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Abstract

The SHiP experiment is a proposed fixed target experiment at the CERN SPS to

search for new particles. To operate optimally, the experiment should feature a zero

background environment. The residual muons flying from the target are one of the

largest sources of the background. To remove them from the detector acceptance, a

dedicated muon shield magnet is introduced in the experiment. The shield should

be optimised to deliver the best physics performance at the lowest cost.

The optimisation procedure is very computationally costly and, thus, requires ded-

icated methods. This thesis comprises of a detailed description of a new machine

learning method for the optimisation, comparisons to existing techniques, and the

application of the method to optimising the muon shield magnet. In addition, the

set of technological and simulation problems a↵ecting the optimisation is discussed

in details. Finally, the set of requirements for the muon shield prototype design and

verification is presented.
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Chapter 1

Introduction

With the discovery of the Higgs boson by the ATLAS [1] and CMS [2] collaborations,

all particles predicted by the Standard Model (SM), with the exception of the anti-tau

neutrino, have been observed [3]. Nevertheless, certain observed phenomena remain

unexplained by the SM. It has been proven that neutrinos have non-zero mass as

opposed to SM postulation [4]. The observed baryon asymmetry in the Universe

is yet another problem not described by the SM [5]. If the amount of matter and

anti-matter had been the same, the earlier-state Universe would have been preserved,

and no large mass formations would have been possible [5]. One more issue is the

presence of Dark Matter and Dark Energy in the Universe. From cosmological

observations, it is estimated that ordinary matter accounts only for 5% of the total

composition of the Universe. The remaining part is made of about 68% of Dark

Energy and about 27% of Dark Matter [6, 7]. These observations suggest the possible

presence of new physics beyond the SM (BSM physics), which is yet to be discovered.

Given no new particles have been found, these new BSM particles are expected to

either be very heavy, and thus not accessible by accelerators, or to interact weakly

with ordinary matter, thus requiring high experiment intensity to be observed [8].

One possibility is that the hypothetical particles are heavy and require very high

collision energy to be observed, the so-called “energy frontier” research. In the last

decades, many major experiments, such as the Large Hadron Collider (LHC) at

the European organisation for Nuclear Research (CERN) and Tevatron facility in

the US, have followed this path. Future proposed experiments, such as the Future

Circular Collider (FCC), are designed to pursue similar avenues. The second option

is that new particles have very feeble interactions and, thus, stay unobserved. If this

is true, the new experiments will need to cross the “intensity frontier” to detect new

particles [8].
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Hidden Sector (HS) models (or portals) are BSM models that have one or several

long-lived neutral particles which interact with SM only via mediator particles. The

idea of HS portals is very appealing since these models allow the construction of

new complex forces that cause interactions between BSM and SM particles. The

couplings of the mediator particles to SM particles are so weak that observed SM

phenomena remain una↵ected [9, 10, 11].

Three main possible portals will be described in more detail later in this thesis:

Vector portal, Scalar portal and Neutrino portal. Another possible extension to the

SM are non-renormalisable axion-like particles (ALP). Portals can provide a mediator

between Dark Matter and SM particles, and additional annihilation channels relevant

to the freeze-out of Dark Matter [8].

As mentioned above, new particles can be very light but still inaccessible at the LHC

and other collider experiments because of their weak couplings to SM particles. In

such experiments, any rare decay of a Hidden Sector particle may be obscured by a

huge background. The searches via missing mass technique are also challenging due

to the need to construct a highly granular detector that can cover 4⇡ spherical angle

and distinguish the constituents of the overlapping jets to determine the missing

mass precisely [12].

The Search for Hidden Particles (SHiP) experiment is a recently proposed fixed target

experiment at CERN designed to directly search for extremely weakly interacting

new particles at low energies [8, 13, 14], hypothesised by Hidden Sector models. The

SHiP experiment will operate at the “intensity frontier” of the searches.

At SHiP, protons at an energy of 400GeV are injected by the CERN Super Proton

Synchrotron (SPS) ring, and shot at a fixed target to produce potential BSM and

SM particles via various processes. With such a high-intensity proton beam, the

resulting rate of SM particles will be very high. Therefore, to fully exploit the high

intensity of the experiment and to make the detection of BSM particles feasible, the

experiment must be able to reduce the SM background rate to nearly zero. This

poses an extremely challenging task. While hadrons produced in the target can be

easily stopped by a dedicated hadron absorber, eliminating outgoing muons is one of

the most important challenges of the experiment.

Thus, one of the most critical tasks of the experiment is to reduce the muon flux

rate to a manageable level from the initial 1011 muons/spill. To solve this problem,

an experiment subsystem, named the muon shield, was proposed. The crucial task

is to perform an optimisation of the shape and magnetic fields of the shield to

e�ciently sweep out muons. Since the muon shield is a complex system of magnets
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characterised by many parameters, its optimisation is an extremely daunting problem

and requires the use of state-of-the-art optimisation algorithms and machine learning

methods. Given the importance of the problem, several iterations of optimisation

utilising machine learning methods have been done. The last iteration, described

in this thesis, has resulted in a new optimisation algorithm called local generative

surrogate optimisation (L-GSO).

Machine Learning methods are well-established methods in various computer science

fields, such as computer vision, natural language processing [15] and reinforcement

learning [16]. With their success in the original domain, the popularity and successful

application of machine learning methods are extending to natural sciences domains,

such as biology [17], chemistry [18], physics [19] and many more. Moreover, the field

of high energy physics (HEP) is currently experiencing an exponential growth in the

successful application of machine learning methods in a range of HEP topics such

as: jet classification [20], particle identification (PID) [21], tracking [22], anomaly

detection [23] and likelihood-free inference [24]. In addition to the problems above,

machine learning methods such as Bayesian optimisation [25, 26] and evolutionary

strategies [27] have been applied for the optimisation tasks in the domain of high

energy physics [28, 29].

Many optimisation methods can be applied in the context of the SHiP muon shield

optimisation task. They include Bayesian optimisation [25, 26], numerical di↵erences

[30], genetic algorithms [31, 32] and stochastic gradient estimators [33]. All the

algorithms above share the property of being able to optimise noisy complex black-box

functions where it is computationally expensive to evaluate a function. Interestingly,

Monte Carlo simulators in the HEP domain can be treated as such functions, thus

allowing the application of the aforementioned machine learning methods. However,

each of these algorithms has its own drawbacks and benefits and might be nonoptimal

for the particular task of shield optimisation. The reasons behind the performance of

each algorithm will be discussed in detail in this thesis. In what follows, this thesis

will be focused on the application of the machine learning techniques to the shield

optimisation, and, in particular, the L-GSO algorithm, in the development of which

the author of this thesis took a leading role.

Finally, after the last iteration of the shield optimisation it is clear that a dedicated

muon shield prototype is needed to test all the assumptions included in the opti-

misation procedure. These assumptions include both physical and technological

simplifications used during the optimisation, that require verification. The detailed

description of the simplifications, potential solutions and the prototype test beam

experiment are discussed later in the thesis.
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Chapter 2 describes the theoretical motivation for the SHiP experiment. In particular,

it gives a brief overview of the physics program that is possible to explore in the

experiment and its importance as an extension to the Standard Model (SM).

Chapter 3 contains a detailed description of the SHiP experiment. It describes the

overall experimental setup, the properties of the proposed experimental facility and

the details of the implementation of the experiment subsystems. Additionally, it de-

scribes requirements imposed on the subsystems to meet planned physics performance

and achieve zero background rates.

Chapter 4 provides a mathematical formulation of an optimisation problem and gives

a broad overview of the algorithms used for optimisation in computer science and

natural sciences. In particular, it provides an explicit description of the optimisation

procedure in high energy physics experiments which utilise Monte Carlo methods

to perform simulations. The chapter then dives into the details of various optimisa-

tion methods, their mathematical formulation and applicability in the SHiP shield

optimisation.

Chapter 5 describes in detail the L-GSO algorithm, the motivation behind the

algorithm, potential drawbacks and ways to mitigate them. It then demonstrates the

performance of the algorithm on a set of toy mathematical and physics problems and

performs a comparison of L-GSO to other available optimisation methods. The new

algorithm has resulted in the publication in the machine learning venue [34]. Thus,

some details of the algorithm in the chapter may appear similar to the publication.

Chapter 6 contains the application of the L-GSO algorithm for shield optimisation.

It starts with an overview of previous findings, an explanation of the constructional

limitations and the reasons for the re-optimisation. It then describes in detail a new

strategy for the optimisation, a new objective function, and compares a newly found

geometry with the previous baseline. Finally, simulation simplifications and their

implication for the optimisation are discussed.

Chapter 7 concludes the thesis with the motivation behind the shield prototype, its

design and a set of experimental measurements required to verify the design.



Chapter 2

Portal models

2.1 Experimental evidence for the Beyond Stan-

dard Model physics

The Standard Model (SM) is the cornerstone theory of modern particles physics. It

is able to successfully describe and predict the majority of observed phenomena in

particle physics, such as the W, Z and Higgs bosons, the gluon and the top quark.

Additionally, the SM has been able to precisely predict not only the existence but

also the properties of these particles. Overall, it successfully describes strong, weak

and electromagnetic forces. However, there are challenges beyond the SM that still

need to be solved to create a complete theory of the Universe. Furthermore, if in the

case of the gravitational force, the general theory of relativity is a well established

and experimentally checked theory which successfully describes all the gravitational

interactions, the origin of baryon asymmetry, Dark Matter, and Dark Energy and

neutrino masses are still open questions in science.

• Dark Matter: One of the most intriguing questions of the last decades is the

nature of Dark Matter. It is known now that Dark Matter accounts for 27%

of matter, whereas usual matter accounts only for 5% in the total composition

of the Universe, with the rest being Dark Energy. Experimental proofs of the

existence of Dark Matter stem largely from cosmological observations, such as

galaxy rotation curves [35], gravitational lensing [36], and the cosmic microwave

background [37] which lead to the creation of the ⇤-CDM model. A few models

are describing Dark Matter: cold, warm and hot Dark Matter. By cold Dark

Matter, it is usually meant that the dark matter particle is non-relativistic [38].

6



2.1. Experimental evidence for the Beyond Standard Model physics 7

This property allows Dark Matter to support modern galaxies formation, thus

making the cold Dark Matter model very appealing for cosmology. Examples of

such models include Axions and Weakly Interactive Massive particles (WIMPs).

Warm Dark Matter consists of relativistic particles such as heavy neutral

leptons (HNL) [39]. Finally, hot Dark Matter is an ultrarelativistic version of

Dark Matter; for example, a neutrino particle can be classified as hot Dark

Matter [39].

• Baryon asymmetry of the Universe (BAU): According to a modern

understanding of fundamental processes, matter and anti-matter were produced

in equal amounts during the Big Bang. However, as observed today, there

is an asymmetry of baryons over anti-baryons, which is described by ⌘ =
nB�nB̄

n�
= nB

n�
⇡ 10�10, where nB is number of baryons and n� is number of

photons resulting from the annihilation processes. There is no explanation

for the observed BAU in the SM. Although there is evidence of CP-symmetry

violation in the CKM matrix, the magnitude of the e↵ect is not large enough

to explain the observed baryon asymmetry. However, CP violation provides

evidence that an asymmetry could have been created dynamically during

baryogenesis. Recently, CP-asymmetry has also been observed in the T2K

experiment through the measurement of non-zero �CP in neutrino mixing[40],

thus making a new step to test the leptogenesis models [41].

• Neutrino masses: In the SM, neutrinos are massless; however, it is known

from neutrino oscillation phenomena that they must have non-zero mass [4].

Since we only observe left-handed neutrinos, one can not utilise the Yukawa

Coupling mechanism to generate their mass. As such, an extension of the SM is

needed, which introduces right-handed neutrinos and thus naturally generates

their mass. A new extension of the SM, however, must take into account

constraints on the neutrino mass splitting from oscillation experiments and an

upper limit on the sum of neutrino masses from cosmological observations of

the baryonic and Dark Matter densities and neutrino freeze-out e↵ect [42].

All of the above observations suggest the physics beyond the SM model. As was

mentioned, one way to create an extension of the SM is via Hidden Sector portals.

In what follows, the models that can be probed in a beam dump experiment are

described.
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2.2 Vector Portal

In this model, a new U(1) gauge symmetry is introduced, under which only the

Hidden Sector particles receive an associated charge, while the SM particles interact

with the Hidden Sector via a kinetic mixing mechanism [43]. By analogy with the

SM QED Lagrangian, a new vector particle charged under this symmetry is called a

Dark Photon A
0
, and the Lagrangian has the following form:

L = LSM �
1

4
F

0

µ⌫F
0µ⌫ � ✏

2
Fµ⌫F

0µ⌫ +
1

2
m2

A0A
0

µA
0µ (2.1)

where F
0
µ⌫ = @µA

0
⌫ � @⌫A

0
µ is the strength tensor of the “dark” field. The term

✏
2Fµ⌫F

0µ⌫ represents a kinetic mixing mechanism and provides interaction between

Dark Photon and the SM photon. Then the simplest extension introduces the Dark

Matter field � by adding the following term L� = �̄[�µ(i@µ � g
0
A

0
µ)�m�]� to the

Lagrangian above, and g
0
is the gauge coupling. The model can potentially help to

explain a couple of experimental observations.

The g � 2 anomaly refers to the discrepancy between the measured muon magnetic

moment and the SM prediction [44]. Existing theories do not explain this deficiency

of theory with respect to experimental observations. Although the anomaly cannot

be explained by the Dark Photon alone, there is still a potential region of parameters

where the Dark Matter-Dark Photon model can provide a positive correction to the

theory required to match experimental data [45].

Utilising Dark Photon mediators, one can solve the problem of Dark Matter overpro-

duction in the early Universe. To do so, a Dark Matter with mass m� is introduced

and annihilates via the process shown in Figure 2.1, where ↵D = (g
0
)2/4⇡. Thus,

one can find the annihilation rate:

�v ⇠
↵↵D✏2m2

�

m4
A0

, (2.2)

where v is the relative velocity of colliding Dark Matter particles. Extensive searches

for Dark Matter have been conducted in the mass range of O(10� 104)GeV, usually

referred to as the WIMP region. WIMPs have been extensively searched for by

direct detection experiments such as XENON100 [46] and XENON1T [47], as well as

presently operating experiments such as LUX-Zeplin [48]. However, up to now, no

WIMPs have been observed. In the region below O(10)GeV such experiments become
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A
0 �

�

�̄

e+

e�

p
↵D

p
↵

✏

Figure 2.1: Feynman diagram of Light Dark Matter annihilation via Dark Photon
with subsequent decay to two leptons.

insensitive to nuclear recoils and are overwhelmed by the neutrino background. The

existing and projected limits for such experiments are presented in Figure 2.2.

Introducing Light Dark Matter (LDM) via vector portal has the advantage of

setting ↵D to an arbitrary value, with the only requirement of matching current DM

abundance in the Universe. This mechanism allows to introduce LDM with mass

m� ⇡ O(MeV�10 GeV) which can be explored in the accelerator-based experiments.

From Figure 2.1, it can be seen that Dark Photon can decay to Dark Matter in

the case 2m� < mA0 . The ratio of the decay rates of A
0
to a visible mode and

to Dark Matter scales as ↵✏2/↵D. In the case of ↵✏2 � ↵D, Dark Photon can fly

macroscopic distances and be detected in the downstream detectors via its decay to

visible particles (leptons and hadrons). If ↵✏2 ⌧ ↵D holds, Dark Photon immediately

decays to Dark Matter, which can be detected in the dense material of the dedicated

detectors via Dark Matter scattering o↵ electrons or nucleons, and this is discussed

in details in section 2.6.

The main production mechanisms of Dark Photon in accelerator-based experiments

are:

• Meson decays: Mesons are produced in large abundance at the beam dump

of an experiment. Decays of ⇡0, ⌘,! contribute the most to Dark Photon

production up to mA0 ⇠ 0.9GeV.

• Bremsstrahlung: Relevant for electron and proton beams, where either electron

or proton scattering on a fixed target with a charge Z results in a radiated

Dark Photon, eZ ! eZA
0
or pZ ! pZA

0
.

• QCD production: Dark Photon is produced in the qq̄ annihilation process,

which can happen at a hadron collider or at a proton beam dump experiment.

• e+e� annihilation at e+e� colliders.
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Figure 2.2: Existing and projected limits of the WIMP-nucleon scattering. [49]

The relative contribution of each mechanism depends on the Dark Photon mass range

and the energy of colliding particles. Additionally, Dark Photons can be produced in

an electromagnetic shower with the cascade e↵ect, which can significantly contribute

to the production rates.

2.3 Scalar Portal

In this model, a scalar singlet S is coupled to the gauge invariant combination H†H

of the Standard Model Higgs doublet [8]:

L = LSM +
1

2
(@µS)

2 � M2
S

2
S2 + gSH†H + Lself , (2.3)

where g is the coupling constant and Lself is a self-interaction term. After symmetry

breaking, one obtains:

LS,int = ✓S

"
X

f

mf f̄f +MWW+
µ W�µ + . . .

#
(2.4)
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W�

t

S

B� { b

ū

`+
`�

s

ū} K�
Vtb V ⇤

ts

(a)

W�

t

S

K� { s

ū

`+
`�

d

ū} ⇡�
Vts V ⇤

td

(b)

Figure 2.3: Feynman diagram of Dark Scalar S production from (a) a B decay and
(b) a K decay and the subsequent decay of S to two leptons.

where ✓ = gv/mH and v = 246GeV is the Higgs boson vacuum expected value

(VEV), and mH is the Higgs boson mass. The sum goes over all massive fermions

(leptons and quarks). Dark Scalars may be produced in the decays of B±, K±

and D± mesons. In fact, only the contributions from B and K are relevant since

their decay width is proportional to the top-quark mass as m4
t , whereas the decay

width of the D meson scales only as m4
b . Thus, the contribution of the D meson to

the total flux of Dark Scalars is suppressed by O(106). The decay modes of Dark

Scalar consist of e+e�, µ+µ�, ⇡+⇡� pairs for masses up to 1GeV, and from decays to

kaons and tau-leptons after 1GeV [50]. The relevant Feynman diagrams are shown

in Figure 2.3.

A Light Dark Scalar can also be a mediator portal for Dark Matter. Dark Matter

pairs can directly annihilate into SM particles via an interaction with a Dark Scalar.

As long as the value of ✓ agrees with the SM processes rate, one can select a coupling

of DS to DM to produce the correct Dark Matter density. In such a model, it is

possible to search for Dark Matter via its scattering on nuclei in the same way as it

is done for Dark Photons. In that case, a beam dump experiment can probe Dark

Matter masses in the range of 1� 10GeV [8].

2.4 Neutrino portal

It is possible to extend the Standard Model with right-handed neutrinos without

violating any other parts of the theory. If the newly added neutrinos have the Dirac

mass term, they are not capable of explaining BAU. However, since neutrinos are

uncharged, one can substitute the Dirac mass term with the Majorana term, thus

introducing lepton-number violation and a potential solution to BAU [51]. Finally,
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Figure 2.4: Feynman diagrams of possible NHL a) production and b) decay modes.

both Dirac and Majorana mass terms can be added to the model. In that case, after

diagonalising the mass matrix, one would obtain three light active neutrinos and

N sterile neutrinos or Heavy Neutral Leptons [52]. The Lagrangian for this case is

presented below:

L = LSM + N̄ii/@Ni + F↵i(L̄↵�)Ni +MiN̄iNi + h.c., (2.5)

where L↵ is the left lepton doublet, ↵ 2 {e, µ, ⌧} is a flavour index, F↵i is a dimen-

sionless Yukawa coupling and � is the Higgs doublet.

Theoretically, it is possible to have an arbitrary number of HNLs with masses ranging

from keV to ⇠ 1018GeV. However, it was shown in the ⌫MSM [52] extension of

the SM that by introducing three generations of HNLs, all three problems of the

SM can be solved simultaneously. To do so, the see-saw mechanism is used [53],

with at least one generation of the HNL. N1 should have a mass of an order of 10

keV, and can be a candidate for warm Dark Matter [52]. To correctly determine

active neutrino masses, one can further introduce N2,3 that may have arbitrary large

masses. The presence of three generations of right-handed neutrinos itself determines

correct active neutrino masses [52]. In addition to it, it was shown that by restricting

masses of N2,3 to the order of the MeV - GeV scale, BAU could be introduced via

leptogenesis [51, 54]. The ability to solve three major challenges of the Standard

Model while introducing particles in the mass range within the reach of modern

accelerators makes the ⌫MSM theory very appealing to probe experimentally.

In beam dump experiments, HNLs can be produced in the decays of heavy flavour

particles. Mostly B and D mesons contribute to the production of the HNL, as

presented in Figure 2.4. The subsequent decay of the HNL occurs via mixing with

an active neutrino and its subsequent decay to one charged lepton and a W or Z

boson. Thus, in the final state, a HNL decay can produce two or three outgoing

particles, e.g.:
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Ni ! l+l�⌫; Ni ! l⇡, lK (2.6)

2.5 Axion-Like Particles

One can add non-renormalisable theories to the Standard Model Lagrangian to

introduce new particles. In that case, Pseudo Nambu-Goldstone bosons will originate

from a spontaneously broken symmetry of the theory. Originally, such a mechanism

was introduced by Peccei-Quinn [55] to solve the strong CP problem in QCD. Those

new particles have two crucial properties. Firstly, their interactions are suppressed

by the scale of the symmetry breaking fa. Secondly, their masses are suppressed by

the scale of symmetry breaking mA ⇠ 1/fa. The mass of the originally proposed

axion is around 10�5 eV and the beam dump experiments are not sensitive to it [50].

However, one can introduce heavier particles to the theory, utilising the same

mechanism as that used to generate QCD axions. Such particles are called axion-like

particles (ALP). In a similar fashion to Dark Photons, ALPs can be mediators for

Dark Matter, providing a mechanism for Dark Matter annihilation and its subsequent

decay to Standard Model particles [8, 56]. This could provide the correct Dark Matter

abundance [56].

ALPs can couple to SM fermions, photons and gluons. In the case of their coupling

to SM fermions, their production and decay channels are similar to those of Dark

Scalar: they are produced through B and K decays and their subsequent decay to

leptons and hadrons, but with di↵erent couplings [8]. The Lagrangian in that case is

as follows:

L =
@µ�

fa
 �µ�5 (2.7)

When ALPs couple to photons, they are produced via the Primako↵ e↵ect [57] and

decay to two photons, with the Lagrangian being:

L =
↵

4⇡fa
�Fµ⌫F

µ⌫ (2.8)
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2.6 Light Dark Matter

Di↵erent techniques exist to search for Light Dark Matter particles at accelerators:

• LDM is produced by the intensive beam of electrons or hadrons, and subse-

quently scatters in the detector downstream of the production point. Examples

of such a setup are SHiP [14], LSND [58] and MiniBoone [59].

• Missing mass experiments, such as BaBaR [60] and Belle II [61], aim to recon-

struct the energy and momentum of the outgoing photon in e+e� collisions

e+e� ! �A
0
. Such experiments require a mono-photon trigger and low back-

ground to achieve this task.

