17 research outputs found

    Implicitization of rational surfaces using toric varieties

    Get PDF
    A parameterized surface can be represented as a projection from a certain toric surface. This generalizes the classical homogeneous and bihomogeneous parameterizations. We extend to the toric case two methods for computing the implicit equation of such a rational parameterized surface. The first approach uses resultant matrices and gives an exact determinantal formula for the implicit equation if the parameterization has no base points. In the case the base points are isolated local complete intersections, we show that the implicit equation can still be recovered by computing any non-zero maximal minor of this matrix. The second method is the toric extension of the method of moving surfaces, and involves finding linear and quadratic relations (syzygies) among the input polynomials. When there are no base points, we show that these can be put together into a square matrix whose determinant is the implicit equation. Its extension to the case where there are base points is also explored.Comment: 28 pages, 1 figure. Numerous major revisions. New proof of method of moving surfaces. Paper accepted and to appear in Journal of Algebr

    Resultants and Moving Surfaces

    Get PDF
    We prove a conjectured relationship among resultants and the determinants arising in the formulation of the method of moving surfaces for computing the implicit equation of rational surfaces formulated by Sederberg. In addition, we extend the validity of this method to the case of not properly parametrized surfaces without base points.Comment: 21 pages, LaTex, uses academic.cls. To appear: Journal of Symbolic Computatio

    Implicitizing rational hypersurfaces using approximation complexes

    Get PDF
    We describe an algorithm for implicitizing rational hypersurfaces with at most a finite number of base points, based on a technique already described by Busé and Jouanolou, where implicit equations are obtained as determinants of certain graded parts of an approximation complex. We detail and improve this method by providing an in-depth study of the cohomology of such a complex. In both particular cases of interest of curve and surface implicitization we also present algorithms which involve only linear algebra routines

    Representing rational curve segments and surface patches using semi-algebraic sets

    Get PDF
    We provide a framework for representing segments of rational planar curves or patches of rational tensor product surfaces with no singularities using semi-algebraic sets. Given a rational planar curve segment or a rational tensor product surface patch with no singularities, we find the implicit equation of the corresponding unbounded curve or surface and then construct an algebraic box defined by some additional equations and inequalities associated to the implicit equation. This algebraic box is proved to include only the given curve segment or surface patch without any extraneous parts of the unbounded curve or surface. We also explain why it is difficult to construct such an algebraic box if the curve segment or surface patch includes some singular points such as self-intersections. In this case, we show how to isolate a neighborhood of these special points from the corresponding curve segment or surface patch and to represent these special points with small curve segments or surface patches. This framework allows us to dispense with expensive approximation methods such as voxels for representing surface patches.National Natural Science Foundation of ChinaMinisterio de Ciencia, Innovación y Universidade

    Matrix representations for toric parametrizations

    Get PDF
    In this paper we show that a surface in P^3 parametrized over a 2-dimensional toric variety T can be represented by a matrix of linear syzygies if the base points are finite in number and form locally a complete intersection. This constitutes a direct generalization of the corresponding result over P^2 established in [BJ03] and [BC05]. Exploiting the sparse structure of the parametrization, we obtain significantly smaller matrices than in the homogeneous case and the method becomes applicable to parametrizations for which it previously failed. We also treat the important case T = P^1 x P^1 in detail and give numerous examples.Comment: 20 page

    Implicitizing rational curves by the method of moving quadrics

    Get PDF
    International audienceA new technique for finding implicit matrix-based representations of rational curves in arbitrary dimension is introduced. It relies on the use of moving quadrics following curve parameterizations, providing a high-order extension of the implicit matrix representations built from their linear counterparts, the moving planes. The matrices we obtain offer new, more compact, implicit representations of rational curves. Their entries are filled by linear and quadratic forms in the space variables and their ranks drop exactly on the curve. Typically, for a general rational curve of degree d we obtain a matrix whose size is half of the size of the corresponding matrix obtained with the moving planes method. We illustrate the advantages of these new matrices with some examples, including the computation of the singularities of a rational curve

    The μ-basis of improper rational parametric surface and its application

    Get PDF
    The μ-basis is a newly developed algebraic tool in curve and surface representations and it is used to analyze some essential geometric properties of curves and surfaces. However, the theoretical frame of μ-bases is still developing, especially of surfaces. We study the μ-basis of a rational surface V defined parametrically by P(t¯),t¯=(t1,t2) not being necessarily proper (or invertible). For applications using the μ-basis, an inversion formula for a given proper parametrization P(t¯) is obtained. In addition, the degree of the rational map ϕP associated with any P(t¯) is computed. If P(t¯) is improper, we give some partial results in finding a proper reparametrization of V. Finally, the implicitization formula is derived from P (not being necessarily proper). The discussions only need to compute the greatest common divisors and univariate resultants of polynomials constructed from the μ-basis. Examples are given to illustrate the computational processes of the presented results.Ministerio de Ciencia, Innovación y Universidade

    Mini-Workshop: Surface Modeling and Syzygies

    Get PDF
    The problem of determining the implicit equation of the image of a rational map φ : P2 99K P3 is of theoretical interest in algebraic geometry, and of practical importance in geometric modeling. There are essentially three methods which can be applied to the problem: Gröbner bases, resultants, and syzygies. Elimination via Gröbner basis methods tends to be computationally intensive and, being a general tool, is not adapted to the geometry of specific problems. Thus, it is primarily the latter two techniques which are used in practice. This is an extremely active area of research where many different perspectives come into play. The mini-workshop brought together a diverse group of researchers with different areas of expertise

    Interpolation of syzygies for implicit matrix representations

    Get PDF
    We examine matrix representations of curves and surfaces based on syzygies and constructed by interpolation through points. They are implicit representations of objects given as point clouds. The corresponding theory, including moving lines, curves and surfaces, has been developed for parametric models. Our contribution is to show how to compute the required syzygies by interpolation, when the geometric object is given by a point cloud whose sampling satisfies mild assumptions. We focus on planar and space curves, where the theory of syzygies allows us to design an exact algorithm yielding the optimal implicit expression. The method extends readily to surfaces without base points defined over triangular patches. Our Maple implementation has served to produce the examples in this paper and is available upon demand by the authors
    corecore