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Abstract

We present a time-optimal deterministic distributed algorithm for approximating a minimum
weight vertex cover in hypergraphs of rank f . This problem is equivalent to the Minimum Weight Set
Cover problem in which the frequency of every element is bounded by f . The approximation factor
of our algorithm is (f + ε). Let ∆ denote the maximum degree in the hypergraph. Our algorithm
runs in the congest model and requires O(log ∆/ log log ∆) rounds, for constants ε ∈ (0, 1] and
f ∈ N+. This is the first distributed algorithm for this problem whose running time does not depend
on the vertex weights nor the number of vertices. Thus adding another member to the exclusive
family of provably optimal distributed algorithms.

For constant values of f and ε, our algorithm improves over the (f + ε)-approximation algorithm
of [18] whose running time is O(log ∆ + logW ), where W is the ratio between the largest and
smallest vertex weights in the graph. Our algorithm also achieves an f -approximation for the
problem in O(f logn) rounds, improving over the classical result of [15] that achieves a running time
of O(f log2 n). Finally, for weighted vertex cover (f = 2) our algorithm achieves a deterministic
running time of O(logn), matching the randomized previously best result of [16].

We also show that integer covering-programs can be reduced to the Minimum Weight Set Cover
problem in the distributed setting. This allows us to achieve an (f + ε)-approximate integral solution
in O

(
(1 + f/ logn) ·

( log ∆
log log ∆ + (f · logM)1.01 · log ε−1 · (log ∆)0.01)) rounds, where f bounds the

number of variables in a constraint, ∆ bounds the number of constraints a variable appears in,
and M = max {1, d1/amine}, where amin is the smallest normalized constraint coefficient. This
improves over the results of [18] for the integral case, which combined with rounding achieves the
same guarantees in O

(
ε−4 · f4 · log f · log(M ·∆)

)
rounds.
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5:2 Optimal Distributed Covering Algorithms

1 Introduction

In the Minimum Weight Hypergraph Vertex Cover (mwhvc) problem, we are given a
hypergraph G = (V,E) with vertex weights w : V → {1, . . . ,W}.1 The goal is to find a
minimum weight cover U ⊆ V such that ∀e ∈ E : e ∩ U 6= ∅. In this paper we develop a
distributed approximation algorithm for mwhvc in the congest model. The approximation
ratio is f + ε, where f denotes the rank of the hypergraph (i.e., f is an upper on the size of
every hyperedge). The mwhvc problem is a generalization of the Minimum Weight Vertex
Cover (mwvc) problem (in which f = 2). The mwhvc problem is also equivalent to the
Minimum Weight Set Cover Problem (the rank f of the hypergraph corresponds to the
maximum frequency of an element). Both of these problems are among the classical NP-hard
problems presented in [14].

We consider the following distributed setting for the mwhvc problem. The communication
network is a bipartite graph H(E ∪ V, {{e, v} | v ∈ e}). We refer to the network vertices as
nodes and network edges as links. The nodes of the network are the hypergraph vertices on
one side and hyperedges on the other side. There is a network link between vertex v ∈ V
and hyperedge e ∈ E iff v ∈ e. The computation is performed in synchronous rounds, where
messages are sent between neighbors in the communication network. As for message size, we
consider the congest model where message sizes are bounded to O(log |V |). This is more
restrictive than the local model where message sizes are unbounded.

1.1 Related work
We survey previous results for mwhvc and mwvc. A comprehensive list of previous results
appears in Tables 1 and Table 2.

Vertex Cover. The understanding of the round complexity for distributed mwvc has been
established in two papers: a lower bound in [19] and a matching upper bound in [4]. Let
∆ denote the maximum vertex degree in the graph G. The lower bound states that any
distributed constant-factor approximation algorithm requires Ω(log ∆/ log log ∆) rounds to
terminate. This lower bound holds for every constant approximation ratio, for unweighted
graphs and even if the message lengths are not bounded (i.e., LOCAL model) [19]. The
matching upper bound is a (2+ε)-approximation distributed algorithm in the congest model,
for every ε = Ω(log log ∆/ log ∆).2 In [16] an O(logn)-round 2-approximation randomized
algorithm for weighted graphs in the congest model is given. We note that [16] was the first
to achieve this running time with no dependence on W , the maximum weight of the nodes.
Recently, Ben-Basat et al. [6] showed an O(OPT 2 logOPT ) rounds algorithm for computing
the minimal (unweighted) vertex cover and a O(OPT ) rounds for a (2 + ε)-approximation.
Here, OPT is the size of the smallest cover and thus these algorithms are adequate when a
small solution exists.

Hypergraph Weighted Vertex Cover. For constant values of f , Astrand et al. [2] present an
f -approximation algorithm for anonymous networks whose running time is O(∆2+∆·log∗W ).
Khuller et al. [15] provide a solution that runs in O(f · log ε−1 · logn) rounds in the congest
model for any ε > 0 and achieves an (f + ε)-approximation. Setting ε = 1/W (recall that

1 Let n , |V |. We assume that |E| = nO(1) and W = nO(1).
2 Recently, the range of ε for which the runtime is optimal was improved to Ω(log−c ∆) for any c = O(1) [5].
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W = poly(n)) results in a f -approximation in O(f log2 n)-rounds. For constant ε and f

values, Kuhn et al. [17, 18] present an (f + ε)-approximation algorithm that terminates in
O(log ∆ + logW ) rounds.

For the Minimum Cardinality (i.e., unweighted) Vertex Cover in Hypergraphs Problem,
the lower bound was recently matched by [9] with an (f + ε)-approximation algorithm in
the congest model. The round complexity in [9] is O

(
f/ε · log(f ·∆)

log log(f ·∆)

)
, which is optimal

for constant f and ε.3 The algorithm in [9] and its analysis is a deterministic version of the
randomized maximal independent set algorithm of [10].

