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Abstract

A new technique for finding implicit matrix-based representations of rational curves in arbitrary dimension is introduced.
It relies on the use of moving quadrics following curve parameterizations, providing a high-order extension of the implicit
matrix representations built from their linear counterparts, the moving planes. The matrices we obtain offer new, more
compact, implicit representations of rational curves. Their entries are filled by linear and quadratic forms in the space
variables and their ranks drop exactly on the curve. Typically, for a general rational curve of degree d we obtain a matrix
whose size is half of the size of the corresponding matrix obtained with the moving planes method. We illustrate the
advantages of these new matrices with some examples, including the computation of the singularities of a rational curve.

Keywords: parametrized curve, implicitization, µ-basis, moving quadric.

1. Introduction

Rational algebraic curves are widely and intensively used
in Computer Aided Geometric Design. Their parametric
representations are very useful at the design step because
their control points allow to shape them intuitively. They
are also very convenient for generating points along the
curve, which is useful in many algorithms, such as render-
ing algorithms for instance. On the other hand, implicit
representations are particularly interesting for determining
whether a point lies on the curve, and more generally for
dealing with intersection problems. Thus, both the para-
metric and the implicit representations of a rational curve
are valuable in geometric modeling and there is an extensive
literature on the implicitization problem, that is to say on
the determination of an implicit representation of a curve
from a parametric representation.

The implicitization of rational plane curves have been ex-
tensively studied. The method of moving lines introduced
by Sederberg and Chen in 1995 [1], and then extended fur-
ther three years later in the foundational paper [2] with the
additional concept of µ-basis, gave a powerful solution to
this problem. Indeed, not only this method allows to com-
pute an implicit equation of the curve via the determinant
of a non-singular matrix, but this matrix actually provides a
much more interesting implicit representation of the curve.
First, the matrix itself, without computing its determinant,
can be used for determining if a point lies on the curve
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simply by evaluating its rank at this point. Second, if a
point is detected on the curve, then its parameter(s) can
be determined from the kernel of this matrix, whereas this
is impossible to do with an implicit polynomial equation of
the curve.

A µ-basis of a plane rational curve is composed of two
polynomial equations that both define a line in the plane
that moves when the parameter of the curve moves. As
shown in [2], the matrix of moving lines can be interpreted
as the classical Sylvester matrix of a µ-basis. Thus, if one
starts from a degree d parameterization, this matrix a d×d-
matrix and its entries are linear polynomials in the plane
coordinates. In order to obtain more compact matrices,
but still with similar properties, one can consider the well-
known (hybrid) Bézout resultant matrices of the µ-basis [3].
In this way, for a general curve defined by a parameteriza-
tion of degree d, we obtain a square matrix of about half-
size in comparison to the matrix of moving lines, but now
some of the entries of this matrix are quadratic polynomials,
instead of being all linear polynomials in the implicit vari-
ables. This approach for obtaining such more compact im-
plicitization matrices with some quadratic entries is known
as the method of moving conics. It has been introduced in
[3] and then extensively used, especially to deal with the
implicitization of rational surfaces (see e.g. [4, 5]).

Unlike the case of plane curves, the implicitization of pa-
rameterized curves in higher dimension is much more deli-
cate because now the space curve is the intersection of sev-
eral hypersurfaces. For instance, even determining the min-
imal number of such hypersurfaces is a difficult problem
that has attracted a lot of attention from the algebraic ge-
ometers. On the contrary, the concept of µ-basis is easily
generalized to curves in higher dimension [6, 7] and many
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results to produce some implicit polynomial equations of a
curve from them have been proposed. However, the exist-
ing results provide only partial answers to this question and
apply only in particular cases (see e.g. [8, 9, 10]).

In order to avoid this problem, another direction has been
proposed in [11, 12]. It consists in using the elimination ma-
trix built from a µ-basis as an implicit representation. Thus,
this matrix of moving hyperplanes is the natural generaliza-
tion of the Sylvester matrix of a µ-basis in the case of plane
curves. Although this matrix is no longer a square matrix,
it still allows to characterize the point that lie on the curve
by a drop of its rank. In [11], the construction and the prop-
erties of this matrix has been studied, and it is shown how it
allows to simplify intersection problems. In this paper, we
develop further this approach. As already mentioned, in the
case of plane curves the method of moving conics [3], based
on the hybrid Bézout matrix of the µ-basis, is an important
improvement as it allows to produce a more compact ma-
trix compared to the Sylvester matrix of the µ-basis. The
main contribution of this paper is a generalization of this
method to the case of space curves, that we call the method
of moving quadrics after [3]. In other words, we introduce a
generalization to parameterized space curves of the hybrid
Bézout matrix of a µ-basis. As in the case of plane curves,
we will show that the gain in the size of the matrix is simi-
lar: for a general parameterized space curve, the size of the
matrix of moving quadrics is about half of the size of the
matrix of moving hyperplanes.

The paper is organized as follows. In Section 2 we revisit
the method of moving conics [3] with a particular focus on
Sylvester forms, a construction that is central in this paper.
Then, in Section 3 we deal with the general case of param-
eterized curves in arbitrary dimension and state our main
results. Their proofs use specific tools from algebraic geom-
etry and commutative algebra; they have been concentrated
in §3.4 so that a reader who is not familiar with these tools
can easily skip it in a first reading. Finally, in Section 4
the effective computation of our new matrices is discussed
and illustrated with some experiments. In particular, we
illustrate the gain we obtain for the inversion of a point on
the curve.

2. The method of moving conics

The implicitization of rational plane curves, that is to
say the finding on an implicit equation of a plane curve
from a parameterization, has been extensively studied in
the past. Besides the basic method based on a resultant
computation directly from a parameterization, the method
of moving lines introduced by Sederberg and Chen in [1],
and developed further with the concept of µ-basis in [2],
has been the more powerful and fruitful one in geometric
modeling. In this section, we briefly review it with a partic-
ular emphasis on its generalization to moving conics [3] that
allows to obtain more compact matrices. Although there is
no new result in this section, we believe that it sheds new
light on this topic.

In what follows, we suppose that an homogeneous param-
eterization of a rational plane curve C is given over a field
K by

φ : P1 → P2 (1)

(s : t) 7→ (f0(s, t) : f1(s, t) : f2(s, t)) ,

where f0, f1 and f2 are homogeneous polynomials in K[s, t]
of the same degree d > 1. For the sake of simplicity, we
assume that these polynomials have no common factor, so
that the map φ is well defined everywhere on P1.

2.1. Moving lines

A moving line of degree ν ∈ N is a polynomial of the form

L(s, t;x0, x1, x2) = g0(s, t)x0 + g1(s, t)x1 + g2(s, t)x2

where g0, g1 and g2 are homogeneous polynomials in K[s, t]
of degree ν. For any point (s0 : t0) ∈ P1, L(s0, t0;x0, x1, x2)
is a linear form in the variables x0, x1, x2 that can be in-
terpreted as the defining equation of a line in P2. This line
moves when the point (s0 : t0) varies in P1, hence its name.
In addition, the moving line L is said to follow the param-
eterization φ if

L(s, t; f0(s, t), f1(s, t), f2(s, t)) = g0f0 + g1f1 + g2f2 = 0.

Geometrically, this implies that the line defined in the plane
by the equation L = 0 goes through the point φ(s : t) ∈ C.

For any integer ν > 0, it is straightforward to compute
a basis L1, . . . , Lrν of the vector space of moving lines of
degree ν following φ by solving a simple linear system. We
define the matrix Mν(φ), or simply Mν , as the matrix whose
columns are filled with the coefficients of the moving lines
Lj with respect to the variables s, t. More precisely, Mν is
defined by the matrix equality

(L1 L2 · · · Lrν ) = (sν sν−1t · · · tν) ·Mν . (2)

It is of size (ν + 1) × rν and its entries are linear forms in
K[x0, x1, x2]. Therefore, it has sense to evaluate the matrix
Mν at a point p ∈ P2, which we denote by Mν(p).

