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ABSTRACT 
 

Rising human populations and ever-increasing demand for potable water result in increased 

municipal wastewater production. The collection, treatment, and management of municipal 

wastewaters include energy-intensive processes leading to the generation and emission of 

greenhouse, potentially toxic, and odorous gases. The main goal of this thesis was to advance 

knowledge of greenhouse gas (including carbon dioxide, CO2; methane, CH4; and nitrous oxide, 

N2O) and smelly compound (including ammonia, NH3; and hydrogen sulphide, H2S) emissions 

from typical municipal wastewater treatment plants (MWTPs) to accurately describe their 

emission rate estimates (EREs) using operating parameters. This research included laboratory and 

field assessments of greenhouse gas (GHG) and odour emissions in conjunction with monitored 

operating parameters. Laboratory-scale reactors simulating open-to-air treatment processes 

including primary and secondary clarifiers and anaerobic, anoxic, and aerobic reactors, were used 

to monitor gas EREs using wastewater samples taken from the analogous MWTP processes in 

winter and summer seasons. The Saskatoon Wastewater Treatment plan (SWTP) is a state-of-the-

art biological nutrient removal (BNR) type MWTP and a Class IV treatment facility in Canada 

which was selected as a case study given its highly variable seasonal temperatures from −40 °C to 

30 °C and its geographic location near the University of Saskatchewan. The experimental results 

were then used to develop a variety of novel machine learning models describing gas EREs with 

further optimization of operating parameters using genetic algorithm (GA). Studied machine 

learning models were artificial data generation algorithms (including generative adversarial 

network, GAN) and data-driven models (including artificial neural network, ANN; adaptive 

network-based fuzzy inference systems, ANFIS; and linear/non-linear regression models). To my 

knowledge, this is the first application of GAN used for MWTP modelling purposes.  

Results indicated that anaerobic digestion EREs averagely reached 4,443 kg CH4/d, 9,145 

kg CO2/d, and 59.7 kg H2S/d. In contrast, GHG and odour ERE variabilities given ambient 

temperature changes were more noticeable for open-to-air treatment processes such that the winter 

EREs were 45,129 kg CO2/d, 21.9 kg CH4/d, 3.20 kg N2O/d, and insignificant for H2S and NH3. 

The higher temperature for the summer samples resulted in increased EREs for CH4, N2O, and 

H2S EREs of 33.0 kg CH4/d, 3.87 kg N2O/d, and 2.29 kg H2S/d, respectively, and still insignificant 

NH3 emissions. However, the CO2 EREs were reduced to 37,794 kg CO2/d, and interestingly, NH3 

emissions were still negligible. Overall, the aerobic reactor was the dominant source of GHG 
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emissions for both seasons, and changes in the aerobic reactor aeration rates (in reactor) and BNR 

treatment configurations (from site) further impacted the EREs. The integration of  field 

monitoring data with data-driven models showed that the ANN, ANFIS, and regression models 

provided reasonable EREs using: (1) volatile fatty acids, total/fixed/volatile solids, pH, and inflow 

rate for anaerobic digestion biogas generations; and (2) hydraulic retention time, temperature, total 

organic carbon, dissolved oxygen, phosphate, and nitrogen concentrations for aerobic GHG 

emissions. However, when both model accuracy and uncertainty were considered there appears to 

be a compromise between these parameters with no model having simultaneously both high 

accuracy and low uncertainty. Additionally, and interestingly, virtual data augmentation using 

GAN was found to be a valuable resource in supplementation of limited data for improved 

modelling outcomes. GA was also coupled with the data-driven models to determine optimal 

operating parameters resulting in either GHG emission maximization given biogas could be 

beneficial for energy generation or GHG emission minimization given the aerobic reactor is an 

open-to-air process that can impact nearby residential neighbourhood air quality. The current study 

provides a hybrid methodology of mathematical modelling and experiments that can be used to 

accurately estimate and optimize the GHG and odour EREs from other MWTPs in Canada and 

worldwide. 
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1. CHAPTER 1: General introduction 

 

1.1. Introduction 

Human population growth, coupled with increasing urbanization, has led to ever-increasing 

demands for potable water with subsequent increases in municipal wastewaters resulting in 

significant challenges for wastewater collection, treatment, and management (Hofman et al., 

2011). Typical municipal wastewater treatment plants (MWTPs) use a combination of primary, 

secondary, and even tertiary treatment processes to produce environmentally safe effluents 

meeting regulatory limits before discharging into receiving environments. The primary treatment 

includes screening and grit removal units, and primary clarifiers to eliminate floating and readily 

settleable materials from influent wastewater. The secondary treatment utilizes microorganisms to 

decompose and remove soluble organic matter and nutrients from wastewater. MWTPs with 

biological nutrient removal (BNR) systems are becoming more commonplace due to the removal 

of carbon (C), nitrogen (N), and phosphorous (P) compounds from wastewaters using bioreactors 

including anaerobic, anoxic, and aerobic processes with each allowing for favourable conditions 

for the growth of a large variety of microorganisms (Figure 1.1; Tchobanoglous et al., 2003; 

USEPA, 2007). Finally, the tertiary treatment cleans turbidity, organic and inorganic compounds 

and nutrients of the wastewater using various treatment processes, such as coagulation, filtration, 

reverse osmosis, and additional disinfection (Brusseau et al., 2019).  

As with all MWTPs, the microorganism activity in the BNR process results in the generation 

and emission of greenhouse gases (e.g., carbon dioxide, CO2; methane, CH4; and nitrous oxide, 

N2O) and odorous gases (e.g., ammonia, NH3; and hydrogen sulphide, H2S), which have become 

of increasing interest over the past decade for policymakers, environmental authorities, and 

decision-makers due to their negative impacts on environment and public health (Agus et al., 2012; 

Hofman et al., 2011; Wang et al., 2011b). For example, the Canadian government's commitment 

to the Paris Agreement has resulted in the offering of carbon pricing incentives encouraging 

industries, such as the MWTPs, to capture greenhouse gases (GHGs) (Environment and Climate 

Change Canada, 2017). Additionally, odour emission from MWTPs can be a nuisance for residents 

living nearby and increased public awareness and stricter environmental regulations have resulted 
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in increasing public complaints in response to odour pollution in recent decades (Easter et al., 

2009; Morales et al., 2008).  

While MWTPs are typically efficient at meeting wastewater treatment guidelines/regulations, 

GHG and odour emissions are not generally considered in the MWTP design process and are not 

currently subjected to emissions regulations. This is especially the case for cold-region facilities, 

such as those located in the Canadian prairie provinces with marked seasonal ambient temperature 

fluctuations, where temperature variabilities can affect MWTP GHG and odour generations, 

emissions, and dispersions. Therefore, there is a need to accurately assess GHG and odour 

emissions from MWTPs to identify the fugitive gas emissions, especially from the open-to-air 

processes, and determine if suitable mitigation measures need to be implemented. Sections 1.1.1 

and 1.1.2 include an overview of GHG and smelly compound generation and emission from typical 

wastewater treatment processes.  

1.1.1. MWTP GHG generation and emission  

CO2, CH4, and N2O are the primary GHGs created by MWTPs with the greenhouse impacts of 

CH4 and N2O being 25 - 36 and 265 - 298 times higher than CO2, respectively (Hofman et al., 

2011). CO2 formation from various wastewater treatment processes are typically led by 

endogenous respiration of cells and microbial metabolisms, specifically in the aerobic reactors 

where aerobes use oxygen and nutrients to decompose complex organic material leading to 

biogenic CO2 generation, which can be stripped from the wastewater via aeration and subsequent 

agitation (Alshboul et al., 2016; Bao et al., 2016; Czepiel et al., 1993; Krasner et al., 2009; Ren et 

al., 2015; Yan et al., 2014). Both Intergovernmental Panel on Climate Change (IPCC) and U.S. 

Environmental Protection Agency (EPA) have not considered biogenic CO2 emission for the 

assessment of MWTP carbon footprint given its short lifespan (Doorn et al., 2006; USEPA, 2012). 

In contrast, recent studies have shown that municipal wastewater includes fossil carbon-based 

compounds, such as detergents, pharmaceuticals, and oil-based products leading to long lifespan-

type CO2 generation and emission (Griffith et al., 2009; Law et al., 2013) that highlights the need 

for CO2 consideration in total GHG emission assessment, which has not been well discussed 

previously. 
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CH4 generation is due to complex organic matter decomposition by methanogenic bacteria 

activities in oxygen-free environments, specifically anaerobic digestion of wastewater sludge 

through hydrolysis, acidogenesis, and acetogenesis pathways (Figure 1.2; Tchobanoglous et al., 

2014). In the hydrolysis stage, complex molecules such as lipids, proteins, and carbohydrates are 

decomposed into sugars, fatty acids with long hydrocarbon chains, and amino acids. The 

acidogenesis stage creates CO2, hydrogen, and volatile fatty acids (VFAs). The acetogenesis 

converts VFAs to hydrogen, CO2, and acetic acids. In the methanogenesis, compounds including 

hydrogen, CO2, and acetic acid are decomposed to produce CO2 and CH4 (Abatzoglou and Boivin, 

2009; Demirbas and Balat, 2009). The majority of MWTPs either collect and utilize this CH4 for 

heating and power generation or ‘flare’ it off without energy recovery making CH4 emission from 

anaerobic digesters less important compared to other open-to-air treatment processes, such as 

primary clarifiers and bioreactors, specifically aerobic reactors. CH4 emission from aerobic 

reactors is attributed to mechanical aeration/agitation and temperature changes, which accelerate 

the stripping of dissolved CH4 contained in the aerobic influent (Daelman et al., 2012; Heffernan 

et al., 2012; Rodríguez-Caballero et al., 2014a). 

N2O generation through nitrification and denitrification processes typically happens at BNR-

type MWTPs. Figure 1.3 shows microbial pathways leading to N2O generation including 

hydroxylamine (NH2OH) oxidation, nitrifier denitrification during aerobic processes, and 

heterotrophic denitrification in the anoxic reactors (Ni and Yuan, 2015; Wunderlin et al., 2013). 

The nitrification process uses autotrophic ammonia oxidizing bacteria (AOB) to oxidize available 

NH4
+ to NH2OH and NO2

-. Additionally, autotrophic nitrite oxidizing bacteria (NOB) completes 

NO2
- oxidation to NO3

-. Insufficient dissolved oxygen (DO) availability results in incomplete 

NH2OH and NO2
- oxidation leading to NO2

- reduction to nitric oxide (NO) and finally N2O 

generation via hydroxylamine (NH2OH) oxidation, nitrifier denitrification in the aerobic reactor, 

respectively. Further, heterotrophic denitrification generates N2O during denitrification process 

that heterotrophic bacteria in the anoxic reactors reduces: (1) NO3
- to NO2

-, (2) NO2
- to NO, (3) 

NO to N2O, and (4) N2O to nitrogen (N2) (Law et al., 2012a; Ni and Yuan, 2015; Poughon et al., 

2001).
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Figure 1.2: CH4 and CO2 generations through Anaerobic digestion pathways, including 

hydrolysis, acidogenesis, acetogenesis, and methanogens (Adopted from Wang et al., 2018). 
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Figure 1.3: Microbial pathways leading to N2O generation through nitrification and 

denitrification processes. Blue and violet boxes indicate typical nitrification and denitrification 

process in aerobic and anoxic reactors, respectively. Khaki, green, and violet arrows indicate 

N2O generation through hydroxylamine (NH2OH) oxidation, nitrifier denitrification, and 

heterotrophic denitrification pathways.  
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In 2006, the IPCC highlighted GHG emissions from wastewater treatment as a potential air 

quality issue and proposed a recommendation for approximating an N2O emission rate estimate 

(ERE) of 0.035% (by mass) of the influent total Kjeldahl nitrogen (TKN) (Garg et al., 2006). 

Several empirical and mathematical campaigns then have been conducted and examined the 

accuracy of the recommended ERE and reported remarkable discrepancies between the IPCC’s 

emission factor and their findings (Kampschreur et al., 2009; Law et al., 2012b; Massara et al., 

2017b; Yoshida et al., 2014). Clearly, a single estimate for the N2O ERE is not suitable for 

approximations for all MWTP facilities and investigating operating parameters can be useful in 

determining more accurate EREs and optimization of treatment processes.  

1.1.2. MWTP odorous compound generations and emissions  

The most dominant and distinctive generated smelly compounds at MWTPs include the rotten 

egg smell of hydrogen sulphide (H2S) and the pungent smell of ammonia (NH3) (Malhautier et al. 

2003; Agus et al. 2012). Each of these gases can be produced and emitted during various 

wastewater treatment processes, however, the highest emissions are typically from anaerobic 

processes that result in fat and protein degradation  (Fang et al., 2012; Lewkowska et al., 2016).  

  NH3 is a toxic, corrosive and chemically active gas that potentially can be of the greenhouse 

effect in the atmosphere (Yongsiri et al. 2004a). It is typically dissolved in wastewaters in the form 

of ammonium (NH4
+) with concentrations dependent on MWTP operating parameters including 

influent nitrogen loading rates, oxygen availability, pH and wastewater temperature. For instance, 

more acidic environments (pH < 7) and warmer temperatures favour NH3 release into the 

atmosphere (Emerson et al., 1975).  

H2S is a colourless, hazardous, potentially toxic, and smelly compound generated during 

anaerobic processes at MWTPs. As shown in Figure 1.4, organic sulphur and elemental sulphur 

(S°) reductions directly lead to H2S formation. While H2S generation through sulphate (SO4
2-) 

pathway is achieved when SO4
2- first reduces to adenosine 5′-phosphosulfate (APS), and sulphite 

(SO3
2-). Typically, H2S formation pathways are affected by wastewater quantity and quality 

characteristic changes given their impact on microorganism metabolisms. For instance, 

temperature increase and higher organic carbon availability at pH<7 hasten various sulphur 

compound reductions to H2S (Talaiekhozani et al., 2016) such that 1 °C temperature increase can 
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enhance sulphate-reducing bacteria (SRB) activity by 7% and then H2S formation rate (Sengupta, 

2014; Yang et al., 2005). 

Previous research conducted to address odour characterization, quantification, and abatement 

for MWTPs has been primarily focussed on preliminary treatment, primary settlers, sludge 

digestion tanks, sludge thickening, and dewatering facilities (Vincent, 2001). However, field 

monitoring has shown that other MWTP processes, such as aerobic and anoxic reactors, may also 

be significant emission sources (Huber and Smeby, 2010). Field monitoring of emissions from 

individual processes is often difficult given the reactors are largely open-to-air making emissions 

sampling problematic. However, estimation of odour emissions via laboratory-scale reactor 

experiments and mathematical modelling may be helpful to identify the main emission sources 

and, based on this information, take suitable actions in order to reduce smelly compound emissions 

and improve local air quality (Baawain et al., 2017; Zhang et al., 2017). 
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Figure 1.4: H2S formation pathways and its oxidation during anaerobic (brown arrows) and 

aerobic (blue arrows) processes, respectively. The yellow box indicates SO4
2- reduction pathway 

(Adopted from Shen and Buick, 2004; Talaiekhozani et al., 2016). 
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1.2. Thesis overview 

The following sections will include the thesis objectives (Section 1.2.1), and each chapter 

overview (Sections 1.2.1 through 1.2.6).   

1.2.1. Thesis objectives  

MWTPs have unique combinations of treatment processes and climate conditions that 

highlight the need for the quantification of site-specific GHG and odour emissions using field 

monitoring, laboratory-scale reactor experiments, and mathematical modelling. Therefore, the 

main goal of this thesis was to advance knowledge of GHG and smelly compound emissions from 

various municipal wastewater treatment processes to accurately determine their EREs. The 

following objectives then were devised to meet this goal: 

 determine municipal wastewater treatment  GHG (CO2, CH4, and N2O) and smelly 

compound (NH3, and H2S) EREs or production rate estimates from anaerobic digesters, 

and open-to-air treatment processes including aerobic, anoxic, and anaerobic reactors, 

and primary and secondary clarifiers, in conjunction with monitoring operating 

parameters of each treatment process to evaluate the impacts of operating parameters 

(dissolved oxygen concentration and temperature) and process designs (bioreactor 

configurations) on GHG and odour EREs, 

 develop reliable and accurate data-driven models for (1) municipal wastewater 

anaerobic digestion biogas (CO2, CH4, and H2S) EREs, and (2) municipal wastewater 

bioreactors/clarifiers GHG and odour EREs with further optimization of each model 

for the determination of operating parameters leading to the maximization (and 

minimization for comparative purposes) of gas productions and emissions, 

 couple dispersion modelling with experimental and mathematical results to assess air 

quality at the downwind of the wastewater treatment processes. 

This research included laboratory reactor assessments of sampled wastewaters from the 

Saskatoon Wastewater Treatment Plant (SWTP) for GHG and odour emissions, in conjunction 

with monitoring operating parameters of each treatment process. The experimental results then 

were coupled with mathematical models with further optimization of models via wastewater 

treatment operating parameters using genetic algorithm (GA). The SWTP is a state-of-the-art 
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MWTP and a Class IV treatment facility in Canada which was selected as a case study given its 

highly variable seasonal temperatures from −40 °C to 30 °C, and its geographic location near the 

University of Saskatchewan (U of S).  

This research is novel and studied GHG and odour EREs due to various operating temperatures 

(13 °C in winter and 17 °C in summer), dissolved oxygen (DO) concentrations, and BNR 

configurations which have led to a better understanding of the relationship between wastewater 

quality parameters, process designs, and EREs. Additionally, each MWTP has a unique 

combination of physical, chemical, and biological treatment processes given the large variabilities 

of both operations and geographical locations. The study and analysis of the biological treatments 

typically demand robust and sufficient data collection which can be costly along with time and 

labour-intensive. This thesis for the first time developed a distinctive hybrid approach of 

experiments and machine learning techniques for the GHG and odour EREs, and then, optimized 

the developed models to mitigate GHGs and odour emissions. Results of this research can then be 

used by others for assessment, modelling, and mitigation of GHGs and odour emissions in other 

wastewater treatment facilities in Canada and worldwide. 

1.2.2. Chapters 2 and 3 overview 

MWTP anaerobic sludge digestion processes lead to biogas production, including greenhouse 

gases of CH4, CO2, and smelly compounds of NH3 and H2S. The development of data-driven or 

process-based models describing anaerobic digestion processes is useful to assess process 

modifications and optimizations to increase biogas production, as a reliable source of energy. 

Process-based models rely on an extensive number of input parameters and coefficients while data-

driven models can be implemented using a limited number of operating parameters. However, 

poor selection of operating parameters for data-driven model development and associated 

uncertainties with each parameter measurement can result in misinterpretation and erroneous 

estimates. 

The objective of the Chapters 2 and 3 was to determine biogas production rate estimates from 

typical MWTP anaerobic digesters using data-driven models informed by processed and 

unprocessed input variables with further optimization of models via operating parameters using 

genetic algorithm (GA). The selected models were artificial neural network (ANN), adaptive 
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network-based fuzzy inference system (ANFIS), and non-linear regression models, and the least 

uncertain and most accurate model was coupled with the GA to find optimal anaerobic digestion 

operating parameters to maximize biogas production rates. It should be noted that biogas is a cheap 

and reliable energy source, and the results of these chapters can be useful for the determination of 

the economic feasibility of implementing combustion gas heat and electricity generation 

technologies at the MWTPs.  

1.2.3. Chapter 4 overview 

Rising GHG and odour emissions from MWTPs negatively impact the environment and cause 

public complaints given enhanced public awareness and stricter environmental regulations. 

Therefore, the accurate assessment of GHG and odour emissions from MWTPs is useful to 

quantify the fugitive gas emission rates to determine if suitable mitigation measures need to be 

implemented. 

The Chapter 4 objective was to investigate GHG and odour emissions from MWTP open-to-

air facilities given variabilities of operating temperatures, aeration rates and bioreactor 

configurations to accurately determine the EREs.  Laboratory-scale reactors simulating aerobic, 

anoxic, and anaerobic reactors, and primary and secondary clarifiers were used to monitor gas 

EREs using wastewater samples taken from the analogous MWTP processes during the winter and 

summer seasons. The results of these experiments will advance knowledge of municipal 

wastewater GHG and smelly compound emissions and can be used to accurately quantify the EREs 

from other MWTPs in Canada and worldwide. 

1.2.4. Chapter 5 overview 

Greenhouse gas emissions including CO2, CH4, and N2O created via wastewater treatment 

processes are not easily modelled given the non-linearity and complexity of biological processes. 

These factors are also impacted by limited data availability making the development of artificial 

data generation algorithms useful for the determination of GHG EREs. Recently, generative 

adversarial networks (GANs) have been shown to be powerful data-augmentation techniques to 

imitate highly complex systems, such as biological processes, for virtual data generation making 
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them a promising methodology for supplementation of limited data in the area of MWTP 

modelling. 

The Chapter 5 objective was to determine GHG EREs from the aerobic reactor of a BNR-type 

MWTP using both measured and GAN-generated data for supplementation of operating parameter 

data used for non-linear regression modelling. Genetic algorithm optimization was also used to 

determine operating parameter modifications resulting in the potential for minimization (or 

maximization) of GHG emissions. The results of this hybrid technique can be valuable as it will 

lead to reduced time and effort, as well as related cost savings, for the assessment of MWTP GHG 

EREs. 

1.2.5. Chapter 6 overview 

MWTP odour nuisance and relevant adjacent area poor air quality have been of rising concern 

for municipalities and health bodies given complaints from residents living near MWTPs. The 

estimation of smelly compound emission rates and assessment of their impacts on the downwind 

of the treatment facilities are vital to determine if suitable mitigation measures need to be 

implemented.  

The objective of Chapter 6 was to determine NH3 and H2S EREs from the open-to-air treatment 

processes at a BNR-type MWTP and use these EREs to assess the downwind air quality in summer 

and winter seasons using dispersion modelling. The results of this study can help identify the main 

odour emission sources in a conventional MWTP, and with this knowledge, there is a potential for 

the treatment processes to be modified to help reduce odour emissions in the future.  

1.2.6. Chapter 7 overview 

Chapter 7 was aimed to integrate the results of the previous experimental and mathematical 

chapters and discuss the unique implication of this research in operational changes at the MWTPs 

to reduce emissions and improve air quality. Additionally, this chapter provides direction for future 

work in this research area. 
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CHAPTER 2: Biogas production estimation using data-driven approaches for cold region 

municipal wastewater anaerobic digestion. 

 

 

Overview 
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Abstract 

The objective of this study was to estimate biogas (including methane, CH4; carbon dioxide, 

CO2; and hydrogen sulphide, H2S) production rates from the anaerobic digesters at the Saskatoon 

Wastewater Treatment Plant (SWTP), Saskatchewan, Canada. Average daily ambient 

temperatures typically fluctuate between −40 °C and 30 °C over the year making the management 

of the SWTP processes challenging. Operating parameters were taken from 2014 to 2016 including 

volatile fatty acids (VFAs), total solids, fixed solids, volatile solids, pH, and inflow rate. The input 

parameters were processed using two methods including a correlation test and principal component 

analysis (PCA) to determine highly correlated variables prior to use in models. The two models 

used to estimate biogas production rates are a multi-layered perceptron feed forward artificial 

neural network (ANN) and an adaptive network-based fuzzy inference system (ANFIS) with grid 

partition (GP), subtractive clustering (SC) and fuzzy c-means clustering (FCMC). The models 

using PCA processed variables had reasonable performances with shorter model processing times, 

while reducing model input data. Among various structures of ANN and ANFIS models for 

estimation of biogas generation, the ANFIS-FCMC results had better agreement with the observed 

data. Its average approximation of emission rates of CH4, CO2 and H2S from the wastewater 

digesters were 3,086, 6,351, and 41.5 g/min, respectively. 
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2.1. Introduction 

Rising human populations lead to the ever-increasing demand for potable water with 

subsequent use resulting in increased municipal wastewater volumes. The collection, treatment, 

and management of these wastewaters is energy intensive for municipalities and leads to the 

generation of greenhouse, potentially toxic, and odorous gases (Hofman et al., 2011). Municipal 

wastewater treatment plants (MWTPs) include networks of inter-connected technological 

treatment processes that each have diverse process parameters. These processes result in the 

creation of environmentally safe effluents that are released into receiving environments. However, 

unlike released waters, gas generation is not typically considered as an integral part of all the 

treatment processes. Recently, greenhouse gas (GHG) and odour emissions from the various 

MWTP processes have become of greater interest for municipal environmental authorities and 

decision makers. This is especially the case for GHGs in Canada given the recent carbon pricing 

initiatives that may make the capture of GHGs economically beneficial to MWTPs (Environment 

and Climate Change Canada, 2017). Methane (CH4), carbon dioxide (CO2), and nitrous oxide 

(N2O) are the principal GHGs created by MWTPs with the greenhouse impacts of CH4 and N2O 

being 25 and 265 times higher than CO2, respectively (Hofman et al., 2011).  

Given MWTPs are typically open-to-air facilities, determination of gas release volumes is 

difficult using typical sampling protocols and due to large treatment tank surface areas. However, 

estimation of gas emissions via modelling may be helpful to identify the main emission sources 

and, based on this information, to take suitable actions in order to reduce emissions and improve 

local air quality.  Historically, one of the primary gas emission/production sources in a typical 

MWTP is the anaerobic sludge digestion, which is a well-established and commonplace 

technology to manage municipal solid sludge. The digestion occurs in four steps, including 

hydrolysis, acidogenesis, acetogenesis, and methanogenesis (Tchobanoglous et al., 2014). In the 

hydrolysis stage, complex molecules such as lipids, proteins, and carbohydrates are broken down 

into sugars, fatty acids with long hydrocarbon chains, and amino acids. The acidogenesis stage 

generates CO2, hydrogen, and volatile fatty acids (VFAs). The acetogenesis converts VFAs to 

hydrogen, CO2, and acetic acids. In the methanogenesis, compounds including hydrogen, CO2, 

and acetic acid undergo decomposition to produce CH4 (Abatzoglou and Boivin, 2009; Demirbas 

and Balat, 2009). The organic substances are biodegraded in the absence of dissolved oxygen, 

which produces biogases (CH4 and CO2) along with trace gases (ammonia; NH3, and hydrogen 
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sulphide; H2S) (Abatzoglou and Boivin, 2009). The majority of MWTPs will collect these 

anaerobic digestion gases and ‘flare’ them off without energy recovery; however, the CH4 can 

potentially be captured and utilized for heating (such as heating the digesters) and power 

generation. This CH4 energy generation may not be economically viable due to low CH4 production 

rates, but these rates can potentially be increased via process modifications and optimization 

informed by modelling.    

Previous researchers have developed models simulating various anaerobic digestion processes, 

including MWTPs, that are typically based on defining biochemical, biological, and 

physicochemical processes (Najafi and Ardabili, 2018). Artificial neural network (ANN) and fuzzy 

models are widespread approaches to explain the relationship within intricate structures and 

processes making them useful for use in MWTP modelling. The models are data-driven and can 

be implemented without previous knowledge about the MWTP processes. In addition, they can be 

employed for optimization of complex systems that are not easily defined, such as biological 

processes (Ward et al., 2008). Further, an adaptive network-based fuzzy inference system (ANFIS) 

is a combination of ANN and fuzzy inference system (FIS) that has been gaining acceptance as a 

suitable approach to describe complex processes (Ghiasi et al., 2016). Both the ANN and ANFIS 

approaches have been used previously for the prediction of biogas production rates for other 

MWTP facilities (Barik and Murugan, 2015; Beltramo et al., 2016; Dhussa et al., 2014; Jacob and 

Banerjee, 2016; Jaroenpoj et al., 2015; Kana et al., 2012; Khanongnuch et al., 2018; Oloko-Oba et 

al., 2018). However, given the large variability among MWTPs, both in operation and 

geographical locations, facility-specific models must be considered for accurate prediction 

capabilities. For example, the currently studied facility is subjected to widely varying atmospheric 

temperatures due to its location in Saskatchewan, Canada. 

Each MWTP has a unique set of process parameters that warrant the need for unique models 

informed by these parameters. Previously,  common selected model input variables for anaerobic 

and biological digesters have included: sludge loading rate (SLR), sludge retention time (SRT), 

organic loading rate (OLR), digestion time (DT),  total solids (TS), total volatile solids (TVS), 

volatile solids (VS), alkalinity (ALK), temperature (T), pH, and carbon to nitrogen (C/N) ratio 

(Barik and Murugan, 2015; Najafi and Ardabili, 2018; Qdais et al., 2010). It is important to note 

that models are often limited by the availability of monitored parameters that can be used for 

modelling purposes. In addition, the consideration of pre-processing of input data to reduce input 
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parameters (e.g., principal component analysis, PCA) has not been well developed. This pre-

processing can be useful in limiting model input data that are highly correlated with the resulting 

model processing time being significantly reduced and, thus, results in a more efficient model.  

Overall, the reliability of different structures of ANN and ANFIS models for estimation of 

biogas generation rate from MWTP anaerobic digesters, especially in cold regions such as those 

found in the current study area of Canadian Prairies, has not been sufficiently addressed. In 

addition, the efficiencies of ANN and ANFIS models for processed input parameter variables, such 

as the use of PCA to reduce input data needs, have not been well studied. The goal of this study 

was to estimate the biogas production rate (model’s output) from anaerobic digesters at the 

Saskatoon Wastewater Treatment Plant (SWTP) using ANN and ANFIS models. The SWTP 

routinely monitors a variety of operating parameters and 168 data points from 2014-2016 were 

used for this study. The created models may then be used to determine the impacts of modifying 

the digester feed (e.g., increase or decrease VFAs, pH, T, etc.) to either decrease or increase gas 

production depending on future gas utilization. 

2.2. Materials and methods 

2.2.1.  SWTP overview and data set  

Saskatoon is the largest city in the province of Saskatchewan with a population of 260,900 

(City of Saskatoon, 2018). The South Saskatchewan River splits the city into east and west sides 

and receives the SWTP effluents. Saskatoon has four distinct seasons and its climate is a borderline 

cold semi-arid/humid continental climate with a warm summer and a cold winter (City of 

Saskatoon, 2018). Temperatures fluctuate between -40 °C and 30 °C which provide a challenge to 

the management of the SWTP processes that include many open-to-air technologies. SWTP has 

been designed to treat an average flow of 120 million litres per day (MLD) of wastewater and has 

the capacity to treat a peak flow up to 300 MLD (Figure 2.1). Three anaerobic digesters are mostly 

fed by solids from the fermenters and the dissolved air flotation (DAF) thickener with tanks that 

are routinely mixed and maintained at a temperature of 35 °C (City of Saskatoon, 2018). The 

generated biogases from the digestion of solids in the SWTP are approximately 65% CH4 and 35% 

CO2 with trace amounts of H2S between 1,065 to 5,964 mg/m3.  

SWTP routinely monitors a variety of operating parameters with 168 data points from 2014 to 

2016 collected at irregular intervals and relevant to the current study which are summarized in 
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Table 1.1. The inflow from the DAF unit to digesters (TWAS), inflow from the fermenters to 

digesters (WFS), and biogas production rate are measured daily. The VFA, TS, fixed solids (FS), 

volatile solids (VS), and pH are monitored weekly according to Standard Methods for the 

Examination of Water and Wastewater (American Public Health Association (APHA) Water 

Environment Federation (WEF), 2005). Prior to use in the current study, the collected data were 

thoroughly reviewed to determine if there were inconsistencies in measurements. It was noticed 

that there were numerous inconsistent VFA values, thus, these inputs were discarded. Instead, a 

radial based function (RBF) was used to generate estimates of VFA concentrations based on the 

biological oxygen demand (BOD) levels from the effluent of primary clarifier into the fermenter 

(Lee et al., 2014; Zhu et al., 2001) (see Appendix A and Han et al., 2011 for further details). The 

remaining data were used for modelling without further modification. 