1.2 Our contributions

In this paper, we present a deterministic distributed (f + ε)-approximation algorithm for
minimum weight vertex cover in f -rank hypergraphs, which completes in

O

(
f · log(f/ε) + log ∆

log log ∆ + min
{

log ∆, f · log(f/ε) · (log ∆)0.001})

rounds in the congest model. For any constants ε ∈ (0, 1) and f ∈ N+ this implies a
running time of O(log ∆/ log log ∆), which is optimal according to [19]. This is the first
distributed algorithm for this problem whose round complexity does not depend on the node
weights nor the number of vertices.

Our algorithm is one of a handful of distributed approximation algorithms for local
problems which are provably optimal [8, 7, 3, 4, 11, 9]. Among these are the classic Cole-
Vishkin algorithm [8] for 3-coloring a ring, the more recent results of [3] and [4] for mwvc and
Maximum Matching, and the result of [9] for Minimum Cardinality Hypergraph Vertex Cover.

Our algorithm also achieves a deterministic f -approximation for the problem in O(f logn)
rounds. This improves over the best known deterministic result for hypergraphs O(f log2 n)
[15] and matches the best known randomized results for weighted vertex cover (f = 2) of
O(logn)-rounds [16].

We also show that general covering Integer Linear Programs (ILPs) can be reduced
to mwhvc in the distributed setting. That is, LP constraints can be translated into
hyperedges such that a cover for the hyperedges satisfies all covering constraints. This allows
us to achieve an O

(
(1 + f/ logn) ·

(
log ∆

log log ∆ + (f · logM)1.01 · log ε−1 · (log ∆)0.01
))

rounds
(f +ε)-approximate integral solution, where f bounds the number of variables in a constraint,
∆ bounds the number of constraints a variable appears in, andM = max {1, d1/amine}, where
amin is the smallest normalized constraint coefficient. This significantly improves over the
results of [18] for the integral case, which combined with rounding achieves the same guarantees
in O

(
ε−4 · f4 · log f · log(M ·∆)

)
rounds. Note that the results of [18] also include a (1 + ε)-

approximation for the fractional case, while our result only allows for an integral solution.
We also note that plugging ε = 1/(nWM) into our algorithm, achieves an f -approximation
for ILPs in polylogarithmic time, a similar result cannot be achieved using [18].

3 The authors state their result for an f(1 + ε)-approximation which removes the f factor from the
runtime.

DISC 2019
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Table 1 Previous distributed algorithms for mwvc. In the table, n = |V | and ε ∈ (0, 1). Some
of the algorithms hold only for the unweighted case and some are randomized. For randomized
algorithms the running times hold in expectation or with high probability.

det. weighted approximation time algorithm
yes no 3 O(∆) [21]
yes no 2 O(∆2) [1]
yes yes 2 O(1) for ∆ ≤ 3 [1]
yes yes 2 O(∆ + log∗ n) [20]
yes yes 2 O(∆ + log∗ W ) [2]
yes yes 2 O(log2 n) [15]
yes yes 2 O(logn log ∆/ log2 log ∆) [5]
no yes 2 O(logn) [12, 16]
yes yes 2 O(logn) This work
yes yes 2 + ε O(ε−4 log(W ·∆)) [13, 18]
yes yes 2 + ε O(log ε−1 logn) [15]
yes yes 2 + ε O(ε−1 log ∆/ log log ∆) [4]
yes yes 2 + ε O

(
log ∆

log log ∆ + log ε−1 log ∆
log2 log ∆

)
[5]

yes yes 2 + ε O
(

log ∆
log log ∆ + log ε−1 · (log ∆)0.001

)
This work

yes yes 2 + log log ∆
c·log ∆ O(log ∆/ log log ∆) [4], ∀c = O(1)

yes yes 2 + (log ∆)−c O(log ∆/ log log ∆) [5], ∀c = O(1)
yes yes 2 + 2−c·(log ∆)0.99

O(log ∆/log log ∆) This work, ∀c = O(1)

Table 2 Previous distributed algorithms for mwhvc. In the table, n = |V | and ε ∈ (0, 1). All
algorithms are deterministic. Note that [9] holds only for unweighted hypergraphs.

weighted approximation time algorithm
yes f O

(
f2∆2 + f∆ log∗ W

)
[2]

yes f O
(
f log2 n

)
[15]

yes f O (f logn) This work

no f + ε O
(
ε−1 · f · log(f∆)

log log(f∆)

)
[9]

yes f + ε O (f · log(f/ε) · logn) [15]
yes f + ε O

(
ε−4 · f4 · log f · log(W ·∆)

)
[18]

yes f + ε O
(
f · log (f/ε) · (log ∆)0.001 + log ∆

log log ∆

)
This work

no f + 1/c O (log ∆/log log ∆) [9], ∀f, c = O(1)
yes f + 2−c·(log ∆)0.99

O (log ∆/log log ∆) This work, ∀f, c = O(1)

1.3 Tools and techniques
The Primal-Dual schema. The Primal-Dual approach introduces, for every hyperedge
e ∈ E, a dual variable denoted by δ(e). The dual edge packing constraints are ∀v ∈
V,
∑
v∈e δ(e) ≤ w(v). If for some β ∈ [0, 1) it holds that

∑
v∈e δ(e) ≥ (1− β) · w(v), we say

the node v is β-tight. Let β = ε/(f + ε). For every feasible dual solution, the weight of the
set of β-tight vertices is at most (f + ε) times the weight of an optimal (fractional) solution.
The algorithm terminates when the set of β-tight edges constitutes a vertex cover.