Proposition 1. For all integer ν > d−1 we have rν > ν+1
and

rankMν(p) < ν + 1 ⇐⇒ p ∈ C.

In addition, rd−1 = d and rν > ν + 1 if ν > d.

Proof. See [1] and [13, §2].

Thus, Proposition 1 shows that the matrices Mν are im-
plicit representations of the curve C for all ν > d− 1, in the
sense that they allow to discriminate the points p ∈ P2 that
belong to the curve C. Introduced first in [1] as the method
of moving lines, the matrix Md−1 is a particular member in
the family of matrices Mν , ν > d− 1: it is a square matrix
whose determinant gives an implicit equation of the curve
C raised to the power the degree of φ [2, 13]. By the degree
of φ we mean the number of pre-images of a general point
on C via φ and over the algebraic closure K of K. In other
words, this is nothing but the number of times the curve C
is traced by the parameterization φ over K.

2.2. µ-basis

In the foundational paper [2], among other results the au-
thors show that the matrices Mν exhibit a specific structure
by introducing the concept of µ-basis.
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Proposition 2. There exists two moving lines p1 and p2
following φ such that any moving line L following φ can be
written as

L = h1p1 + h2p2,

where h1 and h2 are homogeneous polynomials in K[s, t].
Such a couple of moving lines p1, p2 is a called a µ-basis of
the parameterization φ.

In addition, the degrees µ1 and µ2 of the moving lines p1
and p2 only depend on φ and are such that µ1 + µ2 = d.

Proof. See for instance [2, 14].

As a consequence of this proposition, the vector space
of moving lines we used to define the matrices Mν(φ) have
a simple description. More precisely, for any integer ν we
have

〈L1, . . . , Lrν 〉 =

〈sν−µ1p1, s
ν−µ1−1tp1, . . . , t

ν−µ1p1, s
ν−µ2p2, . . . , t

ν−µ2p2〉

where it is understood that the multiples of p1, respectively
p2, disappear if ν < µ1, respectively ν < µ2. It follows that

rν = max(0, ν − µ1 + 1) + max(0, ν − µ2 + 1).

Moreover, written in these special bases the matrices Mν ex-
hibit a Sylvester-like block structure. In particular, in these
bases the matrix Md−1 is nothing but the classical Sylvester
matrix associated to the polynomials p1 and p2 with re-
spect to the homogeneous variables s, t, denoted Syl(p1, p2).
Thus, we recover the property that the resultant of these
two polynomials, which is defined as the determinant of
Syl(p1, p2), is equal to an implicit equation of C raised to
the power the degree of φ.

Several methods have been proposed to compute a µ-
basis. The first type of methods starts from a generating
collection of moving lines following φ, namely the obvious
moving lines of degree d of the form

fi(s, t)xj − fj(s, t)xi, 0 6 i < j 6 2, (3)

and uses various reductions to reach iteratively a µ-basis
by means of linear algebra algorithms; see e.g. [14, 15]. An-
other type of methods arise from the computation of normal
forms of matrices over a principal ideal domain, typically the
computation of a Popov form; see e.g. [16, 17]. So far, these
latter methods exhibit the best theoretical complexity.

The matrix Md−1 is the smallest matrix that is an im-
plicit representation of the curve in the family of matrices
Mν . For a general parameterization φ, the implicit equation
of the curve is a degree d homogeneous polynomial equation
in K[x0, x1, x2]. Therefore, the matrices Mν with ν 6 d− 2
cannot yield an implicit representation of C because their
entries are linear forms in K[x0, x1, x2]. As a consequence,
to obtain more compact matrices it is necessary to intro-
duce high-order extensions of the moving lines. Having in
mind the correspondence between Md−1 and the Sylvester
matrix Syl(p1, p2), the well-know family of (hybrid) Bézout
matrices of p1, p2, which provides more compact matrices
for the resultant, suggests to introduce quadratic forms in
some entries of the matrices we consider.

2.3. Moving conics

As we call a moving line an equation of a line in the plane
that moves as the parameter (s : t) ∈ P1 varies, we call a
moving conic an equation of a conic in the plane whose
coefficients depend on the parameter (s : t) ∈ P1. More
concretely, a moving conic of degree ν ∈ N is a polynomial
of the form

Q(s, t;x0, x1, x2) = g0,0(s, t)x20 + g0,1(s, t)x0x1+

g0,2(s, t)x0x2 + g1,1(s, t)x21 + g1,2(s, t)x1x2 + g2,2(s, t)x22

where the polynomials gi,j(s, t) are homogeneous polynomi-
als of degree ν in K[s, t]. In addition, this moving conic is
said to follow the parameterization φ if

Q(s, t; f0, f1, f2) =
∑

06i6j62

gi,j(s, t)fi(s, t)fj(s, t) = 0.

Similarly to moving lines, this latter condition means geo-
metrically that the conic defined in the plane by the poly-
nomial Q goes through the point φ(s : t) ∈ C.

We can consider the vector space of moving conics fol-
lowing the parameterization φ of degree ν and, similarly
to what we did with moving lines, build a coefficient ma-
trix from them. However, such a matrix is useless in gen-
eral because its entries are exclusively quadratic forms in
K[x0, x1, x2] and hence the determinants of its minors are
always polynomials of even degree. Having in mind the (hy-
brid) Bézout matrix that we previously mentioned, a better
option is to combine both moving lines and moving conics
in a same coefficient matrix. We proceed as follows.

Pick an integer ν > 0. As explained in §2.1, choosing
a basis of the vector space of moving lines following φ of
degree ν, denoted 〈L1, . . . , Lrν 〉, one can build the matrix
Mν . Now, one can consider the vector space Wν of moving
conics following φ of degree ν. As it turns out, each moving
lines Lj gives the three moving conics x0Lj , x1Lj and x2Lj
that all follow the parameterization φ. Therefore, these 3rν
moving conics obtained from the moving lines, generate a
sub-vector space Vν of Wν . By solving a linear system and
computing a nullspace, one can compute a basis of the quo-
tient vector space Wν/Vν that we denote by 〈Q1, . . . , Qcν 〉.
Then, we define the matrix MQν(φ), or simply MQν , as the
matrix satisfying to the equality

(L1 L2 · · · Lrν Q1 · · · Qcν ) = (sν sν−1t · · · tν) ·MQν .
(4)

It is a matrix of size (ν + 1) × (rν + cν). By definition,
its first rν columns is simply the matrix Mν whose entries
are linear forms in K[x0, x1, x2], and its last cν columns are
built from moving conics, so its entries are quadratic forms
in K[x0, x1, x2].

We recall that µ1 and µ2 denote the degrees of a µ-basis
of φ. Without loss of generality we assume that µ1 6 µ2.

Proposition 3. If ν > µ2 − 1 then rν + cν > ν + 1 and

rankMQν(p) < ν + 1 ⇐⇒ p ∈ C.

In addition,

• if µ2 − 1 6 ν 6 d − 1 then rν = 2(ν + 1) − d, cν =
d−1−ν and the matrix MQν is a square matrix whose
determinant is an implicit equation of C, raised to the
power the degree of φ,
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• if ν > d− 1 then cν = 0 and MQν = Mν .

Proof. These results will be obtained in the next section
§2.4 by interpreting the matrices MQν as resultant matrices.
See also [3].

