2,236 research outputs found

    Importance Sampling for Objetive Funtion Estimations in Neural Detector Traing Driven by Genetic Algorithms

    Get PDF
    To train Neural Networks (NNs) in a supervised way, estimations of an objective function must be carried out. The value of this function decreases as the training progresses and so, the number of test observations necessary for an accurate estimation has to be increased. Consequently, the training computational cost is unaffordable for very low objective function value estimations, and the use of Importance Sampling (IS) techniques becomes convenient. The study of three different objective functions is considered, which implies the proposal of estimators of the objective function using IS techniques: the Mean-Square error, the Cross Entropy error and the Misclassification error criteria. The values of these functions are estimated by IS techniques, and the results are used to train NNs by the application of Genetic Algorithms. Results for a binary detection in Gaussian noise are provided. These results show the evolution of the parameters during the training and the performances of the proposed detectors in terms of error probability and Receiver Operating Characteristics curves. At the end of the study, the obtained results justify the convenience of using IS in the training

    Reducing the dimensionality effect in importance sampling simulations

    Get PDF
    The dimensionality effect is avoided by the use of sufficient statistics in event probability estimators realised by importance sampling. If the system function is not a sufficient statistic, an approach is proposed to reduce the dimensionality effect in the estimators. Simulation results of false-alarm probability estimations, applied to radar detection, confirm a clear concordance with the theoretical result

    ESTIMATION OF GREENHOUSE GAS AND ODOUR EMISSIONS FROM COLD REGION MUNICIPAL BIOLOGICAL NUTRIENT REMOVAL WASTEWATER TREATMENT PROCESSES

    Get PDF
    Rising human populations and ever-increasing demand for potable water result in increased municipal wastewater production. The collection, treatment, and management of municipal wastewaters include energy-intensive processes leading to the generation and emission of greenhouse, potentially toxic, and odorous gases. The main goal of this thesis was to advance knowledge of greenhouse gas (including carbon dioxide, CO2; methane, CH4; and nitrous oxide, N2O) and smelly compound (including ammonia, NH3; and hydrogen sulphide, H2S) emissions from typical municipal wastewater treatment plants (MWTPs) to accurately describe their emission rate estimates (EREs) using operating parameters. This research included laboratory and field assessments of greenhouse gas (GHG) and odour emissions in conjunction with monitored operating parameters. Laboratory-scale reactors simulating open-to-air treatment processes including primary and secondary clarifiers and anaerobic, anoxic, and aerobic reactors, were used to monitor gas EREs using wastewater samples taken from the analogous MWTP processes in winter and summer seasons. The Saskatoon Wastewater Treatment plan (SWTP) is a state-of-the-art biological nutrient removal (BNR) type MWTP and a Class IV treatment facility in Canada which was selected as a case study given its highly variable seasonal temperatures from −40 °C to 30 °C and its geographic location near the University of Saskatchewan. The experimental results were then used to develop a variety of novel machine learning models describing gas EREs with further optimization of operating parameters using genetic algorithm (GA). Studied machine learning models were artificial data generation algorithms (including generative adversarial network, GAN) and data-driven models (including artificial neural network, ANN; adaptive network-based fuzzy inference systems, ANFIS; and linear/non-linear regression models). To my knowledge, this is the first application of GAN used for MWTP modelling purposes. Results indicated that anaerobic digestion EREs averagely reached 4,443 kg CH4/d, 9,145 kg CO2/d, and 59.7 kg H2S/d. In contrast, GHG and odour ERE variabilities given ambient temperature changes were more noticeable for open-to-air treatment processes such that the winter EREs were 45,129 kg CO2/d, 21.9 kg CH4/d, 3.20 kg N2O/d, and insignificant for H2S and NH3. The higher temperature for the summer samples resulted in increased EREs for CH4, N2O, and H2S EREs of 33.0 kg CH4/d, 3.87 kg N2O/d, and 2.29 kg H2S/d, respectively, and still insignificant NH3 emissions. However, the CO2 EREs were reduced to 37,794 kg CO2/d, and interestingly, NH3 emissions were still negligible. Overall, the aerobic reactor was the dominant source of GHG emissions for both seasons, and changes in the aerobic reactor aeration rates (in reactor) and BNR treatment configurations (from site) further impacted the EREs. The integration of field monitoring data with data-driven models showed that the ANN, ANFIS, and regression models provided reasonable EREs using: (1) volatile fatty acids, total/fixed/volatile solids, pH, and inflow rate for anaerobic digestion biogas generations; and (2) hydraulic retention time, temperature, total organic carbon, dissolved oxygen, phosphate, and nitrogen concentrations for aerobic GHG emissions. However, when both model accuracy and uncertainty were considered there appears to be a compromise between these parameters with no model having simultaneously both high accuracy and low uncertainty. Additionally, and interestingly, virtual data augmentation using GAN was found to be a valuable resource in supplementation of limited data for improved modelling outcomes. GA was also coupled with the data-driven models to determine optimal operating parameters resulting in either GHG emission maximization given biogas could be beneficial for energy generation or GHG emission minimization given the aerobic reactor is an open-to-air process that can impact nearby residential neighbourhood air quality. The current study provides a hybrid methodology of mathematical modelling and experiments that can be used to accurately estimate and optimize the GHG and odour EREs from other MWTPs in Canada and worldwide