The challenge. When designing a Primal-Dual distributed algorithm, the main challenge
is in controlling the rate at which we increase the dual variables. On the one hand, we must
grow them rapidly to reduce the number of communication rounds. On the other hand, we
may not violate the edge packing constraints. This is tricky in the distributed environments
as we have to coordinate between nodes. For example, the result of [4] does not generalize
to hypergraphs, as hyperedges require the coordination of more than two nodes in order to
increment edge variables.
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Our algorithm. The algorithm proceeds in iterations, each of which requires a constant
number of communication rounds. We initialize the dual variables in a “safe” way so that
feasibility is guaranteed. We refer to the additive increase of the dual variable δ(e) as bid(e).
Similarly to [5] (where bids are called deals), we use levels to measure the progress made
by a vertex. Whenever the level of a vertex increases, it sends a message about it to all
incident edges, which multiply (decrease) their bids by 0.5. Intuitively, the level of a vertex
equals the logarithm of its uncovered portion. Formally, we define the level of a vertex v as

`(v) ,
⌊

log w(v)
w(v)−

∑
e3v

δ(e)

⌋
. That is, the initial level of v is 0 and it is increased as the dual

variables of the edges incident to v grow. The level of a vertex never reaches z , dlog β−1e
as this implies that it is β-tight and entered the cover. Loosely speaking, the algorithm
increases the increments bid(e) exponentially (multiplication by α) provided that no vertex
v ∈ e is (0.5`(v)/α)-tight with respect to the bids of the previous iteration. Here, α ≥ 2
is a positive parameter that we determine later. The analysis builds on two observations:
(1) The number of times that the increment bid(e) is multiplied by α is bounded by logα ∆.
(2) The number of iterations in which bid(e) is not multiplied by α is bounded by O(f · z ·α).
Loosely speaking, each such iteration means that for at least one vertex v ∈ e the sum of
bids is at least an 1/(2α)-fraction of its slack. Therefore, after at most O(α) such iterations
that vertex will level up. Since there are z levels per vertex and f vertices in e, we have that
the number of such iterations is at most O(f · z · α). Hence the total number of iterations is
bounded by O(logα ∆ + f · z · α).

Integer linear programs (ILPs). We show distributed reductions that allow us to compute
an (f + ε)-approximation for general covering integer linear programs (ILPs). To that end,
we first show that any Zero-One covering program (where all variables are binary) can be
translated into a set cover instance in which the vertex degree is bounded by 2f times the
bound on the number of constraints each ILP variable appears in. We then generalize to
arbitrary covering ILPs by replacing each variable with multiple vertices in the hypergraph,
such that the value associated with the ILP variable will be the weighted sum of the vertices
in the cover.

2 Problem Formulation

Let G = (V,E) denote a hypergraph. Vertices in V are equipped with positive weights w(v).
For a subset U ⊆ V , let w(U) ,

∑
v∈U w(v). Let E(U) denote the set of hyperedges that

are incident to some vertex in U (i.e., E(U) , {e ∈ E | e ∩ U 6= ∅}).

The Minimum Weight Hypergraph Vertex Cover Problem (mwhvc) is defined as follows.

Input: Hypergraph G = (V,E) with vertex weights w(v).
Output: A subset C ⊆ V such that E(C) = E.
Objective: Minimize w(C).

The mwhvc Problem is equivalent to the Weighted Set Cover Problem. Consider a set
system (X,U), where X denotes a set of elements and U = {U1, . . . , Um} denotes a collection
of subsets of X. The reduction from the set system (X,U) to a hypergraph G = (V,E)
proceeds as follows. The set of vertices is V , {u1, . . . , um} (one vertex ui per subset Ui).
The set of edges is E , {ex}x∈X (one hyperedge ex per element x), where ex , {ui : x ∈ Ui}.
The weight of vertex ui equals the weight of the subset Ui. We now detail the setting for
computing a distributed (f + ε)-approximation of the problem.

DISC 2019



5:6 Optimal Distributed Covering Algorithms

Input. The input is a hypergraph G = (V,E) with non-negative vertex weights w : V → N+

and an approximation ratio parameter ε ∈ (0, 1]. We denote the number of vertices by n, the
rank of G by f (i.e., each hyperedge contains at most f vertices), and the maximum degree
of G by ∆ (i.e., each vertex belongs to at most ∆ edges).

Assumptions. We assume that
(i) Vertex weights are polynomial in n , |V | so that sending a vertex weight requires

O(logn) bits.
(ii) Vertex degrees are polynomial in n (i.e., |E(v)| = nO(1)) so that sending a vertex degree

requires O(logn) bits. Since |E(v)| ≤ nf , this assumption trivially holds for constant
f .

(iii) The maximum degree is at least 3 so that log log ∆ > 0.

Output. The nodes compute a vertex cover C ⊆ V . Namely, for every hyperedge e ∈ E,
the intersection e ∩ C is not empty. The set C is maintained locally in the sense that every
vertex v knows whether it belongs to C or not.

Communication Network. The communication network N(E ∪ V, {{e, v} | v ∈ e}) is a
bipartite graph. There are two types of nodes in the network: servers and clients. The set of
servers is V (the vertex set of G) and the set of clients is E (the hyperedges in G). There
is a link (v, e) from server v ∈ V to a client e ∈ E if v ∈ e. We note that the degree of the
clients is bounded by f and the degree of the servers is bounded by ∆.