In the case where µ1 = µ2 = k, hence d = 2k, the matrix
MQk−1 is a k × k-matrix whose entries are all quadratic
forms, and whose determinant is an implicit equation of C,
raised to the power the degree of φ. This is the only setting
where such a fully quadratic matrix appears in the family of
matrices of moving lines and conics. Notice that a general
curve φ such that d = 2k satisfies to µ1 = µ2.

2.4. Sylvester forms
We already mentioned that the definition of the family

of matrices MQν is inspired by the more classical family of
(hybrid) Bézout matrices of a µ-basis p1, p2 of φ. In what
follows, we make explicit this comparison and exhibit in
the same time a structure for the matrices MQν . For that
purpose we need to introduce the Sylvester forms.

Let p1, p2 be a µ-basis of the parameterization φ and de-
note by µ1 6 µ2 their respective degrees. We recall that
µ1 + µ2 = d. Let α := (α1, α2) be any couple of non-
negative integers such |α| := α1 + α2 6 µ1 − 1. Since p1
and p2 are homogeneous polynomials in the variables s, t,
one can decompose them as

p1 = sα1+1h1,1 + tα2+1h1,2,

p2 = sα1+1h2,1 + tα2+1h2,2,

where hi,j(s, t;x0, x1, x2) are homogeneous polynomials of
degree µi − αj − 1 with respect to the variables s, t and
linear forms with respect to the variables x0, x1, x2. Then,
we define the polynomial

sylα(p1, p2) := det

(
h1,1 h1,2
h2,1 h2,2

)
and call it a Sylvester form of p1, p2.

Lemma 4. For any α such that |α| 6 µ1− 1, the Sylvester
form sylα(p1, p2) is a moving conic of degree d − 2 − |α|
following the parameterization φ. Moreover, it is indepen-
dent of the choice of the polynomials hi,j modulo the µ-basis
p1, p2, equivalently modulo the vector space of moving conics
Vd−2−|α| defined in §2.3.

Proof. The first assertion follows by construction and by
the Cramer’s rules for solving a linear system; we refer to
[18, §3.10] for more details.

It turns out that the Sylvester forms generate all the mov-
ing conics following φ of degree greater or equal to µ2 − 1.
Taking again the notation of §2.3, here is the precise result.

Proposition 5. Let ν be an integer such that µ2−1 6 ν 6
d− 2. Then the set of d− 1− ν Sylvester forms

{sylα(p1, p2)}|α|=d−2−ν ={
syl(d−2−ν,0)(p1, p2), . . . , syl(0,d−2−ν)(p1, p2)

}
form a basis of the quotient vector space Wν/Vν of moving
conics of degree ν following φ and not generated from their
corresponding moving lines, so that we have cν = d− 1− ν.
In addition, Wd−1 = Vd−1 and hence cd−1 = 0.

Proof. These results follows from a duality property; we
refer the reader to §2.1 and Theorem 2.9 in [19], and the
references therein. See also §3.4.

As a consequence of this proposition, the construction of
the matrices MQν , ν > µ2 − 1, following (2) can be done
with more specific choices of the bases of moving lines and
moving conics of degree ν. As we already used in §2.2, the
space of moving lines can be chosen such that

〈L1, . . . Lrν 〉 =

〈sν−µ1p1, s
ν−µ1−1tp1, . . . , t

ν−µ1p1, s
ν−µ2p2, . . . , t

ν−µ2p2〉.

Moreover, by Proposition 5 the space of moving conics can
be chosen as

〈Q1, . . . Qcν 〉 = 〈syl(d−2−ν,0)(p1, p2),

syl(d−3−ν,1)(p1, p2), . . . , syl(0,d−2−ν)(p1, p2)〉.

In this way, the matrix MQν , ν > µ2 − 1, exhibits a very
particular structure: its first block of rν = 2(ν + 1) − d
columns is the matrix Mν , which is a Sylvester block built
from the µ-basis p1, p2, and each of its last cν = d − 1 − ν
columns are filled with Sylvester forms of p1 and p2. This
interpretation of the matrices MQν , ν > µ2 − 1, allows us
to identify them with the family of (hybrid) Bézout matri-
ces that are precisely defined in this way in the literature
(see e.g. [20, 3]). The determinant of these Bézout matrices
is known to be equal to the resultant of the µ-basis p1, p2.
Therefore, we obtain the main property of these square ma-
trices MQν , µ2 − 1 6 ν 6 d− 1: their determinants are all
equal to an implicit equation of the curve C, raised to the
power the degree of φ, as stated in Proposition 3.

In summary, the family of matrices MQν(φ), ν > µ2 − 1,
gives implicit matrix representations of the rational curve
C. It is an extension of the family of matrices Mν(φ), ν >
d− 1 with more compact matrices obtained by introducing
moving conics. The more compact matrix, namely MQµ2−1,
is made of a Sylvester block built from the polynomial p1,
possibly empty if µ1 = µ2, and then filled by columns with
Sylvester forms.

In the next section, we will generalize the above results
to the case of rational curves in arbitrary dimension. The
family of matrices Mν(φ) built solely with moving lines,
i.e. such that ν > d− 1, has already been extended to this
setting in [11]; we will review it briefly. The main contri-
bution of this paper is the generalization of the matrices
built with moving conics, i.e. the matrices MQν(φ) such
that µ2 − 1 6 ν 6 d− 2.

3. The method of moving quadrics

In what follows, we suppose that an homogeneous param-
eterization of a rational curve C ⊂ Pn, n > 2, is given over
a field K by

φ : P1 → Pn (5)

(s : t) 7→ (f0(s, t) : f1(s, t) : · · · : fn(s, t)) ,

where f0, . . . , fn are homogeneous polynomials in K[s, t] of
the same degree d > 1. As in the case of plane curves, for
the sake of simplicity we assume without loss of generality
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that these polynomials have no common factor, so that the
map φ is well defined everywhere on P1.

Unlike the case of plane curves, if n > 3 a single polyno-
mial equation in K[x0, . . . , xn] is not sufficient to describe
implicitly the curve C. Such an equation describe an hy-
persurface in Pn and hence a collection of at least n− 1 of
them are necessary for characterizing a curve by a dimen-
sion argument, and in general more than n−1 equations are
needed. To be more precise, consider the ring morphism

K[x0, . . . , xn] → K[s, t]
xi 7→ fi(s, t), i = 0, . . . , n.

The set of polynomials that are in the kernel of this map,
that is to say the polynomials P (x0, . . . , xn) such that
P (f0, . . . , fn) = 0, is an ideal of K[x0, . . . , xn] that is called
the defining ideal of the curve C, denoted IC . Choosing a
finite set of generators of this ideal with a good shape and in
small number is known to be a difficult task (see for instance
[21, 3, 9]). In what follows, an alternative implicit represen-
tation under the form of a matrix whose entries depend on
the variables x0, . . . , xn, is presented.

3.1. Moving hyperplanes and µ-basis
As a straightforward generalization of the concept of mov-

ing lines for planar curves, a moving hyperplane of degree
ν ∈ N is a polynomial of the form

H(s, t;x0, . . . , xn) = g0(s, t)x0 + · · ·+ gn(s, t)xn

where g0, . . . , gn are homogeneous polynomials in K[s, t]
of degree ν. Thus, for any point (s0 : t0) ∈ P1,
H(s0, t0;x0, . . . , xn) can be interpreted as the defining equa-
tion of a hyperplane in Pn that moves when the point
(s0 : t0) varies in P1. The moving hyperplane H is said
to follow the parameterization φ if

H(s, t; f0(s, t), . . . , fn(s, t)) = g0f0 + · · ·+ gnfn = 0,

which means geometrically that this hyperplane of equation
H = 0 goes through the point φ(s : t) ∈ C.