• Missing energy experiments, such as LDMX [62] and NA64 [63], reconstruct

the recoil energy and momentum of an electron in the scattering: eZ ! eZA
0
.

Such experiments have to suppress the background from neutrino scattering

events.

All three techniques allow to search for LDM that can be produced via a Dark Photon

mediator as discussed in the Section 2.2. However, it has to be noted, that the

number of events in the first approach is proportional to ✏4, whereas in second and

third to ✏2, which makes the direct Dark Matter scattering experiments challenging.

Nevertheless, the benefit of the first approach is that it allows to probe LDM models

with mediators other than Dark Photon, for instance, Dark Scalar from Section 2.3.

In its general form, the Lagrangian for LDM is as follows:

LLDM = Ldark[ LDM , mediator] + Lportal[ mediator, SM ] + LSM [ SM ], (2.9)

where Lportal is di↵erent for di↵erent portal models. For example, in the afore-

mentioned case of Dark Photon, Lportal = � ✏
2Fµ⌫F

0µ⌫ , in the case of scalar portal

Lportal = gSH†H, and for the leptophobic mediators Lportal = ✏VµJ baryon
µ , where

J baryon
µ is a baryon current.

In beam dump experiments, there are three main production mechanisms for LDM

that coincide with Dark Photon production:

• Meson decays: ⇡0/⌘ ! � + A
0 ! � + �† + �
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Figure 2.5: Feynman diagram of Light Dark Matter scattering on an electron or a
nucleon via Dark Photon (Dark Scalar) mediator.

• Beam (proton or electron) bremsstrahlung: p(e) + N ! p(e) + N + A
0 !

p(e) +N + �† + �

• QCD production: q + q̄ ! A
0 ! �† + �

In the missing energy experiments only the second production mechanism is feasible

to pursue. In such experiments, an intense beam of electrons impinges on the target

and the recoil energy or momentum of the electron is measured. It is only possible to

perform such experiments with an electron beam, since the bremsstrahlung probability

is suppressed for a proton beam [62]. The main benefit of such an approach is that

the number of observed events is only suppressed by a factor of ✏2, since the approach

requires the observation of LDM production only, without scattering.

In contrast, beam dump scattering experiments are able to detect LDM produced

in all of the above channels. The main drawback of this approach is that the

sensitivity is suppressed by ✏4, first LDM must be produced (✏2) and then scatter

(✏2). Nevertheless, it was shown [58] that even in this scenario it is possible to impose

new constraints on the LDM parameter space by considering LDM elastic electron

or nucleon scattering, inelastic ⇡0-like scattering and deep inelastic scattering. To

detect each of these processes and minimise the background, the experiment must be

equipped with a section of dense material, surrounded by appropriate detectors to

observe the scattering, the electron scattering signature being the easiest to identify.
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The SHiP experiment

3.1 Experiment performance requirements

As it was discussed in Chapter 2, new hypothetical particles can be produced in

heavy flavour decay. To achieve high production rates of heavy flavour particles,

it would be advantageous to have high energy proton beam, as can be seen from

Figure 3.1. The highest energy beam currently available for a beam dump experiment

is located at CERN SPS and provides a proton energy of 400GeV.

There are four main extensions of the SM Lagrangian that can introduce new particles

that can be probed in beam dump experiments: Vector, Scalar, Neutrino portals

and axion-like particles. A summary of the detection signatures for all the models is

presented in Table 3.1. Given the final states, the new experiment should be able to

provide particle identification (PID) in order to distinguish between di↵erent portal

models. In addition, some SM particles originating from neutrino scattering (such

as K0
L, K

0
S), can decay into the same final states as in Table 3.1, thus creating a

background for the portal particle decays. The background can also originate from

muons that are copiously produced in the beam dump. Thus, the experiment must

be able to veto such types of events using a dedicated set of detectors.

Finally, the presence of the Dark Photon portal allows LDM to be probed via its

scattering. To detect LDM, an experiment should include a detector with a dense

material to induce Dark Matter scattering, and tracking detectors with a high spatial

and angular resolution to identify emerging electromagnetic showers and nucleus

recoils, and distinguish them from neutrino scattering events.

The requirements outlined above lead to the experimental layout of the proposed

16
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Figure 3.1: Charm production cross-section in a proton-isoscalar target collision as a
function of proton beam energy in the centre of mass frame [14]. The data points
shown are from a compilation of fixed target results [64].

Portal Final states

Vector l+l�, h+h�

Scalar l+l�, h+h�

Neutrino(2-body) l±K⌥, l±⇡⌥

Neutrino(3-body) l±l⌥⌫l
ALPs (photon) ��
ALPs (fermion) l+l�, h+h�

Table 3.1: Portal detection signatures. l and h denote a lepton and a hadron
respectively.
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Beam

Figure 3.2: Current layout of the SHiP experiment. [50]

Search for Hidden Particles experiment - SHiP.

3.2 Experimental layout

The general design of the SHiP experiment is presented in Figure 3.2. It starts

with a heavy target that maximises heavy flavour production, followed by a hadron

stopper. A dedicated active muon shield is located after it to sweep out muon

particles produced in the target.

The scattering and neutrino detector (SND) is located downstream of the muon

shield. Its main goal is to detect scattering signatures of LDM and ⌧ neutrino physics.

It is equipped with an emulsion-based spectrometer and target trackers, enclosed

inside a magnetised volume.

The main detector, called the Hidden Sector (HS) detector, is located downstream

of the decay volume and aims to measure the decays of HS particles to partially

and fully reconstructible final states, originating in the 50m long decay volume. To

eliminate the neutrino-induced background while maximising detector acceptance,

the decay volume has a pyramidal frustum shape, has a pressure of < 10�2 bar,

and is surrounded by liquid scintillator background taggers (SBT). It is followed

by the straw tracker spectrometer and a magnet. The straw tracker can accurately

reconstruct momenta, decay vertex, mass and impact parameter of the hidden particle

at the proton target. Further downstream, the timing detector (TD), the ECAL and

the muon system are located.
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Figure 3.3: Overview of the CERN North Area including BDF. [50]

3.3 Beam Dump Facility

3.3.1 Beam line

The Beam Dump Facility (BDF) comprises the target, the hadron stopper and the

muon shield and utilises the 400GeV proton beam from the CERN SPS. A nominal

intensity of 4⇥1013 protons on target (POT) per spill is projected for the experiment.

This will result in 4⇥ 1019 protons per year for the SHiP experiment while respecting

other experiments and the HL-LHC requirements. The projected POT for five years

of operation is thus 2⇥ 1020 and is taken as a benchmark for evaluating SHiP physics

sensitivities.

Because SHiP is designed to be a zero-background experiment, the control over

beam extraction procedure and its uniformity is crucial, as the rate of the muon

combinatorial background depends significantly on these factors. A slow extraction

is also required to dilute the power of the beam on the target. A dedicated study

of measuring proton rate per 400 ns and 100 ns in 1 s SHiP spill has been done [65].

The study shows that it is possible to achieve an average proton rate of just a factor

of two to three larger than in a perfectly uniform extraction [50]. Dedicated studies

have also been performed to minimise beam loss during slow extractions [50].

The above conditions of the accelerator operation would utilise the full power of

the CERN SPS beam. Currently, there is no high-intensity facility at CERN that

is compatible with these requirements. Thus, SHiP has proposed to create a new

facility at the CERN North area based on minimal modifications to the existing

facilities, as presented in Figure 3.3 [66].
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Figure 3.4: Mass-momentum areas in which it is possible to separate LDM from the
neutrino by measuring the time-of-flight. Regions corresponsing to 5 ns and 25 ns
in time between bunches are shown. A 40m distance between the target and the
scattering detector is assumed. [50]

Finally, it is worth noting that the uniform beam extraction has a negative e↵ect

in the case of LDM searches and neutrino physics. A bunched beam could provide

evidence for LDM through the use of time-of-flight measurements. Should the

observation require confirmation, SHiP should switch to a bunched beam to increase

the discrimination power between Light Dark Matter and background. Figure 3.4

shows possible search window regions, assuming 4� width of the SPS bunch to be

1.5 ns, and a 40m distance between the target and the scattering detector.

3.3.2 Target system

As it was mentioned in Chapter 2, SHiP requires a target that maximises the

production of charm and beauty mesons as well as photons. Alongside signal-

producing particles, a large number of hadrons, especially pions and kaons, as well

as short-lived resonances, are produced. A hadron stopper of a few meters, located

after the target (see Figure 3.5), is su�cient to absorb most of the hadrons and

electromagnetic radiation. However, it does not protect the experiment from the

decay of the short-lived resonances, pions and kaons, resulting in a large flux of

muons and neutrinos. Thus pions and kaons must be absorbed before their decay.

To achieve this goal, the target is made from material with short interaction length

�int and has a total length of twelve �int. It starts with TZM alloy blocks, followed

by the blocks of pure tungsten. The schematic view of the target is presented in

Figure 3.5. With such a configuration, SHiP is expected to produce 1018D, 1014B

mesons and 1016⌧ leptons for five years of operation [67].

A smaller prototype of the target was tested during the dedicated beam measurements

in 2018. The aim was to check the manufacturing process and mechanical properties
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(a)

(b)

Figure 3.5: (a) Layout of the SHiP target. (b) Cross-section of the target station. The
location of the target, shielding, hadron stopper and magnetic coil can be seen. [50]

of the target during the exposure to the beam and the flux of outgoing muons. The

experimental setup of the traget area was similar to that of SHiP: a cylindrical

SHiP-like target with small �int, followed by an iron hadron stopper and surrounded

by shielding blocks of iron and concrete. 400GeV protons were delivered by H4 SPS

beamline in 4.8 s spills. Roughly 3.5⇥ 1011 POT were recorded for the analysis. The

P and PT distributions as well as the total yield of muons in various energy ranges

were compared to the SHiP simulation. The muons originated from the production

and decay of charm particles, EM resonances and from the decay of non-interacting

pions and kaons were taken into account. The results demonstrated good agreement

with the simulation, with a di↵erence of only up to 20% in the yields [68].

The five-meter-long hadron stopper is located after the target. Ideally, one would

like to make the hadron stopper as short as possible to increase the geometrical

acceptance of the downstream detectors for the hidden particles that have a relatively

large transverse momentum. Thus the minimal distance for the hadron stopper is

dictated by its ability to absorb electromagnetic radiation and hadrons emerging

from the target.

Since SHiP is designed as a zero-background experiment, it is favourable to optimise

the hadron stopper and the target to act as a first section of the muon magnetic shield

to separate positively and negatively charged muons. This allows muons to be swept

out as early as possible, thus decreasing the shield’s overall length and improving the

geometrical acceptance. The hadron stopper is magnetised with the field of ⇠1.6T
through the use of a coil located 1.3m above the beam axis. Radiation exposure

and heat extraction dictate the location and size of the coil. With the coil in place,

the length of the hadron stopper is also limited by radiological requirements. The

possibility of target magnetisation is currently being studied with the requirements
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on the cavern’s radiation exposure being challenging to satisfy.

3.3.3 Muon magnetic shield

The muon shield is one of the central parts of the SHiP experiment. SHiP is expected

to operate at a rate of O(1011) muons per spill, where the spill duration is about 1 s.

Since SHiP is projected as a zero-background experiment, it is estimated that the

muon flux needs to be suppressed by at least six orders of magnitudes to achieve

the acceptable rate of O(105 � 106) muons/s. The passive shield option was not

considered by the collaboration, since at the SPS energies one would require an

enormous amount of high-density material along the beam axis, thus drastically

reducing the geometrical acceptance of the experiment. The choice was made to

utilise classical (“warm”) dipole electromagnets to sweep out muons.

Prior to the work of this thesis, several iterations of the optimisation were performed.

The first version consisted of two parts with a 1.8T magnetic field. The second

option was constructed from six sections of magnets and a magnetised hadron stopper.

Afterwards, a third optimisation was done using machine learning techniques and

resulted in a lighter shield, with a 1.7T field in the magnet and a 1.6T field in

the hadron stopper. This option is currently used as a baseline in the experiment

simulation.

A detailed engineering drawing of the magnet is presented in Figure 3.6. It consists

of six frustum sections, each characterised by six parameters: length plus height,

width and gap size at the beginning and the end. The gap is needed to simulate the

space required for coils to be inserted inside the magnet. Notice that the coils are

located inside for the first half of the magnet and outside for the second half. This

ensures uniformity of the magnetic field in the most active zones of the shield. The

shield should be constructed from rectangular blocks due to production constraints,

described later in the thesis. The total length of the current shield is about 35.5m

and the weight is ⇠ 1.3 kt.

To achieve a high value of the magnetic field, it was decided to use Grain-Oriented

(GO) steel for the magnet material. It allows to achieve fields of 1.7-1.8T with

limited current and light coils which do not require cooling. The GO steel, however,

comes in 0.3-0.5mm thick sheets that are extremely sensitive to mechanical stress

and high temperatures. This poses several technological challenges of cutting and

assembling GO sheets and connecting GO sheets to create a full magnet. Given the

challenges, it was estimated that an average field of 1.7T is more realistic than 1.8T
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Figure 3.6: A CAD engineering model of the current SHiP magnet design.

Figure 3.7: Distribution of the magnetic field in the magnet. A half of the shield is
shown in Y and X cuts of the shield. [50]
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Figure 3.8: A schematic view of the SND detector. [50]

for the entire magnet. The simulated field map is presented in Figure 3.7.

After the current status of the optimisation was revisited, it became clear that a new

iteration of the optimisation and a dedicated test-beam experiment are needed to

validate the simulation and engineering grounds of the muon shield.

In particular, construction limitations, the realisability of the field and the e�ciency

of the design have to be taken into account in the new optimisation. The details of

these concerns will be covered later in the manuscript.

Finally, it was understood that the e↵ect of large-energy loss and large-angle scattering

might a↵ect the result significantly, since there is no experimental data available

for such rare processes at the energies of muons above 10GeV. Validation of the

simulation of these rare processes motivates the construction of a dedicated test-beam

experiment.

3.4 The SHiP detector

3.4.1 SND detector

After the muon shield, two special purpose detectors are located. The first one is the

Scattering and Neutrino Detector(SND). The main goal of this detector is to detect

LDM via its scattering on the dense material of the detector and study tau-neutrino

physics. The schematic view of the detector can be seen in Figure 3.8.

The main part of the detector is a 1.2T magnet that hosts emulsion target bricks
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Figure 3.9: View of the SHiP decay volume. [50]

alternating with Target Trackers (TT) and enclosed with a downstream tracker. Each

emulsion target brick consists of an Emulsion Cloud Chamber (ECC) made of 1 cm

thick lead planes interleaved with an emulsion, and enclosed by a Compact Emulsion

Spectrometer (CES). The ECC acts as a calorimeter and tracker simultaneously: with

the emulsion in place, it is possible to reconstruct individual tracks with µm accuracy

and the energy of electromagnetic showers with a resolution of about 15%. The main

purpose of the CES is to reconstruct the charge and momentum of outgoing muons

and pions. This is especially crucial for tau-neutrino physics. The transverse size of

the ECC and CES is 40⇥ 40 cm2 and there are four ECCs located in a XY-plane.

The main purpose of the Target Trackers is to provide a timestamp for the events

in the emulsion films and link tracks in the emulsion to those reconstructed in the

downstream tracker and muon identification system. The Target Tracker planes are

located after each ECC brick and have the size of 80⇥ 120 cm2. Three TT planes

located after the ECC bricks constitute a downstream tracker and are needed to

measure the charge and momentum of high-energy muons. The TT is based on

scintillating fibre technology.

Finally, the muon identification system is located outside the magnet. Its main goal

is to identify muons originating inside ECC bricks and those penetrating the muon

shield. Thus, the muon identification system also acts as a veto detector in front of

the decay volume and covers the whole entrance window of size 2⇥ 5m2. The muon

identification system consists of 12 RPC chambers interleaved with 13 iron slabs.

3.4.2 Decay Volume

Since SHiP is a designed zero-background experiment, it requires a large clean area

where the decays of hidden particles may be expected. To achieve this, the 50m long

decay volume (DV) is located after the SND detector and its view is presented in
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(a) (b)

Figure 3.10: Layout of the (a) magnetic spectrometer, (b) timing detector. [67]

Figure 3.9. To minimise the neutrino-induced interactions inside the decay volume, it

is kept under a pressure of 1mbar. With such a low pressure, the neutrino interactions

mainly occur in the decay volume walls. Deep inelastic scattering of muons, as well as

products of neutrino interactions, can be e�ciently suppressed by a cut on the impact

parameter that does not point to the target. However, to ensure zero background,

the decay volume is surrounded by the liquid scintillator system for the detection

of associated activity in the proximity of the decay volume walls. On one side, the

shape of the decay volume is dictated by the geometrical area that is cleaned from

muons by the muon shield. On the other, the length of the DV is restricted by the

decay probability of HS particles and the DV cross-section is motivated by the HS

PT spectrum.

3.4.3 Hidden Sector detector

The Hidden Sector detector is located after the decay volume and consists of the

spectrometer, the timing detector, the ECAL and the muon identification system.

The magnetic spectrometer is located right after the decay volume. The main goal

of the spectrometer is to provide track reconstruction and momentum measurement

of charged particles. The reconstruction quality of the spectrometer must be high

enough to allow the location of the decay vertices of hidden sector particles and

to match the tracks with the segmentation of the timing detector to suppress the
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background e�ciently. The tracker consists of four tracking stations and a dipole

magnet, located after the second station. The geometrical acceptance of the tracker

is 5m in X and 10m in Y and the straw drift tubes, made of very light material,

are used as a technology. Each tracker has the tubes tilted at di↵erent angles, thus

allowing the identification of X and Y coordinates of the track. The magnetic field is

oriented along the X-axis and is about 0.14T in strength. The resulting configuration

has a resolution of O(1� 2)mm in the XY plane and O(10) cm in the Z-axis. The

resulting momentum resolution is (�p/p)2 ⇡ (0.49%)2 + (0.022%/[GeV ])2p2. The

main technological challenge is the elongation and sagging of the straw tubes. The

layout of the detector is presented in Figure 3.10a.

The timing detector is located right after the spectrometer and covers an area of

5 ⇥ 10m2. The main goal of the timing detector is to provide time of coincidence

resolution for the track candidates as well as start times for the spectrometer drift

time measurement. To suppress the residual muon background to a manageable level,

the timing resolution of the detector must be less than 100 ps. Two technologies are

currently being considered for the timing detector: plastic scintillator with SiPM

readout and time measuring resistive plate chambers. The SiPM option detector

layout is presented in Figure 3.10b. It consists of three rows of scintillator bars being

read out on both sides. Such a configuration allows a timing resolution of O(85) ps

to be achieved, thus meeting the requirements for the timing detector [50].

In the SHiP experiment the calorimeter system is composed of only one detector,

called SplitCal. The main goal of the SplitCal is to identify electrons, photons and

pions as well as to measure electron and photon energy in the 1� 100GeV range.

It must also provide direction information for photons. The SplitCal is a longitudi-

nally segmented electromagnetic calorimeter with the capability of reconstructing

trajectories of photons with a precision of a few mrad. This is especially important

to identify the decay ALP ! ��. The layout of the calorimeter is presented in

Figure 3.11a. It has a 0.5X0 thick lead absorber interleaved with a scintillator, and

three high-resolution (200µm) gas layers located in a way that maximises the angular

resolution of low and high energy photons. The layers can precisely reconstruct the

barycentre of the shower transverse profile and thus measure the angle of the photon

with mrad precision. An energy resolution �(E)/E of about 12%/
p
E is achieved.

Finally, the muon system encloses the HS detector. The layout is presented in

Figure 3.11b. The main goal of the system is to identify muons with e�ciency

greater than 95% and in a wide range of momentum spanning from 5 to 100GeV.

It also contributes to background rejection by having a ⇠ 350 ps resolution. With

dimensions of 6 by 12m, the muon system consists of four active stations, made
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(a) (b)

Figure 3.11: Layout of the (a) SplitCal, (b) Muon detector. [67]

from scintillating tiles of size 10⇥ 20 cm2 and iron absorber walls, 3.4�int each. A

muon has to have an energy of at least 2.6GeV to reach the first station and at least

5.3GeV to reach the last station. The granularity of the system is driven by the

multiple scattering of muons inside the detector. A timing resolution of O(400) ps

was measured on the small prototype [50].

The hit pattern in the muon system and energy deposition in the SplitCal defines the

identification of the track as a muon or a pion. Tracks that do not reach the muon

system are tagged as pions. For tracks with momentum higher than 3GeV, the pion

misidentification rate is less than 0.1% with a muon misidentification e�ciency of

99%.

3.5 Background rates

There are three main categories of background in SHiP: neutrino-induced background,

muon deep inelastic scattering (DIS) and muon combinatorial background. The

categories are schematically presented in Figure 3.12. The background from cosmic

muons was found to be negligible [50].

The neutrino-induced background consists of long-lived neutral SM particles, such

as K0
L, that are produced in neutrino inelastic interactions in the material of the

detector and the cavern walls. These neutral particles can decay inside the decay

volume to final states similar to HS final states. The estimated flux of neutrinos

from the target is ⇠ 2⇥ 1018 particles over five years of SHiP operation. This will

result in ⇠ 105 neutrino interactions nearby the decay volume, the major fraction of
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Figure 3.12: Background types in SHiP: (a) Neutrino-induced, (b) muon DIS, (c)
muon combinatorial.

Table 3.2: Common selection criteria used for background rejection

Cut Value

Track momentum > 1.0GeV
Children distance of closest approach < 1 cm

Decay vertex position > 5 cm from DV wall
IP w.r.t. to target (fully reconstructed) < 10 cm

IP w.r.t. to target (partially reconstructed) < 250 cm

which will happen in the SND detector and decay volume walls. By applying the

common selection cirteria, presented in Table 3.2, and the SBT veto, it is possible to

reduce the neutrino-material interactions to 0.1� 0.3 events in five years [50]. The

estimated number of neutrino-air interactions inside the decay volume is 10�2 due to

the low (1mbar) pressure inside it.

Similarly to the neutrino-induced background, the muon DIS interactions will produce

long-lived particles in the DIS of muons at the cavern walls, the material of the decay

volume and the SND detector, resulting in about 2⇥ 108 interactions. However, after

applying the selection criteria from Table 3.2 and the SBT veto, the background

level from DIS is estimated to be less than 6⇥ 10�4 events in five years.

The muon combinatorial background results in two reconstructed charged tracks in

the HS spectrometer, which mimic the signal final states with two leptons. If these

tracks coincide in time and position, they might be misidentified with the decay

products of a hidden sector particle. The current design of the muon shield reduces

the flux of muons to the rate of 50 kHz. Assuming a spill duration of 1 s and two spills

per minute, this rate will result in ⇠ 1016 pairs of muons in the acceptance of the

detector over five years of operation. Applying the selection criteria from Table 3.2

this number is further reduced to 109 events in five years. To further suppress the

background, the SHIP’s timing detector, with a resolution �t ⇡ 100 ps, is used. The

probability of obtaining two muons within the timing window of 340 ps (that is three

times the resolution of the timing detector) is about 0.5 ⇥ 10�10, where Poisson

statistics was used to compute the probability. Thus, the number of di-muon events

in five years, where both tracks lie in the same time slot of 340 ps, is ⇡ 5⇥10�2�10�1.
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This number can be further reduced by a factor of 10�4 by utilising the SBT veto

criteria.