2.2.2.  SWTP input variable processing 

The evaluation of input variables for use in the development of ANN and ANFIS models is 

dependent on their significance and independence (Castelletti et al., 2012). Thus, Kuncheva (2004) 

recommended the use of only low correlated input variables for modelling purposes (Kuncheva, 

2004). Based on this, the input parameters collected by SWTP were subjected to correlation tests 

(Table A1) and principal component analysis (PCA) to determine and reduce the number of highly-

correlated variables prior to use in models for the calculation of biogas production rate (output). 

This pre-processing of data resulted in the creation of three input data scenarios for the models 

including (Figure 2.2):  

Scenario 1: VFA, TS, FS, pH, TS2, FS2, WFS, and TWAS 

Scenario 2: TS, pH, and WFS 

Scenario 3: PCA methodology 

2.2.2.1. Scenario 1: VFA, TS, FS, pH, TS2, FS2, WFS, and TWAS 

The correlation tests for all input variables are included in Table A1. For this scenario, 

variables that were highly correlated (p≤0.01; t-test) were not used to reduce the input data set for 

each model. The correlation and significance analysis of input variables indicated that VS and VS2 

were highly correlated to FS and FS2, respectively. Therefore, FS and FS2 were considered as 

representative of VS and VS2, respectively. This preliminary processing led to the input variables 

for Scenario 1 including VFA, TS, FS, pH, TS2, FS2, WFS, and TWAS.  
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Table 1.1: The operating parameters measured at the SWTP during 2014 to 2016 including 

minimum, maximum, and average (±standard deviation, SD). Consult Figure 2.1 schematic for 

further information. 

Parameter and Location Minimum Maximum Average±SD 

Effluent of the primary 
clarifier 

BOD (mg/L) 378 866 161±43 

Fermenter effluent to 
the digesters 

VFA (mg/L) 100 985 432±135 

TS (%) 0.87 5.59 2.52±0.95 

FS (%) 20.6 62.1 32.5±6.7 

VS (%) 37.9 94.1 68.2±7.4 

pH 4.89 8.40 6.46±0.38 

WFS (m3/day) 250 737 505±69 

Dissolved air floatation 
effluent to the digesters 

TS2 (%) 1.50 9.51 3.86±0.89 

FS2 (%) 10.1 51.9 26.1±4.7 

VS2 (%) 48.1 94.6 73.6±5.9 

TWAS (m3/day) 288 995 516±129 

Biogas (CH4, CO2 & H2S) flow (m3/min) 5.27 13.3 8.53±1.60 
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2.2.2.2. Scenario 2: TS, pH, and TWAS 

Similar to Scenario 1, the input variables for Scenario 2 are included in Table A1. For this 

scenario, the variables that were less highly correlated to each other (p≤0.05; t-test) but effective 

in anaerobic digestion were used to reduce the input data set for each model. This less rigorous 

correlation will typically lead to the reduction of variables versus the more highly correlated 

Scenario 1. At this new p-level, the p-values between TS and the group of variables including 

VFA, FS, VS, TS2, FS2, VS2 were all correlated (p≤0.05). Hence, TS was assumed as being 

representative of these variables. The only remaining independent variables were pH and WFS. 

Therefore, TS, pH and WFS were assumed as the input variables for Scenario 2. 

2.2.2.3. Scenario 3: Principal component analysis (PCA) 

Principal component analysis (PCA) is a statistical correlation analysis technique frequently 

applied to determine linear relationships between input variables and, thus, allow for the reduction 

of input data eliminating redundant information (Jolliffe, 2005). PCA has been used previously for 

the monitoring and treatment simulation of MWTPs (Antwi et al., 2017; Gernaey et al., 2004; 

Rosén and Lennox, 2001; Wang et al., 2017; Yoo et al., 2003). PCA explains the data set in terms 

of its variance with each determined principal component (PC) representing a percentage of the 

total variance of a data set (Kirby and Sirovich, 1990). The first few eigenvectors are the PCs that 

represent most of the variance of the original data while the remaining PCs mainly represent noise 

in the data (Sebzalli and Wang, 2001). PCA creates new variables that are highly independent in 

a linear sense (Garg and Tai, 2012); however, this approach has been questioned as it may not be 

suitable to describe the dynamic behaviour of the MWTPs (Haimi et al., 2013). 

2.2.3.  SWTP models 

Prior to modelling, the 168 data points needed to be split into training and testing subsets for 

each of the models. The most frequent data splitting approach in the supervised learning method 

is via trial and error (Maier et al., 2010) with typical training subsets of data varying between 70% 

to 80% in previous studies (Beltramo et al., 2016; Cakmakci, 2007; Najafi and Ardabili, 2018; 

Qdais et al., 2010). Hence, the models used in this study were trained and tested using 75% and 

25% of data points, respectively.  A 5-fold cross validation approach was applied to select the data 

for training and testing where the data set was randomly split into five subsets and the models were 

repeated five times. Each time, one subset was used as the testing set and the remaining subsets 
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were combined to form a training set. Minimum gradient value of 10-5 or maximum iteration 

number of 1,000 were used to stop each model training. The overall model performances were 

determined based on the average performance of models for each subset. An overview of the 

currently considered SWTP models including Artificial Neural Network (ANN) and Adaptive 

Network-based Fuzzy Inference System (ANFIS), and model evaluation methods are presented in 

the following sections. 

2.2.3.1. Artificial neural network (ANN) 

Each ANN has three layers encompassing input, hidden, and output layers (Figure 2.2). The 

input neurons represent the process variables as determined currently in each of the three scenarios 

described previously. The hidden layer relates the input and output layers (Beltramo et al., 2016) 

with the output neurons being dependent predicted variables determined by the model. The 

advantages of ANN include: (1) it is considered as a good approach to quantitative predictive 

modelling (Recknagel et al., 1997); (2) its ability to use qualitative data (Belanche et al., 2000); 

(3) results are independent of the mathematical description of the phenomena involved in the 

process (Pareek et al., 2002); (4) it is time efficient for model development in comparison with 

traditional mathematical models (Pareek et al., 2002); (5) its ability to learn non-linear functional 

relationships (da Silva and Flauzino, 2008); and (6) its ability to use a limited numbers of 

experiments to adequately describe the degree of nonlinearity (Mingzhi et al., 2009). The 

disadvantages of ANN include:  (1) there are vague relationships between the input and output 

variables (Podstawczyk et al., 2015; Tu, 1996); (2) the occurrence of overfitting during the network 

training (Tu, 1996); (3) the necessity for a large sample size for model development (Podstawczyk 

et al., 2015; Tu, 1996); and (4) the inability to extrapolate outside of the range of gathered data 

(Podstawczyk et al., 2015).  

The most common feed-forward ANN models include multi-layer perceptron (MLP), 

probabilistic neural networks, general regression neural networks, cascade forward networks, 

radial basis function networks (RBF), modular neural networks, associative memory networks, 

and reformulated neural networks (Razavi and Tolson, 2011). The MLPs have been the most 

common and reliable type of ANNs in assessing the application of ANNs in biogas production 

(Dach et al., 2016; Wu et al., 2014), thus, this approach was considered for the current study. 
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The networks have one or more hidden neuron layers with various transfer functions, such as 

the sigmoid transfer function. The output of the multi-layered ANN with a hidden layer and one 

output (biogas production rate) can be estimated as follows (Kanat and Saral, 2009): 

1 ≤ 𝑗 ≤ 𝑆1     𝑎𝑗
1 = 𝐹 [∑ 𝑤𝑗,𝑖

1 𝑝𝑖 + 𝑏𝑗
1

𝑅

𝑖=1

] (2.1) 

1 ≤ 𝑘 ≤ 𝑆2     𝑎𝑘
2 = 𝐺 [∑ 𝑤𝑘,𝑗

2  𝑎𝑗
1 + 𝑏𝑘

2

𝑆1

𝑖=1

] (2.2) 

Where R is the number of input signals; pi is the input component; w1 and w2 are the weight 

matrices in the hidden and output layers, respectively; S1 and S2 are the numbers of neurons with j 

and k values incrementing from 1 to S1 and S2, respectively; b1 and b2 are the b vectors in the 

hidden and output layers, respectively; a1 and a2 are the output components of the corresponding 

layers; and F and G are the neural transfer functions in the hidden and output layer.  

The optimal number of hidden neurons can be attained by trial and error. However, an 

inadequate number of hidden neurons will limit the ability of the neural network to model the 

process. In addition, an excessive number of hidden neurons may provide redundant freedom for 

the weight to adjust; and result in the propagation of the noise present in the database into the 

model (Linko et al., 1999). 

2.2.3.2. Adaptive network-based fuzzy inference system (ANFIS) 

The ANFIS has been developed based on Takagi-Sugeno fuzzy inference system (FIS) (Güler 

and Übeyli, 2005). The fuzzy system, which operates in the framework of the membership 

function, is a successful methodology for problem-solving, modelling, data mining, and abating 

the intricacy of data (Jang, 1993). The ANFIS benefits from the advantages of both the ANN and 

FIS with a high training rate and efficient learning algorithm; thus, both complex and non-linear 

systems can be accurately modelled using ANFIS (Heddam et al., 2012; Salahi et al., 2015). The 

FIS structure can be built in terms of three methods encompassing grid partition (GP) employing 

different kinds of membership functions, and subtractive clustering (SC) and fuzzy c-means 

clustering (FCMC) that are clustering methods using the Gaussian type of membership function 

(Sivanandam et al., 2007). The genfis1, genfis2 and genfis3 functions found in MATLAB (2018a) 

describe the GP, SC and FCMC methods, respectively.  

Function genfis1 
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Equation 3 depicts the genfis1 function (The Math Works, 2018). 

Fismat = genfis1(data, numMFs, inmftype, outmftype) (2.3) 

Where Fismat indicates the FIS toolbox for MATLAB; genfis1 is a function that produces a 

fuzzy system according to the membership function’s (MF) types and numbers; data is the training 

data; numMFs is a vector specifying the number of membership functions on all inputs; inmftype 

is a string array where each row specifies the membership function type of input variable; and 

outmftype is a string that determines the membership function along with the output. The applied 

membership functions included trapezoidal-shaped (trapmf), Gaussian curve (gaussmf), Gaussian 

combination (gauss2mf), and generalised bell-shaped (gbellmf) that were used one-at-a-time.   

Function genfis2 

In the FIS with the SC, the number of clusters determines the number of rules and membership 

functions in the generated FIS. The SC is a quick, one-pass algorithm for estimating the number 

of clusters and the cluster centres in a set of data. When fuzzy systems are designed by using fuzzy 

clustering, each cluster corresponds to a fuzzy rule. Hence, the number of clusters determines the 

number of rules (Jang, 1993). A sample command-line for a cluster radius 0.5 is as follows (The 

Math Works, 2018): 

Fismat = genfis2(datin, datout, 0.5) (2.4) 

Where genfis2 is a function that produces a fuzzy system due to subtractive clustering; and 

datin and datout are input and output values, respectively. By increasing the number of rules, the 

difference between the predicted and the obtained value decreases, and more complex relations 

can be simulated by a large number of rules. A crucial point in the rule base design is selecting the 

number of rules.  

Function genfis3 

The genfis3 extracts a set of rules that simulates data behaviour. The function requires separate 

sets of input and output data as input arguments. A sample command-line for FCMC is as follows 

(The Math Works, 2018): 

fismat = genfis3 (datin, datout, type, cluster_n) (2.5) 

Where genfis3 is a function that produces a fuzzy system due to FCMC; type is either ‘Sugeno’ 

or ‘Mamdai’, and cluster_n is the number of clusters. The Sugeno systems are computationally 
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efficient and well-suited to mathematical analysis (The Math Works, 2018), thus, were used in this 

study.  

To present the ANFIS architecture, two fuzzy if–then rules based on a first order Sugeno model 

were considered: 

Rule 1. If (x is A1) and (y is B1) then (f1=p1x+q1y+r1) (2.6) 

Rule 2. If (x is A2) and (y is B2) then (f2=p2x+q2y+r2) (2.7) 

Where x and y are the inputs; Ai and Bi are the fuzzy sets; f1 and f2 are the outputs within the 

fuzzy region specified by the fuzzy rule; and p1, q1, r1, p2, q2, and r2 are the design parameters 

which are determined during the training process.  

As indicated in Figure 2.2, there are 5 separate layers that are used to form an ANFIS structure 

(Wali et al., 2012). A detailed description of ANFIS can be found in other studies (Yetilmezsoy,  

et al., 2011; Yetilmezsoy et al., 2011) with a brief overview included herein. The layer 1 includes 

input nodes that introduce the inputs to the fuzzy model. Every node is an adaptive node 

representing a membership grade of a linguistic label. The output of the first layer becomes the 

input of the second layer. The layer 2 is a fixed node that carries prior values of MFs that are 

allocated based on the input values. The nodes in the second layer determine the fuzzy rules and 

prepare them for the third layer with an appropriate degree of activity. The layer 3 acts to normalize 

the degree of activity for all rules, while the layer 4 is the defuzzification layer. The layer 5 includes 

the output nodes and computes the sum of all outputs of each rule incoming from the previous 

layer.  

2.3 Model evaluation  

The root mean square error (RMSE), R and Index of Agreement (IA) were employed to assess 

model efficiencies, as described in the following equations. R indicates the strength and direction 

of the linear relationship between variables. The RMSE demonstrates the difference between 

observed and estimated values; the lower the value, the better the fit. The IA assesses additive and 

relative discrepancy in the observed and simulated means and variances; however, it should be 

noted that the IA is overly sensitive to extreme values due to the squared differences. As for the 

RMSE, the values of R and IA vary between 0 and 1. When R and IA  values approach 1, the 

model predictions are considered to be more efficient and reliable (Heckman, 1974; Krause et al., 

2005). 
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𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑂𝑖 − 𝑆𝑖)2

𝑛

𝑖=1

 

(2.8) 

R =  
∑ (Oi − O̅)(Si − 𝑆̅)i

i=1

[∑ (Oi − O̅)2n
i=1 ∑ (Si − 𝑆̅)2n

i=1 ]0.5
 

(2.9) 

IA = 1.0 −
∑ (Oi − Si)

2n
i=1

∑ (|Si − O̅| + |Oi − O̅|)2n
t=1

 
(2.10) 

Where, n is the number of data points; i is the index; Oi and Si are observations and simulations; 

and Ō and 𝑆̅ are the average of O and S. 

2.3. Results and discussion 

2.3.1.  Input parameters 

A summary of the operating parameters measured at the SWTP is shown in Table 2.1. Overall, 

there is high variability of each parameter over time as indicated by the minimum and maximum 

values for each measurement. For example, the pH and VFA levels of the digesters varied between 

4.89 to 8.40 and 100 to 985 mg/L, respectively.  As the typical ranges of pH and VFA for a digester 

have been reported as 6.8 – 7.2 and 50 – 300 mg/L, respectively (Water Pollution Control 

Federation, 1987), thus, the current SWTP parameters appear to be more variable over time. For a 

more local comparison, the pH and VFAs of the digester at the Regina Wastewater Treatment 

Plant located approximately 233 km south of the SWTP fluctuated within 6.6 – 7.2 and 23 – 220 

mg/L, respectively as measured over a five year period (Zhao and Viraraghavan, 2004). Clearly, 

operating parameters between MWTPs are quite different making the need for independent, 

validated gas emission models a necessity for accurate estimations.  

2.3.1.1. Scenarios 1 and 2 

As indicated in Section 2, the correlations for Scenario 1 and Scenario 2 are presented in Table 

A1. These scenarios only differed in the choice of p-values with p≤0.01 and p≤0.05 used, 

respectively, to reduce the number of input variables based on correlation. As expected, the more 

rigorous Scenario 1 resulted in a smaller reduction of variables (VFA, TS, FS, pH, TS2, FS2, WFS, 

and TWAS) as compared to scenario 2 (TS, pH, and WFS). Scenario 1 resulted in the reduction of 

10 parameters to 8 parameters; Scenario 2 resulted in a further reduction to only 3 parameters. The 
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impacts of these reductions will be further assessed as the resultant data are used in the models 

presented in the preceding sections. The benefit in the reduction of data for modelling is the more 

efficient modelling capability. In addition, there is a benefit to the reduction of parameters in the 

potential for modification of the SWTP process to decrease (or increase) gas emissions. The fewer 

parameters that will need adjustments, the more simply and easily implemented these adjustments 

are in the field.   

2.3.1.2. Input variables in Scenario 3 

Tables A2 and A3 present the PCA results and corresponding eigenvectors after processing of 

the 10 available measured parameters, respectively. The first five eigenvalues (0.864 to 3.23) 

accounted for 80% of the cumulative contribution, thus, these five values were used for model 

inputs in the current study. The PCA showed that the VFA, TS, FS, VS, pH, TWAS, VS2, and TS2 

were significant parameters (i.e., each having loading >0.39 on the first five PCA axes) 

contributing to the ordination of samples (Nair et al., 2016). WFS and FS2 did not significantly 

contribute to the PCs and were removed for further consideration. The main PCs can be represented 

by a characteristic value, “PC”, which allows for the partitioning of the total variation accounted 

for each principal component via a linear combination of the original variables as follows (Nair et 

al., 2016):  

𝑃𝐶 = 𝑥1 × 𝑉𝐹𝐴 + 𝑥2 × 𝑇𝑆 + 𝑥3 × 𝑇𝑆2 + 𝑥4 × 𝑝𝐻 + 𝑥5 × 𝐹𝑆 + 𝑥6 × 𝑉𝑆

+ 𝑥7 × 𝑇𝑊𝐴𝑆 + 𝑥8 × 𝑉𝑆2 

(2.11) 

Where, “PC” is the principal component and depicts the linear combinations of the original 

variables, and x1 to x8 are their corresponding eigenvectors (see Table A2). Table 2.2 demonstrates 

the summary of processed input variables based on the calculated eigenvectors.  

2.3.2.  Fuzzy and neural network modelling to estimate biogas production rate 

Table 2.3 provides a literature overview of the application and performance efficiencies of 

ANN and ANFIS models and includes the current results for comparative purposes. This table and 

its five studies will be used for the discussion in the following sections.  

2.3.2.1. ANN 

Figure 2.3 shows the results of the multi-layered feed-forward network for estimation of biogas 

production from the digesters for the three scenarios. Overall, for each scenario two hidden layers 
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were found to be suitable for ANN’s configuration. A good estimation of biogas production rate 

in Scenario 1 (R = 0.86, RMSE = 0.43, IA = 0.95) was observed with hidden layers of 33 and 5 

neurons, respectively. Scenario 2 performance was lower than Scenario 1 (R = 0.74, RMSE = 0.81, 

IA = 0.88) with the optimum number of neurons of hidden layers at 15 and 17, respectively. 

Scenario 3 has the best ANN performance (R = 0.88, RMSE = 0.23, IA = 0.97), however, had the 

highest total neurons at 37 and 39, respectively. The detailed model evaluation results were R = 

0.90, RMSE = 0.21, IA = 0.97 for training dataset; and R = 0.86, RMSE = 0.32, IA = 0.92 for 

testing dataset. Thus, the developed ANN model of Scenario 3 using the PCA processed data 

would be a good option for use in modelling of the SWTP. Interestingly, the 5-fold cross validation 

approach used for the training and testing did not substantially affect the overall results with the 

standard deviations of R and RMSE being greater than 0.02 for the five iterations.  

The current ANN R-value results were in good agreement with the literature values that ranged 

from 0.85 to 0.99 (Table 2.3). For example, Qdais et al. (2010) demonstrated the suitability of 

ANN to predict biogas production from anaerobic digesters (R = 0.87) using operational 

parameters including temperature, TS, TVS, and pH. Akbaş et al. (2015) applied ANN to estimate 

biogas production at a MWTP with inputs of SLR, T, pH, TS, TVS, VFA, ALK, SRT, and OLR. 

The network was trained, validated, and tested using 68, 4 and 13 data points, respectively. The 

model outputs were total biogas production, and CH4 and CO2 percentages that showed good 

correlation (R=0.94) between observed and predicted biogas production values (Akbaş et al., 

2015). Nair et al. (2016) coupled PCA with ANN and appropriately estimate the methane yield 

from a laboratory-scale anaerobic bioreactor (R = 0.85), using pH, moisture content, TVS, VFAs, 

and methane fraction on biogas production as input variables. Najafi and Ardabily (2018) also 

developed an ANN model, using VFAs, TS, FS, pH, and inflow rates as input variables, to estimate 

biogas production from mushroom compost spent with R = 0.99 and RMSE = 0.34 to 0.78.  
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Table 1.2: Summary of processed input variables based on the calculated eigenvectors (see 

Table A3) including minimum, maximum and average (± standard deviation, SD). 

Parameter Minimum Maximum Average±SD 

PC1 -18.2 252 69±51.1 

PC2 187 445 320±38.6 

PC3 -761 -238 -450±95.2 

PC4 -82.2 456 142±92.6 

PC5 83.7 635 335±83.4 
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Table 1.3: An overview of the application and performance efficiency of ANN and ANFIS for 

the prediction of biogas generation rates from digesters from the literature as compared to the 

current study results. 

References Input and Output Methodology Performance efficiency 

Cakmakci (2007) Input: pH, influent VS, 

flowrate, temperature, 

and effluent VS 

Output: biogas 

production from a waste 

digester  

ANFIS model, trained 

and validated by 132 

and 32 data points, 

respectively 

R = 0.98 

Qdais et al. (2010) Input: T, TS, TVS, and pH  

Output: biogas 

production from a waste 

digester 

ANN model, trained 

and validated by 177 

data points 

R = 0.87 

Turkdogan-

Aydınol and 

Yetilmezsoy 

(2010) 

Input: OLR, total COD 

removal rate, alkalinity 

and pH 

Output: methane 

production rates in a pilot 

scale mesophilic reactor 

A fuzzy logic-based 

model, trained and 

validated by 134 and 

40 data points, 

respectively 

R = 0.96 

Nair et al. (2016) Input: pH, moisture 

content, TVS, VFAs and 

methane fraction on 

biogas production 

Output: methane yield 

from biogas in a 

laboratory-scale 

anaerobic bioreactor 

Processed date by 

PCA and ANN 

R = 0.85 

Najafi and 

Ardabili (2018) 

Input: C/N ratio, T and 

retention time 

Output: biogas 

production from 

mushroom compost 

ANFIS and ANN 

methods 

ANFIS: R = 0.99 and 

RMSE = 0.19 to 0.31 

ANN: R = 0.99 and 

RMSE = 0.34 to 0.78 

Current study Input: VFA, TS, FS, pH, 

inflow rates 

Output: biogas 

production from three 

digesters at the SWTP 

Processed data by 

PCA, ANFIS and ANN 

methods 

ANFIS: R = 0.92, RMSE = 

0.58, IA = 0.94 

ANN: R = 0.88 and 

RMSE = 0.23 
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2.3.2.2. ANFIS 

Figure 2.4 shows the ANFIS-GP results for the estimation of biogas production in the digesters 

for each of the three scenarios. Overall, the observed data and model estimations in the training 

period showed a suitable agreement (left side of each panel). However, the testing period of this 

model performed inadequately with a poor agreement between measured and estimated data. 

Consequently, the overall performance of ANFIS-GP for the estimation of biogas production rates 

was not satisfactory for any scenario (Scenario 1: R = 0.38; Scenario 2: R = 0.27; Scenario 3: R = 

0.45). In comparison to the ANN-PCA model, the ANFIS-GP estimations were unacceptable. In 

addition, the ANFIS-GP model required a markedly longer processing time to analyze the various 

combinations of membership function types and numbers. Similarly, Yaseen et al. (2018) found 

the ANFIS-GP resulted in less reliable and robust estimations in comparison with cluster based 

ANFIS models for water quality index modelling (Yaseen et al., 2018). Benmouiza and Cheknane 

(2019) developed ANFIS models with GP, SC and FCMC structures to estimate hourly solar 

radiation, and demonstrated that ANFIS-GP performance, due to the opted membership functions 

and  model processing time, was not reasonable (Benmouiza and Cheknane, 2019). Mirzaei et al. 

(2019) developed ANFIS models to study water quality parameters and land use cover and 

reported similar results (Mirzaei et al., 2018). 

Figure 2.5 shows the ANFIS-FC and ANFIS-FCMC results for the estimation of biogas 

production in the digesters for the three scenarios. The appropriate cluster radius in the SC and 

cluster number of the FCMC were attained using trial and error. As for the ANFIS-GP, both of 

these models have suitable convergence between observed and model estimations; however, the 

ANFIS-SC model for Scenario 2 showed a generally poorer fit than the ANFIS-FCMC. Overall, 

the ANFIS-FCMC’s estimations for all scenarios were better than the ANFIS-SC estimations as 

presented in Figure 1.10. The ANFIS-FCMC performed better than ANFIS-SC for Scenarios 1 

and 2 with all R and IA values being higher, and all RMSE values being lower overall. However, 

scenario 3 estimations for both models were the best overall with RMSE, R, and IA values of 0.65 

and 0.58, 0.92 and 0.92, 0.95, and 0.94, for ANFIS-SC and ANFIS-FCMC, respectively. The 

detailed Scenario 3 ANFIS-FCMC model evaluation results were were R = 0.90, RMSE = 0.68, 

IA = 0.95 for training dataset; and R = 0.94, RMSE = 0.53, IA = 0.97 for testing dataset; while the 

detailed Scenario 3 ANFIS-SC model evaluation results were R = 0.91, RMSE = 0.61, IA =  0.94 

for training dataset; and R = 0.94, RMSE = 0.88, IA = 0.90 for testing dataset. 
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 ANFIS-FCMC and ANFIS-SC typically gave more accurate estimations in comparison with 

ANN and ANFIS-GP, as demonstrated by other studies (Mirrashid, 2014; Montaseri et al., 2018; 

Najafi and Ardabili, 2018; Yaseen et al., 2018). ANFIS-FCMC’s estimations using highly 

uncorrelated variables were acceptable, which demonstrated the applicability of ANFIS-FCMC 

with the minimum input data need. 

The ANFIS estimations were in good agreement with the literature values (Table 2.3). For 

instance, Cakmakci (2007) trained and validated ANFIS using 132 and 32 data points with 

operation parameters including pH, influent VS, flowrate, temperature, and effluent VS with a 

resulting R=0.98.  Turkdogan-Aydınol and Yetilmezsoy (2010) appropriately estimated methane 

production rate from a pilot scale mesophilic reactor using a fuzzy model with input variables 

including OLR, total COD removal rate, alkalinity and pH (R =  0.96) (Turkdogan-Aydınol and 

Yetilmezsoy, 2010). Najafi and Ardabily (2018) developed an ANFIS model via input parameters 

including VFAs, TS, FS, pH, and inflow rates, and indicated similar results (R = 0.99; RMSE = 

0.19 to 0.31).  
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Figure 1.10: RMSE, R, and IA values for ANFIS-SC and ANFIS-FCMC used in the estimation 

of biogas production for each of the three scenarios. 

 

SC FCMC SC FCMC SC FCMC

Scenario1 Scenario1 Scenario 2 Scenario 2 Scenario 3 Scenario 3

RMSE 0.86 0.61 1.2 0.94 0.65 0.58

R 0.85 0.93 0.66 0.82 0.92 0.92

IA 0.91 0.97 0.28 0.92 0.95 0.94
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2.3.3.  Biogas emission (production) rates 

Table 2.4 and Figure A2 shows the estimated CH4, CO2, and H2S emission rates from the 

digesters at the SWTP with averages of 3,086 g/min (7,937 m3/day), 6,351 g/min (4,075 m3/day) 

and 41.5 g/min (44 m3/day), respectively, based on the 2014 to 2016 data. Using an estimation of 

the greenhouse effect of CH4 being 25 times that of CO2, the potential GHGs emission from the 

digesters would be approximately 43,000 tonnes CO2(eq)/year. This contribution of biogas from the 

digesters is estimated to be 30% of the potential emissions for a typical MWTP including all 

treatment processes (Kim, 2014). Consequently, based on the predicted digester estimation, the 

GHGs emissions from the remaining SWTP can be estimated at approximately 100,000 tonnes 

CO2(eq)/year.  Under the current carbon tax policy in Canada, the total estimated emissions of 

143,000 tonnes would exceed the threshold of 50,000 tonnes CO2(eq)/year for industries, however, 

currently MWTP facilities have been exempted from the tax (Government of Canada, 2019). If 

these facilities are no longer exempted in the future emissions would likely need to be reduced via 

process modifications to decrease the facility carbon tax. More interestingly, the emissions could 

also potentially be captured via enclosing of treatment processes with gas emissions increased via 

process modification and used for energy generation. 

The combustion of biogas, particularly CH4, can lead to the creation of local heating and 

electricity generation, result in the removal of H2S as an odorant, and reduce the overall MWTP 

GHGs emission. However, the combustion of biogas still creates CO2 emission but it can be 

reduced by over 80% via the combustion process based on a minimum heating value of CH4 at 

standard temperature and pressure of around 34,300 kJ/m3 (Hosseini and Wahid, 2014) and CO2 

emission rate of 83.6 kg per GJ (Paolini et al., 2018).  Overall, biogas production can provide a 

cheap and reliable energy source that can be increased via process optimization informed by 

models such as the one developed by this study.  
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Table 1.4: Summary of methane (CH4), carbon dioxide (CO2), and hydrogen sulphide (H2S) emission 

rates from the digesters at the SWTP including minimum, maximum and average (± standard deviation, 

SD). 

Parameter (g/min) Minimum Maximum Average±SD 

CH4 1,811 4,804 3,086±519 

CO2 3,727 9,887 6,351±1,068 

H2S 24.3 64.5 41.5±6.9 
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2.4. Conclusions 

The accurate determination of GHG emissions from MWTPs via sampling efforts is difficult given 

the variety of separate treatment processes in these facilities, in conjunction with the majority of 

the processes being open-to-air with large surface areas. Thus, the estimation of gas emissions can 

be useful and accomplished via data-driven modelling approaches. However, these models must 

be developed at each MWTP site given the differences in treatment processes and the site climatic 

conditions. Developed models for the current SWTP benefited from pre-processing via PCA used 

to reduce the number of highly correlated variables leading to reduced inputs into model runs and, 

subsequently, better efficiencies. The ANFIS-FCMC model estimations were found to be the most 

accurate and resulted in estimated emission rates of CH4, CO2, and H2S from the wastewater 

digesters were 3,086, 6,351, and 41.46 g/min, respectively. These rates can be useful for 

determination of the economic feasibility of implementing combustion gas heat and electricity 

generation technologies at the SWTP. In addition, the model could also be used to help increase 

the biogas production, thus increasing electricity generation potential, via optimization of process 

parameters at the SWTP. Alternatively, the model may also be used to decrease gas emissions in 

the absence of electricity generation thus reducing site GHG emissions. Chapter 3 herein indicates 

the integration of the developed data-driven models with genetic algorithms (GAs) to optimize 

process parameters for the maximization of MWTP biogas production rates.A similar 

methodology can be used for development of models for other sites across Canada and worldwide, 

with the understanding that each model must be further optimized to the individual facility. 
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3. CHAPTER 3: Biogas maximization using data-driven modelling with uncertainty 

analysis and genetic algorithm for municipal wastewater anaerobic digestion. 

 

 

Overview 

A version of this chapter has been published in Journal of Environmental Management with the 

following details: 

 

Asadi, M., & McPhedran, K. (2021). Biogas maximization using data-driven modelling with 

uncertainty analysis and genetic algorithm for municipal wastewater anaerobic digestion. Journal 

of Environmental Management, 293, 112875. 

Contributions 

Mohsen Asadi: Research conceptualization, study design and implementation, original draft and 

revisions. 

Kerry McPhedran: Research conceptualization, study design, review and editing, supervision, 

and funding. 

