
Durham E-Theses

Parallel solution of power system linear equations

Grey, David John

How to cite:

Grey, David John (1995) Parallel solution of power system linear equations, Durham theses, Durham
University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/5429/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, Durham University, University O�ce, Old Elvet, Durham DH1 3HP
e-mail: e-theses.admin@dur.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/5429/
 http://etheses.dur.ac.uk/5429/
htt://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

The copyright of this thesis rests with the author.

No quotation f rom it should be pubhshed without

his prior written consent and information derived

f rom it should be acknowledged.

Parallel Solution of Power

System Linear Equations

David John Grey

B.Eng. (York)

School of Engineering and Computer Science

University of Durham

A thesis submitted in partial fulfilment of the requirements

of the Council of the University of Durham for the Degree

of Doctor of Philosophy (Ph.D.) .

February 1995

Abstract

A t the heart of many power system computations lies the solution of a large sparse

set of linear equations. These equations arise f r o m the modelling of the network and

are the cause of a computational bottleneck in power system analysis applications.

Efficient sequential techniques have been developed to solve these equations but

the solution is stiU too slow for applications such as real-time dynamic simulation

and on-line security analysis. Parallel computing techniques have been explored in

the a t tempt to f i nd faster solutions but the methods developed to date have not

efficiently exploited the fuU power of parallel processing.

This thesis considers the solution of the linear network equations encountered in

power system computations. Based on the insight provided by the ehmination tree,

i t is proposed that a novel ma t r ix structure is adopted to allow the exploitation of

parallelism which exists w i t h i n the cutset of a typical parallel solution. Using tliis

m a t r i x structure i t is possible to reduce the size of the sequential part of the problem

and to increase the speed and efficiency of typical LU-based parallel solution. A

method for t ransforming the admittance mat r ix into the required f o r m is presented

along w i t h network par t i t ioning and load balancing techniques.

Sequential solution techniques are considered and existing parallel methods are sur

veyed to determine their strengths and weaknesses. Combining the. benefits of exist

ing solutions w i t h the new mat r ix structure allows an improved LU-based parallel

solution to be derived. A simulation of the improved L U solution is used to show the

improvements i n performance over a standard LU-based solution that result f r o m

the adoption of the new techniques. The results of a multiprocessor implementa

t ion of the method are presented and the new method is shown to have a better

performance than existing methods for distributed memory multiprocessors.

Declaration

I hereby declare that this thesis is a record of work undertaken by myself, that i t has not

been the subject of any previous application for a degree, and that all sources of informat ion

have been duly acknowledged.

(c) C o p y r i g h t 1994, D a v i d J o h n G r e y

The copyright of this thesis rests w i t h the author. No quotation f r o m i t should be published

wi thou t his wr i t t en consent, and informat ion derived f r o m i t should be acknowledged.

m

This thesis is dedicated to Anna, my wife and best fr iend.

IV

Acknowledgments

The fol lowing people have been v i ta l to the production of this work; either in their direct

advice and input or just i n pu t t ing up w i t h me whilst 1 was going crazy wr i t ing i t .

• To my wife, Anna - for her love and support.

• To my supervisor, Doctor Janusz Bialek of the University of Durham - for his direction

and advice.

• To Kelvey Marden of the University of Durham - for friendship.

• To A l a n , Alex , John, Raghu, Jeremy, Juliette, Sue, M a t t , Chris, Ph i l , Howard and

Hayley - for companionship and a good laugh when in need.

• To Alan - w i t h grateful thanks for all the proof reading

The fol lowing trademarks are acknowledged: I M S , I N M O S , T R A M and occam are trade

marks o f Inmos L imi ted ; I . B . M . and P . C . / A . T . are a trademarks of International Business

Machines Corp.; Unix is a trademark of A T & T .

