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Abstract

Text-based Question Answering (QA) is a subject of interest both for its practical

applications, and as a test-bed to measure the key Artificial Intelligence competen-

cies of Natural Language Processing (NLP) and the representation and application

of knowledge. QA has progressed a great deal in recent years by adopting neural

networks, the construction of large training datasets, and unsupervised pretraining.

Despite these successes, QA models require large amounts of hand-annotated data,

struggle to apply supplied knowledge effectively, and can be computationally ex-

pensive to operate. In this thesis, we employ natural language generation and infor-

mation retrieval techniques in order to explore and address these three issues.

We first approach the task of Reading Comprehension (RC), with the aim of lifting

the requirement for in-domain hand-annotated training data. We describe a method

for inducing RC capabilities without requiring hand-annotated RC instances, and

demonstrate performance on par with early supervised approaches. We then explore

multi-lingual RC, and develop a dataset to evaluate methods which enable training

RC models in one language, and testing them in another.

Second, we explore open-domain QA (ODQA), and consider how to build mod-

els which best leverage the knowledge contained in a Wikipedia text corpus. We

demonstrate that retrieval-augmentation greatly improves the factual predictions of

large pretrained language models in unsupervised settings. We then introduce a

class of retrieval-augmented generator model, and demonstrate its strength and flex-

ibility across a range of knowledge-intensive NLP tasks, including ODQA.
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Lastly, we study the relationship between memorisation and generalisation in

ODQA, developing a behavioural framework based on memorisation to contextu-

alise the performance of ODQA models. Based on these insights, we introduce a

class of ODQA model based on the concept of representing knowledge as question-

answer pairs, and demonstrate how, by using question generation, such models can

achieve high accuracy, fast inference, and well-calibrated predictions.



Impact Statement

This thesis investigates how to improve the abilities of NLP models to leverage

knowledge expressed in textual corpora. As the amount of knowledge humans gen-

erate about the world grows, it becomes increasingly important to build systems that

allow us to efficiently leverage this knowledge. We directly study Question Answer-

ing models which are designed to serve the information needs of humans.

In addition, as NLP-equipped systems become ubiquitous features in our lives, it is

vital that we construct models which have a strong command over factual knowl-

edge, whilst also providing mechanisms for updating and controlling their knowl-

edge, and presenting evidence to support their predictions. The work presented in

this thesis enables more accurate QA models, but also improves our understand-

ing of how different QA models operate, and what their limitations are. We also

develop methods for widening the reach and applicability of QA technology, into

settings and languages without annotated data, and present efficient and accurate

QA models which require less-demanding hardware.

Finally, whilst our focus in this thesis is on QA models, we note that the progress we

make on QA may also benefit other knowledge-intensive NLP domains, often with

important potential societal benefits beyond QA, such as automated fact-checking.

This work presented in this thesis has led to a number of publicly available research

datasets and resources for the QA community, as well as open-sourced code and

models, and has generated publications at the leading NLP and Machine Learning

venues: ACL, EMNLP and NeurIPS.
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Perez, Barlas Oğuz, Pasquale Minervini, Yuxiang Wu, Aleksandra Piktus, Hein-
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Chapter 1

Introduction

Natural Language Processing (NLP) and the representation and application of

knowledge are two of the central goals of Artificial Intelligence (AI) research (Poole

et al., 1997; Russell and Norvig, 2003; Luger, 2008). The field of Question Answer-

ing (QA) spans these two long-standing AI challenges. In order to answer questions

posed in natural language, one must first be able to process and understand natural

language itself, and be able to capture, represent and recall sufficient knowledge to

formulate a satisfactory answer. Indeed, not long after computer science emerged

as a concrete discipline, it was recognised that asking a computer questions was

a powerful and general assessment of its intelligence (Turing, 1950). Developing

models which can answer questions well, on a broad set of topics, requires mastery

of natural language, a comprehensive knowledge of the world, and is a promising

and worthwhile pursuit in AI research (Ferrucci et al., 2010).

Question Answering is also of great practical value. Humans have created and

stored on the order of zettabytes of data, orders of magnitude more than any one

human could ever observe (Reinsel et al., 2018). However, this knowledge is only

valuable if we build systems that enable us to efficiently access and use it. Questions

and answers are arguably the most common natural way that humans request and

transfer knowledge from one another. In addition, many people lack the computer

literacy skills to operate complex, non-natural-language-based interfaces, especially
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in less economically developed countries (Schwab, 2019). Thus, providing QA ca-

pabilities to computers allows for the most natural, and thus perhaps most appropri-

ate, inclusive and equitable access to the knowledge they store. Beyond this societal

importance, QA systems have also been recognised for their commercial applica-

tions, and natural language interfaces, including QA capabilities have been widely

adopted in systems such as the Google Assistant, Siri, Alexa and others.

Question answering involves formulating answers to questions using knowledge in

a knowledge source. There are many modalities in which knowledge can exist,

such as in images or structured knowlegebases (KBs). The majority of the world’s

knowledge currently exists in unstructured formats (Gandomi and Haider, 2015),

and even for structured KBs, unstructured textual data is still present in the form

of descriptions and metadata. Textual data is also comparatively easy for humans

to produce relative to structured formats, and it is common for structured data to

be created from textual data. Thus, in this thesis, we focus on QA over textual

knowledge sources. In the general case, we shall consider asking questions given

the entire text of Wikipedia as a knowledge source. This task is referred as open-

domain question answering (ODQA) in the literature.

The challenge and breadth of the ODQA task can be illustrated by considering the

two ODQA questions in Figure 1.1. Example A is a typical information-seeking

question, as entered into a search engine, whereas Example B is a trivia question,

designed to test for knowledge and intelligence.

The first step in ODQA is to understand the meaning and intent of the question. De-

spite its apparent simplicity to the human eye, Example A’s question requires some

sophisticated language processing and inference skills. “Reba” must be identified

as a named entity, likely a person or group of people, despite its relative word rarity.

It also requires parsing the noun phrase “does he love me”, overcoming the syntac-

tically unusual structure and lack of punctuation cues. Inferences are required that

“does he love me” is some kind of musical work involving singing, and “reba” is

responsible for singing in it. Finally, we must infer the answer is going to be an

https://assistant.google.com/
https://www.apple.com/siri/
https://developer.amazon.com/en-US/alexa
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Question: who sings does he love me with reba
Answer: Linda Davis

Evidence: “Does He Love You” is a song written by Sandy Knox and Billy Stritch , and
recorded as a duet by American country music artists Reba McEntire and Linda Davis. It
was released in August 1993 as the first single from Reba’s album Greatest Hits Volume
Two. It is one of country music’s several songs about a love triangle. [SOURCE]

(a)

Question: What is the name given to copper bars arranged in a cylinder, insulated from
each other which rotates to connect each section of the armature in turn (in a motor)
or to the external current (in a dynamo)?
Answer: Commutator

Evidence: [...] A commutator is a rotary electrical switch in some motors that
supplies current to the rotor. It consists of a cylinder composed of multiple metal
contact segments on the rotating armature [...] A commutator periodically reverses the
current direction in the rotor windings [...] [SOURCE]

(b)

Figure 1.1: Examples of Open-domain questions, their answers, and sufficient textual ev-
idence to answer them which can be found in Wikipedia for a) NaturalQues-
tions (NQ, Kwiatkowski et al., 2019) and b) TriviaQA (TQA, Joshi et al., 2018)

entity capable of singing, such as a person or band. Example B’s question’s diffi-

culty is more apparent – it is long, contains complex co-ordination structure, spacial

reasoning and complex terminology, and requires the inference that the answer is

going to be the name of a piece of machinery.

When questions have been processed, we must then consult the knowledge source

to find potential answers. In general this presents a large-scale search problem over

typically millions of paragraphs that may provide an answer. In order to surface the

evidence passage shown for Example A, a model must realise that the questioner

has made a mistake, and the song is actually called “Does he love you”, not “Does

he love me”. For Example B, the evidence passage is full of complex terminology,

and fairly low surface-level word overlap with the question.

Finally, once evidence has been assembled, a model must formulate an answer. In

these examples, this can be achieved by extracting a span of text. This task – ex-

tracting an answer to a question from a paragraph of text – is referred to as reading

comprehension (RC). RC is by no means trivial. For Example A, there is no ex-

https://en.wikipedia.org/wiki/Does_He_Love_You
https://en.wikipedia.org/wiki/Electric_motor
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plicit statement that Linda sang the song. There are distracting plausible entities of

the appropriate semantic type (Sandy and Billy), which must be discounted. More-

over, to arrive at the correct answer, implicative reasoning and a strong grasp on the

meaning of “duet” is required – we must infer that “recorded as a duet” means that

the two artists must have both sung. For Example B, sophisticated language under-

standing is needed to infer the equivalence between the descriptions in the question

and evidence, e.g. equating “copper bars” with “metal contact segments”.

1.1 Aims and Themes
In recent years, neural network models have swept the research landscape, and it

has become common to parameterise every component of text-based QA systems

with a neural network, typically with supervised learning using a large dataset. The

representational power of neural language systems has recently been greatly im-

proved by the development of unsupervised pretraining of larger models on large

corpora, using objectives derived from denoising and language modelling. These

models have established a new NLP paradigm, and represent a distinct step-change

in i) our natural language understanding and representational abilities, but also ii)

our natural language generation capability. Techniques that were possible in theory,

but impractical due to a lack of model competency, have now abruptly become fea-

sible. For example, parametric knowledge – relational knowledge that pretrained

models encode in their parameters from their corpora – enables new kinds of fac-

tual retrieval paradigms. As a consequence, this thesis is largely a response to the

emergence of these new pretrained models and techniques: what they enable for

text-based QA, to what extent, and how to make the most out of them.

Aims: Our aims are to extend the general abilities of neural QA models, and explore

and assess solutions intended to address their known flaws. For example, neural RC

models are data hungry, which limits the domains and languages that they can be

applied in. ODQA models suffer similar issues as RC models, with the additional

challenge of large-scale retrieval from their knowledge sources, as well as sub-

optimal and inflexible pipe-lined architectures and slow, expensive inference.
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Themes: We identify retrieval and generation as particularly powerful and versatile

tools in modern NLP, and apply them to ameliorate some of these issues at the

frontier of text-based QA. The following highlights key themes and techniques that

will occur throughout this thesis.

Retrieval As our natural language representation abilities improve, so do our abili-

ties to perform machine-learnt retrieval. We shall leverage the power of dense vector

representations of text extensively in this thesis. We will use cross-lingual sentence

retrieval to accelerate cross-lingual dataset creation. We shall take advantage of

dense retrieval to learn retrieval end-to-end with downstream question answering

tasks, and to build very low-latency ODQA models.

Generation Unsupervised pretraining enables powerful new generation capabili-

ties. We shall employ these to generate questions for data augmentation and to

build novel semi-structured KBs. We shall also build powerful, flexible generative

ODQA systems, going beyond the simple span-extractive QA paradigm.

Low data regimes In the first half of this thesis, we shall use these techniques

in order to develop methods that reduce the supervised dataset demands of QA

models. We shall explore this idea in the context of unsupervised and few-shot

RC, and evaluate how well RC models can transfer to test-time languages they have

no supervised training data for, before demonstrating how retrieval-augmentation

enables much stronger unsupervised ODQA systems.

Parametric vs Non-parametric knowledge As mentioned above, pretrained mod-

els capture knowledge in their parameters, which we refer to as parametric knowl-

edge. This knowledge can be “retrieved” by prompting the model with an appro-

priate query, drawing parallels to explicit retrieval over a textual knowlegebase.

As such, “retrieval-free” approaches to ODQA have been recently proposed that

attempt to directly answer questions (Petroni et al., 2019; Radford et al., 2019;

Roberts et al., 2020). We shall deeply explore the relationship between this new

kind of parametric knowledge and more explicit non-parametric knowledge, such

as that indexed and retrieved by more traditional Information Retrieval (IR) systems,

which is a major theme running throughout the second two parts of this thesis.
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1.2 Thesis Overview and Contributions
Directly after this introductory chapter, we shall proceed with a comprehensive

background chapter. This chapter will describe the QA tasks we consider in detail,

provide a brief the historical account of the field and review common approaches

and practices in modern ODQA and RC. The remainder of this thesis is comprised

of three parts, each consisting of two complementary chapters describing a specific

research focus. Their contents will be briefly described below, along with a sum-

mary of the main contributions from each chapter. However, before detailing the

specific contributions from each chapter, we shall briefly discuss how the thesis is

structured in terms of narrative structure. In addition, Table 1.1 presents the big-

picture flow of topics visually, indicating how the thesis narrative evolves as we

focus on different key research aspects of Question Answering.

1.2.1 Big Picture Overview

In the previous section, we highlighted our key aims and themes, and in this section,

we shall set out how the research in this thesis is structured, and how each topic

leads on from the last. To recapitulate, our aims are to extend both the capabilities

of QA models, and our understanding of them. We stated that models are 1) data

hungry, 2) struggle to represent, store and use knowledge effectively 3) are often

inflexible and complex pipelines, and 4) have slow, expensive inference. We shall

tackle these four themes in turn, starting with data sample efficiency.

We will start with the RC task. The RC task is a basic, core competency of QA,

and whilst it is a simpler setup that our ultimate goal of ODQA, it is important pre-

requisite to understand it and perform it well. RC is therefore the focus of Part I,

where we study in detail how to reduce the amount of annotated data needed for QA

tasks. In Part II, we continue our attention on the low-to-no training data regimes

set out in Part I, but move to the context of open-domain QA (which is the primary

focus of this thesis), exploring how retrieval can be combined with pretrained mod-

els to perform open-domain QA-like behaviour. In doing so, we shall identify the

concepts of parametric and non-parametric memory as a useful framework for dis-
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cussing how models can represent, store and use knowledge. We shall develop these

ideas throughout Part II, developing flexible models that can use hybrid knowledge

access mechanisms. Finally Part III seeks to deepen our understanding of the ideas

on parametric and non-parametric knowledge began in Part II, by studying whether

knowledge required for QA tasks is present in the training data relative to a back-

ground corpus. These insights will allow us to develop models that are very fast and

efficient at test time, which represent knowledge in a novel way.

Cutting through this linear narrative are a number of other recurrent aspects. QA is

an empirically-driven field, and thus data and datasets play a very important role.

Accordingly, we create, construct and analyse datasets closely in this thesis. In all

cases, we use varying degrees of automation to reduce (or even completely remove

in some cases) the amount of human annotation required to create datasets for QA.

Chapter 4 takes a fairly traditional approach, where we create a dataset from scratch

to measure a phenomenon of interest (multi-lingual transfer), but a multi-lingual

retrieval/alignment tool is used to reduce the amount of manual translation required.

Chapter 7 focuses on adding additional meta-annotations to existing, widely-used

datasets, and uses another retrieval technique to find the most important instances

that require annotation, reducing the human cognitive load needed for annotation.

We shall also explore fully-automatically constructing datasets for QA, making use

of automatic question generation. Chapter 3 will use this technique to induce RC

models which need no human annotation. In chapter 8 – the last research chapter of

the thesis – we return to this idea, in some ways coming full-circle in our research

journey, albeit applying it in a different way, to create a new class of ODQA model,

with a number of benefits over standard systems with respect to our stated aims

above.

Now that the larger thesis structure and narrative flow has been laid out, we are

in a position to describe the content of in each chapter in more detail. Thus, the

following is a more detailed summary of each chapter, including its key research

contributions.
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Part I Part II Part III
Chap 3 Chap 4 Chap 5 Chap 6 Chap 7 Chap 8

Reading Comprehension
Open-domain QA

Low data Regimes
QA Dataset Construction

Generation
Parametric vs Non-parametric Mem.

Retrieval

Table 1.1: An overview of the tasks (top two rows), and key techniques/themes (bottom 5
rows) in this thesis, depicting how the chapters are connected and research ideas
flow across the thesis. Black circles or lines indicate the topic is a key focus or
heavily used in this chapter. A grey line indicates that whilst the technique is not
the focus of the chapter, it still plays an important modelling role.

Part I: Reading Comprehension without Task Annotations

This part of the thesis concerns the task of span-based RC i.e. QA over a small

textual knowledge source, on the order of 100 words in length, where answers are

spans of text. There has been very strong empirical progress in recent years on

this task, as measured by datasets such SQuAD (Rajpurkar et al., 2016). However,

this has been predicated on access to a large, clean human-annotated dataset, greatly

limiting the domains and languages for which such systems can be applied. In Part I

we explore the extent to which zero-shot RC is possible – i.e. where no annotated

RC data is available. We perform our study in two settings, described below.

Unsupervised Reading Comprehension by Cloze Translation First, in chapter 3,

we develop and evaluate a method for training RC models when no RC training data

is available at all. We develop a method which can generate a synthetic RC training

dataset requiring no RC data, which we can then use to train off-the-shelf neural

RC models. Our method exploits the relative ease in which cloze questions can be

generated from text. This allows us to reduce the RC data generation problem to

cloze-to-natural question translation, which we can tackle using advances in unsu-

pervised sequence translation, driven by denoising pretraining. We demonstrate RC

performance on SQuAD v1 at the level of early supervised approaches with access

to 100,000 annotated data-points. Our main contributions are:
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• This is the seminal work in the area of unsupervised RC.

• We demonstrate, thoroughly ablate and analyse a method for unsupervised

RC based on generating a synthetic training set that can outperform some

supervised models, without requiring billions of parameters.

• We provide an evaluation of few-shot RC performance, and demonstrate the

effectiveness of synthetic data augmentation for this setting.

Evaluating Cross-Lingual Reading Comprehension Most languages do not have

annotated RC data, which greatly complicates training RC models. One option is to

apply the methods we describe in chapter 3 for the language of interest. However,

this would not leverage annotated RC data that does exist in other, highly-resourced

languages. In chapter 4, we consider the problem of zero-shot RC, assuming we

have access to a large high-quality training dataset, albeit in another language.

Whilst the lack of in-language training data is inconvenient, the lack of evalua-

tion data is a more severe problem, critically limiting research and development

in this important area. We therefore place a special emphasis on evaluation, care-

fully constructing a large, high-quality evaluation-only RC dataset, aligned across

7 languages. Using this dataset, we investigate the multilingual RC capabilities of a

range of different multilingual approaches. Our main contributions are:

• We introduce a purpose-built, highly-parallel evaluation resource across 7 di-

verse languages for the task of zero-shot RC language transfer.

• We devise a novel annotation procedure, leveraging dense retrieval-based

multilingual alignment, and the multilinguality of Wikipedia, allowing us to

avoid extreme human translation workloads. This enables us to scale the size

of the dataset, and allows for documents to be in their naturally-written lan-

guage rather than manually translated.

• We formalize several cross-lingual QA tasks on the dataset, including a novel

generalised cross-lingual task, and thoroughly evaluate a suite of models.
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Part II: Retrieval-augmented Pretrained Models

Part I establishes our ability to tackle RC problems without relying on large amounts

of annotated data. In the remainder of this thesis, we shift our attention to the more

challenging and general open-domain QA task. Here, we will not be not provided

with short paragraphs from which to read and produce an answer. Instead, Models

must leverage knowledge distributed in a text corpus with millions or billions of

words. Thus scalable techniques such as information retrieval are required to search

for relevant knowledge. In Part II we shall apply retrieval-augmentation for ODQA

and related tasks, and demonstrate its general utility for NLP tasks with demanding

knowledge requirements. Part II is comprised of two chapters. In chapter 5, we

stay on the theme of zero-shot QA established in Part I, this time in the context of

the ODQA task. In Chapter 6, we shall then relax the low data requirement, and

attack popular supervised ODQA tasks, and propose a class of end-to-end-trainable

seq2seq retrieval-augmented model ideally suited for tasks such as ODQA.

How Context Affects Language Models’ Factual Predictions We earlier intro-

duced the concept of parametric knowledge. Parametric knowledge was demon-

strated and quantified by Petroni et al. (2019) by querying a number of pre-

trained language models using cloze (fill-in-the-blank) questions requiring rela-

tional knowledge. It was found that pretrained models were able to answer a sig-

nificant number of questions correctly, largely because they encode relational infor-

mation in their parameters. This task, referred to as the LAMA probe, is equivalent

to zero-shot ODQA with cloze questions. In chapter 5, we examine how the perfor-

mance of these models vary when the cloze question is augmented with additional

context. In doing so, we begin our investigation into how to complement and best

draw out parametric knowledge, by using the mechanism of pre-pending questions

with additional textual content. This chapters main contributions are:

• We show that, when supplied with an oracle context document, pretrained

models dramatically improve on the LAMA probe, indicating that they can

act as unsupervised RC models for cloze questions.

• We further demonstrate the promise of combining parametric and non-
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parametric knowledge, by augmenting with context paragraphs retrieved from

Wikipedia using a TF-IDF retriever. This is sufficient to improve BERT’s

performance on LAMA questions beyond early supervised retrieve-and-read

ODQA models (Chen et al., 2017), despite being completely unsupervised.

Retrieval-Augmented Generation for Knowledge-Intensive NLP The above

demonstrates the effectiveness of retrieval-augmentation formula for getting the

benefits of both parametric and non-parametric knowledge. However, this is lim-

ited to answering cloze questions with single token answers, and it cannot easily

leverage question-answer pairs available as training data. In chapter 6, we intro-

duce a class of retrieval-augmented model capable of learning to generate free-form

textual outputs, which we refer to as Retrieval-Augmented Generation (RAG).

RAG models are comprised of a large, parametric-memory seq2seq generator, aug-

mented with a non-parametric memory consisting of a dense vector index over

Wikipedia. We formulate retrieved documents as latent variables, which can be

marginalised out, enabling end-to-end fine-tuning without requiring document an-

notations. This means that RAG models inherit the immense flexibility of seq2seq

pretrained language models, and can be fine-tuned solely on input-output pairs,

such as question-answer pairs. Our main contributions are:

• We introduce the RAG model class, and demonstrate two RAG model formu-

lations which can be optimised end-to-end to learn to retrieve relevant docu-

ments to augment the generator with.

• We validate RAG via experiments on ODQA tasks, but also demonstrate its

flexibility by applying it on other challenging NLP tasks requiring knowledge.

• We analyse the interplay between parametric and non-parametric components

via case studies and editing the non-parametric knowlegebase at test-time

Part III: Memorisation and Generalisation in ODQA

Part II explores how parametric and non-parametric knowledge can be combined

via the mechanism of retrieval augmentation, and evaluates its effectiveness via

open-domain QA. In Part III we shall remain in the area of open-domain QA, and
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concern ourselves with further developing our understanding of how models store,

access and apply knowledge, specifically in the context of supervised ODQA tasks.

Our focus will be behavioural in nature, and we shall deeply investigate the extent to

which memorisation and generalisation are required for ODQA benchmarks.

Question And Answer Test-Train Overlap in Open-Domain QA Datasets In

chapter 7, we set out a number of competencies that ODQA models should be

able to exhibit in terms of difficulty and generalisation. By closely studying the

test sets of popular ODQA tasks, we discover higher-than-expected numbers of

questions that can be answered by various levels of memorisation of training time

questions and answers. Using these findings, we evaluate a number of popular

ODQA models to measure to what extent they actually generalise, and what drives

their overall performance on ODQA benchmarks. We find that a recently-proposed

class of parametric-only knowledge models, which are fine-tuned on the training

set of question-answer pairs (“Closed-Book QA”, Roberts et al., 2020), largely only

memorise their fine-tuning data, and fail to meaningfully apply any knowledge from

pretraining, especially for models smaller than 10B parameters. This effect is so

strong that we can construct simple nearest neighbor models that compete with

them. These models, which we call “QA-pair retrievers”, work by treating their

training question-answer pairs (QA-pairs) as a non-parametric knowledgebase, and

retrieve the most similar training question for a given test question, and return its

answer. Our main contributions are:

• We set out a behavioural framework for ODQA generalisation based on mem-

orisation of training data.

• We provide insights into how questions and answers are distributed between

dataset splits, and to what extent each behaviour is required

• We evaluate a variety of models on these splits, and measure what kinds of

QA behaviour different models achieve, demonstrating that simple nearest-

neighbor models achieve results on par with closed-book QA models

65 Million Probably-asked Questions and What You Can Do With Them A

key finding from the above is that treating QA-pairs as a non-parametric knowl-
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edgebase is competitive with parametric closed-book QA models. These QA-pair

retrievers are also more memory-friendly than most approaches, with very fast in-

ference, interpretable outputs (by inspecting retrieved QA-pairs), and the ability to

easily update the model’s knowledge at test time by adding or removing QA-pairs.

However, the accuracy of both closed-book QA models and QA-pair retrievers lags

far behind retrieval-augmented models like those developed in Part II. This is be-

cause the knowledge covered by training QA-pairs is a tiny fraction of that cov-

ered by the large textual knowledge sources used by retrieval-augmented models

In chapter 8 we concern ourselves with how to improve models which memorise

QA-pairs. Specifically, we want to understand how the accuracy of parametric and

non-parametric models compare when the knowledge covered by their QA-pairs

is not severely data-limited. To facilitate this, we construct a powerful automatic

open-domain question-answer pair generator. We apply this generator at scale, gen-

erating a dataset of 65M QA-pairs from Wikipedia. We then develop strong QA-pair

retrievers which use this dataset as a semi-structured knowledgebase. These models

demonstrate accuracy on par with RAG, whilst being significantly faster at infer-

ence time. We also use the dataset to improve parametric-only models, but they still

trail their non-parametric explicit retrieval analogues. Our contributions are:

• We introduce a novel generation pipeline for ODQA question generation, and

use it to generate a very large dataset of QA-pairs

• We build stronger QA-pair retrievers which index this data and show that au-

tomatic generation and retrieval enables generalisation through memorisation

• We demonstrate the how the QA-pair retriever can be optimised for best-in-

class trade offs between memory, speed, and accuracy

• We develop a method to combine QA-pair retrievers with slower, more gen-

eral text-based retrieval-augmented models, demonstrating state of the art re-

sults and 2x latency improvements.
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1.3 Open-sourced Materials
This thesis is accompanied by a large amount of open-sourced data, code and mod-

els. An exhaustive list of the open-sourced material supporting the work in this

thesis, and where to access them, may be found in Appendix A.

Open-sourced code enables question generation and answering, multilingual QA

evaluation, tools for running the LAMA evaluation, training and inference for RAG

models, evaluation over diagnostic test QA splits, and code for running RePAQ

models. Code is accompanied with open-sourced trained models enabling repro-

duction of key results.

All newly-created data resources in this thesis are also open-sourced. Open-sourced

data includes a large dataset of automatically-generated QA data from chapter 3, the

MLQA dataset created in chapter 4, the meta-annotations from chapter 7, and the

PAQ dataset from chapter 8.

1.4 Published Material
This thesis is based on a number of previously published articles, which are listed

here. Individual contributions not made the thesis author will be indicated at the

beginning of relevant chapters. A list detailing open-sourced code, models and data

can be found in Appendix A. Part I is based on the following papers:

• Patrick Lewis, Ludovic Denoyer, and Sebastian Riedel. 2019. Unsupervised

Question Answering by Cloze Translation. In Proceedings of the 57th Annual

Meeting of the Association for Computational Linguistics (ACL)

• Patrick Lewis, Barlas Oğuz, Ruty Rinott, Sebastian Riedel, and Holger

Schwenk. 2020. MLQA: Evaluating Cross-lingual Extractive Question An-

swering. In Proceedings of the 58th Annual Meeting of the Association for

Computational Linguistics (ACL)

Material featuring in Part II first appeared in:

• Fabio Petroni, Patrick Lewis, Aleksandra Piktus, Tim Rockäschel, Yuxiang
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Wu, Alexander H. Miller, and Sebastian Riedel. 2020. How Context Affects

Language Models’ Factual Predictions. In Proceedings of the 2nd Annual

Automated Knowledge Base Construction Conference (AKBC). Best Paper

Award Recipient.

• Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir

Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih,

Tim Rocktäschel, Sebastian Riedel, and Douwe Kiela. 2020. Retrieval-

Augmented Generation for Knowledge-Intensive NLP Tasks. In Advances

in Neural Information Processing Systems (NeurIPS)

as well as drawing on minor aspects of material from:

• Fabio Petroni, Tim Rocktäschel, Sebastian Riedel, Patrick Lewis, Anton

Bakhtin, Yuxiang Wu, and Alexander Miller. 2019. Language Models as

Knowledge Bases? In Proceedings of the 2019 Conference on Empirical

Methods in Natural Language Processing (EMNLP)

• Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick Lewis, Ledell Wu,

Sergey Edunov, Danqi Chen, and Wen-tau Yih. 2020. Dense Passage Re-

trieval for Open-Domain Question Answering. In Proceedings of the 2020

Conference on Empirical Methods in Natural Language Processing (EMNLP)

• Fabio Petroni, Aleksandra Piktus, Angela Fan, Patrick Lewis, Majid Yaz-

dani, Nicola De Cao, James Thorne, Yacine Jernite, Vladimir Karpukhin,

Jean Maillard, Vassilis Plachouras, Tim Rocktäschel, and Sebastian Riedel.

2021. KILT: a Benchmark for Knowledge Intensive Language Tasks. In

Proceedings of the 2021 Conference of the North American Chapter of the

Association for Computational Linguistics: Human Language Technologies

Finally, Part III is based on the following publications:

• Patrick Lewis, Pontus Stenetorp, and Sebastian Riedel. 2021. Question and

Answer Test-Train Overlap in Open-Domain Question Answering Datasets.

In Proceedings of the 16th Conference of the European Chapter of the Asso-
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ciation for Computational Linguistics (EACL). Best Paper Award Recipient.

• Patrick Lewis, Yuxiang Wu, Linqing Liu, Pasquale Minervini, Heinrich

Küttler, Aleksandra Piktus, Pontus Stenetorp, and Sebastian Riedel. 2021.

PAQ: 65 Million Probably-Asked Questions and What You Can Do With

Them. Transactions of the Association for Computational Linguistics (TACL)

and includes minor material from:

• Sewon Min, Jordan Boyd-Graber, Chris Alberti, Danqi Chen, Eunsol Choi,

Michael Collins, Kelvin Guu, Hannaneh Hajishirzi, Kenton Lee, Jennimaria

Palomaki, Colin Raffel, Adam Roberts, Tom Kwiatkowski, Patrick Lewis,

Yuxiang Wu, Heinrich Küttler, Linqing Liu, Pasquale Minervini, Pontus

Stenetorp, Sebastian Riedel, Sohee Yang, Minjoon Seo, Gautier Izacard,

Fabio Petroni, Lucas Hosseini, Nicola De Cao, Edouard Grave, Ikuya Ya-

mada, Sonse Shimaoka, Masatoshi Suzuki, Shumpei Miyawaki, Shun Sato,

Ryo Takahashi, Jun Suzuki, Martin Fajcik, Martin Docekal, Karel Ondrej,

Pavel Smrz, Hao Cheng, Yelong Shen, Xiaodong Liu, Pengcheng He, Weizhu

Chen, Jianfeng Gao, Barlas Oğuz, Xilun Chen, Vlad Karpukhin, Stan Peshter-

liev, Dmytro Okhonko, Michael Schlichtkrull, Sonal Gupta, Yashar Mehdad,

and Wen-tau Yih. 2021. NeurIPS 2020 EfficientQA Competition: Systems,

Analyses and Lessons Learned. Proceedings of Machine Learning Research



Chapter 2

Background

In this chapter, we shall introduce the field of Question Answering (QA) at a high

level, including some basic scoping, highlighting of key characteristics, and a brief

historical overview. We shall then cover the retrieval and generation techniques

which we regularly employ in this thesis. Finally we will return to QA, describing

in detail the two key tasks explored in this thesis, reading comprehension (RC) and

open-domain QA (ODQA), including formalism, datasets, and evaluation.

2.1 Question Answering Overview
QA, as described in the literature, is a broad, multi-disciplinary and somewhat

subjectively-delineated field, combining NLP, Information Retrieval, knowledge

representation, machine learning and machine reasoning. Defining what is – and is

not – QA is a non-trivial, and sometimes contentious topic. Some have argued that

QA is sufficiently general in order to subsume all NLP tasks (Kumar et al., 2016;

McCann et al., 2018). Others have suggested that the community conflates QA as a

task, as distinct from QA as a modelling format (Gardner et al., 2019). We offer the

following definition for the tasks which we refer to as QA in this thesis:

Question Answering is a family of tasks which require an answerer to produce con-

cise natural language answers to questions, posed in natural language, by drawing

on knowledge from a provided knowledge source.
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Tasks which we consider to be QA in this thesis have questions which express a

request for information from the supplied knowledge source, which must then be

digested and summarised into an answer at an appropriate level of detail for the task

at hand. We will use the symbol q to refer to questions, a to refer to answers and

C to refer to the knowledge source which models draw upon to answer questions.

We’ll define questions q ∈ Q and answers a ∈ A to be random variables where Q

and A are the sets of all possible questions and answers. We assume that there is a

distribution of questions and answers, conditional on C ,

P(q,a|C )

and the high-level goal of QA is build models p that can model P, from which we

can draw answers a∗ to our questions

a∗ = argmax
a

p(a|q,C )

QA models p are typically parametrized, and machine learning techniques are em-

ployed to optimise the models parameters θ to minimise the empirical loss as de-

fined by some loss function L over a dataset D of question answer pairs {(qi,ai)}n
i=1

drawn from P. We shall return to formalism later in this chapter, after introducing

some core conceptual and scoping material.

2.1.1 Knowledge Source, C

The knowledge source does much to dictate the space of possible questions and

answers. It acts as the representation of the world in which the QA system occu-

pies. A system should not be expected to answer questions which require specific

knowledge not present in their knowledge source. Moreover, valid answers must be

consistent with the knowledge in the knowledge source. Knowledge sources vary

in two main axes: Modality, and Scale:

Modality Our definition specified that questions and answers are expressed in nat-

ural language, but in general, knowledge takes a variety of forms. Knowledge-base
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QA (KBQA) is term used when the knowledge takes the form of a structured knowl-

edgebase. Visual QA (VQA, Antol et al., 2015, inter alia) tackles knowledge in

the form of images or videos. The knowledge source can even take the form of a

3-dimensional environment in relation to a models’ physical sensors in embodied

QA (Das et al., 2018). The knowledge source could even be some multi-modal com-

bination of all of the above (Oguz et al., 2020; Talmor et al., 2021). As mentioned

in Chapter 1, we restrict ourselves to textual knowledge sources in this thesis, but

many of the techniques that we develop are applicable to other modalities.

Scale The scale and scope of the knowledge source also has a profound effect on

how we tackle QA tasks. For some tasks, the knowledge source is small and lo-

calised, such as a paragraph of text. These tasks are referred to as reading compre-

hension (RC) in the literature. On the other extreme, the knowledge source could

be a whole book, encyclopedia, or even the entire internet, which is referred to as

Open-domain QA (ODQA). ODQA can be regarded as a more general and challeng-

ing version of RC, since the modelling capabilities required to perform RC are still

required in ODQA, along with the additional challenge of applying said behaviours

over a much larger knowledge source.

Note that for some QA tasks, there may be no explicit mention of a knowledge

source. This is usually either a notational convenience due to an assumption that

the knowledge source is fixed, or in cases where we have extracted all necessary

knowledge into some intermediate form which we do acknowledge, such as pre-

trained parameters. This is common in some modelling techniques in ODQA, such

as closed-book QA (see section 2.4.2.2 later).

2.1.2 Answers, a

Our definition specified that answers should be expressed in natural language, but

the level of abstraction and detail of answers can vary.

In some cases, the knowledge source can constrain the answer space, such as in

span-extractive QA, where the answer must be a span of text from the knowledge

source, or in KBQA, where the answer is typically a database entity. In other cases,
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the task format will restrict the answer space – for example, in multiple choice or

yes/no QA, the output space is restricted to a handful of provided options.1 In other

cases, answers could be derived numerical quantities, like in some mathematical

and logically-oriented tasks, such as DROP (Dua et al., 2019).

In the most general case, answers will be unconstrained natural language, and as

such, the answer output space is combinatorially large. Modelling such tasks is a

key concern of chapter 6. Answers can also differ in the level of detail or abstraction

required. It is most common to only require short answers, such as noun phrases,

dates, quantities or named entities. More challenging tasks, such as abstractive and

long-form QA require the synthesis of sentential or paragraph-length answers, such

as MSMARCO’s NLG task (Bajaj et al., 2016) and ELi5 (Fan et al., 2019).

2.1.3 Questions, q

Questions are natural language statements intended to elicit information. Questions

can be full of nuance, for example being ambiguous, noisy or under-specified, such

as the question in Example A in Figure 1.1 from the introduction, or being inher-

ently complex or multi-hop in nature (Bao et al., 2016; Talmor and Berant, 2018;

Yang et al., 2018). In this thesis, we will encounter two main types of questions

i) natural questions, which are the regular questions as one would use to ask to a

question to a human, and, which in many European languages end with a question

mark ii) cloze questions which are natural language statements with a blank which

indicates where an answer should filled.

2.2 Historical Perspective
In this section we shall make a brief account of the history of the field, highlighting

broad trends and recent changes. This section represents a personal perspective and

reflection on the field, inspired by a diverse range of conversations and sources, as

well as being influenced by Chen and Yih (2020) and Rodriguez and Boyd-Graber

(2021). The notion of answering natural-language questions with computers ap-

1This does not imply that such tasks are always easier than other QA tasks (Clark et al., 2019)
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pears around the time when computer science itself was first established as a con-

crete discipline. For example, the Turing test (Turing, 1950) posits that a conver-

sation a computer and a human “Interogator” may be a practical way to measure

machine intelligence.

By the mid-1960s, several attempts at building QA systems had been made (Sim-

mons, 1965). These early efforts were characterised by heavy emphasis on syntax

analysis of questions, driven by manually-written dictionary matching rules and

heuristics. BASEBALL (Green et al., 1961), an early KBQA model, was able to

perform a form of semantic parsing to map questions to database queries, to be ex-

ecuted on a database. Protosynthex (Simmons et al., 1964) and the Automatic Lan-

guage Analyzer (ALA, Thorne, 1962) were some of the earliest attempts to tackle

text-based ODQA resembling the kind we study in Parts II-III. Both extract sym-

bolic meaning representations from their textual corpora (an encyclopedia, and a

book on astronomy respectively) using rudimentary rules and heuristics to build an

intermediate structured KB. Similar meaning representations are parsed from ques-

tions, before a simple matching of the symbolic question and knowledge representa-

tions is performed. This strategy would remain dominant for several decades.

Meanwhile, foundational work was being performed in IR, such as indexing doc-

uments by constituent words, measuring textual similarity by word overlap (Luhn,

1957), probabilistic relevance modelling (Maron and Kuhns, 1960), and the intro-

duction of standard “Cranfield” evaluation protocols (Cleverdon, 1967).

The following decades would see progress in psycholinguistic theories of

RC (Kintsch and van Dijk, 1978; Perfetti et al., 2001), and hypotheses of how

to computationally tackle QA tasks (Schank and Abelson, 1977; Lehnert, 1977).

This period would also see IR mature on smaller text corpora (∼100-1000 docu-

ments) with the development of term-weighted formulations (Singhal, 2001; Salton

and Buckley, 1988; Robertson and Jones, 1976). However, actual end-to-end QA

was generally slow to improve (Chen, 2018).
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Empirical progress gathered pace in the 1990s with the introduction of community-

wide datasets and shared evaluation procedures. In particular, the Text Retrieval

Conference (TREC), first held in 1990, introduced a focus on large-scale retrieval,

providing corpora and shared tasks to spur research (Robertson, 2008). TREC was

(and still is) successful at accelerating information retrieval research, and is esti-

mated to have resulted in search engine improvements that saved over 3 billion

person-hours between 1999-2009 in the U.S.A. alone (Rowe et al., 2010).

Following successes in document retrieval, the beginning of the 2000s brought a

renewed interest into end-to-end QA and RC. Hirschman et al. (1999) introduced

DeepRead, an RC system and dataset, and the “Reading Comprehension Tests as

Evaluation for Computer-Based Language Understanding Systems Workshop” at

NAACL 2000 saw a number of other QA models introduced (Brill et al., 2000;

Riloff and Thelen, 2000; Charniak et al., 2000; Wang et al., 2000). These systems,

whilst more sophisticated and powerful than predecessors, still relied heavily on

rule-based components, heuristics and shallow linguistic parsing.

Dedicated QA tracks were held at TREC between 1999-2007 (Voorhees and Har-

man, 1999; Voorhees and Tice, 2000). Modelling approaches at this time began

to resemble what we today refer to as retrieve-and-read ODQA models (which we

shall discuss in section 2.4.2.1), albeit in a much more modular, pipe-lined form.

Typically, questions would be analysed to determine probable answer types (Li and

Roth, 2002), and keyword-based search queries would be formulated, before exe-

cuting IR over a corpus of (usually heavily-preprocessed) documents. An answer

would be extracted from the search results, informed by the outcome of the answer

type detection. These modules were comprised of complex ensembles of syntax

parsers, semantic parsers, and rule-based components, with classifiers to combine

and rank hypotheses (Chu-carroll et al., 2003; Moldovan et al., 2003).

Despite their complexity, and the labour required to construct them, these systems

can be very effective. The most remarkable example is Watson DeepQA, which

outperformed the best human Jeopardy! players (Ferrucci et al., 2010). This result
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garnered worldwide attention and greatly increased interest in QA (Chen and Yih,

2020). This period is also where span-extractive QA began to gain traction.

The later 2000s and early 2010s were typified by increasing popularity of machine

learning techniques, in particular, the use of supervised machine learning coupled

with manually-defined feature sets. Such techniques were powered by the introduc-

tion of new datasets, such as MCTEST (Richardson, 2013) for RC, and WebQus-

tions (Berant et al., 2013) for ODQA.

Deep Learning and neural networks, which had been popular modelling approaches

in the 1980s and 1990s, began to see a resurgence in the early 2010s , most famously

in computer vision (Krizhevsky et al., 2012) but also in NLP (e.g. Collobert et al.,

2011). Neural representation learning methods such as Word2Vec (Mikolov et al.,

2013) were particularly influential. Deep learning techniques were especially at-

tractive for learning in an end-to-end manner from unprocessed inputs. As a result,

much of the complex modular pipeline of previous approaches could be replaced by

a single neural model, reducing complexity and the risk of cascading errors.

However, supervised deep learning models were more data hungry than their

manually-featurised SVM and logistic predecessors, and larger datasets would be

required. Hermann et al. (2015) introduced the CNN/Daily Mail RC dataset, ac-

companied by one of the first neural RC models. Hill et al. (2016) constructed the

Children’s Book Test, and applied a neural memory network on it. In particular, the

SQuAD (Rajpurkar et al., 2016) dataset captured the community’s imagination (see

section 2.5.2.2 later). The combination of clean data, simple evaluation, and leader-

board in SQuAD (and other datasets of its ilk e.g. MSMARCO (Bajaj et al., 2016)

and TriviaQA (Joshi et al., 2018)) spurred research in RC (Wang and Jiang, 2017;

Seo et al., 2017; Weissenborn et al., 2017b; Wang et al., 2017; Clark and Gardner,

2018; Yu et al., 2018). There was rapid empirical progress, with models reaching

supposed average human test-set accuracy in early 2018 (Linn, 2018). This period

was typified by custom deep learning architectures, designed specifically for the

task at hand, incorporating special attention mechanisms and gated RNNs (Hochre-
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iter and Schmidhuber, 1997; Cho et al., 2014; Bahdanau et al., 2015).