    Intelligent systems in manufacturing: current developments and future prospects

    Get PDF
    Global competition and rapidly changing customer requirements are demanding increasing changes in manufacturing environments. Enterprises are required to constantly redesign their products and continuously reconfigure their manufacturing systems. Traditional approaches to manufacturing systems do not fully satisfy this new situation. Many authors have proposed that artificial intelligence will bring the flexibility and efficiency needed by manufacturing systems. This paper is a review of artificial intelligence techniques used in manufacturing systems. The paper first defines the components of a simplified intelligent manufacturing systems (IMS), the different Artificial Intelligence (AI) techniques to be considered and then shows how these AI techniques are used for the components of IMS

    Advances in Robotics, Automation and Control

    Get PDF
    The book presents an excellent overview of the recent developments in the different areas of Robotics, Automation and Control. Through its 24 chapters, this book presents topics related to control and robot design; it also introduces new mathematical tools and techniques devoted to improve the system modeling and control. An important point is the use of rational agents and heuristic techniques to cope with the computational complexity required for controlling complex systems. Through this book, we also find navigation and vision algorithms, automatic handwritten comprehension and speech recognition systems that will be included in the next generation of productive systems developed by man

    Advanced Occupancy Measurement Using Sensor Fusion

    Get PDF
    With roughly about half of the energy used in buildings attributed to Heating, Ventilation, and Air conditioning (HVAC) systems, there is clearly great potential for energy saving through improved building operations. Accurate knowledge of localised and real-time occupancy numbers can have compelling control applications for HVAC systems. However, existing technologies applied for building occupancy measurements are limited, such that a precise and reliable occupant count is difficult to obtain. For example, passive infrared (PIR) sensors commonly used for occupancy sensing in lighting control applications cannot differentiate between occupants grouped together, video sensing is often limited by privacy concerns, atmospheric gas sensors (such as CO2 sensors) may be affected by the presence of electromagnetic (EMI) interference, and may not show clear links between occupancy and sensor values. Past studies have indicated the need for a heterogeneous multi-sensory fusion approach for occupancy detection to address the short-comings of existing occupancy detection systems. The aim of this research is to develop an advanced instrumentation strategy to monitor occupancy levels in non-domestic buildings, whilst facilitating the lowering of energy use and also maintaining an acceptable indoor climate. Accordingly, a novel multi-sensor based approach for occupancy detection in open-plan office spaces is proposed. The approach combined information from various low-cost and non-intrusive indoor environmental sensors, with the aim to merge advantages of various sensors, whilst minimising their weaknesses. The proposed approach offered the potential for explicit information indicating occupancy levels to be captured. The proposed occupancy monitoring strategy has two main components; hardware system implementation and data processing. The hardware system implementation included a custom made sound sensor and refinement of CO2 sensors for EMI mitigation. Two test beds were designed and implemented for supporting the research studies, including proof-of-concept, and experimental studies. Data processing was carried out in several stages with the ultimate goal being to detect occupancy levels. Firstly, interested features were extracted from all sensory data collected, and then a symmetrical uncertainty analysis was applied to determine the predictive