Notation.
We say that an edge e is covered by C if e ∩ C 6= ∅.
Let E(v) , {e ∈ E | v ∈ e} denote the set of hyperedges that contain v.
For every vertex v, the algorithm maintains a subset E′(v) ⊆ E(v) that consists of the
uncovered hyperedges in E(v) (i.e., E′(v) = {e ∈ E(v) | e ∩ C = ∅}).

3 Distributed Approximation Algorithm for MWHVC

3.1 Parameters and Variables
The algorithm computes an (f + ε)-approximation where ε ∈ (0, 1]. The parameter β is
defined by β , ε/(f + ε), where f is the rank of the hypergraph.
Each vertex v is assigned a level `(v) which is a nonnegative integer.
We denote the dual variables at the end of iteration i by δi(e) (see Appendix A for a
description of the dual edge packing linear program). The amount by which δi(e) is
increased in iteration i is denoted by bidi(e). Namely, δi(e) =

∑
j≤i bidj(e).

The parameter α ≥ 2 determines the factor by which bids are multiplied. We determine
its value in the analysis in the following section.

3.2 Algorithm MWHVC
1. Initialization. Set C ← ∅. For every vertex v, set level `(v) ← 0 and uncovered edges

E′(v)← E(v).
2. Iteration i = 0. Every edge e collects the weight w(v) and degree |E(v)| from every vertex

v ∈ e, and sets: bid(e) = 0.5 ·minv∈e{w(v)/|E(v)|}. The value bid(e) is sent to every
v ∈ e. The dual variable is set to δ(e)← bid(e).
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3. For i = 1 to ∞ do:
a. Check β-tightness. For every v 6∈ C, if

∑
e∈E(v) δ(e) ≥ (1− β)w(v), then v joins the

cover C, sends a message to every e ∈ E′(v) that e is covered, and vertex v terminates.
b. For every uncovered edge e, if e receives a message that it is covered, then it tells all

its vertices that e is covered and terminates.
c. For every vertex v /∈ C, if it receives a message from e that e is covered, then
E′(v)← E′(v) \ {e}. If E′(v) = ∅, then v terminates (without joining the cover).

d. Increment levels and scale bids.
For every active (that has not terminated) vertex4:

While
∑
e∈E(v) δ(e) > w(v)(1− 0.5`(v)+1) do

i. `(v)← `(v) + 1
ii. For every e ∈ E′(v): bid(e)← 0.5 · bid(e)

e. For every active vertex, if
∑
e∈E′(v) bid(e) ≤ 1

α · 0.5
`(v)+1 ·w(v), then send the message

“raise” to every e ∈ E′(v); otherwise, send the message “stuck” to every e ∈ E′(v).
f. For every uncovered edge e, if all incoming messages are “raise” bid(e)← α · bid(e).

Send bid(e) to every v ∈ e, who updates δ(e)← δ(e) + bid(e).

Termination. Every vertex v terminates when either v ∈ C or every edge e ∈ E(v) is
covered (i.e., E′(v) = ∅). Every edge e terminates when it is covered (i.e., e ∩ C 6= ∅).
We say that the algorithm has terminated if all the vertices and edges have terminated.
Execution in congest. See Section B in the Appendix for a discussion of how Algorithm
mwhvc is executed in the congest model.

4 Algorithm Analysis

In this section, we analyze the approximation ratio and the running time of the algorithm.
Throughout the analysis, we attach an index i to the variables bidi(e), δi(e) and `i(v). The
indexed variable refers to its value at the end of the i’th iteration.

4.1 Feasibility and Approximation Ratio
The following invariants are satisfied throughout the execution of the algorithm. In the
following claim we bound the sum of the bids of edges incident to a vertex.

B Claim 1. If v 6∈ C at the end of iteration i, then
∑
e∈E′(v) bidi(e) ≤ 0.5`i(v)+1 · w(v).

Proof. The proof is by induction on i. For i = 0, the claim holds because `0(v) = 0 and
bid0(e) ≤ 0.5 · w(v)/|E(v)|. The induction step, for i ≥ 1, considers two cases. (A) If
v sends a “raise” message in iteration i, then Step 3e implies that

∑
e∈E′(v) bidi(e) ≤

0.5`(v)+1 · w(v), as required. (B) Suppose v sends a “stuck” message in iteration i. By
Step 3d, bidi(e) ≤ 0.5`i(v)−`i−1(v) · bidi−1(e) for every e ∈ E′(v). The induction hypothesis
states that

∑
e∈E′(v) bidi−1(e) ≤ 0.5`i−1(v)+1 · w(v). The claim follows by combining these

inequalities. C

If an edge e is covered in iteration j, then e terminates and δi(e) is not set for i ≥ j. In this
case, we define δi(e) = δj−1(e), namely, the last value assigned to a dual variable.

4 For simplicity of the description, we assume in step 3(d)ii that every v ∈ e decides whether bid(e) is
halved. In a distributed setting, bid(e) is halved if there exists a vertex v ∈ e that requests such a
halving. The distributed implementation of this step is further discussed in Appendix B.

DISC 2019



5:8 Optimal Distributed Covering Algorithms

B Claim 2. For every i ≥ 1 and every a vertex v that has not terminated the following
inequality holds:

w(v)(1− 0.5`i(v)) ≤
∑

e∈E(v)

δi−1(e) ≤ (1− 0.5`i(v)+1) · w(v) . (1)

In addition the dual variables δi(e) constitute a feasible edge packing. Namely,∑
e∈E(v)

δi(e) ≤ w(v) for every vertex v ∈ V ,

δi(e) ≥ 0 for every edge e ∈ E.

Proof. We prove the claim by induction on the iteration number i. To simplify the proof, we
reformulate the statement of the feasibility of the dual variables to i− 1. We first prove the
induction basis for i = 1.