Abstract 

Anaerobic digestion processes create biogases that can be useful sources of energy. The 

development of data-driven models of anaerobic digestion processes via operating parameters can 

lead to increased biogas production rates, resulting in greater energy production, through process 

modification and optimization. This study assessed processed and unprocessed input operating 

parameter variables for the development of regression models with transparent structures (‘white-

box’ models) to: (1) estimate biogas production rates from municipal wastewater treatment plant 

(MWTP) anaerobic digesters; (2) compare their performances to artificial neural network (ANN) 

and adaptive network-based fuzzy inference system (ANFIS) models with opaque structures 

(‘black-box’ models) using Monte Carlo Simulation for uncertainty analysis; and (3) integrate the 

models with a genetic algorithm (GA) to optimize operating parameters for maximization of 

MWTP biogas production rates. The input variables were anaerobic digestion operating 

parameters from a MWTP including volatile fatty acids, total/fixed/volatile solids, pH, and inflow 

rate, which were processed via correlation tests and principal component analysis. Overall, the 

results indicated that the processed data did not improve regression model performances. 

Additionally, the developed non-linear regression model with the unprocessed inputs had the best 

performance based on values including R = 0.81, RMSE = 0.95, and IA = 0.89. However, this 

model was less accurate, but interestingly had less uncertainty, as compared to ANN and ANFIS 
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models which indicates the compromise between model accuracy and uncertainty. Thus, all three 

models were coupled with GA optimization with maximum biogas production rate estimates of 

22.0, 23.1, and 28.6 m3/min for ANN, ANFIS, and non-linear regression models, respectively.  

3.1. Introduction 

Anaerobic digestion processes break down biodegradable materials into simpler end-products 

including biogases and biosolids. Produced biogases can be a useful source of energy for 

applications such as heat production and electrical power generation (Ge et al., 2014). 

Additionally, produced biosolids can be used as beneficial soil conditioners that act as fertilizers 

(Aramrueang et al., 2019). Anaerobic digestion processes are well-established technologies for 

multiple feedstocks including the currently considered municipal wastewater treatment plant 

(MWTP) sludges.  However, the quantity of MWTP sludges makes their management challenging 

as they create economic concerns for efficient biogas usage and environmental concerns 

surrounding biosolids disposal (Nazari et al., 2018). The beneficial use of biogas must be 

economically feasible, thus, the potential for increasing biogas production through applying 

variable pre-treatment procedures to create more digestible substrates, anaerobic digestion of 

wastewater sludges with food and agriculture wastes in the presence of nanomaterials, and 

optimization of treatment parameters is of current interest (Dehhaghi et al., 2019; Tabatabaei et 

al., 2020a, 2020b). In addition, the greater the biogas production, the lower the production of 

digested sludge. This is important in countries such as Canada where beneficial uses for biosolids 

are federally and provincially regulated, making applications potentially problematic (CCME, 

2010; Government of Canada, 2021). The anaerobic digestion process of MWTP sludges leads to 

biogas production including the greenhouse gases methane (CH4) and carbon dioxide (CO2), as 

well as smelly compounds, such as hydrogen sulphide (H2S) and ammonia (NH3). The CH4 is the 

source of energy for heat and electricity generation, and its production rate can potentially be 

enhanced by modification and optimization to make the process more economically viable for both 

new and existing MWTP digestion processes.  

The assessment of anaerobic digestion process modification and optimization for increasing 

biogas production is challenging given each MWTP includes various treatment facilities with 

unique process designs and parameters. Therefore, previous studies have developed various data-

driven models to address the non-linearity and complexity of the treatment processes including 
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regression modelling, artificial neural networks (ANN), and adaptive network-based fuzzy 

inference systems (ANFIS), among others (Asadi et al., 2020; Barik and Murugan, 2015; Beltramo 

et al., 2016; Dhussa et al., 2014; Jacob and Banerjee, 2016; Jaroenpoj et al., 2015; Kana et al., 

2012; Khanongnuch et al., 2018; Mingzhi et al., 2009; Oloko-Oba et al., 2018; Wichern et al., 

2009). Regression modelling is a ‘white-box’ technique with a transparent structure describing the 

relationship between input and output variables (Samadi et al., 2020; Tufaner and Demirci, 2020). 

Alternatively, ANN and ANFIS are ‘black-box’ models that use an opaque structure of unknown 

relationships between input and output variables (Antwi et al., 2017; Deepanraj et al., 2017; Shan 

and Wang, 2010). Common input variables for MWTP models include operating parameters, such 

as pH, temperature, alkalinity, organic loading rate (OLR), total solids (TS), fixed solids (FS) 

volatile solids (VS), chemical oxygen demand (COD) concentration, hydraulic retention time 

(HRT),  carbon to nitrogen (C/N) ratio, and volatile fatty acid (VFA) concentration (Budiyono et 

al., 2013; Buitrón and Carvajal, 2010; Sambo et al., 1995). Additionally, the pre-processing of 

model input parameters using statistical approaches (e.g., principal component analysis, PCA) has 

been shown to both reduce model processing time and result in better model performance (Asadi 

et al., 2020; Nair et al., 2016). Use of models can inform changes in the anaerobic digestion process 

to enhance biogas production and, in turn, result in increased energy production via optimization.  

Developed ‘black-box’ and ‘white-box’ models need to be assessed for accuracy and reliability 

before being used for optimization of process parameters, which has not been well addressed in 

the literature. Typically, the root mean square error (RMSE), correlation coefficient (R), and index 

of agreement (IA) can be used to evaluate model accuracy. Additionally, the assessment of model 

reliability can be achieved via Monte Carlo Simulation (MCS) to determine the model output 

uncertainty based on the uncertainty of input variables (Arhami et al., 2013; Dehghani et al., 2014; 

Gao et al., 2018; Ratto et al., 2007). Further, the model can be coupled with optimization 

techniques to determine process parameter values that can lead to maximization of biogas creation. 

For instance, Kana et al. (2012) simulated biogas production from sawdust anaerobic digestion 

using ANN and then utilised a fitness function genetic algorithm (GA) to optimize operating 

conditions (Kana et al., 2012). However, the black-box fitness function integration with GA is 

computation-intensive making the development of suitable white-box fitness functions necessary 

to reduce model processing times (Al-Mahasneh et al., 2016; Antwi et al., 2017; Deepanraj et al., 

2017; Shan and Wang, 2010; Tufaner and Demirci, 2020).     
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Overall, each MWTP’s anaerobic digestion process is unique both in operation, and 

geographical location, including the currently studied Saskatoon Wastewater Treatment Plant 

(SWTP; Appendix B: Figure B1). Thus, there is a need for accurate and reliable facility-specific 

data-driven modelling development to maximize biogas production. However, it should be noted 

that the current modelling framework (Figure 3.1) can be useful for the development of other 

worldwide facility-specific models. Therefore, the objectives of this study were to: (1) determine 

an accurate data-driven model for estimating the SWTP anaerobic digester biogas production rate; 

and (2) optimize the biogas production rate via adjustment of SWTP operating parameters. Hence, 

linear and non-linear regression models were developed using processed (PCA) and unprocessed 

input variables. In addition, previous models for ANN and ANFIS (Chapter 2, Asadi et al. 2020) 

were used for comparison purposes, as well as for consideration in further analyses. Each model 

was then assessed via MCS and model accuracy evaluation statistics before using GA for 

determination of the optimal process parameters for biogas maximization. The maximization of 

biogas production can be beneficial for increased energy production during the anaerobic digestion 

of MWTP sludges, while also leading to the reduction of MWTP biosolids, which can reduce costs 

associated with their disposal.  

3.2.Materials and methods 

Figure 3.1 shows a schematic flowchart of the study methodology. Details for each component 

of this schematic are described in the following sections. This includes an overview of the 

Saskatoon Wastewater Treatment Plant (SWTP), collected data, and input parameter processing 

(Section 3.2.1); the regression, ANN, and ANFIS modelling (Section 3.2.2); Monte Carlo 

uncertainty analysis (Section 3.2.3); and GA model optimization (Section 3.2.4).  
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3.2.1. Overview of the SWTP anaerobic digesters and relevant data  

The SWTP is an advanced biological nutrient removal (BNR) type MWTP and processes 

municipal sewage of Saskatoon, SK (Figure B1). Its operation and management are subjected to 

highly variable seasonal temperatures reaching 35 °C during summer months and decreasing to -

40 °C during winter months. While these temperature fluctuations have a higher impact on the 

plant open-to-air treatment processes, they also lead to variations in wastewater and sludge 

temperatures throughout the SWTP facility.  The thickened activated sludges from the dissolved 

air flotation (DAF) unit and fermenter are transferred into three anaerobic digesters producing 

biogases used as a fuel for internal heat usage (Figure B1). This SWTP’s biogas is approximately 

65% CH4 and 35% CO2 with a typically insignificant amount of hydrogen sulphide. The SWTP 

staff routinely monitor a variety of parameters for the DAF unit and fermenter as presented in 

Table 3.1. Overall, 168 data points were collected from 2014 to 2016 for used in the current study 

including TS (%), FS (%), VS (%), VFA (mg/L), pH, waste fermented sludge (WFS) from 

fermenter (m3/day), and thickened waste activated sludge (TWAS) (m3/day). 

 A detailed description of the data set and its processing can be found in our previous study of 

biogas production from SWTP anaerobic digesters (Chapter 2, Asadi et al., 2020) with a brief 

overview included herein. The operating parameters were processed by correlation coefficient tests 

and PCA to determine significant input variables. Both unprocessed and processed parameters 

were used in the three scenarios for use in the biogas production rate estimate modelling.  For 

Scenario 1, the FS (%) and FS2 (%) were selected to represent VS (%) and VS2 (%) given their 

high correlation and significance, as expected given their summation should be 100% 

(FS%+VS%~100%). Thus, the unprocessed input variables included VFA (mg/L), TS (%), FS 

(%), pH, and WFS (m3/day) from the fermenter, and TS2 (%), FS2 (%), and TWAS (m3/day) from 

the DAF unit. For Scenario 2, the TS (%) was found to be correlated to FS (%), VS (%), TS2 (%), 

FS2 (%), VS2 (%), VFA (mg/L), and TWAS (m3/day), and thus, selected as being representative of 

these parameters. Therefore, TS (%), pH, and WFS (m3/day) were considered input variables for 

the Scenario 2. For Scenario 3, the input variables were subjected to PCA to define 5 new and 

highly independent variables given the first five eigenvalues accounted for greater than 80% of the 

cumulative contribution.    
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Table 3.1: Operating parameters measured at Saskatoon Wastewater Treatment Plant including 

minimum, maximum, and average (±standard deviation, SD) values. Consult Figure B1 for 

information on monitoring locations and a schematic of the biogas production. 

  

Sample 
Location 

Parameter (units) Minimum Maximum Average±SD 

Fermenter 
effluent to the 
digesters 

TS (%) 0.87 5.59 2.52±0.95 

FS (%) 10.6 62.1 32.5±6.7 

VS (%) 37.9 92.1 68.2±7.4 

VFA (mg/L) 100 985 432±135 

pH 4.89 8.40 6.46±0.38 

WFS (m3/day) 250 737 505±69 

Dissolved air 
floatation 
effluent to the 
digesters 

TS2 (%) 1.50 9.51 3.86±0.89 

FS2 (%) 10.1 51.9 26.1±4.7 

VS2 (%) 48.1 92.6 73.6±5.9 

TWAS (m3/day) 288 995 516±129 

Biogas flow (m3/min) 5.27 13.3 8.53±1.60 

Note: total solids (TS); fixed solids (FS); volatile solids (VS); volatile fatty acids (VFA); waste 

fermented sludge (WFS); and thickened waste activated sludge (TWAS). 
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3.2.2. SWTP anaerobic digestion modelling 

The biogas production estimate models were trained and tested using 75% and 25% of data 

points, respectively, in which  data were randomly split from the full data set into five subsets 

(Asadi et al., 2020). The data-driven models were run for each subset and the average performance 

of five model runs represented the overall performance as determined based on the root mean 

square error (RMSE), correlation coefficient (R), and index of agreement (IA). An overview of the 

currently considered SWTP models including linear and non-linear regression modelling are 

presented in the following section. 

3.2.2.1.Linear and non-linear regression modelling 

Linear regression models rely on linear relationships between dependent and independent 

variables, which can potentially be used for complex systems  (Walpole et al., 1993). The fitlm 

function found in MATLAB (2018) shapes a linear regression model via minimising the sum of 

squares of observations and predictions. Equation (1) depicts the fitlm function describing a linear 

model (LM) between dependent variable (y) and independent variable (x) (The Math Works, 

2018). 

LM = fitlm (x, y) (3.1) 

Non-linear regression models are flexible and powerful models for dealing with relatively 

small data sets, and can typically incorporate any continuous function, non-linear, and fixed 

parameters to define the relationship between dependent and independent values via minimisation 

of the sum of squared errors of observations and predictions (Parsons and Gates, 2013). This fitting 

data is an iterative process and requires assumed starting values for unknown coefficients. Clearly, 

appropriate starting values can lead to reduced model processing times. Previously, quadratic 

functions (polynomials of degree 2) have been shown to be the best-fit models for non-linear 

regression modelling of biogas production from up-flow anaerobic sludge blanket (UASB) 

reactors (Akkaya et al., 2015; Yetilmezsoy and Sakar, 2008). Thus, currently a quadratic equation 

was defined for developing the non-linear regression models with data being limited to the range 

of observed minimum and maximum values of monitored SWTP operating parameters (Table 3.1). 

Equation (2) depicts a typical quadratic function in two variables xi and xj, and regression 

coefficients β1 to β6 
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y =β1xi
2+β2xj

2+β3xixj+β4xi+β5xj+β6 (3.2) 

The nlinfit function found in MATLAB (2018) shapes a non-linear regression model via 

minimising the sum of squares of observations and predictions. Equation (3) depicts the nlinfit 

function (The Math Works, 2018). 

Β = nlinfit (x, y, modelfun, β0) (3.3) 

Where modelfun is a non-linear regression model function that herein assumed a quadratic 

function; and β0 are the initial coefficient values that can be determined by trial and error due to 

the result of linear regression modelling.  

3.2.2.2.ANN and ANFIS 

A detailed description of ANN and ANFIS can be found in other studies (Asadi et al., 2020; 

Kanat and Saral, 2009; Yetilmezsoy et al., 2011b, 2011a) with a brief overview herein. Supervised 

ANNs, such as multi-layer perceptron (MLP), have been widely applied to model anaerobic 

digestion process biogas production. Each three-layer ANN includes an input layer with neurons 

indicating process variables, hidden layers connecting input and output layers, and an output layer 

providing output variables (Beltramo et al., 2016). The back-propagation technique minimizes the 

discrepancy between model outputs and actual data and model training completion (Dach et al., 

2016; Wu et al., 2014). 

ANFIS is a hybrid technique that benefits from both the learning and computational 

capabilities of ANNs to facilitate and hasten the If-Then rule training of  the fuzzy inference system 

(FIS) making it a powerful model for dealing with complex and non-linear systems (Al-Mahasneh 

et al., 2016). ANFIS has five layers including fuzzification, rule, normalisation, defuzzification, 

and output layers. The fuzzification layer receives input and output variables in terms of nodes and 

assigns each node a fuzzy membership with its degree. The second layer includes fixed nodes and 

creates a firing strength for each rule given the first layer output. The third layer normalises the 

determined firing strength to be defuzzificated in the fourth layer. Lastly, the fifth layer includes 

the output nodes and determines the sum of all outputs of each rule from the previous layer output 

(Yetilmezsoy et al., 2011b, 2011a). 
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3.2.3. Monte Carlo Simulation uncertainty analysis 

Data-driven modelling inherits input variable uncertainties, and Monte Carlo Simulation 

(MCS) is a well-established probabilistic approach to determine the model output uncertainty that 

relies on the assessment of the statistical characteristics of the final distribution of model output. 

Various probability density functions (PDFs) with a 5% significance (such as normal, lognormal, 

and logistic distributions) are assigned to each input variable. The best fit PDF can be selected 

through a goodness-of-fit test such as the Anderson–Darling (AD) test. A large number of random 

input variable sets then are created using the selected PDFs and applied to the model to compute 

corresponding output sets. The model output statistical characteristics, including mean, median, 

variance, and percentiles, are investigated to assure there will be approximately the same 

characteristics if more input and output data are randomly generated and assessed (Dehghani et 

al., 2014; Goktepe et al., 2008). Typically, a short, wide, and asymmetrical output probability 

distribution indicates a higher uncertainty degree of the model (Arhami et al., 2013; Gao et al., 

2018). Herein, a set of 1,000 random data points representing input variables were generated using 

the selected PDFs (based on AD test results) and applied to the developed data-driven models to 

run MCS within MATLAB (2018).  

3.2.4. Optimization of SWTP anaerobic digesters  

Optimization of the MWTP anaerobic digestion process can lead to increased biogas 

production resulting in more cost-effective and reliable energy production.  Data-driven model 

outputs can provide suitable fitness functions to be solved by optimization techniques, such as 

genetic algorithm (GA), in order to determine optimal operating parameters leading to biogas 

production increase.  GA is a random search algorithm and derivative-free optimization technique 

applicable for a broad range of discrete and continuous fitness functions via finding the best 

solution from a large number of possible solutions. A GA creates an initial random population of 

chromosomes that are characterised by genes representing the various anaerobic digestion 

operating parameters (e.g., pH, TS (%)). Each chromosome (biogas production rate) represents a 

potential solution. The best solutions (parents) are evaluated using the assumed fitness function 

and then selected to undergo crossover and mutation to create a new population (offspring).  

Crossover is typically applied to parents and transfers their strengths to offspring to facilitate GA 
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convergence.  To avoid stagnation at possible local optima, and to ensure reaching a global 

optimum, the mutation is applied to a limited number of offspring by changing all or a few genes.  

After multiple iterations, the GA convergence becomes steady and indicates an optimal solution 

has been reached. The algorithm processing time is dependent on the complexity of its structure, 

initial population size, crossover and mutation coefficients, and indifferentiable fitness functions, 

such as ANN and ANFIS, may lead to higher computation time. A detailed description of GA can 

be found in other studies (Koza, 1992; Piuleac et al., 2013). 

3.3. Results and discussion 

This section includes three sub-sections for results and discussion covering: Regression, ANN, 

and ANFIS model results (Section 3.3.1: including Figures 3.2 and 3.3, and Table 3.2); Monte 

Carlo Simulation uncertainty results (Section 3.3.2: including Figure 3.4); and genetic algorithm 

optimization (Section 3.3.3: including Figure 3.5; Table 3.3). The noted figures include only 

current study results, while the Tables 3.2 and 3.3 include relevant literature studies that can be 

used for comparison with the current study results. 

3.3.1. Regression modelling and ANN and ANFIS models for estimation of biogas production 

rate 

Figure 3.2 shows the results of linear regression modelling via function fitlm for estimation of 

biogas flow (m3/min) from the SWTP anaerobic digesters for the three scenarios including 75% 

training data (left section of figures) and 25% testing data (right section of figures). Overall, the 

observed data and model training and testing estimations did not show a reasonable agreement for 

any of the scenarios with: Scenario 1: R = 0.61, RMSE = 1.25, IA = 0.73; Scenario 2: R = 0.57, 

RMSE = 1.32, IA =0.70; and Scenario 3: R = 0.47, RMSE = 1.41, IA = 0.59.  However, the linear 

regression modelling for Scenario 1 showed a generally better fit than other scenarios, which 

suggests that processing of the input variables via correlations and PCA did not result in improved 

modelling performances. These results were somewhat expected given the intrinsic non-linearity 

of biological processes such as anaerobic digestion (Li et al., 2011); however, the regression 

coefficients for each parameter were useful as initial guesses for the non-linear regression 

coefficients (β0) to complete non-linear regression modelling discussed next. 
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Figure 3.3 shows the results of non-linear regression modelling via function nlinfit for 

estimation of biogas flow (m3/min) from the SWTP anaerobic digesters for the three scenarios 

similar to Figure 3.2.  Overall, the non-linear regression modelling had improved agreements 

between observed and model estimations for two of the three scenarios in comparison to the linear 

regression modeling. In addition, the Scenario 1 biogas production rate estimates were also highest 

for the non-linear regression and produced reasonable statistics including R = 0.81, RMSE = 0.95, 

IA = 0.89. Thus, it appears from the linear and non-linear regression modelling results that the pre-

processing of input data variables using two methods including a correlation test and principal 

component analysis (PCA) is an unnecessary and less accurate method for use in these types of 

models. 

In comparison to our previous study results (Chapter 2, Asadi et al., 2020), both the linear and 

non-linear regression models considered in the current study were found to be less accurate in the 

estimation of biogas production rates than ‘black-box’ modelling including ANN (R = 0.86 , 

RMSE = 0.43, IA = 0.95), ANN-PCA (R = 0.88, RMSE = 0.23, IA = 0.97), ANFIS (R = 0.93 , 

RMSE = 0.61, IA = 0.97), ANFIS-PCA (R = 0.92, RMSE = 0.58, IA = 0.94) (Table 3.2). 

Interestingly, there was almost no difference between non-processed and PCA processed input 

data for these previous results which differed from the current study linear and non-linear 

regression models. The better performance of ‘black-box’ methods over ‘white-box’ approaches 

for more accurate biogas production rate estimate modelling has been reported previously (Table 

3.2). For instance, Turkdogan-Aydınol and Yetilmezsoy (2010) estimated biogas production rates 

from a pilot-scale mesophilic reactor using non-linear regression modelling and a fuzzy model 

approach with input variables of OLR, total COD removal rate, alkalinity, and pH. They reported 

that the fuzzy model performance with R = 0.97 and RMSE = 23.6 was improved as compared to 

non-linear regression modelling with R = 0.91 and RMSE = 66.5 (Turkdogan-Aydınol and 

Yetilmezsoy, 2010). Furthermore, Antwi et al. (2017) reported the superiority of ANN over non-

linear regression modelling with PCA processed input variables for biogas production rate 

estimates for a UASB treating potato starch processing (Antwi et al., 2017). Overall, the 

performance of non-linear regression modelling can be considered to be reasonable given its 

simpler structure and shorter model processing times. This makes for an easy to implement data-

driven model for biogas generation rate estimates that are marginally less accurate than more 

complex models, such as ANN and ANFIS. For instance, Yetilmezsoy and Sakar (2008) and 
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Akkaya et al. (2015) developed non-linear regression models to estimate biogas production rates 

from different UASB reactors treating poultry manure wastewater and landfill leachate, 

respectively, with satisfactory results (R > 0.90) (Akkaya et al., 2015; Yetilmezsoy and Sakar, 

2008).  

Similarly, Tufaner and Demirci (2020) monitored a laboratory-scale anaerobic hybrid reactor 

and developed three-layer ANN and non-linear regression models describing biogas production 

rate using the monitored operating parameters, including reactor fill ratio, influent–effluent pH, 

influent–effluent alkalinity, OLR, effluent COD, effluent total suspended solids, effluent 

suspended solids, and volatile suspended solids. It was shown that both technique performances 

were reasonable (R = 0.99, IA = 0.99), however, the ANN estimates were more accurate with 

RMSE = 217 (5.3%) as compared to non-linear regression with RMSE = 332 (8.1%) (Tufaner and 

Demirci, 2020). Recently, Yetilmezsoy et al. (2021) investigated biogas production rate estimate 

from a wastewater treatment plant anaerobic sludge digester using the development of ANN, 

fuzzy, and multiple regression models with input variables including sludge inflow rate, TS, VS, 

alkalinity, and VFA. It was found that the regression model performance with R = 0.75, RMSE = 

0.52, and IA = 0.84 was reasonable, however, less accurate as compared to ANN and fuzzy model 

performances with R = 0.80, RMSE = 0.59, and IA = 0.84; and R = 0.94, RMSE = 0.87, IA = 0.96, 

respectively (Yetilmezsoy et al., 2021). Similarly, the current maximum non-linear regression 

value of R = 0.81 is markedly lower than the ANN (R = 0.86), ANN-PCA (R = 0.88), ANFIS (R 

= 0.93), and ANFIS-PCA (R = 0.92) model results.  
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3.3.2. MCS uncertainty analysis 

Generally, the data-driven models presented above resulted in satisfactory performances for 

the unprocessed non-linear regression, ANN, ANFIS, ANN-PCA, and ANFIS-PCA models of 

biogas production rate estimates. Thus, these models were each subjected to the MCS uncertainty 

analysis to determine which, if any, model performed better in this analysis. All input variable 

histograms were reviewed to identify and remove outliers (high or low values that do not fall near 

other data), and variables then were fitted to the appropriate PDFs. The Anderson–Darling (AD) 

test for each parameter was less than 1 with p > 0.05 indicating that the null hypothesis was not 

rejected and the data were well represented by the assigned PDFs. The results were best fit to 

logistic distributions for VFA (m3/min), pH, and WFS (m3/min), and lognormal distributions for 

TS (%), TS2 (%), FS (%), FS2 (%), VS (%), VS2 (%), and TWAS (m3/min) (Figure B2 and Table 

B1).  

Figure 3.4 and Table B2 present the results of the MCS for the five selected models with the 

2.5th and 97.5th percentiles of each distribution indicated in Figure 3.4 via dashed lines. Generally, 

the 95% confidence interval widths of data-driven modelling varied between 7.04 m3/min (non-

linear regression) to 8.14 m3/min (ANN-PCA) indicating a marked uncertainty in each of the 

considered models. This high uncertainty can be attributed to the high non-linearity of anaerobic 

digestion processes, and the associated high uncertainties for the input variables. Surprisingly, the 

model with the smallest confidence interval was the non-linear regression model at 7.04 m3/min 

despite its relatively higher RMSE, and lower R and IA values as compared to the ANN and ANFIS 

models. Thus, the somewhat conflicting results show that developing a data-driven model with the 

least uncertainty and highest accuracy is complicated and difficult, therefore may warrant a 

compromise between these two indices. Similarly, Elshorbagy et al. (2010) reported reasonable 

performance of ANN for various non-linear hydrological models, however, the model uncertainty 

was high in comparison to other regression models (Elshorbagy et al., 2010). Interestingly, despite 

the variability in MCS results in terms of the confidence intervals, the mean biogas flow rates were 

quite similar between the models with values of 8.10, 8.14, 8.31, 8.44, and 8.60 m3/min for ANN, 

ANFIS, non-linear regression, ANN-PCA, and ANFIS-PCA, respectively (Table B2). Thus, for 

application purposes any of these models could be considered to be reasonable for use in 

optimization and for informing MWTP process modification to improve biogas production.    
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3.3.3. Optimization of biogas production using GA 

Based on the above discussion, the GA was coupled with ANN, ANFIS, and non-linear 

regression (Regression) models for optimization of the operating parameter values for 

maximization of the anaerobic digesters biogas production. These models were chosen given their 

combination of reasonable accuracy (ANN: R = 0.86, RMSE = 0.43, IA = 0.95; ANFIS: R = 0.93, 

RMSE = 0.61, IA = 0.97; and regression: R = 0.81, RMSE = 0.95, IA = 0.89  Table 3.2), average 

95% confidence interval width  of 7.55 m3/min for ANN, 8.07 m3/min for ANFIS, and 7.04 m3/min 

for regression (Figure 3.4), and lack of pre-processing (no PCA) which make them simpler for use 

by potential MWTP end-users. Figure 3.5 shows the results of the evolution of fitness functions 

and their optimization using GA for maximising of biogas production from the anaerobic digesters. 

The maximum biogas flowrate estimates during optimization of input variables increased from 

generations 1 to 23 for ANN, 1 to 120 for ANFIS, and 1 to 80 for Regression reaching maximum 

constant values of about 22.0 m3/min, 23.1 m3/min, and 28.6 m3/min, respectively. These values 

are markedly higher (3 to 4 times of the average value) than the unoptimized values for ANN at 

7.55 m3/min, ANFIS at 8.07 m3/min, and regression at 7.04 m3/min which indicates that there is 

considerable potential for increased biogas yields at the SWTP facility. The corresponding 

optimized input variables for the hybrid of ANN and GA, ANFIS and GA, and Regression and 

GA are shown in Table 3.3.  

For comparison, the measured operating ranges of TS, TS2, VS, and VS2 varied between 0.87 

– 5.59%, 1.51 – 9.51%, 37.0 – 92.1%, and 48.1 – 92.6%, respectively (Table 3.1). All TS and TS2 

model optimized values were in the higher values of these ranges, while the VS and VS2 values 

were closer to the averages, respectively. The TS/TS2 and VS/VS2 parameters are typically 

indicative of the availability of substrate compounds with higher overall substrate concentrations 

(and % values) being favourable for anaerobic digestion processes and expected to lead to higher 

biogas production (Beltramo et al., 2019). Similarly, Wei and Kusiak (2012) found maximum 

biogas production rates from anaerobic digestion processes at 12% for TS (varied between 2 – 

12%) and 80% for VS (varied between 65 – 85%) (Wei and Kusiak, 2012) (Table 3.3). Nair et al. 

(2016) studied laboratory-scale anaerobic bioreactor using ANN and GA and reported optimal VS 

of 77 – 84% (Nair et al., 2016). In addition, previous studies have highlighted higher TS and VS 
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levels for anaerobic digestion of solid wastes at food processing and landfill facilities. For instance, 

Qdais et al. 2010 studied biogas production from landfill anaerobic digestion processes and 

reported an optimal TS of 6.6% with an operating range of 1.1 - 6.6%, and optimal VS of 52.8% 

with an operating range of 22.4 – 67.7% (Qdais et al., 2010). Senthilkumar et al. (2016) indicated 

optimal TS of 7.5% for food waste anaerobic digestion, while its range was 5.0 – 12.5% 

(Senthilkumar et al., 2016), which appears to be the only results in which the TS was not near the 

maximum of the measured parameter range. 

The three model’s optimized pH and VFA values were 6.90 – 7.00 pH (operating range of pH 

4.89 to 8.40) and 680 – 750 mg/L (operating range of 100 to 945 mg/L), respectively. These results 

indicate the importance of a neutral environment and need for the availability of VFAs for the 

increased production of biogas in the anaerobic digestion process (Poh et al., 2016). Similarly, 

previous studies showed a range of 6.2 to 7.1 as the optimal pH for anaerobic digestion processes 

(Qdais et al., 2010; Senthilkumar et al., 2016; Wei and Kusiak, 2012). However, Huang et al. 

(2016) used ANN and GA to simultaneously optimize biogas production and COD removal rates 

from a bench-scale wastewater anaerobic reactor and found an optimal pH of 8.1, which is slightly 

basic in comparison to the current study. They attributed this optimal pH to the high oxidation rate 

of carbon compounds as a result of very high influent COD concentrations of 2,559 mg/L (Huang 

et al., 2016; Paul and Beauchamp, 1989). The last two optimized parameters, WFS at 520 - 580 

m3/d and TWAS at 620 - 690 m3/d were not presented previously in the literature (Table 3.3). 

However, both values are above the average values of 505 and 516 m3/d, respectively, for their 

measured operating parameters, which indicates that increased recycling rates would lead to 

increased biogas production rates in the SWTP. 
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(a) ANN - GA 

 
(b) ANFIS – GA 

 
(c) Regression - GA 

 
Figure 3.5: Results of the evolution of: (a) ANN; (b) ANFIS; and (c) Regression fitness 

functions and their optimization using genetic algorithm (GA) for maximising of biogas 

production from the anaerobic digesters. GA is intrinsically a minimisation solver (i.e., will 

result in the lowest value), and for maximisation, the negative form of the fitness functions (i.e., 

results were all multiplied by -1) was analysed in this figure given the goal is to obtain the 

highest value for biogas flow. 
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3.4. Conclusions  

Optimization of anaerobic digestion processes can lead to maximization of biogas production 

and, subsequently, result in more feasible and cost-effective beneficial usage at MWTPs. This 

study integrated GA with data-driven modelling and uncertainty analysis to find the optimized 

operating parameter values for the anaerobic digestion process of a MWTP. Of the tested models, 

the non-linear regression model development using processed input variables via correlations and 

PCA resulted in poor model results. The remaining models showed similar results when both 

model accuracy and uncertainty were considered as there appears to be a compromise between 

these parameters with no model having both high accuracy and low uncertainty simultaneously. 