This period also saw deep-learning approaches to IR – particularly supervised and

semi-supervised approaches – begin to gain traction. Early approaches, such as

S2NET (Yih et al., 2011) and DSSM (Huang et al., 2013), demonstrated the use of

neural retrievers trained on large amounts of click-through data. Models combining

term-matching and neural dense representations gained popularity in the mid 2010s,

and still dominate today (Guo et al., 2016; Mitra et al., 2017, inter alia).

The mid-2010s to the present has witnessed a proliferation of datasets, examin-

ing and isolating a vast range of different QA phenomena. Indeed, the growth in

annotated resources for QA in English is one of the hallmarks of the modern QA

research landscape, to such an extent that it is becoming impractical for individual

researchers to keep track (Rogers et al., 2021; Cambazoglu et al., 2021). Perhaps as

a result, there have been recent efforts to aggregate datasets together into benchmark

collections that simultaneously test many skills at once. This first became prevalent

in Natural Language Inference, such as GLUE (Wang et al., 2018a), but has also

been applied to QA and IR (Fisch et al., 2019; Thakur et al., 2021). In Section 2.5

we shall discuss in more detail the most relevant datasets to this thesis.

A significant development in ODQA came with the popularisation of combining

passage retrieval from Wikipedia, with neural RC models, most famously by Chen

et al. (2017) and Clark and Gardner (2018). This two-stage retrieve-and-read

paradigm (see section 2.4.2.1) is much simpler than the complex pipelines of sys-

tems like the Jeopardy!-winning DeepQA, and has proven to be empirically very

strong, representing the state-of-the-art approach at time of writing.

The last five or so years have continued to see rapid progress in QA, and in ma-

chine learning and NLP in general, powered by more data, aggressively increased

compute (Hernandez and Brown, 2020), improved tools and software for machine

learning (Al-Rfou et al., 2016; Martı́n Abadi et al., 2015; Paszke et al., 2019), and a

large influx of personnel (Zhang et al., 2021). We finish our historical overview by
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discussing the following trends we have observed in the last 5 years:

Unsupervised Pretraining The first recent trend is the maturation of unsuper-

vised representation learning in NLP. This body of work seeks to train high-quality

general-purpose representations from text, which can then be used downstream.

These ideas were first embraced in the form of initialising word embedding ma-

trices in neural models using pretrained word embeddings (Mikolov et al., 2013;

Pennington et al., 2014) in order to reduce cold-start and out-of-vocabulary prob-

lems. Methods such as CoVE (McCann et al., 2017) and ELMo (Peters et al., 2018)

extended this idea by initialising models with pretrained contextual encoders. The

final step in this evolution was to shift to an entirely-pretrained model, typically a

large, general purpose-model like a Transformer (Vaswani et al., 2017), pretrained

on a language modelling or denoising task, which can then be fine-tuned via back-

propagation on the downstream task at hand. Large Transformer-based pretrained

models such as GPT (Radford et al., 2018) and BERT (Devlin et al., 2019) quickly

established themselves, and the field has experienced a period of consolidation. The

latest generation of generative transformers, such as BART (Lewis et al., 2020a),

T5 (Raffel et al., 2020) and GPT2/3 (Radford et al., 2019; Brown et al., 2020) have

become the default method across essentially all NLP tasks.

Increasing emphasis on behavioural testing and analysis Whilst progress on in-

domain test sets improved, it became increasingly clear that the combination of

large crowd-sourced datasets and neural models are no panacea. One downside

of deep neural models, especially pretrained ones, is their lack of interpretability.

A large body of research has demonstrated that such models may give strong re-

sults on static, I.I.D. test sets, but may suffer in out-of-distribution testing, such as

under adversarial testing or under domain change (Sugawara et al., 2018; Jia and

Liang, 2017; Min et al., 2018; Talmor and Berant, 2019; Bartolo et al., 2020). Re-

cently, state-of-the-art RC models have demonstrated robustness to some of these

effects (Bowman, 2021), but domain transfer remains challenging. Moreover, these

models’ performance may drop when restricting the amount of training data (Yo-

gatama et al., 2019). Techniques such as human-and-model-in-the-loop data cre-
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ation (Wallace et al., 2019; Bartolo et al., 2020; Kiela et al., 2021), behavioural

testing (Ribeiro et al., 2020) and behavioural evaluation sets such as those in chap-

ter 7 have been introduced to better understand, diagnose and hopefully mitigate

pathologies in NLP models. Such models also tend to express the underlying biases

in their training data (Zhao et al., 2017; Dinan et al., 2020, inter alia.). Given the

wide industry adoption of such models, Responsible AI research – which combines

ethics, sociology and AI – looks at understanding and mitigating models’ harmful

expressions of bias, has become an area of vital importance (Dignum, 2019).

Scale – in all its aspects Pretrained models appear to improve dramatically by scal-

ing data, model size and compute. State-of-the-art models have grown from a few

million parameters in 2018 to billions (Radford et al., 2019), tens of billions (Raffel

et al., 2020), hundreds of billions (Brown et al., 2020) and even trillions of parame-

ters (Fedus et al., 2021) at time of writing. These models are trained on ever-larger

corpora, with recent pretraining corpora weighing in at 800GB of raw text (Gao

et al., 2021a). All of this requires extreme resources, putting pretraining beyond the

reach of most researchers. Billion-parameter-plus models can exhibit qualitatively-

different emergent behaviour to otherwise-equivalent smaller models, such as few-

shot “in-context” learning (Brown et al., 2020). Whilst we likely have yet to see

performance gains from scaling model and data sizes saturate, concerns about eq-

uitable access to such models, and environment impact are growing (Strubell et al.,

2019). As such, an “Anti-scale” line of research has begun to develop, produc-

ing modestly-sized models that can compete with vast ones (Schick and Schütze,

2021a, inter alia.). Researchers have also sought to scale the amount of context

a model can consume, usually by proposing modifications to self-attention, so far

without convincing consistent gains over standard transformers (Tay et al., 2020,

2021). In fact, architectures developed for ODQA, such as those we consider in

Parts II-III represent some of the best available options for models which can take

entire web-scale corpora as input at inference time.
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2.3 Retrieval and Generation Modelling Techniques
In this section, we shall briefly cover relevant background material on the infor-

mation retrieval (IR) and natural language generation (NLG) techniques which we

heavily leverage in this thesis.

2.3.1 Natural Language Generation

We exploit NLG to automatically-generate questions in order to build QA models

(chapters 3 and 8) or employ NLG architectures to improve the applicability, quality

and flexibility of QA systems (chapter 6). For more comprehensive details on NLG,

the reader is referred to Reiter and Dale (2000) and Gatt and Krahmer (2018), and

to Ji et al. (2020) for an overview of state-of-the-art practices.

2.3.1.1 Cloze Question Generation and Rule-based Systems

In general, we will encounter the need to generate questions from answers a em-

bedded in textual context c. Consider the (c,a) pair “The London Sevens was the

last tournament of each season but the Paris Sevens became the last stop on the

calendar in 2018.” In the special case that we require cloze questions rather than nat-

ural questions, question generation is straightforward. A simplification step can be

carried out, e.g. by performing a syntax parse and keeping the answer-containing

sub-clause, to yield: “the Paris Sevens became the last stop on the calendar in

2018”. A cloze question can then be trivially obtained by replacing the answer with

a blank: the Paris Sevens became the last stop on the calendar in . The relative

ease of cloze question generation will be exploited in chapter 3 as an intermediate

step to tackle the more difficult natural question generation problem.

Sophisticated rule-based systems were a popular statement-to-natural-question

method until relatively recently. We shall encounter such a method from Heilman

and Smith (2010) in chapter 3. This method works by defining a pipeline of syn-

tactic transformations on (c,a) pairs, namely, simplification (as above), main verb

decomposition, and finally Wh* phrase insertion and movement.2 There are usually

several rules per step, leading to many candidate outputs, which are then ranked by a

2We use the popular term “Wh* word/phrase” to refer to interrogative words/phrases.
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machine-learnt ranker. Such systems rely on a large number of rules, a high-quality

syntax parse, and a supervised ranker, which can make them brittle.

2.3.1.2 Sequence-to-Sequence Models

We will encounter a number of cases where we need to generate a sequence of

tokens, conditioned some other input sequence. This class of problem can be tack-

led by sequence-to-sequence (seq2seq) learning (Sutskever et al., 2014; Cho et al.,

2014; Bahdanau et al., 2015). Seq2seq models often follow an encoder-decoder ar-

chitecture, whereby the encoder is a neural network that encodes the input sequence,

and the decoder, conditioned on the encoded state, auto-regressively generates the

output token-by-token. The encoder and decoder are usually recurrent neural net-

works such as LSTMs or GRUs (Hochreiter and Schmidhuber, 1997; Cho et al.,

2014), or, more recently transformer encoder-decoders (Vaswani et al., 2017).

Our goal is to train a model ps→t(y|x) for source sequences x = (x1, . . . ,xn) ∈ S and

target sequences y = (y1, . . . ,ym) ∈ T and all tokens xk,yk ∈ V , where S and T are

the space of source and target sequences respectively, and V is the vocabulary. Our

model will be composed of a seq2seq encoder-decoder

ps→t,θ = DECt (ENCs(·))

We will assume access to a dataset of aligned pairs Ds,t = {(xi,yi)}N
i=1, with which

to train a model. We define our model as follows:

ps→t(y|x) = ps→t(y1, . . . ,ym|x) =
m

∏
j=1

ps→t,θ (y j|y1, . . . ,y j−1,x)

To train, we minimise negative log-likelihood on D via stochastic gradient descent

Lθ =−
N,m

∑
i, j

log ps→t,θ (yi, j = yi, j|y1, . . . ,y j−1,x)

Inference involves searching for the maximum likelihood target argmaxy∈T ps→t(y|x)
for which effective approximations such as beam search are available.
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In the latter chapters of this thesis, we shall make extensive use of generative

seq2seq pretrained model such as BART (Lewis et al., 2020a) and T5 (Raf-

fel et al., 2020). These models are pretrained to generate clean outputs given

masked or noised inputs, acting as seq2seq denoising auto-encoders (Vincent et al.,

2008). In the formalism above, we arrive at such models by simply defining

x = MASK(y), where MASK is a noising function3 and using a very large dataset

{(MASK(yi),yi)}N
i=1. Such models are extremely flexible, providing the benefits of

the pretrained contextual representations from BERT with the added ability of being

able to generate high quality text sequences.

2.3.1.3 Back-Translation, Cycle-consistency, Unsupervised MT

In general, if we can train a model ps→t(y|x) which translates from the source to tar-

get domain, we can also train a backwards model pt→s(x|y) using the same dataset.

We often encounter the case where we have access to only a limited dataset of

aligned pairs Ds,t = {(xi,yi)}N
i=1, but large amounts of unpaired data from each do-

main, Ds = {xl}L
l=1 and Dt = {yk}K

k=1, where L,K >> N. For example, much more

unpaired English and French text exists than English-French parallel pairs.

A technique called back-translation (Sennrich et al., 2016) uses the backwards

model pt→s to produce pseudo-translations u(y) = argmaxx pt→s(x|y), enabling us

to transform Dt into a large pseudo-parallel training set D̂t = {(u(yk),yk)}K
k=1 which

can serve as data-augmentation for the forward model ps→t . An analogous proce-

dure employing v(x) = argmaxy ps→t(y|x), could be applied to generate training

data for the backwards model. This technique takes advantage of the cycle consis-

tency principle, namely, u(v(x)) should equal x and v(u(y)) should equal y. Cycle

consistency provides supervision signals without requiring paired data.

It turns out that we can learn ps→t and pt→s without requiring any paired Ds,t , only

a large amount of unpaired data Ds and Dt . This trick works by combining param-

eter sharing, and the denoising language modelling and back-translation techniques

mentioned above, and is referred to as Unsupervised Machine Translation (UMT,

3most often token-masking, but other noise functions have been used (Lewis et al., 2020a)
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Lample et al., 2018c,a; Conneau and Lample, 2019; Artetxe et al., 2018). Here we

train four models, comprised of shared encoders and decoders, to perform denoising

and translation for the source and target domains respectively:

Denoising models: pt→t = DECt (ENCt(·)) ps→s = DECs (ENCs(·))

Translation models: ps→t = DECt (ENCs(·)) pt→s = DECs (ENCt(·))

We start by training the denoising models pt→t and ps→s with objectives:

Lt→t =− log pt→t(y|MASK(y)) Ls→s =− log ps→s(x|MASK(x))

This enables the encoders ENCs and ENCt to learn how to encode (noisy) inputs,

and the decoders DECs and DECt to generate clean outputs. After some training,

we take the encoder for one domain, and apply the decoder for the other domain to

create the translators pt→s and ps→t . These models will be weak, but are capable of

taking text in one domain and generating a noisy output in the other domain. We can

improve the translators using cycle-consistency with back-translation losses,

Ls→t =− log ps→t(y|u(y)) Lt→s =− log pt→s(x|v(x))

u(y) = argmax
x

pt→s(x|y) v(x) = argmax
y

pt→s(y|x)

We continue to train both denoising and backtranslation losses,

L= α (Lt→t +Ls→s)+(1−α)(Ls→t +Lt→s)

gradually decreasing α from 1 → 0 as the translators improve. Model selection is

on based on a small parallel dataset, or using back-translated BLEU scores. For

datasets where there is little parallel data, such as low resource machine translation,

this approach outperforms alternative approaches (Lample et al., 2018a), and can be

leveraged for general sequence transduction tasks, for example for question rewrit-

ing and style transfer (Subramanian et al., 2018; Perez et al., 2020). We shall use
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this technique for cloze-to-natural question translation in chapter 3.

2.3.2 Information Retrieval

IR deals with the task of finding the most relevant document c in a large knowledge

source C , given a question q. In QA settings, relevant documents are those that

allow us to infer answer a, usually because the document contains the answer.

2.3.2.1 Sparse Term-based Retrieval

Supervised Dense retrieval systems have recently begun to outperform sparse term-

based systems. Nevertheless, these retrievers are attractive due to their well-

understood properties. They are relatively space-efficient and can be made ex-

tremely fast using inverted indices (Zobel et al., 1998). They also perform well

in zero-shot settings (Thakur et al., 2021).

These methods define a vector space model, where documents c in the knowledge

corpus and queries q are represented by a vector, v of terms (Salton et al., 1975).

These terms are usually words, or n-grams, with each dimension of the vector space

encoding a single term. Since there are many terms, and most terms do not appear

in most documents, the vectors are sparse and high-dimensional. A term-weighting

scheme is often used, generally revolving around “term frequency-Inverse docu-

ment frequency” (TF-IDF), where for term i occurring in document c

vi,c = tfi,c · log
N

dfi,

where tfi,c is a function measuring the frequency of term i in c, and dfi measures

the background frequency of term i. A high tf indicates the term is characteristic

of the document, whereas a high document frequency indicates the word appears

in many documents and carries little information. There are many options for spe-

cific weighting functions. The most enduring are inspired by probabilistic retrieval

formulations (Robertson, 1977), such as BM25 (Robertson and Zaragoza, 2009).

Retrieval involves calculating a relevance score between the query vector vq and all
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document vectors vc, usually a variant on dot product,

c∗ = argmax
c∈C

v⊤q vc

Extensions to these models include query reformulation and pseudo-relevance feed-

back techniques, which modify the question’s query vector.

2.3.2.2 Dense Retrieval

We refer to representing documents and queries using dense, continuously-valued

embedding vectors, rather than sparse term-based vectors as above, as dense re-

trieval. Unsupervised dense embedding approaches, such as LSI (Deerwester et al.,

1990), and supervised dense retrievers have been studied for decades (Yih et al.,

2011). However, results were inconsistent, and required very large training datasets.

Pretrained language models have improved the feasibility this approach, and super-

vised dense embedding models now empirically outperform most sparse approaches

where 1000+ training pairs are available (Karpukhin et al., 2020, inter alia.). Dense

embeddings are amenable for use in deep learning, and off-the-shelf toolkits for ef-

ficient, in-memory Nearest-Neighbour and Maximum Inner Product search, such as

FAISS (Johnson et al., 2019) enable extremely fast and scalable retrieval.

A typical contrastive dense retrieval set up is briefly outlined below, based on

DPR (Karpukhin et al., 2020). We again consider the problem of retrieving pas-

sages c from a corpus C of N passages, for questions q. We assume access to a set

of pairs of m gold question-document pairs: {(qi,c+i )}m
i=1 which we use to train a

supervised retriever. We obtain negative passages p− by sampling from C , perhaps

using some importance sampling scheme. We thus have a training dataset:

D = {(qi,c+i ,c
−
i,1, . . . ,c

−
i,n)}m

i=1
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We define a learnt relevance score, based on a bi-encoder architecture4

sim(q,c) = EQ(q)⊤EC(c) = v⊤q vc vq = EQ(q) vc = EC(c)

where EQ and EC are (usually BERT-based) encoders, and vq and vc are dense vec-

tor embeddings of questions and documents respectively. We train by maximising

the score of gold passages relative to negatives, e.g. by minimising negative log

likelihood of gold passages,

L
(

qi,c+i ,c
−
i,1, . . . ,c

−
i,n

)
=− log

 esim(qi,c+i )

esim(qi,c+i )+∑
n
j=1 esim(qi,c−i, j)


At test-time, we pre-compute document embeddings for all documents in the cor-

pus. Retrieval requires solving the maximum inner product search (MIPS) problem

below, approximately soluble in logarithmic time (Johnson et al., 2019)

c∗ = argmax
c∈C

v⊤q vc

2.3.2.3 Rerankers and the Decomposability Gap

Scalable retrieval generally limits the choice of relevance function to be decom-

posable, enabling pre-computation and caching of document representations. Most

practical choices of decomposable functions are some variant of inner product or

L2 distance.5 This requirement limits the expressibility of the relevance function,

relative to cross-encoders, which use multiple layers of cross-attention between the

document and question. Closing this decomposability gap (Seo et al., 2019) is an ac-

tive area of research (Humeau et al., 2020; Khattab and Zaharia, 2020; Khattab et al.,

2021) but cross-encoders are generally significantly stronger, despite their imprac-

ticality for large-scale ranking. A common compromise is to use a cross-encoder

reranker after a decomposable retriever to re-score the top-k retrieved items.

4This architecture is often referred to as a Siamese network (Bromley et al., 1993), (or two-tower
network), but we prefer the more inclusive bi-encoder terminology

5Transformations exist to map inner products to L2 distances, and vice versa, and other choices
such as Mahalanobis and cosine distances (Mussmann and Ermon, 2016; Ram and Gray, 2012)
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Rerankers are usually trained similarly to the dense retriever above, except that

i) the negative passages will be sampled from the top-K passages from the de-

composable retriever and ii) the relevance function will be non-decomposable,

sim(q,c) = EQC(q,c), such as BERT taking the concatenation of the document and

question as input. Whilst this approach almost always improves test-time relevance,

it comes with at the expense of latency and computational cost. We employ such a

strategy, and examine its tradeoffs in chapter 8.

2.3.2.4 Parametric Memory and “Generation as Retrieval”

As mentioned in chapter 1, the introduction of pretrained models has seen a new re-

trieval paradigm emerge. These models exhibit linguistic knowledge, e.g. structures

resembling parse trees (Peters et al., 2018; Tenney et al., 2019b; Goldberg, 2019),

but their training objectives also encourage learning relational knowledge.

For example, a model may be trained on the sentence “Dante was born in Florence”.

A masked language model (Devlin et al., 2019) may transform this into the training

instance “Dante was born in [mask]” with the task being to fill the mask token

with “Florence”. This training instance is equivalent to a cloze question, and such

models could be viewed as cloze QA models. The training objective encourages

storing relational knowledge in parameters, such as the relational triple (DANTE,

born in, FLORENCE), in order to successfully predict such instances.

This phenomenon was demonstrated and quantified by Petroni et al. (2019) and

concurrently by Radford et al. (2019). Knowledge can be “retrieved” from a model

by providing a prompt, such as a templated cloze question for a given relation. For

example, for the relation born-in we define the prompt template “[subject] was

born in the city of [object]”. If we wish to retrieve the birth city of, e.g. Barack

Obama, we can pass into the model “Barack Obama was born in the city of ”

and observe the model’s prediction, in an analogous way to a relational KB, where

we would query for triple (barack obama, born in, ).

Petroni et al. (2019) report that on a collection of simple relational facts mentioned
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in Wikipedia, using BERT to “retrieve” object entities was comparable in accuracy

to an querying a structured KB constructed using a task-specific supervised relation-

extraction system. Radford et al. (2019) go a step further, and directly provide the

model with a natural (rather than cloze) question as a prompt, and achieving a non-

trivial (but very low) 4% accuracy on NaturalQuestions.

This is a particularly intense area of research, and there is much we have yet to

understand about the properties of knowledge stored in large language models.

Relational knowledge seems to be a key area where scaling model size is effec-

tive (Kirstain et al., 2021). GPT3 (Brown et al., 2020) improves GPT2’s score on

NaturalQuestions to 14.5%, by increasing the parameter count by 116×. Prompt-

ing techniques have also been subject to intense study, with a great deal of re-

cent work on discovering automatic prompts via search (Shin et al., 2020; Jiang

et al., 2020a), and generalizing prompts as continuous conditioning states (Liu

et al., 2021c; Zhong et al., 2021; Qin and Eisner, 2021; Lester et al., 2021; Li

and Liang, 2021; Logan IV et al., 2021) In this thesis, we refer to the relational

knowledge stored in pretrained model parameters as parametric knowledge. An

ODQA approach based on parametric knowledge, closed-book QA, features heav-

ily in Parts II-III and is described in detail in section 2.4.2.

2.4 Question Answering Modelling
In this section we will outline the current popular modelling approaches for RC

and ODQA in more detail, as background material to contextualise and support the

content that appears in following chapters.

2.4.1 Reading Comprehension

RC is a QA task where the knowledge source C consists of a single, short document,

usually referred as the context or passage. Let c refer to the context, where c = C

for later ease of notation. Typically, RC tasks (e.g. SQuAD) consist of extractive

span-based QA, where an answer is defined as span of text within the context.

We assume access to a dataset D = {(ci,qi,ai)}m
i=1 of m context, question, answer
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triples, where each context c is comprised of a sequence of lc tokens, such that

c = (c1, . . . ,clc). Answers are comprised of a pair of indices a = (ast ,aen) into c,

such that a lexicalized answer is given by (cast , . . . ,caen). Our goal is to learn a model

p(a|q,c) = p([ast ,aen] |q,c) such that the gold answer span a∗ is given by

a∗ = (a∗st ,a
∗
en) = argmax

0<ast<aen<lc
p([ast ,aen] |q,c)

Directly modelling the joint of ast and aen requires modelling an output answer

space which is quadratic in context length lc. This can be difficult to learn, so it is

common to assume the ast and aen are conditionally independent, and thus p(a|q,c)
be factorized to pst(ast |q,c) · pen(aen|q,c).6

Many specialised RC architectures exist, such as BiDAF (Seo et al., 2017), now

largely superseded BERT-style fine-tuning. Generally, we pass in q and c into an

encoder E, consisting of a number of cross-attention layers, to yield contextualised

representations of the context tokens

H = E(q,c) where H = (h1, . . . ,hlc)
⊤, H ∈ Rd×lc

and pst and pen are defined as softmax(w⊤
st H) and softmax(w⊤

enH) respectively for

trainable weight vectors wst ,wen ∈ Rd . Such factorised models are trained by min-

imising the following loss for gold answer spans (ast,aen)

L(ast,aen,q,c) =− log pst(ast = ast|q,c)− log pen(aen = aen|q,c)

Finally, RC can be approached as a purely seq2seq task, by learning to generate the

answer text directly. This approach, does not take into account the inductive bias

that the answer must be a strict substring from the context. Nevertheless, it can be

competitive when using sufficiently-powerful pretrained seq2seq models.

6This assumption may result in a drop in modelling quality. Such as case will occur in chapter 8
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2.4.2 Open-Domain QA

In the typical ODQA setting, the knowledge source will be comprised of text up to

billions of times larger than the knowledge source in RC.7

Formally, the ODQA task is defined as follows. We assume access to a knowl-

edge source C which we will further assume is segmented of a large number N

of machine-readable passages C = {cn}N
n=1. In the general case, we will not as-

sume any structure to C other than that it is comprised of a set of passages c.8 In

order to learn a model, we assume access to a dataset of question-answer pairs,

D = {(qi,ai)}m
i=1. In addition, it is common to have access to passage-grounded

answer annotations, D = {(Ci,qi,ai)}m
i=1 where C = {c1, . . . ,cl} ⊂ C , a small set

of one or more passages which contains sufficient information to answer q.9

Some datasets do not provide answers grounded to specific passages, however, dis-

tant supervision techniques (Mintz et al., 2009) can be used to obtain approximate

groundings. This is straightforward when answers can be assumed to be sub-strings

of passages, but fuzzy matching and other techniques are available for other set-

tings. For distantly-supervised grounding, marginalisation or EM methods may be

used in training to mitigate noise in the grounding process (Min et al., 2019a).

2.4.2.1 Retrieve-and-Read Open-Domain QA

The most popular, and currently most accurate, approach to ODQA is referred to as

“retrieve-and-read”. This approach amounts to attempting to apply an RC model to

the entire knowledge source (Chen et al., 2017; Choi et al., 2017; Clark and Gardner,

2018; Wang et al., 2018d; Lee et al., 2018a; Wang et al., 2018c; Lin et al., 2018;

Min et al., 2018; Lee et al., 2018a, 2019a; Das et al., 2019; Xiong et al., 2019;

Pang et al., 2019, inter alia.). However, since it is impractical to directly apply a

reader to the whole knowledge source, a subset of promising passages are selected
7In-between the two in scale lies the task of document QA (Clark and Gardner, 2018), which we

consider to be a special-case of ODQA with a small knowledge source
8Approaches that leverage additional structure, such as hyperlink graphs do exist, but are dataset

specific, limiting their applicability (De Cao et al., 2019; Min et al., 2019b)
9More than one passage in C allows for information redundancy in the knowledge source, which

can make some questions significantly easier to answer, and is relied upon for a technique referred
to as macro reading (Mitchell et al., 2009)
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for reading using information retrieval techniques.

The retriever component pret could be an untrained system such as BM25, or we can

train e.g. a dense retriever (section 2.3.2.2). Retrieval training data can be obtained

by re-purposing an ODQA dataset with passage-grounded answer annotations, by

transforming Dodqa = {(Ci,qi,ai)}m
i=1 into Dret = {(qi,c+i )}m′

i=1 by ignoring answers,

and creating positive question-document pairs for each grounded answer passage

c+ ∈ C . The reader component, typically an RC system of the kind described in

section 2.4.1 can also be trained using a similar transformation on Dodqa into Dread =

{(qi,c+i ,ai)}m′
i=1, yielding pread(a|q,c)

Inference in such systems usually follows a pipeline, where first, the top-k pas-

sages will be retrieved from pret, which are fed into pread to produce an answer

candidate from each passage. To produce a final answer, an aggregation step across

the top-k passages’ predicted answers is required. A number of different strate-

gies exist for this purpose. A simple but effective method consists of concatenating

un-normalised logits of answer distributions over several passages and taking the

argmax (Clark and Gardner, 2018; Chen et al., 2017). Reranking methods include

learning a passage reranker over the top-k passages and returning the answer from

only the highest-reranked passage (Karpukhin et al., 2020), or even learning a dedi-

cated answer reranker over the (c,q,a) triples (Wang et al., 2018d; Iyer et al., 2021).

Another empirically effective approach is to learn a reader that aggregates informa-

tion across paragraphs as part of its architecture (Izacard and Grave, 2021b)

2.4.2.2 Closed-book QA

An alternative modelling approach for ODQA has emerged recently, which solely

relies on parametric memory. We refer to this as closed-book QA, following the

terminology of Roberts et al. (2020). Closed-book QA refers to a class of mod-

els where the knowledge source C is not explicitly available at inference time, in

contrast to open-book models, such as the retrieve-and-read class.

In section 2.3.2.4 we outlined how pretrained models store relational knowledge
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from their pretraining corpora in their parameters, and how they can be used to

answer cloze questions. Closed-book QA goes one step further, and fine-tunes a

seq2seq transformer to directly answer natural questions.

As usual, we assume we have access to a large textual corpus or knowledge source

C , and a dataset of question-answer pairs D = {(qi,ai)}m
i=1, answerable from the

knowledge in C . We shall first pretrain a large seq2seq model using a denoising

objective p(w1, . . . ,wn, |MASK(w1, . . . ,wn);θ) using token sequences w1, . . . ,wn

drawn from C . Following the argument in section 2.3.2.4, this step encodes re-

lational knowledge present in C into the parameters θ , and the model should now

be able to answer cloze-style questions about knowledge in C .

The second step consists of fine-tuning the model by minimising the negative log

likelihood of generating answers given questions:

Lθ =−∑
i, j

log p(ai, j|ai,1, . . . ,a j−1,qi;θ)

where ai, j is the jth token of the answer to the ith question in the dataset. This step

is intended to convert the model from answering cloze questions to mapping natural

questions to their answers. This must be done carefully, as we are risk overwriting

knowledge stored in θ .

Closed-book QA models will be smaller, simpler and cheaper at inference time

than an architecturally-matched retrieve-and-read model. However, in order to per-

form well, very high parameter-count closed-book QA models are required in prac-

tice (Roberts et al., 2020; Brown et al., 2020; Kirstain et al., 2021).

2.4.2.3 Phrase Index Models

For completeness, we shall briefly sketch a third ODQA model family. Phrase-index

models, introduced by Seo et al. (2018) and improved upon by Seo et al. (2019)

and Lee et al. (2021), approach span-based ODQA solely as a retrieval problem.

We do not directly study these models, but they have a number of intriguing prop-

erties, especially when considering latency-accuracy trade-offs. They make for an
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interesting comparison to QA-pair retrievers, which we introduce in Part III.

Concretely, we assume a large textual knowledge source C comprised of a very

long sequence of N tokens (w1, . . . ,wN). Given an ODQA task, and dataset D =

{(qi,ai)}m
i=1, where answers a are comprised of tokens

(
t1, . . . , t j

)
up to a maximum

length lt , we assume that every answer exists as a sub-sequence in C given by

indices (ast ,aen), i.e.

∃(ast ,aen) s.t. (wast , . . . ,waen) =
(
t1, . . . , t j

)
, 1 ≤ ast ≤ aen ≤ ast + lt ≤ N

In phrase-index models, we will build an index of representations for all phrases

in C up to length lt (requiring a total of Nlt vectors), within which every possible

answer will be indexed, by definition. Models are learnt using similar techniques

to dense retrieval, learning representations for spans of tokens rather than passages.

Having built such an index, we can simply encode a question into a query vector,

and retrieve an answer phrase using MIPS. This method’s key strength is low la-

tency. A downside is the very large number of phrases that must be indexed, which

can be somewhat mitigated with compression, decomposition and filtering tricks.

Another weakness is that due to the decomposability gap, this approach may have

lower accuracy relative to some approaches. In Part III, we introduce a method that

shares the low latency of phrase indexers, whilst being more accurate.

2.5 Datasets

Datasets play a vitally important role in modern QA. They influence training and

evaluation choices, and shape the evolution of systems and the field as a whole. We

shall not attempt a survey of the great variety of QA datasets and the phenomena

they test. The interested reader is instead directed to Rogers et al. (2021) and Cam-

bazoglu et al. (2021). We outline only the datasets that form the experimental core

of this thesis, first discussing the knowledge source, and then the QA datasets.
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2.5.1 Wikipedia as a General-Purpose Knowledge Source

The Wikipedia domain is very popular in modern (English) QA research, and all ex-

perimental work in this thesis uses Wikipedia as the underlying knowledge source,

either at paragraph level (Part I), or using an entire dump (Parts II-III). Wikipedia

is a convenient choice for a knowledge source for several reasons. Firstly, it cov-

ers a multitude of different topics, and is more trustworthy, information-dense and

cleaner than alternatives like web text, making it well-suited to factual QA. Second,

it is large enough to present a difficult scaling problem, without being so big that

research is slowed by unmanageable hardware requirements. Third, Wikipedia is

less redundant than the web (Mitchell et al., 2009; Chen and Yih, 2020), encourag-

ing more precise models, relying less on information redundancy to derive answers.

Forth, Wikipedia is well-annotated with rich metadata, and is multilingual, which

can be helpful for both modelling and evaluation. Lastly, Wikipedia is available

under CC-BY-SA 3.0 (WikiMedia Foundation, 2021), a license that facilitates data

sharing and derivative works, ideal for reproducible, comparable research.

Despite its convenience, there are drawbacks. Wikipedia suffers from under-

representation and gender, social, and racial bias issues (Wagner et al., 2016; Adams

et al., 2019; Schmahl et al., 2020; Field et al., 2021). As a community, we must re-

main cognisant of sociological issues, and acknowledge our reliance on Wikipedia

will not produce models that perform well on under-represented question distribu-

tions. Relatedly, Wikipedia only covers a small fraction of human knowledge, and

if we want to build truly open-domain models, we will need to move to whole-

web and/or multi-source knowledge sources (Oguz et al., 2020; Piktus et al., 2022).

Lastly, Wikipedia’s homogeneous style and lack of noise means that models devel-

oped on it may not be robust, and may transfer poorly to other domains (Wiese et al.,

2017; Chung et al., 2018; Talmor and Berant, 2019; Reddy et al., 2020, 2021a).

Evaluation in ODQA research was hampered for a time due to different researchers

using different dumps and pre-processing techniques for knowledge sources. The
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Statistic Value

File Size (MiB) 13064
Number of words 2,101,532,400
Number of passages 21,015,324
Number of articles 32,32,908

Table 2.1: Statistics on the Wikipedia open-domain knowledge source used in this thesis

dump we use in thesis was first introduced in Karpukhin et al. (2020) and has since

(mostly) been adopted as standard for the ODQA datasets we study. This dump

dates from December 2018, and has been extracted from Wikipedia’s XML format

into plain text using the pipeline of Chen et al. (2017). This dataset excludes any

semi-structured data, such as tables, lists and info-boxes, as well as disambiguation

pages, leaving only the textual content. This corpus is then split into 21 million

disjoint text passages, each 100 words in length. Finally, the passage is prepended

with the title of the article it comes from. Statistics can be found in Table 2.1.

2.5.2 Question Answering Datasets

2.5.2.1 Questioner Intent

Before describing the QA datasets themselves, it is instructive to define two broad

classes of dataset, based on questioner intent. We borrow the terminology of Ro-

driguez and Boyd-Graber (2021), who, in turn, borrow from IR concepts (Voorhees,

2002b; Robertson, 2008). Rodriguez and Boyd-Graber argue that there are two

high-level QA intents, which affect how questions should be processed, and how

answers should be evaluated. The first, referred to as the Cranfield paradigm, refers

to building systems tasked with serving human information needs. Here, questions

will be information-seeking, from a questioner with a genuine information need that

they hope the answerer will satisfy. For the second, the Manchester paradigm, the

intent is not to fulfil an information need, but rather to challenge, test or probe the

answerer on their reasoning abilities and their command of their knowledge.

A key difference between Cranfield and Manchester paradigms is whether the ques-

tioner knows the answer to their question before they ask it. This has deep implica-

tions for how questions are phrased, and how they should be processed.
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Question: How many nations control this region in total?
Answer: Nine
Context: The Amazon rainforest, also known in English as Amazonia or the Amazon
Jungle, is a moist broadleaf forest covering most of the Amazon basin of South America.
This basin encompasses 7 million KM2 [...]. The region includes territory belonging to
nine nations. The majority of the forest is contained within Brazil, with 60% of the
rainforest, followed by Peru with 13%, Colombia with 10%, and with minor amounts in
[...]. States or departments in four nations contain “Amazonas” in their names [...]

Figure 2.1: Example from SQuAD, with answer highlighted in grey

Typically Cranfield tasks and datasets will have questions harvested from query

logs from existing, practical QA systems. Since the questioner does not know the

answer to their question, they will often ask under-specified questions, where the

answerer must make inferences about what answer best serves the questioner’s need.

Cranfield questioners may formulate questions to increase the odds of the answerer

getting the question correct, perhaps by including helpful keywords.

Since the primary goal of Manchester-style QA is to probe and challenge the an-

swerer, these tasks are often typified by questions sourced from trivia competitions,

e.g. Jeopardy! (Ferrucci et al., 2010) and Quizbowl (Rodriguez et al., 2019), or ad-

versarial questions, specifically formulated to exploit weaknesses in existing mod-

els (Jia and Liang, 2017; Wallace et al., 2019; Bartolo et al., 2020) .

Improvements to models on paradigm may improve their performance in the other,

and both paradigms require solving similar core problems. However, an over-focus

on one paradigm may prove detrimental in the other – e.g being more robust to

the extreme tail of unnatural adversarial questions may lead to better Manchester-

oriented results, but may sacrifice accuracy on more probable questions.

2.5.2.2 SQuAD v1

In Part I, we concentrate on extending RC capabilities on the span-extraction dataset

SQuAD. SQuAD is a prototypical modern RC dataset and is comprised of over

100K context, question, answer triples. Contexts are paragraphs from featured

Wikipedia articles, and questions and answers were obtained by presenting paid

crowd-workers with a paragraph, and instructing them to formulate a natural lan-

guage question, and to highlight an answer span within the text. SQuAD is thus
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Dataset Question Answer

CuratedTREC Where does the vice president live when
in office?

U.S\s?. Naval Observatory

WebQuestions what is the state flower of arizona? Saguaro

TriviaQA who was britain’s only track and field gold
medallist at the 1972 olympics

Mary Peters

NaturalQuestions whats the difference between tomato
paste and tomato puree

consistency

Table 2.3: Example question-answer pairs from popular open-domain QA datasets

“Manchester-style” and is evaluated using EM and mean F1 (see section 2.6).

A typical instance from SQuAD is shown in Figure 2.1, with statistics in Table 2.2.

A later extension to the dataset, SQuAD v2 (Rajpurkar et al., 2018) includes unan-

swerable questions, which we do not use in this thesis.

Limitations Whilst SQuAD is undoubtedly useful, there are a number of limita-

tions. There is a high lexical overlap between the question and the sentence that

surrounds the answer (Weissenborn et al., 2017b; Sugawara et al., 2018). This is

due to the annotation procedure, which incentives writing questions quickly, and

lack of intrinsic motivation for annotators to pose, lexically-diverse questions. As a

result, models may learn to overly-rely on lexical matching to locate answers, which

can make them brittle (Jia and Liang, 2017). Moreover, models also learn to pick

up on type consistency clues – a question containing the word “where” can often

be answered by finding a location mention in the passage, without requiring a deep

understanding of question meaning (Sugawara et al., 2018). Such basic answering

strategies are never-the-less “a good start”, especially if they can be induced without

thousands of hours (and dollars) of training set annotation. We present an approach

to learn these reading skills in an unsupervised way in chapter 3.

An open-domain version of SQuAD (SQuAD-open) has seen some use, whereby

systems are required to answer SQuAD questions using the whole of Wikipedia,

rather than a single passage (Chen et al., 2017; Lee et al., 2019a; Karpukhin et al.,

2020, inter alia.). However, this use-case has some severe issues, and there are

many superior alternatives available. First, SQuAD questions often do not make
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sense without their context passage. For example, the SQuAD question “what did

this concept contradict?” cannot have a good answer in the open-domain case.

Clark and Gardner (2018) estimate 33% of SQuAD questions are similarly context-

dependent. Due to high lexical overlap between questions and contexts, and due

to SQuAD having many questions annotated on a small number of passages, there

is a high bias in SQuAD-open. Accordingly, simple term-based retrievers perform

spuriously well (Lee et al., 2019a).

2.5.2.3 CuratedTREC (CT) and WebQuestions (WQ)

CT (Baudis and Sedivy, 2015) and WQ (Berant et al., 2013) are common ODQA

datasets. They are smaller, with comparatively older questions than alternatives.

See Tables 2.2 and 2.3 for statistics and examples. Both contain questions originally

from search engine query logs, and are Cranfield-style tasks.

CT is a compilation of questions from TREC QA tracks between 1999 and 2003.

CT’s answers are annotated by crowdworkers, and questions are short, relatively

entity-centric, and intended to be answerable from Wikipedia. WQ’s questions were

also answered by crowdworkers but answers are restricted to be lexicalized entities

in a structured KB, Freebase (Bollacker et al., 2008). Whilst CT was specifically

created for textual ODQA, WQ was originally intended for semantic parsing, but

has been re-purposed. Both datasets lack passage-grounded answer annotations i.e.

we do not know precisely which passages contain sufficient information to answer

the question. Instead, it is common to rely on distant supervision, whereby noisy

passage-grounded answer annotations are obtained by retrieving passages using e.g.

BM25, and taking the highest-ranked passages which contain the answer.

2.5.2.4 TriviaQA (TQA)

TQA (Joshi et al., 2017) is a popular ODQA dataset, comprised of questions and

answers scraped from trivia websites.10 Statistics can found in Table 2.2, and exam-

ples in Table 2.3. Since the questions are from trivia competitions, they are designed

to be challenging (but not too challenging) for human quizzers. As the questioner

10TriviaQA also has an RC task, which we do not consider in this thesis
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knows the answer to the question they pose, these questions are not representative

of what information-seeking users may ask, and TriviaQA is thus Manchester-style.

All answers in TriviaQA are restricted to be Wikipedia entities, guaranteeing that

they exist in Wikipedia. Like CT and WQ, passage-grounded answer annotations

are not available, and distant supervision is often employed. TriviaQA is also much

larger than CT and WQ, (100K QA-pairs verses 5K and 2K respectively), which

allows for more supervision and lower-variance evaluations.

2.5.2.5 NaturalQuestions (NQ)

NQ (Kwiatkowski et al., 2019) is a recent RC dataset. NQ was carefully constructed

to avoid the issues with the first wave of large RC datasets like SQuAD. Questions

are sourced from Google query logs, and, like those from WQ and CT, are genuine,

information-seeking questions, making NQ Cranfield-style. Context documents are

whole Wikipedia articles, and answers are annotated by crowdworkers at two levels

of granularity: paragraph level ‘long answers’ and ‘short answer’ spans. Substantial

curation and annotation costs were invested to produce NQ, which, coupled with its

careful design and size make it a strong general-domain RC dataset.

Whilst originally created for RC, it has since been re-purposed for ODQA, first

by Lee et al. (2019a). It is this ODQA version which we use in thesis. To convert

NQ for ODQA, yes/no and unanswerable questions were removed, as were answers

longer than 5 tokens. Like the other ODQA datasets, questions tend to be factoid,

and answers are usually noun-phrases, dates, or entities. Passage-grounded answer

annotations are available in NQ, which is useful both for additional supervision and

evaluation options relative to the other datasets.

2.6 Evaluation
The evaluation problem amounts to deciding whether an answer â produced by a

system is a correct answer to a question q. This is a challenging problem in-and-

of itself. The gold standard is to use human evaluators, a strategy employed in

TREC competitions, and more recently, the EfficientQA NeurIPS competition (Min

et al., 2021). Such evaluations are of immense value and should be carried out fre-
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quently. However, this is expensive, time-consuming, and presents reproducibility

challenges. In practice, automatic evaluation procedures are also required.