strength of individual sensor features. Thirdly, a candidate features subset was determined using a genetic based search. Finally, a back-propagation neural network model was adopted to fuse candidate multi-sensory features for estimation of occupancy levels. Several test cases were implemented to demonstrate and evaluate the effectiveness and feasibility of the proposed occupancy detection approach. Results have shown the potential of the proposed heterogeneous multi-sensor fusion based approach as an advanced strategy for the development of reliable occupancy detection systems in open-plan office buildings, which can be capable of facilitating improved control of building services. In summary, the proposed approach has the potential to: (1) Detect occupancy levels with an accuracy reaching 84.59% during occupied instances (2) capable of maintaining average occupancy detection accuracy of 61.01%, in the event of sensor failure or drop-off (such as CO2 sensors drop-off), (3) capable of utilising just sound and motion sensors for occupancy levels monitoring in a naturally ventilated space, (4) capable of facilitating potential daily energy savings reaching 53%, if implemented for occupancy-driven ventilation control

    NILM techniques for intelligent home energy management and ambient assisted living: a review

    Get PDF
    The ongoing deployment of smart meters and different commercial devices has made electricity disaggregation feasible in buildings and households, based on a single measure of the current and, sometimes, of the voltage. Energy disaggregation is intended to separate the total power consumption into specific appliance loads, which can be achieved by applying Non-Intrusive Load Monitoring (NILM) techniques with a minimum invasion of privacy. NILM techniques are becoming more and more widespread in recent years, as a consequence of the interest companies and consumers have in efficient energy consumption and management. This work presents a detailed review of NILM methods, focusing particularly on recent proposals and their applications, particularly in the areas of Home Energy Management Systems (HEMS) and Ambient Assisted Living (AAL), where the ability to determine the on/off status of certain devices can provide key information for making further decisions. As well as complementing previous reviews on the NILM field and providing a discussion of the applications of NILM in HEMS and AAL, this paper provides guidelines for future research in these topics.Agência financiadora: Programa Operacional Portugal 2020 and Programa Operacional Regional do Algarve 01/SAICT/2018/39578 Fundação para a Ciência e Tecnologia through IDMEC, under LAETA: SFRH/BSAB/142998/2018 SFRH/BSAB/142997/2018 UID/EMS/50022/2019 Junta de Comunidades de Castilla-La-Mancha, Spain: SBPLY/17/180501/000392 Spanish Ministry of Economy, Industry and Competitiveness (SOC-PLC project): TEC2015-64835-C3-2-R MINECO/FEDERinfo:eu-repo/semantics/publishedVersio

    Optimisation of the SHiP Beam Dump Facility with generative surrogate models

    Get PDF
    The SHiP experiment is a proposed fixed target experiment at the CERN SPS to search for new particles. To operate optimally, the experiment should feature a zero background environment. The residual muons flying from the target are one of the largest sources of the background. To remove them from the detector acceptance, a dedicated muon shield magnet is introduced in the experiment. The shield should be optimised to deliver the best physics performance at the lowest cost. The optimisation procedure is very computationally costly and, thus, requires ded- icated methods. This thesis comprises of a detailed description of a new machine learning method for the optimisation, comparisons to existing techniques, and the application of the method to optimising the muon shield magnet. In addition, the set of technological and simulation problems affecting the optimisation is discussed in details. Finally, the set of requirements for the muon shield prototype design and verification is presented.Open Acces
    corecore