List of Abbreviations

B B D F Bordered Block Diagonal Form

C E G B Central Electricity Generating Board (now the National Gr id Company)

C S P Communicating Sequential Processes

F P U Floating Point Uni t

I B M International Business Machines

I E E E Ins t i tu te of Electrical & Electronic Engineers

I / O Input and Output

M D M i n i m u m Degree

M D M L M i n i m u m Degree M i n i m u m Length

M D M L L R U M i n i m u m Degree M i n i m u m Length Least Recently Used

M F L O P S Mil l ion Floating point Operations per Second

M I M D Mult ip le Instruct ion stream Mul t ip le Data stream

M I S D Mult ip le Instruct ion stream Single Data stream

M L M i n i m u m Length

M L M D M i n i m u m Length M i n i m u m Degree

R A M Random Access Memory

R B B D F Recursive Bordered Block Diagonal Form

R I S C Reduced Instruct ion Set Computer

R P Recursively Parallel

S I M D Single Instruct ion stream Mul t ip le Data stream

S I S D Single Instruct ion stream Single Data stream

T R A M Transputer Applicat ion Module

VI

Contents

1 I n t r o d u c t i o n 1

1.1 The Components of a Power System 1

1.2 Power System Analysis 4

1.2.1 The Power Flow Problem 5

1.2.2 Power System Simulation 5

1.2.3 Power System Security 9

1.2.4 System Planning 10

1.2.5 Operator Training 11

1.3 Power Systems Analysis and Computer Architectures 12

1.4 Parallel Processing and Parallel Architectures 14

1.4.1 Classification of Computer Architectures • 14

1.4.2 S I M D Architectures 17

1.4.3 M I M D Architectures 18

1.4.4 Interconnection Networks for M I M D Architectures 20

1.4.5 The I N M O S Transputer 22

1.4.6 Bounds on Multiprocessor Performance 23

1.5 Parallel Processing in Power System Analysis Problems 28

1.6 Summary 29

1.7 Outline of Thesis 30

2 So lv ing the Netw^ork E q u a t i o n s 33

2.1 Modeling the Power System 33

2.1.1 The Generator Model 33

2.1.2 The Load Model 34

2.1.3 The Transmission Line Model 34

vu

C O N T E N T S

2.1.4 The Transformer Model 35

2.2 Formalizing the Problem 35

2.3 Linear Equations, Matrices and Sparsity 38

2.4 Direct Solution of the Linear Equations 39

2.4.1 Gaussian EUmination and FiU-Ins 39

2.4.2 L U Decomposition 42

2.4.3 L D U Decomposition 43

2.4.4 Bifactorisat ion 44

2.5 P ivota l Ordering 50

2.5.1 Pre - Ordering 50

2.5.2 Dynamic Ordering 51

2.6 El imina t ion Trees 53

2.7 Near Opt ima l Ordering Strategies 55

2.7.1 The M i n i m u m Degree Algor i thm 55

2.7.2 The M i n i m u m Length Algo r i t hm 57

2.7.3 The M i n i m u m Degree M i n i m u m Length Algor i thm 58

2.7.4 The M i n i m u m Length M i n i m u m Degree Algor i thm 58

2.7.5 The M i n i m u m Degree M i n i m u m Length Least Recently Used Algor i thm 59

2.7.6 Comparative Analysis of the Ordering Methods 59

2.7.7 Deriving the El iminat ion Tree 61

2.8 Implementing a Sequential Solution of the Network Equations 62

2.8.1 Storage of Sparse Matrices 62

2.8.2 Determination of El iminat ion Ordering 63

2.8.3 Coefficient M a t r i x Factorisation Using Bifactorisation 64

2.9 Summary 65

3 P a r a l l e l M e t h o d s of Solv ing the Netvirork E q u a t i o n s 67

3.1 In t roduct ion 67

3.2 I terat ive Methods for Solving Linear Equations 68

. 3.2.1 The Jacobi Method 68

3.2.2 The Gauss-Seidel Method 70

3.2.3 The Conjugate Gradient Method 71

3.3 Direct vs I terative Methods 75