Proof of Eq. 1 for i = 1. Fix a vertex v. At the end of iteration 0, `0(v) = 0 and 0 <

bid0(e) ≤ w(v)/(2|E(v)|), for every e ∈ E(v). Hence 0 <
∑
e∈E(v) bid0(e) ≤ w(v)/2.

Because δ0(e) = bid0(e), the condition in Step 3d does not hold, and `1(v) = `0(v) = 0.
We conclude that Eq. 1 holds for i = 1.

Proof of feasibility of δ0(e) for i = 1. Non-negativity follows from the fact that δ0(e) =
bid0(e) > 0. The packing constraint for vertex v is satisfied because

∑
e∈E(v) bid0(e) ≤

w(v)/2. This completes the proof of the induction basis.
We now prove the induction step assuming that Eq. 1 holds for δi−1.
Proof of Eq. 1 for i > 1. Since v is not in the cover it is also not β-tight. Step 3d in

iteration i increases `(v) until Eq. 1 holds for i.
Proof of feasibility of δi−1(e) for i > 1. Consider a vertex v. If v joins C in iteration i−1,

then δi−1 = δi−2, and the packing constraint of v holds by the induction hypothesis.
Otherwise, then by δi−1(e) = δi−2(e) + bidi−1(e), Claim 1, and the induction hypothesis
for Eq. 1, we have∑

e∈E(v)

δi−1(e) =
∑

e∈E(v)

(δi−2(e) + bidi−1(e))

≤
(

1− 0.5`i−1(v)+1 + 0.5`i−1(v)+1
)
· w(v) = w(v) . C

Let opt denote the cost of an optimal (fractional) weighted vertex cover of G.

I Corollary 3. Upon termination, the approximation ratio of Algorithm mwhvc is f + ε.

Proof. Throughout the algorithm, the set C consists of β-tight vertices. By Claim 20,
w(C) ≤ (f + ε) · opt. Upon termination, C constitutes a vertex cover (as an edge only
terminate once covered), and the corollary follows. J

4.2 Communication Rounds Analysis
In this section, we prove that the number of communication rounds of Algorithm mwhvc is
bounded by (where γ > 0 is a constant, e.g., γ = 0.001)

O

(
f · log(f/ε) + log ∆

γ · log log ∆ + min {log ∆, f · log(f/ε) · (log ∆)γ}
)
.

It suffices to bound the number of iterations because each iteration consists of a constant
number of communication rounds.

Let z , dlog2
1
β e. Note that z = O (log(f/ε)).



R. Ben-Basat, G. Even, K. Kawarabayashi, and G. Schwartzman 5:9

B Claim 4. The level of every vertex is always less than z.

Proof. Assume that `i(v) ≥ z. By Eq. 1,
∑
e∈E(v) δi−1(e) ≥ w(v) · (1− 2−z) ≥ (1− β) ·w(v).

This implies that v is β-tight and joins the cover in Line 3a before `i(v) reaches z. C

4.2.1 Raise or Stuck Iterations
I Definition 5 (e-raise and v-stuck iterations). An iteration i ≥ 1 is an e-raise iteration if
in Line 3f we multiplied bid(e) by α. An iteration i ≥ 1 is a v-stuck iteration if v sent the
message “stuck” in iteration i.

Note that if iteration i is a v-stuck iteration and v ∈ e, then bidi(e) ≤ bidi−1(e) and i is not
an e-raise iteration.

We bound the number of e-raise iterations as follows.

I Lemma 6. The number of e-raise iterations is bounded by logα(∆ · 2f ·z).

Proof. Let v∗ denote a vertex with minimum normalized weight in e (that is, v∗ ∈
argminv∈e{w(v)/|E(v)|}). The first bid satisfies bid0(e) = 0.5·w(v∗)/|E(v∗)| ≥ 0.5·w(v∗)/∆.
By Claim 1, bidi(e) ≤ 0.5 · w(v∗). The bid is multiplied by α in each e-raise iteration and is
halved at most f · z times. The bound on the number of halvings holds because the number
of vertices in the edge is bounded by f , and each vertex halves the bid each time its level is
incremented. The lemma follows. J

We bound the number of v-stuck iterations as follows.

I Lemma 7. For every vertex v and level `(v), the number of v-stuck iterations is bounded
by α.

Proof. Notice that when v reached the level `(v), we had
∑
e∈E(v) δ(e) ≥ w(v)(1− 0.5`(v)).

The number of v-stuck iterations is then bounded by the number of times it can send a
“stuck” message without reaching

∑
e∈E(v) δ(e) > w(v)(1 − 0.5`(v)+1). Indeed, once this

inequality holds, the level of v is incremented. Every stuck iteration implies, by Line 3e, that∑
e∈E′(v) bid(e) > 1

α · 0.5
`(v)+1 · w(v). Therefore, we can bound the number of iteration by

w(v)(1−0.5`(v)+1)−w(v)(1−0.5`(v))
1
α ·0.5`(v)+1·w(v) = α. J

4.2.2 Bound on the Number of Rounds
I Theorem 8. For every α ≥ 2, the number of iterations of Algorithm mwhvc is

O
(
logα(∆ · 2f ·z) + f · z · α

)
= O (logα ∆ + f · log(f/ε) · α) .

