dataset to evaluate methods which enable training RC models in one language, and testing them in another. Second, we explore open-domain QA (ODQA), and consider how to build mod- els which best leverage the knowledge contained in a Wikipedia text corpus. We demonstrate that retrieval-augmentation greatly improves the factual predictions of large pretrained language models in unsupervised settings. We then introduce a class of retrieval-augmented generator model, and demonstrate its strength and flexibility across a range of knowledge-intensive NLP tasks, including ODQA. Lastly, we study the relationship between memorisation and generalisation in ODQA, developing a behavioural framework based on memorisation to contextualise the performance of ODQA models. Based on these insights, we introduce a class of ODQA model based on the concept of representing knowledge as question- answer pairs, and demonstrate how, by using question generation, such models can achieve high accuracy, fast inference, and well-calibrated predictions

    Natural language processing

    Get PDF
    Beginning with the basic issues of NLP, this chapter aims to chart the major research activities in this area since the last ARIST Chapter in 1996 (Haas, 1996), including: (i) natural language text processing systems - text summarization, information extraction, information retrieval, etc., including domain-specific applications; (ii) natural language interfaces; (iii) NLP in the context of www and digital libraries ; and (iv) evaluation of NLP systems

    Cross-language Information Retrieval

    Full text link
    Two key assumptions shape the usual view of ranked retrieval: (1) that the searcher can choose words for their query that might appear in the documents that they wish to see, and (2) that ranking retrieved documents will suffice because the searcher will be able to recognize those which they wished to find. When the documents to be searched are in a language not known by the searcher, neither assumption is true. In such cases, Cross-Language Information Retrieval (CLIR) is needed. This chapter reviews the state of the art for CLIR and outlines some open research questions.Comment: 49 pages, 0 figure
    corecore