Finally, there is a di↵erent type of background for the LDM search in the SND detector

via LDM scattering o↵ electrons. After applying geometric, kinematic and topological

cuts, two sources of the background dominate. Topologically indistinguishable

neutrino elastic scattering on electrons or protons constitutes the main source of

the background, resulting in 207 events in five years. Quasi-elastic scattering on

an electron, with an unidentified soft outgoing proton is the second most common

background and adds 18 events in five years [69].

3.6 Sensitivity to Hidden Sector particles and Light

Dark Matter

In experiments searching for visible decays of the HS particles, the sensitivity to

individual HS particles may be determined by computing the estimated number of

events:

Nevents = Nprod ⇥ Pdecay ⇥ Atot, (3.1)

where Nprod accounts for the number of HS particles produced in the experiment.

This term includes the number of protons on target, the cross-section of heavy flavour

production and the probability of their subsequent decay into HS particles. The

Pdecay term resembles the probability of the HS particle to decay inside the dedicated

decay volume. Finally, Atot accounts for the geometrical acceptance of the experiment

and e�ciency of the detectors.

In Figure 3.13, 3.14a, the sensitivities to HNLs, Dark Scalars, ALPs and Dark

Photons are shown. Solid regions correspond to the areas either excluded by previous

experiments or inaccessible from a theoretical perspective. Dashed lines correspond

to the proposed experiments. As can be seen, the SHiP experiment outperforms all

proposed experiments in all portals, save one.

The number of events of Light Dark Matter scattering can be estimated as:

Nevents = �(�e(N)! �e(N))⇥ �

Sdet
⇥Ne(N) (3.2)
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(a)
(b)

(c) (d)

Figure 3.13: Existing limits and limits from the proposed experiments for Hidden
Sector models: a) Heavy Neutral Leptons b) Dark Scalar c) ALP couples to SM
fermions d) ALP couples to SM photons. [12]

(a)
(b)

Figure 3.14: Existing limits and limits from the proposed experiments to a) Dark
Photon b) Light Dark Matter. [12]
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where �(�e(N)! �e(N)) is the model-dependent cross-section of LDM scattering

on electrons (nucleons), � is the flux of the LDM, Sdet is the transverse (w.r.t

to the flux) area of the detector and Ne(N) is the number of scattering centres -

electrons or nucleons. The flux � is given by the � ⇠ NPOT ⇥ rparent ⇥ ✏2 ⇥ Ageo,

where NPOT is the number of protons on target, rparent is the contribution from the

production mechanisms, discussed in sub-section 2.6, ✏ is coupling constant and Ageo

is the geometrical acceptance. The resulting sensitivity, calculated for the SHiP

experiment, is presented in Figure 3.14b. It can be seen that the experiment improves

the existing experimental constraints by several orders of magnitude.
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Algorithms for Optimisation

Machine Learning (ML) methods are applied to a wide range of High Energy Physics

(HEP) tasks. Such tasks include particle identification [21], classification of events

type [20], anomaly detection in the analysis [23] and tracking [22]. More recently, ML

methods have been successfully used for matrix element computations and real-time

analysis [70].

Monte Carlo simulators, such as GEANT4 [71] are a crucial part of the HEP domain

and are used extensively since the creation of computers. However, HEP simulations

are very computationally expensive. For example, an order of a trillion simulated

collisions is required to achieve statistical accuracy for the hypothesis testing in the

HL-LHC environment. Simulating the detector response of proton-proton collisions

can take up to several minutes. In SHiP, the simulation of proton interactions with

the beam target and the subsequent muon propagation can take days of computing

time, even when using CERN High Throughput Computing (HPC) system. Thus,

many e↵orts have been made to speed up the simulation in HEP using modern

ML techniques. For example, some of the earliest work was done to speed up the

simulation of particle showers in calorimeters utilising generative neural networks [72].

In SHiP generative networks were used to speed up the proton-target collisions [73].

Finally, modern simulators have a large number of parameters that a↵ect the out-

putted events and their distributions. Tuning the high dimensional parameter space

of a simulator to achieve the desired output can often be computationally expensive.

Machine learning methods such as Bayesian optimisation [25, 26] and evolutionary

strategies [27] have been applied for the optimisation tasks in high energy physics

domain [29, 74]. For example, Ref. [74] utilised Bayesian optimisation to fine-tune

Pythia parameters to reproduce data in e+e� collisions.

33
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While many of the problems above are relevant to the SHiP experiment, this thesis

mainly explores the problem of optimising the simulator’s parameters. Thus, the main

definitions, formulas and concepts relevant to the problem of simulator optimisation

will be described below. The mathematical notation used throughout the thesis is

summarised in Table 4.1.

Table 4.1: Mathematical notation

x Scalar variable x

x Vector variable x

x = (x1, x2, . . . , xn) n-dimensional vector x with components x1, x2, . . . , xn

Rn n-dimensional space of real-valued numbers

|| ||L2 Norm of n-dimensional vector  : || ||L2 =
p
 2
1 +  2

2 + · · · +  2
n

rxf(x) Nabla (gradient) operator acting on variable x of f

�(x) Sigmoid function: �(x) = 1
1+e�x

E[x] Expected value of a random variable x

argminx Arguments of the minima over variable x

p(x), q(x) Probability distribution over x

p(x| ) Conditional probability distribution over x given  

Ep(x| )[R(x)] Expected value of a function R(x) w.r.t. to the p(x) distribution:
Ep(x| )[R(x)] =

R
R(x)p(x| )dx

N (µ, �) Normal distribution with mean µ and standard deviation �

U[L,R] Uniform distribution over interval [L,R]

R(x) Objective/loss function over x

4.1 Optimisation problem

To formulate an optimisation problem, one starts with the definition of the function

to be minimised. Throughout this thesis the names objective and loss function
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are used interchangeably. We define the objective function R( ) as a function that

depends on the parameter vector  . This function returns a number that in some

way characterises the performance of the optimised object (e.g. the total flux of

particles through the detector). Thus, the goal of the optimisation is to find a  ⇤

that minimises the objective function:

 ⇤ = argmin
 

R( ) (4.1)

The optimisation may be subject to some constraints, for example, the constraint on

the length of the muon shield in the SHiP experiment.

As an example, let the objective function be the 1-dimensional Higgs potential:

R( ) = �5 2 +  4 (4.2)

In this simple scenario, one can find the minimum analytically by computing first

and second-order derivatives of R and requiring R0
( ) = 0,R00

( ) > 0. There are

two degenerate minima at  ⇤ = ±
p
5/2. However, such a simple function does not

resemble what one actually observes in a simulation or experiment. For example, in

an experiment there will always be some noise observed. In a simulator, one often

does not even know the exact dependency of the loss on the inputs.

For instance, the parameters  may be treated as unknown, yet a↵ect the value of the

observables y. The observable y may be a random variable, sampled from a normal

distribution with mean equal to  and fixed standard deviation �: y ⇠ N (y; , �).

Now, the objective function R depends on  implicitly: the only variable that we

actually observe is y:

R(y) = �5y2 + y4, s.t. y ⇠ N (y; , �) (4.3)

Such formulation results in a distribution over values of R as a function of  , rather

than an exact value, as in the initial example. The corresponding plot of the mean

and the standard deviation of R( ) is shown in Figure 4.1.

Since R is a random variable now, it is natural to reformulate the optimisation

problem in terms of the expected value of the function:
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Figure 4.1: Mean (red line) and one standard deviation (green area) of R( ) as a
function of  .

 ⇤ = argmin
 

Ep(y; ,�)[R(y)] (4.4)

In the Higgs example above that corresponds to the minimum of the red curve.

With the implicit dependency on  , it is impossible to solve the problem analytically

anymore since there is no closed-form solution due to the presence of the expectation

value E. Although an analytical solution is not available, various methods exist to

solve such types of problems. To simplify the notation for further examples, we

define f( ) = Ep(y; ,�)[R(y)].

4.2 Existing optimisation algorithms

When the exact analytical solution can not be computed, one of two classes of methods

is usually applied. Methods from the first class try to approximate the derivative

rf( ) in various ways and use the gradient descent technique to find the minimum

of the function. Examples of such methods include numerical di↵erentiation [30]

or REINFORCE gradient estimator [33]. A well-known example of gradient-based

optimisation in HEP is the MINUIT package [75].

Another set of methods is called derivative-free and includes many methods that

perform optimisation without estimating or using available information about a

derivative. The most common ones are Bayesian optimisation (BO) [28] and evo-

lutionary algorithms [29], which are a large collection of generic population-based
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optimisation methods.

4.2.1 Gradient descent optimisation

Gradient descent (GD) is one of the oldest optimisation techniques used in science.

The idea behind the algorithm is to iteratively move in the direction opposite to the

gradient r f( ) starting from some initial guess  0. At each iteration the gradient

at point  i is estimated and the new point is computed as  i+1 =  i � ↵r f( ).

The procedure is repeated until some convergence criterion is reached. The algorithm

is summarised in Algorithm 1. The parameter ↵ is called learning rate and controls

the size of the update. If it is too large, the algorithm can diverge, whereas if it is

too small, the optimisation might get stuck at some point.

Algorithm 1 Gradient descent

Require: Initial point  0, learning rate ↵
1: while  has not converged do
2:  i+1 =  i � ↵r f( )
3: end while

If the function f is di↵erentiable, there are theoretical guarantees on the convergence

rate and an optimal value of ↵. However, in the formulation of the problem above

the analytical gradient r f( ) is not known and needs to be approximated.

The simplest way to approximate the gradient is to use numerical di↵erentiation.

Finite di↵erence methods are simple yet e↵ective and provide theoretical guarantees

on the convergence rate. To estimate the gradient, it is enough to compute the

function value at some point  + h, where h is called step size and is usually small.

The so-called central derivative, which uses both f( +h) and f( �h) has a smaller

error and is often preferred:

r f( ) ⇡
f( + h)� f( � h)

2h
(4.5)

Once the derivative has been approximated, it can be used to perform gradient

descent optimisation using Algorithm 1. Figure 4.2 shows points evaluated during

GD optimisation using the above approximation of the gradient applied to the Higgs

potential example starting at point  0 = 0. As it can be seen, the evaluated points

and the gradient direction do not match perfectly with the true mean value of the

function (red line) due to the noise in the observations y. Nevertheless, the GD was

able to converge to one of the function’s minima.
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(a) (b)

Figure 4.2: True function value (red) and evaluated points (blue) during GS optimi-
sation with numerical derivatives after (a) 4 iterations, (b) 15 iterations. Blue line
shows gradient direction.

In this simple example, the numerical estimation of the derivative works well and is

enough to find a minimum of the function. However, in more challenging problems,

the drawbacks of the method start to show up. Specifically, the numerical derivatives

are mostly used for noiseless functions, and may struggle to accurately estimate the

derivative for a very noisy or fast-changing function. The latter comes from the

fact that numerical derivatives linearly interpolate the function and may estimate

the function inaccurately if the step size h is too large. However, if h is too small,

the noise in the function evaluations will dominate, and the numerical estimation

will be inaccurate again. In addition to that, only two evaluations of the function

f( ) per iteration were required in the simple example above. In general, numerical

derivatives require O(2d) function evaluations, where d is the dimensionality of the

optimised parameter  . In the case of high-dimensional parameters, and when the

evaluation of the function f is computationally expensive, this might induce a high

computation cost for the method, and, in turn, slow optimisation.

Other, more recent methods, such as REINFORCE [33] and the reparametrisation [76]

exist, that allow approximating the gradients in Equation 4.4. The details of the

algorithms are not covered in the thesis for brevity. However, the latter algorithm is

applicable only in a minimal number of problems, when it is possible to reparametrise

the distribution p(y; , �). The former algorithm found application in many domains

of machine learning and only requires the existence of r log p(y; ,�). The main

disadvantage of the algorithm is a very high variance of the estimation of the gradient,

meaning that estimations of the gradient of Equation 4.4 done several times at the

same point  , would di↵er from each other significantly. This flaw slows down the

convergence of the algorithm or requires a large number of function f( ) evaluations,

which again is computationally costly.
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4.2.2 Bayesian optimisation

Bayesian optimisation (BO) is the most common approach to optimise non-di↵erentiable,

noisy and computationally expensive functions. The algorithm builds a probabilistic

surrogate model of the function f( ) in the whole search space of parameters based on

the initial observations. It starts with sampling points, usually at random, to create

an initial dataset D = { t, f( t)}T
t=1. At each iteration t, BO tries to approximate

the behaviour of the function f( ) with a surrogate model, using the data available

in D. It then uses an acquisition function � that estimates the most promising point

 t+1 to evaluate the next. The point ( t+1, f( t+1)) is added to the dataset D and

the process is repeated until the optimisation budget is exhausted. A summary of

the algorithm is presented in Algorithm 2.

Algorithm 2 Bayesian optimisation

Require: Search space U , surrogate model M, acquisition function �
1: Sample initial dataset D = { t, f( t)} from U
2: while computationally feasible do
3: Define mean µ( |D) and variance �( |D) using surrogate M
4: Find  ⇤ = argmax �(µ( |D)), �( |D))
5: Add new point ( ⇤, f( ⇤)) to the dataset D
6: end while

There are a couple of design choices in Bayesian optimisation. The first one is the

surrogate model M, which should provide an approximation of f at any point  by

estimating its mean µ( |D). This corresponds to the red curve in the Higgs example

above. The surrogate should also provide an uncertainty estimation that represents

the level of the surrogate confidence in its prediction. Many machine learning models,

such as random forest, are suitable for the role of the surrogate [77], but the most

common choice is Gaussian Processes (GP) [78].

Secondly, the acquisition function must be specified. Di↵erent variants of the

functions exist, but all of them return high scores for regions that have either high

variance (meaning high, but uncertain reward) or low mean value (meaning modest,

but certain reward). The choice of the function and its parameters controls the

exploration/exploitation trade-o↵. This means that, depending on the chosen function

and its parameters, the BO would either explore the search space (giving more weight

to high uncertainty regions) or exploit gathered information (giving more weight

to the value of the surrogate mean). One of the most commonly used acquisition

functions is the Expected Improvement (EI):
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� = EI( ) = max(f( +)� f̂( ), 0), (4.6)

where  + is the best point so far (f( +) is the smallest) and f̂( ) is the value

obtained from the surrogate model.

Thirdly, GP has a parameter called the kernel function (or covariance function) that

significantly a↵ects how the mean µ( |D) and variance �( |D) are modelled. Most

importantly, for any two points  and  
0
the covariance function often depends

uniquely on the distance d( , 
0
) between the points. The optimisation task usually

determines the choice of the kernel.

Coming back to the example with the Higgs potential, the Bayesian optimisation with

GP and EI as an acquisition function was applied to the problem. The resulted mean

surrogate function µ( ) and standard deviation �( ) after 1, 5 and 15 iterations

respectively are presented in Figure 4.3. The plots on the right represent the EI

function and the point that maximises it. The BO starts by exploring the space

first and by the fifth iteration it already adequately represents the function in the

interval from -1 to 1. As expected, the uncertainty near the evaluated points (red

dots) is small. By the fifth iteration, the [-1, 1] region is well explored, and the EI is

maximised in the areas with high uncertainty, as seen in the right plot of Figure 4.3b.

Finally, by the end of the optimisation, the EI function is almost zero everywhere

except at the two minima. We notice that BO was able to find both of the degenerate

minima in this example, unlike the gradient-based method, which is always capable

of finding only one local minimum.

Again, for such a simple example BO outperforms GD and is capable of finding both

minima. However, this is not generally the case, and although BO is considered

to be a global optimisation algorithm, it is almost impossible to find a real global

minimum in high-dimensional spaces.

Speaking about drawbacks, there are two main reasons why applying BO is challeng-

ing. The first, and most commonly referenced one, is that the estimation of µ( ) and

�( ) requires inverting the covariance matrix, a process which scales as O(n3), where

n is the number of training points in the dataset D. Since the algorithm constantly

adds points to the dataset D, this inversion operation quickly becomes expensive.

Typically, when the dataset size reaches O(103) samples the GP-based BO becomes

too costly to compute. Usually, at this point, the time required for one iteration of

BO exceeds the time needed for the evaluation of the function f( ).

The second problem that is often encountered is the ”curse of dimensionality” in high-
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(a)

(b)

(c)

Figure 4.3: Left: True function value (red), µ( ) (green) and standard deviation �( )
(shaded green) obtained from GP surrogate model. Right: Expected improvement.
After iteration (a) 1, (b) 5, (c) 15 of the Bayesian optimisation procedure.
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dimensional spaces. The ”curse of dimensionality” states, that in high-dimensional

spaces most of the volume is concentrated on the boundary of the space. This is

illustrated by the ratio of volumes V of two concentric D-dimensional balls with

radius R and R��R.

V (R��R)

V (R)
= o((1��)D) (4.7)

Since � < 1 this ratio goes to zero as D grows, meaning that the volume is

concentrated near the boundaries of the space.

By construction, BO assumes that the solution lies close to the origin of the search

space. Due to the ”curse of dimensionality” most points would be located on the

boundaries and far away from each other. This will induce the covariance function,

which depends on the distance between points, to be large for the boundary region

and result in a large variance �( ). Thus, BO would prefer to evaluate points far

away from the centre, which contradicts the initial assumption. In practice, this

leads to the stagnation of BO. This was observed in the previous iteration of the

muon shield optimisation [79].

4.2.3 Evolutionary algorithms

Evolutionary algorithms describe many types of genetic-inspired optimisation meth-

ods. The main idea is to sample K points at random, evaluate the function f( ) at

those points and then select K best points that correspond to K minimal values of

f . Afterwards, the new points are constructed by crossover and mutation of the K

best samples. The newly obtained points then replace the worst-performing samples

in the initial dataset, and the process repeats. The algorithm is summarised in

Algorithm 3.

Algorithm 3 General purpose evolutionary algorithm

Require: Number K best samples
1: Generate initial population D = { t} randomly
2: while computationally feasible do
3: Compute f( ) for each point in D
4: Select K best points  corresponding to K minimal values of f( )
5: Breed the K best selected points
6: Replace the least fit samples from D with K breed points
7: end while
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By the crossover and mutation operations one often means some mathematical

operations over vectors. For example, for two vectors  1, 2 a crossover operation

will randomly substitute some of the  1 components with components from  2

and vice versa. The mutation will change the components of the vector randomly

or following some specific distributions. It is thanks to this idea of finding the

best performing sample by following biological evolutionary principles that this

optimisation method is called evolutionary.

The strongest advantage of this algorithm is, at the same time, its biggest flaw. On

one side, the algorithm does not make any structural assumptions about the function

f( ) nor creates any function surrogate. It directly uses the function to evaluate

new samples, thus, avoiding any bias in the estimation of the function value. On the

other hand, because the function is evaluated for all samples and the samples are

obtained at random, the algorithm usually requires a large number of function calls

to find the best performing sample. For computationally expensive functions such

an approach is ine↵ective and results in wasteful usage of the resources.

4.2.4 Motivation for a new algorithm

In HEP, one often encounters computationally expensive simulations. Typically, the

objective of the simulation is to prove or optimise the design of the detector by using,

for example, GEANT4 [71]. Such simulations can be treated as black-box simulations,

since a physicist does not know the exact relation between the inputs  and the

outputs y in the simulator, as in our toy Higgs example before. We can think of the

simulator as a black-box function F , that takes as input some physical parameters of

the simulation x and parameters of the detector  , and returns observable variables

y: y = F (x, ). For example, x can be a vector of energies of colliding particles,  

can characterise the location or shape of the detectors, and the observables y can be

a detector response, such as the particle’s energy or position.

However, there is one important part missing from such a formulation: the stochastic

nature of all HEP simulations. Any process in a simulation, whether a matrix

element computation, a simulation of an electromagnetic shower, or simply a particle

trajectory prediction, is non-deterministic. Every simulator has a random seed, which

we denote by z, that introduces randomness to the simulation by trying to mimic

the stochasticity of physics processes. Thus, in reality y is deterministic only if all

parameters, including the random seed, are fixed: y = F (x, , z). Usually, one does

not want to fix the random seed z to ensure the stochasticity is properly taken into

account in the simulation. In such cases, the outcome of the simulation y = F (x, )
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becomes a random variable sampled from some unknown distribution p(y|x; ). This
distribution is often called intractable, because we can obtain samples from it, by

running a simulator, but the exact analytical form of the distribution is not known.

Summarising the problem, one has a black-box simulator F that produces a random

variable observable y sampled from p(y|x; ): y = F (x, ) ⇠ p(y|x; ). The exact

relation between the observable and the parameters is not known. The physicist

wants to minimise some objective (loss) function R of the observables:

 ⇤ = argmin
 

f( ) = argmin
 

Ep(y|x; )[R(y)] (4.8)

This optimisation problem looks exactly like the toy example in Equation 4.4,

meaning that we can use all the methods above to solve the problem. In fact,

Bayesian optimisation was used in the previous iteration of the optimisation [79].

The question is, then, why a new algorithm is needed?

As outlined earlier, the aforementioned algorithms have some drawbacks. For example,

numerical derivatives and evolutionary algorithms do not take into account that it is

costly to evaluate function f . Moreover, the numerical derivatives provide only a

linear approximation of the objective function’s surface. The REINFORCE-based

algorithm may su↵er from high variance and have slow convergence rate, resulting

in many evaluations of the function. Finally, Bayesian optimisation scales as the

cube of the number of training samples, so it quickly becomes computationally

infeasible. In addition, it is susceptible to the ”curse of dimensionality” and thus

may waste computational resources by evaluating irrelevant (close to the boundary

of the search space) points. Leveraging the recent progress in the field of machine

learning, we have tried to develop a new optimisation method that might be more

suitable for the optimisation problem defined above. As it is shown in Chapter 6,

this formulation of the problem is relevant to the muon shield optimisation in the

SHiP experiment. Before describing the details of the algorithm, a short introduction

into neural networks is provided in Section 4.3.1.
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(a) (b)

Figure 4.4: Example of a neural network. (a) Forward connections are shown. (b)
Example of backward pass is added. Black solid arrows correspond to backpropagation
over weights, and blue dashed arrows show backpropagation over inputs.

4.3 Neural Networks fundamentals

4.3.1 Training a neural network

Neural networks (NN) have been used in many applications of HEP long before their

recent popularity. However, the computational expenses have been a limiting factor

in the applicability of NNs to practical problems until the beginning of the previous

decade. From that point onwards, the availability of computational resources has

allowed for faster training of deep neural networks and resulted in a new discipline

called Deep Learning (DL). Since then, DL led to major breakthroughs in computer

science and found its application in natural sciences.