Thus, the ANN, ANFIS, non-linear regression models were chosen to be coupled with GA for 

optimization purposes given lack of pre-processing which makes them simpler for use by potential 

MWTP end-users. The optimization showed that ANN, ANFIS, and regression modeled biogas 

production rates of 7.55 m3/min, 8.07 m3/min, and 7.04 m3/min could be increased to a maximum 

of 22.0 m3/min, 23.1 m3/min, and 28.6 m3/min, respectively, through selection of operating 

parameters including 4.87 - 5.59% TS, 20.6 - 22.8% FS, 8.18 - 9.50% TS2, 20.1 - 36.1% FS2, 6.90 

– 7.00 pH, 680 mg/L VFA, 520 - 580 m3/d WFS, and 620 – 690 m3/d TWAS. The modeling used 

in this study can be useful for optimization of other MWTP, and potentially other treatment, 

anaerobic digestion processes resulting in increased biogas production. In addition, future research 

can be directed toward investigation of deep-learning model accuracy and reliability given their 

marked generalisation ability as compared to regression, ANN and ANFIS models with shallow 

structures. 
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4. CHAPTER 4: Estimation of greenhouse gas and odour emissions from a cold region 

municipal biological nutrient removal wastewater treatment plant. 

 

 

Overview 

A version of this chapter has been published in Journal of Environmental Management with the 

following details: 

 

Asadi, M., & McPhedran, K. (2021). Estimation of greenhouse gas and odour emissions from a 

cold region municipal biological nutrient removal wastewater treatment plant. Journal of 

Environmental Management, 281, 111864. 
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stipend. 

Abstract  

Seasonal temperature variations in cold regions worldwide lead to variable gas emissions from 

municipal wastewater treatment plants (MWTPs) due to changing wastewater temperatures in 

open-to-air treatment processes. The objective of this study was to determine the greenhouse gas 

(including carbon dioxide, CO2; methane, CH4; and nitrous oxide, N2O) and odour (including 

ammonia, NH3; and hydrogen sulphide, H2S) emission rate estimates (EREs) from the open-to-air 

processes of a biological nutrient removal (BNR) type MWTP in Saskatoon, SK, Canada. This 

MWTP experiences seasonal temperatures from -40 °C to 30 °C with the resultant wastewater 

temperatures considered herein of 13 °C and 17 °C being chosen based on monitoring data for 

winter and summer, respectively. Laboratory-scale reactors simulating anaerobic, anoxic, aerobic, 

and settling treatment processes were used to monitor gas EREs using wastewater samples taken 

from the analogous MWTP processes during the winter and summer seasons. Results indicated 

that the overall winter EREs for CO2, CH4, and N2O were 45,129 kg CO2/d, 21.9 kg CH4/d, and 

3.20 kg N2O/d, respectively, while the H2S and NH3 EREs were insignificant. The higher 

temperature for the summer samples resulted in increased EREs for CH4, N2O, and H2S EREs of 

33.0 kg CH4/d, 3.87 kg N2O/d, and 2.29 kg H2S/d, respectively, while NH3 EREs were still 

insignificant. However, the CO2 EREs were reduced to 37,794 kg CO2/d. Overall, the aerobic 
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reactor was the dominant source of the GHG emissions for both seasons. In addition, studied 

changes in the aerobic reactor aeration rates (in reactor) and BNR treatment configurations (from 

site) further impacted the EREs.  

4.1. Introduction 

Human population growth, coupled with increasing urbanisation, has led to ever-increasing 

demands for potable water with subsequent increases in municipal wastewaters resulting in 

significant challenges for wastewater collection, treatment, and management (Hofman et al., 

2011). Municipal wastewater treatment plants (MWTPs) use combinations of treatment processes 

to produce environmentally safe effluents that meet regulatory limits before discharging to 

receiving environments. The Biological Nutrient Removal (BNR) type MWTP is becoming more 

popular due to its ability to remove nitrogen (N), phosphorous (P), and dissolved organic matter 

from wastewaters using combinations of anaerobic, anoxic, and aerobic processes with each 

allowing for favourable conditions for the growth of a large variety of microorganisms 

(Tchobanoglous et al., 2003; USEPA, 2007). However, as with all MWTPs, the microorganism 

activity in the BNR process results in the generation and emission of greenhouse gases (e.g., carbon 

dioxide, CO2; methane, CH4; and nitrous oxide, N2O) and odorous gases (e.g., ammonia, NH3; and 

hydrogen sulphide, H2S). In particular, greenhouse gases (GHGs) have become of increasing 

interest over the past decade for policymakers, environmental authorities, and decision-makers due 

to their negative environmental impacts (Agus et al., 2012; Hofman et al., 2011; Wang et al., 

2011b). For example, the Canadian government’s commitment to the Paris Agreement has resulted 

in the offering of carbon pricing incentives encouraging industries, such as the MWTPs, to capture 

GHGs (Environment and Climate Change Canada, 2017). While MWTPs are typically efficient at 

meeting wastewater treatment guidelines/regulations, GHG and odour emissions are not generally 

considered in the MWTP design process and are not currently subjected to emissions regulations. 

The assessment of GHG and odour emissions from MWTPs is needed to identify the fugitive 

gas emissions, especially from the open-to-air processes, and to determine if suitable mitigation 

measures need to be implemented. In particular for BNR systems, the nitrogen removal process 

results in N2O emissions that are of concern given their approximate greenhouse effect being 265 

times higher than that of CO2 (Law et al., 2012; Massara et al., 2017b). In 2006, the 

Intergovernmental Panel on Climate Change (IPCC) highlighted GHG emissions from wastewater 
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treatment as a potential air quality issue and proposed a recommendation for approximating an 

N2O emission rate estimate (ERE) of 0.035% (by mass) of the influent total Kjeldahl nitrogen 

(TKN) (Garg et al., 2006). However, several studies have been conducted to assess the accuracy 

of this recommendation and reported large discrepancies between the IPCC’s emission factors and 

their study findings. For instance, Lim and Kim (2014) developed a sealed batch-reactor set-up 

simulating a BNR system and reported an N2O ERE of 0.8% of the influent TKN which is more 

than an order of magnitude higher than the IPCC ERE (Lim and Kim, 2014). Interestingly, 

Rodriguez-Caballero et al. (2014) employed field monitoring to evaluate the impact of MWTP 

operating parameters on GHG emissions from an activated sludge-type MWTP and found a high 

correlation between N2O ERE and both the activated sludge aeration rate and influent nitrogen 

load (Rodríguez-Caballero et al., 2014b). Clearly, a single estimate for the N2O ERE is not suitable 

for approximations for all MWTP facilities and parameters other than influent TKN may be useful 

in determining more accurate EREs. 

Variables impacting the efficiency of wastewater treatment, in addition to the resultant GHG 

and odour EREs, throughout the MWTP process may include the MWTP operating parameters 

(e.g., aeration rates), temperature variability (e.g., local seasonal climate), and the combination of 

treatment processes (e.g., BNR reactor configuration). Typical important operating parameters 

considered in GHG and odour EREs studies for MWTPs include temperature (T), hydraulic 

retention time (HRT), dissolved oxygen (DO), chemical oxygen demand (COD) or biological 

oxygen demand (BOD), and TKN or total nitrogen (TN) concentrations (Asadi et al., 2020; Law 

et al., 2011; Massara et al., 2017a; Mikosz, 2016; Ren et al., 2015; Wang et al., 2011a). Some of 

the operating parameters are readily adjusted by the MWTP operators such as DO via aeration 

rates. Alternatively, MWTPs located in areas with large seasonal temperature variations will also 

show variability in wastewater temperatures throughout the year, which cannot be easily adjusted, 

while also potentially having a high impact on EREs (Han et al., 2018). Lastly, the variability in 

MWTP design also influences both the efficiency of the wastewater treatment and the EREs 

(Massara et al., 2017b). For example, the BNR treatment process can be conducted with varying 

process configurations, and resultant efficiencies, such as the two configurations considered in the 

current study. 

Overall, the accuracy of the GHG and odour EREs from MWTPs has not been adequately 

assessed in the literature, especially in consideration of impacts of dissolved oxygen and seasonal 
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temperature variations for cold region MWTPs worldwide such as those located in the Canadian 

prairie provinces. In addition, to the best knowledge of the authors, there is no simultaneous study 

of GHG and odour EREs from a cold region MWTP with various BNR designs to describe the 

relationship between wastewater quality and EREs. Thus, the main objective of this study was to 

advance the knowledge of GHG (CO2, CH4, and N2O) and odour (H2S and NH3) emissions from 

the open-to-air treatment processes at the Saskatoon Wastewater Treatment Plant (SWTP). The 

SWTP is a state-of-the-art MWTP and a Class IV treatment facility in Canada, which was selected 

as a case study given its highly variable seasonal temperatures from -40 °C to 30 °C. This research 

included laboratory reactor assessments of sampled wastewaters for GHG and odour emissions, in 

conjunction with monitoring operating parameters of each treatment process, to: (1) determine 

GHG, NH3, and H2S EREs from the open-to-air treatment processes including aerobic, anoxic, and 

anaerobic reactors, and primary and secondary clarifiers; (2) evaluate the seasonal operating 

temperature (using 13 °C for winter and 17 °C for summer based on SWTP recorded water 

temperatures) impacts on the EREs; (3) assess the impacts of variable DO concentrations on the 

EREs; and (4) compare two parallel BNR treatment processes having different treatment process 

configurations.  

4.2. Materials and methods 

Figure 4.1 shows a schematic flowchart of the study methodology for determination of GHG 

and odour EREs from the open-to-air treatment processes at the SWTP (shown in Figure 4.2a) 

given variable wastewater temperatures, DO concentrations, and BNR configurations. The 

following sections will include an overview of the SWTP (Section 4.2.1), the BNR configurations 

(Section 4.2.2), and the experimental design (Section 4.2.3).  
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Figure 4.2: (a) Saskatoon Wastewater Treatment Plant (SWTP) facility layout. Bioreactors 

include anoxic (AX), anaerobic (AN) and aerobic (AE) processes in different basins. The orange 

squares represent the approximate sampling locations used for acquiring samples used in study 

experiments; Two biological nutrient removal (BNR) treatment process configurations were in 

use at the SWTP including: (b) an anaerobic-anoxic-aerobic process; and (c) an anoxic-

anaerobic-anoxic-aerobic process. Note: WASSTRIP = Waste Activated Sludge Stripping to 

Recover Internal Phosphate; RAS = return activated sludge; FS = fermenter sludge. 



 

85 

 

4.2.1. Saskatoon Wastewater Treatment Plant (SWTP) overview   

The SWTP is a BNR-type plant located in Saskatoon, SK, Canada that serves the entire city of 

approximately 273,000 people and has a maximum treatment capacity of 300,000 m3/d. The SWTP 

is subjected to a wide range of seasonal temperatures with highs above 30 °C in summer months 

and lows below -40 °C in winter months. Although wastewater flows to the SWTP below ground, 

once at the plant much of the wastewater flow is outdoors resulting in average monitored 

temperatures of 13 °C and 17 °C in winter and summer, respectively. The SWTP treatment process 

train includes an extensive variety of treatment processes, such as a grit and screen facility, 

clarifiers, fermenters, dissolved air flotation (DAF) thickener, BNR systems (Figure 4.2b and 

4.2c), ultraviolet disinfection system, nutrient recovery facility, and anaerobic digesters (City of 

Saskatoon, 2018). An average of 93,000 m3/d raw wastewater enters the SWTP flowing through 

the covered grit and screen chambers into the primary clarifiers for removal of solid particulates 

and floating scum. The primary effluent is then directed to the BNR bioreactors that were initially 

designed to be duplicate, parallel treatment processes (Figure 4.2b). The bioreactors are supplied 

with 93,000 m3/d return activated sludge (RAS) and 3,000 m3/d fermenter supernatant (FS) to 

provide volatile fatty acids (VFAs), fixed and volatile solids (VS and FS), nitrite (NO2
-), and nitrate 

(NO3
-), and microorganisms. Following the bioreactors, about 189,000 m3/d of biologically treated 

wastewater travels to the secondary clarifiers with resulting secondary effluents with the flow rate 

of 89,700 m3/d being discharged to the ultraviolet disinfection building prior to release to the South 

Saskatchewan River (SSR). Figure 4.2(a) indicates the approximate sampling locations at SWTP’s 

open-to-air treatment facilities that were anticipated to be emission sources for GHGs and odour 

compounds including the two BNR systems (bioreactors), primary clarifiers, and secondary 

clarifiers. 

4.2.2. Biological Nutrient Removal (BNR) configurations 

The two BNR treatment process streams provide about 9 hours of wastewater retention time 

accomplishing biological treatment via anaerobic, anoxic, and aerobic processes. Figure 4.2(b) 

indicates the original BNR configuration used at the SWTP for both streams utilizing an anaerobic-

anoxic-aerobic reactor arrangement. The anaerobic reactor is an oxygen-free environment 

receiving primary effluents, an internal recycle from the anoxic reactor, and FS. In the anaerobic 

process, complex compounds such as polyphosphate molecules are broken down into phosphorous 
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and leading to the production of energy. Phosphate-Accumulation Organisms (PAOs) use this 

energy to convert VFAs to poly-hydroxyalkanoates (PHAs). The anoxic reactor receives the 

anaerobic reactor discharge, RAS, and internal recycle from the aerobic reactor for completing the 

denitrification process. Oxygen in the anoxic reactor is available through the degradation of 

chemical compounds such as NO2
- and NO3

-. The denitrification process is conducted by 

heterotrophic and autotrophic bacteria to biologically reduce NO3
- to nitric oxide (NO), N2O, and 

then, nitrogen gas (N2). The anoxic reactor effluent flows to the aerobic reactors where PAOs 

utilise PHAs and phosphorous complexes, and autotrophic bacteria complete the nitrification 

process via oxidising NH3 to NO2
- and, then NO3

-. The aerobic reactors are aerated to keep the 

average DO concentration at 1.5 mg/L in winter months and 2.0 mg/L in summer months based 

on treatment performance monitored by SWTP staff.  

Recently, one of the SWTP’s BNR treatment process streams was altered by SWTP staff to an 

anoxic-anaerobic-anoxic-aerobic arrangement in an effort to increase the nutrient removal 

efficiency (Figure 4.2c). The NO3
- reduction process in the anoxic reactor and biological 

phosphorus removal process by PAOs in the anaerobic reactor are dependent on the presence of 

VFAs for metabolism (Thomas et al., 2003). In this updated configuration, the operators were 

attempting to decrease the NO3
- concentration in the anaerobic reactor by positioning an anoxic 

reactor as the first stage of biological treatment. In addition to this new anoxic stage, the DO 

concentration in the aerobic reactor varied between 2.0 mg/L in the initial zones to 1.0 mg/L in the 

final last zone resulting in an average concentration of 1.5 mg/L for all seasons in this 

configuration. These initial and updated BNR treatment process steams were employed for the 

assessment of GHG and odour EREs.  

4.2.3. Experimental setup for gas EREs from the open-to-air facilities 

Figure 4.3 shows the experimental setup of the batch-reactors designed to simulate the aerobic, 

anaerobic, anoxic reactors, and primary and secondary clarifiers for use in generation and 

determination of GHG and odour emissions. Overall, wastewater samples were collected on 22 

separate occasions from November 2018 through September 2019 from the various reactors at the 

SWTP (Figure 4.2a) with further sample details outlined in the Appendix C including Figure C1. 

Samples were transported to the Environmental Engineering laboratories at the University of 

Saskatchewan and directly used in experimental runs without storage. 
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The three 5 L glass reactors for each experimental run were filled to a working volume of 3.0 

L, sealed, and maintained at 13 °C and 17 °C in a controlled temperature chamber to simulate the 

actual SWTP wastewater temperatures for the winter and summer, respectively (see Appendix C 

for further details). The reactor’s wastewater was sampled (100 mL) by syringes placed in the 

reactor caps every 2 hours from 0 to 8 h and at the 24th hour of the experimental runs. Samples 

were analyzed based on the Standard Methods for the Examination of Water and Wastewater 

(American Public Health Association (APHA) Water Environment Federation (WEF), 2005) 

including: temperature (T) and pH (Thermo Scientific Orion Star A111, USA); electrical 

conductivity (EC) (HACH®, USA); COD (HACH DR/4000U Spectrophotometer, USA); total 

organic carbon (TOC) (LOTIX Combustion Analyser, Canada); ammonium (NH4
+) (HACH 

DR/4000U Spectrophotometer); sulphate (SO4
2-); phosphate (PO4

3-); NO2
-, and NO3

- (by ion 

chromatography, Thermo Scientific, Dionex Integrion HPIC, San Jose, CA, USA); and DO (YSI 

5100, USA).  

For aerobic reactors, an aerobic environment was created by mixing the wastewater via 

magnetic stirrers and pumping air into the reactor at various rates to keep the DO concentrations 

between 1.0 to 2.0 ppm, which is the typical DO range in the aeration reactors of the SWTP. The 

appropriate aeration and mixing rates were determined using preliminary experiments. For 

anaerobic and anoxic reactors, the reactors' wastewaters were mixed by a magnetic stirrer, and 

nitrogen gas (N2) was pumped into the reactor headspaces to carry the produced gases into the gas 

analyser. The clarifier reactors were left unstirred and subjected to N2 pumping of the reactor 

headspaces to facilitate the gas analysis. The GHGs and odorous gas samples were taken every 30 

min for first 2 h, then every 2 h until the 8th hour, and finally at the 24th hour of the experimental 

runs (n=9 samples for each experimental run). The H2S and NH3 concentrations were analysed 

using a Gas Alert Micro 5 (Honeywell, USA), which was calibrated to measure 0 – 500 ppm with 

a resolution of 0.1 ppm. Gas samples for GHG analyses were taken by gas-tight syringes placed 

downstream of the reactor and transferred to pre-evacuated 12 mL Exetainer vials (LabCo Inc., 

High Wycombe, UK) to be analysed by gas chromatography (Scion 456-GC, Bruker Daltonics 

Inc., USA). The CO2, CH4, and N2O concentrations were measured using the GC coupled with a 

thermal conductivity detector (TCD), flame ionizer detector (FID), and an electron capture 

detector (ECD), respectively.  
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Figure 4.3: Schematic experimental setup of batch reactors used to estimate greenhouse gas 

(GHG) and odour emissions for simulation of: (a) aerobic reactors; (b) anaerobic and anoxic 

reactors; and (c) primary and secondary clarifiers. 
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The air and N2 pumping rates into the reactors were controlled by valves and continuously 

monitored by airflow meters positioned before and after each reactor. The EREs from each of the 

reactors were determined using the monitored off-gas flowrate and measured GHG, H2S and NH3 

concentrations. Thus, the total EREs for each process at the SWTP were computed using the 

reactor EREs as follows (Lim and Kim, 2014): 

ERE = 10-6 × ERE reactor × HRT × WFR / V reactor (4.1) 

Where, ERE = estimated emission rate from the actual SWTP treatment process (kg/d); 

EREreactor = monitored gas emission rate from the reactor (mg/min); HRT = hydraulic retention 

time of the treatment process (min); WFR = wastewater flow rate of the treatment process (m3/d); 

and Vreactor = working volume of the batch reactor (m3) (Table C1). Subsequently, ERE from the 

actual SWTP treatment process in terms of influent wastewater flow rate (ERE v) can be computed 

as follows: 

ERE v = ERE / WFR influx (4.2) 

Where, WFR influx = influent wastewater flow rate (m3/d). 

4.3. Results and discussion 

4.3.1. SWTP operating parameters  

The SWTP monitored operating parameters of anaerobic, anoxic, and aerobic reactors, and 

primary and secondary clarifiers for the winter (2018 and 2019) and summer (2019) seasons 

included pH, EC, COD, TOC, NO2
-, NO3

-, NH4
+, PO4

3-, and SO4
2- (Table C2). These values were 

determined with average wastewater temperatures of 13 °C and 17 °C in the winter and summer, 

respectively, which were the temperatures used for all laboratory experiments in the current study. 

Each of these parameters are briefly discussed in the current section, while also being used for 

discussion in subsequent sections. These parameters and the remaining experimental results were 

used in Chapter 5 for further development of data-driven models describing gas emissions from 

this cold region SWTP BNR (Asadi et al., 2020).  

Overall, the average pH values in the winter ranged from pH 7.3 to 7.9 and in the summer from 

pH 7.2 to 7.3 (Table C2). The largest variation in pH occurred for the primary and secondary 

clarifiers with winter values of pH 7.9 and 7.9 and summer values of pH 7.3 and 7.2, respectively. 
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The increased pH in the winter months may be due to the lower microbial activity leading to 

reduced acidic compound generation, thus increased pH (He et al., 2012; Larson and Henley, 

1955). Similarly, the EC range for winter was 1,234 to 1,421 µs/cm and for summer was 1,313 to 

1,583 µs/cm for all reactors and clarifiers. Previously it has been indicated that wastewater 

dissolved solids, represented herein by EC, could impact treatment processes with increased EC 

resulting in increased GHG generations and emission (Tsuneda et al., 2005). Thus, the increased 

EC for the summer months in the current study would indicate higher emissions during these 

months which aligns well with the laboratory reactor results discussed in the following sections. 

In comparison, the COD and TOC concentrations showed greater variability between the treatment 

processes with no clear trends between the winter and summer data ranges.  

The majority of the nitrogen in all processes was found in the form of NH4
+ concentrations 

with typically higher values in the winter months at 21.1 to 35.1 mg/L versus the summer months 

at 1.61 to 31.0 mg/L (Table C2). In contrast, the NO2
- and NO3

- concentrations were found to be 

significantly lower with many samples being below detection limits. The higher concentrations in 

the winter months would indicate more limited creation of N2O and lower EREs which is in 

agreement with the EC results. Both the PO4
3- and SO4

2- concentrations in all treatment processes 

were higher in summer months with ranges of 7.50 to 97.5 mg/L and 224 to 382 mg/L, versus 2.5 

to 92.8 mg/L and 124 to 201 mg/L, respectively. The PO4
3- concentration increasing in the 

anaerobic and anoxic processes, and decreasing in the aerobic process, indicates the phosphorous 

release and consumption by the active microorganisms in biological phosphorous removal process 

(Tchobanoglous et al., 2003). In addition, SO4
2- is a well-established sulphur-based and 

temperature-sensitive compound in wastewater (Talaiekhozani et al., 2016), and its higher summer 

months concentrations can be attributed to increased sulphate reduction by sulphate-reducing 

bacteria in the anaerobic environments (USEPA, 1985). 

4.3.2. GHG and odour EREs 

Figure 4.4 presents the results of the calculated average EREs for the primary clarifiers; 

anaerobic, anoxic, and aerobic reactors; and secondary clarifiers at the SWTP for gases of interest 

including CO2 (Figure 4.4a), CH4 (Figure 4.4b), N2O (Figure 4.4c), and H2S (Figure 4.4c) at the 

temperatures of 13 ℃ (blue bars) and 17 ℃ (red bars). An overview of the current GHG EREs in 

comparison to available literature values for other MWTPs is shown in Table 4.1. The Figure 4.4 
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and Table 4.1 information will be used for the discussion in the following sub-sections. In addition, 

statistical information for correlations between the measured wastewater parameters and gases are 

available in the Appendix C including primary clarifiers (Table C3); anaerobic reactors (Table 

C4); anoxic reactors (Table C5); and aerobic reactors (Table C6). No significant correlations for 

the secondary clarifier were found.  

4.3.2.1. CO2 Emission 

Figure 4.4a shows the total CO2 EREs for the open-to-air treatment processes were 45,129 kg 

CO2/d (485 gCO2/m
3) for the 13 °C experiments and 37,794 kg CO2/d (406 gCO2/m

3) for the 17 

°C experiments. The dominant CO2 emission source was the aerobic reactor with EREs of 30,593 

kg CO2/d (329 gCO2/m
3) in winter and 21,274 kg CO2/d (229 gCO2/m

3) in summer.  The higher 

EREs in the aerobic reactor would be expected given its increased aeration rate (and subsequent 

agitation), microbial respiration, and microbial decomposition of organic matter by organisms such 

as nitrifiers and PAOs (Bao et al., 2016; Czepiel et al., 1993; Krasner et al., 2009; Ren et al., 2015; 

Yan et al., 2014). Similarly, previous researchers have been reported that the aerobic processes of 

other MWTPs were also the primary CO2 emission sources (Table 4.1). For example, Czepiel et 

al. (1993) studied the Durham MWTP activated sludge process having a treatment capacity of 

4,000 m3/d with a reported CO2 ERE of 335 g CO2/m
3 which was attributed mainly to emissions 

from the aerobic reactor. Furthermore, it was reported that the CO2 ERE from secondary treatment 

processes was not  correlated with wastewater temperature given lower influent wastewater flow 

rate and organic load due to seasonal local population shrinking in summer (Czepiel et al., 1993). 

More recently, Bao et al. (2016) monitored an anoxic-oxic process MWTP with a treatment 

capacity of 443,000 m3/d over 12 months and found that the CO2 ERE of aerobic process varied 

between 86.0 to 347 g CO2/m
3 (Bao et al., 2016).  

Statistical analysis of the various monitored MWTP parameters for the aerobic reactor showed 

the HRT and DO concentration were highly correlated to CO2 emissions (p ≤ 0.01; Table C6) 

indicating that a longer hydraulic retention time and increased DO availability resulted in higher 

CO2 EREs. The CO2 was also correlated to other measured gases including CH4 and N2O 

(p ≤ 0.01). In addition, and TOC and PO4
3- were also correlated (p ≤ 0.05) to higher CO2 EREs 

which would be expected for TOC given higher carbon availability would allow for higher CO2 

production. The increase with PO4
3- may be attributed to more favorable bacterial conditions 

allowing for higher metabolism (Tchobanoglous et al., 2003).  
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Table 4.1: An overview of the greenhouse gas (GHG) emission rate estimates (EREs) for 

literature municipal wastewater treatment plants (MWTPs) in comparison to the current study 

results. 

References Treatment facilities Operating parameters GHG EREs 

Current study BNR unit with anaerobic, 
anoxic, and aerobic reactors 
to biologically remove N and 
P 

Flow = 93,000 m3/d 

pH = 7.5 

EC = 1,500 µs/cm  

COD = 333 mg/L  

TOC = 45.2 mg/L 

NH4
+ = 33.1 mg/L 

PO4
3- = 6.77 mg/L  

SO4
2- = 253 mg/L   

Winter: 

485 g CO2/m
3 

0.235 g CH4/m
3 

0.034 g N2O/m3  

Summer:  
406 g CO2/m

3  

0.354 g CH4/m
3 

0.042 g N2O/m3 

Czepiel et al. 
(1993, 1995) 

Activated sludge process T = 20 ℃ 

BOD = 250 mg/L 

Flow = 3,013 m3/d. 

335 g CO2/m3 

0.340 g CH4/m3  
0.032 g N2O /m3 

Foley et al. 
(2010) 

7 different MWTPs, designed 
for removal of N and P 

Not available N2O for facilities:  
(i) N removal = 0.6% 
to 25.3% of Ninfluent  
(ii) N and P removal = 
0.18% of Ninfluent 

Daelman et al. 
(2013) 

Plug-flow activated sludge 
system for N removal 

T = 11–21 ℃ 

DO = 0 – 1.5 mg/L 

COD = 339 mg/L 

TKN = 41 mg/L 

P = 6 mg/L 

3.32 g CH4/m3 

1.60 g N2O /m3 

Yoshida et al. 

(2014) 

Anoxic and aerobic semi-
batch reactors 

T = 11.3–14.9 ℃ 

DO = 1–2 mg/L 

Flow = 69,315 m3/d 

1.73–31.9 g CH4/m
3 

0.128–3.63 g N2O/m3 

Bao et al. 
(2016) 

Primary clarifier, anoxic and 
oxic reactors, and secondary 
clarifier. 

T = 19 ℃  
pH = 7.6 

COD = 365 mg/L 

NH4
+ = 37.9 mg/L 

TN = 49.5 mg/L 

87.0–348 g CO2/m3 
0.137–917 g CH4/m3 
0.132 –1.71 g 
N2O/m3 

Wang et al. 
(2016) 

BNR facility including 
anaerobic, anoxic, and 
aerobic reactors to 
biologically remove N and P 

Ambient T = 13–34 °C 

Flow = 48,000 m3/d 

HRT = 7.7–10.3 hrs 

DO = 0.6 – 6.0 mg/L 

COD = 100–300 mg/L 

NH4
+ = 10 - 30 mg/L 

TP = 5–7 mg/L,  

0.010–1.032 g 
N2O/m3 

Ribera-

Guardia et al. 

(2019) 

Plug-flow anoxic and aerobic 
basins for biological (N) and 
chemical (P) removal. 

Flow = 42,801 m3/d 

COD = 411.6 mg/L 

TKN = 44.0 mg/L 

PO4
3- = 5.20 mg/L 

pH = 7.7 

1.15–2.10 g CH4/m
3 

0–0.057 g N2O/m3 
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The temperature increase from summer vs. winter experimental conditions resulted in 

increased CO2 EREs from the primary clarifiers, anaerobic reactors, and anoxic reactors with 

average values of 1,341, 4,729, and 5,597 kg CO2/d, respectively (Figure 4.4a). In contrast, CO2 

EREs from the aerobic reactors and secondary clarifiers decreased to values of 21,274 kg CO2/d 

and 4,853 kg CO2/d, respectively. The CO2 generation and emission from MWTPs typically 

originates from fossil and biogenic carbons (Garrido-Baserba et al., 2015; Pachauri et al., 2014; 

Schneider et al., 2015), and an increase in temperature would result in higher microbial activities 

(especially in the aerobic process) leading to a demand for more accessible carbon sources, such 

as biogenic CO2, for metabolic processes (Caniani et al., 2015; LaPara et al., 2001; Zheng and Li, 

2009; Zhou et al., 2015). Thus, temperature increases could lead to the increased carbon 

consumption, and subsequent reduced CO2 EREs (Ren et al., 2015), from the current aerobic 

reactors and secondary clarifiers. In contrast, the increased metabolism may have resulted in 

increased metabolic activities, with resultant increases in CO2 EREs, in the remaining treatment 

processes which have reduced microbial concentrations in colder temperatures. 

