2,150 research outputs found

    Approximation Algorithms for Covering/Packing Integer Programs

    Get PDF
    Given matrices A and B and vectors a, b, c and d, all with non-negative entries, we consider the problem of computing min {c.x: x in Z^n_+, Ax > a, Bx < b, x < d}. We give a bicriteria-approximation algorithm that, given epsilon in (0, 1], finds a solution of cost O(ln(m)/epsilon^2) times optimal, meeting the covering constraints (Ax > a) and multiplicity constraints (x < d), and satisfying Bx < (1 + epsilon)b + beta, where beta is the vector of row sums beta_i = sum_j B_ij. Here m denotes the number of rows of A. This gives an O(ln m)-approximation algorithm for CIP -- minimum-cost covering integer programs with multiplicity constraints, i.e., the special case when there are no packing constraints Bx < b. The previous best approximation ratio has been O(ln(max_j sum_i A_ij)) since 1982. CIP contains the set cover problem as a special case, so O(ln m)-approximation is the best possible unless P=NP.Comment: Preliminary version appeared in IEEE Symposium on Foundations of Computer Science (2001). To appear in Journal of Computer and System Science

    On k-Column Sparse Packing Programs

    Full text link
    We consider the class of packing integer programs (PIPs) that are column sparse, i.e. there is a specified upper bound k on the number of constraints that each variable appears in. We give an (ek+o(k))-approximation algorithm for k-column sparse PIPs, improving on recent results of k22kk^2\cdot 2^k and O(k2)O(k^2). We also show that the integrality gap of our linear programming relaxation is at least 2k-1; it is known that k-column sparse PIPs are Ω(k/logk)\Omega(k/ \log k)-hard to approximate. We also extend our result (at the loss of a small constant factor) to the more general case of maximizing a submodular objective over k-column sparse packing constraints.Comment: 19 pages, v3: additional detail

    Optimal Distributed Covering Algorithms

    Get PDF
    We present a time-optimal deterministic distributed algorithm for approximating a minimum weight vertex cover in hypergraphs of rank f. This problem is equivalent to the Minimum Weight Set Cover problem in which the frequency of every element is bounded by f. The approximation factor of our algorithm is (f+epsilon). Let Delta denote the maximum degree in the hypergraph. Our algorithm runs in the congest model and requires O(log{Delta} / log log Delta) rounds, for constants epsilon in (0,1] and f in N^+. This is the first distributed algorithm for this problem whose running time does not depend on the vertex weights nor the number of vertices. Thus adding another member to the exclusive family of provably optimal distributed algorithms. For constant values of f and epsilon, our algorithm improves over the (f+epsilon)-approximation algorithm of [Fabian Kuhn et al., 2006] whose running time is O(log Delta + log W), where W is the ratio between the largest and smallest vertex weights in the graph. Our algorithm also achieves an f-approximation for the problem in O(f log n) rounds, improving over the classical result of [Samir Khuller et al., 1994] that achieves a running time of O(f log^2 n). Finally, for weighted vertex cover (f=2) our algorithm achieves a deterministic running time of O(log n), matching the randomized previously best result of [Koufogiannakis and Young, 2011]. We also show that integer covering-programs can be reduced to the Minimum Weight Set Cover problem in the distributed setting. This allows us to achieve an (f+epsilon)-approximate integral solution in O((1+f/log n)* ((log Delta)/(log log Delta) + (f * log M)^{1.01}* log epsilon^{-1}* (log Delta)^{0.01})) rounds, where f bounds the number of variables in a constraint, Delta bounds the number of constraints a variable appears in, and M=max {1, ceil[1/a_{min}]}, where a_{min} is the smallest normalized constraint coefficient. This improves over the results of [Fabian Kuhn et al., 2006] for the integral case, which combined with rounding achieves the same guarantees in O(epsilon^{-4}* f^4 * log f * log(M * Delta)) rounds

    Partial resampling to approximate covering integer programs

    Full text link
    We consider column-sparse covering integer programs, a generalization of set cover, which have a long line of research of (randomized) approximation algorithms. We develop a new rounding scheme based on the Partial Resampling variant of the Lov\'{a}sz Local Lemma developed by Harris & Srinivasan (2019). This achieves an approximation ratio of 1+ln(Δ1+1)amin+O(log(1+log(Δ1+1)amin)1 + \frac{\ln (\Delta_1+1)}{a_{\min}} + O\Big( \log(1 + \sqrt{ \frac{\log (\Delta_1+1)}{a_{\min}}} \Big), where amina_{\min} is the minimum covering constraint and Δ1\Delta_1 is the maximum 1\ell_1-norm of any column of the covering matrix (whose entries are scaled to lie in [0,1][0,1]). When there are additional constraints on the variable sizes, we show an approximation ratio of lnΔ0+O(loglogΔ0)\ln \Delta_0 + O(\log \log \Delta_0) (where Δ0\Delta_0 is the maximum number of non-zero entries in any column of the covering matrix). These results improve asymptotically, in several different ways, over results of Srinivasan (2006) and Kolliopoulos & Young (2005). We show nearly-matching inapproximability and integrality-gap lower bounds. We also show that the rounding process leads to negative correlation among the variables, which allows us to handle multi-criteria programs

    A Parallelizable Acceleration Framework for Packing Linear Programs

    Get PDF
    This paper presents an acceleration framework for packing linear programming problems where the amount of data available is limited, i.e., where the number of constraints m is small compared to the variable dimension n. The framework can be used as a black box to speed up linear programming solvers dramatically, by two orders of magnitude in our experiments. We present worst-case guarantees on the quality of the solution and the speedup provided by the algorithm, showing that the framework provides an approximately optimal solution while running the original solver on a much smaller problem. The framework can be used to accelerate exact solvers, approximate solvers, and parallel/distributed solvers. Further, it can be used for both linear programs and integer linear programs
    corecore