To avoid the problem of automatically verifying the correctness of an answer, we

instead tackle the easier task of assessing whether a predicted answer â is equivalent

to a gold reference answer a. Note this will not capture cases where â is a correct

but different answer to a, which we discuss further below.

2.6.1 Automatic Metrics

The choice of evaluation metric is defined by the answer format of the task. For

multiple-choice QA, evaluation is straightforward – simple classification accuracy

or F1 is sufficient. For span-based RC and ODQA, it has become common to use

the evaluation procedure of Rajpurkar et al. (2016). Here, answer strings are lightly

normalised by lowercasing, removing articles and punctuation and then whitespace-

tokenised. Then, for a predicted and reference answer â and a, comprised of tokens

(â1, . . . , âm) and (a1, . . . ,am), we define the exact match (EM) score as

ExactMatch(â,a) = 1â=a

in other words, does the (normalised) predicted answer exactly match the reference

answer? This is a harsh metric, since all credit is lost if the answer includes or

misses out a single token not present in the reference. For example, the predicted

answer “King Henry VIII” would receive no credit for the reference answer “Henry

VIII”. Thus, a softer metric is also often used, the bag-of-tokens F1:

Prec(â,a) =
|{â1, . . . âm}∩{a1, . . .am}|

|{â1, . . . âm}|
Rec(â,a) =

|{â1, . . . âm}∩{a1, . . .am}|
|{a1, . . .am}|

F1(â,a) =
2 ·Prec(â,a) ·Rec(â,a)
Prec(â,a)+Rec(â,a)

It is common to provide several annotated gold answer references for test sets,

whereby final EM and F1 score for a prediction is given by its maximum score

across the answer references. These instance-level scores are aggregated into an
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overall test-set score by simple macro-average. For CT, test-set answer annotations

come in the form of regular expressions, and predictions receive credit only if they

match the regular expressions. Lastly, for longer-answer and free-form QA, it is

common to use BLEU (Papineni et al., 2002) and ROUGE (Lin, 2004).

2.6.2 Limitations of Standard Evaluation Practice

The automatic evaluation protocol is appealing due to its simplicity and efficiency.

It does, however, have a number of issues. Firstly, most datasets do not contain

more than a handful of answer references for each question, which can lead to a

high number of false negatives, especially in ODQA (Roberts et al., 2020; Si et al.,

2021). Ensuring that enough references are provided to cover the lexical variability

of the correct answer, whilst still being precise is a difficult annotation challenge.

A separate but related issue is that of test questions which have alternative, un-

annotated correct answers. This usually occurs when questions are under-specified.

Min et al. (2020) use the term ambiguous questions, providing the NQ example,

when did harry potter and the sorcerers stone come out?, which, in reality has

two valid answers – the premiere was 4th November 2001, and the general cinema

release was on 16th. However, only the premiere is annotated as an answer, despite

both being valid answers. This is relatively common when questioners do not know

the answer to the question they are asking.

Nevertheless, assuming the answer annotations that are available are of high quality,

our evaluation metrics are precise, i.e. if automatic evaluation indicates a question

is answered correctly, it is very likely to be true. Throughout this thesis, we will

state that models achieve a certain “accuracy” on a test set, based on automatic

evaluation scores. We should bear in mind that terminology like “accuracy” in this

context is a short-hand for saying that such scores constitute a lower bound of their

true accuracy. Put simply, an EM score of 45% does not imply a model will answer

∼45% of questions correctly. A recent human evaluation found models to have

absolute accuracies 10%-21% higher than EM scores (Min et al., 2021).

Lastly we note that the community has a tendency to focus on overall, i.i.d. test-set
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scores, which can be misleading. We shall explore such a case in chapter 7. Adver-

sarial and “challenge” test sets, which share the same evaluation methodology, but

expose weaknesses are an increasingly popular way of thoroughly evaluating model

behaviour (Lehmann et al., 1996; Jia and Liang, 2017; Belinkov and Glass, 2019;

Bartolo et al., 2020; Ribeiro et al., 2020; Sciavolino et al., 2021, inter alia.).

2.7 Miscellany

2.7.1 A Note on Answerability

In the above, we maintained that the QA tasks we consider are only defined over

questions that are answerable given the knowledge source. It is worth noting how-

ever that some RC tasks, not covered in this thesis, do include unanswerable ques-

tions as part of the task. Such efforts have not yet hit mainstream ODQA, where

answerability is guaranteed by construction (NQ) or by filtering potential unanswer-

ables (TQA), or simply by assumption (CuratedTREC, WQ). In practice, unanswer-

able questions may exist due to pragmatic implementation choices. For example,

we use only the text of Wikipedia, which may miss answers from tables. Coupled

with the existence of ambiguous/under-specified questions, we note that, in prac-

tice, full answerability is an assumption only. Table 2.2 has columns describing

what knowledge source is sufficient to answer every question in a dataset vs. what

we use in practice in our experiments. Finally, even if an answer exists, it doesn’t

guarantee that an model will be able to find it. In cases where a model has failed to

find good evidence for an answer, it may be better to refuse to answer, rather than

return likely-incorrect guesses. We study such behaviour in chapter 8.

2.7.2 Dialogue

Some consider QA to be a special case of dialogue, consisting of a single utter-

ance exchange. We do not tackle dialogue in this thesis, but agree Cranfield-style

QA should be a collaboration between user and model. A potential solution to

ambiguous questions is to generate clarification questions in order to find the best

answer (Saeidi et al., 2018; Min et al., 2020). A number of conversational QA tasks

have been proposed for RC (Saeidi et al., 2018; Choi et al., 2018; Reddy et al.,
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2019), and more recently for ODQA (Qu et al., 2020; Anantha et al., 2021)

2.7.3 Relationship between QA & Knowledge-Intensive NLP

In chapter 6 we tackle tasks that we refer to as knowledge-intensive NLP tasks. This

term describes NLP tasks with emphasis on being able to leverage large amounts

of knowledge. It is often defined as tasks where the average human would require

access to the knowledge source at inference time. ODQA is a typical Knowledge

Intensive NLP task. Other tasks identified by Petroni et al. (2021) employing a

Wikipedia knowledge source are fact checking (Thorne et al., 2018), slot-filling

(Levy et al., 2017; Elsahar et al., 2018), entity linking (Hoffart et al., 2011; Guo and

Barbosa, 2018) and some forms of dialogue (Dinan et al., 2019). These tasks share

common prerequisite skills, so models that tend to do well on ODQA will likely

also perform well on other knowledge-intensive tasks. Indeed, many of these tasks

could be reduced to ODQA with suitable transformations of their inputs and there is

a deep connection between ODQA and knowledge-intensive NLP in general.

2.7.4 Desirable Properties of Question Answering systems

When comparing different QA systems, it is tempting to simply compare their ac-

curacies and conclude that one model is “better” than another. However, such an

evaluation is misleading, and ignores a wide range of important criteria. For exam-

ple, for user-facing systems, the better model may be the one with lower latency,

or cheaper inference requirements, rather than higher accuracy. If performing purer

Manchester-style research, models that require less training data may be better than

models that eventually outperform them given more data. Or, is a monolingual

model that scores 3% higher on a test set better than one that can answer questions in

many languages? Comparing models is nuanced and must be done carefully.

For many criteria such as latency and size, models may come with hyperparameters

that allow us to tune the tradeoffs, turning point-wise comparisons into operating

curves. Accuracy is important, but we should not necessarily prioritise it at the

expense of other factors. For example, it is valuable for an ODQA system to be

explainable, or to provide evidence or providence for its answers. Retrieve-and-
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read models have a natural mechanism for this, since we can examine the retrieved

passages that the answers are conditioned on. Closed-book QA models are black-

boxes, with no straightforward providence mechanism. Summing up, a good QA

system will be accurate, but a great one will be accurate, multilingual, low-latency,

small, require little training data, and provide evidence for its answers.
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Reading Comprehension without

Task Annotations

“Self-education is, I firmly believe, the only kind of education there is.”

Isaac Asimov
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Chapter 3

Unsupervised Reading

Comprehension by Cloze

Translation

In Part I, we shall concern ourselves with the span-extractive RC task, introduced

in section 2.4.1. For common RC datasets like SQuAD (section 2.5.2.2), fine-tuned

pretrained models achieve results on par with humans on in-domain test sets. How-

ever, this is predicated on the availability of large amounts of hand-annotated train-

ing data. Unfortunately, for new domains or languages, collecting such training

data is non-trivial, time-consuming and expensive. Reducing, or even entirely re-

moving the requirement for hand-annotated RC training data would greatly increase

applicability and access to RC technologies, which are not only useful in-and-of-

themselves, but also form important components of other models. This is the moti-

vation underpinning Part I.

In this chapter, we make a start on this agenda by considering the question: “What

if no training data was available at all?” Concretely, we shall investigate the fea-

sibility of unsupervised RC, a novel setting in which no aligned question, context

and answer data is available. This extreme setting, whilst somewhat unrealistic in

a practical sense, is a useful exercise for empirically assessing to what extent hand-
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annotated RC training data is really needed. Moreover, by preventing ourselves

from using aligned data, we may gain a new perspective on the RC task. For ex-

ample, by assessing what basic behaviours we can – and cannot – induce in an RC

model without needing training data, we may learn more about where the real chal-

lenges and subtleties of RC lie. Lastly, if we can achieve some RC competency,

then such a model may be better able to use any small amounts of annotated data

that do become available, such as in few-shot or semi-supervised settings.

Bigger Picture: This chapter focuses entirely on the task of RC. Ultimately, while

RC is a valuable in-and-of-itself, we are more interested in more general ODQA

settings, where context documents are not provided. That said, doing well on RC

is a prerequisite to strong ODQA, and, by initially studying the simpler task, we

can make faster progress without needing to handle the additional complexity of

ODQA. Moreover, RC components play an important role in ODQA models (es-

pecially retrieve-and-read models, see sec. 2.4.2.1), and techniques developed in

RC could be readily applied to ODQA settings. This chapter is devoted to under-

standing what QA behaviours we can achieve without annotate data, which the two

chapters proceeding it will build upon. Finally, ideas relating to automatic question

generation for QA, which we begin to use in this chapter, will return in chapter

8, where we will use them in an open-domain generation setting to induce much

faster, better calibrated and more flexible ODQA models. Additional commentary

on the connections between this chapter and the wider body of work in the thesis

can be found in the conclusion of this chapter (sec. 3.4) and the thesis conclusion,

chapter 9.

The material in this chapter first appeared in:

Patrick Lewis, Ludovic Denoyer, and Sebastian Riedel. 2019. Unsupervised

Question Answering by Cloze Translation. In Proceedings of the 57th Annual

Meeting of the Association for Computational Linguistics (ACL)

Individual Contributions: The idea of applying UMT for question generation was proposed

by co-authors. The final conceptual design was a close collaboration, with substantial con-
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The London Sevens is a rugby tournament held at
Twickenham Stadium in London. It is part of the World
Rugby Sevens Series. For many years the London Sevens
was the last tournament of each season but the Paris
Sevens became the last stop on the calendar in 2018.

Question
Answering 

Cloze Translation

Cloze Generation

QA Model
the Paris sevens become
the last stop on the

calendar in MASK

Question
Generation 

2018 

Answer Extraction

Context 

Cloze 
Question 

 

Natural
Question 

Answer  
 

 When did the Paris Sevens become the last stop on 
 the calendar?

Figure 3.1: A schematic of our approach. The right side (dotted arrows) represents tradi-
tional RC. We introduce unsupervised data generation (left side, solid arrows),
which we use to train standard RC models

tributions from the thesis author. All experiments and analysis were devised and performed

by the thesis author, as was the majority of the writing of the original paper.

3.1 Overview
We propose to tackle the unsupervised RC task by reducing it to unsupervised ques-

tion generation – if we had a method, without using RC supervision, to generate ac-

curate questions given a context document, we could then use the generated ques-

tions to train an RC model. This approach allows us to directly leverage recent

progress in RC, such as model architectures and pretrained RC models. This frame-

work is attractive in both its flexibility and extensibility. In addition, our method can

be used to augment training data in few-shot and semi-supervised settings.

Our proposed method, shown schematically in Figure 3.1, generates RC training

data in three steps:

1. We sample a paragraph in a target domain – in our case, English Wikipedia.
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2. We sample from a set of candidate answers within that context, using pre-

trained components (NER or noun chunkers) to identify such candidates.

These require supervision, but no aligned q,a or q,c data. Given a candidate

answer and context, we can extract “fill-the-blank” cloze questions.

3. Finally, we convert cloze questions into natural questions using an unsuper-

vised cloze-to-natural question translator.

The conversion of cloze questions into natural questions is the most challenging

of these steps. While there exist sophisticated rule-based systems (Heilman and

Smith, 2010) to transform statements into questions (for English), we find their per-

formance to be empirically weak as a source of supervision data for RC (see Section

3.3). Moreover, for specific domains or other languages, a substantial engineering

effort will be required to develop similar algorithms. Also, whilst supervised models

exist for this task, they require the type of annotation unavailable in this setting (Du

et al. 2017; Du and Cardie 2018; Hosking and Riedel 2019, inter alia). We over-

come this issue by using unsupervised machine translation which was described

in detail in section 2.3.1.3 in chapter 2. In particular, we collect a large corpus of

natural questions and an unaligned corpus of cloze questions, and train a seq2seq

model to map between natural and cloze question domains using a combination of

back-translation and de-noising.

In our experiments, we find that in conjunction with modern RC model architec-

tures, unsupervised RC can lead to performances surpassing early supervised ap-

proaches (Rajpurkar et al., 2016). We show that forms of cloze “translation” that

produce (unnatural) questions via word removal and flips of the cloze question lead

to better performance than an informed rule-based translator. Moreover, the unsu-

pervised seq2seq model outperforms both the noise and rule-based system. Lastly,

we show that our method can be used in a few-shot learning setting, obtaining 59.3

F1 with 32 labelled examples, compared to 40.0 F1 without our method.

To summarise, this chapter makes the following contributions: i) The first approach
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for unsupervised RC, reducing the problem to unsupervised cloze translation, using

methods from unsupervised machine translation ii) Extensive experiments testing

the impact of various cloze question translation algorithms and assumptions iii) Ex-

periments demonstrating the application of our method for few-shot RC.

3.2 Unsupervised RC
We propose to address unsupervised RC in a two stage approach. We first de-

velop a generative model p(q,a,c) using no (RC) supervision, and then train a

discriminative reader pr(a|q,c) using p as training data generator. The generator

p(q,a,c)= p(c)p(a|c)p(q|a,c) will generate data in a “reverse direction”, first sam-

pling a context via p(c), then an answer within the context via p(a|c) and finally

a question for the answer and context via p(q|a,c). In the following we present

variants of these components.

3.2.1 Context and Answer Generation

Given a corpus of documents our context generator p(c) uniformly samples a para-

graph c of appropriate length from any document, and the answer generation step

creates answer spans a for c via p(a|c). This step incorporates prior beliefs about

what constitutes good answers. We propose two simple variants for p(a|c):

Noun Phrases We extract all noun phrases from paragraph c and sample uniformly

from this set to generate a possible answer span. This requires a chunking algorithm

for our language and domain.

Named Entities We can further restrict the possible answer candidates and focus

entirely on named entities. Here we extract all named entity mentions using an

NER system and then sample uniformly from these. Whilst this reduces the variety

of questions that can be answered, it proves to be empirically effective as discussed

in Section 3.3.2.

3.2.2 Question Generation

Arguably, the core challenge in RC is modelling the relation between question and

answer. This is captured in the question generator p(q|a,c) that produces questions
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from a given answer in context. We divide this step into two steps: cloze generation

q′ = cloze(a,c) and translation, p(q|q′).

3.2.2.1 Cloze Question Generation, q′ = cloze(a,c)

Here, we follow a similar process to that described in section 2.3.1.1. In the first

step, we reduce the scope of the context to roughly match the level of detail of actual

questions in RC tasks. A natural option is to use the sentence around the answer.

Using the context and answer from Figure 3.1, this might leave us with the sentence

“For many years the London Sevens was the last tournament of each season but

the Paris Sevens became the last stop on the calendar in ”. We can further

reduce length by restricting to sub-clauses around the answer, based on access to an

English syntactic parser, leaving us with “the Paris Sevens became the last stop on

the calendar in ”.

3.2.2.2 Cloze Translation, p(q|q′)
Once we have generated a cloze question q′ we translate it into a form closer to

what we expect in real RC tasks. We explore four approaches here:

Identity Mapping We consider that cloze questions themselves provide a signal

to learn some form of RC behaviour. To test this hypothesis, we use the identity

mapping as a baseline for cloze translation. To produce “questions” that use the

same vocabulary as real RC tasks, we replace the mask token with a wh*-word,

either randomly chosen, or with a simple heuristic (see Section 3.2.4).

Noisy Clozes One way to characterise the difference between cloze and natural

questions is as a form of perturbation. To improve robustness to perturbations, we

can inject noise into cloze questions. We implement this as follows. First, we delete

the mask token from cloze q′, apply a noise function, and prepend a wh*-word (ran-

domly or with the heuristic in Section 3.2.4) and append a question mark. The noise

function consists of word dropout, word order permutation and word masking. The

motivation is that, at least for SQuAD, it may be sufficient to simply learn to iden-

tify a span surrounded by high n-gram overlap to the question, with a tolerance to

word order perturbations.
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Rule-Based Turning an answer embedded in a sentence into a (q,a) pair can be

understood as a syntactic transformation with wh*-word-movement and a type-

dependent choice of wh*-word. For English, off-the-shelf rule-based software ex-

ists for this purpose. We use the popular statement-to-question generator from Heil-

man and Smith (2010) which was described in detail in section 2.3.1.1

Unsupervised Machine Translation (UMT) The above approaches either require

substantial engineering and prior knowledge or are still far from generating natural-

looking questions. We propose to overcome both issues through unsupervised train-

ing of a seq2seq model that translates between cloze and natural questions, which

we describe in detail in Section 3.2.4.

3.2.3 Question Answering

RC amounts to finding the best answer a given question q and context c. We have

at least two ways to achieve this using our generative model:

Training a separate RC system The generator is a source of training data for any

RC architecture at our disposal. Whilst the data we generate is unlikely to match the

quality of real RC data, we hope QA models will learn basic QA behaviours.

Using Posterior Another way to extract the answer is to find a with the highest

posterior p(a|c,q). Assuming uniform answer probabilities conditioned on context

p(a|c), this amounts to calculating argmaxa′ p(q|a′,c), i.e. testing how likely each

possible candidate answer span is to have generated the question, a similar method

to the supervised approach of Lewis and Fan (2018).

3.2.4 Unsupervised Cloze Translation

To train a seq2seq model for cloze translation we borrow ideas from unsupervised

Machine Translation (UMT) which was described in detail in section 2.3.1.3. In

order to apply this technique, no parallel data is required, only non-parallel corpora

of source and target “language” sentences. In our setting, we aim to learn a function

which maps between the question (target) and cloze question (source) domains. For

this, we need corpora of cloze questions Ds and natural questions Dt .
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High Level Answer Category Named Entity Labels Most appropriate wh*

PERSON/NORP/ORG PERSON, NORP, ORG Who
PLACE GPE, LOC, FAC Where
THING PRODUCT, EVENT, WORKOFART, LAW, LANGUAGE What
TEMPORAL TIME, DATE When
NUMERIC PERCENT, MONEY, QUANTITY, ORDINAL, CARDINAL How much / How many

Table 3.1: High level answer categories for the different named entity labels

Cloze Corpus We create the cloze corpus Ds by applying the cloze generation pro-

cedure described above in Section 3.2.2.2. Specifically we consider Noun Phrase

(NP) and Named Entity mention (NE) answer spans, and cloze question boundaries

set either by the sentence or sub-clause that contains the answer.1 We extract 5M

cloze questions from randomly sampled Wikipedia paragraphs, and build a corpus

Ds for each choice of answer span and cloze boundary technique. See Appendix

C.1 for exhaustive details.

Question Corpus We mine questions from English pages from a recent Common-

Crawl2 dump using simple selection criteria: We select sentences that start in one of

a few common wh*-words, (“how much”, “how many”, “what”, “when”, “where”

and “who”) and end in a question mark. We reject questions that have repeated

question marks or “?!”, or are longer than 20 tokens. This process yields over

100M English questions when de-duplicated. Corpus Dt is created by sampling 5M

questions such that there are equal numbers of questions with each wh*-word.

Following the unsupervised MT procedure (section 2.3.1.3), we then use Ds and

Dt to train translation models ps→t(q|q′) and pt→s(q′|q) which translate cloze ques-

tions into natural questions and vice-versa. At inference time, natural questions

are generated from cloze questions as argmaxq ps→t(q|q′). Additional experimental

details can be found in Appendix C.2.

Wh* heuristic In order to provide an appropriate wh*-word for our “identity” and

“noisy cloze” baseline question generators, we implement a simple heuristic that

maps each answer type to the most appropriate wh*-word, as shown in Table 3.1.

For example, the “TEMPORAL” answer type is mapped to “when”. During experi-

1We use SpaCy for Noun Chunking and NER, and AllenNLP for the parser Stern et al. (2017).
2http://commoncrawl.org/

http://commoncrawl.org/
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ments, we find that the unsupervised MT translation functions sometimes generate

inappropriate wh*-words for the answer entity type, so we also experiment with

applying the wh* heuristic to these question generators. For the MT models, we ap-

ply the heuristic by prepending target questions with the answer type token mapped

to their wh*-words at training time – e.g. questions that start with “when” are

prepended with the token “TEMPORAL”.

3.3 Experiments
We want to explore what QA performance can be achieved without using aligned

RC data, and how this compares to supervised learning and other approaches which

do not require training data. Furthermore, we seek to understand the impact of dif-

ferent design decisions upon QA performance of our system and to explore whether

the approach is amenable to few-shot learning when only a few annotated instances

are available. Finally, we also wish to assess whether unsupervised MT can be used

as an effective method for question generation.

3.3.1 Unsupervised RC Experiments

For the synthetic dataset training method, we consider two QA models: finetuning

BERT (Devlin et al., 2019) and BiDAF + Self Attention (Clark and Gardner, 2018).

For the posterior maximisation method, we extract cloze questions from both sen-

tences and sub-clauses, and use the MT models to estimate p(q|c,a). We evaluate

using the standard EM and F1 (section 2.6).

As we cannot assume access to a development dataset when training unsupervised

models, we halt training when F1 score on a held-out set of synthetic QA data

plateaus. We do, however, use the SQuAD development set to assess which model

components and factors are important (Section 3.3.2). To preserve the integrity of

the SQuAD test set, we only submit our best system to the test server.

We shall compare our results to some published baselines. Rajpurkar et al. (2016)

use a supervised logistic regression model with feature engineering, and a sliding

window approach that finds answers using word overlap with the question. Kaushik
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Unsupervised Models EM F1

Ours: BERT-Large Unsupervised RC (ensemble) 47.3 56.4
Ours: BERT-Large Unsupervised RC (single) 44.2 54.7
BiDAF+SA (Dhingra et al., 2018) 3.2† 6.8†

BiDAF+SA (Dhingra et al., 2018)‡ 10.0* 15.0*
BERT-Large (Dhingra et al., 2018)‡ 28.4* 35.8*

Baselines EM F1

Sliding window (Rajpurkar et al., 2016) 13.0 20.0
Context-only (Kaushik and Lipton, 2018) 10.9 14.8
Random (Rajpurkar et al., 2016) 1.3 4.3

Fully Supervised Models EM F1

BERT-Large (Devlin et al., 2019) 84.1 90.9
BiDAF+SA (Clark and Gardner, 2018) 72.1 81.1
Log. Reg. + FE (Rajpurkar et al., 2016) 40.4 51.0

Table 3.2: Our best performing unsupervised RC models compared to various baselines
and supervised models. * results on SQuAD dev set. † results on non-standard
test set created by Dhingra et al. (2018). ‡ our re-implementation

and Lipton (2018) train (supervised) models that disregard the input question and

simply extract the most likely answer span from the context. To our knowledge, ours

is the first work to deliberately target unsupervised RC on SQuAD. Dhingra et al.

(2018) focus on semi-supervised QA, but do report a unsupervised number. For fair

comparison, we re-implement their approach using their publicly available data, and

train a BERT-Large variant. Their approach also uses cloze questions, but without

translation, and heavily relies on the special structure of Wikipedia articles.

Our best approach attains 54.7 F1 on the SQuAD test set; an ensemble of 5 models

achieves 56.4 F1. Table 3.2 shows the result in context of published baselines and

supervised results. Our approach significantly outperforms baseline systems and

Dhingra et al. (2018) and surpasses early supervised methods.

3.3.2 Ablation Studies and Analysis

To understand the different contributions to the performance, we undertake an ab-

lation study. All ablations are evaluated using the SQUAD development set. We

report ablation numbers using BERT-Base and BiDAF+SA, and our best perform-

ing setup is then used to fine-tune a final BERT-Large model, which is the model

in Table 3.2. All experiments with BERT-Base were repeated with 3 seeds, we re-



3.3. Experiments 87

Cloze
Answer

Cloze
Boundary

Cloze
Translation

Wh*
Heuristic

BERT-Base BiDAF+SA Post Max.
EM F1 EM F1 EM F1

NE Sub-clause UMT ✓ 38.6 47.8 32.3 41.2 17.1 21.7
NE Sub-clause UMT × 36.9 46.3 30.3 38.9 15.3 19.8
NE Sentence UMT × 32.4 41.5 24.7 32.9 14.8 19.0
NP Sentence UMT × 19.8 28.4 18.0 26.0 12.9 19.2

NE Sub-clause Noisy Cloze ✓ 36.5 46.1 29.3 38.7 - -
NE Sub-clause Noisy Cloze × 32.9 42.1 26.8 35.4 - -
NE Sentence Noisy Cloze × 30.3 39.5 24.3 32.7 - -
NP Sentence Noisy Cloze × 19.5 29.3 16.6 25.7 - -

NE Sub-clause Identity ✓ 24.2 34.6 12.6 21.5 - -
NE Sub-clause Identity × 21.9 31.9 16.1 26.8 - -
NE Sentence Identity × 18.1 27.4 12.4 21.2 - -
NP Sentence Identity × 14.6 23.9 6.6 13.5 - -

NE Rule-Based (Heilman and Smith, 2010) 28.2 41.5 23.1 40.2 - -
NP Rule-Based (Heilman and Smith, 2010) 16.0 37.9 13.8 35.4 - -

Table 3.3: Ablations on the SQuAD development set. “Wh* Heuristic” indicates if a
heuristic was used to choose sensible wh*-words during cloze translation. NE
and NP refer to named entity mention and noun phrase answer generation.

port mean results. Results are shown in Table 3.3, and observations and aggregated

trends are highlighted below.

Posterior Maximisation vs. Training on Generated Data Comparing Posterior

Maximisation with BERT-Base and BiDAF+SA columns in Table 3.3 shows that

training RC models is more effective than maximising question likelihood. As

shown later, this could partly be attributed to RC models being able to generalise

answer spans, returning answers at test-time that are not always named entity men-

tions. The RC method, when using BERT, is also able to draw on more powerful

pretrained representations.

Effect of Answer Prior Named Entities (NEs) are a more effective answer prior

than noun phrases (NPs). Equivalent BERT-Base models trained with NEs improve

on average by 8.9 F1 over NPs. Rajpurkar et al. (2016) estimate 52.4% of answers

in SQuAD are NEs, whereas (assuming NEs are a subset of NPs), 84.2% are NPs.

However, we found that there are on average 14 NEs per context compared to 33

NPs, so using NEs in training may help reduce the search space of possible answer

candidates a model must consider.
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Figure 3.2: Lengths (blue, hashed) and longest common sub-sequence with context (red,
solid) for SQuAD questions and various question generation methods.

Effect of Question Length and Lexical Overlap As shown in Figure 3.2, using

sub-clauses for generation leads to shorter questions and shorter common sub-

sequences to the context, which more closely match the distribution of SQuAD

questions. Reducing the length of cloze questions helps the translation components

produce simpler, more precise questions. Using sub-clauses leads to, on average

+4.0 F1 across equivalent sentence-level BERT-Base models.

Effect of Cloze Translation Noise acts as helpful regularisation when comparing

the “identity” cloze translation functions to “noisy cloze”, (+9.8 F1 across equiva-

lent BERT-Base models). UMT question translation is also helpful, leading to an

additional mean improvement of 1.8 F1 on BERT-Base for otherwise equivalent

“noisy cloze” models. The improvement from UMT is most pronounced when the

wh* heuristic is not used, (+4.2 F1 for BERT). However, in general, noisy clozes are

surprisingly effective baselines, which we shall discuss further in Section 3.4.

Effect of RC model BERT-Base is more effective than BiDAF+SA (an architecture

specifically designed for RC). BERT-Large gives a further boost, improving our best

configuration by 6.9 F1.
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Question Generation EM F1

Rule-Based (NE Answers) 28.2 41.5
Ours 38.6 47.8

Ours (filtered for c,a pairs in Rule-Based) 38.5 44.7

Table 3.4: SQuAD development set ablations investigating rule-based system accuracy.

Effect of Rule-based Generation RC models trained on questions generated by the

Rule-based model of Heilman and Smith (2010) do not perform favourably com-

pared to our MT approach. We note that the rule-based system generates questions

from comparatively few c,a pairs, due to its restricted set of rule templates. This

means there is less variety in the rule-based generator’s RC training data. To mea-

sure whether this is significant source of lost accuracy, we remove c,a pairs from

our best-preforming synthetic training set that the rule-based system cannot gen-

erate questions from. Table 3.4 shows that this hurts our model’s performance,

indicating that variety in c,a pairs is important, but it does not fully explain the

difference. Also, whilst on average, question lengths are shorter for the rule-based

model than the UMT model, the distribution of longest common sequences are sim-

ilar, as shown in Figure 3.2, perhaps suggesting that the RB system copies a larger

proportion of its input.

3.3.3 Error Analysis

We find that the BERT RC model predicts answer spans that are not always detected

as named entity mentions (NEs) by the NER tagger, despite being trained with

solely NE answer spans. In fact, when we split SQuAD into questions where the

correct answer is an automatically tagged NE, our model’s performance improves to

64.5 F1, but it still achieves 47.9 F1 on questions which do not have automatically

tagged NE answers (not shown in our tables). We attribute this to the effect of

BERT’s linguistic pretraining allowing it to generalise the semantic role played by

NEs rather than simply learning to mimic the NER system. Indeed, an equivalent

BiDAF+SA model scores 58.9 F1 when the answer is an NE but drops severely to

23.0 F1 when the answer is not an NE.

Figure 3.3 shows the performance of our best RC model for different kinds of ques-
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Figure 3.3: Breakdown of performance for our best RC model on SQuAD for different
question types (left) and different NE answer categories (right)

tion and answer type. The model performs best with “when” questions which tend

to have fewer potential answers to choose between, but struggles with “what” ques-

tions, which have a broader range of answer semantic types, and hence more plau-

sible answers per context. The model performs well on “TEMPORAL” answers,

consistent with the good performance of “when” questions.

3.3.4 UMT-generated Question Analysis

Whilst our main aim is to optimise for downstream RC performance, it is also in-

structive to examine the output of the unsupervised MT cloze translation system.

Unsupervised MT has been used in monolingual settings in previous work (Sub-

ramanian et al., 2018), but cloze-to-question generation presents new challenges –

The cloze and question domains are asymmetric in terms of word length, and suc-

cessful translation must preserve the answer, not just superficially transfer style.

Figure 3.4 shows that without the wh* heuristic, the UMT model learns to generate

questions with broadly appropriate wh*-words for the answer type, but can struggle,

particularly with PERSON/ORG/NORP and NUMERIC answers.

Table 3.6 shows representative examples from the NE UMT model. The model

generally copies large segments of the input. Also shown in Figure 3.2, generated

questions have, on average, a 9.1 token contiguous sub-sequence from the context,
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corresponding to 56.9% of a generated question copied verbatim, compared to 4.7

tokens (46.1%) for SQuAD questions. This is unsurprising, as the back-translation

training objective is to maximise the reconstruction of inputs, which encourages

conservative translation.

Clearly, there is much room for improvement. However, the model exhibits some

encouraging, non-trivial syntax manipulation and generation, particularly at the

start of questions, such as example 7 in Table 3.6, where word order is signifi-

cantly modified and “sold” is replaced by “buy”. Occasionally, the model halluci-

nates common patterns in the question corpus (example 6). It can struggle with lists

(example 4), and often prefers present tense and the second person (example 5). Fi-

nally, semantic drift is an issue, with generated questions being relatively coherent

but often having different answers to the source cloze questions (example 2).

We can estimate how well-formed the questions generated by various configurations

of our model are using the Well-formed query dataset of Faruqui and Das (2018).

This dataset consists of 25,100 search engine queries, annotated with whether the

query is a well-formed question or not. We train a BERT-Base classifier on the

binary classification task, achieving a test set accuracy of 80.9%. We then use

this classifier to measure what proportion of questions generated by our models

are classified as “well-formed”. Table 3.5 shows the full results. Our best unsu-

pervised question generation configuration generates 68.0% well-formed questions.

The rule-based generator achieves 75.6%, consistent with our observations that the

rule-based model produces more grammatically accurate questions. The classifier

predicts that 92.3% of SQuAD questions are well-formed, suggesting it is able to

detect high quality questions. The well-formedness classifier appears to be sensitive

to fluency and grammar, with the “identity” cloze translation models scoring much

higher than their “noisy cloze” counterparts.

3.3.5 Few-Shot Question Answering

Finally, we consider a few-shot learning task with very limited training examples.

We follow the methodology of Dhingra et al. (2018) and Yang et al. (2017), training
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Cloze
Answer

Cloze
Boundary

Cloze
Translation

Wh*
Heuristic

% Well-
formed

NE Sub-clause UMT ✓ 68.0
NE Sub-clause UMT × 65.3
NE Sentence UMT × 61.3
NP Sentence UMT × 61.9

NE Sub-clause Noisy Cloze ✓ 2.7
NE Sub-clause Noisy Cloze × 2.4
NE Sentence Noisy Cloze × 0.7
NP Sentence Noisy Cloze × 0.8

NE Sub-clause Identity ✓ 30.8
NE Sub-clause Identity × 20.0
NE Sentence Identity × 49.5
NP Sentence Identity × 48.0

Rule-Based (Heilman and Smith, 2010) 75.6

SQuAD Questions (Rajpurkar et al., 2016) 92.3

Table 3.5: Fraction of questions classified as “well-formed” by a classifier trained on the
dataset of Faruqui and Das (2018) for different question generation models.

Figure 3.4: wh*-words generated by the UMT model for cloze questions with different
answer types.

on a small number of training examples and using the development set for early

stopping. We first train a BERT-large RC model using our best configuration from

Section 3.3, then fine-tune with the small amount of SQuAD training data. We

compare to our re-implementation of Dhingra et al. (2018), and training the RC

model directly on the training data without unsupervised RC training.

Figure 3.5 shows performance for progressively larger amounts of training data. As

with Dhingra et al. (2018), our numbers are attained using a development set for
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# Cloze Question Answer Generated Question

1 they joined with [PERSON/NORP/ORG] to defeat him Rom Who did they join with to defeat him?
2 the [NUMERIC] on Orchard Street remained open un-

til 2009
second How much longer did Orchard Street re-

main open until 2009?
3 making it the 3rd largest football ground in [PLACE] Portugal Where is it 3rd the third football ground?
4 he speaks [THING], English, and German Spanish What are we , English , and German?
5 Arriving in the colony early in [TEMPORAL] 1883 When are you in the colony early?
6 The average household size was [NUMERIC] 2.30 How much does a Environmental Engineer-

ing Technician II in Suffolk , CA make?
7 WALA would be sold to the Des Moines-based [PER-

SON/NORP/ORG] for $86 million
Meredith
Corp

Who would buy the WALA Des Moines-
based for $86 million?

Table 3.6: Examples of cloze translations for the UMT model using the wh* heuristic and
sub-clause cloze extraction. More examples can be found in appendix C.5

Figure 3.5: F1 score on the SQuAD development set for progressively larger training
dataset sizes

early stopping that can be larger than the training set. Hence this is not a true reflec-

tion of performance in low data regimes, but does allow for comparative analysis

between models (Perez et al., 2021). We find our approach performs best in very

data poor regimes, and similarly to Dhingra et al. (2018) with modest amounts of

data. We also note BERT-Large itself, without pretraining, is surprisingly efficient,

reaching ∼60 F1 with only 1% of the training set (1000 examples). As a compari-

son, BiDAF+SA needs 20K examples to reach 60 F1 (not shown on figure).

3.4 Reflection
It is worth noting that to attain our best performance, we require the use of both an

NER system, indirectly using labelled data from OntoNotes 5, and a constituency

parser for extracting sub-clauses, trained on the Penn Treebank (Marcus et al.,
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1994).3 Moreover, a language-specific wh* heuristic was used for training the

best-performing MT models. This limits the applicability and flexibility of our

best-performing approach to domains and languages that already enjoy extensive

linguistic resources (named entity recognition and treebank datasets), as well as

requiring some human engineering to define new heuristics.

Nevertheless, our approach is unsupervised from the perspective of requiring no

labelled q,a or q,c pairs let alone any aligned q,c,a triples, which are usually the

most challenging aspects of annotating RC training datasets.

We note the “noisy cloze” system, consisting of very simple rules and noise, per-

forms nearly as well as our more complex best-performing system, despite the lack

of grammaticality and syntax associated with questions. The questions generated by

the noisy cloze system also perform poorly on the “well-formedness” analysis men-

tioned in Section 3.3.4, with only 2.7% classified as well-formed. This intriguing

result suggests natural questions are perhaps less important for SQuAD and strong

question-context word matching is enough to do well, reflecting work from Jia and

Liang (2017) who demonstrate that even supervised models rely on word-matching.

A subsequent evaluation of our model on the ADDSENT adversarial test set of Jia

and Liang (2017) saw scores drop from 56% to 29%, demonstrating its brittleness,

and lending evidence to this interpretation.

Additionally, questions generated by our approach require no multi-hop or multi-

sentence reasoning, but can still be used to achieve non-trivial SQuAD performance.

Indeed, Min et al. (2018) note 90% of SQuAD questions only require a single sen-

tence of context, and Sugawara et al. (2018) find 76% of SQuAD has the answer in

the sentence with highest token overlap to the question.

3.5 Related Work
Here we shall highlight some related work of specific interest to this chapter, which

has not been previously discussed in chapter 2.

3Ontonotes 5: https://catalog.ldc.upenn.edu/LDC2013T19

https://catalog.ldc.upenn.edu/LDC2013T19
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Unsupervised Learning in NLP Most representation learning approaches use la-

tent variables (Hofmann, 1999; Blei et al., 2003), or language model-inspired cri-

teria (Collobert and Weston, 2008; Mikolov et al., 2013; Pennington et al., 2014;

Radford et al., 2018; Devlin et al., 2019). Most relevant to us is unsupervised

MT (Lample et al., 2018b,a,c; Artetxe et al., 2018) and style transfer (Subrama-

nian et al., 2018). We build upon this work, but instead of using models directly,

we use them for training data generators. Yadav et al. (2019) propose an unsu-

pervised alignment method for multiple choice QA. Radford et al. (2019) report

that powerful language models such as GPT2 can be used to perform a number

of unsupervised tasks. Their method, which differs substantially to ours, revolves

around prompting. For example, they demonstrate unsupervised summarisation of

long paragraphs by prompting the Language model to generate a summary with the

prompt “TL;DR”. More relevant to our setting, they demonstrate that this approach

can answer questions from a conversational RC task, CoQA (Reddy et al., 2019) in

an unsupervised manner, using the conversation history of question-answer pairs as

a prompt. Chan et al. (2019) report unsupervised SQuAD results for GPT2 of 17%,

and introduce a model called KERMIT, which improves to 30%, bot well below our

result of 56%. Moreover, both of these models assume SQuAD questions in cloze-

format rather than the harder natural question format we consider. GPT3 (Brown

et al., 2020) builds on prompting formula from Radford et al. (2019), and, by using

an extremely large 175 billion parameter model, demonstrates prompted unsuper-

vised SQuAD results of 59%, outperforming our approach by 4%, but this requires

a model 500× the size. Moreover, the prompting approach is orthogonal to ours,

and recent best practice recommends a combination of prompting and fine-tuning

for low-data settings (Le Scao and Rush, 2021).

Semi-supervised RC Yang et al. (2017) train a RC model and also generate new

questions for greater data efficiency, but require labelled data. Dhingra et al. (2018)

simplify the approach and remove the supervised requirement for question gener-

ation, but do not target unsupervised RC or attempt to generate natural questions.

They also make stronger assumptions about the text used for question generation
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and require Wikipedia summary paragraphs. Wang et al. (2018b) consider semi-

supervised cloze RC, Chen et al. (2018) use semi-supervision to improve seman-

tic parsing on WebQuestions (Berant et al., 2013), and Lei et al. (2016) leverage

semi-supervision for question similarity modelling. Golub et al. (2017) propose a

method to generate domain specific training RC instances for transfer learning be-

tween SQuAD and NewsQA (Yadav et al., 2019). Finally, injecting external knowl-

edge into QA systems could be viewed as semi-supervision, and Weissenborn et al.

(2017a) and Mihaylov and Frank (2018) use ConceptNet (Speer et al., 2016) for

QA tasks. Recently, after the work in this chapter was performed, there has been an

explosion of interest in few-shot learning, inspired by the success of GPT3 (Schick

and Schütze, 2021a,b; Gao et al., 2021b; Le Scao and Rush, 2021; Tam et al., 2021).

Many of these recently developed techniques are orthogonal to our generation ap-

proach, and could be combined to improve the learning curves in Figure 3.5. Fi-

nally, Ram et al. (2021) report impressive recent results on few-shot RC, achieving

similar results as in figure 3.5 with a different mechanism.

Question Generation has been tackled with pipelines of templates and syntax

rules (Rus et al., 2010). Heilman and Smith (2010) augment this with a model

to rank generated questions, and Yao et al. (2012) and Olney et al. (2012) inves-

tigate symbolic approaches. There has been interest in question generation using

supervised neural models, many trained to generate questions from c,a pairs in

SQuAD (Du et al., 2017; Yuan et al., 2017; Zhao et al., 2018; Du and Cardie, 2018;

Hosking and Riedel, 2019). Some of these supervised generators can generate RC

data of sufficient quality they can be used to train RC models equal to those trained

on real RC data (Alberti et al., 2019; Puri et al., 2020). Since the experiments in this

chapter were performed, natural language generation has improved greatly, with the

introduction of powerful generative transformers, such as GPT2/3, T5 (Raffel et al.,

2020) and BART (Lewis et al., 2020a). These could be used to initialize ps→t and

pt→s, which would likely substantially improve generation quality.
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3.6 Conclusion
In this chapter, we set out to explore the span-extraction RC task in the absence of

annotated RC training data. Our motivations were to assess the empirical feasibility

of unsupervised RC, in order to understand to what extent annotated data is really

necessary, and to provide a good starting point for few-shot RC.

We have found that by using a synthetic RC dataset generation approach, leveraging

a careful design and recent advances in UMT, coupled with powerful pretrained RC

models, was sufficient to surpass some simple fully supervised systems. The syn-

thetic dataset generation paradigm is attractive as it allows us to flexibly incorporate

priors into models (such as encouraging named-entity-like answers). It also decou-

ples generation from the RC model training, allowing for advances in RC models to

be leveraged as and when they are developed in future work.