4.3.2.2. CH4 Emission 

Figure 4.4b shows the average CH4 EREs from the open-to-air facilities with a summed total 

of 21.9 kg CH4/d (0.235 g CH4/m
3) at a winter temperature of 13 ℃, and 33.0 kg CH4/d (0.35 g 

CH4/m
3) at a summer temperature of 17 ℃. As for the CO2, the main source of CH4 emissions in 

the winter was the aerobic reactor with an ERE of 11.4 kg CH4/d accounting for greater than 50% 

of the total emissions. In contrast, the summer emissions were more evenly distributed between 

the processes with a range of EREs from 6.02 to 9.88 kg CH4/d other than the secondary clarifiers 

which had negligible EREs overall. The low CH4 emissions from the secondary clarifiers was 

expected given their low turbulence environments and their receiving the aerobic effluents having 

limited residual dissolved CH4 (Bao et al., 2016; Ren et al., 2013). Overall, the aerobic reactor had 

the highest EREs given the stripping of dissolved CH4 contained in the aerobic influent due to both 

its elevated temperature and mechanical aeration/agitation (Daelman et al., 2012; Heffernan et al., 

2012; Rodríguez-Caballero et al., 2014b). However, the temperature increase for the summer 

experiments would be expected to result in greater microbial activities, and subsequent CH4 

generation and emission, from the other processes including the primary clarifiers, anaerobic 

reactors, and anoxic reactors.  
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Statistical analysis for all four of the relevant processes for CH4 emissions indicated that CH4 

was correlated with CO2 emissions and HRT (p>0.01; Tables C3, C4, C5, C6). In addition, CH4 

was correlated with other parameters including N2O, TOC, and PO4
3- for the anaerobic, anoxic, 

and aerobic reactors (p>0.01: Tables C4, C5, and C6). The physical environment characterised by 

the temperature and pH were significantly correlated to CH4 EREs for the anaerobic and anoxic 

reactors (p ≤ 0.01; Table C4, C5) indicating that a warmer and more neutral environment (pH ̴ 7) 

led to larger CH4 EREs. For the anoxic reactor, the results show a high correlation between NH4
+ 

and SO4
2- concentrations with CH4 ERE (p ≤ 0.01; Table C5). Previous studies have indicated that 

high free NH4
+ might lead to NO2

- accumulation and subsequently inhibit CH4 production and 

emission (Gutierrez et al., 2009; Wang et al., 2011a); and the SO4
2- concentration increasing in a 

limited range could positively affect methanogenesis and result in higher CH4 production and 

emission (Sinbuathong et al., 2007).  For the aerobic reactor, the DO and SO4
2- concentrations 

were highly correlated to CH4 emissions (p ≤ 0.01; Table C6), however, the correlation coefficient 

of 0.26 demonstrated a weak relation between SO4
2- with CH4.  

Despite the uniqueness of MWTPs, the aerobic process has previously been reported as the 

main CH4 emission source (Table 4.1). For instance, Czepiel et al. (1993) found a CH4 ERE of 

0.34 g CH4/m
3 from the aerobic reactors of an activated sludge process, and wastewater 

temperature increase did not significantly affect this ERE given decreased wastewater influent rate 

in summer by half compared to rest of the year. (Czepiel et al., 1993). Bao et al. (2016) reported 

CH4 EREs of 0.13 – 0.86 g CH4/m
3 from an oxic-anoxic type MWTP with 67% attributed to the 

aerobic reactor (Bao et al., 2016). Additionally, MWTPs with dynamic DO concentrations have 

reported higher CH4 EREs. For example, Daelman et al. (2013) monitored CH4 emissions from an 

activated sludge process-type MWTP over 16 months with DO of 0 to 2.0 mg/L and temperatures 

ranging from 11 ℃ to 21 ℃. They found a maximum CH4 ERE of 3.32 g CH4/m
3 at the highest 

temperature, however, did not report a significant correlation between CH4 emission and 

wastewater temperature given a longer sludge residence time in winter to compensate negative 

impact of low temperatures on microorganism activities. (Daelman et al., 2013). Similarly, 

Yoshida et al. (2014) of studied a MWTP consisting of two reactors with alternating anoxic and 

aerobic zones having DO ranging from 1.0 mg/L to 2.0 mg/L and temperature range of 11.3 °C to 

14.9 °C. They found EREs increased with both DO and temperature ranging from 0.0173 – 0.319 

g CH4/m
3 (Yoshida et al., 2014). More recently, Ribera-Guardia et al. (2019) monitored GHG 
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emissions from the aeration portion of a MWTP’s plug-flow bioreactors finding the CH4 EREs 

varied between 1.15 to 2.10 g CH4/m
3 (Ribera-Guardia et al., 2019).  

4.3.2.3. N2O Emission 

Figure 4.4c presents the results of N2O EREs from each open-to-air facility at temperatures of 

13 ℃ to 17 ℃ from the SWTP. The aggregate EREs were 3.20 kg N2O/d (0.034 g N2O/m3) in 

winter months and increased marginally to 3.87 kg N2O/d (0.042 g N2O/m3) in summer months. 

Based on an average influent total nitrogen of 44.0 mg/L, these resulted in values of 0.78 g N2O/kg 

Ninfluent (0.078% of influent nitrogen) and 0.95 g N2O/kg Ninfluent (0.095% of influent nitrogen), 

respectively. In the winter, the aerobic reactors were the main source of N2O emissions with an 

ERE of 2.46 kg N2O/d. For the summer, the increased temperature led to higher aerobe and nitrifier 

microbial activities creating N2O generation in the aerobic reactor leading to a marked increase to 

an ERE of 2.80 kg N2O/d (Aboobakar et al. 2013; Flores-Alsina et al. 2012; Massara et al. 2017; 

Poh et al. 2015; Reino et al. 2017). Similar to winter, the aerobic reactors were the dominant N2O 

emissions source of all the processes.  

The statistical analysis for the aerobic reactor shows that the temperature, DO concentration, 

nitrogen concentrations (both NO3
- and NH4

+), PO4
3- concentration, and SO4

2- were highly 

correlated to the N2O emission (p ≤ 0.01). The N2O was also correlated to both CO2 and CH4 gases. 

The results show that the nitrification process in the aerobic reactor was the dominant source of 

N2O emission from the bioreactors such that 25% of its total ERE was from clarifiers and anaerobic 

and anoxic reactors, that aggregately reached to 0.740 kg N2O/d in winter given denitrification 

processing, and biological nutrient decomposition (Ren et al., 2013; Schreiber et al., 2012; Tallec 

et al., 2006; Wang et al., 2011b); and increased to 1.07 kg N2O/d in summer given the disruption 

of N2O reduction to NO3
- and NO2

- by H2S presence due to larger microbial activities and 

subsequent carbon source consumption (Ahn et al., 2010; Kampschreur et al., 2009; Ma et al., 

2006; Pan et al., 2013; Poh et al., 2015; Talaiekhozani et al., 2016).   

Overall, the total N2O ERE range determined in the current study was 0.034 to 0.042 g N2O/m3 

and lower than some previous studies (Table 4.1). For example, Daelman et al. (2013) reported an 

N2O ERE of 1.60 g N2O/m3 from a plug-flow activated sludge treatment facility. (Daelman et al., 

2013). Yoshida et al. (2014) demonstrated that the N2O ERE from an anoxic-aerobic process-type 

MWTP fluctuated between 0.128 – 3.63 g N2O/m3, while Bao et al. (2016) reported a similar range 

of 0.13 – 1.69 g N2O/m3 (Bao et al., 2016; Yoshida et al., 2014). However, the current values are 
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similar to the IPCC’s guideline for GHG emissions of advanced MWTPs at 0.032 g N2O/m3 which 

was obtained from study of an activated sludge process-type MWTP (Czepiel et al., 1995; Garg et 

al., 2006). It should be noted that MWTPs designed for the removal of phosphorous and nitrogen 

with uniform spatial DO profiles, such as the currently studied facility, have reported lower N2O 

EREs due to the consistent nitrification throughout the aerobic reactors (Table 4.1). For example, 

Foley et al. (2010) showed that N2O EREs for BNR facilities designed primarily for nitrogen 

removal varied between 2.7% to 25.3% of Ninfluent, while N2O emission from facilities designed 

for both nitrogen and phosphorus removals had average EREs of 0.18% of Ninfluent (Foley et al., 

2010) which is similar to the current results of 0.078% and 0.095%. In addition, Wang et al. (2016) 

monitored N2O emission from a BNR-type MWTP over one year reporting N2O EREs in the range 

of 0.01 – 1.03 g N2O/m3 (Wang et al., 2016). More recently, Ribera-Guardia et al. (2019) studied 

plug-flow bioreactors with an anoxic-aerobic process to biologically and chemically remove 

nitrogen and phosphorous finding a maximum measured N2O ERE of 0.057 g N2O/m3 (Ribera-

Guardia et al., 2019). 

4.3.2.4. NH3 Emissions  

Overall, the experimental results for both summer and winter temperatures determined that 

NH3 emissions from all treatment processes were negligible. Similarly, Osada et al. (2017) 

investigated five activated sludge-type MWTPs across Japan between August 2014 and January 

2015 finding that the NH3 emissions were negligible (Osada et al., 2017). The NH3 is typically a 

unionised compound and can react with water molecules to form the ionised NH4
+ compound. This 

chemical equilibrium is dependent on the water pH and temperature with acidic conditions and 

warmer temperatures favouring NH3 release into the atmosphere. Therefore, insignificant NH3 

ERE from routine operation of MWTPs at pH of 7 – 8 would be expected (Lee and Dollard, 1994). 

For example, Allen et al. reported the average concentration of 4.12 ppb (3.09 µg/m3) for NH3 at 

a MWTP in the UK (Allen et al., 1988). Currently, at a typical SWTP wastewater pH of 7.5 only 

0.74% (13 °C) and 0.99% (17 °C) of the nitrogen would be available as the unionised NH3 

(Emerson et al., 1975). Given the maximum reported NH4
+ influent concentration at the SWTP 

was around 40 mg/L, only 0.4 mg/L (0.53 ppm) of NH3 would be expected to be freely available 

for volatilization from any of the treatment processes. Thus, any NH3 emissions would be 

negligible and the EREs would be expected to be below the detection limit of the gas analyzer 

used in the current study. 
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4.3.2.5.H2S Emissions  

Figure 4.4d shows the results of H2S EREs from each open-to-air facility for the winter and 

summer temperature experiments. Overall, the winter H2S emissions were negligible due to the 

neutral pH = 7.5 and average wastewater temperature of 13 °C.  The H2S formation and subsequent 

release from the wastewater is more prominent with acidic conditions (pH < 7) and warmer 

wastewater temperatures (Catalan et al., 2009; Nielsen et al., 2008; Yongsiri et al., 2004a), since: 

(1) one degree Celsius temperature increase can enhance sulphate-reducing bacteria activity by 

7% leading to higher H2S formation (Sengupta, 2014), (2) the solubility of H2S is inversely 

correlated to temperature resulting in a marked decrease from 5.2 g/kg to 4.1 g/kg water for 13 °C 

and 17 °C, respectively (Talaiekhozani et al., 2016), and (3) the H2S more dissociates into bisulfide 

(HS-), and sulphide (S2-) in acidic environments (USEPA, 1985). Therefore, available sulphur as 

H2S markedly increased in summer such that for the primary clarifiers would be 10% for winter 

pH of 7.9 and enhance to 35% for summer pH of 7.3. Anaerobic and anoxic reactors would contain 

25% of sulphur as H2S for winter pH of 7.5, and 35% for summer pH of 7.3. Unlike the CO2, CH4, 

and N2O EREs, the H2S emissions from the aerobic process in summer were negligible. The 

highest H2S EREs were from the primary clarifiers, followed by the anaerobic reactors and anoxic 

reactors with average EREs of 1.17, 0.870, and 0.264 kg H2S/d, respectively. Similarly, Jeon et al. 

(2009) studied summer and winter H2S EREs from an activated sludge type MWTP in South Korea 

with capacity of 130,000 m3/d, and found average EREs of 0.622 kg H2S/d for winter with 

wastewater temperature of 12 °C, and 18.5 kg H2S/d for summer with wastewater temperature of 

24 °C (Jeon et al., 2009). 

Although some statistical correlations were significant for the primary clarifiers (Table C3), 

anoxic reactors (Table C4), anoxic reactors (Table C5) there were no consistent trends in these 

parameters between the various processes. In addition, the only correlation with the other 

determined gases was CO2 for the anoxic reactors. Thus, more research would be needed to better 

assess H2S EREs.  

The H2S EREs from the SWTP open-to-air treatment processes were markedly lower in 

comparison with other MWTPs with similar capacity which highlights the potentially large 

variability of EREs between MWTPs in different regions. For example, Llavador Colomer (2012) 

studied H2S emission rates from three MWTPs in Spain with capacity ranges of 38,962 – 61,821 

m3/d and reported that the average EREs varied between 7.78 to 213 kg H2S/d, equivalent to 8-
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10% of the influent sulphur to the plants (Llavador Colomer et al. 2012). Thus, the treatment of 

high-sulphur wastewater and the variability of operational and environmental conditions may 

result in larger H2S production and subsequent EREs.  

4.3.2.6.Overall  

The average EREs for CO2, CH4, N2O, and H2S from the open-to-air treatment facilities over 

the year (assuming 6 months each for winter and summer) were 41,461 kg CO2/d, 27.5 kg CH4/d, 

3.53 kg N2O/d, and 1.15 kg H2S/d respectively. Typically, the aerobic reactors were the dominant 

source of EREs for all processes other than being negligible for H2S. In addition, the CO2, CH4, 

and N2O were generally correlated with each other as discussed in the previous sections.  Using 

an estimation of the greenhouse effects of CH4 and N2O being 25 and 265 times higher than CO2, 

respectively (Hofman et al., 2011), the total potential GHG ERE given the SWTP’s inflow rate of 

93,000 m3/d would be 43,083 kg CO2(eq)/d which is equivalent to 463 g CO2(eq)/m
3. This 

experimental estimate is markedly less than 274,000 kg CO2(eq)/d (100,000 tonnes CO2(eq)/year) 

which calculated given the literature in Chapter 2 (see Section 2.3.3 for further details). Based on 

these results, the SWTP could potentially benefit from the Canadian carbon tax incentives given 

the facility is easily meeting the threshold value of 137,000 kg CO2(eq)/d (50,000 tonnes 

CO2(eq)/year). However, the current Canadian carbon tax pricing system is not applicable for 

MWTPs in its current form, thus, any incentives would only be beneficial if changes to this 

applicability arise in the future (Government of Canada, 2019).  

4.3.3. Impacts of DO concentration on aerobic reactor GHG EREs 

Based on Section 3.1, the aerobic reactors were the main source of emissions for the SWTP. 

Thus, further understanding of the role DO concentrations may have on the EREs was examined 

only for the aerobic reactors. Figure 4.5 shows the results of average CO2 (Figure 4.5a), CH4 

(Figure 4.5b), and N2O (Figure 4.5c) EREs from the aerobic reactors under varying DO 

concentrations and temperatures of 13 °C and 17 °C. Note that the H2S emissions from the aerobic 

reactor were negligible, thus, this figure has been excluded from these results. Overall, all three 

gases had increasing EREs with increasing DO concentrations for both winter and summer 

temperatures. However, both the CO2 and CH4 had significantly lower EREs in summer 

temperatures vs. winter temperatures for all DO concentrations. In contrast, N2O EREs were 
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similar for the 1.0 and 1.2 mg/L DO concentrations while showing significantly increased EREs 

for summer temperatures for the 1.5 and 2.0 mg/L DO concentrations.  

The CO2 and CH4 winter EREs increased for DO concentrations of 1.0 mg/L to 2.0 mg/L from 

15,111 kg CO2/d to 52,890 kg CO2/d, and 3.65 kg CH4/d to 19.7 3.65 kg CH4/d, respectively 

(Figure 4.5a and 4.5b). The increase in DO aeration rates leads to higher wastewater agitation 

resulting in the increased gas released from wastewaters, particularly at DO concentrations larger 

than 1.5 mg/L (Bao et al., 2016; Christy et al., 2014; Czepiel et al., 1993; Krasner et al., 2009). 

There was a reduction in both the summer CO2 and CH4 EREs at all DO concentrations as 

compared to the winter EREs; however, there was a similar increasing trend with values for DO 

concentrations of 1.0 mg/L and 2.0 mg/L increasing from 10,331 kg CO2/d to 28,795 kg CO2/d, 

and 2.75 kg CH4/d to 11.8 kg CH4/d, respectively. The increasing substrate demand for the aerobic 

reactor’s biological activity with increasing temperature can lead to higher CH4 and CO2 

utilisation, and subsequently decreased availability of dissolved CO2 and CH4 and related 

emissions (Ren et al., 2015; Sun et al., 2013).  

The N2O emissions at the DO concentrations of 1.0 mg/L and 1.2 mg/L were not markedly 

affected by wastewater temperature with EREs of 0.721 kg N2O/d and 0.747 kg N2O/d in winter, 

and 1.846 kg N2O/d and 1.883 kg N2O/d in summer, respectively. However, summer N2O EREs 

at the DO concentrations 1.5 mg/L and 2.0 mg/L of 2.63 kg N2O/d and 3.88 kg N2O/d were 

significantly higher than the winter EREs of 2.09 kg N2O/d and 3.02 kg N2O/d, respectively 

(Figure 4.5c). These results differed from the CO2 and CH4 results, however, are in agreement with 

previous studies. For instance, Ahn et al. (2010) monitored N2O emission from different BNR type 

MWTPs with variable wastewater temperatures between 11 ℃ to 34 ℃ and statistically showed 

that its emission from the aerobic process was positively correlated to the logarithmic values of 

DO, NH4
+, and NO2

- concentrations and had a mixed trend with temperature (Ahn et al., 2010). 

Additionally, Reino et al. (2017) showed that an increase in temperature  resulted in higher N2O 

emissions from an MWTP at the DO concentration of 1.60 mg/L (Reino et al., 2017).  
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(a) 

 

 
(b) 
 

 
(c) 
 

 

Figure 4.5:  Average aerobic reactor emission rate estimates (EREs) under varying dissolved oxygen 

(DO) concentrations and temperatures of 13 ℃ (∎blue bars) and 17 ℃ (∎red bars) for gases including: 

(a) CO2 ; (b) CH4 ; and (c) N2O. Note that the H2S EREs from the aerobic reactor were insignificant, thus 

this figure was excluded here. Error bars represent standard errors with n=9. 
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4.3.4. GHG and odour EREs: Impacts of BNR design 

The SWTP provides for a unique MWTP given its implementation of two parallel BNR 

processes using two configurations while sharing both upstream and downstream treatment 

processes. Figure 4.6 shows the results of the average GHG and odour EREs from the original 

BNR configuration with an anaerobic-anoxic-aerobic arrangement and the updated BNR 

configuration with an anoxic-anaerobic-anoxic-aerobic arrangement at a temperature of 17 °C for 

gases including CO2 (Figure 4.6a), CH4 (Figure 4.6b), N2O (Figure 4.6c), and H2S (Figure 4.6d). 

Overall, the operation of the updated BNR process resulted in higher CO2, CH4, and N2O emissions 

with EREs of 37,546 kg CO2/d, 24.5 kg CH4/d, and 4.64 kg N2O/d, respectively, and markedly 

lower H2S emissions with an ERE of 0.12 kg H2S/d in comparison with the original BNR 

configuration.  

Similar to the results shown in Figure 4.4, the aerobic reactor was responsible for the majority 

of the CO2 and N2O EREs, while all reactors contributed to the CH4 EREs. The updated BNR 

configuration aerobic reactor EREs for all three GHG EREs were significantly higher than the 

original BNR configurations. Interestingly, there was a reverse trend for the anaerobic reactors 

with the original BNR configuration having significantly higher EREs than the updated BNR. 

Finally, the anoxic reactor EREs were similar for both BNR configurations. Again, following the 

Figure 4.4d results, the anaerobic reactor (0.87 kg H2S/d) followed by the anoxic reactor (0.26 kg 

H2S/d) were the main sources for H2S EREs with the aerobic reactor having negligible H2S 

emissions. These findings could indicate a higher efficiency of the denitrification process in the 

updated BNR configuration given decreasing H2S and N2O emissions due to less hinderance of 

the N2O reduction to NO3
- and NO2

- by H2S presence (Ma et al., 2006; Talaiekhozani et al., 2016).   
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Overall, the current results are in an agreement with previous studies indicating that the GHG 

emissions from similar BNR-type MWTPs are impacted by both the wastewater DO 

concentrations and BNR process configurations. For instance, Wang et al. (2011, 2011b) studied 

CH4 and N2O emissions from a BNR-type MWTP with an anoxic-anaerobic-anoxic-aerobic 

arrangement finding EREs of 46.5 kg CH4/d and 7.11 – 9.03 kg N2O/d, respectively (Wang et al., 

2011a, 2011b). Similarly, Ren et al. (2013) monitored N2O and CH4 EREs from three different 

BNR processes including a pre-anaerobic oxidation ditch (A+OD), a pre-anoxic-anaerobic-anoxic-

oxic (A-A/A/O) configuration, and a reverse anaerobic-anoxic-oxic (r-A/A/O) process. The r-

A/A/O process with a similar configuration to the current study’s SWTP BNR process was shown 

to emit the minimum CH4 and N2O with EREs of 27.4 – 65.1 kg CH4/d, and 5.90 – 6.70 kg N2O/d, 

respectively (Ren et al., 2013). Recently, Vieira et al. (2019) studied N2O emissions from three 

MWTPs including two BNRs with an A/A/O configuration (DO concentrations of 0.7 – 1.1 mg/L) 

and a Modified Ludzack Ettinger (MLE) configuration (DO concentration of 1.8 mg/L), and one 

activated sludge type MWTP (DO concentrations of 0.8 – 1.2 mg/L). The BNR type N2O EREs 

maximums were 0.0510 kg N2O/d, and 0.0236 kg N2O/d , which were markedly lower than the 

activated sludge MWTP range of 0.0373 to 0.937 kg N2O/d (Vieira et al., 2019). 

4.4. Conclusions 

The accurate quantification of GHG and odour compound EREs is necessary to inform the 

appropriate MWTP design and operation for mitigating gas emissions from open-to-air treatment 

processes. Chapter 4 included laboratory-scale reactors to allow for the determination of CO2, CH4, 

N2O, H2S, and NH3 EREs from a cold weather region BNR-type MWTP. The SWTP MWTP is 

operated through a range of seasonal operating temperatures, has variable aeration rates, and is 

unique in using two parallel bioreactor configurations. Overall, the average CO2, CH4, and N2O 

EREs in winter months from the uncovered treatment facilities were determined to be 45,129 kg 

CO2/d, 21.9 kg CH4/d, and 3.20 kg N2O/d, respectively. Interestingly, the winter H2S and total 

NH3 emissions were found to be negligible. The increased temperature in the summer months 

resulted in a marked decrease for the CO2 EREs to 37,794 kg CO2/d, while the summer EREs for 

CH4, N2O, and H2S all had marked increases at 33.0 kg CH4/d, 3.87 kgN2O/d, and 2.29 kg H2S/d, 

respectively. This study investigated a DO concentration range of 1.0 – 2.0 mg/L which was within 

the typical range found at the SWTP. As would be expected, the GHG EREs were directly 



 

105 

 

dependent on the aeration rate with significant increases in GHG emissions found for DO 

concentrations above 1.5 mg/L. Finally, the BNR configuration had an impact on the gas EREs 

with both configurations showing variability in the EREs for all gases and for both winter and 

summer temperatures. In general, although this was focused on the GHG and odour EREs from a 

cold-weather BNR-type MWTP subjected to highly variable seasonal temperatures the results can 

be useful in providinga better understanding of the relationship between GHG and odour EREs for 

all MWTPs. In addition, the current study provides a methodology that can be used to accurately 

estimate the GHG and odour EREs from other MWTPs in Canada and worldwide. 
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5. CHAPTER 5: Greenhouse gas emission estimation from municipal wastewater using a 

hybrid approach of generative adversarial network and data-driven modelling. 

 

 

Overview 

A version of this chapter has been published in Science of the Total Environment with the 

following details: 

 

Asadi, M., & McPhedran, K. (2021). Greenhouse gas emission estimation from municipal 

wastewater using a hybrid approach of generative adversarial network and data-driven 

modelling. Science of The Total Environment, 149508. 
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Abstract  

Greenhouse gas (GHG) emissions including carbon dioxide (CO2), methane (CH4), and nitrous 

oxide (N2O) created via wastewater treatment processes are not easily modeled given the non-

linearity and complexity of biological processes. These factors are also impacted by limited data 

availability making the development of artificial data generation algorithms, such as a generative 

adversarial network (GAN), useful for determination of GHG emission rate estimates (EREs). The 

main objective of this study was to develop a hybrid approach of using GAN and regression 

modelling to determine GHG EREs from a cold-region biological nutrient removal (BNR) 

municipal wastewater treatment plant (MWTP) in which the aerobic reactor has previously been 

established as the main GHG emission source. To our knowledge, this is the first application of 

GAN used for MWTP modeling purposes. The EREs were generated from laboratory-scale 

reactors used in conjunction with facility-monitored operating parameters to develop the GAN and 

regression models. Results showed that regression models provided reasonable EREs using 

parameters including hydraulic retention time (HRT), temperature, total organic carbon (TOC) and 

dissolved oxygen (DO) concentrations for CO2 EREs; HRT, temperature, DO and phosphate 

(PO4
3-) concentrations for CH4 EREs; and temperature, DO, and nitrogen (nitrite, nitrate, and 

ammonium) concentrations for N2O EREs. Additionally, the addition of 100 GAN-created virtual 

data points improved regression model metrics including increased correlation coefficient and 
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index of agreement values, and decreased root mean squared error values.  Clearly, virtual data 

augmentation using GAN is a valuable resource in supplementation of limited data for improved 

modelling outcomes. Genetic algorithm optimization was also used to determine operating 

parameter modifications resulting in potential for minimization (or maximization) of GHG 

emissions.  

5.1. Introduction 

Ever-rising human populations, coupled with urbanization, have led to increasing potable 

water demands worldwide. These waters lead to the creation of municipal wastewaters that need 

to be efficiently collected and treated in municipal wastewater treatment plants (MWTPs). 

However, these MWTPs use energy-intensive processes that result in greenhouse gas (GHG) 

generations and emissions directly from treatment processes, and indirectly from electricity and 

process-based chemical compound consumptions. Methane (CH4), carbon dioxide (CO2), and 

nitrous oxide (N2O) are the primary GHGs with greenhouse impacts of CH4 and N2O being 25-36 

and 265-298 times higher than CO2, respectively (IPCC, 2007; USEPA, 2021). Although direct 

MWTP GHG emissions may be limited as compared to indirect emissions (Liao et al., 2020; 

Shahabadi et al., 2010), marked discrepancies between recommended direct GHG emission factors 

and previous research findings highlight the need for more accurate quantification of direct GHG 

emissions. For instance, both Intergovernmental Panel on Climate Change (IPCC) and U.S. 

Environmental Protection Agency (USEPA) have not considered biogenic CO2 emission for the 

assessment of MWTP carbon footprint (Doorn et al., 2006; USEPA, 2012). However, studies have 

shown that municipal wastewater fossil carbon-based compounds (such as detergents, 

pharmaceuticals, and oil-based products) may lead to long lifespan-type CO2 generation and 

emission (Griffith et al., 2009; Law et al., 2013).  

In addition to CO2, large variabilities of reported MWTP N2O emission factors, coupled with 

its increasing release from 3% of the total MWTP GHG emissions in 2005 to 13% in 2020, make 

N2O of primary concern for MWTPs given its higher potential impact (Doorn et al., 2006; 

Kampschreur et al., 2009; Law et al., 2012b; Massara et al., 2017a; USEPA, 2012, 2008, 2006; 

Yoshida et al., 2014). Interestingly, the current study’s biological nutrient removal (BNR) type 

MWTP focuses on nitrogen removal from wastewater (to meet effluent guidelines) leading to 

marked N2O emissions from bioreactors (Daelman et al., 2013; Law et al., 2012; Massara et al., 
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2017; Ni et al., 2013). The BNR MWTPs include both closed and open-to-air processes with a 

potential goal of increasing gas production in closed processes (i.e., for anaerobic digestors) which 

can be valuable for increased energy production; however, from a local air quality perspective, the 

goal would be to decrease gas generation for the open-to-air processes.  

The BNR type MWTP open-to-air processes include anaerobic, anoxic, and aerobic bioreactors 

that can be assessed and modeled for estimated rates of emission (ERE) of GHGs via field 

monitoring and laboratory-scale reactor experiments (Asadi et al., 2020; Asadi and McPhedran, 

2021a; Czepiel et al., 1995, 1993; Daelman et al., 2013; Mannina et al., 2018; Sun et al., 2017). 

Previously, it has been indicated that the aerobic processes of MWTPs are the primary GHG 

emission sources (Asadi and McPhedran, 2021a; Bao et al., 2016; Flores-Alsina et al., 2011; 

Heffernan et al., 2012; Poh et al., 2015; Reino et al., 2017; Rodríguez-Caballero et al., 2014a). 

However, sampling method uncertainties, large treatment reactor surface areas, operating 

parameter variabilities, and variable plant geographical locations make these well-established 

methods uncertain, time-intensive, and costly to implement (Caniani et al., 2015; Kim et al., 2015; 

Vasilaki et al., 2019). Additionally, the typically short-term monitoring campaigns considered 

cannot capture seasonal wastewater quality/quantity parameters and GHG emission dynamics. For 

instance, Kampschreur et al. (2009) and Mampaey et al. (2016) studied N2O emissions from a 

treatment facility for nitrogen-rich wastewater under similar operational conditions. Kampschreur 

et al. (2009) conducted a 75-hour N2O measurement campaign and reported an ERE of 1.7% of 

the nitrogen load. However, Mampaey et al. (2016) later extended the monitoring duration to 21 

days and surprisingly found a much higher N2O ERE of 3.8% of the nitrogen load (Kampschreur 

et al., 2009; Mampaey et al., 2016). Given these shortcomings, mathematical modelling has been 

shown to be helpful for accurately determining EREs which can be used to inform suitable 

mitigation strategies for GHG emissions. Typically, these models have been developed using data 

available from MWTP operating parameters such as wastewater temperature, pH, electrical 

conductivity (EC), hydraulic retention time (HRT), dissolved oxygen (DO), phosphate (PO4
3-), 

carbon and nitrogen (N) concentrations (Asadi et al., 2020; Asadi and McPhedran, 2021a; Law et 

al., 2011; Massara et al., 2017b; Ren et al., 2015; Wang et al., 2011b).  

Previous studies have developed mathematical models based on the theoretical knowledge of 

microorganism metabolisms. For instance, Ni et al. (2013) estimated MWTP N2O production using 

a process-based model defined by metabolic pathways including ammonia oxidation bacteria 
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(AOB) and heterotrophic denitrifiers. The model was calibrated and validated using ammonium 

(NH4
+), nitrite (NO2

-), and nitrate (NO3
-), dissolved N2O, and DO concentrations (Ni et al., 2013). 

However, the accuracy of the microorganism metabolisms used is suspect given the imperfect 

knowledge of GHG production, temporal-spatial variability of kinetics, and range of MWTP 

operating parameters (Mannina et al., 2016; Ni et al., 2013; Spe´randio et al., 2016). Thus, data-

driven models have been developed to overcome the non-linearity and complexity of biological 

processes (Asadi et al., 2020; Han et al., 2019; Nair et al., 2016; Vasilaki et al., 2020b). Overall, 

non-linear regression modelling has been favored given short processing times and reasonable 

accuracy with limited data sets. For instance, Yetilmezsoy and Sakar (2008) and Akkaya et al. 

(2015) developed non-linear regression models estimating CH4 and biogas production for up-flow 

anaerobic sludge blanket reactors treating poultry manure wastewater and landfill leachate, 

respectively (Akkaya et al., 2015; Yetilmezsoy and Sakar, 2008). However, robust and sufficient 

data collection for biological processes can be costly and time-consuming (Xu et al., 2020). Thus, 

there is a need for artificial data generation algorithms to help to address data shortages (Han et 

al., 2019). Recently, generative adversarial networks (GANs) have been shown to be promising 

and powerful data-augmentation techniques in image and signal analysis and processing 

(Goodfellow et al., 2014; Shao et al., 2019). The GANs have been used to imitate highly complex 

systems, such as biological processes, for virtual data generation (Douzas and Bacao, 2018; Shao 

et al., 2019; Wan and Jones, 2020; Wang et al., 2020; Yu et al., 2020) making them a promising 

methodology for supplementation of limited data in the area of MWTP modelling. 