The simplest neural network consists of inputs  , a hidden layer and outputs y,

as shown in Figure 4.4. The hidden layer is characterised by a learnable weight

matrix W = (w1, w2, . . . , wn). We set a d-dimensional vector  2 Rd as input,

an n-dimensional vector y 2 Rn as output and a weight matrix of shape n ⇥ d:

W 2 Rn⇥d. In the example of Figure 4.4 the  and y are 1-dimensional, and the

matrix W is a 4-dimensional vector. The relationship between the input and the

output is given by matrix multiplication y = W . Given the predictions of the NN,

one wants to optimise the weights W such that some loss function R is minimised.

As an example, the objective function can be a mean squared error (MSE) between

NN predictions y and known answers ytrain.

The idea behind training a NN is the same as that of the gradient descent. One

would like to update the NN weights W until convergence using the following rule
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Wt+1 = Wt � ↵rWR(y) (4.9)

The main question here is how does one compute rWR(y)? This is where the

backpropagation algorithm comes in; it is a fundamental concept in training a NN.

Basically, the backrpopagation uses the chain rule of di↵erentiation to compute the

required gradient. In the example above, one can compute the gradient as follows:

rWR(y) =
@R(y)

@W
=
@R(y)

@y

@y

@W
=
@R(y)

@y
 (4.10)

where the last equality follows from @Wy = @WW =  . The procedure is sum-

marised in Figure 4.4b. For the MSE objective function R = ||y � ytrain||2L2
the

derivative is (y � ytrain), so the equation above becomes:

rWR(y) = (y � ytrain) (4.11)

Knowing this derivative allows for the updating of the weights according to Equa-

tion 4.9 and perform this process until convergence.

The procedure described above is how all modern NN are trained. However, the same

procedure allows to optimise the inputs  , since one can compute the derivative of

the objective function over its inputs in the same way we did for its weights:

r R(y) =
@R(y)

@ 
=
@R(y)

@y
W (4.12)

The obtained derivative can be used to minimise any di↵erentiable objective function

R(y) over  , which is exactly the optimisation problem in Equation 4.8! So on one

side, a NN can be used to predict some outputs y, but on the other hand, it can

be used to perform optimisation over the inputs. This is the key concept in the

optimisation algorithm described in Chapter 5. The backpropagation over inputs is

indicated by a blue arrow in Figure 4.4b.

In this simple example, we only have a single hidden layer of size four: the weight

matrix W is just a 4-dimensional vector. In real-life, NNs have many hidden layers

of di↵erent sizes, and some non-linear function of outputs of one hidden layer is

the input for the next one. We note that it is necessary to apply some non-linear

functions between hidden layers because without them any consecutive combination
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of linear operations can be expressed as one linear operation. Without such functions

even the deepest network would act as a simple NN with one hidden layer.

The same principle of backpropagation (chain rule) applies to deep neural networks

with many layers. For example, for a NN with three hidden layers, the derivative of

objective function with respect to the weights of the first layer is:

rW1R(y) =
@R(y)

@y

@y

@i3

@i3
@i2

@i2
@W1

, (4.13)

where

y = �(W3i3) (4.14)

i3 = �(W2i2) (4.15)

i2 = �(W1 ) (4.16)

and � is some non-linear function. Modern Deep Learning frameworks allow to

compute such derivatives automatically by specifying only the inputs and the archi-

tecture of the NN. Thus, the procedure of training a neural network or using it for

optimisation over its inputs is straightforward. However, since the state-of-the-art

neural networks have millions of parameters w they require extremely extensive

computation resources.

To conclude, by construction any DL model allows to compute gradients over model

parameters or inputs. Those gradients can successively be used for the NN training

or optimisation of some objective function over inputs. However, the only question

left is how to make the gradients r R(y) meaningful, since an untrained NN would

produce random outputs y and thus random gradients estimation.

4.3.2 Generative neural networks

In the modern DL era, generative networks were first introduced in Ref. [80] and

then quickly gained popularity. There are various types of generative networks

currently available, but for all of them the main task is to sample from some

learned distribution. For example, the generative network can learn the phase space

distribution of particles and then sample from it, thus, speeding up a simulation. One
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Generator

Discriminator

Gradient flow

(a)

Figure 4.5: Diagram of a Generative Adversarial Network. Dashed nodes represent
additional inputs to a conditional GAN.

particular type of the generative model is called a Generative Adversarial Network

(GAN) and is schematically presented in Figure 4.5.

A GAN consists of two NN called a generator (G) and a discriminator (D). The

task of the generator is to produce outputs ŷ that are as close as possible to the

real examples y from some distribution p(y). The task of the discriminator is to

distinguish between real and generated outputs. By default, a generator network

takes a random noise z, sampled from a pre-defined distribution q(z), as an input

and returns the generated output ŷ. The discriminator takes as input either a real

sample or a generated one and outputs the probability p of the sample being a real

one. Afterwards, a loss function R(p) is computed, and the weights of D and G are

updated using backpropagation and gradient descent, as described in Section 4.3.1.

The loss function for the GAN is interesting in the way that the generator tries to

minimise it and the discriminator tries to maximise it simultaneously:

min
G

max
D

R(D,G) = Ey⇠p(y)[log(D(y))] + Ez⇠q(z)[log(1�D(G(z)))] (4.17)

The discriminator should output p = D(y) equal to one for real samples and to

zero for fake ones. Thus, it tries to maximise the loss above and to make it zero.

The generator, on the contrary, tries to minimise the loss, in particular, it tries

to force D(G(z)) to be one, thus making the whole term negative. Eventually, in

the ideal scenario, the equilibrium state is reached when neither the generator nor

the discriminator can improve any further. In reality, the GAN training is a very

subtle procedure, and the most common problems that arise during GAN training

are mode-collapse, vanishing of gradients, and failure of convergence of the training
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procedure.

The mode-collapse happens when the generator finds some perfect output ŷ that fools

the discriminator (D(ŷ) = 1). In that case, there is no reason for the generator to

produce any output other than ŷ, meaning that it will not sample diverse examples.

The vanishing gradients problem happens when the discriminator is much better

than the generator. Then D(ŷ) = 0 and the last term in Equation 4.17 is zero,

resulting in zero gradients for the generator. In such a scenario, the generator stops

improving, even though the quality of its samples is poor.

Finally, because the training objective is a non-convex optimisation problem, the

convergence of the procedure is not guaranteed. Depending on the hyper-parameters

of D and G, as well as the parameters of the optimisation algorithm, the whole

training procedure might diverge.

Many variations of the original approach have been created to make it more robust

while trying to solve some of the above problems [81, 82, 83].

After the training is finished, the generator’s weights are fixed, and one can start

generating new samples ŷ from it. Ideally, the samples from the generator would be

close to the real ones: G(z) ⇡ p(y).

One can also modify the training procedure to learn the conditional distribution

p(y| ) by providing  as an additional input to the generator and the discriminator,

as shown by the dashed nodes in Figure 4.5. The training procedure remains the

same, and the resulted generator can now sample from p(y| ).

The GAN provides the last piece on the way to understanding the idea behind the

new optimisation algorithm. Since it can sample from a conditional distribution, it

might be capable of mimicking the distribution p(y|x; ), induced by a simulator,

as discussed in Section 4.2.4. Thus, the conditional samples ŷ from the GAN

should resemble the laws of physics, inbuilt in the simulator. Now, by removing the

discriminator and defining some physics-motivated objective function R(ŷ) based

on the generator’s outputs, it is possible to obtain gradients r R(ŷ) with respect

to the generator’s inputs  , as discussed in Section 4.3.1. By knowing the gradient,

one can apply gradient descent to optimise the objective function. This is the key

idea in the optimisation algorithm that will be described in the next chapter.
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Local Generative Surrogate

Optimisation

As discussed in the previous chapter, a simulator is a compelling method for modelling

complex real-world systems. It is hard to imagine High Energy Physics domain

without using dedicated simulators, such as GEANT [71] or Pythia [84].

In the SHiP experiment, one needs to find optimal parameters that produce optimal

data. To formulate the optimisation problem, we introduce an objective function R,

a simulator F , some optimised parameters  , together with the inputs x and outputs

y. The objective function R is a physics-dictated objective function, defined by the

user, that one wants to minimise. For example, in the SHiP experiment, it may be

the number of muon hits in the detector plane. The parameters  2 Rd correspond

to the physical properties of the optimised object, such as the magnet length or

width or the strength of a magnetic field. The inputs x correspond to the input data

provided to the simulator, such as muon momentum and production coordinates.

The outputs y correspond to the observable quantities, such as the detector hit

coordinates of the muons. Finally, F corresponds to the GEANT4 simulator, that

given some inputs x and some characteristics of the experiment setup  will output

observable variables y: y = F (x, ).

As was discussed in Chapter 4, given the stochastic nature of the problem in HEP, one

may treat y as a random variable as well, such that y ⇠ p(y|x; ), and the inputs

x are sampled from the distribution q(x), which resembles the known distribution

over the inputs. For instance, the distribution of the muon momenta and production

coordinates. Thus, the objective becomes a stochastic function and is expressed as

an expectation Ep(y|x; )[R(y)]. The minimisation problem is thus the same as in

50
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Figure 5.1: Overview of the simulation process and surrogate training.

Equation 4.8:

 ⇤ = argmin
 

Ep(y|x; )[R(y)] (5.1)

Usually in the HEP domain one needs to obtain large population statistics in order

to estimate the optimised parameters. Given that the computational cost of running

a simulator such as GEANT4 is very high, it is desirable to devise an optimisation

method that would minimise the usage of CPU time during optimisation. Thus the

algorithm should infer as much information from the simulator as possible during

one run of the simulator and maximise the re-usage of the datapoints obtained from

previous runs.

In case the gradient of the objective function is available, one can use various

methods for optimisation, such as Minuit [75]. However, in many scientific domains,

including HEP, non-di↵erentiable functions occur frequently, as in the problem

formulation above, where a Monte Carlo simulator is used to produce data samples

from an intractable probability distribution. In such cases, the whole spectrum

of the algorithms, such as genetic algorithms, Bayesian optimisation, numerical

di↵erentiation or REINFORCE-based estimators, may be employed to estimate the

gradients of non-di↵erentiable functions (see Chapter 4 for details on the algorithms).

To utilise the strengths of gradient-based optimisation while avoiding the drawbacks

of the other algorithms (see Chapter 4), our approach utilises deep generative models

(see Chapter 4) as di↵erentiable surrogate models (sometimes referred to as the

surrogate) to approximate non-di↵erentiable simulators, as described in Figure 5.1.

We have shown that the surrogate model is able to approximate the stochastic

behaviour of the GEANT4 simulator, thus, enabling the gradient-based optimisation

of the objective function. We have first developed Generative Surrogate Optimisation,

described below, and then modified it to account for some problems, frequently arising
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in a high-dimensional optimisation scenario. The modified algorithm is named Local

Generative Surrogate Optimisation or, in short, L-GSO.

5.1 Generative Surrogate Optimisation (GSO)

To further set up the mathematical formulation of the problem, we note one more

important property: the simulator F is a black-box function for the user. This means

that the simulator can only draw samples from the distribution p(y|x; ), but the
exact analytical form of this distribution is inaccessible to the user. This is precisely

the case of the GEANT4 simulator, for which the user can not infer any information

about the analytical form of the distribution without an additional complicated

routine tailored to a specific optimisation task [85].

Let a simulator be characterised by the parameters  , consume stochastic inputs

x ⇠ q(x) and produce outputs (observations) y ⇠ p(y|x; ). The objective function

R(y) is defined by the physicist and encodes the task-specific relationship between

the outputs y and the penalty values. The function should be minimised over the

parameters  :

 ⇤ = argmin
 

E[R(y)] = argmin
 

Z
R(y)p(y|x; )q(x)dxdy

⇡ argmin
 

1

N

NX

i=1

R(F (xi; ))

(5.2)

where yi = F (xi; ) ⇠ p(y|x; ), xi ⇠ q(x), and a Monte Carlo approximation of

the expected value of the objective function is computed using samples drawn from

the simulator.

Given such an objective function, one would like to compute its gradient to perform

optimisation:

r E[R(y)] ⇡ 1

N

NX

i=1

r R(F (xi; )) . (5.3)

However, since the simulator F is non-di↵erentiable, it is not possible to compute

the gradient in Equation 5.3

The GSO algorithm approximates F with a generative neural network (a surrogate)
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Figure 5.2: Block diagram of the Generative Surrogate Optimisation algorithm.

S✓, where ✓ corresponds to the weights of the neural network. After training, the

surrogate outputs ȳ = S✓(z,x; ) approximate the simulator’s outputs F (x; ),

where z ⇠ p(z) is the noise variable accounting for the stochastic nature of the

simulator (see Chapter 4 for more details). Since the samples ȳ are di↵erentiable

with respect to  , the computation of Equation 5.3 becomes feasible by swapping

the simulator F with the surrogate S:

r E[R(y)] ⇡ 1

N

NX

i=1

r R(S✓(zi,xi; )) . (5.4)

The optimisation procedure is described in Algorithm 4 and is schematically depicted

in Figure 5.2. A set of training data for the surrogate is created by sampling a set of

values for the parameters  and the inputs x, and then computing the simulator’s

output F (x, ) (step 3). Then, the surrogate is trained using the standard neural

network training procedure, as described in Chapter 4 (step 4). Subsequently, the

gradient of the objective function is estimated using the trained surrogate model

by iteratively sampling the inputs x and the surrogate outputs ȳ (step 7) and then

computing the gradient estimation (step 8). Finally,  is updated with the stochastic

gradient descent (SGD) procedure, described in Chapter 4.

Here we used the crucial property of any deep neural network model: the ability to

produce di↵erentiable samples ȳ. It is exactly this property that allows us to apply

the chain rule of di↵erentiation and obtain the estimation of the gradient in step 8

of the algorithm:

r Ey[R(y)] ⇠
X @R(y)

@yi

@yi

@ 
=
X @R(y)

@yi

@S✓
@ 

(5.5)

Before applying the algorithm to the full-scale SHiP optimisation, several toy experi-

ments have been performed to assess the desired properties of the algorithm.
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Algorithm 4 Generative surrogate optimisation (GSO)

Require: number N of  , number M of x for surrogate training, number K of x
for  optimisation step

1: Choose parameters { 0
i}N

i=1

2: For each  0
i, sample inputs {xi

j}M
j=1 ⇠ q(x)

3: Sample M ⇥N training examples from simulator yij = F (xi
j; 

0
i)

4: Train generative surrogate model S✓(z,x; 
0), where z ⇠ N (0, 1)

5: Fix weights of the surrogate model ✓
6: while  has not converged do
7: Sample ȳk = S✓(zk,xk; ), zk ⇠ N (0, 1),

xk ⇠ q(x), k = 1, . . . , K

8: r E[R(ȳ)] 1
K

KP
k=1

@R
@ȳk

@S✓(zk,xk; )
@ 

9:   SGD( ,r E[R(ȳ)])
10: end while

5.1.1 Experiments and results

To be in complete control of the environment and demonstrate the capabilities of

the new algorithm, we have solved a simple mathematical optimisation problem and

a straightforward physics optimisation problem, where the solutions are known in

both cases.

Toy mathematical problem

We start with a simple mathematical model that is defined as follows:

x ⇠ U[L,R] : L = �10, R = 10, x 2 R1

X ⇠ N (x, 1)

 =
q
 2

1 + 
2
2

y ⇠ N
✓
 +X, 0.1 +

1

2
|X|
◆

(5.6)

The variable x is first sampled from the uniform distribution and then transformed

via a normal distribution to arrive at X. With this sampling procedure, we have tried

to mimic a stochastic transformation over the inputs x that might actually happen

in the GEANT4 simulator. Then, we sample the observable outputs y that depend

both on X and  , resembling the dependence of the outputs on the parameters

of the simulator (for example, the shape of the magnet). As discussed above, the
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(a) (b)

Figure 5.3: Objective function value as a function of  vector components. Objective
function value obtained from (a) the mathematical model, (b) the surrogate S✓.

algorithm’s goal is to learn the surrogate model S✓(z,x; ), such that the samples

from it are close to y.

On top of the mathematical model, we impose an objective function that we want to

minimise. The choice of the objective function for this particular example is dictated

by the requirements of being di↵erentiable with respect to the outputs y and being

su�ciently varying in the region of parameters  . Thus, the function is defined as

follows:

R(y;L,R) = � 1

N

NX

i=0

�(yi � L)� �(yi �R) (5.7)

where yi is the sample from either the mathematical model defined above or from

the trained surrogate model S✓, and L,R denote the left and the right boundaries of

the  space. The function � denotes the sigmoid function: �(x) = 1/(1 + e�x).

To evaluate the proposed algorithm, we would like to compare the landscapes of the

objective function (in the  space), as this would define the quality of the gradient

estimation and, in turn, the convergence of the optimisation. The comparison of the

loss surfaces obtained from the mathematical model and the surrogate is presented

in Figure 5.3. The left figure, obtained from the model, has many degenerate minima

due to the rotational symmetry of the problem. The goal is to validate that the

optimisation algorithm can find any of them. Examining the right figure, where

the loss is calculated using the surrogate model, the deviation from the actual loss

landscape is clearly seen. At first glance, one might expect the optimisation to diverge

due to the inaccurate estimation of the objective function by the surrogate model.

To study how the reconstruction quality a↵ects actual optimisation, we have run the

optimisation procedure from multiple initial points, using the mathematical model
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(a) (b)

Figure 5.4: Optimisation trajectories from di↵erent starting points overlaid on the
loss surface. The triangles depict the di↵erent starting points. Trajectories obtained
from (a) the mathematical model, (b) the surrogate model.

and the surrogate. We note that using the mathematical model for gradient-based

optimisation is only possible in toy problems, where the gradient information is

available. In our implementation, we have used the Pyro package [86] to compute the

information needed for the optimisation. The result of such optimisation is presented

in Figure 5.4.

As observed in Figure 5.4a, all optimisation paths lie along the radius of the loss

landscape. This happens because the gradient information is extracted from the

mathematical model. In such a case, the gradient descent will be performed in the

most optimal way, and the desired minimum achieved in the smallest number of model

calls. When using the gradient estimation obtained from the surrogate model, the

optimisation also works and, moreover, attains one of the possible minima, regardless

of the starting point. However, because the surrogate does not model the conditional

distribution p(y|x; ) perfectly, the optimisation trajectories follow the surrogate

loss landscape and do not any longer lie along the radius, as seen in Figure 5.4b.

This observation raises questions regarding the quality of the surrogate model as a

function of the number of training samples.

Di↵erent instances of the surrogate model have been trained on 10, 100, 1000 and

10000 training points to address this concern. The values of  were randomly selected

on an integer grid, and a value of x sampled from the uniform distribution was

assigned to each  . The procedure was repeated until the desired number of training

samples was reached. The distributions of the samples for di↵erent dataset sizes are

presented in Figure 5.5. The grid step size was set to one, meaning 20 points were

required just to cover one dimension of  . To fill the whole grid with at least one

sample, 202 points were required.

The contours of the objective function obtained from the surrogate, corresponding
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Figure 5.5: Distribution of  samples for the training set of size 10, 100, 1000 and
10000 points. Colour represents the amount of points with a particular  value in
the training set.

to di↵erent dataset sizes, are presented in Figure 5.6. Examining the results and

comparing them to Figure 5.3a one notices, that in the cases of 10 and 100 training

samples, the loss surface does not resemble the actual landscape. Even the objective

function surface obtained with 1000 training points seems far away from the true

landscape.

The plots of the samples density in  space in Figure 5.5 suggest that, even though

the  space is covered uniformly in the example of 1000 training points, this is still

not enough to learn a good surrogate model. Only starting from the training set

of size 10000 the loss surface looks like the one in Figure 5.3a. It is worth noting

that the above discrepancies already arise in a simple two-dimensional optimisation

problem. We note, that there are no theoretical guarantees on the optimal number of

points needed to achieve a good agreement between the loss landscapes obtained from

the surrogate and the model. However, as discussed later in this section, there is an

exponential relationship between the dimensionality of the space and the number of

points needed to train a surrogate model. Thus, we can be sure that the discrepancy

observed in this toy example will be even more pronounced in high-dimensional

problems.
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Figure 5.6: Contour levels of the objective function obtained from the surrogate,
trained with di↵erent dataset sizes as a function of  .

The conclusion is that the parameter space coverage and the number of samples

per point are essential for the surrogate to be correctly trained. Moreover, in

high-dimensional spaces the number of points needed to train the surrogate model

accurately grows exponentially with the dimensionality of the space. However, by

decreasing the search size (not dimensionality!), the amount of samples needed is

significantly reduced. This is a crucial observation, and we will use it to devise a

local surrogate model in Section 5.2.

Toy physics problem

To make sure the algorithm works not only in the previous simple artificial setting,

but can also be applied to a more realistic physics problem, a simple one-dimensional

optimisation was performed. We simulated the propagation of muons through the

magnetised vacuum volume of a rectangular shape using GEANT4, and recorded

muons coordinates on the sensitive plane located after the magnetised area. The

muons were shot using a particle gun with a uniform distribution over the muon

momentum range, and polar and azimuthal angles. The muon charge was selected

randomly for each event. Thus, the momentum P , polar angle � and azimuthal

angle ✓ as well as the electric charge Q of a particle constitute the random variable
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x, which we set as an input to our algorithm. The muon particle coordinates y 2 R2

on the sensitive plane are observed as an output. We keep the width and height of

the magnetised volume fixed and vary only its length. Thus, the parameter  2 R
corresponds to the length of the volume.

The mathematical formulation of this problem is as follows:

x = (P,�, ✓, Q),x 2 R4,

P ⇠ U[5, 10] GeV, � ⇠ U[�⇡, ⇡],

✓ ⇠ U


0,

5

180
⇡

�
, Q 2 {+1,�1}

(5.8)

Before running the optimisation algorithm, we can visually examine how well the

surrogate approximates the distribution of the muon hits on the sensitive plane for

di↵erent lengths of the magnet. To do that, we have generated events using GEANT4

and trained a GAN surrogate model on the obtained data. Afterwards, new events

were sampled from GAN and compared to the data from GEANT4. Unsurprisingly,

GAN was able to reproduce the distribution of the hits very well, as demonstrated

in Figure 5.7.

Figure 5.7: Distribution of the muons hits on the sensitive plane. The first row
corresponds to the samples from GAN, the second row represents the output of
the simulator. Columns indicate di↵erent magnet length: 1, 3, 8 and 14 meters
correspondingly.

After making sure that the GAN could capture the behaviour of the muon distri-

bution as a function of the magnet length, the next step was to perform an actual
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Figure 5.8: True value of the loss as a function of the magnet length, obtained from
GEANT4.

optimisation.

The objective function to minimise was defined as:

R(y;�200, 200) = � 1

N

NX

i=0

�(y0
i + 200) ⇤ �(y1

i + 200)

��(y0
i � 200) ⇤ �(y1

i � 200)

(5.9)

where the index i runs over all N muons in the sample, y0 is the x-coordinate of

the hit and y1 is the y-coordinate. The value 200 denotes the half-width and the

half-height of the restricted area that we want to clean up from the muons. The

objective function equally penalises all muons that have hits inside the 200 ⇥ 200

square of the sensitive plane.

