252 research outputs found

    Parallel solution of power system linear equations

    Get PDF
    At the heart of many power system computations lies the solution of a large sparse set of linear equations. These equations arise from the modelling of the network and are the cause of a computational bottleneck in power system analysis applications. Efficient sequential techniques have been developed to solve these equations but the solution is still too slow for applications such as real-time dynamic simulation and on-line security analysis. Parallel computing techniques have been explored in the attempt to find faster solutions but the methods developed to date have not efficiently exploited the full power of parallel processing. This thesis considers the solution of the linear network equations encountered in power system computations. Based on the insight provided by the elimination tree, it is proposed that a novel matrix structure is adopted to allow the exploitation of parallelism which exists within the cutset of a typical parallel solution. Using this matrix structure it is possible to reduce the size of the sequential part of the problem and to increase the speed and efficiency of typical LU-based parallel solution. A method for transforming the admittance matrix into the required form is presented along with network partitioning and load balancing techniques. Sequential solution techniques are considered and existing parallel methods are surveyed to determine their strengths and weaknesses. Combining the benefits of existing solutions with the new matrix structure allows an improved LU-based parallel solution to be derived. A simulation of the improved LU solution is used to show the improvements in performance over a standard LU-based solution that result from the adoption of the new techniques. The results of a multiprocessor implementation of the method are presented and the new method is shown to have a better performance than existing methods for distributed memory multiprocessors

    NERV: A Parallel Processor for Standard Genetic Algorithms

    Full text link
    This paper describes the implementation of a standard genetic algorithm (GA) on the MIMD multiprocessor system NERV. It discusses the special features of the NERV hardware which can be utilized for an efficient implementation of a GA without changing the structure of the algorithm

    Circuit simulation using distributed waveform relaxation techniques

    Get PDF
    Simulation plays an important role in the design of integrated circuits. Due to high costs and large delays involved in their fabrication, simulation is commonly used to verify functionality and to predict performance before fabrication. This thesis describes analysis, implementation and performance evaluation of a distributed memory parallel waveform relaxation technique for the electrical circuit simulation of MOS VLSI circuits. The waveform relaxation technique exhibits inherent parallelism due to the partitioning of a circuit into a number of sub-circuits. These subcircuits can be concurrently simulated on parallel processors. Different forms of parallelism in the direct method and the waveform relaxation technique are studied. An analysis of single queue and distributed queue approaches to implement parallel waveform relaxation on distributed memory machines is performed and their performance implications are studied. The distributed queue approach selected for exploiting the coarse grain parallelism across sub-circuits is described. Parallel waveform relaxation programs based on Gauss-Seidel and Gauss-Jacobi techniques are implemented using a network of eight Transputers. Static and dynamic load balancing strategies are studied. A dynamic load balancing algorithm is developed and implemented. Results of parallel implementation are analyzed to identify sources of bottlenecks. This thesis has demonstrated the applicability of a low cost distributed memory multi-computer system for simulation of MOS VLSI circuits. Speed-up measurements prove that a five times improvement in the speed of calculations can be achieved using a full window parallel Gauss-Jacobi waveform relaxation algorithm. Analysis of overheads shows that load imbalance is the major source of overhead and that the fraction of the computation which must be performed sequentially is very low. Communication overhead depends on the nature of the parallel architecture and the design of communication mechanisms. The run-time environment (parallel processing framework) developed in this research exploits features of the Transputer architecture to reduce the effect of the communication overhead by effectively overlapping computation with communications, and running communications processes at a higher priority. This research will contribute to the development of low cost, high performance workstations for computer-aided design and analysis of VLSI circuits

    Real-time sound synthesis on a multi-processor platform

    Get PDF
    Real-time sound synthesis means that the calculation and output of each sound sample for a channel of audio information must be completed within a sample period. At a broadcasting standard, a sampling rate of 32,000 Hz, the maximum period available is 31.25 μsec. Such requirements demand a large amount of data processing power. An effective solution for this problem is a multi-processor platform; a parallel and distributed processing system. The suitability of the MIDI [Music Instrument Digital Interface] standard, published in 1983, as a controller for real-time applications is examined. Many musicians have expressed doubts on the decade old standard's ability for real-time performance. These have been investigated by measuring timing in various musical gestures, and by comparing these with the subjective characteristics of human perception. An implementation and its optimisation of real-time additive synthesis programs on a multi-transputer network are described. A prototype 81-polyphonic-note- organ configuration was implemented. By devising and deploying monitoring processes, the network's performance was measured and enhanced, leading to an efficient usage; the 88-note configuration. Since 88 simultaneous notes are rarely necessary in most performances, a scheduling program for dynamic note allocation was then introduced to achieve further efficiency gains. Considering calculation redundancies still further, a multi-sampling rate approach was applied as a further step to achieve an optimal performance. The theories underlining sound granulation, as a means of constructing complex sounds from grains, and the real-time implementation of this technique are outlined. The idea of sound granulation is quite similar to the quantum-wave theory, "acoustic quanta". Despite the conceptual simplicity, the signal processing requirements set tough demands, providing a challenge for this audio synthesis engine. Three issues arising from the results of the implementations above are discussed; the efficiency of the applications implemented, provisions for new processors and an optimal network architecture for sound synthesis

    Molecular dynamics simulation on a parallel computer.