However, we note that whilst our results are encouraging on the relatively simple

SQuAD task, our method relies on access to linguistic resources and heuristics.

Specifically, for our best result, a heuristic was used to help our generator learn the

connection between answer types and wh*-words, and a syntax parser and Named

Entity Recogniser was required. In general, we may not be able to assume these ex-

ist in a language or domain of interest, which limits the applicability of our method.

That said, such resources do tend to be more available than RC annotated data. In

the next chapter, we shall explore a different approach to tackling RC in languages

which do not have in-language RC annotations.

The RC behaviour induced in our model, whilst non-trivial, is brittle. Through thor-

ough analysis, we discovered that our model is able to perform some limited gener-

alisation from its answer prior. However, on the balance of the available evidence,

its behaviour is best described as mostly simple candidate answer location based on

recognising simple patterns from questions, and disambiguation between candidate

answers by a soft, noise-resistant lexical phrase matching. Despite its simplicity,

this behaviour serves as good foundation for further fine-tuning with real annotated

data, as shown by our few-shot results.
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We have limited our study here to RC. This approach could be extended to ODQA,

by adding an unsupervised retriever, such as TF-IDF, and then using the unsuper-

vised RC model to produce a final answer – effectively an unsupervised analogue of

retrieve-and-read models like DrQA (Chen et al., 2017). We shall explore a similar

approach, capable of unsupervised cloze-question ODQA in chapter 5.

Future work in this area should attempt to handle more challenging RC elements

and reduce reliance on linguistic resources and heuristics. Promising innovations in

pretrained natural language generators, which we use in later chapters, would also

likely improve the quality of generated questions. Additional perspectives and re-

marks on future work can be found in the conclusion of this thesis, chapter 9.



Chapter 4

Evaluating Cross-Lingual Reading

Comprehension

In the previous chapter, we saw how RC behaviour could be induced without need-

ing annotated RC training data. One of our stated motivations for doing so was

to assist in domains and languages where there was no RC training data available.

Indeed, RC datasets (and QA dataset in general) in languages other than English

remain scarce, even for relatively high-resource languages (Asai et al., 2018), since

collecting such datasets at sufficient scale and quality is difficult and costly.

In this chapter, we shall more directly address the problem of multi-lingual RC. In

general, we cannot assume there will be any training RC data available in our target

language. We could apply the method from chapter 3 directly in the language of

interest. However, this would have two drawbacks. First, as we highlighted at the

end of chapter 3, this would require access to linguistic resources, such as syntax

parsers and noun chunkers, or NER systems, which might not be available. Second,

this approach would not make use of existing RC training data that may be available,

albeit not in the language of interest.

There is, however, a more fundamental barrier to the development of multilingual

QA systems that must be overcome. Since there we do not have any annotated

RC data in most languages, including evaluation data, we cannot even measure
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progress on multilingual QA. Given recent progress in cross-lingual tasks such as

document classification (Lewis et al., 2004; Klementiev et al., 2012; Schwenk and

Li, 2018), semantic role labelling (Akbik et al., 2015) and NLI (Conneau et al.,

2018), we argue that whilst multilingual RC training data might be useful but not

strictly necessary, multilingual evaluation data is a must-have.

Recognising this need, several cross-lingual RC datasets have recently been assem-

bled (Asai et al., 2018; Liu et al., 2019a). However, these generally cover only

a small number of languages, combine data from different authors and annotation

protocols, lack parallel instances, or explore less practically useful settings or tasks.

Highly parallel data is particularly attractive, as it enables fairer comparison across

languages, requires fewer source language annotations, and allows for additional

evaluation setups at no extra annotation cost. A purpose-built evaluation bench-

mark dataset covering a range of diverse languages, and following the popular span-

extractive RC paradigm on a practically useful domain would be a powerful testbed

for cross-lingual RC. In this chapter, we construct such a dataset, which we refer to

as MLQA, in order to evaluate and accelerate progress on multilingual RC.

Bigger Picture As mentioned above, this chapter builds on the low data themes

from the first chapter, but focuses on a more practical, less artificial setting. The

focus is still on RC, whereas ultimately, we want to tackle the more ODQA task

– see the “bigger picture” paragraph in the introduction of chapter 3 for additional

commentary. Following the this chapter, Chapter 5 will continue to examine how to

perform QA without annotated data, but will shift the focus to ODQA. This chapter

primarily revolves around the challenges, and techniques and solutions to creating

datasets to measure multilingual transfer in QA. The theme of test-time measure-

ment of QA behaviours will also be key features of chapters 5 and 7, where the

focus is not on training models, but analysing what kinds of behaviours models ex-

hibit. The human-annotation procedure used in this chapter will inspire a similar

human-labour saving technique for annotation in chapter 7, which will also use a

retrieval-like technique to select instances for human annotation. Additional com-

mentary on the connections between this chapter and the wider body of work in
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the thesis can be found in the conclusion of this chapter (sec. 4.7) and the thesis

conclusion, chapter 9.

The material in this chapter first appeared in:

Patrick Lewis, Barlas Oguz, Ruty Rinott, Sebastian Riedel, and Holger

Schwenk. 2020b. MLQA: Evaluating Cross-lingual Extractive Question An-

swering. In Proceedings of the 58th Annual Meeting of the Association for

Computational Linguistics (ACL)

Individual Contributions: The initial idea was proposed by the thesis author. The develop-

ment of the dataset construction methodology was a close collaboration between the thesis

author and a co-author. Prepossessing, English QA annotation, analysis and the majority of

the writing of the original paper was carried out by the thesis author. Parallel sentence min-

ing, RC Modelling experiments and non-English annotation were performed by co-authors.

4.1 Overview
MLQA is multi-way parallel across seven languages: English, Arabic, German,

Vietnamese, Spanish, Simplified Chinese and Hindi. To construct MLQA, we first

automatically identify sentences from Wikipedia articles which have the same or

similar meaning in multiple languages using a multilingual dense retrieval tech-

nique. We extract the paragraphs that contain such sentences, then crowd-source

questions on the English paragraphs, making sure the answer is in the aligned sen-

tence. This makes it possible to answer the question in all languages in the vast

majority of cases.1 Professional translators then translate the questions into all tar-

get languages, and annotate answer spans in the aligned contexts.

The resulting dataset has between 5,000 and 6,000 instances in each language, and

more than 12,000 in English. Each instance has an aligned equivalent in multi-

ple other languages (always including English), the majority being 4-way aligned.

Combined, there are over 46,000 RC annotations.

1The automatically aligned sentences occasionally differ in a named entity or information con-
tent. In these rare cases, there may be no answer for some languages.



4.2. The MLQA Dataset 102

We define two tasks to assess multilingual RC performance on MLQA. The first,

cross-lingual transfer (XLT), requires models trained in one language (in our case

English) to transfer to test data in a different language, without using any anno-

tated RC data in the test language. The second, generalised cross-lingual trans-

fer (G-XLT) requires models to answer questions where the question and context

languages are different, e.g. questions in Hindi and contexts in Arabic, a setting

only possible since MLQA is highly parallel.

We evaluate a number of modelling approaches for these tasks. We develop machine

translation baselines which map answer spans based on the attention matrices from

a translation model, and use multilingual BERT (M-BERT, Devlin et al., 2019) and

XLM (Conneau and Lample, 2019) as zero-shot approaches. We use English for

our training language and adopt SQuAD as a training dataset. We find that XLM

transfers best, but all models lag well behind training-language performance.

In summary, we make the following contributions: i) We develop a novel annotation

pipeline to construct large multilingual, highly parallel RC datasets ii) We release

MLQA, a 7-language evaluation dataset for RC iii) We define two cross-lingual RC

tasks, including a novel generalised cross-lingual RC task iv) We evaluate a series

of modelling approaches, and find that cross-lingual representation models such as

XLM surpass translation-based approaches.

4.2 The MLQA Dataset
First, we state our desired properties for a cross-lingual RC evaluation dataset. We

then describe our annotation protocol, which seeks to fulfil these desiderata.

Parallel The dataset should consist of instances that are parallel across many lan-

guages. First, this makes comparison of RC accuracy as a function of transfer lan-

guage fairer. Second, additional evaluation setups become possible, as questions in

one language can be applied to documents in another. Finally, annotation cost is

also reduced as more instances can be shared between languages.
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QA 
Annotation

En Wikipedia Article

De Wikipedia Article

Eclipses only occur 
[…]. Solar eclipses 
occur at new moon, 
when the Moon 
is between the Sun 
and Earth. In 
contrast […] Earth.

Bei einer
Sonnenfinsternis, 
die nur bei Neumond
auftreten kann, 
steht der 
Mond zwischen Sonne
und Erde. Eine 
Sonnenfinsternis
[…] Erdoberfläche.

Earth's Moon is an astronomical
body that orbits the planet and acts as its 
only permanent natural satellite. The Moon is, 
after Jupiter's satellite Io, the second-
densest satellite in the Solar System among those 
whose densities are known.

Eclipses only occur when the Sun, Earth, and Moon 
are all in a straight line (termed "syzygy"). Solar 
eclipses occur at new moon, when the Moon 
is between the Sun and Earth. In contrast, lunar 
eclipses occur at full moon, when Earth is between 
the Sun and Moon. The Sun is much larger than the 
Moon but it is the vastly greater distance that 
gives it the same apparent size as the much closer 
and much smaller Moon from the perspective of 
Earth.

Because the Moon's orbit around Earth is inclined 
by about 5.145° (5° 9') to the orbit of Earth 
around the Sun, eclipses do not occur at every full 
and new moon. For an eclipse to occur, the Moon 
must be near the intersection of the two orbital 
planes. 

Because the Moon is continuously blocking our view 
of a half-degree-wide circular area of the sky, the 
related phenomenon of occultation occurs when a 
bright star or planet passes behind the Moon      
and is  hidden from view. In this way,             
a solar eclipse is an occultation of the Sun. 

Der Mond (mhd. mâne;[2] lateinisch luna) ist der 
einzige natürliche Satellit der Erde. Sein Name ist
etymologisch verwandt mit Monat und bezieht sich
auf die Periode seines Phasenwechsels. Weil aber
die Trabanten anderer Planeten des Sonnensystems im
übertragenen Sinn meistens ebenfalls als Monde 
bezeichnet werden, spricht man zur Vermeidung von 
Verwechslungen mitunter vom Erdmond.

Weil er sich relativ nahe der Erde befindet, ist er
bisher der einzige fremde Himmelskörper, den 
Menschen betreten haben, und auch der am besten
erforschte. Trotzdem gibt es noch viele
Unklarheiten, etwa in Bezug auf seine Entstehung
und manche Geländeformen. Die jüngere Entwicklung
des Mondes ist jedoch weitgehend geklärt.

Verfinsterungen treten auf, wenn die Himmelskörper
Sonne und Mond mit der Erde auf einer Linie liegen. 
Dazu kommt es nur bei Vollmond oder Neumond und 
wenn der Mond sich dann nahe einem der zwei
Mondknoten befindet.

Bei einer Sonnenfinsternis, die nur bei Neumond
auftreten kann, steht der Mond zwischen Sonne und 
Erde. Eine Sonnenfinsternis kann nur in den 
Gegenden beobachtet werden, die den Kern- oder
Halbschatten des Mondes durchlaufen; diese
Gegenden sind meist lange, aber recht schmale
Streifen auf der Erdoberfläche.

Where is the moon 
located during 
the new moon?

between the 
Sun and the 
Earth

Wo befindet sich
der Mond während
des Neumondes?

Question 
Translation

zwischen
Sonne und 
Erde.

qen

cde

cen

qde

aen

ade

Answer 
Annotation

Extract parallel 
sentence ben 

with surrounding 
context cen

Extract parallel 
sentence bde

with surrounding 
context cde

Figure 4.1: MLQA annotation pipeline. Only one target language is shown for clarity. Left:
We first identify N-way parallel sentences ben,blang 1 . . .blang N−1 in Wikipedia
articles on the same topic, and extract the paragraphs that contain them, cen,
clang 1 . . . clang N−1. Middle: Workers formulate questions qen from cen for which
answer aen is a span within ben. Right: English questions qen are then translated
by professional translators into all languages to obtain qlang 1 . . .qlang N−1. Fi-
nally, the answer is annotated in the target language contexts by professional
translators, such that alang i is a span within blang i.

Natural Documents Building a parallel RC dataset in many languages requires ac-

cess to parallel documents in those languages. Manually translating documents at

sufficient scale entails very large translator workloads, and could result in unnatu-

ral documents, due the phenomenon of “Translationese”: the tendency for manual

translation to introduce artefacts leading to unrepresentative text (Lembersky et al.,

2011; Volansky et al., 2015). Exploiting existing naturally parallel texts is attractive,

providing high-quality documents without requiring manual translation.

Diverse Languages A primary goal of cross-lingual research is to develop systems

that work well in many languages. The dataset should enable quantitative perfor-

mance comparison across languages with different linguistic resources, language

families and scripts.

Textual Domain We require a naturally highly language-parallel textual domain.

It is also desirable to select a textual domain that matches existing RC training

resources, in order to isolate changes in performance due to language transfer.

To satisfy these desiderata, we designed the method described below and illustrated

in Figure 4.1. Wikipedia represents a convenient textual domain, as its size and mul-
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tilinguality enables collection of data in many diverse languages at scale. We choose

English as our source language as it has the largest Wikipedia. We choose six other

languages which exhibit a broad range of linguistic phenomena and have sufficiently

large Wikipedias. Our annotation pipeline consists of three main steps:

1. We automatically extract paragraphs which contain a parallel sentence from

articles on the same topic in each language (left of Figure 4.1).

2. We employ crowd-workers to annotate questions and answer spans on the

English paragraphs (centre of Figure 4.1). Annotators must choose answer

spans within the parallel source sentence. This allows annotation of questions

in the source language with high probability of being answerable in the target

languages, even if the rest of the context paragraphs are different.

3. We employ professional translators to translate the questions and to annotate

answer spans in the target language (right of Figure 4.1).

The following describes each step in the collection pipeline in more detail.

4.2.1 Parallel Sentence Mining

Parallel Sentence mining allows us to leverage naturally written documents and

avoid translation, which would be expensive and result in potentially unnatural doc-

uments. In order for questions to be answerable in every target language, we use

contexts containing an N-way parallel sentence. Our approach is similar to Wiki-

Matrix (Schwenk et al., 2021) which extracts parallel sentences for many language

pairs in Wikipedia, but we limit the search for parallel sentences to documents on

the same article only, and aim for N-way parallel sentences.

To detect parallel sentences we use LASER2 a powerful open-source tool for par-

allel sentence mining employing dense retrieval (Artetxe and Schwenk, 2019a).

LASER uses multilingual sentence embeddings and a distance in the embeddings

space to detect parallel sentences. The reader is referred to Artetxe and Schwenk

2https://github.com/facebookresearch/LASER

https://github.com/facebookresearch/LASER
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de es ar zh vi hi

5.4M 1.1M 83.7k 24.1K 9.2k 1340

Table 4.1: Incremental alignment with English to obtain 7-way aligned sentences.

(2019b) and Artetxe and Schwenk (2019a) for a detailed description.

We begin with the May 2019 Wikipedia dump for all our target languages, which we

preprocess using WikiExtractor (Attardi, 2015), with a number of modifications and

additional cleanup steps to support the idiosyncrasies of each language’s dump. Ad-

ditionally, OpenCC3 is used to convert all Chinese contexts to Simplified Chinese,

as Chinese Wikipedia dumps generally consist of a mixture of simplified and tradi-

tional Chinese text. We then independently align all languages with English, then

intersect these sets of parallel sentences, forming sets of N-way parallel sentences.

As shown in Table 4.1, starting with 5.4M parallel English/German sentences, the

number of N-way parallel sentences quickly decreases N increases, i.e. as more

languages are added. We also found that 7-way parallel sentences lack linguistic

diversity, and often appear in the first sentence or paragraph of articles.

As a compromise between language-parallelism and both the number and diver-

sity of parallel sentences, we use sentences that are 4-way parallel. This yields

385,396 parallel sentences (see Appendix D.1 for exhaustive details) which were

sub-sampled to ensure parallel sentences were evenly distributed in paragraphs. We

ensure that each language combination is equally represented, so that each language

will share many parallel RC instances with every other language. Except for any

rejected instances later in the pipeline, each RC instance will be parallel between

English and three target languages.

4.2.2 English RC Annotation

We use Amazon Mechanical Turk to annotate English RC instances, broadly fol-

lowing the SQuAD methodology (Rajpurkar et al., 2016). We present workers with

an English aligned sentence, ben along with the paragraph that contains it cen. Work-

3https://github.com/BYVoid/OpenCC

https://github.com/BYVoid/OpenCC
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Figure 4.2: English annotation interface (left) and detailed annotations instructions (right)

ers formulate a question qen and highlight the shortest answer span aen that answers

it. aen must be a span within ben to ensure qen will be answerable in the target lan-

guages. We include a “No Question Possible” button when no sensible question

could be asked. Figure 4.2 shows a screenshot of the annotation interface. There

are a number of data input validation features to assist workers, as well as detailed

instructions in a drop-down window.

The first 15 questions from each worker are manually checked, after which, if their

work was satisfactory, their future work is auto-approved. Otherwise, the worker is

contacted with feedback with how to improve, and the process is repeated.
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Once the questions and answers have been annotated, we run another task to re-

annotate English answers. Here, workers are presented with qen and cen, and re-

quested to generate an a′en or to indicate that qen is not answerable. Two additional

answer span annotations are collected for each question. The additional answer

annotations enable us to calculate an inter-annotator agreement (IAA) score. We

calculate the mean token F1 score between the three answer annotations, giving an

IAA score of 82%, comparable to SQuAD, where this IAA measure is 84%.

Rather than provide all three answer annotations as gold answers, we select a single

representative reference answer. In 88% of cases, either two or three of the answers

exactly matched, so the majority answer is selected. In the remaining cases, the

answer with highest F1 overlap with the other two is chosen. This results both in

an accurate answer span, and ensures the English results are comparable to those in

the target languages, where only one answer is annotated per question.

We discard instances where annotators marked the question as unanswerable as

well as instances where over 50% of the question appeared as a sub-sequence of the

aligned sentence, as these are too easy or of low quality. Finally, we reject questions

where the IAA score was very low (< 0.3) removing a small number of low quality

instances. To verify we were not discarding challenging but high quality examples

in this step, a manual analysis of discarded questions was performed. Of these

discarded questions, 38% were poorly specified, 24% did not make sense, 30% had

poor answers, and only 8% were high-quality challenging questions.

4.2.3 Target Language RC Annotation

We use the One Hour Translation platform to source professional translators to

translate the questions from English to the six target languages, and to find an-

swers in the target contexts. We present each translator with the English question

qen, English answer aen, and the context cx (containing aligned sentence bx) in target

language x. The translators are only shown the aligned sentence and the sentence

on each side (where these exist). This increases the chance of the question being

answerable, as in some cases aligned sentences are not perfectly parallel, without
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requiring workers to read the entire context. By providing English answers, we try

to minimise cultural and personal differences in the amount of answer detail.

We sample 2% of the translated questions for additional review by language experts.

Translators that did not meet the quality standards were removed from the transla-

tor pool, and their translations were reallocated. By comparing the distribution of

answer lengths relative to the context to the English distribution, some cases were

found where some annotators selected very long answers, especially for Chinese.

We clarified the instructions with these specific annotators, and send such cases for

re-annotation. We discard instances in target languages where annotators indicate

there is no answer in that language. This means a small number of instances are

no longer 4-way parallel. “No Answer” annotations occurred for 6.6%-21.9% of

instances (Vietnamese and German, respectively).

4.2.4 The Resulting MLQA Dataset

Contexts, questions and answer spans for all the languages are then brought to-

gether to create the final dataset. MLQA consists of 12,738 extractive RC instances

in English and between 5,029 and 6,006 instances in the target languages. 9,019

instances are 4-way parallel, 2,930 are 3-way parallel and 789 2-way parallel. Rep-

resentative examples are shown in Figure 4.3. MLQA is split into development and

test splits, with instance statistics in Tables 4.2a and 4.2b.

Table 4.3 shows the number of Wikipedia articles that feature at least one of their

paragraphs as a context paragraph in MLQA, along with the number of unique

context paragraphs in MLQA. There are 1.9 context paragraphs from each article

on average. This is in contrast to SQuAD, which instead features a small number

of curated articles, but is more densely annotated, with 43 context paragraphs per

article on average. Thus, MLQA covers a broader range of topics than SQuAD.

Figure 4.4 shows the distribution of wh*-words in questions in both MLQA-en and

SQuAD v.1. The distributions are very similar, lending evidence that SQuAD is an

appropriate surrogate training dataset for MLQA.
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والتي تعني "أرض الأنجل". والأنجل كانت واحدة ،Englaland یشتق اسم "إنجلترا" من الكلمة الإنجلیزیة القدیمة
من القبائل الجرمانیة التي استقرت في إنجلترا خلالأوا�� ا����ر ا�����. [...] وقد سماھا العرب قدیما

الإنكتار

The name "England" is derived from the Old English name Englaland [...] The
Angles were one of the Germanic tribes that settled in Great Britain during the
Early Middle Ages. [...]  The Welsh name for the English language is "Saesneg"

Der Name England leitet sich vom altenglischen Wort Engaland [...] Die Angeln
waren ein germanischer Stamm, der das Land im Frühmittelalter besiedelte.
[...] ein Verweis auf die weißen Klippen von Dover.

Tên gọi của Anh trong tiếng Việt bắt nguồn từ tiếng Trung. [...] Người Angle là
một trong những bộ tộc German định cư tại Anh trong Thời đầu Trung Cổ. [...]
dường như nó liên quan tới phong tục gọi người German tại Anh là Angli
Saxones hay Anh - Sachsen.

During what time period did the Angles migrate to Great Britain?

في أي حقبة زمنیة ھاجر الأنجل إلى بریطانیا العظمى؟

Während welcher Zeitperiode migrierten die Angeln nach
Großbritannien?

Trong khoảng thời gian nào người Angles di cư đến Anh?

Powell Library [...] 

The campus is in the residential area of Westwood [...] The campus is informally
divided into North Campus and South Campus, which are both on the eastern
half of the university's land. [...] The campus includes [...] a mix of architectural
styles.

El campus incluye [...] una mezcla de estilos arquitectónicos. Informalmente
está dividido en Campus Norte y Campus Sur, ambos localizados en la parte
este del terreno que posee la universidad. [...] El Campus Sur está enfocado en
la ciencias físicas [...] y el Centro Médico Ronald Reagan de UCLA.

 1919       ,      [...] 
          ,    

       [...]     ,  , ,
,  ,           

What are the names given to the campuses on the east side of the
land the university sits on?

¿Cuáles son los nombres dados a los campus ubicados en el lado
este del recinto donde se encuentra la universidad?

   ,            ?

En

De

Ar

Vi Hi

Zh

Es

En

(a) (b)
(a) MLQA example parallel for En-De-Ar-Vi.

والتي تعني "أرض الأنجل". والأنجل كانت واحدة ،Englaland یشتق اسم "إنجلترا" من الكلمة الإنجلیزیة القدیمة
من القبائل الجرمانیة التي استقرت في إنجلترا خلالأوا�� ا����ر ا�����. [...] وقد سماھا العرب قدیما

الإنكتار

The name "England" is derived from the Old English name Englaland [...] The
Angles were one of the Germanic tribes that settled in Great Britain during the
Early Middle Ages. [...]  The Welsh name for the English language is "Saesneg"

Der Name England leitet sich vom altenglischen Wort Engaland [...] Die Angeln
waren ein germanischer Stamm, der das Land im Frühmittelalter besiedelte.
[...] ein Verweis auf die weißen Klippen von Dover.

Tên gọi của Anh trong tiếng Việt bắt nguồn từ tiếng Trung. [...] Người Angle là
một trong những bộ tộc German định cư tại Anh trong Thời đầu Trung Cổ. [...]
dường như nó liên quan tới phong tục gọi người German tại Anh là Angli
Saxones hay Anh - Sachsen.

During what time period did the Angles migrate to Great Britain?

في أي حقبة زمنیة ھاجر الأنجل إلى بریطانیا العظمى؟

Während welcher Zeitperiode migrierten die Angeln nach
Großbritannien?

Trong khoảng thời gian nào người Angles di cư đến Anh?

Powell Library [...] 

The campus is in the residential area of Westwood [...] The campus is informally
divided into North Campus and South Campus, which are both on the eastern
half of the university's land. [...] The campus includes [...] a mix of architectural
styles.

El campus incluye [...] una mezcla de estilos arquitectónicos. Informalmente
está dividido en Campus Norte y Campus Sur, ambos localizados en la parte
este del terreno que posee la universidad. [...] El Campus Sur está enfocado en
la ciencias físicas [...] y el Centro Médico Ronald Reagan de UCLA.

 1919       ,      [...] 
          ,    

       [...]     ,  , ,
,  ,           

What are the names given to the campuses on the east side of the
land the university sits on?

¿Cuáles son los nombres dados a los campus ubicados en el lado
este del recinto donde se encuentra la universidad?

   ,            ?

En

De

Ar

Vi Hi

Zh

Es

En

(a) (b)
(b) MLQA example parallel for En-Es-Zh-Hi

Figure 4.3: MLQA examples. Answers shown as highlighted spans in contexts. Contexts
shortened for clarity with “[...]”.

fold en de es ar zh vi hi

dev 1148 512 500 517 504 511 507
test 11590 4517 5253 5335 5137 5495 4918

(a) No. instances per language

de es ar zh vi hi

de 5029
es 1972 5753
ar 1856 2139 5852
zh 1811 2108 2100 5641
vi 1857 2207 2210 2127 6006
hi 1593 1910 2017 2124 2124 5425

(b) No. parallel instances per language pair.

Table 4.2: Number of instances in MLQA. (All instances parallel with English)

Table 4.4 shows statistics about the lengths of contexts, questions and answers in

MLQA. Vietnamese has the longest contexts on average and German are shortest,

but all languages have a substantial tail of long contexts. Other than Chinese, an-

swers are on average 3 to 4 tokens.

To investigate the distribution of topics in MLQA, a random sample of 500 articles

were manually analysed. Articles cover a broad range of topics across different

cultures, world regions and disciplines. 23% are about people, 19% on physical

places, 13% on cultural topics, 12% on science/engineering, 9% on organisations,

6% on events and 18% on other topics.
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en de es ar zh vi hi

# Articles 5530 2806 2762 2627 2673 2682 2255
# Contexts 10894 4509 5215 5085 4989 5246 4524
# Instances 12738 5029 5753 5852 5641 6006 5425

Table 4.3: Number of Wikipedia articles with a context in MLQA.
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Figure 4.4: Question type distribution (by wh*-word) in MLQA-en and SQuAD V1.1. The
distributions are strikingly similar

4.3 Cross-lingual RC Experiments
We introduce two tasks to assess cross-lingual RC performance with MLQA. The

first, cross-lingual transfer (XLT), requires training a model with (cx,qx,ax) training

data in language x, in our case English. Development data in language x is used

for tuning. At test time, the model must extract answer ay in language y given

context cy and question qy. The second task, generalised cross-lingual transfer (G-

XLT), is trained in the same way, but at test time the model must extract cz from

cz in language z given qy in language y. This evaluation setup is possible because

MLQA is highly parallel, allowing us to swap qz for qy for parallel instances without

changing the question’s meaning.

As MLQA only has development and test data, we adopt SQuAD v1 as training

data. We use MLQA-en as development data, and focus on zero-shot evaluation,

where no training or development data is available in target languages. Models

were trained with the SQuAD-v1 training method from Devlin et al. (2019) and
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en de es ar zh* vi hi

Context 157.5 102.2 103.4 116.8 222.9 195.1 141.5
Question 8.4 7.7 8.6 7.6 14.3 10.6 9.3
Answer 3.1 3.2 4.1 3.4 8.2 4.5 3.6

Table 4.4: Mean Sequence lengths (tokens) in MLQA. *calculated with mixed segmenta-
tion (section 4.3.1)

implemented in Pytext (Aly et al., 2018).

We experiment with 3 different modelling techniques to assess current cross-lingual

RC capabilities, detailed below:

Translate-Train We translate instances from the SQuAD training set into the tar-

get language using machine-translation.4 Before translating, we enclose answers in

quotes, as in Lee et al. (2018b). This makes it easy to extract answers from trans-

lated contexts, and encourages the translation model to map answers into single

spans. We discard instances where this fails (∼5%). This dataset is then used to

train an RC model in the target language.

Translate-Test In this setting, the context and question in the target language is

translated into English at test time, and we then use our best English RC model

to produce an answer in the translated paragraph. We then need to translate this

English answer back into the target language. For all languages other than Hindi,5

we use attention scores, Ai j, from the translation model to map the answer back

to the original language. Rather than aligning spans by attention argmax, as by

Asai et al. (2018), we find it beneficial to use the span in the original context which

4We use Facebook’s production translation models from July 2019.
5Alignments were unavailable for Hindi-English due to production model limitations. Instead

we translate English answers using another round of translation. Back-translated answers may not
map back to spans in the original context, so this Translate-Test performs poorly.
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maximises F1 score with the English span:

RC = ∑i∈aen, j∈ao Ai j
/

∑i∈aen Ai∗

PR = ∑i∈aen, j∈ao Ai j
/

∑ j∈ao A∗ j

F1 = 2∗RC∗PR
/

RC+PR

answer = argmax
ao

F1(ao)

(4.1)

where aen and ao are the English and target language answer spans respectively,

Ai∗ = ∑ j Ai j and A∗ j = ∑i A∗ j.

Cross-lingual Representation Models Here, we experiment with language-

agnostic pretrained language models. These models are trained with background

corpora from many languages, and have been shown to learn language-agnostic

behaviour, i.e. these models can be finetuned in one language for a classification

task such as NLI, and still perform this task in a different language (Conneau and

Lample, 2019). We produce zero-shot transfer results from M-BERT (cased, 104

languages) (Devlin et al., 2019) and XLM (MLM + TLM, 15 languages) (Conneau

and Lample, 2019). Models are trained with the SQuAD training set and evaluated

directly on the MLQA test set in the target language. Model selection is also con-

strained to be strictly zero-shot, using only English development. As a result, we

end up with a single model that we test for all 7 languages.

4.3.1 Evaluation Metrics for Cross-lingual RC

As detailed in Section 2.6 in chapter 2, most RC tasks use EM and mean F1 metrics.

We introduce the following modifications for fairer multilingual evaluation: Instead

of stripping only ASCII punctuation when normalising answers, we strip all uni-

code characters with a punctuation General Category.6 In addition, we strip stand-

alone articles for languages which have them (English, Spanish, German and Viet-

namese). We use whitespace tokenisation for all MLQA languages other than Chi-

nese, where we use the mixed segmentation method from Cui et al. (2019b).

6http://www.unicode.org/reports/tr44/tr44-4.html#General Category Values

http://www.unicode.org/reports/tr44/tr44-4.html#General_Category_Values
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F1 / EM en es de ar hi vi zh

BERT-L 80.2 / 67.4 - - - - - -
M-BERT 77.7 / 65.2 64.3 / 46.6 57.9 / 44.3 45.7 / 29.8 43.8 / 29.7 57.1 / 38.6 57.5 / 37.3
XLM 74.9 / 62.4 68.0 / 49.8 62.2 / 47.6 54.8 / 36.3 48.8 / 27.3 61.4 / 41.8 61.1 / 39.6

Trans-test BERT-L 65.4 / 44.0 57.9 / 41.8 33.6 / 20.4 23.8 / 18.9∗ 58.2 / 33.2 44.2 / 20.3
Trans-train M-BERT 53.9 / 37.4 62.0 / 47.5 51.8 / 33.2 55.0 / 40.0 62.0 / 43.1 61.4 / 39.5
Trans-train XLM 65.2 / 47.8 61.4 / 46.7 54.0 / 34.4 50.7 / 33.4 59.3 / 39.4 59.8 / 37.9

Table 4.5: F1 and EM scores on the MLQA test set for the cross-lingual transfer task (XLT)

4.4 Results

4.4.1 XLT Results

Table 4.5 shows the results on the XLT task. XLM performs best overall, transfer-

ring best in Spanish, German and Arabic, and competitively with translate-train+M-

BERT for Vietnamese and Chinese. XLM is however, weaker in English. Even for

XLM, there is a 39.8% drop in mean EM score (20.9% F1) over the English BERT-

large baseline, showing significant room for improvement. All models generally

struggle on Arabic and Hindi.

A manual analysis of cases where XLM failed to exactly match the gold answer was

carried out for all languages. 39% of these errors were completely wrong answers,

5% were annotation errors and 7% were acceptable answers with no overlap with

the gold answer. The remaining 49% come from answers that partially overlap with

the gold span. The variation of errors across languages was small.

To examine how performance varies across languages for different types of ques-

tion, we stratify MLQA with three criteria — By English wh*-word, by answer

Named-Entity type and by English Question Difficulty

By wh*-word: First, we split by the English wh*-word in the question. This result-

ing change in F1 score compared to the overall F1 score is shown in Figure 4.5a,

and discussed briefly in the main text. The English wh* word provides a clue as to

the type of answer the questioner is expecting, and thus acts as a way of classifying

RC instances into types. We see that the model finds “when” questions consistently

easier than average across the languages, but the pattern is less consistent for other
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(a) F1 stratified by English wh* word (b) F1 stratified by named entity types in answers

Figure 4.5: F1 Scores stratified by different criteria relative to overal F1 Scores for XLM

question types. “Where” questions seem challenging for Spanish, German, Chinese

and Hindi, but this is not true for Arabic or Vietnamese.

By Named-Entity type We create subsets of MLQA by detecting which English

named entities are contained in answer spans using an off-the-shelf named entity

recogniser (Honnibal et al., 2019). The F1 scores relative to overall F1 score are

shown for various Named Entity types in Figure 4.5b. There are some clear trends:

Answer spans that contain named entities are easier to answer than those that do

not (the first two rows) for all the languages, but the difference is most pronounced

for German. Secondly,“Temporal” answer types (DATE and TIME entity labels) are

consistently easier than average for all languages, consistent with the high scores

for “when” questions which we saw above. Again, this result is most pronounced

in German, but is also very strong for Spanish, Hindi, and Vietnamese. Arabic

also performs well for ORG, GPE and LOC answer types, unlike most of the other

languages. Numeric questions (CARDINAL, ORDINAL, PERCENT, QUANTITY and

MONEY types) also seem relatively easy for the model in most languages.

By English Question Difficulty Here, we split MLQA into two subsets, accord-

ing to whether the XLM model got the question completely wrong in English (no

word overlap with the correct answer). We then evaluated the mean F1 score for

each language on the two subsets, with the results shown in Figure 4.6. We see that
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Figure 4.6: XLM F1 score stratified by English difficulty

questions that are “easy” in English also seem to be easier in the target languages,

but the drop in performance for the “hard” subset is not as dramatic as one might

expect. This suggests that not all questions that are hard in English in MLQA are

hard in the target languages. This could be due to the grammar and morphology

of different languages leading to questions being easier or more difficult to answer.

Another factor is that context documents can differ in target languages for questions

the model struggled to answer correctly in English, for example by being shorter,

which may make them easier. Manual inspection suggests that whilst context doc-

uments are often shorter for when the model is correct in the target language, this

effect is not sufficient to explain the difference in performance.

4.4.2 G-XLT Results

Tables 4.6a and 4.6a shows results for XLM and M-BERT on the G-XLT task. XLM

outperforms M-BERT for most language pairs, with a mean G-XLT performance of

53.4 F1 compared to 47.2 F1 (mean of off-diagonal elements of Tables 4.6a and

4.6b). For questions in a given language, XLM performs best when the context

language matches the question, except for Hindi and Arabic. For contexts in a

given language, English questions tend to perform best, apart from for Chinese and

Vietnamese. M-BERT exhibits more of a preference for English than XLM for G-

XLT, and exhibits a bigger performance drop going from XLT to G-XLT (10.5 mean

drop in F1 compared to 8.2).
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c/q en es de ar hi vi zh

en 74.9 65.0 58.5 50.8 43.6 55.7 53.9
es 69.5 68.0 61.7 54.0 49.5 58.1 56.5
de 70.6 67.7 62.2 57.4 49.9 60.1 57.3
ar 60.0 57.8 54.9 54.8 42.4 50.5 43.5
hi 59.6 56.3 50.5 44.4 48.8 48.9 40.2
vi 60.2 59.6 53.2 48.7 40.5 61.4 48.5
zh 52.9 55.8 50.0 40.9 35.4 46.5 61.1

(a) XLM

c/q en es de ar hi vi zh

en 77.7 64.4 62.7 45.7 40.1 52.2 54.2
es 67.4 64.3 58.5 44.1 38.1 48.2 51.1
de 62.8 57.4 57.9 38.8 35.5 44.7 46.3
ar 51.2 45.3 46.4 45.6 32.1 37.3 40.0
hi 51.8 43.2 46.2 36.9 43.8 38.4 40.5
vi 61.4 52.1 51.4 34.4 35.1 57.1 47.1
zh 58.0 49.1 49.6 40.5 36.0 44.6 57.5

(b) M-BERT

Table 4.6: F1 Scores on the G-XLT Task. Columns show question language, rows show
context language.

Model SQuAD SQuAD∗ MLQA-en

BERT-Large 91.0 / 80.8 84.8 / 72.9 80.2 / 67.4
M-BERT 88.5 / 81.2 83.0 / 71.1 77.7 / 65.1
XLM 87.6 / 80.5 82.1 / 69.7 74.9 / 62.4

Table 4.7: English performance comparisons (F1 / EM) to SQuAD using our models. *
uses a single answer annotation.

4.4.3 English Results on SQuAD v1 vs MLQA

The MLQA-en results in Table 4.5 are lower than reported results on SQuAD v1.1

in the literature for equivalent models. However, once SQuAD scores are adjusted

to reflect only having one answer annotation (picked using the same method used

to pick MLQA answers), the discrepancy drops to 5.8% on average (see Table 4.7).

MLQA-en contexts are on average 28% longer than SQuAD’s, and MLQA covers a

much wider set of articles than SQuAD. Minor differences in preprocessing and an-

swer lengths may also contribute (MLQA-en answers are slightly longer, 3.1 tokens

vs 2.9 on average). Question type distributions are very similar in both datasets, as

shown in Figure 4.4.

4.5 Related Work
Here we shall highlight some related work of specific interest to this chapter, which

hasn’t been discussed in previous chapters.

Monolingual RC Data Large, high-quality datasets in languages other than En-

glish are relatively rare. There are several Chinese datasets, e.g. DUReader (He

et al., 2018), CMRC (Cui et al., 2019b) and DRCD (Shao et al., 2018). Recently,
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there have been efforts in a wider array of languages, such as Korean (Lim et al.,

2019), French (d’Hoffschmidt et al., 2020), Arabic (Mozannar et al., 2019), Ger-

man (Möller et al., 2021) and Hebrew (Keren and Levy, 2021).

Cross-lingual QA Modelling Cross-lingual information retrieval has been stud-

ied for decades, driven by the CLEF workshops in the early-to-mid 2000s (Peters,

2001). Cross-lingual QA for RDF data for a number of years, such as the QALD-3

and 5 tracks (Cimiano et al., 2013; Unger et al., 2015), with more recent work from

Zimina et al. (2018). The modern RC format has a comparatively short history.

Lee et al. (2018b) explore an approach to use English RC data from SQuAD to im-

prove RC performance in Korean using an in-language seed dataset. Kumar et al.

(2019) study question generation by leveraging English questions to generate better

Hindi questions, and Lee and Lee (2019) and Cui et al. (2019a) develop modelling

approaches to improve performance on Chinese RC tasks using English resources.

Lee et al. (2019b) and Hsu et al. (2019) explore modelling for zero-shot transfer and

Singh et al. (2019) explore regularising RC models with cross-lingual data.

Cross-lingual RC Data Gupta et al. (2018) release a parallel RC dataset in English

and Hindi, Hardalov et al. (2019) investigate RC transfer from English to Bulgar-

ian, Liu et al. (2019b) release a cloze RC dataset in Chinese and English, and Jing

et al. (2019) released BiPar, built using parallel paragraphs from novels in English

and Chinese. These datasets have a similar spirit to MLQA, but are limited to two

languages. Asai et al. (2018) investigate RC on a manually translated set of 327

SQuAD instances in Japanese and French, and develop a phrase-alignment mod-

elling technique, showing improvements over back-translation. Like us, they build

multi-way parallel RC data, but MLQA has many more instances, covers more lan-

guages and does not require manual document translation. Liu et al. (2019a) explore

a kind of cross-lingual open-domain cloze QA with a dataset built from Wikipedia

“Did you know?” questions, covering nine languages. Unlike MLQA, it is dis-

tantly supervised, the dataset size varies by language, instances are not parallel,

and answer distributions vary by language, making quantitative comparisons across

languages challenging. Finally, in contemporary work, Artetxe et al. (2020) release
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XQuAD, a dataset of 1190 SQuAD instances from 240 paragraphs manually trans-

lated into 10 languages. As shown in Table 4.3, MLQA covers 7 languages, but con-

tains more data per language – over 5k RC pairs from ∼5k paragraphs per language.

MLQA also uses real Wikipedia contexts rather than manual translation.

Aggregated Cross-lingual Benchmarks Recently, following the widespread adop-

tion of projects such as GLUE (Wang et al., 2018a), there have been efforts to com-

pile a suite of high quality multilingual tasks as a unified benchmark system. Two

such projects, XGLUE (Liang et al., 2020) and XTREME (Hu et al., 2020) incor-

porate MLQA as part of their aggregated benchmark.

4.6 Reflection
It is worth discussing the quality of context paragraphs in MLQA. Our parallel

sentence mining approach can source independently written documents in different

languages, but, in practice, articles are often translated from English to the target

languages by volunteers. Thus our method sometimes acts as an efficient mecha-

nism of sourcing existing human translations, rather than sourcing independently

written content on the same topic. The use of machine translation is strongly dis-

couraged by the Wikipedia community,7 but from examining edit histories of arti-

cles in MLQA, machine translation is occasionally used as an article seed, before

being edited and added to by human authors.

Our annotation method restricts answers to come from specified sentences. Despite

being provided with several sentences of context, some annotators may be tempted

to only read the parallel sentence and write questions which only require a single

sentence of context to answer. However, single-sentence context questions are a

known issue in SQuAD annotation in general (Sugawara et al., 2018) suggesting

our method would not result in less challenging questions, supported by scores on

MLQA-en being similar to SQuAD (section 4.4.3).

MLQA is partitioned into development and test splits. As MLQA is parallel, this

7https://en.wikipedia.org/w/index.php?title=Wikipedia:Translation&oldid=
888723630#Avoid machine translations

https://en.wikipedia.org/w/index.php?title=Wikipedia:Translation&oldid=888723630#Avoid_machine_translations
https://en.wikipedia.org/w/index.php?title=Wikipedia:Translation&oldid=888723630#Avoid_machine_translations
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means there is development data for every language. Since MLQA’s test set is

freely available, this was done to reduce the risk of test set over-fitting that may

occur in future, and to establish standard splits. However, in our experiments, we

only make use of the English development data and study strict zero-shot settings.

Other evaluation setups could be envisioned, e.g. by exploiting the target language

development sets for hyper-parameter optimisation or fine-tuning, which could be

fruitful for higher transfer performance, but we leave such “few-shot” experiments

as future work. Other potential areas to explore involve training datasets other than

English, such as CMRC (Cui et al., 2019b), or applying using unsupervised tech-

niques such as those in chapter 3 to assist transfer.