Proof. Fix an edge e. We bound the number of iterations until e is covered. Every iteration
is either an e-raise iteration or a v-stuck iteration for some v ∈ e. Since e contains at most
f vertices, we conclude that the number of iterations is bounded by the number of e-raise
iterations plus the sum over v ∈ e of the number of v-stuck iterations. The theorem follows
from Lemmas 6 and 7. J

In Theorem 9 we assume that all the vertices know the maximum degree ∆ and that ∆ ≥ 3.
The assumption that the maximal degree ∆ is known to all vertices is not required. Instead,
each hyperedge e can compute a local maximum degree ∆(e), where ∆(e) , maxu∈e |E(u)|.
The local maximum degree ∆(e) can be used instead of ∆ to define local value of the
multiplier α = α(e). Let T (f,∆, ε) denote the round complexity of Algorithm mwhvc. By
setting α appropriately, we bound the running time as follows.
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I Theorem 9. 5 Let γ > 0 denote a constant and set

α =

{
max

(
2, log ∆

f ·log(f/ε)·log log ∆

)
if log ∆

f ·log(f/ε)·log log ∆ ≥ (log ∆)γ/2

2 otherwise.

Then, the round complexity of Algorithm mwhvc satisfies:

T (f,∆, ε) = O

(
f · log(f/ε) + log ∆

log log ∆ + min {log ∆, f · log(f/ε) · (log ∆)γ}
)
.

Proof. We prove the theorem using a case analysis.
Case α = log ∆

f ·log(f/ε)·log log ∆ ≥ 2 and α ≥ (log ∆)γ/2.

This means that the runtime is bounded by O (logα ∆ + f · log(f/ε) · α) = O
(

log ∆
γ·log log ∆

)
.

Case α = 2 and 2 > log ∆
f ·log(f/ε)·log log ∆ ≥ (log ∆)γ/2.

Notice that in this case 2 > (log ∆)γ/2 which implies that ∆ is constant. There-
fore, the round complexity of our algorithm is bounded by O (log ∆ + f · log(f/ε)) =
O (f · log(f/ε)) .

Case log ∆
f ·log(f/ε)·log log ∆ < (log ∆)γ/2.

This implies that

log ∆ ≤ min
{

log ∆, f · log(f/ε) · (log ∆)γ/2 · log log ∆
}

= O (min {log ∆, f · log(f/ε) · (log ∆)γ}) .

Therefore, since α = 2 in this case, the runtime is bounded by

O (log ∆ + f · log(f/ε)) = O (f · log(f/ε) + min {log ∆, f · log(f/ε) · (log ∆)γ}) . J

Let W , maxv w(v)/minv w(v). By setting ε = 1/(nW ), we conclude the following result
for an f -approximation (recall that the vertex degrees and weights are polynomial in n):

I Corollary 10. Algorithm mwhvc computes an f -approximation in O(f logn) rounds.

Additionally, we get the following range of parameters for which the round complexity is
optimal:

I Corollary 11. Let f = O
(
(log ∆)0.99) and ε = (log ∆)−O(1). Then, Algorithm mwhvc

computes an (f + ε)-approximation in O
(

log ∆
log log ∆

)
rounds.

For f = O(1) we also get an extension of range of parameters for which the round complexity
is optimal. This extension is almost exponential compared to the ε = (log ∆)−O(1) of [5].

I Corollary 12. Let f = O(1) and ε = 2−O((log ∆)0.99). Then our algorithm computes an
(f + ε)-approximation and terminates in O

(
log ∆

log log ∆

)
rounds.

5 The statement of the theorem is asymptotic (in ∆). This means that for every constant γ, it holds that
either logγ/2 ∆ ≥ log log ∆ or ∆ is bounded by a constant (determined by γ) in which case expressions
involving ∆ can be omitted from the asymptotic expression.
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5 Approximation of Covering ILPs

In this section, we present a reduction from solving covering integer linear programs (ILPs) to
mwhvc. This reduction implies that one can distributively compute approximate solutions
to covering ILPs using a distributed algorithm for mwhvc.

Notation. Let N denote the set of natural numbers. Let A denote a real m × n matrix,
~b ∈ Rn, and ~w ∈ Rn. Let LP (A,~b, ~w) denote the linear program min ~wT · ~x subject to
A · ~x ≥ ~b and ~x ≥ 0. Let ILP (A,~b, ~w) denote the integer linear program min ~wT · ~x subject
to A · ~x ≥ ~b and ~x ∈ Nn.

I Definition 13. The linear program LP (A,~b, ~w) and integer linear program ILP (A,~b, ~w)
are covering programs if all the components in A,~b, ~w are non-negative.

5.1 Distributed Setting
We denote the number of rows of the matrix A bym and the number of columns by n. Let f(A)
(resp., ∆(A)) denote the maximum number of nonzero entries in a row (resp., column) of A.

Given a covering ILP, ILP (A,~b, ~w), the communication network N(ILP ) over which the
ILP is solved is the bipartite graph N = (X × C,E), where: X = {xj}j∈[n], C = {ci}i∈[m],
and E = {(xj , ci) | Ai,j 6= 0}. We refer to the nodes in X as variable nodes, and to those in
C as constraint nodes. Note that the maximum degree of a constraint node is f(A) and the
maximum degree of a variable node is ∆(A).

We assume that the local input of every variable node xj consists of wj and the j’th
column of A (i.e., Ai,j , for i ∈ [m]). Every constraint vertex ci is given the value of bi as its
local input. We assume that these inputs can be represented by O(log(nm)) bits. In (f + 1)
rounds, every variable node vj can learn all the components in the rows i of A such that
Ai,j 6= 0 as well as the component bi.

5.2 Zero-One Covering Programs
The special case in which a variable may be assigned only the values 0 or 1 is called a zero-one
program. We denote the zero-one covering ILP induced by a matrix A and vectors ~b and ~w

by ZO(A,~b, ~z). Every instance of the mwhvc problem is a zero-one program in which the
matrix A is the incidence matrix of the hypergraph. The following lemma deals with the
converse reduction.