    No full text
    For the purpose of molecular dynamics simulations of large biopolymers we have built a parallel computer with a systolic loop architecture, based on Transputers as computational units, and have programmed it in Occam 11. The computational nodes of the computer are linked together in a systolic ring. The program based on this .topology for large biopolymers increases its computational throughput nearly linearly with the number of computational nodes. The program developed is closely related to the simulation programs CHARMM and XPLOR, the input files required (force field, protein structure file, coordinates) and output files generated (sets of atomic coordinates representing dynamic trajectories and energies) are compatible with the corresponding files of these programs. Benchmark results of simulations of biopolymers comprising 66, 568, 3 634, 5 797 and 12 637 atoms are compared with XPLOR simulations on conventional computers (Cray, Convex, Vax). These results demonstrate that the software and hardware developed provide extremely cost effective biopolymer simulations. We present also a simulation (equilibrium of X-ray structure) of the complete photosynthetic reaction center of Rhodopseudomonus viridis (12 637 atoms). The simulation accounts for the Coulomb forces exactly, i.e. no cut-off had been assumed

    An Object-Oriented Programming Environment for Parallel Genetic Algorithms

    Get PDF
    This thesis investigates an object-oriented programming environment for building parallel applications based on genetic algorithms (GAs). It describes the design of the Genetic Algorithms Manipulation Environment (GAME), which focuses on three major software development requirements: flexibility, expandability and portability. Flexibility is provided by GAME through a set of libraries containing pre-defined and parameterised components such as genetic operators and algorithms. Expandability is offered by GAME'S object-oriented design. It allows applications, algorithms and genetic operators to be easily modified and adapted to satisfy diverse problem's requirements. Lastly, portability is achieved through the use of the standard C++ language, and by isolating machine and operating system dependencies into low-level modules, which are hidden from the application developer by GAME'S application programming interfaces. The development of GAME is central to the Programming Environment for Applications of PArallel GENetic Algorithms project (PAPAGENA). This is the principal European Community (ESPRIT III) funded parallel genetic algorithms project. It has two main goals: to provide a general-purpose tool kit, supporting the development and analysis of large-scale parallel genetic algorithms (PGAs) applications, and to demonstrate the potential of applying evolutionary computing in diverse problem domains. The research reported in this thesis is divided in two parts: i) the analysis of GA models and the study of existing GA programming environments from an application developer perspective; ii) the description of a general-purpose programming environment designed to help with the development of GA and PGA-based computer programs. The studies carried out in the first part provide the necessary understanding of GAs' structure and operation to outline the requirements for the development of complex computer programs. The second part presents GAME as the result of combining development requirements, relevant features of existing environments and innovative ideas, into a powerful programming environment. The system is described in terms of its abstract data structures and sub-systems that allow the representation of problems independently of any particular GA model. GAME's programming model is also presented as general-purpose object-oriented framework for programming coarse-grained parallel applications. GAME has a modular architecture comprising five modules: the Virtual Machine, the Parallel Execution Module, the Genetic Libraries, the Monitoring Control Module, and the Graphic User Interface. GAME's genetic-oriented abstract data structures, and the Virtual Machine, isolates genetic operators and algorithms from low-level operations such as memory management, exception handling, etc. The Parallel Execution Module supports GAME's object- oriented parallel programming model. It defines an application programming interface and a runtime library that allow the same parallel application, created within the environment, to run on different hardware and operating system platforms. The Genetic Libraries outline a hierarchy of components implemented as parameterised versions of standard and custom genetic operators, algorithms and applications. The Monitoring Control Module supports dynamic control and monitoring of simulations, whereas the Graphic User Interface defines a basic framework and graphic 'widgets' for displaying and entering data. This thesis describes the design philosophy and rationale behind these modules, covering in more detail the Virtual Machine, the Parallel Execution Module and the Genetic Libraries. The assessment discusses the system's ability to satisfy the main requirements of GA and PGA software development, as well as the features that distinguish GAME from other programming environments

    Autonomy in the real real-world: A behaviour based view of autonomous systems control in an industrial product inspection system

    Get PDF
    The thesis presented in this dissertation appears in two sequential parts that arose from an exploration of the use of Behaviour Based Artificial Intelligence (BBAI) techniques in a domain outside that of robotics, where BBAI is most frequently used. The work details a real-world physical implementation of the control and interactions of an industrial product inspection system from a BBAI perspective. It concentrates particularly on the control of a number of active laser scanning sensor systems (each a subsystem of a larger main inspection system), using a subsumption architecture. This industrial implementation is in itself a new direction for BBAI control and an important aspect of this thesis. However, the work has also led on to the development of a number of key ideas which contribute to the field of BBAI in general. The second part of the thesis concerns the nature of physical and temporal constraints on a distributed control system and the desirability of utilising mechanisms to provide continuous, low-level learning and adaptation of domain knowledge on a sub-behavioural basis. Techniques used include artificial neural networks and hill-climbing state-space search algorithms. Discussion is supported with examples from experiments with the laser scanning inspection system. Encouraging results suggest that concerted design effort at this low level of activity will benefit the whole system in terms of behavioural robustness and reliability. Relevant aspects of the design process that should be of value in similar real-world projects are identified and emphasised. These issues are particularly important in providing a firm foundation for artificial intelligence based control systems

    Reducing Communication Delay Variability for a Group of Robots

    Get PDF
    A novel architecture is presented for reducing communication delay variability for a group of robots. This architecture relies on using three components: a microprocessor architecture that allows deterministic real-time tasks; an event-based communication protocol in which nodes transmit in a TDMA fashion, without the need of global clock synchronization techniques; and a novel communication scheme that enables deterministic communications by allowing senders to transmit without regard for the state of the medium or coordination with other senders, and receivers can tease apart messages sent simultaneously with a high probability of success. This approach compared to others, allows simultaneous communications without regard for the state of the transmission medium, it allows deterministic communications, and it enables ordered communications that can be a applied in a team of robots. Simulations and experimental results are also included

    Achieving parallel performance in scientific computations

    Get PDF
    • …
    corecore