For any integer ν, one can compute a basis H1, . . . ,Hrν
of the vector space (over K) of the moving hyperplanes of
degree ν following φ. Then, one can define a coefficient
matrix Mν by means of the following equality:(

sν sν−1t · · · tν
)
·Mν =

(
H1 · · · Hrν

)
.

The matrix Mν is of size (ν + 1) × rν and its entries are
linear forms in K[x0, . . . , xn], so it makes sense to evaluate
it at a point in Pn. For instance, by definition we have that
for all point (s0 : t0) ∈ P1 this matrix satisfies to(
sν0 sν−10 t0 · · · tν0

)
·Mν(φ(s0, t0)) =

(
0 · · · 0

)
. (6)

This property implies that for any integer ν and any point
p ∈ C the cokernel (or left nullspace) of Mν(p) has positive
dimension. Actually, one can show that if ν > d − 1 then
rν > ν + 1 and we have that

rankMν(p) < ν + 1 ⇐⇒ p ∈ C.

However, this first generalization of Proposition 1 can be im-
proved, but in order to state it we first need to introduce the
concept of µ-basis for a parameterized curve in Pn, n > 2,
that has been introduced in [2] and then extensively studied
(see e.g. [7] and [6, §4]).

Proposition 6. There exist n moving hyperplanes
p1, . . . , pn following φ such that any moving hyperplane H
following φ can be written in the form

H = h1p1 + h2p2 . . .+ hnpn,

where h1, . . . , hn are homogeneous polynomials in K[s, t].
Such an n-tuple of moving hyperplanes p1, · · · , pn are called
a µ-basis of the parameterization φ.

In addition, let µ1, . . . , µn be the degrees of the polynomi-
als p1, . . . , pn respectively and assume without loss of gen-
erality that µ1 6 µ2 6 . . . 6 µn. Then, the sequence
(µ1, . . . , µn) only depends on the parameterization φ and∑n
i=1 µi = d.

Proof. See e.g. [2, §5] and [7, §2].

Coming back to the family of matrices Mν , they have
a Sylvester block structure inherited from the existence of
µ-basis. In particular,

rν =

n∑
i=1

max(0, ν − µi + 1). (7)

Moreover, we have the following generalization of Proposi-
tion 1.

Proposition 7. For all integer ν > µn +µn−1− 1 we have
rν > ν + 1 and

rankMν(p) < ν + 1 ⇐⇒ p ∈ C.

Proof. See [19].

As in the case of plane curves, the matrices Mν give im-
plicit representations of the curve C for all ν above a certain
threshold (observe that if n = 2 then µ2 + µ1 − 1 = d− 1).
Indeed the point p on the curve C is characterized by the
fact that the rank of such a matrix evaluated at p is not
maximal. Compared to an implicit polynomial representa-
tion, this is much more efficient since only a single matrix
is necessary. Moreover, these matrices allow to recover the
pre-images of such points p and they are also adapted to
numerical treatments by means of numerical linear algebra
techniques (see [11, 12]). In what follows, we extend this
family of matrices in order to obtain more compact matri-
ces still providing an implicit representation of C.

3.2. Moving quadrics

Not surprisingly, a moving quadric of degree ν ∈ N is a
polynomial of the form

Q(s, t;x0, . . . , xn) =
∑

0≤i6j≤n

qij(s, t)xixj

where qi,j(s, t), 0 ≤ i 6 j ≤ n, are n(n+ 1)/2 homogeneous
polynomials in K[s, t]. In addition, a moving quadric is said
to follow the parameterization φ if Q(s, t;φ(s, t)) = 0, hence
the polynomial Q defines a quadric in space that moves with
the parameter (s : t) ∈ P1 and that goes through the point
φ(s, t) ∈ C.

Choose an integer ν and let 〈H1, . . . ,Hrν 〉 be a basis of
the vector space of moving hyperplanes following φ. We can
consider the vector space Wν of moving quadrics following
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φ. Each moving hyperplane Hj of degree ν following φ
generates n+ 1 moving quadrics of the same degree ν, still
following φ, that are given by xiHj , 0 ≤ i ≤ n. Observe
that geometrically, such a moving quadric consists of the
union of the moving hyperplane of equation Hj = 0 and
the static hyperplane of equation xi = 0. We denote by
Vν the sub-vector space of moving quadrics generated by
these moving quadrics obtained from moving hyperplanes.
Now, let 〈Q1, . . . , Qcν 〉 be basis of the quotient vector space
Wν/Vν . Then, we define the matrix MQν(φ) by

(H1 H2 · · · Hrν Q1 · · · Qcν ) = (sν sν−1t · · · tν) ·MQν .

It is a matrix of size (ν + 1)× (rν + cν), rν being given by
(7). Observe that this definition encapsulates the definition
of the similar matrices we considered in the case n = 2. By
definition, the first rν columns of MQν correspond to the
matrix Mν introduced in §3.1 and its entries are linear forms
in K[x0, . . . , xn]. On the other hand, its last cν columns
are built from moving quadrics and hence its corresponding
entries are quadratic forms in K[x0, . . . , xn]. The definition
of the matrices MQν is translated into Algorithm 1.

Algorithm 1: Construction of the matrices MQν
Input : A parameterization φ of a curve as defined

in (5) and an integer ν.
Output: A matrix MQν .

1. Compute a basis of the moving hyperplanes following
φ of degree ν and build the matrix Mν .

2. Compute a basis 〈Q1, . . . , Qcν 〉 of the vector space
Wν / Vν ; its k-th element is of the form

Qk =
∑

06i6j6n

ν∑
l=0

ck,l,i,js
ν−ltlxixj

3. Define the matrices Mi,j = (ck,l,i,j)l,k and the matrix
Qν =

∑
06i6j6nMi,jxixj .

4. Return the concatenated matrix

MQν =
(
Mν Qν

)
.

We recall that the sequence of increasing integers µ1 6
µ2 6 . . . 6 µn denote the degrees of a µ-basis of φ. Here is
our first main result,

Theorem 8. Assume that ν > µn−1. Then rν+cν > ν+1
and

rankMQν(p) < ν + 1 ⇐⇒ p ∈ C.
Moreover, we have that

cν =
∑

16i<j6n

max(0, µi + µj − 1− ν).

In particular, if ν > µn+µn−1−1 then cν = 0 and it follows
that MQν = Mν .

The proof of this theorem is postponed to Section 3.4. For
now, we discuss the shape of this matrix for some specific
values of the degrees of the µ-basis. We emphasize that un-
like in the case of plane curves, the matrices MQν will never

be square matrices for space curves because a space curve
cannot be defined by a single equation over an algebraically
closed field.

In the family of matrices MQν , ν > µn − 1, the matrix
MQµn−1 is evidently the one with the smallest number of
rows. Moreover, the smallest possible value for the inte-
ger µn is dd/ne because of the equality

∑n
i=1 µi = d. It

corresponds to the situation where the µi’s are evenly dis-
tributed. It turns out that this balanced situation is the
generic one when K is an algebraic closed field: fixing a
degree d and picking n random homogeneous polynomials
in (s, t) of degree d, f0, . . . , fn using a dense distribution of
the coefficients such as Gaussian distribution, the degrees
of its µ-basis are evenly distributed with probability 1 (see
[22, Theorem 1.2] for the case n = 2 and [2, Section 3, The-
orem 1] for a proof that generalizes to arbitrary dimension
n > 2).

Here are some further specific settings:

• µ1 = 0: An element of degree 0 in the µ-basis corre-
sponds to a (non-moving) hyperplane containing the
curve. In this situation, we have µ2 + . . .+µn = d and
the problem is reduced to examining a curve in Pn−1
whose a µ-basis is (p2, . . . , pn).