Overall, data-driven models for determination of MWTP GHGs including CO2, CH4, and N2O 

EREs have not been well-developed. Additionally, to our knowledge, this is the first study to apply 

GAN for generation of virtual data for use in MWTP GHG modelling. Thus, the main objective 

of this study was to determine GHG EREs from the aerobic reactor of a BNR-type MWTP using 

both measured and GAN-generated data for supplementation of operating parameter data used for 

non-linear regression modelling. The facility considered was the Saskatoon Wastewater Treatment 

Plant (SWTP) which is a cold region facility having highly variable seasonal temperatures from 

−40 °C to 30 °C. This study follows our previous study (Asadi and McPhedran, 2021a) assessing 

SWTP GHG and odour EREs using laboratory-based reactors and SWTP operating parameters 

with consideration of summer wastewater temperatures (13 °C to 17 °C), DO concentrations, and 

BNR configuration (see Appendix D, Figure D1, and Table D1 for further details of the 
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experimental setup). Previous results from this study are used herein for the development of the 

optimized GAN and non-linear regression models. The EREs were further optimized via genetic 

algorithm (GA) for determination of operating parameters leading to the minimization (and 

maximization for comparative purposes) of biogas production as presented previously for SWTP 

anaerobic digestors (Asadi and McPhedran, 2021b). In this previous study the anaerobic digestor 

biogas production was optimized for increased generation since the biogas was used for power 

generation. In contrast, the current study goal is to decrease aerobic reactor biogas generation given 

that these gases are released in this open-to-air treatment process. Therefore, this research is aimed 

to: (1) use non-linear regression models to describe GHG EREs from SWTP using operating 

parameters; (2) integrate GAN with non-linear regression models to improve model accuracies and 

performance; and (3) optimize the GHG EREs via adjustment of SWTP operating parameters 

within measured in situ ranges. 

5.2. Materials and methods 

Figure 5.1 shows a schematic flowchart of the study methodology for determination of 

greenhouse gas (GHG) estimated rate of emissions (EREs) from the Saskatoon Wastewater 

Treatment Plant (SWTP) using the development of a hybrid approach of the GAN and regression 

models and their optimization using (GA) for the determination of the various operating 

parameters’ impacts on the GHG EREs. This methodology includes an overview of SWTP GHG 

EREs (Section 5.2.1), GAN application for the virtual data generation (Section 5.2.2), non-linear 

regression modelling (Section 5.2.3), and GA model optimization (Section 5.2.4). 

5.2.1. Saskatoon Wastewater Treatment Plant (SWTP) GHG emissions overview   

The SWTP with a treatment capacity of 120 million litres per day (MLD) treats municipal 

wastewater of the City of Saskatoon to create environmentally safe effluent before discharging 

into the South Saskatchewan River. It is an advanced class IV facility with a variety of technologies 

and processes including a grit and screen chamber, clarifiers, fermenters, dissolved air flotation 

(DAF) thickener, BNR using anaerobic, anoxic, and aerobic processes, ultraviolet disinfection 

system, nutrient recovery facility, anaerobic digesters, and biosolids facility (Figure D2). Seasonal 

ambient temperatures typically vary between 30 °C and -40 °C and impact wastewater 

temperatures with averages of about 17 °C in summer and 13 °C in winter.  
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The BNR processes and clarifiers are open-to-air treatment processes and sources of GHG and 

other gas emissions into the atmosphere. The study of SWTP GHG emissions from clarifiers and 

bioreactor processes and their operating parameters indicated that the aerobic reactor was the 

principal source of GHG emissions (Asadi and McPhedran, 2021a). For instance, the aerobic 

winter and summer CO2 EREs were determined to be 30,593 kg CO2/d (68% of winter CO2 

emissions), and 21,274 kg CO2/d (57% of summer CO2 emissions), respectively. Similarly, the 

winter aerobic reactor CH4 EREs were markedly higher than other processes at 11.4 kg CH4/d 

(52% of winter CH4 emissions), and summer values were 7.99 kg CH4/d (24% of summer CH4 

emissions). Additionally, total aerobic N2O EREs were 2.46 kg N2O/d in winter and 2.80 kg N2O/d 

in summer which was about 72% of the total N2O emissions (Asadi and McPhedran, 2021a). Thus, 

the aerobic reactor was currently considered for the development of GAN and non-linear 

regression modelling. However, it should be noted that an analogous process could also be 

considered for the other BNR processes and clarifiers, in addition to being useful for other MWTP 

applications. 

Table D2 presents a summary of the currently considered SWTP operating parameters 

including HRT, wastewater temperature (°C), pH, EC, DO, chemical oxygen demand (COD), total 

organic carbon (TOC), NO2
-, NO3

-, NH4
+, PO4

3-, sulphate (SO4
2-) concentrations. The 

experimental study GHGs are presented in Table 5.2 along with GAN-created data (see following 

section); in addition, correlations between operating parameters and GHG EREs are shown in 

Table D3. Overall, 66 data points representing the GHG EREs and operating parameters were 

collected from laboratory-scale reactor runs simulating aerobic reactors (see Appendix D, and 

Tables 5.2 and D2 for further details). These datasets were subjected to a cross-validation 

technique to randomly split data into four subsets such that 75% of data was used to develop the 

GAN and train regression models and the remaining 25% was considered for the regression model 

testing. Each modelling run was repeated four times until each subset of the four-subsets was used 

for the testing.  

5.2.2. Generative adversarial network (GAN) 

GAN is an iterative and numerical semi-supervised and unsupervised learning technique and 

composed of two neural network type sub-models including generator (G) and discriminator (D) 

to mimic actual datasets for virtual data generation with the same statistical characteristics of 
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original data given minimax game between G and D (Figure 5.1). A detailed description of GAN 

can be found in other studies (Creswell et al., 2018; Goodfellow et al., 2014) with a brief overview 

included herein. Typically, G uses random noise (z) with probability distribution of (pz) to learn 

the distribution (pg) over original data (x) using interaction with D and created artificial dataset 

(G(z)). D is a single scalar output function varying between 0 (for fake data) to 1 (for real data) 

that determines the probability that x is from pd rather than pg. A well-trained D(x) can accurately 

discriminate original data from generated data, and concurrently, a well-trained G(x) can create 

virtual data and deceive D (Goodfellow et al., 2014). The Equation 1 presents a mathematical 

description of the GAN value function, represented by V(D, G): 

min𝐺 max𝐷 𝑉 (𝐷, 𝐺) = 𝐸𝑥~𝑝𝑑(𝑥)[𝑙𝑜𝑔𝐷 (𝑥)] +  𝐸𝑧~𝑝𝑧(𝑧) [log (1 − 𝐷 (𝐺(𝑧)))] (5.1) 

This equation shows that for a fixed G, the D is trained to maximise its ability for accurate 

distinguishing of the original data from artificial data. While the G is trained to create more realistic 

data samples (pg = pd) to minimise 1 – D(G(z)) making it impossible for the D to distinguish 

original and artificial datasets. Therefore, the optimal D cannot differentiate between pg and pd, 

and its value (D*(x)) reach to 0.5 given the following (Equation 5.2):  

𝐷∗(𝑥) =
𝑝𝑑(𝑥)

𝑝𝑑(𝑥) + 𝑝𝑔(𝑥)
 

(5.2) 

This study used the Keras library and the TensorFlow framework to implement the GAN 

configuration, and rescaled input vectors into a range of [-1, 1]  (Radford et al., 2015) (Equation 

5.3).   

𝑥𝑟 = 2 ×
𝑥 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛
− 1 

(5.3) 

Where, xr is the rescaled input vectors, x is the input vector, xmin and xmax are minimum and 

maximum values of input vectors, respectively. The GAN model was implemented with various 

number of hidden layers and neurons and encoded in Python. High numbers of hidden layers and 

neurons can enhance the GAN parameters controlling training processes but can lead to difficult 

and marked computational costs (Xu et al., 2020), and insufficient hidden layers and neurons can 

result in ineffective model training to extract information from the training data (Schmidhuber, 

2015). Thus, the optimal number of hidden layers and neurons can be attained by trial and error. 

Adam Optimizer is a well-established adaptive learning method with a learning rate of 0.0002 
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(Kingma and Ba, 2014; Radford et al., 2015) to hasten learning for each parameter. The hidden 

layers activation function for both G and D were LeakyReLU with a Batch normalisation layer to 

transform data between layers with a fast convergence (Creswell et al., 2018). While their output 

layers’ activation functions were selected tanh and sigmoid, respectively (Radford et al., 2015), 

that led to choosing binary cross-entropy as the lost function to evaluate the convergence between 

original and generated data (Lin, 2017).  

5.2.3. Non-linear regression modelling 

Non-linear regression modelling can overcome the limitations of relatively small data sets 

using continuous functions with non-linear and fixed parameters to describe the relationship 

between dependent and independent variables via minimization of sum of squared errors between 

observations and predictions (Parsons and Gates, 2013). This fitting data is an iterative process 

and requires assumed starting values for unknown coefficients. Clearly, appropriate starting values 

can guarantee less model processing time. Previous researchers have shown that quadratic 

functions (polynomials of degree 2) could be best-fit models for non-linear regression modelling 

of biogas production estimation from municipal wastewater anaerobic digestion and up-flow 

anaerobic sludge blanket (UASB) reactors (Akkaya et al., 2015; Asadi and McPhedran, 2021b; 

Yetilmezsoy and Sakar, 2008), specifically as compared to other data-driven models, such as 

artificial neural network, and adaptive network-based fuzzy inference system (Asadi and 

McPhedran, 2021b). Thus, currently a quadratic equation was defined for developing non-linear 

regression modelling of aerobic GHG EREs for the SWTP. Equation (5.4) depicts a typical 

quadratic function in two variables xi and xj, and regression coefficient β1 to β6. 

y =β1xi
2+β2xj

2+β3xixj+β4xi+β5xj+β6 (5.4) 

The nlinfit function found in MATLAB (2018) shapes a non-linear regression model via 

minimising the sum of squares of observations and predictions. Equation (5.5) depicts the nlinfit 

function (The Math Works, 2018). 

β = nlinfit (x, y, modelfun, β0) (5.5) 

Where modelfun is non-linear regression model function that herein assumed a quadratic 

function; and β0 is initial coefficient values that can be determined by trial and error due to the 

result of linear regression modelling. 
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5.2.4. Optimization of SWTP aerobic reactor operation using genetic algorithm (GA) 

The determination of the optimized operating parameters for the minimization/maximization 

of GHG EREs is an optimization problem. Data-driven models can provide suitable fitness 

functions to be solved by optimization techniques, such as GA. A detailed description of GA can 

be found in other studies (Koza, 1992; Piuleac et al., 2013); however, GA is briefly described 

herein. GA is a random search algorithm and derivative-free optimization technique applicable for 

a broad range of discrete and continuous fitness functions via finding the best solution from a large 

number of possible solutions. A GA creates an initial random population of chromosomes that are 

characterized by genes representing the operating parameters (e.g., DO and nitrogen 

concentrations). Each chromosome (GHG EREs) represents a potential solution. The best solutions 

(parents) are evaluated using the assumed fitness function and then being selected and undergo 

crossover, and mutation to create a new population (offspring).  Crossover is typically applied to 

parents and transfers their strengths to offspring in order to facilitate GA convergence.  To avoid 

stagnation at possible local optima, and to ensure reaching a global optimum, the mutation is 

applied to a limited number of offspring by changing all or a few genes.  After multiple iterations, 

the GA convergence becomes steady and indicates an optimal solution has been reached. The 

algorithm processing time is dependent on the complexity of its structure, initial population size, 

crossover and mutation coefficients, and indifferentiable fitness functions may lead to higher 

computation time.  

5.3. Results and discussion 

This section includes three sub-sections for results and discussion covering SWTP aerobic 

operating parameters and their impacts on the GHG EREs given statistical analysis and previous 

studies (Section 5.3.1: including Table D3); the development of non-linear regression models 

describing GHG EREs and their integration with GAN-generated virtual data (Section 5.3.2: 

Figures 5.2 to 5.4, and Tables 5.1 and 5.2, and including Figure D3); and GA optimization for the 

assessment of maximum and minimum GHG EREs given facility operating parameters (Section 

3.3: Figure 5.5). 
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5.3.1. Determination of aerobic operating parameters impacting emissions   

Table D3 presents the correlation test results for the SWTP aerobic CO2, CH4, and N2O EREs 

in conjunction with monitored operating parameters generated from laboratory-scale reactors to 

determine which of these parameters impacted the individual GHG EREs (see Asadi and 

McPhedran 2021a and Appendix D for further details). Overall, all EREs were highly positively 

correlated to each other and DO concentrations (p ≤ 0.01) indicating that higher DO availability 

resulted in a favourable environment allowing for higher bacterial metabolism leading to increased 

GHG production (Tchobanoglous et al., 2003). Additionally, the results show that N2O emission 

was not correlated to HRT (p > 0.05) which was somewhat expected as MWTP N2O emissions 

have been reported to be markedly affected by short sludge retention time (SRT), rather than HRT 

(Foley et al., 2011; Nuansawan et al., 2016; Zhou et al., 2019). However, HRT was negatively 

correlated to CO2 and CH4 EREs (p ≤ 0.01) indicating that a longer HRT likely led to higher 

microorganism diversities and abundances, and subsequent increased need for more carbon 

sources that resulted in reduction in CH4 and CO2 emissions (Nuansawan et al., 2016). In addition, 

the TOC was positively correlated (p ≤ 0.05) to both the CH4 and CO2 EREs, and not correlated to 

the N2O EREs. Low-oxygen conditions decreases autotrophic bacteria activities leading to less 

aerobic N2O production (Kampschreur et al., 2009), and the increased aerobic influent TOC 

availability leads to less consumption of biogenic CO2 and CH4 resulting in their higher stripping 

from the wastewater given mechanical aeration and agitation. In contrast to TOC, COD 

concentration was weakly correlated to N2O ERE (R = 0.25, p < 0.05) indicating that COD was 

not a key operating parameter involved in aerobic N2O formation and emission (Foley et al., 2011). 

Additionally, there were no correlations of both CO2 and CH4 EREs with COD concentration given 

that: (1) CH4 emission from aerobic reactors is attributed to mechanical aeration/agitation and 

temperature changes (Daelman et al., 2012; Heffernan et al., 2012; Rodríguez-Caballero et al., 

2014a); (2) and wastewater organic carbon content typically contributes to CO2 production and 

emission (Flores-Alsina et al., 2011), while COD represents both organic and inorganic carbons. 

Temperature increases typically stimulate microorganism metabolism resulting in elevated 

biogenic carbon source (such as CO2, and CH4) needs that could affect aerobic GHG production  

(Asadi et al., 2020; Caniani et al., 2015; Zheng and Li, 2009; Zhou et al., 2015). However, the 

temperature herein was highly correlated to increased N2O emission (p≤ 0.01) and did not 

significantly impact CO2 and CH4 EREs. This may be attributed to the longer operational SRT 
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during winter being used in this BNR MWTP that would to a trade-off between temperature 

impacts on carbon source consumption (Daelman et al., 2013).  Similarly, EC and pH were not 

meaningfully correlated to the GHG EREs given their relatively stable average values that reached 

1,313 µs/cm and 7.3 in summer, and 1,237 µs/cm and 7.3 in winter, respectively (Table D2). The 

availability of anions (including PO4
3-, SO4

2-, NO2
-, and NO3

-) had a variety of impacts on the GHG 

EREs. For example, PO4
3- was highly positively correlated to CH4 and N2O EREs (p < 0.01) and 

less correlated to CO2 ERE (p > 0.01) indicating that increased phosphorous accessibility leads to 

favourable bacterial conditions allowing for the GHG production increase (Tchobanoglous et al., 

2003). The SO4
2- is a temperature-sensitive compound and a product of hydrogen sulphide and 

elemental sulphur oxidation (Talaiekhozani et al., 2016). It was positively correlated to 

temperature, DO availability, and CH4 and N2O EREs (p ≤ 0.01). Increased hydrogen sulphide and 

elemental sulphur contained in the aerobic influent is associated with more oxygen utilization that 

can negatively affect the DO availability and typical aerobe activities. Furthermore, N2O ERE was 

highly positively correlated to nitrogen concentrations (both NO2
- and NH4

+) given their pivotal 

roles in nitrogen removal processes.  

Overall, based on this discussion and the results of correlation statistical analyses of aerobic 

GHG EREs and operating parameters (Vasilaki et al., 2019), the following input variables were 

considered for the current study including: (1) CO2 ERE modelling: HRT, temperature, TOC and 

DO; (2) CH4 ERE modelling: HRT, temperature, DO, and PO4
3-; (3) N2O ERE modelling: 

temperature, DO and nitrogen species including NO2
-, NO3

-, and NH4
+.   

5.3.2. Modelling and generative adversarial network (GAN) data supplementation 

5.3.2.1. Non-linear regression modelling of GHG EREs 

Figure 5.2 shows the results of developed non-linear regression models using only the original 

datasets for estimation of GHG emissions. Overall, quadratic equations were found to be 

reasonable for each model development with: (1) CO2 ERE:  correlation coefficient (R) = 

0.94±0.11, root-mean-square error (RMSE) = 4,129±617, index of agreement (IA) = 0.97±0.01 

(Figure 5.2a); (2) CH4 ERE: R = 0.96±0.12, RMSE = 1.76±0.15, IA = 0.97±0.01 (Figure 5.2b); 

and (3) N2O ERE R = 0.85±0.17, RMSE = 0.76±0.09, IA = 0.91±0.01 (Figure 5.2c). Overall, the 

resultant high R and IA values (maximum of 1.0 for each) indicate each model’s capability to 

explain GHG ERE dynamics, and low RMSE values (close to zero, and less than half of the 
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measured ERE standard deviations, SDs) indicate better model fit to observations (Singh et al. 

2004). Accordingly, and given the half SD of measured GHG EREs of 5,984 kg CO2/d, 2.80 kg 

CH4/d, and 0.72 kg N2O/d, there is a reasonable accuracy for each model, except for N2O. This 

limitation for N2O can be attributed to the complex and non-linear relationship between its 

emission rates and operating parameters, and mutual interactions (Vasilaki et al., 2020a). Overall, 

there is a need to improve model accuracies through supplementation of training data for improved 

modelling outcomes, which can be beneficial for all EREs and result in improved model 

performances. 

Overall, non-linear regression models with simpler structure and shorter model processing 

times can reasonably define the relationships between MWTP GHG emissions and operating 

parameters relative to more complex data-driven models, such as artificial neural networks, which 

were evaluated previously (Table 5.1). To better interpret model accuracies for different GHG 

ERE scales (Bouman and Van Laar, 2006), normalized RMSE values (the ratio of RMSE value to 

average ERE) can be useful. Currently, these values using only original data are 17% for CO2, 

19% for CH4, and 28% for N2O given the average aerobic GHG EREs of 24,028 kg CO2/d, 9.23 

kg CH4/d, and 2.71 kg N2O/d, respectively (Table 5.2). For example, Nair et al. (2016) quantified 

CH4 and biogas production rate from a laboratory-scale anaerobic reactor using the development 

of a neural network with one hidden layer and four input variables, including pH, moisture content, 

volatile fatty acids (VFAs), and total volatile solids (TVS). The average CH4 ERE of 2.38×10-3 

kg/day (2.38 L/day) and model RMSE of 0.51 results in a ratio of 21% (Nair et al., 2016). More 

recently, Sun et al. (2017) determined anoxic-oxic type MWTP N2O EREs using the development 

of a neural network with two hidden layers and four input variables, consisting of influent NH4
+, 

influent COD to N ratio, wastewater temperature and effluent total nitrogen. Reported ERE of 35.3 

- 269 kg N2O/d equal to 0.21 - 1.60% of influent nitrogen and an RMSE of 0.13 leads to a ratio of 

16% (Sun et al., 2017).  

 

  



 

125 

 

 
M

o
d

e
l E

st
im

at
e

 ×
 1

0
4  

(k
g/

d
) 

(a) CO2 Emission  

 

M
o

d
e

l E
st

im
at

e
 (

kg
/d

) 

(b) CH4 Emission 

 
 Target × 104 (kg/d)  Target (kg/d) 

 R = 0.94, RMSE = 4,129, IA = 0.97  R = 0.96, RMSE = 1.76, IA = 0.97 

M
o

d
e

l E
st

im
at

e
 (

kg
/d

) 

(c) N2O emission  

 

  

 Target (kg/d)   

 R = 0.85, RMSE = 0.76, IA = 0.91   

 

Figure 5.2: The results of the nonlinear regression models developed via original data for the 

determination of GHG EREs from the aerobic reactor for (a) CO2; (b) CH4; and (c) N2O. The 

blue line represents the data regression line with R, RMSE, and IA values included in each panel. 

The dashed line indicates a 1:1 correlation which would indicate a perfect model and data fit.  
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Non-linear regression modelling is an efficient technique for determination of MWTP GHG 

EREs given its easy implementation with process operating parameters, specifically in comparison 

with other process-based models that typically rely on a more extensive number of input 

parameters and coefficients. For instance, Blomberg et al. (2018) developed the Activated Sludge 

Model3 (ASM3) using a wide range of variables and parameters to study N2O production and 

emission from a covered activated sludge type MWTP with variable DO concentrations between 

1.5 - 3.8 mg/L. The off-gas N2O originated from dissolved N2O in the wastewater and was reported 

in the range of 1.25 - 2.90 ppm (2.42 - 5.62 mg/m3). The average dissolved N2O concentration in 

the aerobic reactor was estimated between 0.035 mg/L and 0.10 mg/L with an RMSE of 0.03 

resulting in a normalized RMSE of 44%, thus, indicating the inaccuracy of ASM3 emission 

estimates (Blomberg et al., 2018). Similarly, Mannina et al. (2018) developed ASM with at least 

133 variables and parameters, such as TSS, temperature, DO, COD, NH4
+, PO4

3- concentrations, 

to model biological N2O production through denitrification and ammonia-oxidizing bacteria 

(AOB) pathways from a membrane-type MWTP including aerobic and anoxic bioreactors. The 

model estimates varying between 0.03 - 0.09 mg N2O/L with an average value of 0.05 mg N2O/L 

were larger than measured off-gas N2O concentrations fluctuating between 0.01 - 0.04 mg N2O/L 

with an average value of 0.02 mg N2O/L except one occasion that its estimate and observation 

were around 0.35 and 0.37, respectively. The model RMSE value was reported 0.013 resulting in 

a normalized RMSE of 0.54% when the ‘outlier’ values were overlooked (Mannina et al., 2018). 

Although both studies’ model normalized RMSE values were considerable, and similar to the 

current study, these process-based models were able to reasonably capture the dynamics of N2O 

emission given DO variabilities (Blomberg et al., 2018; Mannina et al., 2018). 
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Table 5.1: An overview of the application and performance efficiency of various mathematical 

models for the determination of MWTP GHG EREs from the literature as compared to the 

current study results. 

References Input and Output  Methodology and Results Performance efficiency 

Current study Input: Temperature, HRT, 

DO, TOC, PO4
3-, NO2

-, NO3
-

, NH4
+ concentrations. 

 

Output: CO2, CH4, and N2O 

EREs from BNR SWTP 

Methodology: Regression / 

Generative adversarial 

network (GAN)-Regression 

 

 

 

Results: CO2 ERE = 3,957 

– 54,717 kg CO2/d, CH4 

ERE = 0.523 – 24.6 kg 

CH4/d, and N2O ERE = 0 – 

4.18 kg N2O/d 

CO2 ERE: R = 0.94 / 

0.95, RMSE = 4,129 / 

3,219, and IA = 0.97 / 

0.97 

CH4 ERE: R = 0.96 / 

0.96, RMSE = 1.76 / 

1.35, and IA = 0.97 / 0.97 

N2O ERE: R = 0.85 / 

0.92, RMSE = 0.76 / 

0.58, and IA = 0.91 / 0.96 

Blomberg et 

al. (2018)  

 

 

 

 

Input: Kinetics and 

stoichiometric parameters 

and state variables.  

 

Output: Dissolved and 

stripped N2O concentrations 

at an activated-sludge type 

MWTP 

Methodology: Extended 

Activated Sludge Model #3 

(ASM3) 

 

Results: Average dissolved 

N2O = 0.035 – 0.10 mg/L  

RMSE = 0.03 

 

 

Mannina et al. 

(2018) 

 

Input: Stoichiometric, 

kinetic, fractionation and 

physical parameters and state 

variables. 

 

Output: N2O emission from 

membrane bioreactor type 

MWTP 

Methodology: Process-

based modelling of N2O 

production through 

heterotrophic denitrification, 

ammonia oxidising bacteria 

(AOB) pathways 

 

Results: N2O ~ 0.01– 0.35 

mg/L  

RMSE = 0.013  

 

Sun et al. 

(2017)  

 

 

Input: Temperature, influent 

COD/N, NH4
+ and effluent 

nitrogen concentrations. 

 

Output: N2O emission from 

anoxic-oxic type MWTP 

Methodology: Artificial 

neural network with two 

hidden layers.  

 

Results: N2O ERE = 0.21 – 

1.60% of influent nitrogen 

(35.3 – 269 kg N2O/d)  

R = 0.94 

RMSE = 0.13 

 

Nair et al. 

(2016) 

 

Input: pH, moisture content, 

VFA concentration, TVS. 

 

Output: CH4 yield of biogas 

from an anaerobic laboratory 

scale bioreactor 

Methodology: a hybrid 

approach of principal 

component analysis and 

artificial neural network with 

one hidden layer 

 

Results: Average CH4 ERE 

= 2.38 L/d 

R = 0.85 

RMSE = 0.51 
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5.3.2.2. GAN-Regression modelling of GHG EREs 

Table 5.2 shows the summary of the aerobic GHG EREs generated by the experimental study 

(Asadi and McPhedran 2021a) and the GAN-generated virtual data including a variety of data sizes 

from 50 to 200. Overall, two hidden layers with 26 and 6 neurons, respectively, were found to be 

suitable for generator (G) and discriminator (D) network configurations to extract and learn from 

the available monitored data (9 variables and 50 samples). This resulted in the creation of virtual 

data points in the various sizes followed by use of non-linear regression modelling. Figure 3 

presents the RMSE values for the developed models describing aerobic GHG EREs given an 

integration of the original (0 augmented data number) and virtual datasets in the sizes of 50, 70, 

100, 150, and 200. Overall, the GAN-created virtual data augmentation led to more accurate 

aerobic GHG ERE models for every newly created dataset. For the CO2 ERE modelling, the RMSE 

value at 100 augmented data was lowest at 3,219 followed by 200 (RMSE = 3,583), 50 (RMSE = 

3,640), 150 (RMSE = 3,682), and 70 (RMSE = 3,775). The minimum CH4 ERE modelling RMSE 

value of 1.35 was also found for the 100 augmented virtual dataset. In contrast, the minimum N2O 

ERE modelling RMSE value of 0.533 was found at 200 augmented virtual data; however, this was 

closely followed by a value of 0.588 for the 100 augmented virtual dataset. Overall, the GAN-

virtual dataset using 100 augmented data points was considered to be best for the current study 

and, therefore, this dataset was used for the GA optimization (see following section). These 100 

augmented data resulted in a marked improvement of at least 22% for model RMSE values being 

less than the half SD of measured GHG EREs that lead to the normalized RMSE of 13% for CO2 

(17% previously), 14% for CH4 (19%), and 22% for N2O (28%).  
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Table 5.2: Summary of the experimental study and GAN-augmented virtual aerobic GHG EREs and 

operating parameters including virtual data sizes of 50 to 200 (average values ± standard deviation). 

Parameters 
Experimental 

study 

50 

virtual 

data 

70 

virtual 

data 

100 

virtual 

data 

150 

virtual 

data 

200 

virtual 

data 

CO2 (kg/d) 24,028 ± 11,968 
21,614 ± 

9,260 

18,090 ± 

5,847 

23,484 ± 

7,233 

18,766 ± 

2,196 

22,054 ± 

2,153 

CH4 (kg/d) 9.23 ± 5.60 
8.86 ± 

6.23 

9.18 ± 

3.39 

8.40 ± 

3.18 

9.51 ± 

1.72 

11.14± 

3.28 

N2O (kg/d) 2.71 ± 1.44 
1.18 ± 

0.22 

2.21 ± 

0.81 

3.32 ± 

1.50 

2.05 ± 

0.98 

2.19 ± 

0.45 

Time (min) 184 ±161 219 ± 153 323 ± 113 134 ± 87 189 ± 169 
191.68 ± 

79 

Temp. (°C) 15.7 ± 1.9 15.5 ± 1.4 16.2 ± 1.6 16.0 ± 1.7 16.1 ± 1.6 16.0 ± 1.7 

DO (mg/L) 1.45 ± 0.31 
1.42 ± 

0.24 

1.43 ± 

0.21 

1.45 ± 

0.20 

1.37 ± 

0.13 

1.52 ± 

0.31 

TOC 

(mg/L) 
13.2 ± 2.3 12.4 ± 0.8 13.3 ± 1.5 12.9 ± 0.8 13.8 ± 1.8 14.3 ± 2.9 

TN (mg/L) 10.5 ±10.9 
13.8 ± 

12.4 

9.58 ± 

10.7 

10.5 ± 

12.7 

9.37± 

10.1 

9.01 ± 

10.6 

PO4
3- 

(mg/L) 
6.40 ± 5.56 

4.26 ± 

3.61 

7.14 ± 

1.04 

4.88 ± 

2.32 

6.57 ± 

2.59 

7.28 ± 

5.09 
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(a) CO2 Emission  

 
(b) CH4 Emission 

  
(c) N2O Emission  

 
Figure 5.3: The RMSE results of the measured aerobic process operating parameter expansion 

via the various sizes of GAN-created virtual data for the development of non-linear regression 

models for EREs of (a) CO2, (b) CH4, and (c) N2O. Note that error bars represent standard 

deviation values of 5 model runs.  
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Similar to the current study, previous studies have reported that virtual data augmentation size 

could improve model estimations, however, there is typically an optimum size where the model’s 

RMSE reaches a minimum value. For instance, He et al. (2018) developed an extreme machine 

learning model estimating petrochemical ethylene production rate using five input variables 

(measured at 50 occasions) and 10 to 60 virtual data synthesized by the non-linear interpolation 

virtual sample generation technique. It was reported that virtual data augmentation resulted in 

better model accuracy that was more noticeable for 40 to 60 virtual data indicating that excessive 

artificial data generation would be unreasonable given its ineffective impact on the model error 

reduction (He et al., 2018). More recently, Xu et al. (2020) developed deep neural networks 

describing anaerobic fermentation VFA concentration given four input variables, including PO4
3- 

concentration, iron (III) reduction, fermentation time, and the food waste dosage addition to waste 

activated sludge (measured at 72 occasions) and synthesized 400 to 28,000 virtual data based on 

the variable mean and standard deviation values in a random manner. They reported that the 

developed models using a mix of original and virtual data resulted in more accurate VFA 

concentration estimates, specifically for 20,000 virtual data that the model error reached its 

minimum value (Xu et al., 2020).    

Figure 5.4 shows the results of the non-linear regression models using the original operating 

parameters and GAN-generated 100 virtual data. For each GHG, these new models not only led to 

lower training and testing RMSE values, but also had better performance based on generally higher 

(or equivalent) training and testing R and IA values (Figure D3). Overall, the model performance 

results included: (1) CO2 ERE:  R = 0.95 ± 0.02, RMSE = 3,219 ± 251, IA = 0.97 ± 0.01 (Figure 

5.4a); (2) CH4 ERE: R = 0.96 ± 0.01, RMSE = 1.35 ± 0.10, IA = 0.97 ± 0.01 (Figure 5.4b); and 

(3) N2O ERE R = 0.92 ± 0.02, RMSE = 0.58 ± 0.03, IA = 0.96±0.01 (Figure 5.4c). These results 

were expected as the virtual data generation by GAN has been reported to be suitable for training 

data expansion of various data-driven models describing biological processes. For instance, Han 

et al. (2019) developed a deep neural network using the original and GAN virtual datasets to assess 

protein solubility in biocatalysts. It was reported that a hybrid approach of the GAN and deep 

neural network resulted in R value being marginally increased from 0.66 to 0.67 (Han et al., 2019). 