The idea behind such a simple experiment is that we know a priori the correct

answer: the algorithm must increase the length of the magnet until there are no

muons left inside the restricted area. The loss value as a function of the magnet

length, obtained using the GEANT4 simulator, is presented in Figure 5.8. Examining

the plot, one would expect that the optimisation should rapidly increase the magnet

length to 6-7 meters.

In Figure 5.9a the loss function value during the optimisation is presented. As

expected, the optimisation algorithm was able to minimise the loss function rapidly.

In Figure 5.9b the magnet’s length as a function of the optimisation iteration is

presented. The magnet’s length is rapidly increasing until it reaches seven meters

and then continues to increase, but at a slower pace. This is what we expect: once

the loss reaches zero, the gradients provided by the surrogate become very noisy,
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(a) (b)

Figure 5.9: (a) Attained loss value as a function of the iteration step, during
optimisation. (b) Magnet length as a function of the iteration step.

and the optimisation slows down. The algorithm, however, continues to increase the

magnet length to reduce the muon rate to an absolute zero.

5.1.2 Summary

We have shown that the newly devised GSO algorithm can perform simple one- and

two-dimensional optimisation by applying it to the toy mathematical and physics

problems. This suggests that the idea of generative surrogates is worth pursuing.

However, we have already seen in Figure 5.4 that the GSO can not capture the

distribution p(y|x; ) perfectly even in the two-dimensional case, given the limited

amount of data.

In general, training the surrogate model in the whole parameter space is infeasible.

First of all, the main problem is that the surrogate model needs to be trained on a

grid of parameters  . To fill in this grid uniformly, one would require O
�
(L/�)D

�

samples, where L is the size of the space, � is the discretisation step and D is

the dimensionality of  . For instance, in the toy mathematical example above  

varies from �10 to 10 cm, L = 20 cm and  is a two-dimensional vector. By setting

� = 1 cm the points will be sampled uniformly in the  space every cm. With these

settings, 400 points would be sampled to train the model and, as as it was shown,

even this might not be enough. If the parameter space is 10-dimensional, the number

of samples required to fill the grid is O(2010), which is computationally infeasible!

This is an example of the exponential growth of the number of samples with the

dimensionality D of the parameter space.

Secondly, when one samples points in a high-dimensional setting, the “curse of

dimensionality” problem arises (see Chapter 4). This problem states that as the

dimensionality of space increases, the amount of datapoints lying on the boundary



62 Chapter 5. Local Generative Surrogate Optimisation

of the space is infinitely larger than the number of points inside the space volume.

Thus, even if one would randomly sample points, instead of using the grid, it would

be impossible to fill in the volume uniformly since most of the sampled points would

lie on the boundary.

The above observations mean that the GSO will not work in high-dimensional spaces.

Indeed, we performed some basic toy mathematical and physics experiments and

observed that the GSO could not optimise even a five-dimensional physics model.

Therefore, to make GSO work in a high dimensional scenario, we have developed the

Local Generative Surrogate Optimisation: L-GSO.

5.2 Local Generative Surrogate Optimisation (L-

GSO)

As concluded in the previous section, when the parameters  are high-dimensional,

a large training set is required to train a surrogate model in the whole parameter

space. In the toy mathematical example above, we have seen that if this requirement

is not satisfied, the surrogate model does not estimate the gradients well, and the

optimisation might diverge. However, it is computationally unfeasible to train the

surrogate in the whole parameter space. To solve this problem, the GSO algorithm

was modified so that the surrogate model is trained locally in a small region around

the current value of the parameter  .

In this approach, a new parameter value  0 is sampled within the multidimensional

cube (hypercube) with the current point  being in the centre of the hypercube:

U ✏ = { 0 : | 0
i �  i|  ✏, 8i 2 {1, . . . , D}}, where D is the dimensionality of  .

Afterwards, the surrogate model is trained locally using only the points from the

hypercube as the training data. At the next step, the gradient at the current point

 is estimated using the trained model, and a step of the SGD is performed. A

new surrogate model is then trained in the hypercube around the new point. The

algorithm is graphically summarised in Figure 5.10 and in Algorithm 5.

There are several hyperparameters in the L-GSO algorithm that require tuning before

the optimisation. First of all, a dedicated sampling algorithm for the hypercube U 
✏

must be defined. Since simple uniform sampling is ine�cient due to the “curse of

dimensionality” in high-dimensional spaces, a dedicated sampling technique called

Latin Hypercubes was used [87] in step 3 of Algorithm 5.

Another crucial hyperparameter is the size ✏ of the hypercube U 
✏ . Since this
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Figure 5.10: Block diagram of the Local Generative Surrogate Optimisation algo-
rithm.

parameter controls the size of the volume in which the surrogate is trained, it should

be carefully selected. If it is too large, the surrogate model might provide an inaccurate

estimation of the gradient due to the insu�cient density of the training points in

the region, and the optimisation might diverge. If it is too small, the hypercube

volume might be dominated by the noise, and the surrogate model might not be

able to extract any meaningful information, resulting in bad gradient estimation and

divergence of the optimisation.

Finally, the number of points  sampled in the hypercube U 
✏ is another essential

hyperparameter. It is related to the size of the hypercube since the two parameters

control the density of the samples inside the volume. Empirically, in the experiments,

we have observed that approximately O(D) samples in the hypercube are required

to accurately estimate the gradient in the area, where D is the dimensionality of

the  parameter space. However, if the components of the vector  relevant to

the optimisation lie in some subspace of the dimension d, where d < D, L-GSO

requires O(d) samples for producing a reasonable gradient estimation, resulting in

faster convergence of the algorithm in comparison to other methods. An example

of such subspace could be a fixed radius circle in the two-dimensional space: in

Cartesian coordinates a point on the circle is described by x and y coordinates. In

polar coordinates however, only an angle is needed to set the position of the point.

The same idea can be applied to high-dimensional spaces.

In addition to the above, the algorithm stores previously sampled points in the

history bank H in step 6 of Algorithm 5. This allows reusing the previous points if

they are located in the current hypercube (step 7 of the algorithm). The ability to

reuse previously sampled points is an essential property of the algorithm: it results
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Algorithm 5 Local Generative Surrogate Optimisation (L-GSO) procedure

Require: number N of  , number M of x for surrogate training, number K of x for
 optimisation step, region U✏, size of the neighbourhood ✏, Euclidean distance d

1: Choose initial parameter  
2: while  has not converged do
3: Sample  0

i in the region U ✏ , i = 1, . . . , N
4: For each  0

i, sample inputs {xi
j}M

j=1 ⇠ q(x)
5: Sample M ⇥N training examples from simulator yij = F (xi

j; 
0
i)

6: Store yij,x
i
j, 

0
i in history H i = 1, . . . , N ; j = 1, . . . ,M

7: Extract all yl,xl, 
0
l from history H, i↵ d( , 0

l) < ✏
8: Train generative surrogate model S✓(zl,xl; 

0
l), where zl ⇠ N (0, 1)

9: Fix weights of the surrogate model ✓
10: Sample ȳk = S✓(zk,xk; ), zk ⇠ N (0, 1),

xk ⇠ q(x), k = 1, . . . , K

11: r E[R(ȳ)] 1
K

KP
k=1

@R
@ȳk

@S✓(zk,xk; )
@ 

12:   SGD( ,r E[R(ȳ)])
13: end while

in a better surrogate model at almost no additional computational cost. We note

that this property is crucial to reduce the number of expensive simulator runs.

An illustration of the L-GSO procedure is presented in Figure 5.11. The left plot

shows the loss landscape for the “three hump problem” defined below. The goal of

the optimisation was to converge to one of the red stars by starting the procedure

from the black star. The black rectangle shows the area U 
✏ around the current

point  , indicated by a yellow dot. The right plot features the gradient vector fields

estimations from the toy model and the GAN surrogate model. The key observation

is that the fields closely match each other inside the training area U 
✏ .

5.2.1 Experiments and results

For the L-GSO algorithm an extensive study of the performance was done by

comparing it with a wide selection of other methods (from Chapter 4) and estimating

the algorithm’s properties. In addition, the algorithm was applied to the toy five-

dimensional physics optimisation problem before being applied to the full-scale

magnet optimisation.



5.2. Local Generative Surrogate Optimisation (L-GSO) 65

Figure 5.11: (Left) objective function landscape of the “three hump problem” and the
optimisation trajectory. The black star is the initial point. The red stars represent
the optimal values of the function. The yellow point corresponds to the current point
 . The black rectangle is the hypercube around the current point. [34]

5.2.2 Toy mathematical problems

We have based the evaluation and the comparison of the algorithms on the speed of

convergence and the value of the attained optima. The speed of convergence was

measured in terms of the number of simulator calls, as this typically is the most

time-consuming part of the optimisation.

L-GSO was compared to two types of the Bayesian optimisation with Gaussian

processes, with di↵erent kernel functions: the cylindrical kernels [88], denoted as

BOCK, and RBF kernels [25], denoted as BO-RBF. Furthermore, the algorithm was

compared to numerical di↵erentiation, denoted as numerical optimisation, various

REINFORCE-based algorithms, denoted as LAX [89] and LTS [90], and, finally, to

the evolutionary algorithm [27], denoted CMS-ES. In some examples, the information

about the true gradients was available and presented in the comparison.

The toy experiments were chosen to explore low- and high-dimensional optimisation

problems. The probabilistic three hump problem [91] and the Rosenbrock problem [91]

are two and ten-dimensional problems corresponding to low and medium dimensional

problems respectively. The probabilistic three hump problem is defined as
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 ⇤ = argmin
 

E[R(y)] = E[�(y � 10)� �(y)], s.t.

y ⇠ N (y;µi, 1) , i 2 {1, 2}, µi ⇠ N (xih( ), 1), x1 ⇠ U[�2, 0], x2 ⇠ U[2, 5]

P (i = 1) =
 1p

 2
1 +  2

2

= 1� P (i = 2) , h( ) = 2 2
1 � 1.05 4

1 +  6
1/6 +  1 2 +  2

2

(5.10)

and the Rosenbrock problem states that:

 ⇤ = argmin
 

E[R(y)] = argmin
 

E[y], s.t.

y ⇠ N
 
y;

n�1X

i=1

⇥
( i �  i+1)

2 + (1�  i)
2
⇤
+ x, 1

!
,

x ⇠ N (x;µ, 1), µ ⇠ U[�10, 10]

(5.11)

The Submanifold Rosenbrock problem is a 100-dimensional problem where only a

10-dimensional subspace is relevant. For such types of problems, we would expect

L-GSO to outperform other methods. To complicate the relation between inputs and

outputs even more, the Nonlinear Three Hump Problem was introduced. The initial

dimension of the optimised space is 40 and the subspace is only two-dimensional. A

series of non-linear transformations produce the subspace.

The Submanifold Rosenbrock problem is defined as follows:

 ⇤ = argmin
 

E[R(y)] = argmin
 

E[y], s.t. (5.12)

y ⇠ N
 
y;

n�1X

i=1

⇥
( 0

i �  0
i+1)

2 + (1�  0
i)
2
⇤
+ x, 1

!

 0 = A , x ⇠ N (x;µ, 1), µ ⇠ U[�10, 10] (5.13)

where A is a matrix projecting the 100-dimensional vector  to a 10-dimensional

vector  
0
. The Nonlinear Three Hump Problem is defined exactly like the problem

above, but defines  as  ̂ = B tanh(A ), where  2 R40, A 2 R16⇥40, B 2 R2⇥16,

with matrices A and B generated as in the Submanifold Rosenbrock problem.

Finally, our method was applied to optimise the weights of the neural network:
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(a) (b) (c)

Figure 5.12: The objective function value for the toy problems obtained from L-GSO
and the baseline methods. (a) Three hump problem, (b) Rosenbrock problem in 10
dimensions, initial point is ~2 2 R10, (c) Submanifold Rosenbrock Problem in 100
dimensions, initial point is ~2 2 R100. True gradients are shown in grey dashed curves
when available. The shaded region corresponds to 1� confidence intervals. [34]

instead of using a conventional SGD procedure, the L-GSO was used to find an

optimal set of weights. This problem is referred to as the Neural Network Weights

Optimisation Problem [92] and is a 91-dimensional optimisation problem.

The value of the objective function versus the number of the simulator calls for the

first three toy problems is shown in Figure 5.12. In all problems, except the first one,

L-GSO performs similar or better than other methods. We note, that BO converges

faster than other methods in the first problem due to the low dimensionality of the

parameter space  , but struggles to attain optima in the second and especially the

third problems. This observation demonstrates the drawbacks of applying BO to

high-dimensional problems, discussed in Chapter 4. Notably, even in low dimensional

problems, L-GSO performs on par with numerical di↵erentiation.

The actual benefits of the L-GSO algorithm are noticeable in high-dimensional

problems. The loss value as the number of the simulator calls for the Submanifold

Rosenbrock, Nonlinear Submanifold Hump Problem and Neural Network Weights

Optimisation problems is shown in Figure 5.12c, Figure 5.13a and Figure 5.12b

respectively. In all three problems L-GSO outperforms all baseline algorithms by a

large margin. We note that no prior knowledge about the subspace structure was

used by L-GSO. Figure 5.13 further shows the challenging task of the BO application

for high-dimensional setting, as BO struggles to converge.

Finally, any optimisation algorithm should be unbiased and have as small variance

as possible. When a theoretical derivation is possible, those properties should be

proved and some quantitative guarantees obtained. Since we use deep learning
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(a) (b)

Figure 5.13: The objective function value as a function of the accumulated number
of simulator calls for (a) Nonlinear Submanifold Three Hump problem,  2 R40,
(b) Neural Network Weights Optimisation problem ,  2 R91. The shaded region
corresponds to 1� confidence intervals. [34]

Figure 5.14: The bias (solid line) and one standard deviation (shaded region)
of the GAN based L-GSO gradient averaged over all  dimensions in the 10D
Rosenbrock problem versus training step. The grey histogram shows the empirical
bias distribution over all training iterations. [34]
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models as our surrogate, it is hard to obtain any mathematical guarantees on the

convergence. This is only possible for a very restricted class of deep learning models,

where the exact mathematical formulation of the model and the backpropagation

can be obtained. However, one would like to have some convergence guarantees

for the optimisation procedure, at least empirically. Thus, the bias and variance of

L-GSO were empirically estimated on the example of the ten-dimensional Rosenbrock

problem. The values of bias and variance at each iteration of the optimisation can be

seen in Figure 5.14. The bias is computed as the di↵erence between the true gradient

and the average gradient estimation obtained from the surrogate. The averaging

is performed over di↵erent sets of training data and weights initialisation of the

surrogate neural network. Mathematically, the bias at iteration t of the optimisation

is defined as

Biast = r | t
R(y )�r | t

E[R(ȳ )] (5.14)

where ȳ denotes samples obtained from the surrogate model and the expectation is

taken over training data(samples of { 0}) and surrogate initialisation. The bias stays

close to zero throughout the entire optimisation procedure, as seen in Figure 5.14.

5.2.3 Toy physics problem and results

The last check is to apply the L-GSO algorithm to optimise the toy magnet design, but

now with a realistic setup of the simulator and objective function. The optimisation

is applied to one section of a SHiP muon shield-frustum, characterised by five

parameters: height and width at the beginning and the end plus the frustum length.

The sensitive plane that resembles the tracking station is located after the magnet.

The event display of the setup is presented in Figure 5.15. The muons were shot

using the particle gun, with the same parameters, as in Equation 5.8. The main task

was the same: find an optimal shape of the magnet, which sweeps muons away from

the restricted area. Thus the objective function was defined as:

R(y;↵) =
1

N

NX

i=1

⇣
Qi=�1

p
(↵1 � (yi + ↵2))/↵1 + Qi=1

p
(↵1 + (yi � ↵2))/↵1

⌘
,

where ↵1,2 defines the width of the restricted area, Q is the electric charge of a muon,

y is the x-coordinate of a hit in the sensitive plane, and N is the total number of
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Figure 5.15: Toy physical detector setup. Green: optimised magnet; red: sensitive
detector; thin blue area: restricted area, which we want to keep clear of the muons.
The yellow line represents the trajectory of the particle. The screenshot is from
FairShip software.

muons reaching the sensitive plane. The motivation behind this choice of the loss

function will be discussed in the next chapter.

The results of the optimisation are presented in Figure 5.16. In Figure 5.16a the value

of the loss as a function of the iteration is presented at the top and the dynamics of

frustum parameters at the bottom. We see that the loss is rapidly decreasing, as the

length of the magnet increases, as expected. However, afterwards, the loss reaches

the plateau, and the frustum parameters oscillate without significant change. At first,

this might seem strange because we would expect the length of the magnet to increase

constantly until no more muons reach the sensitive plane. However, after deeper

inspection of this phenomenon, we observed that the stagnation of the optimisation

was due to the “wrong polarity” muons. These are muons that enter the magnet on

the wrong side and are bent inwards instead of outwards. Such particles can traverse

the whole magnet diagonally and exit from it on the other side, while still having

hits in the acceptance of the sensitive plane. As we will see in Chapter 6, these types

of events may constitute an irreducible background for the SHiP experiment and,

thus, require thorough examination. If such muons enters the magnet somewhere in

the middle of the frustum, it can easily hit the sensitive plane. Thus, there will be a

saddle point for the optimisation when the number of muons bent out by increasing

the length is equal to the amount of muons bent in by the “wrong polarity” and long

magnet. The optimisation might get stuck at such a point for a long time or even

forever. This is precisely what is observed in the current optimisation. However,

the algorithm was able to escape the saddle point, as seen in the loss plot. The

loss starts to decrease again after iteration 2500. At the same time, the transverse
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(a) (b) (c)

Figure 5.16: (a) Magnet objective function (top) and five  parameters (bottom)
during optimisation with L-GSO. (b) Histogram of the muons hits distribution in the
detection apparatus (depicted as black contour) before (b) and after (c) optimisation
of the magnet. Colour represents the number of hits in a bin.

shape of the frustum at the end is shirking and the length is growing. This is also

well-motivated from a physics point of view: the optimisation tries to sweep away

those “wrong polarity” muons by reducing the time they spend inside the magnet

or not letting them touch the magnet at all, thus, potentially missing the restricted

area, but at the same time increasing the length to sweep out “correct polarity”

muons. The same e↵ect will be observed in the full-scale SHiP shield optimisation.

The muon hits distribution before and after optimisation is presented in Figure 5.16b

and Figure 5.16c. As one can see, the density of muons has dropped by two orders

of magnitude.

Examining the results for the toy physics model, we can conclude that the L-GSO

algorithm was able to perform the optimisation of the five-dimensional frustum

successfully. Thus, it is worth applying the algorithm to the full-scale muon shield

optimisation and improving the shield performance.

5.3 Summary

In this chapter, a novel optimisation algorithm was presented. It is tailored to

the optimisation of black-box stochastic non-di↵erentiable functions, such as the

GEANT4 simulator. The core idea and the drawbacks of a generative surrogate

optimisation (GSO) algorithm were discussed. A range of toy experiments proved

the feasibility of the idea. To solve the drawbacks of the GSO, a local generative

surrogate optimisation was introduced (L-GSO). It was extensively tested against
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other existing optimisation algorithms on a wide range of toy problems and then

successfully applied to the optimisation of the frustum shape magnet.

The L-GSO algorithm was compared to various optimisation algorithms, from di↵erent

optimisation approaches. In all the problems L-GSO is comparable or outperforms

the baseline methods in terms of speed of convergence. L-GSO especially excels in

high-dimensional problems, where it outperforms other methods by a large margin.

Although, theoretical guarantees of the L-GSO convergence do not exist, empirically,

it is unbiased and has low variance.

There are two main directions for further improvement of the algorithm. As discussed,

currently, the hypercube size ✏ is fixed before the optimisation, which might not work

in the case of very noisy or complex functions. In addition to that, the user must

perform some hyperparameter search before the optimisation to find an optimal

value of ✏ for a particular task. Thus, the first direction of work would be to make

an adaptive computation of ✏, such that the size of the hypercube would change

according to the current landscape of the objective function. The second direction of

work would be to combine L-GSO optimisation with more exploratory algorithms,

such as Bayesian optimisation or genetic algorithms. This might solve the problem

of getting stuck at a local optimum and provide a better strategy for selecting a

starting point for the optimisation.



Chapter 6

SHiP shield optimisation

The problem of optimising the SHiP muon shield has been a central topic since

the proposal of the experiment. No existing beam dump experiments feature the

same proton beam energy and intensity and, thus, the same muon rate. In the SHiP

experiment, a rate of 1011 muons/s with energies up to 350-400 GeV is expected.

While, in theory, it is possible to absorb muons using passive shielding, it can not be

done in the case of SHiP. At SHiP’s energies, one would require hundreds of meters

of concrete as an absorber, which would dramatically limit the sensitivity to the

Hidden sector particles due to their large transverse momentum. Thus an active

shield constructed from “warm” magnets was proposed. The shield must have a high

e�ciency of background rejection while being as short as possible to maximise signal

acceptance. In addition, the construction of the shield must be feasible in terms

of the constraints posed by the available technologies and funds. As such, several

iterations of optimisation have been done, and the optimisation is still ongoing.

6.1 Optimisation problem statement

For the experiment to operate, the muon flux rate must be reduced by at least six

orders of magnitude at the tracker station. The rate at the SND detector and the

decay volume walls must be manageable as well. For example, the rate at the SND’s

emulsion films must be lower than 103 muons/mm2 before emulsion replacement,

otherwise, it would not be possible to reconstruct signal tracks. For the decay

volume’s SBT, the rate is solely dictated by the limitations of the electronics signal

readout.

As in the previous optimisation iterations, only the rate at the tracker station is

73
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considered. Although it is possible to include the rate at the SND and the SBT in

the optimisation, it has been left for future work. Some preliminary considerations

about how that could be accomplished are discussed later in the chapter.

The formulation of the optimisation problem is the same as for the toy physics

problem of Chapter 5: we want to find the optimal parameters of the magnets that

minimise the rate of muons in the tracker. To simplify the optimisation and remove

other factors that introduce randomness into the optimisation, all sub-systems of

the experiment were removed, and only the proton target, hadron stopper and muon

shield were left in place. The tracker stations have been substituted with a sensitive

plane located in the place of the first station of the tracker system. The SND and

decay volume were removed because they were not included in the optimisation loss

but would induce muon scattering and thus complicate the optimisation. Including

them might have been beneficial if a full muon sample could have been used, but

this is computationally infeasible, as discussed later.

The hadron absorber geometry is fixed and is excluded from the optimisation,

the same as was done in the previous optimisation iteration [79]. The shape of the

hadron stopper was excluded from the optimisation due to the radiological constraints

imposed by the civil protection requirements.

With all the above simplifications, the optimisation problem is formulated as follows:

x = (Px, Py, Pz, P ID, x, y, z),x 2 R7,

(Px, Py, Pz, P ID, x, y, z) ⇠ available data samples

 ⇤ = argmin
 

E[R(y)]

(6.1)

where R(y) is a user-defined objective function that resembles the penalty for a muon

for reaching the tracker, and  are the parameters of the shield. The input vector x

characterises the kinematics properties of the muon: Px, Py, Pz are the components

of the momentum, x, y, z are the coordinates of the muon production point inside

the target, and PID is the electric charge of the muon. These quantities are sampled

from a pre-production distribution, obtained from the simulation of a proton-target

collision, and are described in the next section.