Finally, as we have discussed in chapters 2 and 3, a large body of work suggests RC

models can be over-reliant on word-matching between question and context. G-XLT

represents an interesting test-bed, as simple symbolic matching is less straightfor-

ward when questions and contexts use different languages. However, the drop from

XLT is relatively small (8.2 F1), suggesting word-matching in cross-lingual models

is more nuanced and sub-symbolic than it may initially appear.

4.7 Conclusion
In this chapter, we have introduced MLQA, a highly parallel multilingual RC bench-

mark on seven diverse languages. We evaluated several different modelling ap-

proaches on two cross-lingual understanding tasks on MLQA. We found that pre-

trained cross-lingual models, specifically XLM, outperformed translation-based ap-

proaches, and represent a promising way forward for multilingual QA systems. Not

only does this approach lead to the highest accuracy, it also avoids the need for slow

and potentially error-prone machine translation, and only a single model checkpoint

is required at test time to support many languages.

Since the release of MLQA, some new resources and datasets have become avail-

able. The most notable is TyDiQA (Clark et al., 2020), which addresses some of the

limitations of MLQA, such as not having unanswerable questions, inheriting known
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weaknesses from the SQuAD annotation protocol and using (modest amounts) of

manual translation. This dataset does have a couple of different drawbacks relative

to our work, such as not having parallel instances, and resultant issues with cross-

language comparisons. These two datasets thus complement each other well.

Cross-lingual technology has also improved since the experiments in this chapter

were carried out. Cross-lingual pretrained models continue to be the dominant

method of choice for multi-lingual QA. Models such as XLMR (Conneau et al.,

2020) improve the average XLT F1 score from 61.6 to 71.6, and the largest mT5

model (Xue et al., 2021) increase it even further to 76.0. Remarkably, mT5’s aver-

age F1 score across all the languages is higher than XLM’s English F1 score. Whilst

there is still a gap between training language and testing languages, it continues to

shrink quickly as cross-lingual models improve.

In Part I, we have explored how to tackle RC tasks in zero-shot settings – first, in

chapter 3 with no training RC data at all, and then, in chapter 4 in a more practically

relevant setting where we have no in-language training RC data, but are otherwise

unrestricted. However, the pure RC task, where we are provided with a short para-

graph of text guaranteed to contain the answer to a question, is a relatively rare

circumstance in practical settings. Moreover, this task does not place significant de-

mands on our ability to leverage knowledge from larger knowledge sources. Thus,

in the next chapter (and the remainder of the thesis) we shall shift to considering

open-domain QA, dropping the assumption that an oracle context document will

be provided for us. That being said, our findings from chapters 3 and 4 will re-

main relevant, especially for retrieve-and-read ODQA architectures, which utilise

RC components as part of their design.
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Retrieval-augmented Pretrained

Models

“The only thing that you absolutely have to know, is the location of the library.”

Albert Einstein
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Chapter 5

How Context Affects Language

Models’ Factual Predictions

In section 2.3.2.4 in chapter 2, we introduced the concept of parametric knowledge.

This is the phenomenon that large, pretrained language models capture relational

knowledge expressed in their pretraining corpus. Part II of this thesis will focus

on parametric knowledge – how it compares to, and can be complemented by, more

traditional non-parametric knowledge access mechanisms, such as retrieval. For the

remainder of this thesis, we shall shift away from the RC problems we studied in

Part I, and use open-domain QA tasks (section 2.4.2) as a test-bed for investigating

models which can better leverage knowledge. However, RC mechanisms will still

remain relevant, as a key component of retrieve-and-read ODQA models (section

2.4.2.1), which feature prominently throughout this chapter, and the next.

Relational parametric knowledge can be “retrieved” in a sense, by presenting mod-

els with cloze questions (Section 2.1.3), and treating the filled-in blank as an answer.

The LAMA probe (Petroni et al., 2019) is a collection of relational-knowledge open-

domain cloze questions, which we shall use to measure the extent of factual rela-

tional knowledge in models. Petroni et al. (2019) have used LAMA to demonstrate

that models like BERT store substantial relational knowledge. However, consider-

ing the millions of documents and facts in a knowledge source like Wikipedia, it
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is unlikely that a model with a finite and practical number of parameters will be

able to reliably store and retrieve factual knowledge with sufficient precision to be

useful. Even if this is possible, such a model may have to be extremely large, and

editing and updating the knowledge of the model will be challenging. One potential

way forward is to augment the model with retrieved passages from an IR system,

turning it into a kind of retrieve-and-read model.

In this chapter, we shall study the purely unsupervised case of augmenting a lan-

guage model with retrieved contexts at test time, to assess whether (unsupervised)

parametric-knowledge systems can benefit from the addition of (unsupervised) non-

parametric knowledge. We demonstrate that augmenting pretrained language mod-

els with retrieved contexts dramatically improves unsupervised cloze QA on the

LAMA probe, reaching performance on par with DRQA, a popular supervised

ODQA baseline. In addition to being unsupervised, using a pretrained language

model like BERT instead of a trained RC model has several other potential ad-

vantages. Since BERT is not a span-extractive model, it is able to utilise contexts

that contain relevant information but do not contain the answer span directly (al-

though we do not find strong quantitative evidence or this in this chapter) . More

importantly, we find that, via the next-sentence prediction objective, BERT is able

to ignore noisy or irrelevant contexts.

In summary, we shall present the following core findings in this chapter:

• Augmenting queries with relevant contexts dramatically improves BERT and

RoBERTa performance on LAMA (Petroni et al., 2019), demonstrating the

unsupervised RC capabilities of pretrained language models

• Fetching contexts using an off-the-shelf information retriever is sufficient for

BERT to match the performance of an early supervised ODQA baseline

• BERT’s next-sentence prediction pretraining strategy is a highly effective un-

supervised mechanism in dealing with noisy and irrelevant contexts
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Bigger Picture This chapter shifts focus from RC, which was the main task stud-

ied in the last two chapters, towards open-domain QA. This chapter does however,

build thematically on the previous chapters by continuing the focus on the low-

data regimes, and we will take a deep look at how to get models to produce more

factually accurate predictions without training data. This change in task is accom-

panied by a requirement that models store and access much more knowledge than

is required in RC, where the knowledge required to answer questions is provided

to the model in the form of a context document. Thus, how knowledge is stored,

represented and retrieved becomes of great importance. This chapter introduces the

concept of comparing parametric and non-parametric knowledge, which we will

place a great emphasis on, and use as a lens for understanding QA, in all of the

remaining chapters. Chapter 6 will directly build on the retrieval-augmented mod-

els we propose and study in this chapter, and chapters 7 and 8 will examine how

different knowledge modelling architecture choices can lead to different levels of

generalization and QA behaviour. Additional commentary on the connections be-

tween this chapter and the wider body of work in the thesis can be found in the

conclusion of this chapter (sec. 5.5) and the thesis conclusion, chapter 9.

The material in this chapter first appeared in:

Fabio Petroni, Patrick Lewis, Aleksandra Piktus, Tim Rockäschel, Yuxiang

Wu, Alexander H. Miller, and Sebastian Riedel. 2020. How Context Affects

Language Models’ Factual Predictions. In Proceedings of the 2nd Annual

Automated Knowledge Base Construction Conference (AKBC)

Individual Contributions: The initial observation of contexts improving results on LAMA was

made by the lead author. The experimental design was a close collaboration between the lead

author and the thesis author, with additional input from co-authors. The oracle and retrieval

experiments were performed by co-authors. The thesis author proposed and implemented the

adversarial context and NSP experiments. The original paper was written as a collaboration

between co-authors, with thesis author writing substantial portions.
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Corpus Relation
Statistics

# Facts # Relations

Google-RE

birth-place 2937 1
birth-date 1825 1
death-place 765 1

Total 5527 3

T-REx

1-1 937 2
N-1 20006 23
N-M 13096 16

Total 34039 41

SQuAD Total 305 -

Table 5.1: Statistics for the LAMA data.

5.1 Methodology
Given a cloze question q with an answer a, we assess how the predictions from a

language model change when we augment the input with contexts c. In this section,

we describe the datasets we use to source (q,a) pairs, as well as various methods of

selecting context documents c.

5.1.1 Datasets

We use the LAMA probe in our experiments in this chapter (Petroni et al., 2019).

LAMA is a collection of cloze questions about real world relational facts, which all

have a single token answer. Each question is accompanied by snippets of text from

Wikipedia that are likely to express the corresponding fact.

Although there are a number of cloze QA datasets we could choose (some are listed

later in Section 5.3) we use LAMA because: (1) the nature of the LAMA data is

aligned with our relational knowledge focus (i.e., given a subject and a relation pre-

dict the object) and (2) each data point is aligned by construction with relevant con-

text passages, which will provide a useful “oracle” context evaluation setting.

LAMA is comprised of data from several sources. For the experiments in this chap-

ter, we use the Google-RE, T-REx and SQuAD subsets, which are briefly described

below. Further details on LAMA can be found in Petroni et al. (2019).
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Google-RE The Google-RE1 dataset contains ∼60K facts manually extracted from

Wikipedia. It covers five relations but LAMA only considers three of them, namely

“PLACE OF BIRTH”, “DATE OF BIRTH” and “PLACE OF DEATH”. The other two are

excluded since they contain mainly multi-tokens objects which are not supported in

LAMA evaluation. A manually defined cloze question template is used for each

relation, e.g., “[S] was born in the city of [O]” for “PLACE OF BIRTH”. Each

fact in the Google-RE dataset is, by design, manually aligned to a short passage in

Wikipedia which supports it.

T-REx The T-REx dataset is a subset of Wikidata triples. It is derived from the T-

REx dataset (Elsahar et al., 2018) and is much larger than Google-RE with a broader

set of relations. LAMA consider 41 Wikidata relations and subsamples to at most

1000 facts per relation. As with Google-RE, a manual template for each relation is

used to map triples to cloze questions. In contrast to Google-RE , T-REx facts were

automatically aligned to Wikipedia, and there is some potential for noise, although

Elsahar et al. (2018) report the error rate to be a very low 2.2%

SQuAD LAMA also contains a carefully selected subset of 305 context-insensitive

questions from the SQuAD development set with single token answers. Each ques-

tion is manually mapped to a cloze-style question, e.g. by mapping “Who developed

the theory of relativity?” as “The theory of relativity was developed by [Mask]”.

Each question-answer pair is accompanied by the passage in Wikipedia it was ini-

tially annotated on. As noted in section 2.5.2.2, SQuAD is not appropriate for

ODQA tasks in general. However, the questions selected for LAMA were specifi-

cally chosen for context-insensitivity, and manually verified to be appropriate.

Detailed statistics for the LAMA data considered in this chapter are reported in

Table 5.1. For the ROBERTA results, we trim the LAMA dataset (by about 15%)

such that all answers are single tokens in the model’s vocabulary, so BERT and

ROBERTA numbers in this chapter should not be directly compared as they con-

sider slightly different subsets of the data.

1https://code.google.com/archive/p/relation-extraction-corpus

https://code.google.com/archive/p/ relation-extraction-corpus
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5.1.2 Baselines

We consider DRQA (Chen et al., 2017), a popular baseline for ODQA. DrQA is a

retrieve-and-read model, (see section 2.4.2.1) consisting of a TF-IDF retriever over

Wikipedia text and an RC reader trained on SQuAD v1. In order to apply DRQA

to the LAMA probe, we take inspiration from Levy et al. (2017) and map each

cloze template to a natural question template (e.g., “X was born in [Mask]” to

“Where was X born?”). We constrain the span predictions of DRQA to single-

token answers, for fairer comparison to the mask-filling language models.

5.1.3 Language Models

We consider BERT-LARGE-CASED (Devlin et al., 2019) and ROBERTA-

LARGE (Liu et al., 2019c) in our experiments. Both BERT and ROBERTA have

been trained on corpora that include Wikipedia. While BERT uses two pretraining

strategies, Mask Language Modelling (MLM) and Next Sentence Prediction (NSP),

ROBERTA considers only the MLM task. We compute a probability distribution

over the unified vocabulary of Petroni et al. (2019) for the masked token for each

cloze question, take the argmax token as the prediction, and report EM scores.

5.1.4 Contexts

We augment the cloze questions with different types of contextual information. We

explicitly distinguish cloze question q and context c in the input according to the

model. For BERT, we use different segment embeddings, index 0 for q and 1 for

c, and insert the separator token (i.e., [SEP]) in between. For ROBERTA, which is

not equipped with segment embeddings, we use the end of sentence (EOS) token to

separate q and c.

Oracle Contexts We provide an oracle-based (ORA) context in order to assess the

capability of LMs to exploit context that we know is relevant to the entity in the

question. Concretely, we use the gold Wikipedia passage which accompanies each

example in the LAMA probe, truncated to at most five sentences. This context often

contains the true answer and always contains helpful related information.
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LAMA Relation
automatically-
sourced context

B B-ADV DRQA B-RET B-ORA

Google-RE

birth-place 16.1 14.5 48.6 43.5 70.6
birth-date 1.4 1.4 42.9 43.1 98.1
death-place 14.0 12.6 38.4 35.8 65.1

Total 10.5 9.5 43.3 40.8 78.0

T-REx

1-1 74.5 74.5 55.2 81.2 91.1
N-1 34.2 33.8 30.4 47.5 67.3
N-M 24.3 23.6 15.4 32.0 52.4

Total 32.3 31.8 25.8 43.1 62.6

SQuAD 17.4 17.4 37.5 34.3 61.7

weighted average 30.5 30.0 27.2 42.8 63.6

Table 5.2: EM scores for the DRQA baseline, BERT-large on context-free questions (B), on
adversarial (B-ADV), retrieved (B-RET) and oracle (B-ORA) context-augmented
questions. The unsupervised B-RET is competitive with the supervised DRQA
and much stronger than the context-free baseline. We weight the average per
number of relations. Pairwise sign tests show statistically significant differences
(p < 1e-5) between: B-RET and all other results; B-ORA and all other results.

Sourcing Relevant Contexts For ODQA, known-to-be-relevant context documents

are not available and must be automatically sourced. Here, we use DRQA’s TF-

IDF retriever, which indexes Wikipedia. We could aggregate or marginalise results

over many retrieved passages, but for simplicity, we just select the most relevant

paragraph as context for the model. In chapter 6 we shall develop a model which

aggregates over several retrieved passages.

Adversarial Contexts We provide an uninformative context in order to test the abil-

ity of the model to ignore irrelevant context that is not useful for answering the

query. Here, for a given (q,a) pair, we generate an adversarial context cadv by

randomly sampling an oracle context from other questions q′ which have the same

relation type but a different answer a′. This results in a context document that refers

to a different subject entity but contains a distracting and semantically plausible

answer a′. Table 5.5 shows some examples of adversarial contexts.
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Figure 5.1: Percentage of times the answer appears in the top-k retrieved paragraphs.

EM score ans. in ctx. B-ADV B-RET B-ORA

better
present 0.9 14.0 32.6
absent 2.4 3.2 1.4

Total 3.3 17.2 34.0

worse
present 0.6 2.4 3.5
absent 3.1 3.9 0.1

Total 3.7 6.3 3.6

# better relations 11 34 39

Table 5.3: Percentage of predictions which improve (degrade) when the context is provided
for T-REx, grouped by the presence (absence) of the answer in the provided
context. In general, B-RET and B-ORA score higher than the context-free model.

5.2 Results
The main results of our analysis are summarised in Table 5.2. It shows the LAMA

probe EM score for the DRQA baseline and BERT-large augmented with different

kinds of contextual information. Augmenting cloze questions with relevant context

dramatically improves the performance of BERT: B-ORA obtains ×7.4 improve-

ment on Google-RE, ×1.9 on T-REx and ×3.5 on SQuAD with respect context-

free questions (B). This clearly demonstrates BERT’s ability to successfully exploit

provided context, effectively acting as an RC model. No fine-tuning is required to

trigger such behaviour. Also, since there is no restriction for an answer to be a span

from the context, this BERT setup is an abstractive RC model, capable of generating

any answer in its vocabulary, unlike those seen so far in chapters 3-4.
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5.2.1 Retrieval Augmentation

When we rely on TF-IDF-retrieved context (B-RET), BERT still performs much bet-

ter than without augmentation. Overall, B-RET results are comparable with DRQA

on Google-RE and SQuAD and much higher on T-REx. This is an intriguing,

promising result given that B-RET, unlike DRQA, did not receive any supervision

for this task. Pairwise sign tests across relations show that the improvements for B-

RET and B-ORA are indeed statistically significant (p<1e-5). This result highlights

that whilst BERT has impressive parametric knowledge capabilities, combining it

with retrieved non-parametric knowledge has clear benefits.

Figure 5.1 shows the recall of the TF-IDF retriever, and shows that the answer is not

always present in the top retrieved passage. This analysis indicates that aggregating

predictions from many contexts would likely improve results further. Table 5.3 re-

ports a detailed analysis of whether the answer is present in retrieved contexts and

how that affects the model’s predictions. We observe that most of the gain of B-

RET comes from cases in which the context contained the answer. However, there

are also cases where the context does not explicitly mention the answer but BERT

is still able to utilise the related context to help select the correct answer (3.2%).

Note that an extractive approach (such as DRQA) would have provided an incorrect

answer (or no answer) for those cases. We shall take inspiration from this flexi-

ble answer generation in chapter 6, as well as incorporating a passage aggregation

strategy. This being said, there are also cases where the model gets worse when the

augmenting context document does not contain the answer. In fact, there are slightly

more cases of the model moving from a correct answer to an incorrect answer than

moving from a correct answer to an incorrect answer when the augmenting docu-

ment doesn’t contain the answer (3.9 vs 3.2% of cases). Thus, whilst this model

has the ability to answer more questions correctly in theory, due to its open answer

vocabulary, empirically there isn’t strong evidence that this is happening effectively

on the LAMA probe. We shall find evidence in chapter 6 of instance of this idea

working well.
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(% Next Sentence) B-ADV B-RET B-ORA

Google-RE 10.4 88.9 98.4
T-REx 14.0 89.7 94.5
SQuAD 11.9 93.1 99.3

Table 5.4: % examples classified as ‘next sentences’ using BERT’s NSP head. The low
number of ‘next sentence’ classifications for B-ADV shows BERT recognises
adversarial contexts as unrelated and thus limit their influence on predictions.

5.2.2 Adversarial Robustness

The B-ADV column in Table 5.2 shows the LAMA EM results for BERT for ad-

versarial contexts. BERT is robust, dropping only 0.5 EM on average from the

non-augmented baseline. However, as shown in Figure 5.2, this strong performance

only occurs when the context and question are processed as two segments using

BERT’s separator tokens. Using only one segment (that is, simply concatenating

the input query and the context) leads to a severe drop of 12.4 EM for BERT (a

40.7% relative drop in performance). We also observe a consistent improvement in

performance from one segment to two for retrieved and oracle contexts.

One possible reason for this phenomenon resides in the Next Sentence Prediction

(NSP) classifier of BERT, learned with self-supervision during pretraining by train-

ing the model to distinguish contiguous (i.e., “next sentence” pairs) from randomly

sampled blocks of text. We hypothesise that the MLM task might be influenced

by the NSP’s output. Thus, BERT might learn to not condition across segments

for masked token prediction if the NSP score is low, thereby implicitly detecting

irrelevant and noisy contexts. A result that seems in line with this hypothesis is that

ROBERTA, which does not use NSP, is more vulnerable to adversarial contexts and

the difference between one and two sentences (for ROBERTA separated by the EOS

token) is much smaller.

To further investigate this hypothesis, we calculate the number of (c,q) pairs clas-

sified by BERT as “next sentence” pairs in LAMA for the different context strate-

gies. These results are shown in Table 5.4. We see that for B-RET and B-ORA,

NSP classifications are high, suggesting BERT finds the segments to be contigu-
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Figure 5.2: For each type of context, we report the change in EM score relative to no con-
text, averaging results across relations. For each model we consider a concate-
nation of question and context as well as separating the two using separator
tokens. Separation dramatically improves both model’s ability to ignore poor
context and improves BERT’s performance in the presence of good context.
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Figure 5.3: NSP Probabilities vs the change in LM probability using contexts from a) the
adversary b) retrieval. The more relevance that BERT assigns the context, the
greater the increase in likelihood of the correct answer. This is exactly what
we would want if we had trained a relevance system ourselves, yet this instead
emerges naturally from BERT’s NSP pretraining.

ous, and hence useful to condition upon. However, for B-ADV, very few (c,q) pairs

are classified as “next sentences”, suggesting BERT may condition on them less.

Additional evidence for our NSP adversarial robustness hypothesis is given in Fig-

ure 5.3. Here we compute the absolute difference in probability that BERT places
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on the correct answer upon including context ||PLM(a|q)−PLM(a|q+ c)| |1 , and plot

it against NSP probability PNSP(q,c). We see that for adversarial and retrieved con-

texts, increasing NSP probability is associated with greater change in true answer

probability upon including context.2

Table 5.5 shows three examples for the generation of BERT-large for adversarial,

retrieved and oracle context-augmented questions.

5.3 Related Work
Here we briefly review some related work on language model probing, which has

not already covered in previous chapters. A variety of “probes” have been devel-

oped to analyse the syntactic structures in pretrained language models, such as syn-

tax trees (Marvin and Linzen, 2018; Hewitt and Manning, 2019; Vig and Belinkov,

2019), negative polarity items (Warstadt and Bowman, 2019; Warstadt et al., 2019),

semantic fragments (Richardson et al., 2020), function words (Kim et al., 2019),

and many other linguistic phenomena (Tenney et al., 2019a,b). To measure the fac-

tual knowledge present in these pretrained language models, Petroni et al. (2019)

propose the LAMA benchmark which tests the models with cloze questions con-

structed from knowledge triples, which we have used in this chapter. Jiang et al.

(2020a) later extends LAMA by automatically discovering better prompts, Kassner

and Schütze (2019) add negated statements, Poerner et al. (2019) filter out easy-

to-guess queries, and Richardson and Sabharwal (2020); Talmor et al. (2020); Bisk

et al. (2020) develop further probes for textual reasoning.

5.4 Reflection
Re-examining NSP The Next Sentence Prediction task has been extensively ex-

plored (Devlin et al., 2019; Liu et al., 2019c; Yang et al., 2019b; Lan et al., 2020)

with the apparent consensus that it is not helpful for downstream fine-tuning accu-

racy. In contrast, our findings suggest that it is important for robust exploitation

of retrieved context for unsupervised tasks. Basing design decisions on a limited
2Each context method has different NSP statistics, but the trend is consistent – higher NSP scores

co-occur with greater changes in correct answer probability
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Query Predictions

[P101] ALLAN SANDAGE WORKS IN THE FIELD OF . engineering [-3.1]
A

D
V

q [SEP] According to Gould, classical Darwinism encompasses three
essential core commitments: Agency, the unit of selection, which for
Charles Darwin was the organism, upon which natural ... [0.0]

psychology [-2.8]
economics [-3.4]
anthropology [-3.5]

R
E

T

q [SEP] In 1922 John Charles Duncan published the first three variable
stars ever detected in an external galaxy, variables 1, 2, and 3, in the
Triangulum Galaxy (M33). These were followed up by Edwin ... [1.0]

astronomy [-0.0]
physics [-5.5]
observation [-7.3]

O
R

A

q [SEP] He currently works at the Institute of Astronomy in Cam-
bridge; he was the Institute’s first director.Educated at the University
of Cambridge, in 1962 he published research with Olin Eggen ... [1.0]

astronomy [-0.0]
physics [-4.0]
galaxies [-5.5]

[P279] INTERLEUKIN 6 IS A SUBCLASS OF . proteins [-0.2]

A
D

V

q [SEP]First built in 1893 by Chinese residents of Nagasaki with the
support of the Qing Dynasty government, the shrine was designed to
serve as a place of worship and learning for the Chinese ... [0.0]

proteins [-0.2]
protein [-3.1]
DNA [-3.7]

R
E

T

q [SEP]In particular, the increase in levels of IL-6 (interleukin 6), a
myokine, can reach up to one hundred times that of resting levels.
Depending on volume, intensity, and other training factors ... [1.0]

insulin [-1.9]
IL [-2.1]
proteins [-2.4]

O
R

A

q [SEP]It is a cardiac hypertrophic factor of 21.5 kDa and a protein
member of the IL-6 cytokine family. This protein heterodimerizes
with interleukin 6 signal transducer to form the type II ... [1.0]

proteins [-0.7]
protein [-1.5]
insulin [-2.4]

[P413] GIACOMO TEDESCO PLAYS IN POSITION . center [-2.2]

A
D

V

q [SEP]On July 31, 2009 he was traded from the Tigers to the Seattle
Mariners along with fellow pitcher Luke French for veteran pitcher
Jarrod Washburn. On July 31, 2009 he was traded from ... [0.03]

center [-1.5]
centre [-2.4]
forward [-2.6]

R
E

T

q [SEP]Giovanni Tedesco has two brothers who are also football play-
ers, Salvatore (formerly of Perugia and Lucchese) and Giacomo, who
is playing for Reggina. [1.0]

midfielder [-1.2]
forward [-1.8]
midfield [-2.3]

O
R

A

q [SEP]Giacomo Tedesco (born Feb 1, 1976 in Palermo) is a former
Italian football (soccer) midfielder and football manager. Giacomo
Tedesco started his professional career... [1.0]

midfielder [-0.7]
forward [-2.2]
defender [-2.4]

Table 5.5: Examples of generation for BERT-large. We report the top three tokens predicted
with the associated log probability (in square brackets) for adversarial (ADV),
retrieved (RET) and oracle (ORA) context-augmented questions. NSP probability
(in square brackets) reported at the end of each statement.

set of downstream tasks when designing general-purpose pretrained models may

well us lead to less flexible models. As a community, we should continue to strive

for greater diversity in our criteria and possible use-cases for assessing such mod-

els (Talmor et al., 2020).

Practical Takeaways Section 5.2 shows that BERT has a very different behaviour

when inputs are processed with one or two segments. Practitioners should thus en-
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sure that they thoroughly ablate segmentation options. The consistent improvement

upon including retrieved context also suggests that it may be possible to get perfor-

mance boosts in many other tasks by the incorporation of retrieved documents, even

when such documents are not strictly required for the task. This will form the focus

of chapter 6.

Limitations and Comparison with DRQA We demonstrate that BERT with re-

trieved context and no fine-tuning performs on par with DRQA on the LAMA

probe, but it is worth discussing this comparison further. Firstly, it is encourag-

ing that an unsupervised system performs just as well as a system that requires

significant supervision such as DRQA. We further note that LMs are abstractive

models, whereas DRQA is extractive, confined to returning answers that are spans

of retrieved context. However, it is worth stating that LAMA only requires single

token answers. Generating an arbitrarily long sequence of contiguous tokens from

bidirectional LMs like BERT and ROBERTA is not trivial, but extractive QA mod-

els handle such cases by considering spans of text of varying lengths. Pretrained

Seq2seq models alleviate this issue, and we shall employ them for multi-token an-

swering on more standard ODQA benchmarks in chapter 6. Finally, whilst we have

chosen DRQA as our baseline to compare to recent work, more sophisticated su-

pervised ODQA models exist that outperform it on a variety of ODQA tasks. More-

over, the LAMA probe is not a traditional ODQA dataset, only covers quite specific

relational knowledge, and does not feature a few key aspects that standard ODQA

datasets capture, such as having natural questions. Thus, whilst the result here is

promising, we cannot yet claim that unsupervised ODQA models are a competitive

alternative to modern ODQA models in mainstream ODQA.

5.5 Conclusion
In this chapter, we demonstrated a simple technique to greatly improve factual un-

supervised cloze QA by providing context documents as additional inputs. We used

oracle documents to establish an upper bound to this improvement, and found that

using an off-the-shelf retriever is sufficient to achieve performance on par with a
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supervised ODQA model. We also investigated how brittle models’ factual predic-

tions were to noisy and irrelevant context documents, and found that BERT, when

featurised appropriately, is very robust. Finally, we provided evidence that this ro-

bustness stems from the Next Sentence Prediction pretraining task.

We interpret these results as evidence that retrieval-augmented language models are

a powerful method of building knowledge-intensive systems, and that combining

parametric and non-parametric knowledge is a promising direction for ODQA sys-

tems. That said, we also noted a number of limitations of our modelling set-up

here. In particular, the retrieval-augmented systems we developed in this chapter

are restricted to single-token answers, only consider a single passage of context,

and rely on term-based retrieval to surface useful passages, which, as we saw in

figure 5.1 is only partially successful. Moreover, we note that these results were ob-

tained on the LAMA probe, using cloze questions, rather than on the more standard

natural question-based ODQA datasets. In the next chapter, we shall address these

issues, and shift from unsupervised probing of knowledge, towards investigating

supervised settings.



Chapter 6

Retrieval-Augmented Generation for

Knowledge-Intensive NLP

In the previous chapter, we explored how to combine parametric and non-parametric

knowledge using the mechanism of retrieval-augmentation, demonstrating its effi-

cacy on a knowledge-probing task. Such hybrids also have a range of additional

benefits: their knowledge can be directly revised and expanded, and accessed

knowledge can be inspected and interpreted. In this chapter, we shall develop

retrieval-augmented modelling ideas further.

Retrieve-and-read setups have been exploited for many years in supervised ODQA

setups. REALM (Guu et al., 2020) and ORQA (Lee et al., 2019a) are two re-

cent models that combine pretrained models (Devlin et al., 2019) with a differ-

entiable retriever, and show promising results for ODQA. These models exploit

their non-parametric knowledge well. However, their ability to apply their para-

metric knowledge is limited, since they rely on the span-extractive RC modelling

paradigm, constraining them to only produce answers that appear as spans in re-

trieved documents. This also restricts the task formats they can be applied on. On

the other hand, large pretrained sequence-to-sequence (seq2seq) models have re-

cently demonstrated promising performance across a swathe of NLP tasks. A key

distinguishing feature of these models is their flexibility, being simple to apply to
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essentially any NLP problem. However, when applied naively, they are limited to

only using parametric knowledge, which, as we have established in chapter 5, is

limiting when the task demands precise control over knowledge.

In this chapter, we shall develop a model class that enables us to bring jointly learn-

able hybrid parametric and non-parametric memory to this modern “workhorse of

NLP”, i.e. seq2seq models. We shall also broaden our focus beyond simple span-

like ODQA in this chapter, and take advantage of the free-form generation capabil-

ities of our formulation to tackle more generalised knowledge-intensive NLP tasks

(which we defined in section 2.7.3).

Bigger Picture In this chapter, we continue our exploration of ODQA, and how to

best represent, store and use knowledge, which we started in the previous chap-

ter. We do, however make a conceptual shift from the first three chapters of this

thesis. We shall, for the remainder of this thesis, assume access to a training set

of question-answer pairs for the task at hand, in contrast to the previous chapters,

which were primarily focused on low-to-no in-domain training data regimes. We

do this since our stated aims in the introduction were to understand and improve

a number of phenomena in QA modelling, beyond solely the issue data-hungry

models. We identified knowledge representation, complexity and inflexibility and

slow, expensive inference to be key issues to be improved. This chapter focuses

heavily on contributions in terms of knowledge, flexible models and proposes less

lossy pipeline models. The following chapters will further contextualise the QA

behaviours exhibited by the models we propose in this chapter, and propose an al-

ternative way of storing knowledge, and chapter 8 uses a retrieval-augmented model

with a very similar architecture and learning algorithm to that proposed in this chap-

ter. Despite no longer focusing on low data regimes, we note that the findings and

techniques from in the first chapters of this thesis should be applicable in combi-

nation with the research presented in study in the following chapters. Additional

commentary on the connections between this chapter and the wider body of work

in the thesis can be found in the conclusion of this chapter (sec. 6.8) and the thesis

conclusion, chapter 9.
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The material in this chapter first appeared in:

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir

Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih,

Tim Rocktäschel, Sebastian Riedel, and Douwe Kiela. 2020. Retrieval-

Augmented Generation for Knowledge-Intensive NLP Tasks. In Advances

in Neural Information Processing Systems (NeurIPS)

Individual Contributions: The initial idea was proposed by a co-author after a discussion

between the thesis author and a number of co-authors. The RAG-Token formulation was pro-

posed and implemented as a close collaboration between the thesis author and a co-author.

The RAG-Sequence formulation was proposed and implemented by a co-author. The study

design, distributed implementation, and all experiments were performed by the thesis author,

with the exception of FEVER, which were performed by a co-author. The code was adapted

for open-sourcing by a co-author. The original article was written as a close collaboration

between several co-authors, with the thesis author writing and editing the majority.

6.1 Overview
We endow pretrained, parametric-memory seq2seq models with a non-parametric

memory through a general-purpose fine-tuning approach which we shall refer to as

retrieval-augmented generation (RAG). We build RAG models where the paramet-

ric memory is a pretrained seq2seq transformer, and the non-parametric memory

is a dense vector index of Wikipedia, accessed with a pretrained dense retriever

(introduced in section 2.3.2.2). We combine these components in a probabilistic

model, which is fine-tuned end-to-end (Figure 6.1). The retriever, based on Dense

Passage Retriever (DPR, Karpukhin et al., 2020) provides latent documents con-

ditioned on the input, and the seq2seq model (BART, Lewis et al., 2020a) then

conditions on these latent documents together with the input to generate the out-

put. We marginalise the latent documents with a top-K approximation, either on

a per-output basis (assuming the same document is responsible for all tokens) or

a per-token basis (where different documents are responsible for different tokens).
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Like T5 (Raffel et al., 2020) or BART, RAG can be fine-tuned on any seq2seq task,

whereby both the generator and retriever are jointly learned.

There has been extensive previous work proposing architectures to enrich sys-

tems with non-parametric memory, which are trained from scratch for specific

tasks, e.g. memory networks (Weston et al., 2015; Sukhbaatar et al., 2015), stack-

augmented networks (Joulin and Mikolov, 2015) and memory layers (Lample et al.,

2019). In contrast, in this chapter, we explore a setting where both parametric and

non-parametric memory components are pretrained and pre-loaded with extensive

knowledge. Crucially, by using pretrained knowledge-access mechanisms, the abil-

ity to access knowledge is present without additional training.

Our results re-enforce and build on those from chapter 5, highlighting the benefits of

combining parametric and non-parametric memory with generation. In particular,

we show the efficacy of this approach for supervised knowledge-intensive tasks –

tasks that humans could not reasonably be expected to perform without access to an

external knowledge source. On four popular ODQA datasets, RAG models strongly

outperform both specially pretrained (parametric-memory-only) closed-book QA

models (introduced in section 2.4.2.2), and comparable extractive retrieve-and-read

(mostly non-parametric-memory) models. For knowledge-intensive free-form gen-

eration, we experiment with MSMARCO’s NLG task (Bajaj et al., 2016) and Jeop-

ardy question generation, and we find that our models generate responses that are

more factual, specific, and diverse than a BART baseline. For FEVER (Thorne

et al., 2018) fact verification, RAG achieves results within 4.3% of state-of-the-art

pipeline models, which use strong retrieval supervision and specialised architec-

tures. Finally, we demonstrate that the non-parametric memory can be replaced to

update the models’ knowledge as the world changes.

6.2 Methods
We explore RAG models, which use the input sequence x to retrieve text documents

c and use them as additional context when generating the target sequence y. As
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Figure 6.1: RAG models combine a pretrained retriever (Query Encoder + Document In-
dex) with a pretrained seq2seq model (Generator) which are fine-tuned end-to-
end. For query x, we use Maximum Inner Product Search to find the top-K doc-
uments c. For final prediction y, we treat c as a latent variable and marginalise
over seq2seq predictions given different documents.

shown in Figure 6.1, RAG models leverage two components: (i) a retriever pη(c|x)
with parameters η that returns (top-K truncated) distributions over text passages

given a query x and (ii) a generator pθ (yi|x,c,y1:i−1) parametrized by θ that gener-

ates the next token based on a context of the previous i−1 tokens y1:i−1, the original

input x and a retrieved passage c.

To train the retriever and generator end-to-end, we treat the retrieved document as a

latent variable. We propose two models that marginalise over the latent documents

in different ways to produce a distribution over generated text. In one approach,

RAG-Sequence, documents are marginalised out for complete generated target se-

quences. The second, RAG-Token, marginalises out the documents for every gener-

ated token. In the following, we formally introduce both models and then describe

the pη and pθ components, as well as the training and decoding procedure.

6.2.1 RAG Model Formulations

RAG-Sequence Model The RAG-Sequence model uses the same retrieved doc-

ument to generate the complete sequence before marginalisation. Technically, it

treats the retrieved document as a single latent variable that is marginalised to get

the seq2seq probability p(y|x) via a top-K approximation. Concretely, the top-K

documents are retrieved using the retriever, and the generator produces the output
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sequence probability for each document, which are then marginalised,

pRAG-Sequence(y|x) ≈ ∑
c∈top-k(p(·|x))

pη(c|x)pθ (y|x,c) = ∑
c∈top-k(p(·|x))

pη(c|x)
N

∏
i

pθ (yi|x,c,y1:i−1)

RAG-Token Model In the RAG-Token model we can draw a different latent docu-

ment for each target token and marginalise accordingly. This allows the generator

to choose content from several documents when producing an answer. Concretely,

the top K documents are retrieved using the retriever, then the generator produces a

distribution for the next output token for each document, before marginalising, and

repeating the process for the next output token. Formally, we define:

pRAG-Token(y|x) ≈
N

∏
i

∑
c∈top-k(p(·|x))

pη(c|x)pθ (yi|x,ci,y1:i−1)

Finally, we note that RAG can be used for sequence classification tasks by consid-

ering the target class as a sequence of length one, in which case RAG-Sequence and

RAG-Token become equivalent.

6.2.2 Retriever: DPR

The retrieval component pη(c|x) is initialised from DPR (Karpukhin et al., 2020).

DPR is a typical dense retrieve. A detailed description was given in section 2.3.2.2.

To briefly recap, DPR uses a bi-encoder architecture:

pη(c|x) ∝ exp
(

d(c)⊤q(x)
)

d(c) = BERTd(z), q(x) = BERTq(x)

where d(c) and q(x) are dense representations of a document and a question pro-

duced by a BERTBASE document encoder and query encoder respectively. Calculat-

ing top-k(pη(·|x)), the list of k documents c with highest prior probability pη(c|x),
is a Maximum Inner Product Search (MIPS) problem, approximately soluble in sub-

linear time (Johnson et al., 2019). We use a pretrained bi-encoder to initialise our

retriever and build the document index. This retriever was trained to retrieve doc-

uments which contain answers to questions in TriviaQA (TQA) and Natural Ques-
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tions (NQ). We refer to the document index as the non-parametric memory.

6.2.3 Generator: BART

The generator component pθ (yi|x,c,y1:i−1) could be modelled using any encoder-

decoder model. We use BART-large (Lewis et al., 2020a), a pretrained seq2seq

transformer (Vaswani et al., 2017). To combine the input x with the retrieved content

c when generating from BART, we simply concatenate them. BART was pretrained

using a denoising objective and a variety of different noising functions. As we

have discussed several times, large pretrained de-noising models store substantial

knowledge in its parameters, and we shall refer to BART’s generator parameters θ

as the parametric memory for the remainder of this chapter.

6.2.4 Training

We jointly train the retriever and generator components without any direct super-

vision on what document should be retrieved. Given a fine-tuning training corpus

of J input/output pairs D = {(x j,y j)}J
j=1, we minimise the negative marginal log-

likelihood of targets, ∑
J
j − log p(y j|x j) using stochastic gradient descent. Updat-

ing the retriever’s document encoder BERTd during training is costly as it requires

the document index to be periodically updated. REALM, a similar span-extractive

model, requires this during pretraining (Guu et al., 2020). We do not find this step

necessary for strong performance, and keep the document encoder (and index) fixed,

only updating the query encoder BERTq and the BART generator.

6.2.5 Decoding

At test time, RAG-Sequence and RAG-Token require different ways to approximate

argmaxy p(y|x).

RAG-Token RAG-Token can be seen as a standard, auto-regressive seq2seq gener-

ator with transition probability:

p′θ (yi|x,y1:i−1) = ∑
c∈top-k(p(·|x))

pη(ci|x)pθ (yi|x,ci,y1:i−1)

To decode, we can plug p′
θ
(yi|x,y1:i−1) into a standard beam search decoder.
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RAG-Sequence For RAG-Sequence, p(y|x) does not break into a conventional per-

token likelihood, hence we cannot solve it with simple beam search. Instead, we

run beam search for each of the top-k documents, scoring each hypothesis using

pθ (yi|x,c,y1:i−1). This yields a set of hypotheses Y , some of which may not have

appeared in the beams of all documents. To estimate the marginal probability of a

hypothesis y , we run an additional generator forward pass for each document c for

which y did not already appear in the beam, then multiply each generator probability

with pη(c|x) and sum to obtain the marginal. We refer to this decoding procedure as

“Thorough Decoding”. For longer outputs, |Y| can become large, requiring many

forward passes. For more efficient decoding, we make a further approximation

that pθ (y|x,ci) ≈ 0 if y was not generated during beam search from (x,ci). This

avoids the need to run additional forward passes once the candidate set Y has been

generated. We refer to this decoding procedure as “Fast Decoding”.

6.3 Experiments
We experiment with RAG in a wide range of knowledge-intensive tasks, namely

standard ODQA tasks, abstractive ODQA, Jeopardy question generation and fact

checking. Additional results using RAG for dialogue tasks, entity linking and slot

filling can be found in Petroni et al. (2021). For all experiments, we use a single

Wikipedia dump for our non-parametric knowledge source, which was described

in detail in section 2.5.1. Each article is split into disjoint 100-word documents, to

make a total of 21M documents. We build a single MIPS index using FAISS (John-

son et al., 2019) with a Hierarchical Navigable Small World approximation for fast

retrieval (Malkov and Yashunin, 2020). During training, we retrieve the top k doc-

uments for each query. We consider k ∈ {5,10} for training and set k for test time

using dev data. In following, we describe each task in more detail.

6.3.1 Open-Domain Question Answering

Text-based ODQA is the key focus of Parts II and III, and is a prototypical

knowledge-intensive NLP task (section 2.7.3). We treat questions and answers

as input-output text pairs (x,y) and train RAG by directly minimising the nega-
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tive log-likelihood of answers. We compare RAG to the popular extractive QA

paradigm (Chen et al., 2017; Clark and Gardner, 2018; Lee et al., 2019a; Karpukhin

et al., 2020), where answers are extracted spans from retrieved documents, rely-

ing primarily on non-parametric knowledge. In particular, we shall compare the

retriever-and-read extractive QA model from Karpukhin et al. (2020). This model

also uses DPR to retrieve documents, but uses an span-extractive RC model. This

model cannot generate answers, only extract, and, as a result, is largely an only-

non-parametric-memory model.

We also compare to Closed-Book QA methods (introduced in section 2.4.2.2). We

compare to the models of Roberts et al. (2020), which, like RAG, generate answers,

but do not use retrieval, instead relying purely on parametric knowledge.

We consider four popular ODQA datasets: NaturalQuestions (NQ), TriviaQA

(TQA), WebQuestions (WQ) and CuratedTREC (CT) – see in section 2.5 for de-

tailed descriptions. As CT and WQ are small, we follow DPR (Karpukhin et al.,

2020) by initialising CT and WQ models with our NQ RAG model.