I Lemma 14. Every feasible zero-one covering program ZO(A,~b, ~w) can be reduced to an
mwhvc instance with rank f ′ < f(A) and degree ∆′ < 2f(A) ·∆(A).

Proof. Let Ai denote the i’th row of the matrix A. For a subset S ⊆ [n], let IS denote
the indicator vector of S. Let ~x ∈ {0, 1}n and let σi , {j ∈ [n] | Ai,j 6= 0}. Feasibility
implies that Ai · Iσi ≥ bi, for every row i. Let Si denote the set of all subsets S ⊂ [n]
such that the indicator vector IS does not satisfy the i’th constraint, i.e., Ai · IS < bi The
i’th constraint is not satisfied, i.e., Ai · ~x < bi, if and if only there exists a set S ∈ Si
such that ~x = IS . Hence, Ai · ~x < ~b if and only if the truth value of the following DNF
formula is false: ϕi(x) ,

∨
S∈Si

∧
j∈σi\S not(xj). By De Morgan’s law, we obtain that

not(ϕi(x)) is equivalent to a monotone CNF formula ψi(x) such that ψi(x) has less than
2f(A) clauses, each of which has length less than f(A). We now construct the hypergraph H
for the mwhvc instance as follows. For every row i and every S ∈ S, add the hyperedge
ei,S = σi \ S. (Feasibility implies that ei,S is not empty.) Given a vertex cover C of the
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hypergraph, every hyperedge is stabbed by C, and hence IC satisfies all the formulae ψi(x),
where i ∈ [m]. Hence, Ai · IC ≥ bi, for every i. The converse direction holds as well, and the
lemma follows. J

How does N(ILP ) (a bipartite graph with m + n vertices) simulate the execution of
mwhvc over the hypergraph H? Each variable node xj simulates all hyperedges ei,S , where
j ∈ σi and S ∈ Si. First, the variable nodes exchange their weights with the variables nodes
they share a constraint with in O(f(A)) rounds – first every xj broadcasts its own weight
and then each ci sends all neighbors the weights it received. At each iteration, the variable
node sends a raise/stuck message and whether its level was incremented.6 Notice that the
number of rounds required for each such iteration is O(1 + f(A)/ logn) (i.e., constant for
f(A) = O(logn)). Each edge node ci then broadcasts to all vertices two f(A)-bit messages
that indicate two subsets of vertices of the edge: those that sent a raise message (the
complement sent a stuck message) and those that incremented their level. Each variable
node xj knows how to update its bid with every ei,S for which j ∈ σi and S ∈ Si.

We summarize the complexity of the distributed algorithm for solving a zero-one covering
program.

B Claim 15. Denoting by T (f,∆, ε) is the running time of Algorithm mwhvc, There exists
a distributed congest algorithm for computing an (f + ε)-approximate solution for zero-one
covering programs with running time of O((1 + f(A)/ logn)·T (f(A), 2f(A) ·∆(A), ε)).

5.3 Reduction of Covering ILPs to Zero-One Covering
Consider the covering ILP ILP (A,~b, ~w). We present a reduction of the ILP to a zero-one
covering program.

I Definition 16. Define M(A,~b) , maxj maxi
{

bi
Ai,j
| Ai,j 6= 0

}
.

We abbreviate and write M for M(A,~b) when the context is clear.

I Proposition 17. Limiting ~x to the box [0,M ]n does not increase the optimal value of the
ILP.

B Claim 18. Every covering ILP ILP (A,~b, ~w) can be solved by a zero-one covering program
ZO(A′,~b, ~w′), where f(A′) ≤ f(A) · dlog2(M) + 1e and ∆(A′) = ∆(A).

Proof. Let B = dlog2Me. Limiting each variable xj by M means that we can replace xj
by B zero-one variables {xj,`}B−1

`=0 that correspond to the binary representation of xj , i.e.,
xj =

∑B−1
`=0 2` ·xj,`. This replacement means that the dimensions of the matrix A′ are m×n′,

where n′ = n ·B. The j’th column A(j) of A is replaced by B columns, indexed 0 to B − 1,
where the `’th column equals 2` ·A(j). The vector ~w′ is obtained by duplicating and scaling
the entries of ~w in the same fashion. J

Combining Claims 15 and 18, we obtain the following result.

I Theorem 19. There exists a distributed congest algorithm for computing an (f + ε)-
approximate solution for covering integer linear programs ILP (A,~b, ~w) with running time
of O((1 + f(A)/ logn)·T (f(A) · logM, 2f(A) ·M ·∆(A), ε)), where T (f,∆, ε) is the running
time of Algorithm mwhvc.

6 One needs to modify the mwhvc algorithm slightly so that, in each iteration, the level of every vertex
is increased by at most 1. We defer the details to Appendix C.
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Proof. Let fHV C , fZO, FILP denote the ranks of the hypergraph vertex cover instance, zero-
one covering program, and ILP, respectively. We use the same notation for maximum degrees.
The reduction of zero-one programs to mwhvc in Lemma 14 implies that fHV C ≤ fZO and
∆HV C ≤ 2fZO · ∆ZO. The reduction of covering ILPs to zero-one programs in Claim 18
implies that fZO ≤ fILP · (1 + logM) and ∆ZO ≤ ∆ILP . The composition of the reductions
gives fHV C ≤ fILP · (1+logM) and ∆HV C ≤ 2fILP ·(1+logM) ·∆ILP = 2FILP ·2M ·∆ILP J

After some simplifications, the running time of the resulting algorithm for (f + ε)-
approximate integer covering linear programs is

O

(
(1 + f/ logn) ·

(
log ∆

log log ∆ + (f · logM)1.01 · log ε−1 · (log ∆)0.01
))

.
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A Primal-Dual Approach

The fractional LP relaxation of mwhvc is defined as follows.

minimize:
∑
v∈V

w(v) · x(v)

subject to:∑
v∈e

x(v) ≥ 1, ∀e ∈ E; x(v) ≥ 0, ∀v ∈ V (P)

The dual LP is an Edge Packing problem defined as follows:

maximize:
∑
e∈E

δ(e)

subject to:∑
e3v

δ(e) ≤ w(v), ∀v ∈ V ; δ(e) ≥ 0, ∀e ∈ E (D)

The following claim is used for proving the approximation ratio of the mwhvc algorithm.