Currently, the magnet consists of six parts included in the optimisation. Note that

everywhere throughout the thesis the numbering of the magnet sections starts from

zero. This is because the zeroth section is now a part of the hadron absorber and

excluded from the optimisation but presents in the figures for completeness. For

example, in Figure 6.12, the initial rectangular part is the zeroth section.
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Figure 2: The notations used in the description of an ideal muon shield magnet. Top: an 
illustration of the upstream (“left”) and downstream (“right”) cross-sections of an ideal magnet 
core. Note that the model defines the B-field only in vertical limbs. Middle: YZ-cross-section of the 
B-field at X=0. The B-field in the yokes (shown by yellow color) is not defined by the model. 
Bottom: XZ-cross-section of the B-field at Y=0. The suffixes _l and _r refer to the upstream and 
downstream ends of the magnet. 

 

 

 

Figure 6.1: A schematic drawing of YZ and XZ projections of the frustum with the
parameters caption. [93]

The YZ and XZ projections of the frustum with the labelled parameters are presented

in Figure 6.1. Each part is a frustum characterised by seven parameters:

1. f l, f r correspond to the X-half width of the shield central limb at the beginning

and the end of the frustum.

2. h l, h r correspond to the Y-half height of the coil gaps at the beginning and

the end of the frustum.

3. g l, g r correspond to the X-width of the gaps at the beginning and the end of

the frustum.

4. z len correspond to the half-length of the frustum.

The magnetic field is fixed to 1.7T throughout the optimisation and is directed

upward (in the Y direction) in the central limb of the magnet for the first three

magnets. In the last three magnets the direction of the field is flipped. This is

the critical aspect of the design, as many muons are bent back into the detector

acceptance in the first three sections of the magnet and must be removed in the last

three sections. Furthermore, the field integral provided by the first sections and by

the return field in the last sections is su�cient to deflect high energy muons. Notably,

the field strength of 1.7T is a conservative estimation of the achievable magnetic

field at low coil current for grain-oriented (GO) steel.
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Figure 6.2: A schematic drawing of the muon shield optimisation setup in the XZ
projection. The colour corresponds to the direction of the magnetic field.

The schematic drawing of the optimisation setup is shown in Figure 6.2. The colour

represents the magnetic field direction, with green indicating the field direction in

the positive Y-axis. Black dashed lines are the trajectories of the muons deviated by

the magnetic field. The blue line at X ⇡ 9000 cm is the sensitive plane.

Given that both the strength and the direction of the magnetic field as well as

the number of magnets are fixed, the total number of optimised parameters is 42.

This results in a high-dimensional optimisation problem, where it is costly to run a

simulator — an ideal application for the L-GSO algorithm.

6.1.1 The muon sample

The x input in the mathematical formulation above describes all kinematic prop-

erties of the incoming muons. Unlike in the toy example in Chapter 5, where the

distributions from which those properties are sampled are known, in real optimisation

the samples are obtained from the simulation.

A dedicated pre-production stage using Pythia and GEANT4 was done, where

400GeV protons impinged on the target and the muons surviving the hadron stopper

were stored. The magnetic field in the hadron stopper was removed for the pre-

production. In addition, the fraction of rare muon production processes, such as

resonant EM and charm decays, was enhanced and stored with the appropriate event

weights. After the simulation, a normalisation of the spectrum was performed by

assigning the weights to the events, such that the total yield corresponded to one

spill of the SHiP experiment. The weighting was required to appropriately scale

the rare production channels and perform estimations of the background with the

limited computing power.
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(a) (b)

Figure 6.3: P � PT distribution for muons from (a) the small muon pre-production
sample, (b) large muon pre-production sample (the histogram is based on 3% of the
sample).

At the time of this thesis is written, two large samples of muons are available. The

first one contains ⇠ 1.7 · 107 muons, whereas the second one has 4.96 · 108 muons.

The P � PT spectra corresponding to these pre-production samples are presented

in Figure 6.3.

The key di↵erence between those distributions is that the large sample has a 20GeV

cut on the muon energy. It was estimated that the muons with energy less than

10GeV would not survive the hadron stopper and would waste the simulation CPU

time [94]. Thus, muons with initial energy less than 10GeV are not propagated

through GEANT4. Furthermore, muons are only saved if the muon energy is larger

than 10GeV after the hadron stopper. Such a strategy results in a 20GeV energy

cuto↵. In addition, the new sample was enriched with the muons from the EM

resonance decays that typically result in high momentum muons. This explains the

heavier tail of the large sample.

However, it is computationally impossible to use those samples for optimisation. For

example, the large sample takes approximately one day to run on the CERN grid,

which is impractical as the optimisation requires around O(100) steps to converge.

Thus during previous optimisation a “resampled” sample was devised [79]. It was

obtained by resampling the small sample in such a way that each P � PT bin carries

at least ten but at most 100 muons, where the azimuthal angle � was sampled from

a uniform distribution. This resulted in a sample of the size 4.75 · 105 muons, which

was feasible to run through SHiP simulation software in around 30 minutes. This

distribution also added heavier tails to the original one, as it was estimated that

high energy muons are the most problematic for the muon shield. The “resampled”

distribution is shown in Figure 6.4a, and further details can be found in [79].

When using the “resampled” distribution, the amount of muons that passes the shield
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(a) (b)

Figure 6.4: P �PT distribution for muons from (a) “resampled” sample, (b) muGAN
generated sample.

reduces to O(10) events at the end of the optimisation. This results in a large amount

of noise in the optimisation, preventing it from obtaining a better shield design. To

solve this problem, the optimisation was performed using GAN sampled muons. A

dedicated Generative Adversarial Network (GAN) was trained [73] to mimic the

pre-production distribution in Figure 6.3b. It was further modified with auxiliary

variables that allowed tweaking the output distribution and manually setting the

preference for heavier tails. Those variables were adjusted to make the output

distribution of the GAN close to the “resampled” distribution but with heavier tails

to represent the large pre-production sample. The main benefit of the GAN sampling

approach, is that it allows to sample arbitrary large quantities of muons and adjust

the number of samples dynamically during the optimisation. For example, when

the very few muons reach the sensitive plane, the optimisation becomes noisy and

may stall due to a very small gradient. With the GAN generated muons, one can

increase the number of input particles by the desired quantity, potentially increasing

the number of muons reaching the sensitive plane. In return, larger statistics will

result in more robust optimisation. However, this comes at the cost of an additional

simulation time. Thus, the amount of the sampled muons was constrained to 106 in

all the optimisation runs.

The last component of the optimisation problem formulation is the loss function.

6.1.2 Objective function

The objective (or loss) function should, on one side, penalise the rate of muon hits in

the tracker stations and the length and/or weight of the magnet on the other. The

latter is needed to minimise the shield length as well as construction and production

cost. The minimisation of the shield length is crucial for the performance of the
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whole experiment.

The first part of the loss that quantifies the rate of muons in the tracker may be

defined in di↵erent ways. The following loss function was used in the previous

iterations of the optimisation:

Rmuon(x,y;L,R) =
NX

i=1

⇣
Qi=�1

p
[(L+R)� (xi +R)]/(L+R)+

Qi=1

p
[(L+R) + (xi �R)]/(L+R)

⌘
, (6.2)

where denotes the indicator function, Q is the muon charge, x is the x-coordinate

of a muon hit in the sensitive plane and L,R are the boundaries that resemble

the detector shape. The parameter L corresponds to a half-width of the detector

and controls the penalty margin for muons that are bent in the correct direction.

The parameter R controls the penalty margin for the “wrong” polarity muons. By

varying those parameters one can control the e↵ective size of the detector. For

example, if the muons are swept out too close to the detector’s edges, the value of

the parameter L can be increased to shift muons away from the edges. The loss is

only applied to the muon hits inside the acceptance of the tracker: |yi| < 500 cm.

In the default definition of the loss function L = 260 cm and R = 300 cm was used.

The loss function is shown in Figure 6.5. The choice of this particular loss function

is motivated by the idea of penalising muons for being on the “wrong” side of the

magnet. For example, µ� must be deflected to the positive side of the X-axis. If, on

the contrary, the particle is deflected to the negative side, it is treated as a “wrong”

polarity muon. The “wrong” polarity particles can not be conceptually deflected by

the muon shield and constitute the most challenging background source. Thus, with

this choice of the objective function, we want to penalise the shield for sweeping

away muons in the wrong direction, even if they miss the detector.

The weight term of the loss function is defined as follows:

RW (W ) = 1 + e10·(W�W0)/W0 , (6.3)

where W is the total weight of the shield and W0 is the baseline configuration weight.

The total loss function used in the previous optimisation looked as follows [79]:
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R =

8
<

:
108, if W > 3kt

RW (W ) · Rmuon(x,y;L,R), otherwise
(6.4)

However, this objective function is not suitable for any gradient-based optimisation.

First of all, there is a non-di↵erentiable part of the loss at the point W = 3kt, when

the function switches regimes. In addition, the branch of the function corresponding

to W > 3 kt does not depend on the parameters and will result in zero gradients.

Secondly, the term RW (W ) results in gradient values that are similar to the gradients

from Rmuon(x,y;L,R) even for a low number of penetrating muons. Such function

dependency assigns too much weight on the term RW (W ), which will result in a

small, but an ine�cient shield. Thus, one should either modify the coe�cients of the

loss or rewrite it in a more suitable way. During the initial runs of the optimisation it

was observed that the algorithm was more stable without the weight term. Moreover,

configurations produced by L-GSO were lighter than those obtained with BO. Thus,

it was decided to define the objective as R = Rmuon(x,y;L,R) without the mass

term.

Another observation that became available by the time of this work is that the cost

of the shield is not strongly correlated with the weight. The most significant part of

the cost comes from the manufacturing process, rather than the amount of material

required. Thus, the weight term completely lost its relevance for the optimisation.

Manufacturing and production processes are the main drivers of the cost but are

extremely hard to quantify in terms of loss value. Thus, this part was left for future

work.

Finally, as discussed before, no other sub-systems of the experiment were included in

the optimisation. By the time of this work preliminary considerations suggested that

the SND and SBT should be included in the optimisation, but the strict requirements

for the sub-systems have not yet been deduced. For example, it is known that the

SBT could not tolerate high EM background rates and, thus, this constraint should

be included in the optimisation. It is, however, quite challenging to do, since by

default, only muons are being simulated to estimate the muon background and

adding an EM component would significantly increase simulation and optimisation

complexity. For the SND, the background rate through an emulsion film should not

exceed 103 tracks/mm2 for the detector to operate. It is easy to shield from an EM

background by placing a section of lead or concrete between the muon shield and

the SND. On the contrary, one can not easily shield from the muon flux, and thus it

has to be included in the optimisation procedure.
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Figure 6.5: The objective function R to penalise muon hits location on the sensitive
plane. The plot corresponds to parameters L = 260, R = 300.

6.2 Previous studies

Given the complexity of the muon shield and its crucial role in reducing the combi-

natorial background, several iterations of the shield optimisation have been done. In

the Technical Proposal (TP) phase, the first design of the magnet was introduced. It

consisted of two parts, both magnetised to 1.8T, where the magnetic field’s polarity

is flipped in the second part with respect to the first part. The schematic view

of such a shield can be seen in Figure 6.6. Such a configuration of the shield was

optimised for the cylindrical shape of the decay volume and was very impractical:

its weight was thousands of tons of iron and its length was around 50m. However, it

provided a key intuition to the construction of the magnet system that one has to

switch the polarity of the magnets to sweep out slow muons that are turned back into

the detector acceptance by the return field. This is well illustrated in Figures 6.6a

and 6.6b, where in the first scenario, a 350GeV muon is constantly located in the

correct field and swept outside. On the contrary, in the second example, the 30GeV

muon is being swept out immediately after entering the shield and re-scatters back

into the acceptance in the return field of the first magnet. As can be seen, if the

polarity of the second magnet had not been flipped, the muon would have been

focused back into the detector acceptance. Due to the reversed polarity, it is swept

outside and thus misses the downstream detector.

The TP configuration was further optimised [95] using MINUIT [75]. The main

benefits after this optimisation were the reduction of the length to 35m and a weight
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(a) (b)

Figure 6.6: Schematic view of the SHiP shield in XZ plane as proposed in the TP.
Potential trajectories of (a) 350GeV muon and (b) 30GeV muon are shown. Colour
represents the direction of the magnetic field. [79]

reduction in half. This was possible due to the magnetisation of the hadron stopper

with a field of 1.8T and the construction of the shield with six magnets instead of two.

An additional iron plate was introduced after the last magnet to prevent muons from

scattering on the edges. This design, however, was relying on fast simulation and

unrealistic assumptions on the magnetic field strength and thus, a third optimisation

was performed.

A third iteration of the optimisation was performed utilising the GEANT4 simula-

tor [71] in combination with machine learning techniques [96]. Before this optimisa-

tion, a realistic design and magnetic field of the hadron stopper had been devised and

thus, it was removed from the optimisation. The field inside the hadron stopper was

set to 1.6T and inside the shield to 1.7T. Lower field values provide a more robust

design from the engineering perspective and are easier to implement in practice. The

resulting design works as e�ciently as the previous optimum with the muon rate

of ⇠ 50 kHz but is ⇠ 25% lighter. A detailed engineering drawing of the magnet is

presented in Figure 6.7. Notice that the coils, shown in orange, are located inside

the magnet for the first half of the magnet and outside for the second half. This

ensures uniformity of the magnetic field in the most active zones of the shield.

Examining the distribution of the field closely in Figure 6.8, it can be seen that

the distribution of the field is uniform in the central part of the shield. However,

the field drops dramatically on the sides and edges, which can negatively a↵ect the

performance of the shield. Even if the fraction of muons a↵ected by the field non-

uniformity is small, at the rate of 1011 muons/s this number can become significant

and requires further investigation.
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Figure 6.7: A CAD engineering model of the current SHiP magnet design. The
magnetic coils are shown in orange.

Figure 6.8: Distribution of the magnetic field in the magnet. A quarter of the shield
is shown in Y-cut and Y-cut rotated by 90 degrees. [50]
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After revisiting the current status of the optimisation, it has become clear that a

new iteration of the optimisation and a dedicated test-beam experiment is needed to

validate the simulation and engineering grounds of the muon shield.

In particular, the previous iteration of the optimisation did not take into account that

each section of the shield can only be constructed from the rectangular blocks and

could not be a perfect frustum (see Figure 6.7). This may a↵ect muons scattering

and thus can lead to an increase in the penetrating rate. Secondly, and most

crucially, throughout the optimisation process the field in the shield was assumed

to be uniform in the whole magnet. Dedicated studies were done to check how the

above imperfections a↵ect the results and are discussed further in this chapter.

In addition, some concerns were raised whether the current design found by the BO

is optimal. As shown in Chapter 4, theoretically, BO can find a global minimum

of a function. In practice, it is rarely possible for complex problems, such as shield

optimisation. Thus, the longstanding question was whether it is possible to improve

the current design of the shield, without sacrificing the length constraint. With the

local optimisation, such as L-GSO, it is quite easy to answer this question.

Finally, it was understood that the e↵ect of large-energy loss and large-angle scattering

might significantly a↵ect the result since no experimental data is available for such rare

processes at the energies of muons above 10GeV. Validation of such rare processes

and their comparison to the description in GEANT4 are another motivation to

perform a dedicated test-beam experiment, which is described in detail in Chapter 7.

6.3 Muon shield re-optimisation

With all the ingredients in place, we first start by applying the L-GSO algorithm

to the shield optimisation. The optimisation has been performed from a couple of

random starting points around the current optimum as well as from the optimum

itself. This strategy allows to answer the longstanding question whether the current

configuration indeed corresponds to the optimum. Also, it allows to understand

whether this optimum is global or local.

6.3.1 Application of the L-GSO

The L-GSO algorithm was described in detail in Chapter 4. However, to satisfy the

physical constraints of the shield, one must account for the minimal size of the coil gaps
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inside the magnet. It is achieved by limiting the corresponding magnet parameters

in the GEANT4 simulation. In addition, as the shield cannot be constructed with

infinite precision, the shield parameters should change discretely throughout the

optimisation. Since the simulation was found to be insensitive to parameters changes

smaller than 0.1 cm, it was decided to set this value as a minimal allowed change in

the parameters.

The performance of the algorithm is compared using the loss function with the

original parameters L = 260 cm and R = 300 cm. This ensures that the same

quantities are being compared since increasing or decreasing L,R would increase or

decrease the loss correspondingly. Thus, all values of the objective function presented

in this chapter are computed for the above values.

The computing power for the optimisation was provided by the Yandex Cluster and

Higher School of Economics (HSE) GPUs. Due to the usage of neural networks in

the L-GSO on one side and CPU extensive usage by the FairShip on the other, each

iteration of the optimisation was performed on separate machines. At each iteration

O(80)  magnet configurations were generated using Latin Hypercube sampling. For

each of those configurations 500000 muons, generated using muGAN, were simulated

using FairShip. Each such configuration utilised 16 Cores of the Yandex Cluster,

totalling in ⇠ 1300 simultaneous CPU cores utilisation. The distribution of muon

hits p(y|x; ) on the sensitive plane for each magnet configuration  and muon

parameters x was saved into the history replay as in step 5 of Algorithm 5. This

step ensured the re-usage of the data for the surrogate training procedure. After

this step, the data was transferred to the HSE GPU machine, where the surrogate

was trained on a single Tesla K80 GPU. Then the gradient step was done, and the

process repeated for the updated configuration of the magnet.

First, the value of the loss is assessed using the “resampled” muon sample to make

a fair comparison with the results obtained in the previous iteration of the shield

optimisation. Afterwards, the performance is evaluated using the number of muons

hits in the first Target Tracker (TT) station, corresponding to the number of muons

per spill after normalising using the weights. This is done using large pre-production

sample but simplified experiment geometry. Finally, the same pre-production sample

is run for the complete geometry of the SHiP experiment to account for SND and TT

magnetic fields and scattering in the material. The rates of muons between baseline

and new shield configurations in the first TT are then compared.

To test the L-GSO algorithm, the optimisation was repeated starting from the

current configuration. If the configuration corresponds to the local optimum, then
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(a) (b)

Figure 6.9: (a) Objective function value during optimisation (a) started from the
current configuration, (b) started from the perturbed configuration. The red line
corresponds to the loss value as in [79]. The shaded region corresponds to the
estimated uncertainty.

the L-GSO algorithm would oscillate around the current value without any significant

decrease of the objective function value. It was found to be the case, as can be seen

in Figure 6.9a. The optimisation was run for 50 iterations and showed oscillating

behaviour around the initial value of the objective function ⇠ 25, shown in red. This

proved that the current shield configuration was indeed the local optimum.

Since L-GSO is a gradient-based procedure and is much more sensitive to small

changes in the muon flux rate, the objective function parameter L was changed from

260 cm to 290 cm during the optimisation. The increase of the parameter value shifted

the boundary point at which the objective function became zero, improving the

optimisation robustness. Afterwards, the optimisation was run from a new magnet

configuration, which was a small perturbation of the current optimum. If the current

optimum is a local one, it would be possible to find a better value of the objective

function by starting L-GSO from a perturbed geometry. Figure 6.9b shows the value

of the objective function when the optimisation was run from such a perturbed initial

point. One can see, that even though the optimisation starts from a much higher

loss value, it is able to converge to a loss value below 20, improving the previous

optimum. The reason behind the large variance in the loss plot around iteration 130

is the stochastic nature of the problem. Due to the stochastisity of the optimisation

it can sometimes make a step in an suboptimal direction. Furthermore, since the

shield configuration is sensitive to small changes, the suboptimal step can lead to

large values of the loss function. However, the optimisation is capable of escaping

such regions of high uncertainty and successfully converging, as seen in Figure 6.9b.
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(a) (b)

Figure 6.10: Weighted distribution of the muon hits in the sensitive plane obtained
from (a) BO, (b) L-GSO. Red contour corresponds to the detector boundaries.

6.3.2 Characteristics of the configuration obtained with L-

GSO

The obtained configuration and the BO baseline were run on the largest available

muon sample of 4.96 · 108 muons to validate the results. The weighted distribution of

muon hits, corresponding to one spill, is presented in Figure 6.10. Even by eye, it is

possible to notice that the density of the hits in the middle of the detector acceptance

is more sparse for the L-GSO configuration. The loss function value for the new

optimum is, indeed, smaller: 2200, versus 3000 for the baseline. Additionally, the

muon shield corresponding to the new optimum is lighter and shorter. These results

are summarised in Table 6.1.

Another notable aspect of the optimisation is that the high density of the muon hits

lies much closer to the detector boundaries in the case of using L-GSO, as can be

seen in Figure 6.10b, but drops fast as one moves close to the centre of the detector.

That can be further seen in Figure 6.11. In the optimum, found by the L-GSO, the

number of hits drops polynomially as the detector size shrinks. This suggests that

the L-GSO optimisation is more precise than the Bayesian optimisation and allows

accurate fine-tuning of the shield parameters, if needed.

The resulting shape is presented in Figure 6.12b. One can notice that the optimisation

has shortened the fifth section of the shield and widened the return yokes of all

magnets. This change, in turn, reduced the amount of low and high energy muons

penetrating the shield. The P � PT distribution of initial muon momentum plotted
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Figure 6.11: Number of the muon hits per one spill in the sensitive plane as a function
of the plane X half-width.

Table 6.1: Comparison of the optimisation results for Bayesian optimisation and
L-GSO.

Method Loss Shield length (m) Magnet weight (kt)

Bayesian opt. 3000 35.5 1.27
L-GSO 2200 34.4 1.05

for muons penetrating the shield is shown in Figure 6.13.

It is clearly seen that in the case of the L-GSO design, there are no muons with high

momentum and much fewer muons with high PT for energies above 200GeV as well

as less 30� 40GeV muons. However, there are more 50� 100GeV muons present in

the L-GSO spectrum. The widening of the spectrum suggests that the new optimum

has a less pronounced focusing e↵ect than the BO configuration.

The observation that the new optimum can remove all high energy muons, while

having a shorter length, is quite peculiar. As it turns out, the ability to remove high

energy muons comes from the last three sections of the magnet, where now each next

magnet is “nested” in the previous and not a “continuation” of the previous magnet.

In such a way, even if high energy muons are flying inside the coil gap in one magnet,

they eventually face the return field in the next magnet, thus being constantly swept

out. In the baseline configuration, they might fly along the coil gap until they exit

the shield. This also explains why the L-GSO result has lower loss and fewer muons

in the centre since high energy muons contribute the most to the central hits.

After the optimum performance was assessed on a simplified geometry and the

large pre-production muon sample, the performance was ultimately tested with



6.3. Muon shield re-optimisation 89

(a)

(b)

Figure 6.12: Muon shield XZ and YZ projections from (a) the BO optimum, (b) the
L-GSO optimum.
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(a) (b)

Figure 6.13: Initial weighted P � PT distribution for muons reaching the sensitive
plane. (a) BO configuration, (b) L-GSO configuration.

the complete geometry. The large sample of muons was run through the FairShip

simulation with all the sub-detectors in place. The resulting distribution of the hits

in the first TT for the BO configuration and the L-GSO configuration is presented

in Figure 6.14.