Similarly, Tian et al. (2019) developed various data-driven techniques using a neural network, 

extreme machine learning and support vector regression describing building energy consumption 
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and reported that training data expansion via virtual data led to better model performances (Tian 

et al., 2019).  

5.3.3. Optimization of GHG EREs using GA  

The developed data-driven models via original and GAN-generated 100 virtual datasets were 

used to create fitness functions to be solved by GA for the minimization and maximization of GHG 

EREs given optimized operating parameters (Figure 5.5). Overall, the GA configurations were 

based on the population sizes of 50 to 200, iteration number of 1000, mutation probability of 0.01, 

and crossover mutation of 0.8 (Yang, 2014). The convergence criteria were determined when the 

algorithm stopped improving after 300 iterations (Haupt and Haupt, 2004). As mentioned 

previously, unlike closed-system anaerobic digestion processes where biogas maximization could 

be beneficial for energy generation, the current goal would be to determine the operating 

parameters in which the gas generation would be minimized. The minimum CO2 ERE was 5,758 

kg CO2/d after 10 generations at optimized parameters of wastewater temperature 17 °C, DO = 1.0 

mg/L, and TOC = 10.6 mg/L (Figure 5.5a). The minimum CH4 ERE took 75 generations reaching 

0.842 kg CH4/d at a wastewater temperature 17 °C, DO = 1.0 mg/L, and PO4
3- = 6.3 mg/L (Figure 

5.5b). Lastly, the N2O ERE minimum occurred at 0.496 kg N2O/d after 17 generations with 

parameters of wastewater temperature 13 °C, DO = 1.0 mg/L, and N = 25 mg/L (Figure 5.5c). 

Similarly, the maximum EREs were found at 56,820 kg CO2/d for CO2 (Figure 5.5d; 90 generations 

at wastewater temperature 13 °C, DO = 2.0 mg/L, and TOC = 25.4 mg/L); at 31.8 kg CH4/d for 

CH4  (Figure 5.5e; 15 generations at wastewater temperature 13 °C, DO = 2.0 mg/L, and PO4
3- = 

0.10 mg/L; and 4.26 kg N2O/d for N2O (Figure 5.5f; 30 generations at wastewater temperature 17 

°C, DO = 1.9 mg/L, and N = 4.86 mg/L).  
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Figure 5.4: The results of the nonlinear regression models developed via a mix of original and 

100 virtual GAN-generated data for the determination of (a) CO2; (b) CH4; and (c) N2O EREs 

from the aerobic reactor. The blue line represents the data regression line with R, RMSE, and IA 

values included in each panel. The dashed line indicates a 1:1 correlation which would indicate a 

perfect model and data fit. 
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These optimization results were in good agreement with both experimental results and the 

literature, which indicate that warmer temperatures potentially result in a higher demand for more 

accessible carbon sources, such as organic carbon, CO2, and CH4, given increased microorganism 

metabolisms (Asadi and McPhedran, 2021a; Caniani et al., 2015; Tchobanoglous et al., 2003; 

Zheng and Li, 2009). This increased demand would result in the minimization of  CO2 and CH4 

stripping from the wastewater in the aerobic reactors occurring at 17 °C versus 13 °C. Typically, 

an increased aeration rate leads to higher wastewater agitation resulting in elevated gas released 

from wastewaters, particularly at DO concentrations above 1.5 mg/L (Asadi and McPhedran, 

2021a; Bao et al., 2016; Czepiel et al., 1993). Thus, the maximization of all three GHG EREs at 

DO values of 1.9 and 2.0 mg/L was an expected outcome. Further, higher anaerobic PO4
3- 

availability and its utilization lead to higher CH4 production (Alphenaar et al., 1993) that can result 

in increased stripping of dissolved CH4 contained in the aerobic influent due to mechanical 

aeration and agitation (Daelman et al., 2012; Heffernan et al., 2012; Rodríguez-Caballero et al., 

2014b). The optimization results showed that modification of operating parameters have a large 

impact on the GHG EREs overall. The minimization of GHG EREs would be beneficial at the 

current SWTP given the aerobic reactor is an open-to-air process and, thus, GHG emissions will 

impact nearby residential neighbourhoods. However, if this reactor was to be covered, and the 

biogas collected, the maximization resulted in about a 40-fold increase in CH4 emissions which is 

the biogas necessary for use in electricity or other energy generation. Capture of these gases could 

be a potentially valuable process, however, costs for enclosing the BNR processes, and determined 

optimum operating parameters discrepancies with the SWTP aerobic wastewater quality (e.g., 

average recorded N of 18.4 mg/L and PO4
3- of 1.17 mg/L) would have to be considered to 

determine if this capture is cost-effective. Therefore, future research can be directed toward the 

development of multi-objective optimization of GHG EREs, discharging effluent quality into 

water bodies, and operational costs to discover trade-offs between these components, specifically 

given that this study developed accurate data-driven models describing MWTP GHG emissions. 

5.4. Conclusions 

Wastewater treatment processes lead to GHG emissions that have become of increasing 

interest over the past decade for policymakers, environmental authorities, and decision-makers 

given their negative environmental impacts. Thus, there is a need for accurate determination of 



 

136 

 

GHG EREs from MWTPs to assess whether suitable mitigation measure may be necessary. This 

study completes our previous SWTP study in which GHG and odour emissions were 

experimentally investigated for all the BNR MWTP clarifiers and bioreactors. The aerobic process 

was considered herein given it is responsible for the majority of GHG emissions for the open-to-

air processes. The results of the statistical analysis of aerobic GHG EREs and operating parameters 

resulted in the selection of various model input variables including HRT, temperature, TOC and 

DO, PO4
3-, NO2

-, NO3
-, and NH4

+. Overall, quadratic equation-based non-linear regression models 

could reasonably determine GHG EREs, while inclusion of 100 GAN-generated virtual data to 

augment the experimental data resulted in improved model accuracies and performances for all 

GHGs. The optimization of models using GA found minimum/maximum EREs of 5,758/56,830 

kg CO2/d, 0.842/31.8 kg CH4/d, and 0.496/4.26 kg N2O/d. Generally, this study indicates the 

suitability of the GAN to synthesize virtual data which is valuable in the supplementation of 

limited actual data availability. This can be valuable as it will lead to reduce time and effort, as 

well as related cost savings, for the assessment of MWTP GHG EREs. Furthermore, results can 

be useful for informing more efficient MWTP design and operation that can lead to either the 

minimization or maximization of GHG emissions from wastewater treatment processes.  
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6. CHAPTER 6: Odour emissions and dispersion from a cold region municipal 

wastewater treatment plant 

 

 

Overview 

A version of this chapter has been published as a conference paper for the 2021 CSCE Annual 

Conference with the following details: 

 

Asadi, M., Motalebi, A., & McPhedran, K. (2021). Odour emissions and dispersion from a cold 

region municipal wastewater treatment plant. Proceedings of the Canadian Society of Civil 

Engineers Annual Conference to be virtually held, May 26-29, 2021. 
 

Contributions 

Mohsen Asadi: Research conceptualization, experimental work, study design and 

implementation, original draft and revisions. 

Ali Motalebi: Research conceptualization, study design. 

Kerry McPhedran: Research conceptualization, study design, informed experimental works, 
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Abstract 

Hydrogen sulphide (H2S) and ammonia (NH3) are two important odourants that regularly 

emitted from conventional municipal wastewater treatment plants. The main objective of this 

research was to determine H2S and NH3 emission rate estimates (EREs) from open-to-air treatment 

processes at the Saskatoon Wastewater Treatment Plant (SWTP), Saskatchewan, Canada. 

Laboratory-scale reactors were developed to assess H2S and NH3 EREs from possible emission 

sources including clarifiers, anaerobic, anoxic, and aerobic reactors. Experiments were conducted 

at 13 °C and 17 °C  to simulate the SWTP operating temperatures which are impacted by highly 

variable seasonal temperatures in Saskatoon (from -40 °C to 30 °C). The EREs were used as the 

input for air dispersion modelling by AERMOD to evaluate the ambient air concentrations in 

downwind directions from the SWTP. Results indicate that the NH3 and H2S EREs in winter from 

the open-to-air emission sources were negligible. However, temperature rise led to higher activities 

for anaerobic processes in summer that increased H2S emission in primary clarifiers, anaerobic 

reactors, and anoxic reactors to average EREs of 1.17, 0.870, and 0.264 kgH2S/d, respectively. 

Atmospheric dispersion modelling by AERMOD showed that the maximum 24-hour average 



 

145 

 

ambient H2S concentration at the SWTP nearby exceeded the limit of 5.0 µg/m3 set by 

Saskatchewan Ambient Air Quality Guideline in several episodes over the year.  

6.1. Introduction 

The collection and treatment of municipal wastewaters are high-energy demand processes 

leading to the generation and emission of greenhouse (GHG), toxic, and odorous gases. Odours 

generated from municipal wastewater treatment plants (MWTPs) can negatively affect public 

health and/or be a nuisance for residents living near MWTPs. Interestingly, odour nuisance from 

MWTPs has been shown to adversely impact nearby housing prices with decreases up to 15% 

(Van Broeck et al. 2009). Enhanced public awareness and stricter environmental regulations have 

resulted in increasing public complaints in response to odour pollution in recent decades (Easter 

et al., 2009; Morales et al., 2008). The most typical odorous gases produced by MWTPs include 

the rotten egg smell of hydrogen sulphide (H2S) and the pungent smell of ammonia (NH3) 

(Malhautier et al. 2003; Agus et al. 2012). H2S is a colourless, hazardous, and potentially toxic 

compound; while NH3 is a toxic, corrosive and chemically active gas, which can react in the 

atmosphere creating a greenhouse effect and low visibility (Yongsiri et al. 2004a). Each of these 

gases can be produced and emitted during various wastewater treatment processes, however, the 

highest emissions are typically from anaerobic processes that result in fat and protein degradation  

(Fang et al., 2012; Lewkowska et al., 2016).  

Previous research conducted to address odour characterization, quantification, and abatement 

for MWTPs has been primarily focussed on processes including preliminary treatment, primary 

settlers, sludge digestion tanks, sludge thickening, and dewatering facilities (Vincent, 2001). 

However, field monitoring has shown that other MWTP processes may also be significant 

emission sources such as aerobic and anoxic tanks (Huber and Smeby, 2010). Overall, field 

monitoring of emissions from individual processes is often difficult given the tanks are largely 

open-to-air making emissions sampling problematic. More recently, mathematical modelling has 

been coupled with empirical data to determine odour emission rate estimates (EREs) and to predict 

atmospheric concentrations downwind of MWTPs (and vice versa via estimating EREs from 

downwind sampling regimes). For example, Schauberger et al. (2013) calculated H2S EREs from 

a tannery WTP based on downwind ambient air sampling and Gaussian regulatory dispersion 

modelling. Baawain et al. (2017) employed AERMOD modelling to investigate H2S EREs from a 
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MWTP and reported that local H2S pollution was markedly reduced over the winter (Baawain et 

al., 2017). Zhang et al. (2017) studied NH3 EREs from various WTP processes including 

adsorption-biodegradation activated sludge treatment, sequencing batch reactor (SBR) activated 

sludge treatment, and two different anaerobic-anoxic-oxic treatment processes. Out of 12 sampling 

stations, NH3 concentrations, pH, and temperature were recorded and coupled with the US EPA’s 

WATER9 model to estimate NH3 EREs. They found that the anaerobic-anoxic-oxic treatment 

process produced the highest NH3 at 0.29±0.06 g/m3 of wastewater (Zhang et al., 2017). Despite 

previous research, MWTPs have unique combinations of treatment processes and climate 

conditions requiring the determination of site-specific EREs to best determine potential impacts of 

odorous gases on nearby residents.  

Overall, the EREs for NH3 and H2S from different MWTP treatment processes has not been 

adequately addressed, especially for regions having widely varying regional temperatures such as 

MWTPs found in the Canadian prairie provinces. Thus, the main objective of this study was to 

estimate the NH3 and H2S EREs from the open-to-air treatment processes at the Saskatoon 

Wastewater Treatment Plant (SWTP), Saskatchewan, Canada, and use these EREs to predict the 

downwind air concentrations in summer and winter seasons using dispersion modelling. 

Laboratory-scale reactors were employed to develop EREs rates from primary and secondary 

clarifiers, as well as the anaerobic, anoxic and aerobic basins of the bioreactors. Experiments were 

conducted at 13 °C and 17 °C to simulate the winter and summer operating temperatures, 

respectively, which are the result of seasonal temperature variations ranging from -40 °C to +30 

°C. Using the EREs, AERMOD was used as a steady-state plume model to determine the 

downwind odour concentrations in residential areas near the SWTP. 

6.2. Materials and methods 

The SWTP treats an average wastewater flow rate of 120 million litres per day (MLD) and has 

the capacity to treat a peak flow rate of up to 300 MLD. It is a Biological Nutrient Removal (BNR) 

advanced treatment plant and designated as a Class IV facility. The SWTP treatment process 

technologies include a grit and screen facility, primary clarifiers, pump station, fermenters, 

dissolved air flotation (DAF) thickener, bioreactors, secondary clarifiers, ultraviolet disinfection 

system, nutrient recovery facility, and anaerobic digesters (Figure 6.1)(City of Saskatoon, 2018). 

The primary and secondary clarifiers, and bioreactors are open-to-air facilities, and along with the 
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anaerobic digesters, could potentially be sources of the odorous H2S and NH3 gases (Asadi et al. 

2020). 

 

 

 
Figure 6.1: Saskatoon Wastewater Treatment Plant (SWTP). WASSTRIP = Waste Activated 

Sludge Stripping to Recover Internal Phosphate. Bioreactors include anoxic, anaerobic and 

aerobic processes in different reactors. The orange squares represent the approximate sampling 

locations used for experiments. 

 

 

Figure 6.2 shows a schematic flow chart of the methodology for determination of NH3 and H2S 

EREs and dispersion modelling for the open-to-air treatment processes and anaerobic digesters at 

the SWTP over the summer and winter time periods. The odour EREs from the SWTP anaerobic 

digesters was recently investigated with H2S being determined to be the only odorous gas of 

concern generated from the anaerobic digestion process with an average ERE of 59 kg/d (Asadi et 

al. 2020). The EREs for the remaining reactors are determined herein following a similar 

experimental protocol as Asadi et al (2020). The dispersion modelling inputs were aggregate EREs 

including all sources to assess the air concentrations downwind of the SWTP.  
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6.2.1. H2S and NH3 EREs from the open-to-air facilities 

Figure 6.3 shows the experimental setup of the batch reactors used for determining EREs for 

various SWTP processes. Wastewater samples were taken from each of the clarifiers and 

bioreactor basins on three occasions during each of the summer and winter seasons with six total 

sampling occasions for each process (Figure 6.1). Samples were immediately used in experimental 

runs with durations of 24 h. The 5 L glass reactors were filled to a working volume of 3.0 L, sealed, 

and maintained at 13 °C and 17 °C to simulate the actual SWTP wastewater temperatures for the 

winter and summer, respectively.  

As described in Chapter 4, for aerobic reactors, an aerobic environment was created by mixing 

the wastewater via a magnetic stirrer and pumping air into the reactor at various rates to keep the 

dissolved oxygen (DO) concentrations between 1.0 to 2.0 ppm (typical DO range in the SWTP 

aeration reactor). For anaerobic and anoxic reactors, the reactors' wastewaters were mixed by a 

magnetic stirrer and nitrogen gas (N2) was pumped into the reactor headspaces to carry the 

produced gases into the gas analyser. The clarifier reactors were left unstirred and subjected to N2 

pumping of the reactor headspaces for gas analysis. The H2S and NH3 concentrations were 

measured using a Gas Alert Micro 5 (Honeywell, US) which calibrated to measure 0 – 500 ppm 

with a resolution of 0.1 ppm.  

The air and N2 pumping rates into the reactors were controlled by valves and continuously 

monitored by airflow meters positioned before and after each reactor. The EREs from each reactor 

was determined using the monitored off-gas flowrate and measured H2S and NH3 concentrations 

by the gas analyzer. Thus, the total EREs for each process at the SWTP were computed using the 

reactor EREs as follows (Lim and Kim, 2014): 

ERE = 10-6 × ERE reactor × HRT × WFR / V reactor (6.1) 

Where, ERE = estimated emission rate from the actual SWTP treatment process (kg/d); 

EREreactor = monitored gas emission rate from the reactor (mg/min); HRT = hydraulic retention 

time of the treatment process (min); WFR = wastewater flow rate of the treatment process (m3/d); 

and Vreactor = working volume of the batch reactor (m3) (Table 6.1).  
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Figure 6.3: Schematic experimental setup of batch reactors for simulation of (a) aerobic; (b) 

anaerobic and anoxic; and (c) primary and secondary clarifiers to estimate gas productions and 

emissions. 
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Table 6.1: Characteristics of open-to-air treatment processes at the SWTP (Courtesy of SWTP). 

Parameter Primary 

clarifier 

Anaerobic 

reactor 

Anoxic 

reactor 

Aerobic 

reactor 

Secondary 

clarifier 

HRT (min) 220 120 180 240 380 

WFR (m3/d) 93,000 275,400 275,400 275,400 189,000 

Surface area 

(m2) 

4,210 440 1,760 3,200 5,500 
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6.2.2. Dispersion modelling: AERMOD model 

The U.S. Environmental Protection Agency AERMOD (USEPA, 2019) is a steady-state 

Gaussian dispersion model that is able to compute contaminant dispersion from multiple sources 

in rural and urban areas under both stable and convective conditions. AERMOD’s inputs include 

source data such as emission rates, and terrain and meteorological data which are initially 

processed by the AERMAP and AERMET models, respectively. For full details on using this 

model, please consult Cimorelli et al. 2004. Briefly, the downwind pollutant concentration can be 

calculated as follows:  

CT {xr, yr, zr} = f.Cc,s {xr, yr, zr} + (1-f) Cc,s {xr, yr, zp} , zp = zr - zt (6.2) 

Where, {xr, yr, zr} = coordinate representation of a receptor; zr = measured height relative to 

stack base elevation; zp = height of a receptor above local ground; zt = terrain height at a receptor 

(for flat terrain zt = 0); CT {xr, yr, zr} = total pollutant concentration; Cc,s {xr, yr, zr} = contribution 

from the horizontal plume state in convective (c) and stable (s) conditions; and, Cc,s {xr, yr, zp} = 

contribution from the terrain – following state in convective (c) and stable (s) conditions (Cimorelli 

et al., 2004).  

The AERMET model input included 5 years of hourly climate data consisting of wind direction 

and speed, temperature, relative humidity, cloud cover, and ceiling height (Saskatchewan Ministry 

of Environment, 2020). The model calculates boundary layer parameters, entailing friction 

velocity, Monin – Obukhov length, convective velocity scale, temperature scale, mixing height, 

and surface heat flux, along with the vertical profiles of wind speed, lateral and vertical turbulence 

fluctuations, potential temperature gradients, and potential temperatures (Cimorelli et al., 2004). 

The AERMAP model input included the terrain characteristics of the City of Saskatoon available 

by the Canadian Digital Elevation Data (Natural Resources Canada, 2020).  The AERMET and 

AERMAP outputs were used to input into the AERMOD model to determine pollutant dispersion 

maps presented herein. 
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6.3. Results and discussion 

6.3.1. Odour EREs 

Overall, the experimental results for both summer and winter found that NH3 emissions from 

all treatment processes were negligible. This result was somewhat expected as NH3 emissions from 

similar treatment processes such as activated sludge-type MWTPs have been reported to be 

insignificant previously. For instance, Osada et al. (2017) investigated five MWTPs across Japan 

between August 2014 and January 2015 using a field-scale monitoring program, and reported that 

the NH3 emissions were negligible in all of the measurements from the wastewater treatment 

facilities (Osada et al., 2017). The NH3 is typically dissolved in wastewaters in the form of 

ammonium (NH4
+) with concentrations dependent on temperature and pH. To release NH3 into the 

atmosphere, the NH4
+ must be converted to NH3. Currently, at a typical SWTP wastewater pH of 

7.5 only 0.74% (13 °C) and 0.99% (17 °C) of the nitrogen would be available as NH3 (Emerson et 

al., 1975). Given the maximum reported NH4
+ influent concentration at the SWTP was around 40 

mg/L, only 0.4 mg/L (0.53 ppm) of NH3 would be expected to be released from the wastewater 

from any of the treatment processes. This value is negligible and below the detection limit of the 

gas analyzer used in the current study. 

Figure 6.4 shows the results of H2S EREs from the open-to-air facilities (determined herein) 

and anaerobic digesters (from Asadi et al. 2020) and their overall contributions to the total EREs 

from the SWTP. The winter H2S emissions were negligible due to neutral pH = 7.5 and average 

wastewater temperature of 13 °C.  Previous researches have shown that both pH and temperature 

have high impacts on the formation and release of H2S from wastewaters with release being 

significantly greater in acidic conditions (pH < 7.0) (Yongsiri et al. 2004b; Nielsen et al. 2008). In 

addition, the solubility of H2S in water is inversely correlated with the temperature resulting in 5.2 

g/kg and 4.1 g/kg water, at 13 °C and 17 °C, respectively (Nielsen et al. 1998). Thus, the H2S 

would be more readily released in summer months with the increased wastewater temperatures. 
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Figure 6.4: (A) H2S EREs for the primary and secondary clarifiers, and aerobic, anaerobic and 

anoxic bioreactors at a temperature of 17 °C (EREs were negligible at 13 °C); and (B) H2S EREs 

for the anaerobic digesters (in orange) in comparison with the open-to-air sources combined (in 

blue). 
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As shown in Figure 6.4a, the summer H2S emissions were highest from the primary clarifiers 

(1.17 kg H2S/d) followed by the anaerobic and anoxic bioreactors (0.87 kg H2S/d and 0.26 kg 

H2S/d), respectively. Overall, the open-to-air processes total EREs were 2.3 kg/d (0.023 g/s) 

accounting for only 4% to 5% of the SWTP emissions (Figure 6.4b). The dominant source of H2S 

production (96%) was attributed to the anaerobic digesters at an ERE of 59 kg/d (0.68 g/s) (Asadi 

et al. 2020). The H2S EREs from the SWTP open-to-air treatment processes were markedly lower 

in comparison with other MWTPs with similar capacity which highlights the potentially large 

variability of EREs between MWTPs in different regions. For example,  Llavador Colomer (2012) 

studied H2S emission rates from three MWTPs in Spain with capacity ranges of 38,962 – 61,821 

m3/d and reported that the average EREs varied between 0.09 g/s to 2.47 g/s (Llavador Colomer 

et al. 2012).  

6.3.2. AERMOD dispersion modelling 

Figure 6.5 illustrates the results of AERMOD H2S dispersion modeling of the aggregate SWTP 

H2S EREs (from Figure 6.4a) indicating maximum 24-hour concentrations over the summer and 

winter of 5.67 µg/m3 and 5.43 µg/m3, respectively. Both of these values exceed Saskatchewan’s 

ambient air quality standard for an average 24-hour concentration of H2S is 5.00 µg/m3 

(Saskatchewan Ministry of Environment, 2012). However, it should be noted that gas produced by 

the anaerobic digesters is currently captured and used to produce heat for the on-site buildings and 

facilities; therefore, the open-to-air facilities should be considered as the primary sources of H2S 

emissions from the plant. Based on this, the 24-hour concentrations for both summer and winter 

would be well below the ambient air quality standards. However, it should be noted that other 

facilities that release gases directly from anaerobic digesters may create local exceedances of 

ambient air quality standards near other MWTPs.  
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Figure 6.5: Results of H2S dispersion and maximum 24-hour concentrations based on total EREs 

from all SWTP sources for (A) summer; and (B) winter. Brown shows the city of Saskatoon’s 

area. 
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Generally, the solar radiation intensity, and wind speed and direction are typically the most 

important factors impacting atmospheric stability and pollutant dispersion behaviour (Pasquill, 

1961). The average winter and summer solar radiation intensities for the City of Saskatoon are 

reported to be 255 MJ/m2 and 600 MJ/m2, respectively (Wittrock, 2018). In addition, the City of 

Saskatoon is considered to be a ‘windy’ location with average wind speeds reaching 4.6 m/s. Thus, 

the summer atmospheric stability is categorized as an unstable atmosphere (Class B) that may 

result in a favourable conditions for vertical, then horizontal, mixing to be involved in H2S (and 

other gas) dispersion (Pasquill, 1961). These conditions resulted in the maximum H2S 

concentrations close to the SWTP due to the vertical mixing, and other areas of increased 

concentrations to the south and north of the SWTP due to horizontal mixing (Figure 6.5a). For 

winter, the atmospheric stability is more stable, and occasionally can be either neutral (Class D) 

or slightly unstable (Class C) (Pasquill, 1961). Therefore, horizontal mixing and bulk motion as a 

function of wind speed would be dominant in the H2S dispersion under these conditions. Winter 

results show that wider areas in the downwind of the SWTP could be affected by H2S emission, 

and its maximum level was noticed at an approximate distance of 600 m away from the plant 

(Figure 6.5b).  

6.4. Conclusions 

The accurate determination of odorous compound EREs and prediction of dispersion from 

MWTPs via air sampling efforts is difficult given the presence of a variety separate treatment 

processes that are open-to-air. Thus, the study of EREs and dispersion of odorous compounds, 

such as NH3 and H2S, via laboratory-scale reactors and dispersion modeling can be a useful and 

practical method to determine potential downwind odour issues. Overall, the NH3 emissions from 

SWTP were negligible year-round while the H2S emissions from the open-to-air processes were 

highest in the summer with EREs of 1.17, 0.870, and 0.264 kg/d for the primary clarifiers, 

anaerobic, and anoxic reactors, respectively. The aggregate H2S EREs from the open-to-air 

facilities was 2.30 kg/d, however, was only about 4% to 5% of total produced H2S at the SWTP 

with the anaerobic digesters producing 59 kg/d (if not captured). Downwind H2S concentrations 

were dependent upon the meteorological parameters, such as solar radiation and wind speed and 

direction. Based on the total EREs, the H2S maximum 24-hour concentration exceeded the 5 µg/m3 

standard near the SWTP. However, this exceedance would only occur with the gas from the 
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anaerobic digesters being released (currently captured). Overall, odorous emissions from the 

SWTP from are typically well below standards for both NH3 and H2S. However, in the summer 

the H2S releases from the SWTP may impact nearby residents due to elevated EREs due to 

temperature, increased dispersion due to wind, and increased exposures due to enhanced activities 

in the summer months in addition to having windows open during the warmer months in 

Saskatoon. 
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7. CHAPTER 7:  Discussion 

 

7.1.General discussion 

The quantification of MWTP greenhouse gas and odour emissions have become of increasing 

interest over the past decades for policymakers, environmental authorities, and decision-makers 

given both enhanced concern of GHG emission negative impacts on climate and rising odour 

nuisance complaints from residents living MWTPs nearby.  This thesis Chapter 1 reviewed the 

potential generation and emission of GHGs (including CO2, CH4, and N2O) and smelly compounds 

(including H2S, and NH3) from typical municipal wastewater treatment processes (Daelman et al., 

2013; Law et al., 2012; Massara et al., 2017; Ni et al., 2013). The investigation was followed by 

the development of ANN, and ANFIS models with opaque structures (‘black-box’ models) and 

regression models with transparent structure (‘white-box’ models) to quantify anaerobic digester 

biogas production rate. The model input variables included volatile fatty acids, total/fixed/volatile 

solids, pH, and inflow rate that pre-processed via correlation tests and PCA to determine highly 

correlated variables prior to use in models in order to reduce inputs into model runs for shorter 

model processing time. The developed ANN and ANFIS models with unprocessed and PCA-

processed input variables were more accurate with R = 0.86 – 0.93, RMSE = 0.23 – 0.61, and IA 

= 0.94 – 0.97 (see Chapter 2) compared to a quadratic equation-based non-linear regression model 

with unprocessed input variables and values including R = 0.81, RMSE = 0.95, and IA = 0.89 

(Chapter 3). Interestingly, each model uncertainty analysis via Monte Carlo Simulation showed 

the regression model with the smallest uncertainty, as compared to ANN and ANFIS models which 

indicates the compromise between model accuracy and uncertainty. Thus, the ANN, ANFIS, non-

linear regression model performances were reasonable and chosen to be coupled with GA for 

anaerobic digestion processes optimization to maximize biogas production rate, as a cost-effective 

and reliable energy source. The optimization showed that ANN, ANFIS, and regression modelled 

biogas production rates of 7.55 m3/min, 8.07 m3/min, and 7.04 m3/min could be increased to a 

maximum of 22.0 m3/min, 23.1 m3/min, and 28.6 m3/min, respectively, through the selection of 

operating parameters including 4.87 - 5.59% TS, 20.6 - 22.8% FS, 8.18 - 9.50% TS2, 20.1 - 36.1% 

FS2, 6.90 – 7.00 pH, 680 mg/L VFA, 520 - 580 m3/d WFS, and 620 – 690 m3/d TWAS.  
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In addition to closed processes (i.e., for anaerobic digesters), the determination of GHG and 

smelly compound emission rates from open-to-air treatment facilities, including primary and 

secondary clarifiers, anaerobic, anoxic, and aerobic reactors were experimentally investigated in 

Chapter 4.  Laboratory-scale reactors simulating these treatment processes were used to monitor 

gas EREs using wastewater samples taken from the analogous MWTP processes during the winter 

and summer seasons. Overall, the average winter EREs from the uncovered treatment processes 

were determined to be 45,129 kg CO2/d for CO2 emissions, 21.9 kg CH4/d for CH4 emissions, 

3.20 kg N2O/d for N2O emissions, and interestingly negligible for H2S and NH3 emissions given 

wastewater pH~7.0 and temperature = 13 °C. Although the increased temperature in the summer 

months did not impact NH3 emissions (still negligible), it resulted in a marked decrease for the 

CO2 EREs to 37,794 kg CO2/d, while the summer EREs for CH4, N2O, and H2S all had marked 

increases at 33.0 kg CH4/d, 3.87 kgN2O/d, and 2.29 kg H2S/d, respectively. Additionally, the 

aerobic reactors were found to be the dominant source of EREs for all processes other than being 

negligible for H2S given that the average aerobic EREs over the year (assuming 6 months each for 

winter and summer) were 25,933 kg CO2/d (62% of total CO2 emissions), 9.68 kg CH4/d (35% of 

total CH4 emissions), and 2.62 kg N2O/d (74% of total N2O emissions). To better understand the 

aeration rate variability impacts, the GHG EREs given various DO concentrations in the range of 

1.0–2.0 mg/L were investigated, and the results showed that the EREs were directly dependent on 

the aeration rate with significant increases in GHG emissions found for DO concentrations above 

1.5 mg/L. Further, variable aeration rate regimes given BNR system configuration changes had an 

impact on the gas EREs with showing variability in the EREs for all gases and both winter and 

summer temperatures. 