6.3.2 Abstractive Question Answering

RAG models can go beyond simple extractive QA and answer questions with free-

form, abstractive text generation. To test RAG’s natural language generation (NLG)

in a knowledge-intensive setting, we use the MSMARCO NLG task v2.1 (Bajaj

et al., 2016). The task consists of questions, ten gold passages retrieved from a

search engine for each question, and a full sentence answer written by a crowd-

worker based on the retrieved passages. We only use the questions and answers and

discard the supplied passages, treating MSMARCO as an open-domain abstractive

QA task. MSMARCO does have some questions that cannot be answered in a

way that matches the reference answer without access to the gold passages, such as

“What is the weather in Volcano, CA?” so downstream performance will neces-

sarily be lower without using gold passages.1 We also note that some MSMARCO

questions cannot be answered using Wikipedia alone. Here, RAG can rely on para-

1We estimate the prevalence of such questions to be ∼20%
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metric knowledge to generate reasonable responses. We shall evaluate using the

standard BLEU-1 and ROUGE-L metric used for MSMARCO’s NLG task.

6.3.3 Jeopardy Question Generation

To evaluate RAG’s generation abilities to generate something other than answers,

but still in a knowledge-intensive setting, we study open-domain question genera-

tion. Rather than use questions from standard open-domain QA tasks, which typ-

ically consist of short, simple questions, we propose the more demanding task of

generating Jeopardy questions. Jeopardy is an unusual format that consists of try-

ing to guess an entity from a fact about that entity. For example, “The World Cup”

is the answer to the question “In 1986 Mexico scored as the first country to host

this international sports competition twice.” As Jeopardy questions are precise, fac-

tual statements, generating Jeopardy questions conditioned on their answer entities

constitutes a challenging knowledge-intensive generation task.

We use the splits from SearchQA (Dunn et al., 2017). As this is a new task, we train

a BART model as a baseline. Following recent practice for evaluating question

generation (Zhang and Bansal, 2019), we evaluate using Q-BLEU-1 (Nema and

Khapra, 2018). Q-BLEU is a variant of BLEU with a higher weight for matching

entities, which correlates more strongly with human judgements.

We also perform two human evaluations: one to assess generation factuality, and

one for specificity. We define factuality as whether a statement can be corroborated

by trusted external sources, and specificity as high mutual dependence between the

input and output (Li et al., 2016). We follow best practice and use pairwise compar-

ative evaluation (Li et al., 2019). Evaluators are shown an answer and two generated

questions, one from BART and one from RAG. They are then asked to pick one of

four options: question A is better, question B is better, both are good, or neither is

good. Further human evaluation details can be found in Appendix F.1
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6.3.4 Fact Verification

FEVER (Thorne et al., 2018) is a fact-checking dataset that requires classifying

whether a natural language claim is supported or refuted by Wikipedia, or whether

there is not enough information to decide. The task requires retrieving evidence

from Wikipedia relating to the claim and then reasoning over this evidence to clas-

sify whether the claim is true, false, or unverifiable from Wikipedia alone. FEVER

is a retrieval problem coupled with an challenging entailment reasoning task. It also

provides an appropriate testbed for exploring the RAG models’ ability to handle

classification rather than generation. We map FEVER class labels (supports, re-

futes, or not enough info) to single output tokens and directly train with claim-class

pairs. Crucially, unlike most other approaches to FEVER, we do not use supervision

on retrieved evidence. In many real-world applications, retrieval supervision signals

aren’t available, and models that do not require such supervision will be applicable

to a wider range of tasks. We explore two variants: the standard 3-way classifi-

cation task (supports/refutes/not enough info) and the 2-way (supports/refutes) task

studied in Thorne and Vlachos (2021). In both cases we report label accuracy.

6.4 Implementation Details
We train all RAG models and BART baselines using Fairseq (Ott et al., 2019).

We train with mixed precision floating point arithmetic (Micikevicius et al., 2018),

distributing training across 8 NVIDIA 32GB V100 GPUs, although training and

inference can be accomplished on one GPU. We find that MIPS with FAISS is

sufficiently fast on CPU, so we store document index vectors on CPU, requiring

∼ 36 GB of CPU memory for all of Wikipedia when employing SQ8-quantization.

Further reduction to index size would be straightforward, using approaches such as

Product Quantization (Jégou et al., 2011).

Hyper-parameters are set using development data. For Open-domain QA we report

test numbers using 15 retrieved documents for RAG-Token. For RAG-Sequence,

we report test results using 50 retrieved documents, and we use thorough decoding

since answers are generally short. We use greedy decoding for ODQA as we did not
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Model NQ TQA WQ CT

Closed Book
T5-11B (Roberts et al., 2020) 32.6 42.3 37.2 -
T5-11B+SSM (Roberts et al., 2020) 34.8 51.0 40.8 -

Open Book
REALM (Guu et al., 2020) 40.4 - 40.7 46.8
DPR + RC (Karpukhin et al., 2020) 41.5 56.8 42.4 49.4

RAG
RAG-Token 44.1 55.2 45.5 50.0
RAG-Sequence 44.5 56.8 45.2 52.2

Subsequent State-of-the-Art (Izacard and Grave, 2021b) 51.4 67.3 - -

Table 6.1: ODQA Test EM Scores for closed-book, open-book and RAG. RAG out-
performs only-parametric-memory T5, and the predominately non-parametric-
memory DPR+RC retrieve-and-read. RAG represented the state-of-the-art at
the time these experiments were performed. A current state-of-the-art model,
“Fusion-in-Decoder”, which has a similar philosophy – but different architec-
ture – to RAG, is shown for context.

Model Jeopardy MSMARCO FVR3 FVR2
BLEU-1 QBLEU-1 ROUGE-L BLEU-1 Label Acc.

Representative SotA - - 49.8* 49.9* 76.8 92.2*

BART 15.1 19.7 38.2 41.6 64.0 81.1

RAG-Token 17.3 22.2 40.1 41.5
72.5 89.5

RAG-Sequence 14.7 21.4 40.8 44.2

Table 6.2: Generation and classification Test Scores. MSMARCO SotA is Bi et al. (2020),
FEVER-3 is Zhong et al. (2020) and FEVER-2 is Thorne and Vlachos (2021)
*Uses gold context/evidence. Best model without gold access underlined.

find beam search improved results. For Open-MSMARCO and Jeopardy question

generation, we report test numbers using ten retrieved documents for both RAG-

Token and RAG-Sequence, and we also train a BART-large model as a baseline. We

use a beam size of four, and use the “fast decoding” approach for RAG-Sequence,

as “thorough decoding” did not improve performance.

6.5 Results

6.5.1 Open-Domain Question Answering Results

Table 6.1 shows RAG strongly outperforms the competing closed-book and open-

book approaches available when these experiments were performed. RAG com-

bines the generation flexibility of the “closed-book” (parametric-only) approaches
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and the performance of ”open-book” retrieval-based approaches. Unlike REALM

and T5+SSM, RAG enjoys strong results without expensive, specialised “salient

span masking” pretraining (Guu et al., 2020). It is worth noting that RAG’s retriever

is initialised using DPR’s retriever, which does use retrieval supervision on Natural

Questions and TriviaQA. RAG compares favourably to the DPR+RC ODQA model,

which uses a BERT-based “cross-encoder” to re-rank documents, along with an ex-

tractive reader. RAG demonstrates that neither an explicit re-ranker nor extractive

RC reader model is necessary for strong ODQA performance.

There are several advantages to generating answers even when it is possible to ex-

tract them. Documents with clues about the answer but do not contain the answer

verbatim can still contribute towards a correct answer being generated, which is not

possible with standard extractive approaches, leading to more effective marginali-

sation over documents. Furthermore, RAG can generate correct answers even when

the correct answer is not in any retrieved document, achieving 11.8% accuracy in

such cases for NQ, where an extractive model would score 0%.

6.5.2 Abstractive Question Answering Results

As shown in Table 6.2, RAG-Sequence outperforms BART on Open MSMARCO

NLG by 2.6 BLEU points and 2.6 ROUGE-L points. RAG approaches contempo-

rary state-of-the-art methods, which is remarkable given that (i) those models access

gold passages with specific information required to generate the reference answer,

(ii) many questions are unanswerable without the gold passages, and (iii) not all

questions are answerable from Wikipedia alone. Table 6.3 shows some generated

answers from our models. Qualitatively, we find that RAG models hallucinate less

and generate factually correct text more often than BART. Later, we also show that

RAG generations are more diverse than BART generations (see section 6.5.5).

6.5.3 Jeopardy Question Generation Results

Table 6.2 shows that RAG-Token performs better than RAG-Sequence on Jeopardy

question generation, with both models outperforming BART on Q-BLEU-1. Ta-

ble 6.4 shows human evaluation results, over 452 pairs of generations from BART
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and RAG-Token. Evaluators indicated that BART was more factual than RAG in

only 7.1% of cases, while RAG was more factual in 42.7% of cases, and both RAG

and BART were factual in a further 17% of cases, clearly demonstrating the effec-

tiveness of RAG on the task over a state-of-the-art generator. Evaluators also find

RAG generations to be more specific by a large margin. Table 6.3 shows typical

generations from each model.

Jeopardy questions often contain two separate pieces of information, and RAG-

Token may perform best because it can generate responses that combine content

from several documents. Figure 6.2 shows an example. When generating “Sun”,

the posterior is high for document 2 which mentions “The Sun Also Rises”. Simi-

larly, document 1 dominates the posterior when “A Farewell to Arms” is generated.

Intriguingly, after the first token of each book title is generated, the document pos-

terior flattens. This observation suggests that the generator can complete the titles

without depending on specific documents. In other words, the model’s parametric

knowledge is sufficient to complete the titles.

We find evidence for this hypothesis by feeding the BART-only baseline with the

partial decoding “The Sun. BART completes the generation “The Sun Also Rises” is a

novel by this author of “The Sun Also Rises” indicating the title “The Sun Also Rises”

is stored in BART’s parameters. Similarly, BART will complete the partial decod-

ing “The Sun Also Rises” is a novel by this author of ”A with “The Sun Also Rises” is a novel

by this author of “A Farewell to Arms”. This example shows how parametric and non-

parametric memories work together – the non-parametric component helps guide

generation, drawing out specific knowledge stored in the parametric memory.

6.5.4 Fact Verification Results

Table 6.2 shows our results on FEVER. For 3-way classification, RAG scores are

within 4.3% of state-of-the-art models, which are complex pipeline systems with

domain-specific architectures and substantial engineering, trained using intermedi-

ate retrieval supervision, which RAG does not require. For 2-way classification,

we compare against Thorne and Vlachos (2021), who train RoBERTa (Liu et al.,



6.5. Results 151

Document 1: his works are considered classics of American literature [...] His wartime experi-
ences formed the basis for his novel “A Farewell to Arms”(1929)
Document 2: [...] artists of the 1920s “Lost Generation” expatriate community. His debut
novel “The Sun Also Rises”, was published in 1926.

Document 1: his works are considered classics of American
literature ... His wartime experiences formed the basis for his novel
”A Farewell to Arms” (1929) ...

Document 2: ... artists of the 1920s ”Lost Generation” expatriate
community. His debut novel, ”The Sun Also Rises”, was published
in 1926.
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Figure 6.2: RAG-Token document posterior p(ci|x,yi,y−i) for each generated token for in-
put “Hemingway” for Jeopardy generation with 5 retrieved documents. The
posterior for document 1 is high when generating “A Farewell to Arms” and
for document 2 when generating “The Sun Also Rises”.

Input Model Generation

M
SM

A
R

C
O define

middle ear

BART ?The middle ear is the part of the ear between the middle ear and the nose.
RAG-T The middle ear is the portion of the ear internal to the eardrum.
RAG-S The middle ear includes the tympanic cavity and the three ossicles.

what currency
needed in
scotland

BART The currency needed in Scotland is Pound sterling.
RAG-T Pound is the currency needed in Scotland.
RAG-S The currency needed in Scotland is the pound sterling.

Je
op

ar
dy

Q
-G

en Washington
BART ?This state has the largest number of counties in the U.S.
RAG-T It’s the only U.S. state named for a U.S. president
RAG-S It’s the state where you’ll find Mount Rainier National Park

The Divine
Comedy

BART *This poem by Dante is divided into 3 parts: the Inferno, the Purgatorio & the Purgatorio
RAG-T Dante’s “Inferno” is the first part of this epic poem
RAG-S This 14th century work is divided into 3 sections: “Inferno”, “Purgatorio” & “Paradiso”

Table 6.3: Examples from generation tasks. RAG models generate more specific and fac-
tually accurate responses. ‘?’ indicates factually incorrect responses, * indicates
partially correct responses.

2019c) to classify the claim as true or false given the gold evidence sentence. RAG

achieves an accuracy within 2.7% of this model, despite being supplied with only

the claim and retrieving its own evidence. We also analyse whether documents re-

trieved by RAG correspond to documents annotated as gold evidence in FEVER.

We find that the top retrieved document is from a gold article in 71% of cases, and

a gold article is present in the top 10 retrieved articles in 90% of cases.
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Factuality Specificity

BART better 7.1% 16.8%
RAG better 42.7% 37.4%
Both good 11.7% 11.8%
Both poor 17.7% 6.9%
No majority 20.8% 20.1%

Table 6.4: Human assessments for Jeop-
ardy Question Generation

MSMARCO
Jeopardy
Q-Gen

Gold 89.6% 90.0%
BART 70.7% 32.4%
RAG-Token 77.8% 46.8%
RAG-Seq. 83.5% 53.8%

Table 6.5: Ratio of distinct to total tri-grams
for generation tasks

NQ TQA WQ CT Jeopardy Q-Gen MSMARCO FVR-3 FVR-2
Exact Match B-1 QB-1 R-L B-1 Label Accuracy

RAG-Tok (BM25) 29.7 41.5 32.1 33.1 17.5 22.3 55.5 48.4 75.1 91.6
RAG-Seq (BM25) 31.8 44.1 36.6 33.8 11.1 19.5 56.5 46.9

RAG-Tok (Frozen) 37.8 50.1 37.1 51.1 16.7 21.7 55.9 49.4
72.9 89.4

RAG-Seq (Frozen) 41.2 52.1 41.8 52.6 11.8 19.6 56.7 47.3

RAG-Tok (end2end) 43.5 54.8 46.5 51.9 17.9 22.6 56.2 49.4
74.5 90.6

RAG-Seq (end2end) 44.0 55.8 44.9 53.4 15.3 21.5 57.2 47.5

Table 6.6: Dev set Ablations for different retrievers. BM25 indicates BM25 was used rather
than a dense retriever. “end2end” and “Frozen” indicates the dense retriever was
trained end-to-end, or kept frozen respectively. As FEVER is a classification
task, both RAG models are equivalent.

6.5.5 Additional Results

Generation Diversity We saw in section 6.5.3 that RAG models are more fac-

tual and specific than BART. Following recent work on diversity-promoting de-

coding (Li et al., 2016; Vijayakumar et al., 2018; Massarelli et al., 2020), we also

investigate generation diversity by calculating the ratio of distinct ngrams to total

ngrams generated by different models. Table 6.5 shows that RAG-Sequence’s gen-

erations are more diverse than RAG-Token’s, and both are significantly more diverse

than BART without needing any diversity-promoting decoding schemes.

Retrieval Ablations A key feature of RAG is learning to retrieve relevant informa-

tion for the task at hand. To assess the effectiveness of the learnt retrieval mecha-

nism, we run ablations where we do not optimise the retriever during training. As

shown in Table 6.6, learned retrieval improves results for all tasks. Figure 6.3b

demonstrates that the learned retriever shows a higher recall for gold documents

compared to the fixed DPR retriever. We also compare RAG’s dense retriever to a

word overlap-based BM25 retriever (Robertson and Zaragoza, 2009). Here, we re-
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place RAG’s retriever with a fixed BM25 system, and use BM25 retrieval scores as

logits when calculating p(c|x). Table 6.6 show the results. For FEVER, BM25 per-

forms best, perhaps since FEVER claims are heavily entity-centric and thus well-

suited for word overlap-based retrieval. TF-IDF was also used in aspects of the

construction of the FEVER dataset, possibly hinting at SQuAD-style biases (sec-

tion 2.5.2.2). Differentiable retrieval improves results on all other tasks, especially

for ODQA, where it is crucial.

Index hot-swapping An advantage of non-parametric memory models like RAG is

that knowledge can be easily updated at test time. Parametric-only models would

need further training to update their behaviour as the world changes, and updating

their knowledge without catastrophic forgetting is an open research problem. To

demonstrate, we build an index using a Wikipedia dump from December 2016 and

compare outputs from RAG using this index to the newer index from our main re-

sults (December 2018). We prepare a list of 82 world leaders who had changed

between these dates and use a template “Who is {position}?” (e.g. “Who is the

President of Peru?”) to query our NQ RAG model with each index. RAG an-

swers 70% correctly using the 2016 index for 2016 world leaders and 68% using

the 2018 index for 2018 world leaders. Accuracy with mismatched indices is low

(12% with the 2018 index for 2016 leaders, 4% with the 2016 index for 2018 lead-

ers). This shows we can update RAG’s world knowledge by simply replacing its

non-parametric memory.

Effect of Retrieving More Documents Models are trained with either 5 or 10 re-

trieved latent documents, and we do not observe significant differences in perfor-

mance between them. We have the flexibility to adjust the number of retrieved doc-

uments at test time, to tune accuracy vs. speed. Figure 6.3a shows that retrieving

more documents at test time monotonically improves ODQA for RAG-Sequence,

but performance peaks for RAG-Token at 10 retrieved documents. Figure 6.3c

shows that retrieving more documents leads to higher ROUGE-L for RAG-Token at

the expense of BLEU-1, but the effect is less pronounced for RAG-Sequence.
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(a) NQ EM score as the generator is conditioned
on more documents
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(b) % NQ answers where answer occurs some-
where in the top-k retrieved documents
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(c) MSMARCO BLEU-1 and ROUGE-L as
more documents are retrieved

Figure 6.3: How test-time performance changes as the number of documents used to con-
dition the RAG model is increased.

6.6 Additional Observations and Negative Results
Retrieval Collapse In preliminary experiments, we observed that for some tasks

such as story generation (Fan et al., 2018), the retrieval component would “collapse”

and learn to retrieve the same documents regardless of the input. In these cases, once

retrieval had collapsed, the generator would learn to ignore the documents, and the

RAG model would perform equivalently to BART. The collapse is likely due to a

kind of cold-start problem: if the retriever doesn’t surface useful documents in the

top-K for generating the output at the beginning of training, then the generator may

learn to condition less on documents, which in turn may result in less informative

gradients for the retriever, exacerbating the problem. Improving the stability of

the retriever to this kind of issue, perhaps by artificially including some known

useful documents in the top-K at the beginning of training, is important future work.

Perez et al. (2019) also found spurious retrieval results when optimising a retrieval
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component in order to improve performance on downstream tasks.

Null-Document Probabilities We experimented with adding a “Null document”

mechanism to RAG, similar to REALM (Guu et al., 2020) in order to model cases

where no useful information could be retrieved for a given input. Here, if k doc-

uments were retrieved, we would additionally “retrieve” an empty document and

predict a logit for the null document, before marginalising over k+ 1 predictions.

We explored modelling this null document logit by learning (i) a document embed-

ding for the null document, (ii) a static learnt bias term, or (iii) a neural network to

predict the logit. We did not find that these improved performance, so in the inter-

est of simplicity, we omit them. For the MSMARCO task, where useful retrieved

documents cannot always be retrieved, we observe that the model learns to always

retrieve a particular set of documents when the question is less likely to benefit

from retrieval, suggesting that model learns its own latent strategy for dealing with

questions that don’t have evidence.

6.7 Related Work

Here we shall highlight some related work that has not already been covered in

detail in previous chapters.

Single-Task Retrieval Prior work has shown that retrieval improves performance

across a variety of NLP tasks when considered in isolation. Other than ODQA,

which we have discussed in detail in chapter 2, work in fact checking (Thorne et al.,

2018), fact completion (Petroni et al., 2020), long-form question answering (Fan

et al., 2019), Wikipedia article generation (Liu et al., 2018), dialogue (Moghe et al.,

2018; Weston et al., 2018; Dinan et al., 2019; Fan et al., 2021), translation (Gu

et al., 2018), and language modelling (Guu et al., 2018; Khandelwal et al., 2020)

has shown improvements by employing retrieval. Our contribution in this chapter to

is unify previous successes in incorporating retrieval for individual tasks, showing

that a single retrieval-based architecture is capable of achieving strong performance

across several knowledge intensive tasks.
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General-Purpose Architectures for NLP Prior work on general-purpose architec-

tures for NLP tasks has shown great success without the use of retrieval. A single,

pretrained language model has been shown to achieve strong performance on vari-

ous classification tasks in the GLUE benchmarks (Wang et al., 2018a, 2019) after

fine-tuning (Radford et al., 2018; Devlin et al., 2019). GPT-2 (Radford et al., 2019)

later showed that a single, left-to-right, pretrained language model could achieve

strong performance across both discriminative and generative tasks. For further

improvement, BART (Lewis et al., 2020a) and T5 (Raffel et al., 2020; Roberts

et al., 2020) propose a single, pretrained encoder-decoder model that leverages bi-

directional attention to achieve stronger performance on discriminative and genera-

tive tasks. Our work aims to expand the space of possible tasks which can be tacked

by a single, unified architecture.

Learned Retrieval There is significant work on learning to retrieve documents

in information retrieval, more recently with pretrained, neural language mod-

els (Nogueira and Cho, 2019; Karpukhin et al., 2020) similar to ours. Some work

optimises the retrieval module to aid in a specific, downstream task such as ques-

tion answering, using search (Perez et al., 2019), reinforcement learning (Choi et al.,

2017; Wang et al., 2018d,c), or a latent variable approach (Lee et al., 2019a; Guu

et al., 2020) as in our work. These successes leverage different retrieval-based ar-

chitectures and optimisation techniques to achieve strong performance on a single

task, while we show that a single retrieval-based architecture can be fine-tuned for

strong performance on a variety of tasks.

Memory-based Architectures Our document index can be seen as a large external

memory for neural networks to attend to, analogous to memory networks (Weston

et al., 2015; Sukhbaatar et al., 2015). Concurrent work (Févry et al., 2020) learns to

retrieve a trained embedding for each entity in the input, rather than to retrieve raw

text as in our work. Other work improves the ability of dialog models to generate

factual text by attending over fact embeddings (Dinan et al., 2019; Fan et al., 2021)

or, closer to our work, over retrieved text directly (Ghazvininejad et al., 2018). A

key feature of our memory is that it is comprised of raw text rather than distributed
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representations, which makes the memory both (i) human-readable, lending a form

of interpretability and provenance to our model, and (ii) human-writable, enabling

us to dynamically update the model’s memory by editing the document index.

Retrieve-and-Edit approaches Our method shares some similarities with retrieve-

and-edit style approaches, where a similar training input-output pair is retrieved

for a given input, and then edited to provide a final output. These approaches have

proved successful in a number of domains including Machine Translation (Gu et al.,

2018; Hossain et al., 2020) and Semantic Parsing (Hashimoto et al., 2018). Our

approach has several differences, including less of emphasis on lightly editing a

retrieved item, but on aggregating content from several pieces of retrieved content,

as well as learning latent retrieval, and retrieving evidence documents, rather than

related training pairs. This said, RAG techniques may work well in these settings,

and could represent promising future work.

6.8 Conclusion
In this chapter, we presented hybrid seq2seq models with access to parametric and

non-parametric memory. We showed that our RAG models strongly outperformed

contemporary comparable models on ODQA. We found that people prefer RAG’s

generation over a purely parametric generator, finding RAG more factual and spe-

cific. We conducted a thorough investigation of the learned retrieval component,

validating its effectiveness, and we illustrated how the retrieval index can be hot-

swapped to update the model without requiring any retraining. Our work opens up

new research directions on how parametric and non-parametric memories interact,

how to best combine them for a wide variety of NLP tasks.

It is worth highlighting a few limitations and open directions in retrieval-augmented

generators. We noted that RAG can occasionally suffer from “retrieval-collapse”

when the retriever initially cannot surface any useful documents for the task at hand.

This could be overcome by using a specialised retriever initialisation, but this relies

on some retrieval supervision data, or using other heuristics which can be applied

to help with initial relevance. Development of stronger general-purpose ad-hoc
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retrievers may help here, as may innovations in how RAG models are trained.

A second limitation is that whilst we have demonstrated that RAG models are capa-

ble of combining or fusing information from several passages via marginalisation,

this interaction happens “late” in the forward pass - i.e. after all neural process-

ing. Subsequent work has shown that conditioning the generator jointly on a set of

documents, rather than on each document separately, and fusing information across

documents before feeding into the generator’s decoder, is more empirically effec-

tive. One such approach, called Fusion-in-Decoder (FiD, Izacard and Grave, 2021b)

has demonstrated very strong results for ODQA (included for reference in table 6.1.

In the remainder of this thesis, we shall make extensive use of FiD in our studies of

ODQA. Conditioning this way complicates end-to-end learning, and as such, FiD is

a pipe-lined model, relying on a fixed retriever. This can be mitigated using a kind

of block descent approach (Izacard and Grave, 2021a) and there is promising work

from Sachan et al. (2021) demonstrating an end-to-end approach. In future work, it

may be fruitful to investigate if the two components can be jointly pretrained, either

with a denoising objective similar to BART or some another objective.

To conclude Part II, we have developed retrieval-augmented hybrid parametric/non-

parametric models – first, in chapter 5 in an unsupervised setting, showing its ef-

fectiveness on a knowledge-probing task, and then in chapter 6 in a supervised gen-

eration setting, showing strong results on ODQA and related tasks. In Part III, we

take a deeper look into where the knowledge required to answer ODQA questions

can be found, and hence, develop new strategies about what forms to store it in, and

whether these forms are best suited for parametric or non-parametric media.
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Chapter 7

Question And Answer Test-Train

Overlap in Open-Domain QA

Datasets

In Part II, we developed retrieval-augmented models which could combine para-

metric knowledge and non-parametric knowledge, and showed how they could be

applied to tasks like ODQA. In particular, in chapter 6, we used supervised ODQA

tasks to benchmark how well systems could command knowledge expressed in a

textual knowledge source. We are not alone in using these datasets in this way –

using supervised ODQA tasks for this purpose has become relatively standard in

knowledge-intensive modelling (Guu et al., 2020; Roberts et al., 2020; Févry et al.,

2020; Verga et al., 2020; Petroni et al., 2021; Min et al., 2021).

However, so far, we have not really developed a deep understanding of where the

knowledge required to answer the questions in these datasets can be found. Whilst

there have been several works examining other kinds of QA datasets (Manjunatha

et al., 2019; Kaushik and Lipton, 2018; Sugawara et al., 2018, 2020), we know

comparatively little about how the questions and answers are distributed in these

ODQA benchmarks. As a result, we do not have a good understanding of how our

models come up with answers, and what kinds of knowledge they actually store and
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access in their parametric and non-parametric knowledge mechanisms.

In Part III, we will address this issue in detail, starting, in this chapter, with deep

analysis of the test sets of three popular ODQA datasets, namely WebQuestions

(WQ), TriviaQA (TQA) and NaturalQuestions (NQ). Detailed descriptions of these

datasets can be found in section 2.5. Our analysis will be behavioural in focus, and

we shall deeply investigate the extent to which memorisation and generalisation are

required for these ODQA benchmarks, and, in so doing, gain greater insights into

how models equipped with different knowledge mechanisms actually operate.

Bigger Picture This chapter asks a key, yet-unanswered question, highly relevant

to the task studied in the previous chapters. We have ascertained in chapters 5

and 6 that retrieval-augmentation is important for answering questions well, but we

haven’t yet addressed what knowledge we should be retrieving from. This chap-

ter will look at this question through the lens of a behavioural analysis, and will

make the following observation: often, a lot knowledge required for ODQA tasks

is present in the training data, and so directly retrieving from training data, i.e. QA

pairs, (rather than a background corpus of text documents, as we have done before)

is useful and insightful. A model that exploits this observation will be introduced in

this chapter which will form the foundation of the next (and final) chapter, chapter 8.

Finally, The annotation procedure which we shall develop in this chapter builds on

the ideas from chapter 4, where we used a retrieval/matching technique to reduce

annotation workload, a strategy we shall employ again here for a different end goal.

Additional commentary on the connections between this chapter and the wider body

of work in the thesis can be found in the conclusion of this chapter (sec. 7.6) and

the thesis conclusion, chapter 9.

The material in this chapter first appeared in:

Patrick Lewis, Pontus Stenetorp, and Sebastian Riedel. 2021. Question and

Answer Test-Train Overlap in Open-Domain Question Answering Datasets.

In Proceedings of the 16th Conference of the European Chapter of the Asso-

ciation for Computational Linguistics (EACL). Best Paper Award Recipient.
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Individual Contributions: The initial observations of overlap and memorisation was made

by the thesis author. The experimental design, experiments and analysis were devised by the

thesis author, with advice from co-authors. Annotation was shared between all authors. The

majority of the original article was written by the thesis author, with feedback by co-authors.

7.1 Overview
We identify three classes of question that a trained ODQA system should be able to

answer, in increasing order of difficulty:

1. The most basic behaviour is to be able to reliably recall the answer to a ques-

tion that the model has seen at training time.

2. A model should be able to answer novel questions at test time and choose an

answer from the set of answers it has seen during training.

3. a strong system should be able to answer novel questions which have answers

which are not contained in the training data.

It is not clear to what extent our current ODQA datasets measure each of these

three behaviours. To address this, we stratify the test sets of these datasets. Firstly,

we split the test data by whether answers in the test set also appear somewhere in

the training sets. We find that 58-71% of test answers also occur somewhere in

the training data, demonstrating that the majority of the test data does not require

generalising to unseen answers.

Secondly, we annotate 1000 question-answer pairs from each test set for repeated

questions in their respective training sets. We find that a surprisingly high 28-34%

of test questions have paraphrased questions in the training data, the vast majority

of which are near-duplicates differing by one or two words. This result implies that

30% of the test set of these datasets only probe for how well models can simply

memorise question-answer pairs seen at training.

Equipped with these insights, we compute the performance of several ODQA mod-
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Dataset % with Answer Overlap % with Question Overlap

Natural Questions 63.6 32.5
TriviaQA 71.7 33.6
WebQuestions 57.9 27.5

Table 7.1: Fractions of open-domain test sets that overlap with their training sets.

els on our test subsets, including both open-book retrieve-and-read and closed-book

models. We find that test instances with train-overlapping data contribute the bulk

of the overall performance of all the models studied.

These issues seem to be more acute for closed-book models. Strikingly, we find

that a closed-book model based on BART (Lewis et al., 2020a) is incapable of

producing answers not observed at training time, and achieves very low scores

on non-overlapping questions, suggesting this model is only capable of memoris-

ing question-answer pairs from training time. With this in mind, we build simple

nearest-neighbour models which outperform this BART model, despite having vir-

tually no capacity to generalise beyond training data. We refer to these simple

nearest-neighbour models as Question-Answer-Pair (QA-pair) retrievers, and they

form much of the modelling basis for Part III. In this chapter, we demonstrate their

competitive performance with closed-book QA, and in chapter 8, we shall greatly

expand their capabilities.

To summarise, we make the following contributions: 1) We provide insights into

how answer entities are distributed between dataset splits for ODQA datasets 2) We

provide annotated subsets of ODQA test sets indicating whether test-time questions

are duplicates of training time questions. 3) We evaluate a variety of models on our

dataset splits, and derive insights into what kinds of question answering behaviour

different models achieve.

7.2 Datasets
In our analysis, we consider three widely used ODQA datasets: WebQuestions (Be-

rant et al., 2013), TriviaQA (Joshi et al., 2017), and NaturalQuestions, a subset of

NaturalQuestions (Kwiatkowski et al., 2019) introduced by Lee et al. (2019a). All
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NaturalQuestions TriviaQA WebQuestions
Overlapping Non-overlapping Overlapping Non-overlapping Overlapping Non-overlapping

Phil Simms Cloves David Bowie Death in the afternoon Harvard Queen Victoria
Brian Johnson Matt Monro Battle of camlann Clash of the Titans Alderaan Brası́lia
8 1,020-1,080 kg Heligoland ice-cream sundae India Paddington
the Indians Hermann Ebbinghaus Henry VII Camshaft 2011 Tom Corbett
the 1830s Matt Flinders Niagra Falls Cumberland Zeus Gary

Table 7.2: Randomly sampled overlapping and non-overlapping answers from all test sets.

three datasets consist of factual natural language questions and short multi-token

answers, but differ slightly in the style of questions and format of answers. These

datasets, and their evaluation metrics are described in detail in chapter 2.

For all three datasets, the canonical train, development and test splits were obtained

by randomly splitting the data, and there are no exact duplicate questions in any

dataset. We exclude development data from our analyses, focusing purely on train-

test overlap to explicitly assess the effects of training memorisation.

7.3 Test-Train Overlaps
We explore two ways of examining the test sets based on overlaps between train-

ing and test data. We assume there is a set of question-answer pairs, Dall ={(
q j,a j

)}J
j=1 which has been partitioned into a test set Dtest = {(qts,i,ats,i)}M

i=1 and

a training set Dtrain =
{(

qtr,k,atr,k
)}N

k=1. Consider a question-answer pair (qts,ats)

from Dtest where the answer consists of a set of at least one answer reference

ats = {s1..sn}. We can define answer overlap to be where there exists at least one

(q′tr,a
′
tr) ∈ Dtrain which shares at least one answer reference with (qts,ats). We can

also define question overlap to be where there exists some (q′′tr,a
′′
tr) ∈ Dtrain where

q′′tr is a paraphrase of qts and a′′ts shares at least one answer reference with ats.

Answer Overlap Following Rajpurkar et al. (2016), we apply answer normalisa-

tion1 on answer references before searching for overlapping answer references for

all QA-pairs in the test set – see Table 7.1. We find that 58% of test QA-pairs in

WebQuestions have answer overlaps, with 63.6% and 71.7% for NQ and TriviaQA

respectively. We would naturally expect TriviaQA to have higher answer overlap as
1Answer normalisation consists of lower-casing, stripping punctuation, removing articles and

normalising whitespace
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# Answer Test Question Train Question

1 Jason
Marsden

who plays max voice in a goofy movie who does max voice in a goofy movie

2 January
23 2018

when will the 2018 oscar nominations
be announced

when are the oscar nominations for
2018 announced

3 Alan
Shearer

who has scored more goals in the pre-
mier league

most goals scored by a premier league
player

4 retina where are the cones in the eye located where are cone cells located in the eye

5 Francisco
Pizarro

who led the conquest of the incas in
south america

conquistador who defeated the incan
empire in peru

Table 7.3: Randomly sampled test-train overlapping questions in NQ. See Appendix G.1
for more examples, including examples from TriviaQA and WebQuestions

it has more answer references per question on average (13.7 references on average

compared to 1.2 for NQ and 2.4 for WebQuestions). Examples of answer overlaps

are shown in Table 7.2.

Question Overlap Unlike answer overlap, question overlap cannot be trivially com-

puted automatically, as searching for duplicates via rules or paraphrase classifiers

may lead to both false positives and negatives. Thus, we turn to manual anno-

tation to investigate question overlap. To obtain a representative sample for each

dataset, we annotate a random subset of 1,000 QA-pairs for each test set. Anno-

tators are shown a list of up to 50 training questions which have a similar answer

reference. Training questions are selected for annotation if one of the following is

true: they share an answer reference with a test question, a test answer reference is

a sub-sequence of a training answer reference, or the other way around (a training

reference answer is a sub-sequence of a test answer reference). If there are more

than 50 such questions, the top 50 are chosen by the highest degree of word overlap

to the test question. This answer similarity function is designed for high recall to

obtain a tight lower bound on question overlap. If there were no questions with

similar answers in the training set, the question was automatically annotated as not

overlapping. Three expert annotators looked through these similar questions and

indicated if any were paraphrases of the test question and had the same answer.
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The results from the annotation can be seen in Table 7.1 and examples of overlap-

ping questions in Table 7.3. A sample of 100 2-way annotated examples indicated

93% agreement, corresponding to a Cohen’s Kappa of 0.85 (Cohen, 1960). What

we observe is a high degree of question overlap, with between 27.5 and 33.6% of

the 1,000 annotated test questions having a duplicate in the training set. It is also

common to see several duplicates per test question, with an average of 2.8 duplicate

questions per overlapping test question in NQ.

7.4 Implications for Modelling

Given our findings from above, we turn our attention to how well ODQA models

perform with respect to train-test set overlap. Earlier, we identified three classes

of answering behaviours: 1) questions that can be memorised at training time, 2)

novel questions that can be answered with answers memorised at training time,

3) novel questions with novel answers. We refer to these behaviours as Question

memorisation, Answer classification and QA generalisation respectively.

Question Memorisation To perform well on the question overlap subset, a model

would only need to be able to memorise QA-pairs at training time, and then recog-

nise which training question matches a test-time question. The reasoning required

ranges from trivial duplicate detection for very similar questions such as “who played

pink in pink floyd the wall” and “who played pink in the movie the wall”, to more challenging

inference problems for more subtle duplicates such as “On which island in the North

Sea did both St Aidan and St Cuthbert live?” and “irish born missionary saint aidan founded

a monastery in 653 on which english island which is also the name of a 1970s uk folk-rock

band?”. A manual annotation of 100 question-overlap pairs indicated that 81% were

simple duplicates differing by one or two words, 14% required some paraphrasing

recognition capability, and 5% required more sophisticated natural language under-

standing. To measure performance on question memorisation, we build a test subset

comprised of QA-pairs which have question overlap to the training set, which we

refer to as the question overlap test subset.
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Answer Classification In order to tackle the answer-overlap question, a multi-class

classifier over training set answers would be sufficient, as answers never appear at

test time that don’t appear at training time. We build a test subset of QA-pairs which

have answer overlap, but do not have question overlap. Question-overlap pairs are

excluded to isolate performance on answer classification, since question-overlap

questions are significantly easier to answer, and would inflate scores. We refer to

this test subset at the answer-only overlap test subset, and will use it to measure

performance on the answer classification competency.

QA Generalisation In this regime, models cannot rely on memorising their training

data. To measure performance on this most challenging split, we build a test subset

of QA-pairs which do not have answer overlap with the training set, which we call

the no overlap test subset. We further note that we expect higher frequency answers,

such as countries, integers and public figures would naturally be expected to appear

less often in this test subset. As such, models that perform well on the head of the

answer distribution may struggle to perform well in this setting, despite being able

to perform some generalisation at test time.

We shall test a variety of models for the answering behaviours using our test subsets.

For published models, we obtain test set predictions directly from the authors.

7.4.1 Open-Book Models

See chapter 2 for an introduction to open-book and retrieve-and-read QA models.

We consider the extractive retrieve-and-read ODQA model from Karpukhin et al.

(2020), which retrieves documents using DPR, before feeding them into an RC

model which extracts spans of text as answers. We also include a RAG model, intro-

duced in chapter 6. Finally we include the state-of-the-art Fusion-in-Decoder (FiD,

Izacard and Grave, 2021b), which we briefly discussed at the end of chapter 6.

FiD is a pipeline retrieve-and-read model using T5-large (Raffel et al., 2020) which

retrieves a set of 100 documents and conditions the decoder on all documents at

once. FiD differs from RAG in that it isn’t trained end-to-end, conditions on more

documents, uses a larger model, and fuses information across documents before
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documents are fed into decoder, rather than afterwards, as in RAG. We not include

FiD results on WQ as the authors did not use it in their original work.

7.4.2 Closed-Book Models

See chapter 2 for an introduction to closed-book QA models. In our analysis, we

train a BART-large closed-book QA model, which has 400M parameters, which is

trained with questions as input and generates QA-pairs as output. Checkpoints are

selected by Exact Match score on a development set. We also include a much more

powerful T5-11B model from Roberts et al. (2020), with 11B parameters. We use

the T5-11B model which has been pretrained with a special “Salient Span Masking”

objective (Guu et al., 2020), designed to improve downstream ODQA performance.

At the time these experiments were performed, the publicly available T5-11B model

checkpoints were trained on both train and development portions of the training

QA-pairs, and thus has seen ∼10% more training data than other models. Thus, the

scores for this T5 model will in general be slightly higher than they would otherwise

be, and hence why the T5 numbers in this chapter are about 2-4% higher than those

reported for T5 in chapter 6. Additionally, As we did not include development

data in our overlap analysis, a small amount of unaccounted-for overlap occurs for

this model. The figures for T5 here are thus a slight overestimate (likely correct

to within 5%). We do not include TriviaQA results for T5 as this model was not

publicly available when these experiments were performed.

7.4.3 Nearest-neighbour Models: QA-pair Retrievers

Given that there are high levels of train-test overlap in these datasets, we also ex-

periment with some simple nearest-neighbour models. Here, we simply retrieve a

QA-pair from the training set based on question similarity to the test question, and

return its answer. We experiment with two QA-pair retrievers in this chapter, one

using TF-IDF and the other using the dot product similarity of question embed-

dings from the DPR retriever. These models cannot generalise to non-overlapping

answers, and have limited capacity to answer non-overlapping questions. How-

ever, these models are attractive from the perspective of model size and efficiency,
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DPR 41.3 69.4 34.6 19.3 57.9 80.4 59.6 31.6 42.4 74.1 39.8 22.2

RAG-Seq 44.5 70.7 34.9 24.8 56.8 82.7 54.7 29.2 45.5 81.0 45.8 21.1

FID 51.4 71.3 48.3 34.5 67.6 87.5 66.9 42.8 - - - -

C
lo

se
d

B
oo

k T5 (11B) 36.6 77.2 22.2 9.4 - - - - 44.7 82.1 44.5 22.0

BART (0.4B) 26.5 67.6 10.2 0.8 26.7 67.3 16.3 0.8 27.4 71.5 20.7 1.6

N
ea

re
st

ne
ig

h-
bo

ur Dense 26.7 69.4 7.0 0.0 28.9 81.5 11.2 0.0 26.4 78.8 17.1 0.0

TF-IDF 22.2 56.8 4.1 0.0 23.5 68.8 5.1 0.0 19.4 63.9 8.7 0.0

Table 7.4: EM scores for several recent models on our dataset splits. “Total score” is the
overall Test Set EM Score. “Question Overlap” is the test subset with train-test
question overlap, and probes for simple question memorisation. “Answer-only
Overlap” is the test subset with train-test answer overlap but without question
overlap, which probes for answer classification. “No overlap” refers to the test
subset with no train-test answer overlap, which probes for QA generalisation

amongst the other useful properties that come from non-parametric methods. We

shall revisit the subject of QA-pair retrievers in great detail in chapter 8.

7.4.4 Results

Table 7.4 shows the results of our behavioural test set splits for all models. In the

following, we shall unpack the major findings:

Question Memorisation Earlier, we found that ∼30% of test set questions overlap

with the training set. The “Question overlap” columns in Table 7.4 shows perfor-

mance on Question memorisation. Comparing this column with the total perfor-

mance column shows that all models perform significantly higher on memorisable

questions. This finding is not surprising, but it is worth highlighting that a signif-

icant proportion of overall performance is driven by question memorisation. This

effect is most pronounced for closed book models. T5-11B performs especially

well for question memorisation on both NQ and WebQuestions. This suggests that

its extremely large capacity (11 billion parameters), coupled with more powerful

question understanding, may allow it to store, recognise and recall training ques-

tions more effectively than other models.
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Answer Classification The “Answer overlap only” column in Table 7.4 shows per-

formance on answer classification. Answer classification has a large drop in per-

formance compared to question memorisation, dropping by an average of 45%.