The weighted amount of muons with the hits in the TT is ⇠ 5.5 · 104 for the BO

configuration and 24.5 · 104 for the L-GSO. This means the L-GSO optimum has

four times more muons when simulated with complete geometry instead of a 30%

decrease in the loss function value and a 15% decrease in the amount of muons for

the simplified geometry. One can also see an asymmetry in the hits distribution,

which can not be explained by the magnetic field, since the first TT is located before

the spectrometer magnet. A dedicated study showed that the cause of the hits

asymmetry is the distribution skewness in the pre-production files, further enhanced

when the muon propagates through the shield and the decay volume. However, the

asymmetry does not a↵ect the estimation of the muon flux.

To understand the cause of the rate increase, we first compare the muon P � PT

distributions for the complete geometry in Figure 6.15. The distributions look similar

to those in Figure 6.13, except that the BO configuration has fewer low-P muons.

This suggests that the e↵ect is twofold. First, low energy muons are being stopped

and/or swept out by the SND and the muon filter in the complete geometry. This

e↵ect is the same for the BO and L-GSO optimum. Second, due to the precise

optimisation provided by the L-GSO, all muons that were swept just enough to miss

the detector in the simple optimisation were then scattered back by the decay volume

walls.

As it turns out, if we plot the distribution of the hits in the decay volume walls, that

corresponds to passed muons and presented in Figure 6.16, we see that most of them
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(a) (b)

Figure 6.14: Muon hits distribution (unweighted) in the first Target Tracker for large
sample of muons and complete geometry. (a) BO shield configuration, (b) L-GSO
shield configuration.

(a) (b)

Figure 6.15: Initial weighted P � PT distribution for muons reaching the first Target
Tracker in complete geometry. (a) BO configuration, (b) L-GSO configuration.



92 Chapter 6. SHiP shield optimisation

Figure 6.16: Hitmap of the muons in the decay volume walls in XZ and YZ projections.

have hits just at the end of the decay volume. Thus, it is precisely these muons that

provide the hotspots in the distribution in Figure 6.14b. To remove the hotspots,

a couple of approaches might be taken. In the first, one can reduce the transverse

size of the decay volume such that its edges are entirely located in the region free

from high muon flux. In the second one, the boundary conditions L and R in the

Equation 6.2 can be increased, e↵ectively forcing the optimisation to clean a wider

area of the detector surface. This will shift high flux regions of muons further away

in the transverse direction, where no decay volume walls are present.

The flux of penetrating muons can be further suppressed by requiring the muon

momentum at the TT to be greater than 1GeV. As discussed in Chapter 3, the

common signal selection criterion is that track momentum is larger than 1GeV. Since

⇠ 40% of muons have a momentum smaller than 1GeV, a significant fraction of the

scattered muons will be automatically discarded. The background can be further

reduced by assuming that the muon hits in the TT can be matched with the hits in

the SBT, since only 4% of muons do not have hits in the SBT.

Another peculiar observation is that within the muons with momentum larger than

1GeV at the TT station, a significant fraction of them exhibit large energy loss

during the propagation through the shield. In Figure 6.17, the ratio of energy loss to

that predicted by the Bethe-Bloch formula is shown as a function of initial muon

energy. Quantitatively, around 20% of such muons exhibit energy loss at least twice

as large as the one predicted by the Bethe-Bloch formula. It can be seen that

most of these muons lie in the energy range of 50� 100GeV. Thus, such types of

muons can potentially be an irreducible background for the experiment due to the

large energy losses, which are rare and hard to simulate. A significant energy loss

of these medium-low energy muons accompanied with large-angle scattering will

significantly a↵ect the trajectory of the muons in the magnetic field. For example,

after exhibiting large energy loss, the muon can be trapped between return yokes
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Figure 6.17: Ratio of muon energy loss to Bethe-Bloch theory prediction as a function
of the muon momentum.

of the magnet, penetrate the shield and end up in the acceptance of the detector.

Similarly, a significant angle change might a↵ect the trajectory of the muons in the

magnetic field. Due to low simulation statistics for such types of muons it might

be challenging to properly account for such events in the optimisation. On the

scale of 1011 muons/spill, these numbers can become significant and result in a large

uncertainty on the muon rate. This and other factors discussed below, provide yet

another motivation to perform a dedicated muon shield prototype beam testing.

After it was made sure that the newly devised L-GSO algorithm can perform a full-

scale magnet optimisation, it was subsequently applied to solve some technological

challenges of the muon shield.

6.3.3 Optimisation of a feasible geometry

During the R&D studies of the shield, it became clear that GO steel must be used,

as it was mentioned in Chapter 3. This allows achieving a high magnetic field inside

the magnet with a small current inside the coils, all without the need of cooling the

magnets. However, such technology brings another limitation: the GO steel can only

be produced in sheets of 300� 500µm thickness. The sheets require delicate welding

with electron-welding or laser beam technologies, limiting the maximum amount of

sheets that can be welded together to ⇡ 150, forming a pack of 50mm thickness.

Those packs are then bolted together into rectangular modules of 0.5m thickness

and the magnet is constructed from such modules. In Figure 6.18 the schematic view

of the idealised magnet (left) and a magnet constructed from rectangular modules

(right) is presented.
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(a) (b)

Figure 6.18: View of the muon shield assembled from (a) ideal frustums, (b) module-
based frustums. [50]
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Figure 6.19: Muon hits distribution in the first TT station. Obtained for (a) baseline
muon shield, (b) step muon shield.

Such construction slightly changes the overall profile of the shield and introduces a lot

of sharp corners, which can lead to significant degradation of the shield performance.

To test this hypothesis, a large pre-production sample was run for the baseline shield

configuration and the baseline configuration, constructed from the rectangular blocks

(to which we refer as the step configuration). The distribution of muon hits in the

first station of the Target Tracker for the baseline and the step option is shown

in Figure 6.19. Although the distributions look similar, the total amount of muons

crossing the TT increased by a factor of two by introducing the step modules. This

is another hint that the optimum, found by BO, is not stable and is sensitive to

small changes in the geometry of the shield. If it is indeed so, then the step modules

act as a perturbation on the shield configuration, and it is possible to perform shield

fine-tuning using L-GSO.

The L-GSO algorithm was applied to the baseline configuration with steps. Two par-
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(a) (b)

Figure 6.20: Objective function value during optimisation of the shield made from
rectangles using (a) resampled muons, (b) muGAN muons. Initial point is the BO
optimum. Red line correspond to the minimal value attained.

allel optimisations were performed: using the reduced muon sample from Figure 6.4a

and the GAN generated sample from Figure 6.4b. The variation of the objective

function during the optimisation is shown in Figure 6.20. The initial loss value is

larger than in the original optimisation since, as mentioned, the step configuration

of the shield has worse performance than its ideal counterpart. However, L-GSO

successfully performed optimisation and reduced the loss value to the level of the

“ideal” shield optimum or even lower. The optimisation using an extended muGAN

sample proved to work well too, and improved the convergence of the algorithm.

In Figure 6.20b the convergence of the algorithm occured already after the 15th

iteration as opposed to 30th in Figure 6.20a.

Examining the resulted magnet shapes in Figure 6.21, we notice that the algorithm

did not perform any drastic changes. For instance, the configuration in Figure 6.21b

is very close to the baseline configuration yet features a much lower muon rate. On

the contrary, Figure 6.21a features a fourth magnet that is completely di↵erent from

any other designs, but has muon rate similar to configuration in Figure 6.21b. This

suggests that there numerous optimal shield configurations that di↵er from each

other by small adjustments.

The noticeable variation of the loss function for close design configurations suggests

that the resulting muon rate is susceptible to small changes in the shield’s geometry.

If one thinks about the step shield design, it is only the edges of the shield that

were a↵ected by the steps, but even such a small variation of geometry increased the

muon rate by a factor of two. The prototype test beam should help in understanding

the magnitude of such e↵ects by comparing the measured and simulated fluxes.
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(a)

(b)

Figure 6.21: Muon shield XZ and YZ projections for the step optimisation for (a)
“resampled” muon sample, (b) muGAN muon sample.
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Figure 6.22: Number of muon hits per one spill in the experiment sub-systems. Blue
is an ideal field map, red is a realistic map.
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Figure 6.23: Muon hits distribution in (a) first TT station, (c) SBT for the ideal
field and (b) first TT station, (d) SBT for the realistic field.
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6.3.4 Ideal versus real magnetic fields

To bring the muon shield even closer to the realistic design a dedicated calculation

was done to simulate the magnetic field inside the shield. The distribution of the field

is presented in Figure 6.8. The field has a uniform value of ⇠ 1.7T in the “working”

area of the shield: the central parts of the yoke and a significant decrease of the field

to ⇠ 1.5T in the corners.

To check the e↵ect of the real field, two simulations were done: one with the BO

configuration and ideal field and the other with the BO configuration and realistic

field. In Figure 6.22 the rates of muons reaching various sub-systems of the SHiP

are presented. Unfortunately, an order of magnitude change in the muon rate is

observed in all sub-detectors. The distributions of the hits in the TT and SBT for

the ideal and real field are presented in Figure 6.23. Hotspots in the distributions in

both detectors are seen.

There are two possible explanations why such a degradation in the performance

might be observed. First of all, the realistic field is calculated on the 2.5 cm grid and

then overlaid on the muon shield geometry during a simulation. This results in the

discretisation of the field value inside the shield and on the boundaries. Having a

discrete field inside the shield might not be that important, but having the discrete

field on the boundaries would result in a “stray” field outside of the magnet as well

as an incorrect field interpolation, which are not present in the ideal field scenario.

To test this hypothesis, the ideal field was discretised in the same manner as a

realistic one with a 2.5 cm step. The simulations with the ideal and discretised

ideal field were compared. It was observed that the rate had increased twice for the

discretised field in comparison to the ideal. This suggests that the discretisation

does indeed introduce side e↵ects that make the current configuration non-optimal.

However, this rate increase could not explain an order of magnitude change in the

case of the realistic field.

Another option is that additional muons are caused by the weakened return field of

the shield, as seen in Figure 6.8. A weaker return field means that low and mid energy

muons do not experience enough bending and scatter back to the acceptance on the

edges of a magnet. If it is indeed the case, the optimum found by the optimisation is

sensitive to the non-uniformities in the magnetic field on the magnet’s edges. It is an

additional uncertainty of the simulation that requires verification at the test beam.

The simplest way to solve this problem would be to include the real magnetic field into

the optimisation procedure, such that at each iteration the realistic field is generated
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for the current geometry configuration. The problem here is that the computation of

the field is not an automated procedure and requires a human expert to simulate the

field. The second problem is that roughly one day is required to compute the field

map for any specific geometry. At the scale of 80 parallel evaluations of di↵erent

configurations (as discussed in Chapter 5), each of which takes 30 minutes, such an

approach is infeasible.

A couple of solutions is possible to solve this problem. The best solution would be

to devise a surrogate model for fast estimation of the magnetic field. This approach

would allow approximating the field as close as possible to the real one, while

maintaining low computation cost. For example, one can use generative networks or

regression models to predict the field grid based on the magnet shape and the field

strength. However, such an approach requires a dedicated long-term study to set up

the problem, generate the data and train a model.

Another approach that is easy to implement is to add some noise to the ideal magnetic

field. The added noise can be distributed uniformly in the whole volume of the shield

or only on the edges, where the e↵ect of the field degradation is the most pronounced.

By introducing a new noise location and strength every optimisation iteration, one

can regularise the optimisation process by preventing the algorithm from converging

to an optimal but less stable solution.

An example of such a noise adding procedure is presented in Figure 6.24. Figure 6.24b

is obtained by taking the field from Figure 6.24a and randomly adding 1000 Gaussian

noise cores to it. As a result, patches of the non-uniform field are produced. The

number of cores and the strength of the noise were calibrated so that the amount of

muons passing the ideal noisy field is the same as the number of muons passing the

realistic field configuration. This procedure was implemented in the optimisation

process as it adds almost no additional computation time. This approach, however,

was not able to steer the procedure in the correct direction. All optimisation iterations

with noisy field map diverged. The reason for that is yet not completely understood,

but it appears that the same noise strength a↵ects the muon rate by orders of

magnitude depending on the shield geometry. Thus, the noise parameters should

be adjusted separately for each particular configuration of the shield, which is a

computationally ine↵ective procedure. It was thus decided to switch to surrogate

field modelling, which is currently under development.

The importance of the field e↵ect and its influence on the muon rate has further

proved the significance of the dedicated test beam. During the test beam, it will be

possible to measure the impact of edges and welding on the magnetic field distribution
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(a) (b)

Figure 6.24: Distribution of the magnetic field for the shield in YZ projection. (a)
Ideal field, (b) Ideal field with noise.

and how those a↵ect muon propagation and the final rate.

6.3.5 Summary

All the studies presented above conclude that the shield’s design is highly fine-tuned so

that small changes in the geometry or magnetic field a↵ect the muon flux. Moreover,

some critically important factors, such as magnetic field, are not properly modelled

in the optimisation procedure. To better understand how the above aspects can be

accounted for in the next iteration of shield optimisation, the muon shield prototype

test beam is needed.

In addition, there might be another reason for the test beam. As discussed earlier, the

shield is sometimes penetrated by wrong polarity muons. It is hard to predict under

which circumstances a muon will become a wrong polarity particle and inevitably

pass through the shield. To understand how many of such muons penetrate the

shield and what are the characteristics of those, a dedicated muon classification was

done.

6.4 Muon classification

Although there are only 1100 out of O(107) muons from the sample that pass the

shield, which corresponds to a rate of 50 kHz, it is important to understand the

properties of those muons.
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A visual examination of the passed muons provides a good initial separation of the

particles. Overall, muons fall into four categories. The first corresponds to muons

that exit the shield in the first or second magnet and do not have any hits in magnets

3-5. Instead, all such muons scatter back to the detector acceptance in the last sixth

magnet. The mean energy of such muons is 30GeV and does not exceed 70GeV.

There are 319 of particles of this category. Interestingly, such muons hit the last

magnet with the correct field direction but are not swept outside due to the minimal

distance they travel inside and the scattering e↵ect.

The second category corresponds to low energy muons, with a mean (maximum)

energy of 35GeV (60GeV), that exit the shield in the first two magnets, but then

fly above or below magnets 3-4 and thus enter the shield on the wrong side. Because

such particles appear on the wrong side, they are being swept back into the detector.

There are 412 of such muons.

Muons with energies ranging from 60 to 125GeV constitute the third category.

Particles from this category usually exit the shield in the third magnet at a large

angle and are not bent out by the following magnets. Muons traverse the magnets

and again appear on the wrong side of the shield, where they are now swept in the

detector. This category has 204 particles.

Finally, the fourth category contains high energy muons with momentum larger

than 125GeV. Such muons usually traverse the first three shield sections properly

and then either end up in the wrong field or in the coil gaps. Thus, they are not

bent enough to miss the detector. 184 particles fall in this category. However, this

category can be removed via shield fine-tuning, as shown in the subsection 6.3.2 of

this chapter.

The examples of trajectories for all categories are presented in Figure 6.25.

Apart from the di↵erence in energy, it is interesting to further understand other

properties of the categories. The initial hypothesis was that the penetrated muons

might su↵er from anomalous energy losses or large-angle scatterings while traversing

the shield. These e↵ects, in turn, may result in non-standard trajectories and, thus,

shield penetration. To check this hypothesis, the following calculations have been

done. First of all, the muon’s energy loss �E in all traversed magnet sections is

calculated. Then, the di↵erence between the XZ-plane angle at the entrance and the

exit of the section, ✓diff is calculated. This angle, however, can not be a measure of

scattering since it reflects the e↵ect of the magnetic field. To adjust for the particle

bending, the change in the angle ✓field due to the magnetic field is calculated as

follows:
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Figure 6.25: Examples of penetrating muons. Categories: dashed-dot:1, dotted:2,
solid:3, dashed:4.

✓field =
cBL

E�2
, (6.5)

where c is the speed of light, B is the magnetic field strength in T, L is the distance

traversed in the XZ-plane in m, E is particle energy in GeV and � is relative

to the speed of light particle velocity. The absolute angle di↵erence between the

muon’s entrance and exit direction due to the scattering can be then estimated as

✓adjusted = ||✓diff |� ✓field|. To understand if the scattering angle is large, it can be

compared to a multiple scattering theory.

In multiple scattering, a particle traversing the medium is deflected by many small-

angle scatters. Most deflections come from many consecutive scatterings on a nuclei

described by the Rutherford scattering and often referred to as a multiple Coulomb

scattering (MS). The multiple scattering is described by a Gaussian distribution for

small angles. However, occasionally a single large-angle scattering could happen,

which will result in a significant change of the particle trajectory. The Gaussian

distribution for MS is characterised by zero mean and standard deviation �MS that is

proportional to �MS ⇠ 1/p
p
L/X0 [97], where p is the momentum of the particle, L

is the distance travelled in the medium and X0 is the radiation length of the material.

Usually, it is considered that a Gaussian approximation works well for angles up to

a few �MS and is accurate to 15% or better for L/X0 < 200 [97].
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(a) (b)

(c) (d)

Figure 6.26: Histogram of correlation between scattering angle ✓adjusted and the
relative muon energy loss. Histograms plotted separately for di↵erent muon categories
(a) one, (b) two, (c) three, (d) four.

The mean distance L travelled by the muon inside one magnet section is around

300 cm and the radiation length of iron is 1.757 cm result in L/X0 ⇡ 170. Thus,

it is possible to apply multiple scattering theory in the first approximation. As a

result, one would expect that ✓adjusted would correspond to an angle change induced

by multiple or single scattering in the material.

Each muon, when flying through the shield, would traverse a couple of magnets.

The relative energy loss �E/E and the angle ✓adjusted is computed for each magnet,

traversed by the muon, resulting in 5� 10 data points per muon. The 2D histograms

of �E/E � ✓adjusted are presented in Figure 6.26.

Although all the computed quantities are simple approximations, there are two notable

properties. First, muons in categories two and three have a correlation between

large-angle scattering and large energy loss. Interestingly, these categories correspond

to muons of the wrong polarity, as explained above. The second observation is that

categories one to three have a significant amount of events with large-angle scattering.
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Figure 6.26 shows that muons in categories 1-3 have a noticeable fraction of them

with angles larger than 50mrad. There are approximately 14 %, 59 %, 32 %, 3 % of

muons with an angle larger than 50mrad in categories 1-4 correspondingly. In total,

this adds up to about 30 % of penetrated muons that have undergone scattering at

an angle larger than 50mrad. Thus, it is vital to understand how well large-angle

scattering is modelled in GEANT4 to avoid surprises when the experiment becomes

live.

To answer this question the literature on the GEANT4 simulation of multiple

scattering was studied [98, 99, 100]. It turns out that there are multiple models

available in GEANT4 for multiple scattering description and that the result depends

significantly on the step size. The step size describes how often GEANT4 recomputes

the propagation of the particle, its energy and direction. A smaller step size provides

more precise results but increases the usage of the CPU. The new combined single and

multiple scattering model was introduced in [99]. This model automatically chooses

which type of scattering to use and is currently the default option in GEANT4 [99].

However, examining the comparison of the di↵erent models, it is clear that all the

models tend to agree for scattering angles smaller than 20 � 40mrad and show

growing discrepancies for larger angles [99]. It is also important to note that the

results provided in the paper are for low energy muons of 200MeV. Therefore, the

results are not applicable to the muon shield, where the minimum muon energy is

⇠ 15� 20GeV.

The latest results for GEANT4 comparison with the data comes from [100], where

large-angle muon scattering in lead was compared to the simulation. Muons with

energy up to 12GeV were used in the comparison. Although having low statistics

and still being below SHIP’s energy range, this paper has the closest energies for

such type of scattering experiments. At the moment of this work, no publications on

the subject with higher energies were found.

First of all, the results of the comparison GEANT4 Monte Carlo simulation with

theoretical models of multiple scattering show a diverging behaviour starting from

a certain angle ✓. Moreover, the value of ✓ decreases with muon energy, as seen

in Figures 3-5 of the paper. This suggests that using simple multiple and single

scattering theoretical models for muons with energies more than O(10)GeV is

incorrect.

Secondly, and most importantly, the GEANT4 simulation does not agree well with

the experimental data. The distributions of the scattering angle from simulations and

experimental data are presented in Figure 6.27. Figure 6.27a corresponds to 7.3GeV
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Fig. 6. Comparison of the Monte Carlo simulation to the 11.7 GeV/c data-set.
Data have been obtained by digitisation from the original paper[14].

Copper nucleus charge density was used. Experimental data
are shown by the bullets with error bands. The Monte Carlo
prediction is shown with three options: 1) a point-like nucleus
prediction (|F (q)|2 = 1) (gray). 2) the dipole nuclear form
factor (red) 3) the improved form-factor of Eq. 8 (yellow).
In both cases the mixed algorithm described in IV has been
used. The band width in Monte Carlo histograms represent
the statistical uncertainty. This meaning of symbols is also
preserved in the following. The disagreement with the point-
like simulation indicates that the nuclear density is in this case
actually probed. Furthermore a better description is obtained
by using the improved form-factor with respect to the dipole
one.

B. Lead data with muons (Masek et al.)

The experiment[15] was performed in 1961 profiting of
the Bevatron accelerator at the Lawrence radiation labora-
tory employing a muon beam with a median momentum of
(2.00 ± 0.03) GeV/c and a 3.5% spread. The total number
of muons incident on the apparatus was 2.5 ⇥ 107. The
lead target had a thickness of 14.4 g/cm2 corresponding to
1.268 cm (one half inch). Scattered particles were observed
up to 12� (pT � 400 MeV/c). The muon beam is obtained
from a (3.5 ± 0.3) GeV/c pion beam with magnetic selection
(see Fig. 3 of the original paper). 2 GeV/c muons are those
decaying backward in the � rest frame. This large difference
in momentum allows a clean �/µ separation. The pion con-
tamination on the target is estimated to be of about 3%. By
using a 107 cm (42”) thick iron absorber downstream of the
target and an upstream Cherenkov counter the effective pion
contamination was reduced to 4.9⇥ 10�6. Emulsion detectors
downstream of the target were also employed to control the
pion contamination.
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Fig. 7. Comparison of the Monte Carlo simulation to the 7.3 GeV/c data-set.
Data have been obtained by digitisation from the original paper[14].

The incoming and outgoing muon directions were deter-
mined by using four identical counter hodoscopes made of
scintillator bars at positions AA, AB , AC and AD (Fig.
3 of [15]). The acceptance of such an arrangement was
between 2 and 14�. Each station was composed of 20 vertical
scintillators each having dimensions (0.95, 2.54, 15.24) cm,
the smallest dimension being the one in the horizontal plane.
The downstream stations centers were shifted away from the
beam direction by 26.2 cm. The distance along the beam
between the stations was 2.794 m (AB) and 2.007 m (CD).