• µ1 = µ2 = 1: In this situation, the curve is contained
in a (non-moving) quadric whose equation is given by
the resultant of p1 and p2).

• µi = d/n for all i: In this case, the degree d is a mul-
tiple of n and the matrix MQd/n−1 is purely quadratic
since there is no moving hyperplane of degree d/n− 1
following the parameterization.

3.3. Sylvester forms

For any couple of integers 1 6 i < j 6 n and any
α = (α1, α2) such that |α| 6 µi − 1, one can consider the
Sylvester form sylα(pi, pj), as defined in §2.4. Similarly to
Lemma 4, one can show that it is a moving quadric follow-
ing φ of degree µi + µj − 2− |α| that is independent of the
choice of decomposition modulo the polynomials pi, pj .

Now, for any integer ν consider the vector space Sν that
is generated by all the Sylvester forms of degree ν, i.e.

Sν = 〈sylα(pi, pj) such that

1 ≤ i < j ≤ n and |α| = µi + µj − 2− ν〉 .

Taking again the notation of §3.2, it is a sub-vector space
of the space Wν of moving quadrics of degree ν following φ.
Here is our second main result.

Theorem 9. If ν ≥ µn − 1 then Wν = Vν ⊕ Sν . In other
words, the moving quadrics of degree ν following φ are gen-
erated by the moving hyperplanes of degree ν following φ and
by the Sylvester forms of degree ν. Moreover, these latter
Sylvester forms are linearly independent and hence

dim Sν = cν =
∑

16i<j6n

max(0, µi + µj − ν − 1).

The proof of this theorem is postponed to §3.4. Compared
to Algorithm 1 described in §3.2, this theorem shows that
the matrices MQν can be computed in closed form in terms
of the polynomials p1, . . . , pn defining a µ-basis of φ. We
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notice that, as far as we know, there is no known method
that allows to compute the degrees µ1, . . . , µn, or even the
degree µn, efficiently without actually computing a µ-basis.
So, assuming the a µ-basis is computed, Theorem 9 gives an
optimal method to build an implicit matrix representation
of the curve C since it shows that the matrices MQν can
be computed essentially at the cost of computing a µ-basis.
This is described with more details in Algorithm 2 for the
smallest matrix MQµn−1. Of course, a similar algorithm can
be used to build the matrix MQν for any integer ν > µn−1,
but we prefer to focus on the smallest matrix which is the
more useful in practice.

Algorithm 2: Construction of MQµn−1

Input : A parametric curve φ defined by (5)
Output: The matrix MQµn−1.

1. Compute a µ-basis (p1, . . . , pn) of φ. Let µi be the
degree of pi and assume that µ1 6 · · · 6 µn.

2. Let B be a basis of the polynomial of degree µn − 1,
for instance

B := {sµn−1, sµn−2t, . . . , tµn−1}.

3. Initialize the matrix MQµn−1 to the empty matrix.
We build it by successively adding columns as follows.

4. For i from 1 to n− 1 add a block of µn − µi columns
to the matrix MQµn−1 corresponding to the
coefficients of the polynomials

{sµn−µi−1pi, sµn−µi−2tpi, . . . , tµn−µi−1pi}

with respect to the polynomial basis B.

5. For i from 1 to n− 1 do
for j from i+ 1 to n do
if νi,j := µi + µj − µn − 1 > 0 then add a block of

νi,j + 1 columns to the matrix MQµn−1 corresponding
to the coefficients of the Sylvester forms

{sylα(pi, pj) : |α| = νi,j}

with respect to the polynomial basis B.

6. Return the matrix MQµn−1.

3.4. Proofs of the main theorems
In the case of plane curves, the proofs of Proposition 3

and Proposition 5 can be done via an identification with the
classical Sylvester and hybrid Bézout matrices, relying on
their well-known properties. Indeed, it is a classical result
that their determinants are all equal to the resultant of a µ-
basis and that this latter is equal to an implicit equation of
the parameterized curve C (raised to the power the degree of
the corresponding parameterization). In the case of space
curves, the situation is more complicated and much less
classical for the simple reason that a polynomial implicit
representation of the curve C requires several polynomial
equations, a set of generators of the ideal IC . Thus, to
prove Theorem 8 and Theorem 9 we need to use some more
technical tools from algebraic geometry and commutative
algebra, in our view inescapable.

Moving hypersurfaces We denote by I the ideal of the poly-
nomial ring R := K[s, t;x0, . . . , xn] generated by all the
moving planes following φ. It is hence generated by a µ-
basis: I = (p1, . . . , pn). Since we assumed that the defin-
ing polynomials f0, . . . , fn of the parameterization φ have
no common root in P1, we deduce that the polynomials
p1, . . . , pn have no common root in P1 as well [11, Lemma
1]. Algebraically, this means that they form a regular se-
quence [23, Chapter 17] in R outside V (m), the algebraic
variety defined by the ideal m := (s, t).

From the definitions we gave of moving hyperplanes and
quadrics, it should be clear to the reader what we mean by a
moving hypersurface. So, let J be the ideal of R generated
by all the moving hypersurfaces, of any degree ν in (s, t) and
any degree η in x0, . . . , xn, following φ. Since the µ-basis is
a regular sequence outside V (m), then J is nothing but the
saturation of I with respect to m, that is to say:

J = (I :R m∞) = {p ∈ R : ∃k ∈ N pmk ⊂ I}. (8)

The ideals I and J are both bi-graded ideals. They have a
grading with respect to the variables s, t and with respect to
the variables x0, . . . , xn. We denote by Iν and Jν the graded
slices of degree ν ∈ N with respect to the variables s, t.
They are K[x0, . . . , xn]-modules [23, §0.3]. For instance,
J0 = J ∩K[x0, . . . , xn] = IC .

Elimination and matrices. We have previously built ma-
trices by columns with the coefficients with respect to s, t
of some moving hyperplanes and quadrics following φ of a
given degree ν. Extending this approach, we could consider
similar matrices built by columns with the coefficients of
all the moving hypersurfaces following φ in a given degree
ν. Call these matrices MHν . Their entries are homoge-
neous polynomials in K[x0, . . . , xn]. They are defined up to
a choice of basis of the polynomials in s, t of degree ν, and
up to a choice of a set of generators of the set of moving
hypersurfaces following φ of degree ν.

Lemma 10. For any integer ν > 0 and any p ∈ Pn,

rankMHν(p) < ν + 1 ⇐⇒ p ∈ C.

Proof. Set A := K[x0, . . . , xn]. Because of (8), we get that
the annihilator annA(Rν/Jν) is equal to the defining ideal
IC of the curve C for all integer ν > 0 [11, §2.3]. Then,
by classical properties of Fitting ideals [23, Chapter 20], we
obtain that any free presentation of Rν/Jν , as a A-module,
has the claimed property. As J is generated by all the mov-
ing hypersurfaces following φ, the conclusion follows.

Although interesting, this property is not of practical in-
terest because it is a difficult task to compute moving hy-
persurfaces in general. For instance, the extreme case MH0

is a row matrix filled by columns with a generating set of IC .
Nevertheless, with this interpretation, the main idea of the
method of moving hyperplanes, resp. moving quadrics, is to
tune the integer ν in order to have a control on the moving
hypersurfaces that are needed. Typically, one may wonder
for which integer ν the moving hyperplanes, resp. quadrics,
generate all the moving hypersurfaces following φ in this
degree. Thus, Proposition 7 means that

∀ν > µn + µn−1 − 1 Jν = Iν , (9)

i.e. above this threshold degree all the moving hypersur-
faces following φ are generated by the moving hyperplanes
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of the same degree following φ. In the same vain, to prove
Theorem 8, we have to show that

∀ν > µn − 1 Jν = (J〈2〉)ν (10)

where J〈2〉 ⊂ J denotes the ideal of R generated by all the
moving planes and moving quadrics following φ.