Open-book models handle this setting better than closed book models. The BART

model in particular struggles here, only managing 10.2% EM on this set.

QA Generalisation The “No overlap” column in Table 7.4 shows performance on

QA generalisation. All models suffer significant performance degradation on QA

generalisation, highlighting the shortcomings of the overall performance metric.

For example, we may expect the FiD state-of-the model to answer about half of NQ-

style questions correctly, but once we have accounted for repeated questions and

answers, it can only answer about one third of questions correctly. This difference

is even more pronounced for other models, with an average absolute drop of 25%

with respect to overall performance.

Nearest-neighbour Models The bottom two rows of Table 7.4 show the results of

our nearest-neighbour QA-pair retrievers. The TF-IDF model, despite being com-

pletely untrained, is able to answer about 20% of test questions correctly, purely

by retrieving questions from the training sets. More interestingly, the dense re-

trieval QA-pair retriever outperforms the BART closed-book QA model on NQ and

TriviaQA. Furthermore, it also outperforms the significantly more complex DPR

open-book model on TriviaQA and WebQuestions on the question overlap subset.

These models have severe generalisability limitations, but do represent very space

and memory efficient solutions. Our dense nearest neighbour model consists of a

single BERT-base checkpoint and outperforms BART-large. The TF-IDF model is

even smaller and could be implemented with negligible memory footprint.

7.5 Related Work
In this section, we shall briefly highlight some relevant work that has not already

been mentioned in this thesis so far.

Examining what kinds of behaviours are learnt by models has received attention in

natural language understanding tasks, such as the GLUE benchmark (Wang et al.,
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2018a), which includes a diagnostic test set probing for different reasoning types.

Lines of work such as Checklist (Ribeiro et al., 2020) extend this to specifying a

variety of test-time unit-tests, and assessing how well models pass them.

Various works have also performed critical and careful analysis of question answer-

ing systems and datasets. Chen et al. (2016) closely examine the difficulty of the

CNN-DM dataset (Hermann et al., 2015), Sugawara et al. (2020) and Kaushik and

Lipton (2018) perform an analysis of RC dataset difficulty, and Manjunatha et al.

(2019) show that visual QA models memorise common question-answer relation-

ships present in training data. Févry et al. (2020) perform an analysis of various

closed-book models’ TriviaQA predictions, based on entity mentions. Kwiatkowski

et al. (2019) note that the machine reading NQ dataset has substantial train-test over-

lap of Wikipedia titles, and provide some baselines for “long-answer” QA. Closest

to the work in this chapter, Verga et al. (2020) observe similar answer overlap in

knowledge-base QA, and explore results on non-overlapping subsets.

7.6 Conclusion
In this chapter, we have, we performed a novel analysis of popular open-domain

question answering datasets. We found that 60% of test set answers overlap with

the training set and, more surprisingly, 30% of test set questions have at least one

duplicate in the train set. Following these observations, we contextualise the perfor-

mance of seven ODQA models, stratifying by different amounts of training set over-

lap, gaining an insight into what extent these models generalise or simply memorise

their training data. It is clear that performance on these datasets cannot be properly

understood by overall QA accuracy and we suggest that in future, a greater em-

phasis should be placed on more behaviour-driven evaluation, rather than pursuing

single-number overall accuracy figures.

We also introduced a novel class of model in the context of modern ODQA,

which we refer to as QA-pair retrievers. These models use semi-structured QA-

pairs as their units of knowledge representation, rather than parameters or free-text
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passages. We demonstrated that simple QA-pair retrievers, which work as non-

parametric nearest-neighbour models over training QA-pairs, were competitive with

closed-book QA models.

In the next chapter, we shall continue our exploration of generalisation vs memori-

sation in ODQA datasets, and further develop the idea of QA-pairs as a knowledge

representation format.



Chapter 8

65 Million Probably-asked Questions

and What You Can Do With Them

In chapter 7, we discovered that current closed-book models mostly just memo-

rise training QA-pairs, and can struggle to answer questions that do not overlap

with training data. We also proposed a class of simple non-parametric knowledge

ODQA model, which we referred to as QA-Pair retrievers. These explicitly retrieve

(training) QA-pairs, rather than memorising them in parameters, and we showed

that they performed competitively with closed-book QA models. These models also

have a number of useful properties, such as fast inference, interpretable outputs (by

inspecting retrieved QA-pairs), and the ability to update the model’s knowledge at

test time by adding or removing QA-pairs.

However, closed-book QA and QA-pair retriever models are currently not compet-

itive with retrieve-and-read systems in terms of accuracy, largely because the train-

ing QA-pairs they operate on cover substantially less knowledge than background

corpora like Wikipedia. In this chapter, we explore whether greatly expanding the

knowledge coverage of QA-pairs enables closed-book QA and QA-pair retrievers

which are competitive with retrieve-and-read models. We shall do this by generat-

ing questions from passages in Wikipedia, using a method reminiscent of our first

research contribution chapter (chapter 3). However, our aims will be quite different
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to those from chapter 3 – rather tackling unsupervised RC, we propose to use ques-

tion generation as a mechanism for transferring knowledge expressed as free text in

Wikipedia into the more semi-structured form of question-answer pairs.

Bigger Picture This final chapter focuses on fulfilling the aims that we set out in

the introductory chapter that remain unaddressed so far, and bringing together and

applying the strands of research we set out so far. Namely, we require models

that can store, represent and retrieve knowledge well in order to answer questions

with high accuracy, with flexibility, and faster, more efficient inference. We shall

use question generation, building on chapter 3, together with lessons learnt about

non-parametric memory storage from chapters 5 and 6. We shall use and extend

the modelling paradigm introduced from chapter 7, and training algorithms devel-

oped from 6. Putting all of these elements together in the right combination, as

we shall see, enables us to build models that are significantly stronger than existing

systems with respect to our aims. Beyond purely practical performance metrics,

we are also continuing to build up our understanding of what behaviours, factors,

knowledge and modelling components are required for QA. Accordingly, this chap-

ter provides a deep empirical analysis, comparing different knowledge storage and

recall techniques, and a variety of different QA models. Additional commentary

on the connections between this chapter and the wider body of work in the thesis

can be found in the conclusion of this chapter (sec. 8.7) and the thesis conclusion,

chapter 9.

The material in this chapter first appeared in:

Patrick Lewis, Yuxiang Wu, Linqing Liu, Pasquale Minervini, Heinrich

Küttler, Aleksandra Piktus, Pontus Stenetorp, and Sebastian Riedel. 2021.

PAQ: 65 Million Probably-Asked Questions and What You Can Do With

Them. Transactions of the Association for Computational Linguistics (TACL)

Individual Contributions: The original idea of generating data for improved QA-Pair re-

trievers was conceived by the thesis author. Independently, a similar direction was proposed

by a co-author, and the two projects were merged to form a wider collaboration. The study
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design was a close collaboration between all authors. The question-generation pipeline was

implemented by co-authors, with the addition of global filtering and scalability factors from

the thesis author. The majority of the QA modelling and experiments were performed by the

thesis author, with engineering assistance from co-authors. The analysis was a close collab-

oration between authors, and the majority of the original article was written by the thesis

author, with sections being contributed by a number of co-authors.

8.1 Overview
In this chapter, we present Probably-Asked Questions (PAQ), a semi-structured

Knowledge Base (KB) of 65M natural language QA-pairs, which models can mem-

orise and/or learn to retrieve from. PAQ differs from traditional KBs in that ques-

tions and answers are stored in natural language, and that questions are generated

such that they are likely to appear in ODQA datasets. PAQ is automatically con-

structed using a question generation model applied on Wikipedia. To ensure gener-

ated questions are not only answerable given the passage they are generated from,

we employ a global filtering step using an ODQA system. This greatly reduces the

amount of wrong/ambiguous questions compared to other approaches (Fang et al.,

2020; Alberti et al., 2019), and is critical for high-accuracy downstream QA.

To complement PAQ we develop RePAQ, an ODQA QA-Pair retriever model, using

Dense Retrieval (see section 2.3.2.2), and optionally, re-ranking. We show that PAQ

and RePAQ provide accurate ODQA predictions, on the level of RAG-Sequence,

introduced in chapter 6. PAQ instances are annotated with scores that reflect how

likely we expect questions to appear, which can be used to control the memory

footprint of RePAQ by pruning the KB accordingly. As a result, RePAQ becomes

flexible, allowing us to configure QA systems with near state-of-the-art results, very

small memory size, or inference speeds of over 1,000 questions per second.

We also show that PAQ is a useful source of training data for closed-book QA mod-

els. BART closed-book QA models trained on PAQ outperform standard data base-

lines by 5%. However, these models struggle to effectively memorise all the knowl-
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edge in PAQ, lagging behind RePAQ by 15%. This demonstrates the effectiveness

of RePAQ’s non-parametric knowledge architecture for leveraging PAQ.

Finally, we show that as RePAQ’s question matching score correlates well with

QA accuracy, it effectively “knows when it doesn’t know”, allowing for selective

question answering (Voorhees, 2002a) where systems may abstain from answering.

Whilst answer abstaining is important in its own right, it also enables an elegant

“back-off” approach where we can defer to a more accurate but expensive QA sys-

tem when the answer confidence is low. This allows us to make use of the best of

both speed and accuracy.

In summary, we make the following contributions: i) introduce PAQ, 65M QA-pairs

automatically generated from Wikipedia, and demonstrate the importance of global

filtering for high quality ii) introduce RePAQ, a QA system designed to utilise PAQ

and demonstrate how it can be optimised for memory, speed or accuracy iii) inves-

tigate the utility of PAQ for closed-book QA models, improving by 5% but note

significant headroom to RePAQ iv) demonstrate RePAQ’s strength on selective QA,

enabling us to combine RePAQ with a state-of-the-art QA model, making it both

more accurate and 2x faster.

8.2 Open-Domain Question Answering
ODQA has been the focus of the majority of this thesis (see section 2.4.2 in the

background chapter for a full task description). The goal of ODQA is to develop an

answer function m : Q 7→ A, where Q and A respectively are the sets of all possible

questions and answers. In this chapter, We assume there is a distribution P(q,a)

of QA-pairs, defined over Q×A. A good answer function will minimise the ex-

pected error over P(q,a) with respect to some loss function, such as answer string

match. In practice, we do not have access to P(q,a), and instead rely on an empiri-

cal sample of QA-pairs K drawn from P, and measure the empirical loss of answer

functions on K. Our goal in this chapter is to implicitly model P(q,a) in order to

draw a large sample of QA-pairs, PAQ, which we can train on and/or retrieve from.
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Figure 8.1: Top Left: Generation pipeline for QA-pairs in PAQ. Top Right: PAQ used as
training data for closed-book QA models. Bottom Left: RePAQ retrieves sim-
ilar QA-pairs to input questions from PAQ. Bottom right: RePAQ’s confidence
is predictive of accuracy. If confidence is low, we can defer to slower, more
accurate systems, like FiD.

A sufficiently large drawn sample will overlap with K, essentially pre-empting and

caching questions that humans may ask at test-time. This allows us to shift compu-

tation from test-time to train-time compared to retrieve-and-read methods.

8.3 Generating Question-Answer Pairs
In the following, we describe the process for generating PAQ. Given a large tex-

tual knowledge source/corpus C , comprised of passages c, our QA-pair generation

process consists of the following components:

1. A passage selection model ps(c|C ), to identify passages which humans are

likely to ask questions about.

2. An answer extraction model pa(a|c), for identifying spans in a passage that

are more likely to be answers to a question.

3. A question generator pq(q|a,c) that, given a passage and an answer, generates

a question.

4. A filtering QA model p f (a|q,C ) that generates an answer for a given ques-

tion. If an answer generated by p f does not match the answer a question was

generated from, the question is discarded. This ensures generated questions

are consistent (Alberti et al., 2019).
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As shown in Figure 8.1, these models are applied sequentially to generate QA-pairs,

similarly to contextual QA generation (Alberti et al., 2019; Lewis et al., 2019). First

a passage c is selected with a high probability under ps. Next, candidate answers

a are extracted from c using pa, and questions q are generated for each answer us-

ing pq. Lastly, p f generates a new answer a′ for the question. If source answer

a matches a′, then (q,a) is deemed consistent and added to PAQ. The pipeline is

based on Alberti et al. (2019), updated to take advantage of recent modelling ad-

vances. Passage selection and our filtering approach are novel contributions to the

best of our knowledge, specifically designed for ODQA QA-pair generation. Each

component is described in detail below.

8.3.1 Passage Selection, ps

The passage selection model ps is used to find passages which are likely to contain

information that humans may ask about, and thus make good candidates to generate

questions from. We learn ps using a similar method to Karpukhin et al. (2020).

Concretely, we assume access to a set of positive passages C+ ⊂ C , obtained from

answer-containing passages from ODQA train sets. As we do not have a set of la-

belled negatives, we sample negatives either randomly or using heuristics. We then

maximise log-likelihood of positive passages relative to negatives. We implement

ps with RoBERTa (Liu et al., 2019c) and obtain positive passages from Natural

Questions (NQ). We sample easy negatives at random from Wikipedia, and hard

negatives from the same Wikipedia article as the positive passage. Easy negatives

help the model to learn topics of interest, and hard negatives help to differentiate

between interesting and non-interesting passages from the same article.

8.3.2 Answer Extraction, pa

Given a passage, this component identifies spans that are likely to be answers to

questions. We consider two alternatives: an off-the-shelf Named Entity Recogniser

(NER) or training a BERT answer extraction model on NQ.

The NER answer extractor simply extracts all named entities from a passage.1 The

1We use a spaCy (Honnibal et al., 2019) NER model, trained on OntoNotes (Hovy et al., 2006).



8.3. Generating Question-Answer Pairs 179

majority of questions in ODQA datasets consist of entity mentions (Kwiatkowski

et al., 2019; Joshi et al., 2017), so this approach can achieve high answer coverage.

However, as we extract all entity mentions in a passage, we may extract unsuitable

mentions, or miss answers that do not conform to the NER system’s annotation

schema. The trained answer span extractor aims to address these issues.

BERT span extraction is typically performed by modelling answer start and end in-

dependently (Devlin et al., 2019). We instead follow the approach of Alberti et al.

(2019), which breaks the conditional independence of answer spans by directly pre-

dicting pa(a|c) = p([ast,aen]|c). Our implementation first feeds a passage through

BERT, before concatenating the start and end token representations of all possible

spans of up to length 30, before passing them through an MLP to give pa(a|c). At

generation time, we extract the top-K most probable spans from each passage.

8.3.3 Question Generation, pq

Given a passage and an answer, this model generates likely questions with that

answer. To indicate the answer and its occurrence in the passage, we prepend the

answer to the passage and label the answer span with surrounding special tokens.

We train on a combination of NQ, TriviaQA, and SQuAD, and perform standard

fine-tuning of BART-base (Lewis et al., 2020a) to obtain pq.

8.3.4 Filtering, p f

The filtering model p f improves the quality of generated questions, by ensuring

that they are consistent – i.e. that the answer they were generated is likely to be a

valid answer to the question. Previous work (Alberti et al., 2019; Fang et al., 2020)

has employed an RC model for this purpose, p f (a|q,c), which produces an answer

when supplied with a question and the passage it was generated from. We refer to

this as local filtering. However, local filtering will not remove questions which are

ambiguous (Min et al., 2020), and can only be answered correctly with access to the

source passage. Thus, we use an ODQA model for filtering, p f (a|q,C ), supplied

with only the generated question, and not the source passage. We refer to this as

global filtering, and later show it is vital for strong downstream results. We use
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FiD-base with 50 passages, trained on NQ (Izacard and Grave, 2021b).

8.4 Question Answering using PAQ
We consider two uses of PAQ for building QA models. The first is to use PAQ as

a source of training QA-pairs for closed-book QA models. The second treats PAQ

as a KB, which models learn to directly retrieve from. These are related, since we

showed in chapter 7 that closed-book QA models mainly just memorise the training

QA-pairs into their parameters, latently retrieving from them at test time.

8.4.1 PAQ for Closed-Book QA

We fine-tune BART-large (Lewis et al., 2020a) with QA-pairs from the concate-

nation of the training data and PAQ, using a similar training procedure to Roberts

et al. (2020). We use a batch size of 512, and use validation Exact Match score

for early stopping (Rajpurkar et al., 2018). Following recent best practices (Alberti

et al., 2019; Yang et al., 2019a), we then fine-tune on training QA-pairs only. We

note that effective closed-book QA models must be able to understand the seman-

tics of questions and how to generate answers, in addition to being able to store

large numbers of facts in their parameters. This model thus represents a paramet-

ric knowledgebase and retrieval system. The model proposed in the next section,

RePAQ, represents an explicit non-parametric instantiation of this idea.

8.4.2 RePAQ

RePAQ is a QA-pair retriever, of the class we introduced in chapter 7. QA-pair re-

trievers assume access to a KB of N QA-pairs K = {(q1,a1), . . . ,(qN ,aN)}. These

models provide an answer to a test question q by finding the most relevant QA-pair

(q′,a′) in K, using a scalable relevance function, then returning q′ as the answer to

q. This function could be implemented using standard information retrieval tech-

niques, (e.g. TF-IDF, like we did in chapter 7) or learnt from training data. RePAQ

is a QA-pair retriever which is learnt from ODQA data and consists of a neural

retriever, optionally followed by a reranker.
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8.4.2.1 RePAQ Retriever

Our retriever adopts the Maximum Inner Product Search (MIPS) dense retrieval

paradigm (see section 2.3.2.2 in the background chapter). Our goal is to embed

queries q and indexed items d into a representation space via embedding functions

gq and gd , so that the inner product gq(q)⊤gd(d) is maximised for items relevant to

q. In our case, queries are questions and indexed items are QA-pairs (q′,a′). We

make our retriever symmetric by embedding q′ rather than (q′,a′). As such, only

one embedding function gq is required, which maps questions to embeddings. This

applies a useful inductive bias, which we find aids stability during training.

Learning the embedding function gq is complicated by the lack of labelled ques-

tion pair paraphrases in ODQA datasets. We propose a latent variable approach,

very similar to RAG (chapter 6),2 where we index training QA-pairs rather than

documents. For an input question q, the top-K QA-pairs (q′,a′) are retrieved by

a retriever pret where pret(q|q′) ∝ exp(gq(q)⊤gq(q′)). These are then fed into a

seq2seq model pgen which generates an answer for each retrieved QA-pair, before

a final answer is produced by marginalising,

p(a|q) = ∑
(a′,q′)∈top-k pret(·|q)

pgen(a|q,q′,a′)pret(q′|q),

As pgen generates answers token-by-token, credit can be given for retrieving help-

ful QA-pairs which do not exactly match the target answer. For example, for the

question “when was the last time anyone was on the moon” and target answer “De-

cember 1972”, retrieving “when was the last year astronauts landed on the moon”

with answer “1972” will help to generate the target answer, despite the answers

having different granularity. After training, we discard pgen,3 retaining only the

question embedder g. We implement pret with ALBERT (Lan et al., 2020) with an

output dimension of 768, and pgen with BART-large (Lewis et al., 2020a). We train

2Other methods, such as heuristically constructing paraphrase pairs assuming that questions with
the same answer are paraphrases, and training with sampled negatives would also be valid, but were
not competitive in early experiments

3We could use pgen as a reranker/aggregator for QA, but in practice find it both slower and less
accurate than the reranker described in Section 8.4.2.2
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with 100 retrieved QA-pairs, and refresh the index every 5 training steps.

Once the embedder gq is trained, we build a test-time QA system by embedding and

indexing a QA KB such as PAQ. Answering is achieved by retrieving the most simi-

lar stored question, and returning its answer. The matched QA-pair can be displayed

to the user, providing a mechanism for more interpretable answers than closed-book

QA models and many retrieve-and-read generators which consume thousands of to-

kens to generate an answer. Efficient MIPS libraries such as FAISS (Johnson et al.,

2019) enable RePAQ’s retriever to answer 100s to 1,000s of questions per second

(see Section 8.5.2.3). We use a KB for RePAQ consisting of train set QA-pairs and

QA-pairs from PAQ.

8.4.2.2 RePAQ Reranker

Accuracy can be improved using a reranker on the top-K QA-pairs from the re-

triever. The reranker uses cross-encoding, and includes the retrieved answer in the

scoring function for richer featurisation. The model is trained as a multi-class clas-

sifier, attempting to classify a QA-pair which answers a question correctly against

K-1 retrieved QA-pairs which do not. For each QA-pair candidate, we concate-

nate the input question q with the QA-pair (q′,a′), and feed it through ALBERT,

and project the CLS representation to a logit score. The model produces a distri-

bution over the K QA-pairs via softmax, and is trained to minimise the negative

log-likelihood of the correct QA-pair.

We obtain training data in the following manner: for a training QA-pair, we retrieve

the top 2K QA-pairs from PAQ using RePAQ’s retriever. If one of the retrieved

QA-pairs has the correct answer, we treat it as a positive, and randomly sample K-1

of the remaining retrieved questions as negatives. We train with K=10, and rerank

50 QA-pairs at test time. The reranker improves accuracy at the expense of speed.

However, as QA-pairs consist of fewer tokens than passages, the reranker is still

faster than retrieve-and-read models, even when using ALBERT-xxlarge.
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8.5 Results
We first examine the PAQ resource in general, before exploring how both closed-

book QA models and RePAQ perform using PAQ, comparing to recently published

systems. We measure performance using Natural Questions (NQ) and TriviaQA,

evaluating using standard Exact Match (EM) score. Both datasets, and the evalua-

tion metrics are discussed in detail in chapter 2.

8.5.1 Examining PAQ

We generate PAQ by applying the pipeline described in Section 8.3 to the Wikipedia

dump described in section 2.5. We use the passage selection model ps to rank all

passages, and then generate QA-pairs from the top 10M passages – roughly the top

50% of the dump – before applying global filtering.4

We are interested in understanding the effectiveness of different answer extractors,

and whether generating more questions per answer span leads to better results. To

address these questions, we create three versions of PAQ, described below:

• PAQL uses a learnt answer extractor, and a question generator trained on NQ

and TQA. We extract 8 answers per passage and use beam size 4 for question

generation. In PAQL,1 we only use the top-scoring question from the beam.

• PAQL,4 uses the same pipeline as PAQL,1, except that all we use all four ques-

tions from the beam, allowing several questions per answer span.

• PAQNE,1 uses the NER answer extractor, and a generator trained on NQ.

PAQNE,1 allow us to assess whether diversity in the form of answer extractors

and question generators gives better results.

The final KB, referred to as just “PAQ”, is the union of PAQL and PAQNE .

As shown in Table 8.1, PAQ consists of 65M filtered QA pairs.5 This was obtained

by extracting 165M answer spans and generating 279M unique questions before

4Generation was stopped when downstream accuracy with RePAQ did not significantly improve.
5Each question only has one answer due to global filtering
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Dataset Extracted
Answers

Unique
Questions

Filtered
QA-pairs Ratio Coverage

NQ TQA

PAQL,1 76.4M 58.0M 14.1M 24.4% 88.3 90.2
PAQL,4 76.4M 225.2M 53.8M 23.9% 89.8 90.9
PAQNE,1 122.2M 65.4M 12.0M 18.6% 83.5 88.3

PAQ 165.7M 279.2M 64.9M 23% 90.2 91.1

Table 8.1: PAQ dataset statistics and ODQA dataset answer coverage. “Ratio” refers to the
number of generated questions which pass the global consistency filter.

# Question Answer Comment

1 who created the dutch comic strip panda Martin
Toonder

✓

2 what was the jazz group formed by john
hammond in 1935

Goodman Trio ✓

3 astrakhan is russia’s main market for what
commodity

fish ✓

4 what material were aramaic documents
rendered on

leather ✓

5 when did the giant panda chi chi died 22 July 1972 ✓, Grammar error
6 pinewood is a village in which country England ∼, Also a Pinewood

village in USA
7 who was the mughal emperor at the battle

of lahore
Ahmad Shah
Bahadur

✗ Confuses with Ahmad
Shah Abdali

8 how many jersey does mitch richmond
have in the nba

2 ✗ His Jersey No. was 2

Table 8.2: Representative Examples from PAQ. ✓indicates correct, ∼ ambiguous and ✗

incorrect facts respectively

applying global filtering. Table 8.1 shows that the PAQL pipeline is more efficient

than PAQNE , with 24.4% of QA-pairs surviving filtering, compared to 18.6%.

PAQ Answer Coverage To evaluate answer extractors, we calculate how many an-

swers in the validation sets of TriviaQA and NQ also occur in PAQ’s filtered QA-

pairs. Table 8.1 shows that the answer coverage of PAQ is very high – over 90% for

both TriviaQA and NQ. Comparing PAQL with PAQNE shows that the learnt extrac-

tor achieves higher coverage, but the union of the two leads to the highest coverage

overall. Comparing PAQL,1 and PAQL,4 indicates that using more questions from

the beam also results in higher coverage.

PAQ Question Generation Quality Illustrative examples from PAQ can be seen in

Table 8.2. Manual inspection of 50 questions from PAQ reveals that 82% of ques-
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# Model Type Model NQ TQA

1 Closed-book T5-11B-SSM (Roberts et al., 2020) 34.8 51.0
2 Closed-book BART-large (Lewis et al., 2021) 26.5 26.7
3 QA-pair retriever Dense QA-pair Retriever (Chapter 7) 26.7 28.9
4 Open-book, retrieve&read RAG-Sequence (Chapter 6) 44.5 56.8
5 Open-book, retrieve&read FiD-large, 100 docs (Izacard and Grave, 2021b) 51.4 67.6
6 Open-book, Phrase Index DensePhrases (Lee et al., 2021) 40.9 50.7

7 Closed-book BART-large, pre-finetuned on PAQ 32.7 33.2
8 QA-pair retriever RePAQ (retriever only) 41.2 38.8
9 QA-pair retriever RePAQ (with reranker) 47.7 50.7
10 QA-pair retriever RePAQ-multitask (retriever only) 41.7 41.3
11 QA-pair retriever RePAQ-multitask (with reranker) 47.6 52.1
12 QA-pair retriever RePAQ-multitask w/ FiD-Large Backoff 52.3 67.3

Table 8.3: Exact Match score for highest accuracy RePAQ configurations in comparison to
recent state-of-the-art systems. Rows 1-6 are existing systems, Rows 7-12 are
models we introduce. Highest score indicated in bold, highest non-retrieve-and-
read model underlined.

tions accurately capture information from the passage and contain sufficient details

to locate the answer. 16% confuse the semantics of certain answer types, either by

conflating similar entities in the passage or by misinterpreting rare phrases (see ex-

amples 7 and 8 in Table 8.2). Finally, we find small numbers of grammatical errors

(e.g. example 5) and mismatched wh-words (5% and 2% respectively).6

Other observations PAQ often contains several paraphrases of the same QA-pair.

This redundancy reflects how information is distributed in Wikipedia, with facts

often mentioned on several different pages. Generating several questions per an-

swer span also increases redundancy. Whilst this means that PAQ could be more

information-dense if a de-duplication step was applied, we later show that RePAQ

always improves with more questions (Section 8.5.2.1). This suggests that it is

worth increasing redundancy for greater coverage.

8.5.2 Question Answering Results

In this section, we shall compare how the PAQ-leveraging models proposed in Sec-

tion 8.4 compare to existing approaches. We primarily compare to a state-of-the-

art retrieve-and-read model, Fusion-in-Decoder (FiD, Izacard and Grave, 2021b),

which was described at the end of chapter 6 and analysed in chapter 7.

6Further details in Appendix H.2



8.5. Results 186

# KB Filtering Method Size
NQ Exact Match Score

Retriever-only + Reranker

1 NQ-Train - 87.9K 27.9 31.8

2 PAQL,1 None 58.0M 21.6 30.6
3 PAQL,1 Local 31.7M 28.3 34.9
4 PAQL,1 Global 14.1M 38.6 44.3
5 PAQL,4 Global 53.8M 40.3 45.2
6 PAQNE,1 Global 12.0M 37.3 42.6

7 PAQ Global 64.9M 41.6 46.4

Table 8.4: The effect of different PAQ subsets on the NQ validation accuracy of RePAQ

Table 8.3 shows the highest-accuracy configurations of our models alongside recent

state-of-the-art models. We make the following observations: Comparing rows 2

and 7 shows that a closed-book QA BART model trained with PAQ outperforms a

comparable NQ-only model by 5%, and is only 2% behind T5-11B (row 1) which

has 27x more parameters. Second, we note strong results for RePAQ on NQ (row

9), actually outperforming RAG-Sequence by 3% (row 4), despite RAG being a

retrieve-and-read model.

Multi-task training RePAQ on NQ and TriviaQA improves TriviaQA results by 1-

2% (comparing rows 8-9 with 10-11). RePAQ does not perform as strongly on

TriviaQA (see Section 8.5.2.6), but is within 5% of RAG, and outperforms concur-

rent work on real-time QA, DensePhrases (row 6, Lee et al., 2021). Lastly, row 12

shows that combining RePAQ and FiD-large into a combined system is 0.9% more

accurate than FiD-large (see Section 8.5.2.4 for more details).

8.5.2.1 Ablating PAQ using RePAQ

Table 8.4 shows RePAQ’s accuracy using different PAQ variants. To establish the

effects of filtering, we evaluate RePAQ with unfiltered, locally-filtered and globally-

filtered QA-pairs from PAQL,1. Rows 2-4 shows that global filtering is crucial,

leading to a 9% and 14% absolute improvement over locally-filtered and unfiltered

QA-pairs respectively.

We also note a general trend in Table 8.4 that adding more globally-filtered ques-
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tions improves accuracy. Rows 4-5 show that using four questions per answer span

is better than generating one (+0.9%), and rows 5-7 show that combining PAQNE

and PAQL also improves accuracy (+1.2%). Empirically we did not observe any

cases where increasing the number of globally filtered QA-pairs reduced accuracy,

even when there were millions of QA-pairs already.

8.5.2.2 System Size vs Accuracy

PAQ’s QA-pairs are accompanied by scores of how likely they are to be asked.

These scores can be used to filter the KB and reduce the RePAQ system size. A

similar procedure can be used to filter the background text knowledge source cor-

pus for a retrieve-and-read model. We compare the system size vs accuracy of a

FiD-large system and RePAQ as the number of items (passages and QA-pairs re-

spectively) in their indexes are reduced. We select which passages and QA-pairs

are included using the passage selection model ps. We measure the bytes required

to store the models, the text of the documents/QA-pairs, and a dense index.

Comparing systems by size can be nuanced, and sensitive to implementation

choices. We take care to minimise these issues by evaluating using two different ex-

perimental settings. In Figure 8.2a, We assume models are stored at FP16 precision,

the text has been compressed using LZMA7, and the indexes use 768 dimensional

vectors, and Product Quantization (Jégou et al., 2011). These are typical settings

when building efficient systems (Izacard et al., 2020; Min et al., 2021). The RePAQ

model consists of an ALBERT-base retriever and ALBERT-xxlarge reranker, and the

FiD system consists of DPR (Karpukhin et al., 2020) (two BERT-base models) and a

T5-large reader (Raffel et al., 2020). Using a different setup (full precision models,

no text compression, and FP16 index quantization), is shown in Figure 8.2b. This

shifts the position of the curves, but the qualitative relationship is unchanged.

The figures show that both FiD and RePAQ system sizes can be reduced several-fold

with only a small drop in accuracy, demonstrating the effectiveness of ps. FiD can

achieve a higher accuracy, but requires larger system sizes. RePAQ can be reduced

7https://tukaani.org/xz/

https://tukaani.org/xz/
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Figure 8.2: System Size in GB vs. EM score for RePAQ and FiD-large as a function of the
number of items in the index.

Figure 8.3: Model sizes for winning systems at EfficientQA, reproduced from Min et al.
(2021). The QA-pair retrievers are our early prototypes of RePAQ, which won
two tracks of the competition.

to a smaller size before a significant accuracy drop, driven primarily by the higher

information density of QA-pairs relative to passages, and fewer model parameters

used by RePAQ compared to FiD.

We demonstrated the efficacy of QA-pair retrievers at the efficientQA NeurIPS com-

petition (Min et al., 2021). Here, the challenge was to build the smallest ODQA sys-

tems, measured by docker image size, while maximising performance on a held-out

test set of NaturalQuestions. Our QA-pair retriever entries, which were prototypes

of RePAQ, won two tracks of the competition: i) the smallest model capable of

25% accuracy, which we won with a submission of a 29 Mb system scoring 27%

EM, and ii) the highest accuracy model less than 500Mb, which we won with a

submission of 336Mb which score 33.4% EM. Figure 8.3 shows our system sizes

in context with other winners and runners-up in the competition.
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Model Retriever Reranker Exact Match Q/sec

FiD-large - - 51.4 0.5
FiD-base - - 48.2 2

RePAQ base - 40.9 1400
RePAQ xlarge - 41.5 800

RePAQ base base 45.7 55
RePAQ xlarge xxlarge 47.6 6

Table 8.5: Inference speeds of various configurations of RePAQ and FiD on NQ

8.5.2.3 Inference Speed vs Accuracy

We train a variety of differently sized RePAQ models to explore the relationship

between accuracy and inference speed. We use a Hierarchical Navigable Small

World (HNSW) index in FAISS (Malkov and Yashunin, 2020; Johnson et al., 2019)8

and measure the time required to evaluate the NQ test set on a system with access to

one GPU (see Appendix H.3 for system details) Table 8.5 shows the results. Some

retriever-only RePAQ models can answer over 1,000 questions per second, and are

relatively insensitive to model size, with ALBERT-base only scoring 0.5% lower than

ALBERT-xlarge. They also outperform retrieve-and-read models REALM (40.4%,

Guu et al., 2020) and recent real-time QA models like DensePhrases (40.9%, Lee

et al., 2021). We find that larger, slower RePAQ rerankers achieve higher accuracy.

However, even the slowest RePAQ is 3x faster than FiD-base, whilst only being

0.8% less accurate, and 12x faster than FiD-large.

8.5.2.4 Selective Question Answering

Models should not just be able to answer accurately, but also “know when they don’t

know”, and abstain when they are unlikely to give good answers (Voorhees, 2002a).

This task challenges current models (Asai and Choi, 2021; Jiang et al., 2020b), and

has been approached in RC by training on unanswerable questions (Rajpurkar et al.,

2018) and using incremental QA for Quizbowl (Rodriguez et al., 2019).

We find that RePAQ’s retrieval and reranking scores are well-correlated with an-

swering correctly. RePAQ can thus be used for selective QA by abstaining when the

score is below a certain threshold. Figure 8.4a shows a risk-coverage plot (Wang

8The HNSW index has negligible (∼0.1%) drop in retriever accuracy compared to a flat index
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Figure 8.4: Risk-coverage plot for FiD and RePAQ for a) NQ and b) TriviaQA

et al., 2018e) for RePAQ and FiD on NQ, where we use FiD’s answer log probabil-

ity for its answer confidence.9 The plot shows the accuracy on the top N% highest

confidence answers for NQ. If we require models to answer 75% of user questions,

RePAQ’s accuracy on the questions it does answer is 59%, whereas FiD, which has

poorer calibration, scores 55%. This difference is more pronounced with stricter

thresholds: at 50% coverage, RePAQ outperforms FiD by over 10%. FiD only out-

performs RePAQ when we require systems to answer over 85% of questions.

For TriviaQA (Figure 8.4b), the results are qualitatively similar to NQ, although

FiD’s stronger overall performance shifts its risk-coverage curve up the accuracy

axis relative to RePAQ. FiD also appears to be better calibrated on TriviaQA than it

9We also investigate improving FiD’s calibration using an auxiliary model, see Appendix H.4.
We find that the most effective way to calibrate FiD is to use RePAQ’s confidences
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Input: who was the film chariots of fire about A: Eric Liddell

who was the main character in chariots of fire A: Eric Liddell ✓
who starred in the movie chariots of fire A: Ian Charleson ✗
which part did straan rodger play in chariots of fire A: Sandy McGrath ✗
who played harold in the 1981 film chariots of fire A: Ben Cross ✗
who is the main character in chariots of fire A: Eric Liddell ✓

Input: what is the meaning of the name didymus A: twin

what language does the name didymus come from A: Greek ✗
where does the name didymus come from in english A: Greek ✗
what does the word domus mean in english A: home ✗
how long has the term domus been used A: 1000s of years ✗
what does the greek word didyma mean A: twin ✓

Input: what is the name of a group of llamas A: herd

what are llamas and alpacas considered to be A: domesticated ✗
what are the figures of llamas in azapa valley A: Atoca ✗
what are the names of the llamas in azapa valley A: Atoca ✗
what is the scientific name for camels and llamas A: Camelidae ✗
are llamas bigger or smaller than current forms A:larger ✗

Table 8.6: Examples of top 5 retrieved QA-pairs for NQ. Italics indicate QA-pairs chosen
by reranker.

is for NQ, indicated by higher gradient. However, RePAQ remains better calibrated,

outperforming it for answer coverages below 50%.

Whilst RePAQ’s selective QA is useful in its own right, it also allows us to combine

the slow but accurate FiD with the fast and precise RePAQ, which we refer to as

backoff. We first try to answer with RePAQ, and if the confidence is below a thresh-

old determined on development data, we pass the question onto FiD. For NQ, the

combined system is 2.1x faster than FiD-large, with RePAQ answering 57% of the

questions, and the overall accuracy is 1% higher than FiD-large (Table 8.3).

If inference speed is a priority, the threshold can be decreased so that RePAQ an-

swers 80% of the questions, which retains the same overall accuracy as FiD, with a

4.6x speedup. For TriviaQA, the combined system backs off to FiD earlier, due to

the stronger relative performance of FiD.

8.5.2.5 Analysing RePAQ’s Predictions

Some examples of top retrieved questions are shown in Table 8.6. When RePAQ

answers correctly, the retrieved question is a paraphrase of the test question from
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PAQ in 89% of cases. As such, there is high (80.8 ROUGE-L) similarity between

correctly answered test questions and the top retrieved questions. 9% of test ques-

tions even exist verbatim in PAQ, and are thus trivial to answer. The reranker pri-

marily improves over the retriever for ambiguous cases, and cases where the top

retrieved answer does not have the right granularity. In 32% of cases, RePAQ does

not retrieve the correct answer in the top 50 QA-pairs, suggesting a lack of cov-

erage may be a significant source of error. In these cases, retrieved questions are

much less similar to the test question than for correctly answered questions, drop-

ping by 20 ROUGE-L. We also observe cases where retrieved questions match the

test question, but the answer does not match the desired answer. This is usually due

to different answer granularity, but in a small number of cases is due to factually

incorrect answers.

8.5.2.6 Does the Filtering Model Limit RePAQ’s Accuracy?

As RePAQ relies on retrieving paraphrases of test questions, we may expect that the

ODQA filtering model places an upper bound on it’s performance. For example,

if a QA-pair is generated which overlaps with a test QA-pair, but the filter cannot

answer it correctly, that QA-pair will not be added to PAQ, and RePAQ cannot use

it to answer the test question. The NQ FiD-base-50-doc model used for filtering

scores 46.1% and 53.1% for NQ and TriviaQA respectively. RePAQ actually out-

performs the filter model on NQ by 1.6%. This is possible because generated ques-

tions can be phrased in such a way that they are easier to answer, e.g. being less

ambiguous (Min et al., 2020). RePAQ can then retrieve the paraphrased QA-pair

and answer correctly, even if the filter could not answer the test question directly.

The filtering model’s weaker scores on TriviaQA helps explain why RePAQ is not

as strong on this dataset. We speculate that a stronger filtering model for TriviaQA

would in turn improve RePAQ’s results.

8.5.3 Closed-book QA vs RePAQ

Table 8.7 shows results on the behavioural memorisation test set splits which we in-

troduced in chapter 7. These splits measure how effectively models memorise QA-
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Closed-book QA BART NQ 26.5 67.6 10.2 0.8

Closed-book QA BART NQ+PAQ 28.2 52.8 24.4 9.4
+ final NQ finetune NQ+PAQ 32.7 69.8 22.2 7.5

RePAQ NQ 31.3 78.1 14.3 0

RePAQ NQ+PAQ 47.3 73.5 39.7 26.0

Table 8.7: Results for closed-book BART and RePAQ on the QA-overlap behavioural splits
from chapter 7 for NQ.

pairs from the NQ train set (“Question overlap”), and generalise to novel questions

(“Answer-only overlap” and “No overlap”). Comparing closed-book QA models

trained on NQ vs those trained on NQ and PAQ show that models trained with PAQ

answer more questions correctly from the “Answer-only overlap” and “No overlap”

categories, indicating that they have learnt facts not present in the NQ train set. Ap-

plying further NQ finetuning on the PAQ closed-book QA model improves scores

on “Question overlap” (indicating greater memorisation of NQ), but scores on the

other categories drop (indicating reduced memorisation of PAQ).

RePAQ, which explicitly retrieves from PAQ rather than trying to memorise it in pa-

rameters, strongly outperforms the closed-book QA model in all categories, demon-

strating that the closed-book QA model struggles to memorise enough facts from

PAQ. Note how when RePAQ is supplied with NQ, its performance on “No-overlap”

questions is zero, i.e. it cannot generalise to answers not present in its training data.

However, when it is supplied with PAQ, it scores 26% in this generalisation cate-

gory, effectively achieving generalisation by “memorisation” of PAQ.

We note that higher parameter-count closed-book QA models be better able to mem-

orise PAQ, but have downsides in terms of system resources. Future work should

address how to better store PAQ in closed-book QA model parameters.
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8.6 Related Work
In this section, we shall highlight work of specific relevance to this chapter, which

has not already been discussed.

KBQA A number of early approaches in ODQA focused on using structured

KBs (Berant et al., 2013) such as Freebase (Bollacker et al., 2008), with recent

examples from Févry et al. (2020) and Verga et al. (2020). This approach often has

high precision but suffers when the KB doesn’t match user requirements, or when

the schema limits what knowledge can be stored. We populate our KB with semi-

structured QA-pairs, specifically designed to be relevant at test time, mitigating

such drawbacks, but sharing benefits such as precision and extensibility.

OpenIE Our work in this chapter touches on KB construction and open information

extraction (OpenIE) (Angeli et al., 2015). Here, the goal is to extract structured or

semi-structured facts from text, typically (subject, relation, object) triples for use

in tasks such as slot-filling (Surdeanu, 2013). We generate natural language QA-

pairs rather than OpenIE triples, and do not attempt to extract all possible facts in a

corpus, focusing only on those likely to be asked. QA-pairs have also been used in

semantic role labelling, e.g. QA-SRL (FitzGerald et al., 2018).

Predictive Annotation, Phrase Indices and Real-time ODQA (Prager et al.,

2000) introduce an early phrase indexing method, where potential answers in text

are identified, and indexed. This method resembles modern phrase index models,

and the answer extraction part of the PAQ generation pipeline. Systems prioritising

fast runtime over accuracy are sometimes referred to as real-time QA systems (Seo

et al., 2018). DenSPI (Seo et al., 2019) and followup work, DensePhrases (Lee

et al., 2021), index all possible phrases in a corpus, and learn mappings from ques-

tions to passage-phrase pairs. These methods are described in more detail in section

2.4.2.3 in the background chapter. We also build an index for faster answering,

but generate and index globally answerable questions rather than phrases. Indexing

QA-pairs could be considered as indexing summaries of important facts from the

corpus, rather than indexing the corpus itself. We also generate and store multiple

questions per passage-answer pair, relieving information bottlenecks from encoding
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a passage-answer pair into a single vector.