As discussed, the aerobic process was considered as responsible for the majority of GHG 

emissions for the open-to-air processes, and Chapter 5 included a hybrid approach of using 

generative adversarial network (GAN), for the first time to our knowledge, and regression 

modelling to determine BNR-MWTP GHG emissions with further optimization of models via 

aerobic process operating parameters using GA. The model inputs included HRT, temperature, 

TOC, and DO concentrations for CO2 EREs; HRT, temperature, DO, and PO4
3- concentrations for 

CH4 EREs, temperature, DO, nitrogen (NO2
-, NO3

-, and NH4
+) concentrations for N2O EREs. The 

results show that quadratic equation-based non-linear regression models with 66 data points 

(including 50 data points for training and 16 data points for testing) could reasonably determine 
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EREs with R = 0.94, RMSE = 4,129, IA = 0.97 for CO2 emissions, R = 0.96, RMSE = 1.76, IA = 

0.97 for CH4 emissions, R = 0.85, RMSE = 0.77, IA = 0.91 for N2O emissions. Interestingly, the 

inclusion of 50 to 200 GAN-generated virtual data to augment the experimental data resulted in 

improved model accuracies and performances for all GHGs, specifically for the addition of 100 

virtual data that led to R = 0.95, RMSE = 3,219, and IA = 0.97 for CO2 EREs; R = 0.96, RMSE = 

1.35, IA = 0.97 for CH4 EREs; and R = 0.89, RMSE = 0.58, IA = 0.94 for N2O EREs. The 

optimization of models using GA found minimum/maximum EREs of 5,758/56,830 kg CO2/d, 

0.842/31.8 kg CH4/d at optimized parameters of wastewater temperatures 17/13 °C and DO = 

1.0/2.0 mg/L, TOC = 10.6/25.4 mg/L, PO4
3- = 6.3/0.1 mg/L for CO2 and CH4 EREs, respectively; 

and 0.496/4.26 kg N2O/d at wastewater temperature 13/17 °C, DO = 1.0/1.9 mg/L, and N = 25/4.86 

mg/L for N2O EREs. Generally, this chapter study indicates the suitability of the GAN to 

synthesize virtual data which is valuable in the supplementation of given limited actual data 

availability that translates to marked time and cost savings for the assessment of MWTP GHG 

EREs and even other complex biological processes.  

According to Chapters 2 through 4, odour emission was more highlighted from anaerobic 

digesters with an average ERE of 59 kg H2S/d; primary clarifiers with a summer ERE of 1.17 kg 

H2S/d; and anaerobic and anoxic reactors with a summer ERE of 1.13 kg H2S/d. Chapter 7 included 

air dispersion modelling being conducted by AERMOD to assess the SWTP downwind air quality. 

The results show that the H2S maximum 24-hour concentration exceeded the 5 µg/m3 standard 

near the facility which only occurred with the gas from the anaerobic digesters being released 

(currently captured). Generally, the SWTP smelly compound emissions are typically well below 

standards for both NH3 and H2S, however, the summer H2S releases may impact nearby residents 

due to elevated EREs due to temperature, increased dispersion due to wind, and increased 

exposures due to enhanced activities in the summer months in addition to having windows open 

during the warmer months in Saskatoon. 

Overall, the results show that the average SWTP EREs were 50,606 kg CO2/d, 4,471 kg CH4/d, 

3.53 kg N2O/d, and 60.9 kg H2S/d. Due to the greenhouse effects of CH4 and N2O being 25 and 

265 higher than CO2, respectively, the total potential GHG ERE given the SWTP’s inflow rate of 

93,000 m3/d was determined 163,325 kg CO2 (eq)/d equivalent to 1,756 g CO2 (eq)/m3. Under the 

current carbon tax policy in Canada, this ERE exceeds the threshold of 137,000 kg CO2 (eq)/d 
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(50,000 tonnes CO2 (eq)/year) for industries, however, this exceedance only occur with the gas 

from the anaerobic digesters being released (currently captured), and additionally, MWTP 

facilities have been exempted from the tax (Government of Canada, 2019). If these facilities are 

no longer exempted in the future emissions would likely need to be reduced via process 

modifications to decrease the facility carbon tax that this thesis results can be useful for informing 

more efficient MWTP design and operation that can lead to either the minimization or 

maximization of GHG emissions from wastewater treatment processes. 

7.2. Engineering significance 

 The accurate quantification of GHG and odour compound emission rates is necessary to avoid 

misinterpretation and erroneous calculation since there are marked discrepancies between reported 

and recommended EREs given the uniqueness of each MWTP both in operation, and geographical 

location. Generally, there has been limited or no previous research that has mathematically and 

experimentally investigated GHG and smelly compound emissions in conjunction with monitoring 

operating parameters to inform the appropriate MWTP design and operation in order to assess 

whether suitable mitigation measures may be necessary. This thesis concentrated on the 

assessment of BNR-MWTP GHG and odour EREs using the integration of experimental results 

with machine learning literature including artificial data generation algorithms and data-driven 

modelling to accurately determine gas emissions with further optimization of models via operating 

parameters using genetic algorithm. Results of currently used laboratory-scale reactors simulating 

clarifier and bioreactor advanced knowledge of GHG and odour EREs by fulfilling a lack of 

information about the impacts of variable temperatures, aeration rate regimes, and BNR systems, 

and helped better understand the interaction between GHG and odour emissions. Additionally, out 

of 13 measured wastewater quality parameters during various stages of each 24-hour experiment, 

operating parameters that are more likely to contribute to the quantification and modelling of GHG 

and biogas emissions were determined. This is especially the case for temperature impacts on 

EREs and even other operating parameters that this study used temperatures of 13 °C in winter and 

17 °C in summer while most previous studies focused on temperatures above 19 °C. The 

mathematical modelling of any biological process demands robust and sufficient data collection 

which can be costly and time-consuming highlighting the need for the development of artificial 

data generation algorithms to help to address data shortages. This study for the first time applied 
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GAN for the generation of virtual data for use in MWTP GHG modelling, and investigated various 

data-driven model efficiencies for processed input parameter variables, such as the use of 

correlation tests and PCA to reduce input data needs. The results led to a better understanding of 

‘black-box’ and ‘white-box’ model accuracies and reliabilities that could be useful to select a 

reasonable model for use in optimization and for informing MWTP process modification via 

adjustment of relevant operating parameters. Additionally, this thesis assessed BNR-MWTP 

downwind air quality using the integration of EPA’s AERMOD, experimental results and field 

monitoring given that MWTP air sampling efforts are typically difficult given the presence of a 

variety of separate treatment processes that are open-to-air.  

7.3. Recommendation for future work  

 Investigation of microbial metabolism impacts on the GHG emissions is recommended 

for more accurate determination of EREs. 

 Future work can be directed toward the development of multi-objective optimization 

of GHG EREs and discharging effluent quality into water bodies and operational costs 

to discover trade-offs between these components and determine the best operating 

parameters, specifically given that this study developed accurate data-driven models 

describing MWTP GHG emissions. 

 Experimental and mathematical assessment of anaerobic digestion of wastewater 

sludge with food and agriculture wastes is recommended to increase biogas yield 

potentials at MWTPs.  

 Day-night wastewater characteristic variabilities can impact the MWTP GHG and 

odour emissions. The consideration of time/flow proportional composite samples 

representing average daily wastewater quality and quantity characteristics is 

recommended to enhance gas ERE reliabilities.  

 Monitoring of dissolved CH4 and N2O concentrations in wastewater should be 

considered to better understand the contribution of anaerobic/anoxic/aerobic reactors 

to CH4 and N2O generations and emissions. 

 Future development of data-driven models should be directed toward the investigation 

of deep-learning type model accuracies and reliabilities given their better performances 

and generalization, as compared to shallow-structure type models, such as currently 
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studied models including regression, ANN and ANFIS models (Goodfellow et al., 

2014).  

 Assessment of other data augmentation algorithm applications in MWTP modelling is 

recommended.  

 Hyperparameters such as learning rates and numbers of hidden layers and units can 

impact the GAN learning process. Further study of hyperparameter selections is needed 

to improve model performance. 

 Further experiments, field studies, and application of machine learning and dispersion 

modelling approaches can lead to a better definition of the relationship between 

wastewater treatment operating parameters and smelly compound emissions which 

help determine if suitable mitigation measures need to be implemented. 

 Transient smelly compound emissions along with meteorological data uncertainty and 

representativeness can complicate the accurate determination of the peak concentration 

of odorous compounds (Carslaw and Beevers, 2002; Malherbe and Mandin, 2007). 

Therefore, further study is needed to assess the peak concentration of odorous 

compound variabilities given transient odour emissions from multiple sources. 
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Appendix A: Chapter 2 Supplementary Information 

 

Radial based function (RBF) 

 

The RBF is a Gaussian neural network with three layers including an input layer (input variables), 

the hidden layer includes radial-basis function neurons, and the output layer (dependent variables). 

This approach is efficient in describing non-linear systems as described below (Han et al., 2011):  

𝑌 = ∑ 𝑤𝑗𝜑𝑗(𝑥) + 𝑏

𝑁ℎ

𝑗=1

 (1) 

Where x and Yi are input and output of the network, Nh is the number of hidden layer neurons, wij 

is a weighted connection between the radial-basis function and output layer, φj(x) is the output 

value of the jth hidden neuron (Equation 2), and b is the constant value. 

𝜑𝑗(𝑥) = 𝑒𝑥𝑝 (−
‖𝑥 − 𝑐𝑗‖

2

2𝜎𝑗
2 ) , 𝑗 = 1, 2, … , 𝑁ℎ (2) 

Where cj is the centre of the jth hidden neuron, σj is the width of the jth hidden neuron, and ‖𝑥 − 𝑐𝑗‖ 

is Euclidean distance norm between x and cj. 

Figure A1 shows the estimation of the VFA concentrations using measured BOD value.  The RBF 

with eight hidden layers satisfactorily was utilised to address inconsistent VFA concentrations (R 

= 0.93, RMSE = 0.18) 
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Figure A1: RBF model predicted values for VFA versus calculated VFA concentrations (mg/L) 

using measured BOD (mg/L) values. The solid gray line indicates a 1:1 correlation between 

these values. The solid blue line indicates the regression line for the data and includes the R and 

RMSE values. 
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Table A2: Principal component analysis (PCA) component values for all variables measured at 

the SWTP. The * and bolded indicates significantly correlated parameters. 

Variable PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 

VFA 
0.086 0.142 0.549* 0.525* 0.499* -0.159 -0.324 0.072 -0.063 0.087 

TS 0.398* 0.030 0.330 -0.077 0.058 -0.047 0.545* -0.608* -0.208 -0.104 

TS2 
0.403* -0.270 0.162 -0.414* 0.050 -0.093 -0.361 -0.162 0.572* 0.268 

pH -0.453* -0.135 0.063 0.334 0.054 0.136 0.427* -0.182 0.554* 0.342 

FS 
-0.192 -0.637* 0.058 0.126 -0.186 0.150 -0.298 -0.327 -0.460* 0.274 

FS2 
0.224 -0.338 -0.018 0.292 -0.347 -0.697* 0.232 0.296 0.027 0.039 

WFS 
0.306 -0.384 -0.374 0.385 0.253 0.261 -0.039 -0.082 0.211 -0.534* 

TWAS -0.413* -0.162 0.494* -0.162 -0.218 -0.112 -0.107 -0.049 0.182 -0.653* 

VS 
-0.168 -0.417* 0.023 -0.399* 0.634* -0.102 0.301 0.327 -0.169 0.011 

VS2 
0.295 -0.142 0.414* 0.035 -0.273 0.588* 0.200 0.505* -0.010 0.069 
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Table A3: Principal component analysis (PCA) eigenvectors for all measured parameters from 

the SWTP. 

Component Eigenvalue (𝝀) Contribution (%) Cumulative contribution (%) 

PC1 3.23 32.3 32 

PC2 1.68 16.8 49 

PC3 1.22 12.2 61 

PC4 0.989 9.89 71 

PC5 0.864 8.64 80 

PC6 0.796 7.96 88 

PC7 0.590 5.90 94 

PC8 0.431 4.31 98 

PC9 0.154 1.54 99 

PC10 0.037 0.37 100 
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Appendix B: Chapter 3 Supplementary Information 

 

 
 

 

 

 

 

 

 
Figure B1: Schematic flow diagram with focus on biogas production at the SWTP (adopted 

from City of Saskatoon, 2018). DAF = dissolved air flotation; WAS = waste activated sludge. 
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Table B1: The assumed PDF for each operating parameter of anaerobic digesters at the SWTP 

with its Anderson–Darling (AD) test result. 

Parameters PDF AD test p-value 

VFA (mg/L) Logistic 0.229 0.250 

TS (%) Lognormal 0.477 0.233 

TS2 (%) Lognormal 0.627 0.097 

pH Logistic 0.418 0.250 

FS (%) Lognormal 0.255 0.721 

FS2 (%) Lognormal 0.698 0.066 

VS (%) Lognormal 0.512 0.186 

VS2 (%) Lognormal 0.736 0.054 

WFS (m3/d) Logistic 0.220 0.250 

TWAS (m3/d) Lognormal 0.300 0.576 
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Table B2: The results of Monte Carlo Simulation (MCS) uncertainty analysis of data-driven 

modelling approaches estimating biogas production rates from anaerobic digesters at the SWTP.  

Descriptive Statistics ANN ANFIS Regression ANN-

PCA 

ANFIS-

PCA 

N 1000 1000 1000 1000 1000 

Mean (m3/min) 8.10 8.14 8.31 8.44 8.60 

SD (m3/min) 1.86 1.73 1.52 1.88 1.71 

2.5th percentile of model 

output distribution 
4.35 3.82 5.06 4.96 5.68 

97.5th percentile of model 

output distribution 
11.90 11.9 12.1 13.1 12.4 

Range (m3/min) 
3.72 – 

13.1 

1.93 – 

13.8 
3.95 – 13.7 

4.01 – 

14.7 
3.95 – 13.3 
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Appendix C: Chapter 4 Supplementary Information 

 

Experimental Overview: 

 

The SWTP’s open-to-air treatment facilities, including the primary and secondary clarifiers and 

bioreactor tanks, are possible sources of GHG and odour emissions. The sampling locations and 

occasions were determined based on the literature review and on-site field monitoring by the 

SWTP’s staff. Previous research has shown significantly less GHG emissions from clarifiers as 

compared to the bioreactor tanks (Czepiel et al. 1993, Wang et al. 2011, Bao et al. 2016). 

Furthermore, the SWTP odour source and mitigation studies have shown that instantaneous H2S 

concentrations in the primary and secondary clarifier zones were insignificant. Thus, the sample 

collection from the bioreactor tanks (anaerobic, anoxic, and aerobic processes) was considered for 

numerous events, while only a single round of sample collection and experiments for each of 

primary and secondary clarifiers was conducted for each of the summer and winter seasons. The 

details of sampling occasions are as follows:  

 2 total sampling occasions for each of the primary and secondary clarifiers, 1 each for 

summer and winter. 

 9 total sampling occasions for each of the anaerobic and anoxic tanks including: 

o 6 total sampling events for anaerobic and anoxic tanks of the original BNR in 

the winter and summer. 

o 3 total sampling events for anaerobic and anoxic tanks of the updated BNR in 

the summer. 

 11 total sampling occasions for the aerobic tanks including: 

o 2 total sampling occasions for aerobic tanks of the original BNR configuration 

for DO = 1.0 mg/L, 1 each for summer and winter. 

o 2 total sampling occasions for aerobic tanks of the original BNR configuration 

for DO = 1.2 mg/L, 1 each for summer and winter. 

o 2 total sampling occasions for aerobic tanks of the original BNR configuration 

for DO = 1.5 mg/L, 1 each for summer and winter.  

o 2 total sampling occasions for aerobic tanks of the original BNR configuration 

for DO = 2.0 mg/L, 1 each for summer and winter.  
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o 3 total sampling occasions for aerobic tanks of the updated BNR configuration 

for DO = 1.5 mg/L for summer. 

Each experimental run included three 5 L glass reactors filled with the collected wastewater and 

conducted according to: arrangements 1 to 4 for clarifiers and the original BNR, and arrangement 

2 for the updated BNR to determine GHG and odour EREs (Figure C1). The GHGs and odorous 

gas samples were taken every 30 min for first 2 h, then every 2 h until the 8th hour, and finally at 

the 24th hour of the experimental runs (n = 9). 
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Table C1: Characteristics of open-to-air treatment processes at the Saskatoon Wastewater 

Treatment Plant (SWTP) (Courtesy of SWTP). 

Parameter Units Primary 

clarifier 

Anaerobic 

reactor 

Anoxic 

reactor 

Aerobic 

reactor 

Secondary 

clarifier 

Hydraulic 

Retention Time 

(HRT)  

min 220 120 180 240 380 

Wastewater 

Flow Rate 

(WFR)  

m3/d 93,000 275,400 275,400 275,400 189,000 
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Table C2: The operating parameters measured during experimental campaigns at temperatures of 

13 ℃ and 17 ℃ including minimum, maximum, and average (±standard deviation, SD) values.  

Parameter and Location Range of values at 
13℃ 

Average ± SD at 
13℃ 

Range of values at 
17℃ 

Average ± SD at 
17℃ 

pH 

Primary Clarifier 7.4 – 8.5 7.9 ± 0.4 7.1 – 7.7 7.3 ± 0.2 

Anaerobic 6.9 – 8.1 7.5 ± 0.3 7.0 – 8.0 7.3 ± 0.3 

Anoxic 6.9 – 8.2 7.5 ± 0.4 7.0 – 7.9  7.2 ± 0.2 

Aerobic 6.9 – 7.7 7.3 ± 0.2 6.9 – 7.7 7.3 ± 0.2 

Secondary 
Clarifier 

7.1 – 8.7 7.9 ± 0.6 7.1 – 7.3 7.2 ± 0.1 

EC (µs/cm) 

Primary Clarifier 1370 - 1498 1421 ± 51  1559 - 1662 1583 ± 39 

Anaerobic 1220 – 1650 1409 ± 127 1345 – 1615 1413 ± 56 

Anoxic 1212 - 1495 1333 ± 89 1230 - 1933 1341 ± 75 

Aerobic 1160 - 1545 1263 ± 75 1153 – 1541 1313 ± 95 

Secondary 
Clarifier 

1189 - 1261 1234 ± 30 1286 - 1618 1455 ± 106 

COD 
(mg/L) 

Primary Clarifier 289 – 344 317 ± 23 255 – 400  350 ± 51 

Anaerobic 72.7 – 177 105 ± 28 53.0 – 240 97 ± 40 

Anoxic 77.0 - 152 100 ± 17 70.5 - 166 100 ± 24 

Aerobic 51.0 – 145 82.5 ± 23 28.0 – 113 67.4 ± 16 

Secondary 
Clarifier 

84.0 – 122 108 ± 15 75 - 116 88.7 ± 15 

TOC (mg/L) 

Primary Clarifier 23.1 - 38.4 30.1 ± 5.9 42.7 – 84.7 60.2 ± 16.2 

Anaerobic 30.1 – 59.9 48.4 ± 8.1 13.5 – 37.9 18.9 ± 3.9 

Anoxic 34.0 – 72.9 53.4 ± 10.8 12.7 – 28.1 17.8 ± 3.6 

Aerobic 10.6 - 25.4 13.8 ± 3.7 10.6 – 15.7 12.9 ± 1.5 

Secondary 
Clarifier 

10.5 – 14.8 12.5 ± 1.5 15.2 – 16.7 15.6 ± 0.6 

NO2
- 

(mg/L) 

Primary Clarifier N.D N.D N.D N.D. 

Anaerobic 0.0 – 0.58 0.12 ± 0.10 0.0 – 4.0 0.52 ± 0.97 

Anoxic N.D N.D 0.0 – 4.2 0.6 ± 0.9 

Aerobic 0.0 – 0.6 0.03 ± 0.1 0.0 – 3.1 0.14 ± 0.5 

Secondary 
Clarifier 

0.0 – 3.3 0.73± 1.2 N.D. N.D. 

NO3
- 

(mg/L) 

Primary Clarifier 0.084 – 1.2 0.72 ± 0.47 N.D. N.D. 

Anaerobic 0.0 – 1.17 0.38 ± 0.33 0.0 - 2.9 0.51 ± 1.0 

Anoxic 0.0 – 1.1 0.39 ± 0.39 0.0 – 4.1 0.60 ± 1.1 

Aerobic 0.0 - 0.7 0.16 ± 0.24 0.0 – 2.2 0.92 ± 1.0 

Secondary 
Clarifier 

0.12 – 3.5 1.7 ± 1.6 N.D. N.D. 

NH4
+ 

(mg/L) 

Primary Clarifier 29.2 – 38.5 35.1 ± 3.1 29.1 – 35.3 31.0 ± 2.4 

Anaerobic 23.0 - 40.1 35.1 ± 3.7 12.4 – 23.3 16.6 ± 3.7 

Anoxic 28.9 – 40.0 33 ± 3.4 13.0 – 19.2 16.6 ± 1.5 

Aerobic 11.5 - 38.2 24.9 ± 4.8 0.0 – 10.9 2.40 ± 2.6 

Secondary 
Clarifier 

19.8 – 22.1 21.1 ± 1.1 0.23 – 3.1 1.61 ± 1.2 

Primary Clarifier 0.820 – 5.92 3.34 ± 1.8 4.70 – 13.3 10.2 ± 3.6 
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Parameter and Location Range of values at 
13℃ 

Average ± SD at 
13℃ 

Range of values at 
17℃ 

Average ± SD at 
17℃ 

PO4
3- 

(mg/L) 

Anaerobic 25.2 – 93.6 63.9 ± 20.3 45.3 – 176 97.5 ± 42.7 

Anoxic 44.1 - 172 92.8 ± 39.8  45.2 - 195 95.7 ± 43.5 

Aerobic 0.100 - 6.10 2.9 ± 2.1 2.20 – 13.1 7.50 ± 3.42 

Secondary 
Clarifier 

0.140 – 6.23 2.5 ± 1.9   2.70 – 12.3 10.2 ± 4.2 

SO4
2- 

(mg/L) 

Primary Clarifier 123 - 137 127 ± 6.3 342 – 412  382 ± 26 

Anaerobic 166 - 242 201 ± 26 195 – 243 224 ± 4.1 

Anoxic 167 - 228 199 ± 23 203 - 240 224 ± 8.8 

Aerobic 57.6 – 227 167 ± 51  198 – 418 274 ± 73 

Secondary 
Clarifier 

117 – 129 124 ± 4.8 318 - 411 383 ± 38 
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Appendix D: Chapter 5 Supplementary Information 

 

Experimental setup 

 

A detailed description of experimental setup can be found in our previous study (Asadi and 

McPhedran 2021a) with a brief overview included herein. As shown in Figure D2, the experimental 

setup included three 5 L glass reactors to simulate the aerobic, anaerobic, anoxic reactors, and primary 

and secondary clarifiers for use in the generation and determination of GHG EREs. Each glass reactor 

was filled with collected wastewater samples from the SWTP, sealed, and maintained at 13 °C and 

17 °C. The syringes positioned in the reactor caps wastewater were used to sample the reactor’s 

wastewater to be monitored in terms of temperature, pH, electrical conductivity, total organic carbon, 

sulphate, phosphate, nitrite, nitrate, ammonium, and dissolved oxygen concentrations. The 

wastewater quality parameters were monitored every 2 h from 0 to 8 h and at the 24th hour of the 

experimental runs. 

Except for clarifier reactors that were left unstirred, each reactor's wastewater was mixed by a 

magnetic stirrer. Aerobic condition was created by pumping air into the reactor at different rates to 

maintain the dissolved oxygen concentrations between 1.0 to 2.0 ppm which is the typical dissolved 

oxygen range in the SWTP’s aeration reactors. For other reactors, nitrogen gas was pumped into the 

reactor headspaces to carry the produced gases into the gas analyser. The air and nitrogen pumping 

rates into the reactors were controlled by valves and constantly observed by airflow meters positioned 

before and after each reactor.  The greenhouse gas samples were taken by gas-tight syringes placed 

downstream of the reactor every 30 min for the first 2 h, then every 2 h until the 8th hour, and finally 

at the 24th hour of the experimental runs. The carbon dioxide, methane, and nitrous oxide 

concentrations were measured using gas chromatography coupled with a thermal conductivity 

detector, flame ionizer detector, and an electron capture detector, respectively.   

Each reactor’s EREs were calculated using the monitored off-gas flowrate and measured gas 

concentrations. Thus, the total EREs for each process at the SWTP were computed using the reactor 

EREs as follows: 

ERE = 10-6 × ERE reactor × HRT × WFR / V reactor (1) 

Where, ERE = estimated emission rate from the actual SWTP treatment process (kg/d); EREreactor 

= monitored gas emission rate from the reactor (mg/min); HRT = hydraulic retention time of the 

treatment process (min); WFR = wastewater flow rate of the treatment process (m3/d); and Vreactor = 
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working volume of the batch reactor (m3) (Table D1). Subsequently, ERE from the actual SWTP 

treatment process in terms of influent wastewater flow rate (ERE v) can be computed as follows: 

ERE v = ERE / WFR influx (2) 

Where, WFR influx = influent wastewater flow rate (m3/d). 

 

  



 

189 

 

 

 

Figure D1: Schematic experimental setup of batch reactors used to estimate greenhouse gas (GHG) 

emissions for simulation of: (a) aerobic reactors; (b) anaerobic and anoxic reactors; and (c) primary 

and secondary clarifiers. 
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Figure D2: Saskatoon Wastewater Treatment Plant (SWTP) facility layout. Bioreactors include 

anoxic, anaerobic, and aerobic processes in different basins. The orange squares represent the 

approximate sampling locations used for acquiring samples used in study experiments. Note: 

WASSTRIP = Waste Activated Sludge Stripping to Recover Internal Phosphate; RAS = return 

activated sludge; FS = fermenter sludge. 
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Figure D3: The training and test R, RMSE, and IA results of the developed nonlinear regression 

models via original data (orange) and a mix of original and 100 virtual GAN-generated data 

(yellow) for the determination of GHG EREs from the aerobic reactor for (a, b, and c) CO2; (d, e, 

and f) CH4; and (g, h, and i) N2O, respectively. Note that error bars represent standard deviation 

values of 5 model runs. 
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Table D1: Characteristics of open-to-air treatment processes at the Saskatoon Wastewater 

Treatment Plant (SWTP) (Courtesy of SWTP). 

Parameter Units Primary 

clarifier 

Anaerobic 

reactor 

Anoxic 

reactor 

Aerobic 

reactor 

Secondary 

clarifier 

Hydraulic 

Retention Time 

(HRT)  

min 220 120 180 240 380 

Wastewater Flow 

Rate (WFR)  

m3/d 93,000 275,400 275,400 275,400 189,000 
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Table D2: The operating parameters measured during experimental campaigns at temperatures of 

13 ℃ and 17 ℃ including minimum, maximum, and average (±standard deviation (SD)) values. 

Note ND: Not determined. 

Parameter and Location Range at 
13 ℃ 

Average ± SD at 
13 ℃ 

Range at 
17 ℃ 

Average ± SD at 
17 ℃ 

pH 

Primary Clarifier 7.4 – 8.5 7.9 ± 0.4 7.1 – 7.7 7.3 ± 0.2 

Anaerobic 6.9 – 8.1 7.5 ± 0.3 7.0 – 8.0 7.3 ± 0.3 

Anoxic 6.9 – 8.2 7.5 ± 0.4 7.0 – 7.9  7.2 ± 0.2 

Aerobic 6.9 – 7.7 7.3 ± 0.2 6.9 – 7.7 7.3 ± 0.2 

Secondary 
Clarifier 

7.1 – 8.7 7.9 ± 0.6 7.1 – 7.3 7.2 ± 0.1 

EC (µs/cm) 

Primary Clarifier 1,370 – 
1,498 

1,421 ± 51  1,559 – 
1,662 

1,583 ± 39 

Anaerobic 1,220 – 
1,650 

1,409 ± 127 1,345 – 
1,615 

1,413 ± 56 

Anoxic 1,212 – 
1,495 

1,333 ± 89 1,230 – 
1,933 

1,341 ± 75 

Aerobic 1,160 – 
1,545 

1,263 ± 75 1,153 – 
1,541 

1,313 ± 95 

Secondary 
Clarifier 

1,189 – 
1,261 

1,234 ± 30 1,286 – 
1,618 

1,455 ± 106 

COD 
(mg/L) 

Primary Clarifier 289 – 344 317 ± 23 255 – 400  350 ± 51 

Anaerobic 72.7 – 177 105 ± 28 53.0 – 240 97 ± 40 

Anoxic 77.0 – 152 100 ± 17 70.5 – 166 100 ± 24 

Aerobic 51.0 – 145 82.5 ± 23 28.0 – 113 67.4 ± 16 

Secondary 
Clarifier 

84.0 – 122 108 ± 15 75 – 116 88.7 ± 15 

TOC 
(mg/L) 

Primary Clarifier 23.1 – 38.4 30.1 ± 5.9 42.7 – 84.7 60.2 ± 16.2 

Anaerobic 30.1 – 59.9 48.4 ± 8.1 13.5 – 37.9 18.9 ± 3.9 

Anoxic 34.0 – 72.9 53.4 ± 10.8 12.7 – 28.1 17.8 ± 3.6 

Aerobic 10.6 – 25.4 13.8 ± 3.7 10.6 – 15.7 12.9 ± 1.5 

Secondary 
Clarifier 

10.5 – 14.8 12.5 ± 1.5 15.2 – 16.7 15.6 ± 0.6 

NO2
- 

(mg/L) 

Primary Clarifier N.D. N.D. N.D. N.D. 

Anaerobic 0.0 – 0.58 0.12 ± 0.10 0.0 – 4.0 0.52 ± 0.97 

Anoxic N.D. N.D. 0.0 – 4.2 0.6 ± 0.9 

Aerobic 0.0 – 0.6 0.03 ± 0.1 0.0 – 3.1 0.14 ± 0.5 

Secondary 
Clarifier 

0.0 – 3.3 0.73± 1.2 N.D. N.D. 
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Parameter and Location Range at 
13 ℃ 

Average ± SD at 
13 ℃ 

Range at 
17 ℃ 

Average ± SD at 
17 ℃ 

NO3
- 

(mg/L) 

Primary Clarifier 0.084 – 1.2 0.72 ± 0.47 N.D. N.D. 

Anaerobic 0.0 – 1.17 0.38 ± 0.33 0.0 – 2.9 0.51 ± 1.0 

Anoxic 0.0 – 1.1 0.39 ± 0.39 0.0 – 4.1 0.60 ± 1.1 

Aerobic 0.0 – 0.7 0.16 ± 0.24 0.0 – 2.2 0.92 ± 1.0 

Secondary 
Clarifier 

0.12 – 3.5 1.7 ± 1.6 N.D. N.D. 

NH4
+ 

(mg/L) 

Primary Clarifier 29.2 – 38.5 35.1 ± 3.1 29.1 – 35.3 31.0 ± 2.4 

Anaerobic 23.0 – 40.1 35.1 ± 3.7 12.4 – 23.3 16.6 ± 3.7 

Anoxic 28.9 – 40.0 33 ± 3.4 13.0 – 19.2 16.6 ± 1.5 

Aerobic 11.5 – 38.2 24.9 ± 4.8 0.0 – 10.9 2.40 ± 2.6 

Secondary 
Clarifier 

19.8 – 22.1 21.1 ± 1.1 0.23 – 3.1 1.61 ± 1.2 

PO4
3- 

(mg/L) 

Primary Clarifier 0.820 – 
5.92 

3.34 ± 1.8 4.70 – 13.3 10.2 ± 3.6 

Anaerobic 25.2 – 93.6 63.9 ± 20.3 45.3 – 176 97.5 ± 42.7 

Anoxic 44.1 – 172 92.8 ± 39.8  45.2 – 195 95.7 ± 43.5 

Aerobic 0.100 – 
6.10 

2.9 ± 2.1 2.20 – 13.1 7.50 ± 3.42 

Secondary 
Clarifier 

0.140 – 
6.23 

2.5 ± 1.9   2.70 – 12.3 10.2 ± 4.2 

SO4
2- 

(mg/L) 

Primary Clarifier 123 – 137 127 ± 6.3 342 – 412  382 ± 26 

Anaerobic 166 – 242 201 ± 26 195 – 243 224 ± 4.1 

Anoxic 167 – 228 199 ± 23 203 – 240 224 ± 8.8 

Aerobic 57.6 – 227 167 ± 51  198 – 418 274 ± 73 

Secondary 
Clarifier 

117 – 129 124 ± 4.8 318 – 411 383 ± 38 
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