Local cohomology. A key ingredient in analyzing (9) and
(10) is the local cohomology [23, Appendix 4] of the quotient
ring B := R/I with respect to the ideal m = (s, t), denoted
Hi

m(B), i > 0. Indeed, by definition

H0
m(B) = {p ∈ B : ∃k ∈ N pmk = 0} = (I :B m∞)/I = J/I.

So, H0
m(B) is simply the quotient of the ideal of moving hy-

persurfaces following φ be the ideal of moving hyperplanes
following φ. The other modules Hi

m(B) are obtained as the
cohomology of the Cech complex [23, Appendix 4]; it is of
the form

C•m(B) : 0→ B → ⊕ni=0Bxi → · · · → Bx0···xn

where the maps are localization maps with some carefully
chosen signs. They inherit from B the two gradings with
respect to s, t and x0, . . . , xn. We recall that local cohomol-
ogy commutes with direct sums of modules and that the
local cohomology of the polynomial ring R = A ⊗K K[s, t]
with respect to m is well known: Hi

m(R) = 0 if i 6= 2 and

H2
m(R) ' A⊗K Š, Š :=

1

st
K[s−1, t−1]. (11)

For instance, we deduce that H2
m(R)ν = 0 for all ν > −2.

The Koszul complex. Another key ingredient to deal with
the properties (9) and (10) is the Koszul complex [23, Chap-
ter 17]. We consider the Koszul complex associated to
sequence p1, . . . , pn that generates the ideal I. We will
need to examine both gradings with respect to K[s, t] and
to K[x0, . . . , xn]: we denote the shifts in degrees by [−],
resp. {−}, with respect to K[s, t], resp. K[x0, . . . , xn]. With
this notation, this Koszul complex is of the form

K• : Kn
dn−→ · · · → K2

d2−→ K1
d1−→ K0 = R

where K1 = ⊕ni=1R[−µi]{−1} and Kp = ∧pK1, the map
d1 being given by the row matrix filled with the pi’s. It is
immediate to see that H0(K•) = R/I = B.

Proposition 11. With the above notation, we have an iso-
morphism of graded modules

H2(H2
m(K•))

∼−→ H0
m(B) = J/I.

Proof. This proof uses spectral sequences [23, A.3.13]. Con-
sider the double complex C•m(K•) obtained from the Koszul
complex K• by extending each term Kp with its correspond-
ing Cech complex C•m(Kp). The spectral sequence corre-
sponding to the column filtration of our double complex con-
verges at the second step because the polynomials p1, . . . , pn
form a regular sequence outside V (m). Therefore, we obtain
the following terms

H0
m(Hn(K•)) · · · H0

m(H1(K•)) H0
m(H0(K•))

0 · · · 0 H1
m(H0(K•))

0 · · · 0 0.

On the other hand, the row filtration of our double complex
gives another spectral sequence that also converge at the
second step; we get:

0 · · · 0 0
0 · · · 0 0

Hn(H2
m(K•)) · · · H1(H2

m(K•)) H0(H2
m(K•))

From here, since H0(K•) = B, the claimed isomorphism
follows from the fact that these two spectral sequences con-
verge to the same limit, namely the homology of the total
complex of C•m(K•).

Corollary 12. Assume that ν > µn − 1, then we have the
following exact sequence of graded A-modules⊕

16i<j<k6n

Šν−µi−µj−µk ⊗K A{−3} →

⊕
16i<j6n

Šν−µi−µj ⊗K A{−2} → (J/I)ν → 0.

Proof. The homology module H2(H2
m(K•)) is computed as

follows. First, applying the functor H2
m(−) to the Koszul

complex K• we get the sequence

H2
m(K3)

d3−→ H2
m(K2)

d2−→ H2
m(K1) (12)

where the maps are induced by those of the Koszul complex
K•. Then, H2(H2

m(K•)) is simply ker d2/Im d3. Now, since
K1 = ⊕ni=1R[−µi]{−1}, by (11) we deduce that

H2
m(K1)ν ' ⊕ni=1Šν−µi ⊗K A{−1}.

In particular, we deduce that for all ν > µn−2, H2
m(K1)ν =

0. Therefore, we deduce that (ker d2)ν = H2
m(K2)ν . From

here, the claimed result follows by noting that

K2 = ⊕16i<j6nR[−µi − µj ]{−2},

K3 = ⊕16i<j<k6nR[−µi − µj − µk]{−3},
and applying again (11).

Theorem 8 follows straightforwardly from this corollary.
Indeed, it shows that Jν is generated by moving quadrics
modulo the moving planes, i.e. modulo Iν , and that the
number of minimal generators is precisely given by cν . In
particular, if ν > µn + µn−1 − 1 we get that (J/I)ν = 0,
i.e. that Jν = Iν .

Duality and Sylvester forms. The proof of Theorem 9 can
be seen as a particular case of an explicit construction of du-
ality isomorphism similar to the one we obtained in Propo-
sition 11. Such an explicit construction already appeared
in [24] and [25]. It is beyond the scope of this paper to give
all the details about this construction, but we mention the
main steps to prove Theorem 9.

First, by Koszul self-duality [23, Proposition 17.15], we
have a graded isomorphism

H2(H2
m(K•)) ' Hn−2(K•[d− 2])∗

where (−)∗ stands for the dual. Then, one can consider the
generalized Morley form that appears in [24, Section 3] and
that gives an explicit construction of the map in Proposition
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11, via the above isomorphism. Then, to obtain Theorem 9
one has to show that for all degree ν > µn − 1 the graded
components of this Morley form coincide with Sylvester
forms. This latter property follows from [18, Proposition
3.11.13] (see also [19, Lemma 2.8]).

The Koszul syzygies. Before closing this section, we discuss
the link with the obvious moving hyperplanes of the form
(3) that are also called Koszul syzygies. Let us denote by
IK the ideal generated by these moving hyperplanes. We
have IK ⊂ I ⊂ J . As the polynomials f0, . . . , fn have no
common root in P1, we know that these three ideals coincide
in sufficiently high degrees. Here is a more precise result.

Proposition 13. For all ν > d + µn + µn−1 − 1 we have
(IK)ν = Iν .

Proof. The quotient I/IK is canonically identified with the

first homology group Hf
1 of the Koszul complex associated

to the sequence f0, . . . , fn which is of the form

Kf
n+1 → · · · → Kf

2
d2−→ Kf

1
d1−→ Kf

0 .

Indeed, the kernel of d1 corresponds to the moving planes
following φ and the image of d2 identifies to the obvious
moving hyperplanes. Taking into account the shifts in the

grading, we get the isomorphism (Hf
1 )ν+d ' (I/IK)ν for all

integer ν.
Now, consider the sequence

0→ Zf2 ↪→ Kf
2

d2−→ Kf
1

d1−→ Kf
0

where Zf2 = ker d2. Then, playing as in the proof of Propo-
sition 11 with the two spectral sequences associated to the
double complex

0→ C•m(Zf2 ) ↪→ C•m(Kf
2 )

d2−→ C•m(Kf
1 )

d1−→ C•m(Kf
0 ),

we deduce that (Hf
1 )ν = 0 for any integer ν such that

H2
m(Zf2 )ν = 0.

The two modules Zf2 and Zf1 are free graded K[s, t]-

modules. Consider the canonical map ∧2Zf1 → Zf2 . Since
the fi’s have no common root in P1, we deduce that the
kernel and the cokernel of this map are supported on V (m),
and therefore it must be an isomorphism, moreover graded.