Question Generation for QA Question generation has been used for various pur-

poses, such as data augmentation (Alberti et al., 2019; Lee et al., 2021), improved

retrieval (Nogueira et al., 2019), generative modelling for contextual QA (Lewis

and Fan, 2018), as well as being studied in its own right (Du et al., 2017; Hosking

and Riedel, 2019). We also used it to induce unsupervised RC models in chapter

3. Serban et al. (2016) generate large numbers of questions from Freebase, but

do not address how to use them for QA. Closest to our work is the recently pro-

posed OceanQA (Fang et al., 2020). OceanQA first generates contextual QA-pairs

from Wikipedia. At test-time, a document retrieval system is used to retrieve the

most relevant passage for a question and the closest pre-generated QA-pair from

that passage is selected. In contrast, we focusing on generating a large KB of non-

contextual, globally consistent ODQA questions and explore what QA systems are

facilitated by such a resource.

8.7 Discussion and Conclusion
In this chapter, we have introduced a dataset of 65M QA-pairs, and explored its uses

for improving non-traditional ODQA models. We demonstrated the effectiveness

of RePAQ, a QA-pair retriever class model which retrieves from PAQ, in terms of

accuracy, speed, space efficiency and selective QA.

We also demonstrated PAQ’s utility for improved closed-book QA, but note a large

accuracy gap between our closed-book QA models and RePAQ. Exploring the trade-

offs between storing and retrieving knowledge parametrically or non-parametrically

is of great current interest, both in our thesis, and in general in the field (Lewis

et al., 2020b; De Cao et al., 2021b), and PAQ should be a useful testbed for probing

this relationship further. We also note that PAQ could be used as general data-

augmentation when training any open-domain QA model or retriever. We consider

such work out-of-scope here, but we note that Oguz et al. (2021) have reported using

PAQ as data augmentation improves DPR on NQ by 9% recall@5, and R-precision

on the KILT benchmark by 7% (Petroni et al., 2021). This retrieval improvement
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will, in turn, transfer to stronger downstream retrieve-and-read models.

We found that RePAQ’s errors are driven by a lack of coverage, thus generating

more QA-pairs could improve accuracy further. However, phenomena such as com-

positionality will eventually impose practical limits on this approach. Multi-hop

RePAQ extensions suggest themselves as ways forward here, as well as back-off

systems (see Section 8.5.2.4). Indeed, models like RePAQ will be best utilised in

back-off configurations in practical settings, where it may be important to capture

the tail of the distribution and generalise, something that the latest retrieve-and-

read models like FiD are stronger for, but also to exploit the benefits of speed and

controlability in the average case, which RePAQ is well suited for.

A key limitation is that generating PAQ-style collections is computationally inten-

sive due to its large scale and global filtering requirements. This being said, it

should be a useful, re-usable resource for researchers. Since its public release, PAQ

has been used for a variety of purposes beyond those we use it for in this chap-

ter (Oguz et al., 2021; Sciavolino et al., 2021; Kharitonov et al., 2021; Ye et al.,

2021; Chen et al., 2021). Nevertheless, future work should be carried out to im-

prove the efficiency of generation, in order to improve applicability. Relaxing the

requirement for global filtering should be a key target for future work, since despite

its efficacy, it is the most expensive step by far, and also aggressively filters gen-

erated questions, placing an upper bound on coverage, and hence the downstream

performance.



Chapter 9

Conclusions

In this thesis, we have explored a series of problems in text-based RC and ODQA by

employing retrieval and generation techniques. Following introductory and back-

ground material in Chapters 1 and 2, we have considered how to perform RC with-

out RC annotations in Part I, retrieval-augmented ODQA in Part II and explored the

relationship between memorisation and generalisation in ODQA in Part III.

9.1 Summary of Contributions
In this section, we shall summarise our major contributions and findings, grouped

qualitatively into themes.

9.1.1 Datasets

We have developed and publicly released a number of new datasets and resources

for the research community. We have introduced a large, high-quality evaluation

dataset for multi-lingual RC in 7 languages, which has seen extensive subsequent

adoption both for multi-lingual QA, but also for general multilingual NLU, includ-

ing integration into aggregated multilingual NLU benchmarks XGLUE (Liang et al.,

2020) and XTREME (Hu et al., 2020). We have also provided generalisation meta-

annotations for popular ODQA test sets. These annotations enable stronger bench-

marking, and have been used widely by the community (Cheng et al., 2021; Fajcik

et al., 2021; Reddy et al., 2021b; Mao et al., 2021) Finally, we introduced a very
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large resource of high-quality generated question-answer pairs, which has subse-

quently seen use for dense retrieval (Oguz et al., 2021; Sciavolino et al., 2021) and

as a tool for studying memorisation (Kharitonov et al., 2021) and distillation (Ye

et al., 2021; Chen et al., 2021).

9.1.2 Unsupervised QA and Zero-Shot Transfer

We have introduced the task of unsupervised RC, and proposed a method which

enables unsupervised RC at the level of early supervised approaches. Subsequent

work has built on our contribution, spawning a sub-field in the RC research com-

munity (Fabbri et al., 2020; Li et al., 2020; Hong et al., 2020; Bian et al., 2021).

We have also made contributions towards unsupervised ODQA, demonstrating that

unsupervised models can outperform early supervised ODQA systems. Finally, we

performed a detailed study of zero-shot cross-lingual transfer in RC, and demon-

strated that multi-lingual pretrained models show great promise towards QA sys-

tems which do not require in-language training data.

9.1.3 Retrieval-Augmented Models

We demonstrated the effectiveness of retrieval-augmentation to improve the factu-

ality of pretrained language models. In addition, we introduced a class of retrieval-

augmented, end-to-end-trainable seq2seq model. This model is trained using only

pairs of input-output sequences, and acts as a drop-in replacement for popular pre-

trained seq2seq models. We demonstrated the flexibility of this model across clas-

sification, short-answer and generation formats, and showed its strong performance

on knowledge-intensive tasks. Partially inspired by our contributions, this area has

spawned exciting developments in retrieval-augmented models in a wide range of

applications, such as dialogue (Shuster et al., 2021), slot-filling (Glass et al., 2021),

code generation (Liu et al., 2021b) and KBQA (Das et al., 2021).

9.1.4 Parametric vs non-Parametric Knowledge

We have investigated the strengths and weaknesses of parametric and non-

parametric methods of storing knowledge. We have demonstrated that where

parametric knowledge is present, augmentation with non-parametric knowledge
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improves our ability to leverage it. We have further explored limitations of para-

metric memory, demonstrating that parametric knowledge models suffer from a

capacity problem, whereas non-parametric techniques are not limited in the same

way. Whilst this may be mitigated by the development of ever larger parameter-

count models, non-parametric knowledge has the advantage of being flexible, and

effectively unbounded. Lastly, we have demonstrated the propensity of parametric-

memory models to memorise their fine-tuning data, as well as struggling to apply

knowledge from pretraining time, with has implications for closed-book QA.

9.1.5 Flexible, Efficient and low-latency ODQA Models

Besides the aforementioned flexible retrieval-augmented seq2seq models, we de-

veloped a class of ODQA model based on the concept of retrieving from a semi-

structured knowledgebase of question-answer pairs. We demonstrated this ap-

proach’s low-latency compared to other methods, and validated its space-efficiency

in community shared tasks. We also showed its strength in selective QA, and devel-

oped a simple but effective strategy for how to combine it with slower, more general

models to achieve a combination of low-latency and state-of-the-art accuracy.

9.2 Limitations and Future Work
Finally, we shall revisit our main contribution areas to summarise their limitations,

and indicate areas for future work, before moving onto some broader trends that we

expect to see in ODQA and knowledge-intensive NLP in upcoming years.

9.2.1 Direct Reflections and Future Work

9.2.1.1 Datasets

There are a number of limitations of MLQA. First, since MLQA is designed

to closely match SQuAD v1, it inherits many of its limitations, such as overly-

encouraging lexical and answer-type pattern matching. Indeed our dataset con-

struction method may exacerbate such issues, especially if one were to train on

instances from MLQA. Moreover, our dataset construction method, and those of

contemporary efforts (Artetxe et al., 2020) are at risk of overly-representing topics
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of interest to English-speaking cultural backgrounds. This could come at the ex-

pense of the cultures the languages that we evaluate on are rooted in. We also note

that whilst we were able to significantly reduce the amount of manual translation,

which is known to cause data artefacts (Lembersky et al., 2011; Volansky et al.,

2015), we did not remove it entirely. We highlight TyDiQA (Clark et al., 2020) as

a promising step forward in terms of multilingual QA design, which address many

of these limitations, despite lacking parallel instances, issues with cross-language

comparisons, and still relying on crowdsourced questions. Lastly, we did not anno-

tate unanswerable questions in our dataset, which have been shown to be important

for high-quality RC systems (Rajpurkar et al., 2018). We further note that whilst

the multilingual RC task is now relatively well-established, the area of multilin-

gual ODQA is some way behind. We see promising datasets in this area from Asai

et al. (2021) and Longpre et al. (2021), although these re-purpose existing datasets

(TyDiQA and NQ respectively), inheriting some of their issues.

With respect to our behavioural annotations on existing ODQA datasets, we note

that the number of instances in our annotated subsets are small, making cross-model

comparison less reliable. We also note our annotations only represent a small facet

of generalisation behaviour. In particular, whilst our annotations identify questions

that only require simple memorisation, they tell us relatively little about the reason-

ing skills required to answer other types of questions. We believe there is a great

value in meta-annotating popular test sets to better understand the generalisation

and reasoning abilities of current and future models. We hope to see more area in

this work, in the vein of Sciavolino et al. (2021), who recently demonstrated the

weakness of dense retrievers on entity-centric questions and Liu et al. (2021a) who

develop annotations for compositional generalisation. We hope that future datasets

and tasks should be developed with behavioural splits specifically in mind, in order

to avoid periods of misleading evaluation.

Lastly, turning to PAQ, we note that whilst our generation method is empirically

effective, its major limitation is its computational cost. The global filtering method
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is important for high-quality generation, but it is slow and inefficient, limiting ap-

plicability. Moreover, the global filtering requirement presupposes the availability

of a high-quality ODQA system. Even with global filtering, a significant number

of incorrect questions pass through into the dataset, and a high number of questions

that are correct get removed due to the limited accuracy of the filter. Future work

should look to lift the requirement to apply a global filter, and more generally work

to improve efficiency for factual, non-hallucinatory question generation.

9.2.1.2 Unsupervised QA and Zero-Shot Transfer

Our work in unsupervised RC has a number of limitations. Firstly, we assume

access a high-quality prior over answers, in the form of a noun phrase or entity

mention recognition model, in addition to a constituency parser. If these require-

ments could be lifted, it would greatly open up the applicability of the technique.

Furthermore, our unsupervised question generator generates a substantial number

of low quality or accidentally unanswerable questions. Moreover, the QA behaviour

induced in the final model is basic, and brittle. A number of works have suggested

improvements to our technique, with some modest gains in accuracy, but this usu-

ally comes with additional heuristics. The unsupervised requirement for RC, whilst

an interesting and informative exercise, is perhaps counterproductive for creating

practical low data RC models. It is our opinion that few-shot and transfer-learning

approaches are more appropriate going forward. This area has greatly increased in

popularity recently, and we expect there to be many innovations in few-shot mod-

elling that will directly feed into better low-data RC models.

Our work in zero-shot ODQA also has limitations. We only tackle the task of cloze-

style ODQA with single-word answers, drawn from the LAMA probe (Petroni et al.,

2019). Answering natural questions, and questions with multi-word answers rep-

resents important future work in this area. We would also like to delineate two

potentially-confounded reasons to study unsupervised ODQA. The first is for prob-

ing how well models capture and apply knowledge. The second is for attempting to

build stronger ODQA models, without using annotations. Our work in this area falls
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into the former category. Future work that tackles the latter should be careful about

using datasets that were created for the former, and unintentionally “overfitting”.

As a result, we suggest such work should evaluate against standard ODQA datasets

such as NQ and TriviaQA, rather than probing style ones like LAMA, following the

example of recent work from Zhu et al. (2021). We would also advocate that such

non-probing work would be more appropriately formulated as a few-shot task. We

also demonstrated the utility of BERT’s next-sentence-prediction task for zero-shot

ODQA, which increased the model’s robustness to noise in retrieved documents.

Such pretraining objectives have fallen out of favour, likely due to an emphasis

on evaluation procedures rewarding other behaviours. We suggest that future work

considering pretraining objectives from a wider perspective would be fruitful.

9.2.1.3 Retrieval-Augmented Models

The retrieval-augmented generators presented in chapter 6 can struggle to surface

relevant documents for a downstream task that is very different to the one they

were pretrained on. The generator is also free to learn to only weakly-condition

on retrieved documents, or even ignore them. These two issues combined can lead

to instability. Future work to address these key issues is needed in order to truly

realise the potential of this modelling framework. This requires improvements to

more generalised ad-hoc retrievers, with recent promising developments spurred

by benchmarks designed to test the generalisation in retrieval (Thakur et al., 2021).

Future work on training objectives which encourage retrieval-augmented generators

to make the maximum use of the documents should also improve stability. Models

which pass messages between documents earlier, such as FiD (Izacard and Grave,

2021b) empirically outperform RAG, but are challenging to train end-to-end. Future

work to train earlier fusion models end-to-end will be fruitful, and we are excited

by promising recent attempts, such as by Sachan et al. (2021).

9.2.1.4 Parametric vs Non-Parametric Models

An intense interest in prompting (which the retrieval-augmentation strategy from

chapter 5 could be considered an input-dependent special case of) has recently

emerged. We expect that this interest, mostly motivated for few-shot learning,
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will also translate to improved parametric knowledge probing. Indeed, we have al-

ready seen this line of work begin to bear fruit, with auto-prompting and continuous

prompting work showing strong results on LAMA (Jiang et al., 2020a; Shin et al.,

2020; Liu et al., 2021c; Zhong et al., 2021; Qin and Eisner, 2021). Many of these

probing advances are orthogonal to retrieval-augmentation, and could be applied

in combination in future work. Moreover, optimising probing techniques specifi-

cally for retrieval-augmented inputs could be fruitful way forward for strong hybrid

knowledge models. Taking a step back, work on systematic description and evalua-

tion of parametric knowledge in needed, as well as additional and stronger probing

sets. Efforts like BeliefBank (Kassner et al., 2021) show promise here.

We also highlighted updatability and interpretability issues for parametric knowl-

edge. Future work that attempts to shed light on closed-book QA would aid inter-

pretability, with influence functions perhaps being a promising way forward (Koh

and Liang, 2017; Chen et al., 2020). Updating the knowledge in pretrained models

is also an area in its infancy (De Cao et al., 2021a; Dai et al., 2021).

Understanding how parametric knowledge scales with parameter count is an active

area of research. In our contributions we limited ourselves mostly to models below

one billion parameters. However, it is increasingly clear that models beyond one

billion parameters can behave qualitatively differently (Brown et al., 2020; Kirstain

et al., 2021, inter alia.) As a result, caution should be exercised in directly extrap-

olating the results we have observe onto extremely large models. Nevertheless, we

expect that non-parametric components will still remain an effective way of obtain-

ing knowledge for modelling, whilst being much more energy-efficient and acces-

sible, and thus have an important part to play in future model development.

9.2.1.5 Efficient and low-latency Models

We have demonstrated effective strategies for efficient and low-latency test-time

ODQA models. However, it is worth highlighting a few limitations. First, although

we are able to achieve space-efficiency, low-latency and accuracy using RePAQ,

it is still challenging to find operating points for a single model that perform well
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on all three criteria simultaneously. A further issue is that whilst we can build

very space-efficient and low-latency models at test time, this is not the case for

training time. In particular, as mentioned above, the generation process for PAQ,

which is required for RePAQ to perform well, is slow and expensive relative to

training standard models. This is justifiable if the generated resource sees significant

use, which we have seen with PAQ, but in general, is not a sustainable strategy,

unless generation can be made significantly faster and cheaper. Trading expensive

training for cheaper inference is also justifiable if the model will see significant

inference usage, such as being employed in a web-scale product. Making faster,

smaller and cheaper ODQA models which can still retain accuracy is an important

area for future work. We hope that the popularity of efforts like EfficientQA (Min

et al., 2021) will grow, enabling this area to flourish.

9.2.2 Broader Outlook

Here, we draw the thesis to a close by picking up on some broader areas for future

work, and some trends we expect, or hope, to see in the field in future.

Beyond factoid and span-based QA We have concerned ourselves mainly with

span-based, short answer factoid QA. This is attractive for its comparatively simple

modelling paradigm, and its ease of evaluation. However, ultimately, we should

move beyond this paradigm, towards fully free-form answers. The length and depth

of an answer should be predicated on the type of question being asked, as well as

some contextual knowledge about the person or entity asking the question. For ex-

ample, asking for a description or explanation should elicit a relatively long answer,

whereas a simple relational questions should receive short answers. Datasets pro-

moting this area have been proposed, such as Eli5 (Fan et al., 2019) amongst others,

but useful, non-hallucinatory systems have yet to firmly establish themselves. We

suggest that the fields of knowledge-grounded dialogue and ODQA, which broadly

seek to solve the same set of problems, will grow closer and perhaps coalesce for

the next generation of QA (Qu et al., 2020; Anantha et al., 2021).

Evaluation In general, evaluation methods in the area of ODQA are in need of

improvement. Our current popular evaluation metrics (Exact Match, F1) are rela-
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tively crude assessors of QA performance, due to limited numbers of references,

and lack answer equivalence recognition. Careful development of model-assisted

evaluation metrics may be appropriate. The need for stronger evaluation protocols

is more pressing if we are to expand more confidently into free-form answering,

where standard EM and F1 break down, and metrics such as BLEU and ROUGE

are not significantly better. We also need to establish and adopt procedures for

assessing equity, societal bias and other harms in QA models. Whilst this is a prob-

lem across NLP, it is perhaps more pressing in QA systems, which are more likely

to be user-facing than most models, and thus more capable of harm. This must

be assessed from the perspectives of how models behave on certain types of ques-

tions, but also by examining the appropriateness and representative nature of the

knowledge sources we use as well. Recent work suggest that whilst current ODQA

models may not exhibit acutely problematic behaviour on standard benchmarks, the

benchmarks themselves do not contain a broad-enough coverage topics to properly

assess demographic issues (Gor et al., 2021).

Another broad key area for future work is the proper assessment of distributional

change for ODQA systems. ODQA systems generalise relatively weakly across

different test question datasets, and can even degrade on datasets collected using

identical methodology, collected a few weeks apart (Min et al., 2021). It is highly

likely that state-of-the-art ODQA models generalise poorly across time, and their

performance on time-static baselines is misleading. Thus, establishing how quickly

performance degrades with time, and developing an agreed-upon metric for mea-

suring lifelong performance is important (Lazaridou et al., 2021). This will require

us to reduce our reliance on static test sets (Kiela et al., 2021). In turn this should

encourage the development of life-long learning models, an area that deserves great

attention, especially as pretraining becomes more expensive.

Growth of parametric knowledge It is inevitable that model parameter counts will

continue to grow, and this will be accompanied by enhanced parametric knowl-

edge. As such, we expect very large parametric knowledge-only models to soon

perform competitively with other ODQA approaches. We reiterate that this comes
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with drawbacks in terms of interpretability, providence, updatability and efficiency.

There is much work to do in order to mitigate these issues before closed-book QA

models can be used responsibly in practical QA applications.

Multi-modality There are already deeply established lines of work on QA with tex-

tual knowledge sources, and structured KBQA, and QA leveraging semi-structured

sources. Work on models that draw on several modalities to answer questions is

less common, but is growing in popularity (Talmor et al., 2021; Oguz et al., 2020).

Knowledge that is frequently expressed in one modality may be less prevalent in

another, such as the action of physics on objects being much more obvious in video

than text. Thus tackling multi-modal knowledge is important for building complete-

knowledge models, which we expect to be a prominent theme in future work.

Green AI There is growing awareness of the environmental impact of AI re-

search (Strubell et al., 2019). We expect work that emphases more efficient models

to be high-impact, and hardware-software co-design for neural models to become

increasingly relevant. Tools to track the carbon emissions from research should be

widely adopted, and estimated emissions reported in publications (Lacoste et al.,

2019; Schmidt et al., 2021). The environmental impacts of this thesis are assessed

in Appendix B.2.



Appendix A

Open-sourced Materials

• Code, models and data to support chapter 3 can be found at https://github.

com/facebookresearch/UnsupervisedQA

• The MLQA dataset and evaluation scripts introduced in chapter 4 are publicly

available at https://github.com/facebookresearch/mlqa

• The LAMA dataset and tools for running experiments such as those in chapter

5 are available at https://github.com/facebookresearch/LAMA

• RAG is freely-available as part of HuggingFace Transformers (Wolf et al.,

2020) at https://github.com/huggingface/transformers. Scripts to run ex-

periments with RAG can be found at https://github.com/huggingface/

transformers/blob/master/examples/rag/README.md and an interac-

tive demo of a RAG model can be found at https://huggingface.co/rag/

• Data and evaluation code to support the analysis in Chapter 7 is publicly

available at https://github.com/facebookresearch/QA-Overlap

• Data, models and code supporting chapter 8 are available at https://github.

com/facebookresearch/PAQ. This includes all the PAQ data and RePAQ

models, including a memory-efficient RePAQ retriever designed for use with

modest hardware.

https://github.com/facebookresearch/UnsupervisedQA
https://github.com/facebookresearch/UnsupervisedQA
https://github.com/facebookresearch/mlqa
https://github.com/facebookresearch/LAMA
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers/blob/master/examples/rag/README.md
https://github.com/huggingface/transformers/blob/master/examples/rag/README.md
https://huggingface.co/rag/
https://github.com/facebookresearch/QA-Overlap
 https://github.com/facebookresearch/PAQ
 https://github.com/facebookresearch/PAQ
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Engineering Details

B.1 Hardware Details
The majority of experiments performed in this thesis were performed using a ma-

chine learning workstation with 80 CPU cores, 512GB of CPU RAM and access to

8 32GB NVIDIA V100 GPUs. For the experiments in chapters 3, 4, 5, only one

GPU was used for training and inference. For chapter 6, models were trained with

either 8 GPUs using the whole workstation node, or occasionally 16 GPUs for ex-

pedited training, using two nodes, and up to 128 GB of CPU RAM was required for

developing indexes. For chapter 7, experiments did not require any significant com-

putational resources. Lastly, for chapter 8, which uses the heaviest use of compute,

8 GPUs were used for training models, and up to 128 GB of CPU RAM was re-

quired for indexes. See Appendix H.5 for further details on training for the RePAQ

and Closed-book QA models in chapter 8. Generation of PAQ was parallelised

across 100 GPUs (distributed over a compute cluster) for approximately 1 week of

continuous runtime.

Hyperparameter sweeps were used throughout the experiments when training mod-

els in this thesis, which were usually parallelised across a compute cluster to save

time, with each parallel job requiring the resources stated above. Typically these

sweeps would be over a handful (∼2-10) of hyperparameter settings. Inference for
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all models developed in this thesis can be run on a single GPU, and require up to

32GB of CPU memory for indices.

B.2 Environmental Impact
All experiments were carried out using electricity from 100% renewable, non-CO2

emitting sources, in a data-centre with a power-effective usage (PUE) index of 1.1.

In theory, the experiments run in this thesis produced net-zero CO2 emissions. How-

ever, the picture is complex, and the emissions embodied in the construction of the

hardware, and other factors should be included in a proper estimation of environ-

mental impact. Thus in practice, there are net CO2 emissions resulting from these

experiments, but accurate estimation is nontrivial. Future good practice should use

emission estimation tools such as CodeCarbon (Schmidt et al., 2021), which can

calculate estimated energy usage and emissions by tracking compute. Regrettably,

we were not aware of such tools during our experiments, but shall adopt them in

future work, and encourage the community to do the same.

The work in this thesis was also supported by air travel between London and Flo-

rence, New York and Hong Kong, which is estimated at 4.85 tonnes of effective CO2

including radiative forcing. This was mitigated by 15 tonnes of carbon offset credits

conforming to the ISO 14064 and GHG Emissions Protocol Standards.
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Appendices for Unsupervised

Reading Comprehension by Cloze

Translation

C.1 Cloze Featurization and Translation

Cloze questions are featurized as follows. Assume we have a cloze question ex-

tracted from a paragraph “the Paris Sevens became the last stop on the calendar

in .”, and the answer “2018”. We first tokenize the cloze question, and discard

it if it is longer than 40 tokens. We then replace the “blank” with a special mask

token. If the answer was extracted using the noun phrase chunker, there is no spe-

cific answer entity typing so we just use a single mask token “[MASK]”. However,

when we use the named entity answer generator, answers have a named entity label,

which we can use to give the cloze translator a high level idea of the answer seman-

tics. In the example above, the answer “2018” has the named entity type “DATE”.

We group fine grained entity types into higher level categories, each with its own

masking token as shown in Table 3.1, and so the mask token for this example is

“[TEMPORAL]”.
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C.2 Unsupervised NMT Training Setup Details

We use the English tokenizer from Moses (Koehn et al., 2007), and use FastBPE

(https://github.com/glample/fastBPE) to split into subword units, with a vo-

cabulary size of 60000. The architecture uses a 4-layer transformer encoder and

4-layer transformer decoder, where one layer is language specific for both the en-

coder and decoder, and the rest are shared. We use the standard hyperparameter

settings recommended by Lample et al. (2018c). The models are initialised with

random weights, and the input word embedding matrix is initialised using FastText

vectors (Bojanowski et al., 2017) trained on the concatenation of the Ds and Dt cor-

pora. Initially, the auto-encoding loss and back-translation loss have equal weight,

with the auto-encoding loss coefficient reduced to 0.1 by 100K steps and to 0 by

300k steps. We train using 5M cloze questions and natural questions, and cease

training when the BLEU scores between back-translated and input questions stops

improving, usually around 300K optimisation steps. When generating, we decode

greedily, and note that decoding with a beam size of 5 did not significantly change

downstream QA performance, or greatly change the fluency of generations.

C.3 RC Model Training Details

We train BiDAF + Self Attention using the default settings. We evaluate using a syn-

thetic development set of data generated from 1000 context paragraphs every 500

training steps, and halt when the performance has not changed by 0.1% for the last

5 evaluations. We train BERT-Base and BERT-Large with a batch size of 16, and

the default learning rate hyperparameters. For BERT-Base, we evaluate using a syn-

thetic development set of data generated from 1000 context paragraphs every 500

training steps, and halt when the performance has not changed by 0.1% for the last 5

evaluations. For BERT-Large, due to larger model size, training takes longer, so we

manually halt training when the synthetic development set performance plateaus,

rather than using the automatic early stopping.

https://github.com/glample/fastBPE
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C.4 Language Model Pretraining
We experimented with Masked Language Model (MLM) pretraining of the transla-

tion models, ps→t(q|q′) and pt→s(q′|q). We use the XLM implementation (https:

//github.com/facebookresearch/XLM) and use default hyperparameters for both

MLM pretraining and UMT fine-tuning. The UMT encoder is initialised with the

MLM model’s parameters, and the decoder is randomly initialised. We find trans-

lated questions to be qualitatively more fluent and abstractive than the those from

the models used in the main experiments. The well-formedness model classified

78.5 of this model’s generated generations as well-formed, 10.5% higher than with-

out pretraining, surpassing the rule-based question generator of Heilman and Smith

(2010). However, using MLM pretraining did not lead to significant differences

for question answering performance (the main focus of this chapter), so we leave

a thorough investigation into language model pretraining for unsupervised question

answering as future work.

C.5 More Examples of Unsupervised MT Cloze

Translations
Table C.1 shows many more examples of cloze question translations from our best-

performing UMT approach (sub-clause boundaries and wh* heuristics).

https://github.com/facebookresearch/XLM
https://github.com/facebookresearch/XLM
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Cloze Question Answer Generated Question

to record their sixth album in TEMPORAL 2005 When will they record their sixth album ?

Redline management got word that both were ne-
gotiating with THING

Trek/Gary
Fisher

What Redline management word got that both
were negotiating ?

Reesler to suspect that Hitchin murdered PER-
SON/NORP/ORG

Wright Who is Reesler to suspect that Hitchin murdered ?

joined PERSON/NORP/ORG in the 1990s to
protest the Liberals’ long-gun registry

the Reform
Party

Who joined in the 1990s to protest the Liberals ’
long-gun registry ?

to end the TEMPORAL NLCS, and the season,
for the New York Mets

2006 When will the NLCS end , and the season , for the
New York Mets ?

NUMERIC of the population concentrated in the
province of Lugo

about 75% How many of you are concentrated in the province
of Lugo ?

placed NUMERIC on uneven bars and sixth on
balance beam

fourth How many bars are placed on uneven bars and
sixth on balance beam ?

to open a small branch in PLACE located in
Colonia Escalon in San Salvador

La Casona Where do I open a small branch in Colonia
Escalon in San Salvador ?

they finished outside the top eight when consid-
ering only THING events

World Cup What if they finished outside the top eight when
considering only events ?

he obtained his Doctor of Law degree in
1929.Who’s who in PLACE

America Where can we obtain our Doctor of Law degree in
1929.Who ’ s who ?

to establish the renowned Paradise Studios in
PLACE in 1979

Sydney Where is the renowned Paradise Studios in 1979 ?

Ukraine came out ahead NUMERIC four to three How much did Ukraine come out ahead ?

their rule over these disputed lands was cemented
after another Polish victory, in THING

the Polish-
Soviet War

What was their rule over these disputed lands after
another Polish victory , anyway ?

sinking PERSON/NORP/ORG 35 before being
driven down by depth charge attacks

Patrol Boat Who is sinking 35 before being driven down by
depth charge attacks ?

to hold that PLACE was the sole or primary per-
petrator of human rights abuses

North Korea Where do you hold that was the sole or primary
perpetrator of human rights abuses ?

to make it 2–1 to the Hungarians, though PLACE
were quick to equalise

Italy Where do you make it 2-1 to the Hungarians ,
though quick equalise ?

he was sold to Colin Murphy’s Lincoln City for a
fee of £NUMERIC

15,000 How much do we need Colin Murphy ’ s Lincoln
City for a fee ?

Bierut is the co-founder of the blog PER-
SON/NORP/ORG

Design Ob-
server

Who is the Bierut co-founder of the blog ?

the Scotland matches at the 1982 THING being
played in a ”family atmosphere”

FIFA World
Cup

What are the Scotland matches at the 1982 being
played in a ” family atmosphere ” ?

Tom realizes that he has finally conquered both
”THING” and his own stage fright

La Cinquette What happens when Tom realizes that he has fi-
nally conquered both ” and his own stage fright ?

it finished first in the PERSON/NORP/ORG rat-
ings in April 1990

Arbitron Who finished it first in the ratings in April 1990 ?

his observer to destroy NUMERIC others two How many others can his observer destroy ?

Martin had recorded some solo songs (including
”Never Back Again”) in 1984 in PLACE

the United
Kingdom

Where have Martin recorded some solo songs (
including ” Never Back Again ” ) in 1984 ?

the NUMERIC occurs under stadium lights second How many lights occurs under stadium ?

PERSON/NORP/ORG had made a century in the
fourth match

Poulton Who had made a century in the fourth match ?

mentions the Bab and THING Bábı́s What are the mentions of Bab ?

Table C.1: Further cloze translations from the UMT model (with sub-clause boundaries
and wh* heuristic applied)
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Appendices for Evaluating

Cross-Lingual Reading

Comprehension

D.1 Further details on Parallel Sentence mining
Table D.1 shows the number of mined parallel sentences found in each language, as

function of how many languages the sentences are parallel between. As the number

of languages that a parallel sentence is shared between increases, the number of

such sentences decreases. When we look for 7-way aligned examples, we only find

1340 sentences from the entirety of the 7 Wikipedias. Additionally, most of these

sentences are the first sentence of the article, or are uninteresting. However, if we

choose 4-way parallel sentences, there are plenty of sentences to choose from. We

sample evenly from each combination of English and 3 of the 6 target languages.

This ensures that we have an even distribution over all the target languages, as well

as ensuring we have even numbers of instances that will be parallel between target

language combinations.
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N-way en de es ar zh vi hi

2 12219436 3925542 4957438 1047977 1174359 904037 210083
3 2143675 1157009 1532811 427609 603938 482488 83495
4 385396 249022 319902 148348 223513 181353 34050
5 73918 56756 67383 44684 58814 54884 13151
6 12333 11171 11935 11081 11485 11507 4486
7 1340 1340 1340 1340 1340 1340 1340

Table D.1: Number of mined parallel sentences as a function of how many languages the
sentences are parallel between



Appendix E

Appendices for How Context Affects

Language Models’ Factual

Predictions

Figure E.1: Pairwise statistical significance for the results presented in Table 5.2.

E.1 Statistical Significance Tests
Figure E.1 shows pairwise statistical significance for the results presented in Table

5.2, using the sign test across relations. Each cell reports the p-value of the corre-

sponding pair. The improvements achieved by B-RET and B-ORA are statistically

significant (p-value < than the alpha level of 0.05)
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Appendices for Retrieval-Augmented

Generation for Knowledge-Intensive

NLP

F.1 Human Evaluation

Figure F.1: Annotation interface for human evaluation of factuality. A pop-out for detailed
instructions and a worked example appear when clicking “view tool guide”.

Figure F.1 shows the interface for human evaluation. To avoid biases from screen

position, the model corresponding to sentence A and B was randomly chosen for

each example. Annotators were encouraged to research the topic using the internet,

and given detailed instructions and worked examples. We included a number of

control gold examples to assess the accuracy of the annotators. Two annotators did
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Task Train Development Test

Jeopardy Question Generation 97392 13714 26849
FEVER-3-way 145450 10000 10000
FEVER-2-way 96966 6666 6666

Table F.1: Number of instances in the datasets, where not already covered in Table 2.2.

not perform well on the control examples and their annotations were removed.

F.2 Further Details on Open-Domain QA
For TriviaQA, there are often many valid answer references for a question, some

of which are not suitable training targets, such as emoji, so we filter out answer

candidates if they do not occur in top 1000 documents for the query. The answers for

CT are given as regular expressions, which are not suitable generation targets. We

use a pre-processing step where we first retrieve the top 1000 documents for each

query, and take the most frequently-matched answer as the supervision target. If no

matches are found, we use a simple heuristic: generate all possible permutations of

the regex, replacing non-deterministic symbols with whitespace.

F.3 Parameters
Our RAG models contain trainable parameters for the BERT-base query and doc-

ument encoders of DPR, 110M parameters each, and 406M trainable parameters

from BART-large, 406M parameters, making a total of 626M trainable parameters.

The non-parametric memory index does not consist of trainable parameters, but

does consists of 21M 728-dim vectors, consisting of 15.3B floats. Subsequent work

has demonstrated that dimensions can be reduced to around 200 dimensions without

loss of accuracy, which would represent an index with 4.2B floats.

F.4 Number of Instances per Dataset
The number of training, development and test instances for Jeopardy and FEVER

are shown in Table F.1. Statistics for other datasets can be found in Table 2.2.



Appendix G

Appendices for Question And

Answer Test-Train Overlap in

Open-Domain QA Datasets

G.1 Additional Question Overlap Examples
Tables G.1, G.3 and G.2 give more question overlap examples for the three datasets.
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Appendix H

Appendices for 65 Million

Probably-asked Questions and What

You Can Do With Them

H.1 Further Details on Passage Selection
The passage selection model is based on RoBERTaBASE (Liu et al., 2019c). We feed

each passage into the model and use an MLP on top of the [CLS] representation to

produce a score. We use this model to obtain a score for every passage in the corpus.

The top N highest-scoring passages are selected for QA-pair generation. This model

achieves 84.7% recall on the NQ dev set.

H.2 Further Details on Question Quality
For NQ, we find that the retrieved questions are paraphrases of the test questions

in the majority of cases. We conduct human evaluation on 50 random sampled

questions generated from the Wikipedia passage pool. We make the following ob-

servations: i) 82% of questions accurately capture the context of the answer in the

passage, and contain sufficient details to locate the answer. ii) 16% of questions

have incorrect semantics with respect to their answers. These errors are driven by

two main factors: Mistaking extremely similar entities and Generalisation to rare
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phrases. An example of the former is “what is the eastern end of the Kerch peninsula”

for the passage “The Kerch Peninsula is located at the eastern end of the Crimean Peninsula”

and the answer “the Crimean Peninsula”. An example of the latter is where the model

interprets digits separated by colons as date ranges, such as for the passage “under a

109–124 loss to the Milwaukee Bucks”, the question is generated as “when did ... play for

the Toronto Raptors” iii) only 2% of questions mismatch question wh-words in the

analysis sample.

H.3 Further Details on Inference Speed
The machine used for speed benchmarking is a machine learning workstation with

80 CPU cores, 512GB of CPU RAM and access to one 32GB NVIDIA V100 GPU.

Inference is carried out at mixed precision for all systems, and questions are allowed

to be answered in parallel. Models are implemented in Pytorch (Paszke et al., 2019)

using Transformers (Wolf et al., 2020). Measurements are repeated 3 times and the

mean time is reported, rounded to an appropriate significant figure. The HNSW

index used in this experiment indexes all 65M PAQ QA-pairs with 768 dimensional

vectors, uses an ef construction of 80, ef search of 32, and store n of 256, and

performs up to 2048 searches in parallel. This index occupies 220GB, but can be

considerably compressed with scalar or product quantization, or training retrievers

with smaller dimensions – see Section H.6 for details of such an index.

H.4 Further Details on Selective QA
We also investigate improving FiD’s calibration on NQ, using a post-hoc calibra-

tion technique similar to Jiang et al. (2020a). We train a Gradient Boosting Machine

(GBM, Friedman, 2001) on development data to predict whether FiD has answered

correctly or not. The GBM is featurised with FiD’s answer loss, answer log proba-

bility and the retrieval score of the top 100 retrieved documents from DPR. Figure

H.1 shows these results. We first note that FiD-Large’s answer loss and answer log

probabilities perform similarly, and both struggle to calibrate FiD, as mentioned in

the main chapter. The GBM improves calibration, especially at lower coverages, but

still lags behind RePAQ by 7% EM at 50% coverage. We also note that we can actu-
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Figure H.1: Risk-Coverage Plot for different calibration methods for FiD (RePAQ included
for comparison). Using RePAQ’s confidence scores to calibrate FiD leads to
FiD’s strongest results

ally use RePAQ’s confidence scores to calibrate FiD. Here, we use FiD’s predicted

answer, but RePAQ’s confidence score to decide whether to answer or not. This

result is also plotted in Figure H.1, and results in FiD’s best risk-coverage curve.

Despite these improvements, FiD is still not as well-calibrated as RePAQ.

H.5 Additional Model training details
RePAQ models were trained for up to 3 days on a machine with 8 NVIDIA 32GB

V100 GPUs. Validation Exact Match score was used to determine when to stop

training in all cases. RePAQ retrievers were trained using Fairseq (Ott et al., 2019),

and rerankers were trained in Transformers (Wolf et al., 2020) in Pytorch (Paszke

et al., 2019). The PAQ CBQA models were trained in Fairseq for up to 6 days

on 8 NVIDIA 32GB V100 GPUs, after which validation accuracy had plateaued.

Hyperparameters were tuned to try to promote faster learning, but learning became

unstable with learning rates greater than 0.0001.

H.6 Memory-Efficient RePAQ Retriever
As part of the open-source release, we have trained a memory-efficient RePAQ re-

triever designed for use with more modest hardware than the main RePAQ mod-

els. This consists of an ALBERT-base retriever, with 256-dimensional embedding,

rather than the 768-dimensional models in the main paper. We provide 2 FAISS
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indices (Johnson et al., 2019) for use with this model, both built with 8-bit scalar

quantization. The first index is a flat index, which is very memory-friendly, requir-

ing only 16GB of CPU RAM, but is relatively slow (1-10 questions per second). The

other is an HNSW approximate index (Malkov and Yashunin, 2020), requiring ∼32

GB of CPU RAM, but can process 100-1000 questions per second. This memory-

efficient system is highly competitive with the models in the main paper, actually

outperforming the ALBERT-base model (+0.6%, NQ, +0.5%, TQA), and only trail-

ing the ALBERT-xlarge model by 0.6% on average (-0.3% NQ, -0.9% TQA).
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Hervé Jégou. 2018b. Word translation without parallel data. In International

Conference on Learning Representations.

Guillaume Lample, Myle Ott, Alexis Conneau, Ludovic Denoyer, and

Marc’Aurelio Ranzato. 2018c. Phrase-Based & Neural Unsupervised Machine

https://doi.org/10.18653/v1/P19-1481
https://doi.org/10.18653/v1/P19-1481
https://transacl.org/ojs/index.php/tacl/article/view/1455
https://transacl.org/ojs/index.php/tacl/article/view/1455
http://arxiv.org/abs/1910.09700
https://arxiv.org/abs/1711.00043v2
https://openreview.net/forum?id=H196sainb
https://doi.org/10.18653/v1/D18-1549


BIBLIOGRAPHY 253

Translation. In Proceedings of the 2018 Conference on Empirical Methods in

Natural Language Processing, pages 5039–5049, Brussels, Belgium. Associa-

tion for Computational Linguistics.

Guillaume Lample, Alexandre Sablayrolles, Marc’ Aurelio Ranzato, Ludovic De-

noyer, and Herve Jegou. 2019. Large Memory Layers with Product Keys. In

H. Wallach, H. Larochelle, A. Beygelzimer, F. d’ Alché-Buc, E. Fox, and R. Gar-
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Dan Moldovan, Marius Paşca, Sanda Harabagiu, and Mihai Surdeanu. 2003. Perfor-

mance issues and error analysis in an open-domain question answering system.

ACM Transactions on Information Systems, 21(2):133–154.

Hussein Mozannar, Elie Maamary, Karl El Hajal, and Hazem Hajj. 2019. Neu-

ral Arabic Question Answering. In Proceedings of the Fourth Arabic Natural

Language Processing Workshop, pages 108–118, Florence, Italy. Association for

Computational Linguistics.

Stephen Mussmann and Stefano Ermon. 2016. Learning and Inference via Maxi-

mum Inner Product Search. In Proceedings of The 33rd International Conference

on Machine Learning, volume 48 of Proceedings of Machine Learning Research,

pages 2587–2596, New York, New York, USA. PMLR.
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Fabio Petroni, Tim Rocktäschel, Sebastian Riedel, Patrick Lewis, Anton Bakhtin,

Yuxiang Wu, and Alexander Miller. 2019. Language Models as Knowledge

Bases? In Proceedings of the 2019 Conference on Empirical Methods in Nat-

ural Language Processing and the 9th International Joint Conference on Natural

Language Processing (EMNLP-IJCNLP), pages 2463–2473, Hong Kong, China.

Association for Computational Linguistics.

Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Dmytro Okhonko, Samuel

Broscheit, Gautier Izacard, Patrick Lewis, Barlas Oğuz, Edouard Grave, Wen-tau
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