B Claim 20. Let opt denote the value of an optimal fractional solution of the primal
LP (P). Let {δ(e)}e∈E denote a feasible solution of the dual LP (D). Let ε ∈ (0, 1) and
β , ε/(f + ε). Define the β-tight vertices by Tε , {v ∈ V |

∑
e3v δ(e) ≥ (1 − β) · w(v)}.

Then w(Tε) ≤ (f + ε) · opt.

Proof.

w(Tε) =
∑
v∈Tε

w(v) ≤ 1
1− β ·

(∑
v∈Tε

∑
e3v

δ(e)
)
≤ f

1− β
∑
e∈E

δ(e) ≤ (f + ε) · opt.

The last transition follows from f/(1− β) = f + ε and by weak duality. The claim follows.
C

B Adaptation to the CONGEST model

We need to show that the message lengths in Algorithm mwhvc are O(logn).
1. In round 0, every vertex v sends its weight w(v) and degree |E(v)| to every hyperedge in

e ∈ E(v). We assume that the weights and degrees are polynomial in n, hence the length
of the binary representations of w(v) and |E(v)| is O(logn).
Every hyperedge e sends back to every v ∈ e the pair (w(ve), |E(ve)|), where ve has the
smallest normalized weight, i.e., ve = argminv∈e{w(v)/|E(v)|}.
Every vertex v ∈ e locally computes bid0(e) = w(ve)/(2 · |E(ve)|) and δ0(e) = bid0(e).
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2. In round i ≥ 1, every vertex sends messages. Messages of the sort: “e is covered”, “raise”,
or “stuck” require only a constant number of bits. The increment of v’s level needs to be
sent to the edges in E(v). These increments require O(log z) = O(logn) bits.

3. Every edge e sends to every v ∈ e the number of times that bid(e) is halved in this
iteration. This message is O(log z) bits long.

4. Every edge sends the final bid to the vertices. Instead of sending the value of the bid, the
edge can send a single bit indicating whether the bid was multiplied by α.

5. Finally, if α = α(e) is set locally based on the local maximum degree maxv∈e |E(v)|, then
every vertex v sends its degree to all the edges e ∈ E(v). The local maximum degree for
e is sent to every vertex v ∈ V , and this parameter is used to compute α(e) locally.

C Algorithm with At Most One Level Increment per Iteration

We propose to do a single change that will ensure that no vertex levels up more than once
per iteration. To that end, we modify Line 3f of our mwhvc algorithm to

For every uncovered edge e, if all incoming messages are “raise” bid(e)← α ·bid(e). Send
bid(e) to every v ∈ e, who updates δ(e)← δ(e) + bid(e)/2.

That is, the algorithm remains intact except that the dual variables δ(e) are raised by
bid(e)/2 rather than by bid(e). Intuitively, this guarantees that a vertex’s slack does not
reduce by more than 50% in each iteration and therefore its level may increase by at most
one. We revisit the proof of 2, and, specifically, the Proof of feasibility of δi−1(e) for i > 1.

Proof of feasibility of δi−1(e) for i > 1. Consider a vertex v. If v joins C in iteration
i− 1, then δi−1 = δi−2, and the packing constraint of v holds by the induction hypothesis. If
v /∈ C, then by δi−1(e) = δi−2(e) + bidi−1(e)/2, Claim 1, and the induction hypothesis for
Eq. 1, we have∑

e∈E(v)

δi−1(e) =
∑

e∈E(v)

(δi−2(e) + bidi−1(v)/2)

≤
(

1− 0.5`i−1(v)+1 + 0.5`i−1(v)+2
)
· w(v) =

(
1− 0.5(`i−1(v)+1)+1

)
· w(v) . (2)

As evident by Eq. 2, the vertex v’s level may increase by at most once in each iteration.

I Corollary 21. For any iteration i ≥ 1 and vertex v: `i(v) ≤ `i−1(v) + 1.

We note that the change to the algorithm does not affect the correctness of claims 1, 2, 4 and
Lemma 6. Lemma 7 changes slightly, as there can now be twice as many v-stuck iterations:

I Lemma 22. For every vertex v and level `(v), the number of v-stuck iterations is bounded
by 2α.

Proof. Notice that when v reached the level `(v), we had
∑
e∈E(v) δ(e) ≥ w(v)(1− 0.5`(v)).

The number of v-stuck iterations is then bounded by the number of times it can send a
“stuck” message without reaching

∑
e∈E(v) δ(e) > w(v)(1 − 0.5`(v)+1). Indeed, once this

inequality holds, the level of v is incremented. Every stuck iteration implies, by Line 3e, that∑
e∈E′(v) bid(e) > 1

α · 0.5
`(v)+1 · w(v). Therefore, we can bound the number of iteration by

w(v)(1−0.5`(v)+1)−w(v)(1−0.5`(v))
1
α ·0.5`(v)+1·w(v)/2 = 2α. J

We conclude that the algorithm remains correct and its asymptotic complexity does not
change.
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