To conclude, we notice that Zf1 ' ⊕ni=1K[s, t](−d−µi), and
the claimed result follows by (11).

3.5. Summary of our results

To summarize, we have built a family of matrices MQν
that provides implicit matrix representations of a param-
eterized curve in arbitrary dimension for all ν > µn − 1,
where µn is the highest degree of a polynomial in a µ-basis
of the parameterization of this curve. They have the follow-
ing shape:

• If µn− 1 6 ν 6 µn +µn−1− 2, then MQν is filled with
moving planes and moving quadrics. It is exclusively
filled with moving quadrics if and only if ν = µn − 1
and µi = d/n for all i = 1, . . . , n.

• If ν > µn + µn−1 − 1, then MQν is filled with moving
planes, and it coincides with the family of matrices Mν

introduced in [11].

• If ν > d + µn + µn−1 − 1, then MQν = Mν can be
filled from the obvious moving planes of the form (3)
without relying on the computation of a µ-basis. This
is an improvement of [11, Proposition 26].

Example 1. Consider the following parameterization φ of
a curve C of degree 6:

f0(s, t) = 3s4t2 − 9s3t3 − 3s2t4 + 12st5 + 6t6,

f1(s, t) = −3s6 + 18s5t− 27s4t2 − 12s3t3 + 33s2t4 + 6st5 − 6t6,

f2(s, t) = s6 − 6s5t+ 13s4t2 − 16s3t3 + 9s2t4 + 14st5 − 6t6,

f3(s, t) = −2s4t2 + 8s3t3 − 14s2t4 + 20st5 − 6t6.

The computation of a µ-basis of φ gives

p1 = (s2 − 3st+ t2)x+ t2y

p2 = (s2 − st+ 3t2)y + (3s2 − 3st− 3t2)z,

p3 = 2t2z + (s2 − 2st− 2t2)w,

so that we have µ1 = µ2 = µ3 = 2.
This example is taken taken from [9, Example 3.7] where

the authors introduce three quartic surfaces in order to get
an implicit representation of the curve C. The equations
of these quartic surfaces are given by the resultant of p1
and p2, of p1 and p3, and of p2 and p3 with respect to the
homogeneous variables s and t. Their intersection always
contains the curve C but it may also contains some extra-
neous components. For instance, in this example the point
q = (1 : 1 : 1 : 1) ∈ P3 is not on the curve C, but it belongs
to the intersection of these three quartic surfaces.

In [11, Example 8], this same parameterization is implic-
itized by means of the matrix of moving hyperplanes M3

(µ2 + µ3 − 1 = 3), which is of size 4 × 6. This matrix is
proved to always give an implicit representation of the curve
C. Indeed, its rank is equal to 4 after evaluation at the point
q, showing that q /∈ C.

Now, according to the new family of matrices we built in
this paper, the matrix of MQ1 (µ3 − 1 = 1) also provides
an implicit representation of the curve C. It is a matrix
of size 2 × 6, more compact than M3, which is filled with
the 6 Sylvester forms syl(1,0)(pi, pj) and syl(0,1)(pi, pj) for
1 6 i < j 6 3. It is printed in Figure 1.

4. Computational aspects

In this section, we report on some experiments on the
computation of the family of matrices MQν we have intro-
duced. In particular, we illustrate the gain we obtain with
the smallest matrix MQµn−1 for deciding if a point belongs
to a parameterized curve.

We emphasize that all the applications that are discussed
in [11] with the matrices of moving hyperplanes also ap-
ply with our extended family of matrices built with mov-
ing hyperplanes and moving quadrics. For instance, the
curve/curve intersection problem and the computation of
the self-intersection locus of a parameterized curve can be
solved with these new matrices following essentially the
same algorithms; we refer the reader to [11] for more de-
tails.
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(
2xy − y2 − 6xz − 3yz 2xy + 6xz 2xz − 3xw − yw xw 2yz + 6z2 − 5yw − 3zw −yw − 3zw
−8xy + y2 + 12xz + 3yz 2xy − y2 − 6xz − 3yz −6xz + 8xw + 2yw 2xz − 3xw − yw −2yz − 6z2 + 8yw 2yz + 6z2 − 5yw − 3zw

)

Figure 1. matrix MQ1 of moving quadrics corresponding to the space curve parameterization discussed in Example 1.

4.1. Computation of µ-basis

To take the best advantage of the family of matrices MQν ,
ν > µn − 1, it is necessary to compute a µ-basis of the
input parameterized curve. Actually, we could argue that
computing only the highest degree µn of a µ-basis would
be enough for us, but as far as we know, there is no known
method that allows to compute µn without computing an
entire µ-basis. For the sake of completeness, we recall very
briefly, and give references, for the three known types of
methods for computing a µ-basis (see also [6]).

The first dedicated algorithm for computing a µ-basis ap-
peared in [14, Algorithm 3.2], in the case of plane curves.
Later, it has been generalized to the case of space curves
in arbitrary dimension in [7, §3]. The method consists in
considering the obvious moving hyperplanes (3) (or Koszul
syzygies) and then to apply Gaussian elimination techniques
in order to iteratively reduce these moving hyperplanes to
a µ-basis.

Another approach for computing µ-bases comes from the
methods and algorithms that are independently developed
in order to compute canonical forms of univariate polyno-
mial matrices. Thus, a µ-basis can be efficiently computed
as a Popov form of a matrix built again from the obvi-
ous moving hyperplanes (3). As far as we know, the best
complexity algorithm is described in [17]; for further details
about Popov forms, we refer the reader to [26, 27].

Finally, we mention that a third approach for computing
µ-bases has been recently given in [15]. It also relies on
matrix reductions, but here a finer (partial) reduced row-
echelon form is used.

4.2. Computation of the matrices

In this paragraph we report on the size and the computa-
tion time of some implicit matrix representations that are
of particular interest, in the case n = 3. More precisely, we
retain the following matrices:

• M: a moving hyperplane matrix. It is considered either
in degree d− 1, in order to avoid the computation of a
µ-basis, or in its optimal degree µn+µn−1−1, in which
case (the degrees of) a µ-basis must be computed.

• MQker: the matrix of moving planes and moving
quadrics in degree µn − 1, computed using kernel cal-
culations by Algorithm 1.

• MQSyl: the matrix of moving planes and moving
quadrics in degree µn − 1 built in closed form from
a µ-basis, by means of Algorithm 2.

The results are reported below. The algorithms have been
implemented in SageMath and run using an Intel(R) Pen-
tium(R) N3540 CPU @ 2.16GHz on a x64 machine with
4GB of RAM.

In Table 1, we give the computation time of a µ-basis and
then our two options to build an optimal implicit matrix
representation: a matrix fully composed of moving planes
or a mixed matrix with moving planes and moving quadrics.

For these two matrices, the computation time excludes the
computation of the µ-basis, which is reported in the second
column. It appears clearly that the matrix with moving
quadrics is more expensive to build, because its entries re-
quire calculations.

Degree d and
degrees (µi)i

µ-basis Mµn+µn−1−1 MQSyl,µn−1

5 (2, 3)
230ms

5x5
57ms

3x3
417ms

10 (5, 5)
343ms

10x10
168ms

5x5
1503ms

10 (1, 9)
292ms

10x10
166ms

9x9
614ms

5 (1, 2, 2)
156ms

4x7
94ms

2x5
676ms

9 (3, 3, 3)
151ms

6x9
141ms

3x9
2194ms

9 (1, 4, 4)
292ms

8x15
268ms

4x9
1900ms

9 (1, 1, 7)
396ms

8x15
244ms

7x14
1132ms

15 (5, 5, 5)
281ms

10x15
332ms

5x15
5516ms

15 (1, 7, 7)
647ms

14x27
782ms

7x15
4663ms

15 (1, 1, 13)
1477ms

14x27
657ms

13x26
2810ms

Table 1: Computation time in milliseconds of a µ-basis and two
typical implicit matrix representations built from the µ-basis.