The beam spread in the horizontal and vertical directions
was determined triggering with a small scintillator (S) located
along the beam axis in between stations AC and AD, rotating
the AA and AB stations by 90�. The coincidence rate between
strips in scintillators in AA and AB is shown in Fig. 6 of
the original paper. This bidimensional rate map was used to
generate the incoming direction of muons in the simulation
accordingly. The vertical spread was generated assuming a
gaussian distribution with a ±0.6� r.m.s. This is supported by
the paper which states a spread of ±0.8� and ±0.6� in the
horizontal and vertical views respectively. A gaussian fit of
the �x distribution obtained from the information contained
in the hit strip bidimensional distribution (Fig. 6 of [15]) and
the detector geometry gives a spread of about 0.6� not too far
from the 0.8� quoted in the paper.

We have reproduced with a simple simulation both the
angular spread of the beam and the finite-solid angle effects
introduced by the strip width. This was performed by binning
the true positions according to the detector geometry described
above. A simple linear trajectory has been assumed in between
different scintillator stations.

The measured quantity is the angle � which is obtained
considering the layout of hit strips in the scintillator counters
which are only measuring the horizontal projection of the
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Figure 6.27: Scattering angle distribution from GEANT4 simulations (coloured) and
experimental data (black dots). For (a) 7.3GeV muons, (b) 11.7GeV muons.[100]

muons and Figure 6.27b to 11.7GeV muons. As one can see, for 7.3GeV muon

the discrepancy starting to appear at ✓ ⇡ 15� 20mrad and for 11.7GeV muons at

around 5�10mrad. Note, that the size of the data sample in the regions of interest is

just a few events per bin. The coloured histograms correspond to various form-factor

models of the nucleus used by GEANT4, and the black dots are the experimental

data. The “FF=1” corresponds to the point-like nucleus with form-factor equal to

one. “G4 dipole FF” is a dipole form-factor model that assumes an exponential

decrease of the nuclear charge density and is a default GEANT4 option. This model

might be inaccurate for the charge distribution of large nuclei [100]. The authors

propose a “G4 S.W.FF” model, which adds a more realistic Saxon-Woods nuclear

charge density and introduces form-factor models of a proton. The authors show

that the inclusion of the proton form-factor significantly increases the probability of

large-angle scattering [100]. Notably, none of the single form-factor models describes

the data fully in Figure 6.27. Thus, the GEANT4 simulation results will depend on

the region of muon momenta to which the simulator was tuned to. This might lead

to an inaccurate prediction for the SHiP’s energy range.

As stated above, 30% of muons underwent large-angle scattering above 50mrad,

which a↵ected the muon trajectory. With this estimate being very conservative,

there are no data available for such angles in Figure 6.27. This observation suggests

that a significant fraction of penetrating muons might not be well-simulated by

GEANT4. In turn, it may result in an inaccurate simulation of the muon shield and,

as a consequence, under- or over-estimation of the flux. To ensure that the GEANT4

computations agree with the experiment, dedicated measurements of large-angle
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scatterings should be done at the test beam.

6.5 Conclusion and future work

In this chapter the motivation behind the re-optimisation, the application of L-GSO

and its application to technological challenges were discussed.

The formal problem statement and the definition of the loss function were stated. In

addition to that, the pre-production samples used were discussed in detail. The L-

GSO algorithm was successfully applied to the problem and showed that the optimum

found by BO is indeed a local optimum, unstable to perturbations. L-GSO was

able to fine-tune the BO configuration and achieve a better result for the simplified

geometry, however, it showed a worse result in the case of the complete geometry.

The main reason for such a discrepancy was shown to be an exact configuration

provided by L-GSO, that did not account for muon scattering on the decay volume

walls, since the latter was excluded in the simplified geometry.

The technological challenge of constructing the shield from the GO steel sheets was

considered. It was shown that it is possible to optimise the shield constructed from

steps to reduce the muon rate to that of the ideal shield.

Finally, simulation simplification of the magnetic field was considered. The simulation

shows that the muon flux increased by order of magnitude in the case of the realistic

magnetic field. This is due to the significant degradation of the field on the edges

and corners of the magnet. An attempt to perform an optimisation with the noisy

field was discussed.

Currently, there is an e↵ort in reconsidering all sub-systems of the SHiP experiment.

With all the optimisation techniques and results at hand, it is possible to perform

new optimisation with all sub-systems included. Ideally, the new objective function

should look as follows:

R = ↵SND + �HS + �DV+ �Shield, (6.6)

where each term in the sum corresponds to the loss of the particular sub-detector.

For example, it is now clear that the weight of the shield does not a↵ect the cost.

Thus, the shield term should include the length of the shield and any other shield

characteristic that corresponds to its price, for example, the price of the sheets welding
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per unit length. The HS term might be reconsidered to include any information used

in the signal selection requirements. The decay volume term should include the rate

of the EM background through the SBT. Finally, the requirement for the SND was

recently devised: the density of the muon tracks should be less than 103/mm2. The

author of the thesis has already done a preliminary estimation of the muon flux for

the SND detector and proposed a loss term for the SND.

It is now clear that Bayesian optimisation or evolutionary algorithms provide much

better exploration capabilities than L-GSO, but L-GSO is able to perform the

exploitation step much better. Thus, an exciting idea is to combine those algorithms:

for example, to use BO for probing new configurations and then further optimise

them with L-GSO.

However, given the technological challenges described above, a dedicated test beam

must be performed before progressing further with an optimisation. The test beam

will allow the collaboration to estimate the cost of the prototype and thus the cost

of the whole muon shield, the e↵ect of the steps and magnetic field imperfections.

Furthermore, the test beam will help in understanding the e↵ect of large-angle

scattering and its impact on the wrong polarity muon’s trajectories. The resulting

measurements can be compared to the GEANT4 simulations.



Chapter 7

Validation of the muon shield

design

As was pointed in previous chapters, many findings that emerged from simulations

and R&D studies of the muon shield show the necessity of a dedicated muon

shield prototype construction and testing. Although successful, the muon shield

optimisation relied heavily on simulation assumptions that do not hold in reality.

These assumptions include the ideal frustum-like shape of the magnets, precise

knowledge of the magnetic field inside the magnet’s body and precise knowledge of

muon track propagation inside the material. As a result, the design of the shield was

fine-tuned and hard to construct in reality. Notably, because of the fine-tuning e↵ect,

the current designs of the shield, whether obtained by BO or L-GSO, are susceptible

to the change of underlying assumptions.

As shown in the previous chapter, switching from ideal frustums to a realistic

rectangular-based design of the magnets resulted in a twofold increase in the rate of

muons. The substitution of the ideal field with the realistic simulated field increased

the muon rate by an order of magnitude.

The e↵ect of large energy-angle scattering contributes to 30% of the muons penetrating

the shield, and its description in the GEANT4 simulator is not accurately modelled,

as was also shown in Chapter 6. Thus, it is essential to understand the mechanism

behind large-angle scattering and large-energy loss, because such events may result in

“wrong” polarity muons, which can be an irreducible background for the experiment.

Finally, the technological processes of the shield production, welding and assembling

have never been tested on a large scale prototype. Some technological aspects that

require verification may have a significant impact on the magnetic field. For instance,
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Figure 7.1: Magnetic field strength as a function of a coil current for various types
of steel and stacking factor(SF) values. Courtesy of Fedor Ratnikov.

as discussed in Chapter 6, the shield is constructed from 0.3� 0.5mm thick sheets

that are welded together in units. It was measured that the field strength might drop

by ⇠ 20% in the vicinity of the welding seams, thus adding even more distortions to

an ideal field used in the optimisation. Another unaccounted e↵ect is the production

stacking factor (SF). The stacking factor is a measure of how tight steel sheets are

interconnected. For example, a SF value of one represents an ideal connection and a

SF value of 0.95 means that the material density has dropped by 5%. This will result

in a proportional degradation of the magnetic field strength and a deviation of the

actual shield performance from the simulation. As seen in Figure 7.1, the di↵erence

in the magnetic field strength for various SF can result in a ⇠ 5% field degradation.

With the above-mentioned concerns in mind, it was concluded that a dedicated

muon shield test beam experiment is needed for the final iteration of the experiment

optimisation. The test beam will verify the technological processes as well as allow

for measurements of the magnetic field and studies of muon propagation in the

prototype.

7.1 Prototype requirements

A dedicated muon flux experiment was conducted in 2018, where a SHiP target

replica was used to produce the particles. As discussed in Chapter 6, the flux was
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found to be in agreement with the SHiP simulation, with regards to both the total

muon yield and momentum spectra [68]. Thus, to simplify the prototype testing, it

was decided to use the muon beam available at the SPS. With such an approach,

the experiment does not require a hadron stopper, a target and, potentially, a

spectrometer.

Presently, the CERN SPS North area H2, H4 and H8 beams are considered. Each

of them can deliver 103 � 104 muons per spill with a 5� 7% momentum spread, a

⇠ 10 cm spatial beam spread and an energy range of 10-250GeV. Additionally, the

North area has all the required infrastructure to quickly install the experimental

equipment.

Given the muon beamline as a potential area for the experiment, a set of requirements

should be devised for the prototype itself. The shield prototype should be, on one

hand, large enough to put to test the outlined optimisation problems and, on the

other, small enough to minimise the production and installation cost. The prototype

should be large enough to maximise the amount of large-angle single scatters and

large-energy losses and observe the muon trajectories within the shield. To detect

such events, the shield should be instrumented with active detectors to track the

particle trajectory inside the prototype. In addition, an EM calorimeter should be

located downstream the prototype to detect emerging EM showers and measure their

position and energy. This study will help to devise an optimal strategy of shielding

SND from the EM background emerging from the muon shield. The prototype should

have large enough cross-section, so that the field inside is not uniform, and resembles

the real magnetic field distribution. Finally, the prototype should be large enough so

that the manufacturing and assembling procedures mimic those of the real shield,

thus allowing to test them.

The requirements above result in a prototype constructed from a couple of modules,

interleaved with active detectors. The CAD drawing of the potential prototype is

presented in Figure 7.2a. It consists of four identical modules of size 1⇥ 1⇥ 0.5m

with the coil inserted in the middle, as it would be for the full-scale muon shield.

Each module is constructed from 5 cm thick units of GO steel sheets welded together.

The units are then bolted together to construct a module, as shown in Figure 7.2b.

7.2 Magnetic field measurements

As discussed above, the discrepancy between the ideal and the simulated fields raises

concerns about the robustness of the shield performance. Switching from the ideal to
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(a) (b)

Figure 7.2: (a) The muon shield prototype engineering drawing. (b) Assembly
procedure for a module [50].

a realistic field increases the flux of the penetrating muons by an order of magnitude.

The magnetic field measurement will help in understanding the limitations of the

simulated magnetic field and how those a↵ect the muon flux. By comparing simulated

and measured muon fluxes, it will be possible to modify the simulation to match the

experimental results.

The simulated distribution of the magnetic field is presented in Figure 7.3a. The

red colour corresponds to a field strength of 1.8T, while the blue colour represents

a field strength of 1.6T. There is a noticeable degradation of the field at the edges

and welding joints. Even though the field in the primary deflection area and the

return field are close to the nominal value of 1.8T, the integral e↵ects of overall field

non-uniformity can significantly a↵ect the muon flux, as was shown previously. Thus,

the primary deflection region, the return yoke, welding joints, coil gaps and edges of

the magnet are required to be probed experimentally.

In addition, because the magnet is constructed from 5 cm units of sheets that are

bolted together, the sheets may not fill the whole volume with steel. The stacking

factor that describes this e↵ect, and is discussed above, a↵ects the magnetic field

strength significantly, as seen in Figure 7.1. The SF is embedded in the magnetic

field integral over the prototype and can not be simulated separately. The e↵ect

of SF is not shown in the field distribution above but can result in the incorrect

estimation of the flux.

The simplest way to estimate the field is to measure it with measuring coils: a set of

thin coils may be introduced into the prototype, as shown in Figure 7.3b. By placing

the measuring coils in various locations of the prototype, such as welding joints, it

is possible to precisely measure the field through the particular cross-section of the

magnet. By successively measuring the field in the 5 cm units and then in 0.5m

modules and comparing it to the simulation, all the technological e↵ects impacting
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(a) (b)

Figure 7.3: (a) The simulated distribution of the magnetic field in the prototype
module. (b) The measuring coils (red stripes) placed around a prototype module.
The orange area is the main magnetic coil.

Figure 7.4: Momentum resolution as a function of momentum. Blue line corresponds
to a detector resolution of 1mm, yellow - 0.1mm.

the field can be quantified. After that, the measured field map can be uploaded to the

simulation, and a comparison of the simulated and measured muon flux performed.

To emulate the scenario of the SHiP shield magnet construction it was decided to use

four modules in the prototype. This way it is possible to test the shield assembling

technology while instrumenting the prototype with active detectors.

Since the field measurements are done with the coils, precise knowledge of muon

momentum is not required. As it was mentioned, the beam at the North area has a

5�7% momentum spread, which should be su�cient for the comparison of simulation

and experimental flux measurements. However, if more precise information about

the muon momentum is required, the GOLIATH magnet [101] and a set of detectors

might be used together as a spectrometer.
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Figure 7.5: �MS as a function of muon momentum. Dots correspond to data from
GEANT4, while lines correspond to the theoretical prediction. Two lengths of
prototype are considered: orange - 100 cm, blue - 200 cm.

This magnet was already used during muon flux measurements in 2018 [68]. It

provides a magnetic field of ⇠ 1.45T over a 2m distance. The momentum resolution

as a function of the muon momentum is shown in Figure 7.4. It can be clearly

seen that with the moderate detector resolution of > 1mm, precise momentum

identification can not be achieved. To measure the muon momentum more precisely

than provided by the beam characteristics, it is necessary to install high-resolution

detectors, such as SciFi tracking planes, used in the SHiP SND detector, that

have spatial resolution of ⇠ 0.05mm. The study of other available options for

the spectrometer and the discussion of whether it is actually needed are currently

ongoing.

7.3 Large-angle scattering

As presented in Figure 6.27, there is a notable discrepancy between data and various

GEANT4 simulation models for scattering angles above 10� 20mrad. Moreover, the

experimental results have low statistics and are only available for muons with energy

up to 12GeV, which is well below SHiP energy range. As discussed in Chapter 6,

approximately 30% of penetrating muons have large scattering angles. Categories

corresponding to “wrong” polarity muons have an even larger fraction of such events

of about 50%. The main concern about such types of events is that they may

constitute an irreducible background for the experiment because they are not easily

accounted for in the optimisation. Thus, it is crucial to verify that the simulation

correctly estimates the number of such large-angle scatterings.
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Figure 7.6: Ratio of muons in excess to theory as a function of the distribution
quantile, for 10, 20, 30GeV muons respectively.

The measurement of large-angle scattering, provided in the Figure 6.27, was done

using a 1.44mm copper plate and, thus, the angle distribution was mostly driven by

single scattering rather than by multiple scattering (MS). In the case of the prototype,

the probability of obtaining a large-angle scattering due to MS is non-negligible, as

seen in Figure 7.5. This is because the e↵ect of MS is proportional to
p
L/P where

L is the prototype length and P is the particle momentum. However, it is beneficial

for the experiment to keep the long prototype, since the number of single scattering

events is proportional to L. Thus, both single scattering and MS will populate the

large-angle scattering region.

Since the comparison will be performed with the GEANT4 simulator, both e↵ects

will be automatically taken into account. However, to roughly estimate the number

of single scattering events, one might still use simple MS theory [97]. Since the

MS angle has a Gaussian distribution, one can compute the excess of events in the

simulation with respect to a normal distribution. For example, for a thick layer of a

material the number of muons with an angle larger than 3�MS should be just ⇡ 0.3%

of the simulated events. The excess of events above this value would correspond

to a single scattering. We define Nsim(N) =
PNtotal

i [✓i > N�MS] as the number

of GEANT4 simulated events, where the scattering angle ✓ exceeds �MS N times.

The Ntheory(N) = Ntotal(1� erf(�MS/
p
2)) corresponds to the number of such events

predicted by the theory. Thus, the quantity Nsim/Ntheory corresponds to the excess

of rare events in simulation in comparison to MS theory and is a first order measure

of the number of single scattering events. In Figure 7.6, the ratio Nsim/Ntheory, as a

function of multiple scattering standard deviation �MS for 10, 20, and 30GeV muons

after travelling through 200 cm of iron is shown. It can be clearly seen that up to 3�

the excess of events in the simulation is small but rapidly increases starting from 4�

for all energies.
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(a) (b)

Figure 7.7: (a) Distribution of (a) scattering angle, (b) scattering distance in X-axis
for 30GeV muons after passing through a 200 cm long prototype.
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The Ntotal = 3⇥ 106 events have been simulated for 10, 20 and 30GeV muons. As

an example, the distributions of the scattering angle and the coordinate shift in

the XZ-plane for 30GeV particles are shown in Figure 7.7. With a conservative

estimation of the test beam intensity of 103muons/spill and two spills per minute,

the experiment is expected to have around 2000 events with angles larger than 4�MS

(or ⇡ 22mrad) per day and ⇡ 100 events per day for angles above 100mrad, which

corresponds to 20 �MS. Figure 7.7b also motivates the choice for the transverse size

of the prototype’s working area to be at least 20-30 cm not to lose any rare events.

Thus, irrespective of the prototype technology and the magnetic field testing, the

proposed test beam provides a standalone experiment for the first measurements

of large-angle scattering for muons above 12 GeV. Given the discrepancy between

previous experimental results [100] and the GEANT4 models, such a test beam

experiment will allow the magnitude of the discrepancy to be understood further,

so that the GEANT4 form factor models may be fine-tuned to the data in the

energy range of 10� 250GeV. With the conservatively estimated beam intensity, the

experiment will be able to detect O(100� 1000) events per day.

7.4 Electromagnetic showers detection

Unlike large-angle scattering, large-energy loss for muons in dense materials has

been well-studied [102]. However, large-energy loss is usually accompanied by an

energetic electron or photon, which results in an electromagnetic (EM) shower. The

EM shower can be detected in the calorimeter stations located in between prototype

modules or after it. The reconstruction of the EM shower energy and position is an

important step in understanding the electromagnetic background in the SND detector,

testing a calorimeter prototype, and can serve as a supplementary measurement for

a large-angle scattering study.

To estimate the number of detectable EM showers, 3⇥ 104 muons with energies of

25GeV were simulated and EM showers with the energy of the initial particle above

1GeV were counted. The distribution of a production process as a function of the

energy of a secondary particle is shown in Figure 7.8a. There are only ⇡ 3000 events

with secondary particles of energies above 1GeV, with ⇡ 2500 of them being high

energy delta-electrons. The distribution of delta-electron energy in comparison to

simple theory prediction [97] is shown in Figure 7.8b. As expected, the distribution

obtained from the GEANT4 simulator closely follows theoretical predictions.

Assuming that it is possible to reconstruct the EM shower energy if the shower
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(a) (b)

Figure 7.8: (a) 2D distribution of EM production mechanism and secondary particle
energy, (b) Comparison of number of delta electrons obtained from GEANT4 (red)
and theory (blue).

maximum lies outside of the prototype module, there will be ⇡ 15�150 showers/spill

with energy above 1GeV, depending on the beam intensity. Thus, it will be possible

to collect large statistics of muon large-energy loss events and the resulting EM

showers.

It has to be noted, that a detailed simulation of the spectrometer and the particular

type of detectors used should be done in the future. The simulation should include

the realistic geometry of the spectrometer and the magnetic field (for example, such

as GOLIATH [101]), and incorporate a reconstruction procedure for the detectors.

Such a study is needed to pinpoint the required resolution of the detectors to

accurately measure muon momentum and deviation in the shield prototype, as well

as understand the requirements on the spectrometer. Finally, a future study must

include a detailed simulation of EM showers and the calorimeter to understand the

energy and position resolution of the experimental setup.
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Conclusion

To successfully exploit high-intensity proton beam and detect BSM particles, the

SHiP experiment should operate at almost zero SM background level. At SHiP an

initial muon flux of 1011 particles/spill should be reduced to a manageable level

for the experiment to operate: at least five-six orders of magnitude. This poses a

challenging optimisation problem of designing an optimal muon magnetic shield to

e↵ectively sweep out muons while minimising the experiment cost.

The L-GSO optimisation algorithm and its successful application to the SHiP BDF

muon shield optimisation are the key outcomes of this thesis. The devised algo-

rithm was specifically tailored to the needs of HEP optimisation tasks where it is

computationally expensive to run a simulator. The full description of the GSO, its

drawbacks, and how it may be applied in HEP tasks were presented. A modification

of the algorithm, called L-GSO, was presented where the problem of scalability to

high-dimensional problems was solved. It was shown that the algorithm outperforms

other existing methods and that it works well for simple physics problems. In the toy

setting, the algorithm was able to optimise one frustum section of the muon shield

successfully.

Afterwards, the outcomes of the BDF magnetic shield re-optimisation were presented.

It was shown that the current design of the shield is the fine-tuned local optimum

and that it is possible to improve the current design. The L-GSO algorithm was

successfully applied for the shield re-optimisation. However, it was discovered that

it is essential to perform optimisation of the complete geometry of the experiment

rather than its simplified version. Thus, it became clear that a new iteration of the

optimisation must include the decay volume and the SND detector in the optimisation

procedure. Furthermore, it was shown that small changes of the shield geometry,
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such as the introduction of steps, can significantly a↵ect the resulting muon flux.

With the L-GSO method, it was possible to tune the modified geometry to bring the

rates back to the baseline level. However, it was also discovered that it is crucial to

use the real approximation of the magnetic field in the shield rather than an ideal

default implementation in GEANT4.

In addition to the above, it was shown that large-angle and large-energy scattering of

muons could a↵ect their trajectories in the magnetic field. These low-medium energy

muons can constitute up to 30% of the penetrating muons, but the description of

such processes is not accurately modelled in the GEANT4 simulator. These e↵ects

may result in an inaccurate estimation of the muon flux in the detector acceptance.

The above findings resulted in the conclusion that a dedicated muon shield prototype

test beam experiment is needed to validate the above discrepancies.

Finally, a preliminary estimation of the prototype test beam requirements was done.

It was shown that, if located at the CERN SPS muon beam, the test beam will allow

all technological aspects of the shield construction to be tested and, measurements

of the magnetic field and the muon yield to be performed and compared to the

simulation. Ultimately, important standalone measurements of muon large-angle

scattering and large-energy losses in the energy range of 10 � 250GeV can be

performed. This will allow GEANT4 predictions to be compared with the new

experimental data, and the simulator to be calibrated if needed.

A new global optimisation of the BDF facility will take place in the future. As stated

in the SPS BDF Memorandum of Understanding, one of the key focuses will be the

R&D development of the muon shield prototype and the related detector technologies

followed by the re-optimisation of the shield. The simultaneous optimisation of the

complete experiment geometry, including the muon shield, the SND detector and the

vacuum vessel will take place afterwards. The joint optimisation will allow not only

satisfy the ultimate constraint for the muon flux rate in the Hidden Sector detector

but also ensure that other detectors, such as SND and SBT, are operating under

acceptable muon and EM background rates. The combination of BO with the L-GSO

algorithm, developed in this thesis, will form a new framework for optimisation

during the R&D stage and after.
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