In the Table 2, we assume that a µ-basis is unknown and
then compare the computation time of the matrix Md−1,
which does not require the computation of a µ-basis, with
the computation time of the matrix MQµn−1 via our two
algorithms, for which a µ-basis is computed. As expected,
the faster matrix to compute is Md−1.

Degree d and
degrees (µi)i

Md−1 MQker,µn−1 MQSyl,µn−1

5 (2, 3) 74ms 305ms 431ms
10 (5, 5) 226ms 409ms 1113ms
10 (1, 9) 187ms 1055ms 614ms
5 (1, 2, 2) 120ms 319ms 663ms
9 (3, 3, 3) 312ms 458ms 1914ms
9 (1, 4, 4) 384ms 987ms 1912ms
9 (1, 1, 7) 304ms 2815ms 1150ms
15 (5, 5, 5) 931ms 1358ms 5989ms
15 (1, 7, 7) 701ms 2311ms 4363ms
15 (1, 1, 13) 946ms 8947ms 2526ms

Table 2: Comparison of the computation time to build the ma-
trix Md−1 with the computation times of the two algorithms
corresponding to build the moving quadric matrices either from
kernel computation or by instantiation of Sylvester forms.

In summary, it appears that the new matrix MQµn−1 is
not easier to build compared to the other matrices that are
already known, but their computation time remains accept-
able. It turns out that these implicit matrix representations
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are only computed once for a curve and is then stored. So
in the end, the computation of the matrix itself is not the
most important feature, what is the most important is the
efficiency of a matrix when one computes intensively on the
curve with it. In the next paragraph, we illustrate this
property with the point/curve intersection problem, i.e. by
testing whether a given point belongs to the curve. As we
will see, for this use the matrices of moving quadrics we
introduce behave much better than the previously known
matrices.

4.3. The drop-of-rank property

What makes the matrices MQν , ν > µn − 1, implicit
representations is the drop-of-rank property : evaluated at
a point p, their rank drops, more precisely their rows are
linearly dependent, if and only if the point p is on the curve.
This property gives a very efficient method to decide if a
point belongs to a curve or not.

In Table 3, we compare the computation time for testing
if a point belongs to a curve by means of the two moving
hyperplanes matrices, Md−1 which is computed without µ-
basis and Mµn+µn−1−1 that requires the computation of a
µ-basis, and by means of the smallest matrix of moving
hyperplanes and quadrics we obtained, namely MQµn−1. In
all cases we tested, whatever the repartition of the degrees
µi of the µ-basis, this matrix MQµn−1 was always more
efficient.

Degree d and
degrees (µi)i

Md−1 Mµn+µn−1−1 MQµn−1

5 (2, 3) 54ms 54ms 22ms
10 (5, 5) 230ms 230ms 62ms
10 (1, 9) 230ms 230ms 121ms
5 (1, 2, 2) 105ms 61ms 22ms
9 (3, 3, 3) 353ms 125ms 59ms
9 (1, 4, 4) 393ms 267ms 78ms
9 (1, 1, 7) 362ms 256ms 171ms
15 (5, 5, 5) 1139ms 377ms 167ms
15 (1, 7, 7) 1127ms 929ms 199ms
15 (1, 1, 13) 1086ms 894ms 534ms

Table 3: Average time over a hundred random points for testing
if a point belongs to the curve.

We notice that deciding whether a point in space belongs
to a parameterized curve can be done via a greatest com-
mon divisor (GCD) computation once a µ-basis is known.
Indeed, let p1, p2, p3 be a µ-basis of a curve parameteri-
zation, let q be a point in space and denote by pi(q) the
evaluation of pi at the point q. Then, the GCD of the three
homogeneous polynomials p1(q), p2(q) and p3(q) is a ho-
mogeneous polynomial in the variables s, t whose degree is
equal to the multiplicity of the point q with respect to the
curve, in particular this degree is nonzero if and only if the
point q belongs to the curve [28, Theorem 6.4]. However,
this method requires exact computations and hence it does
not allow to deal with approximate input data. In addi-
tion, the use of exact computations makes the computation
time strongly dependent on the choice of the point q. To
be more concrete, we applied this method to the case of the
degree 9 curve with µ-basis of type (3, 3, 3) that is used in
Table 3. The points are chosen on the curve with five signif-
icant digits and are cast to rational numbers for the GCD
computation. We observed an average time over a hundred

random points of 66 121ms and especially a very high stan-
dard deviation of 66 593ms (with a minimum of 15ms and a
maximum computation time of 176 136ms). When the ma-
trix MQ2 is used we observe a standard deviation of 7ms,
showing a computation time which is almost independent
of the point q. This difference is mostly due to the fact that
the matrices of moving hyperplanes and moving quadrics
allow to rely on numerical linear algebra tools and are thus
capable to deal with approximate data and computations.

To conclude, we illustrate that given a point p ∈ C, not
only the rank of MQν(p), ν > µn − 1, drops but also its
cokernel (left nullspace) allows to recover all the parame-
ters (s0 : t0) ∈ P1 such that φ(s0, t0) = p, following the
approach developed in [11, 12] with the matrices of moving
hyperplanes.

Example 2. Consider the lemniscate-like space curve C
given by

f0(s, t) = (t2 + s2)(t4 + s2),

f1(s, t) = t(t2 − s2)2,

f2(s, t) = t(t4 − s4),

f3(s, t) = 3s4 + t4.

This curve has a self-intersection point at p := (1 : 0 : 0 : 1).
The matrix of moving quadrics MQ2 is of size 3 × 6 and,
when evaluated at p, has a cokernel given by

v1 = (v1,1, v1,2, v1,3) = (1, 0, 1)

and
v2 = (v2,1, v2,2, v2,3) = (0, 1, 0).

None of these vectors are of the form v = (s2, st, t2) but they
are linear combinations of the two vectors corresponding to
the evaluation of the form v at the two pre-images param-
eters of p. Therefore, to retrieve these two pre-images one
can solve the eigenvalue problem

rank(t∆0 − s∆1) < 2

where

∆0 =

(
v1,1 v1,2
v2,1 v2,2

)
, ∆1 =

(
v1,2 v1,3
v2,2 v2,3

)
.

We deduce that the pre-images of p correspond to the pa-
rameters (s0 : t0) = (1 : 1) and (s1 : t1) = (1 : −1).

Finally, we notice that the matrix MQ1 is of size 2 × 6
and satisfies to the drop-of-rank property. Its rank drops by
2 after evaluation at p, thus it is equal to the null matrix
when evaluated at p. Therefore, in this case the matrix is too
small to allow the inversion of a multiple point and hence
it is necessary to increase the degree ν by one. In general a
matrix MQν allows to invert points having at most ν pre-
images.

5. Conclusion

The method of moving conics of Serdeberg et al. [3] is a
very efficient method for solving the implicitization problem
for plane parameterized curves. In this paper, we extended
this method to rational space curves in arbitrary dimension.
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The size of the smallest matrix we got is correlated to the
degrees of a µ-basis of the curve. In addition, by using
Sylvester forms we proved that this matrix is a generalized
hybrid Bézout matrix, in the sense that it has a structure
very similar to the one of the hybrid Bézout matrix of a
µ-basis of a plane curve. Finally, the usefulness of these
new matrices was illustrated for computing intensively on
the curve, more precisely for deciding among many points
which of them belong to a given rational curve.
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[12] L. Busé, Implicit matrix representations of rational Bézier
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