vm

C O N T E N T S

3.4 Parallel Algor i thms for Direct Solution 78

3.4.1 Granular i ty of Solution 78

3.4.2 Task Mapping and Load Balancing 79

3.4.3 Ordering Strategies for Parallel Solutions 81

3.5 Diakoptical Based Solution Methods 82

3.5.1 The Method of Diakoptics 82

3.6 The Mul t ip le Factoring Method 84

3.7 Parallel L U Decomposition Techniques 88

3.7.1 Chan's Method 91

3.7.2 The W - m a t r i x Method 92

3.8 Cholesky Factorisation Techniques 95

3.8.1 The Parallel Fan-In Algo r i t hm 97

3.8.2 The Parallel Fan-Out A lgo r i t hm 98

3.8.3 Frontal Methods 98

3.9 Summary 99

4 E l i m i n a t i o n T r e e s , Netvi^ork Part i t ion ing and L o a d Ba lanc ing 101

4.1 In t roduct ion 101

4.2 Balancing the Computat ional Load 102

4.2.1 The Two Approaches to Load Balancing 105

4.2.2 Load Balancing Methodologies Adopted by Other Parallel Solutions 109

4.3 The Ehminat ion Tree and Parallel Processing 110

4.3.1 The Ehminat ion Tree and Network Part i t ioning 112

4.3.2 Using the Ehminat ion Tree to Achieve Load Balancing 114

4.3.3 Advantages of the Tree-based Approach 116

4.3.4 Performance of the Tree-based Load Balancing 119

4.4 Summary 119

5 A n I m p r o v e d P a r a l l e l Factor i sat ion 121

5.1 In t roduct ion ". 121

5.2 Development of the Recursively Parallel Method 122

5.2.1 Ident i fy ing the Potential Parahehsm 122

5.2.2 The Recursive Bordered Block Diagonal Form 125

5.2.3 Balancing the Load 130

IX

C O N T E N T S

5.2.4 Reducing the Sequential Part of the Method 131

5.3 A Simulation of the Recursively Parallel Method 132

5.3.1 Implementat ion 133

5.3.2 Results of the Simulation 137

5.4 Summary 143

6 I ssues of P a r a l l e l Implementa t ion 145

6.1 In t roduct ion 145

6.2 Algor i thmic Issues 146

6.2.1 Program Structure and Task Design 146

6.2.2 Data Storage and Data Structures 150

6.2.3 Reducing the Communication Overhead 159

6.3 Archi tec tura l Issues 160

6.3.1 The Software Architecture 160

6.3.2 The Hardware Architecture 166

6.4 Performance of the Recursively Parallel Solution 172

6.5 Summary 189

7 F u r t h e r W o r k 190

7.1 Automat ic Network Part i t ioning '. 190

7.2 The Search for an Opt imal Ordering 193

7.3 Block-oriented Solution and Vector Processing 196

7.4 Summary 199

8 C o n c l u s i o n s 201

8.1 Conclusions 201

A T h e I N M O S T r a n s p u t e r 215

A . l The Architecture of the Transputer 216

A . 1.1 The T 2 Family 218

A.1.2 The T 4 Family 219

A.1.3 The T8 Family 219

A . 2 Programming the Transputer 220

A.2 .1 Tasks and Channels 220

A.2.2 Programming Languages 221

X

C O N T E N T S

A . 3 Bui ld ing Parahel Systems w i t h the Transputer 222

A .3 .1 -The T R A M Standard 222

A . 3.2 The Experimental Setup 223

B D e r i v a t i o n O f T h e Mode l s of P o w e r S y s t e m E l e m e n t s 225

B . l The Generator Model 225

B.2 The Transmission Line Model 227

B . 2.1 Short Lines 228

B.2.2 Medium Length Lines 228

B.2.3 Long Lines 230

B.3 The Transformer Model 233

B.4 The Load Model 236

C D e r i v i n g the B u s A d m i t t a n c e M a t r i x 239

D N e t w o r k Par t i t i on ing and Diakopt ics 242

D . l Node Tearing 243

D . 2 Branch Cu t t ing 244

E P r o o f of L i u ' s T r e e T h e o r e m s 247

E. l Nota t ion 247

E.2 Other Theorems Required 247

E.3 Proof of the Tree Theorems 248

F R e d u c i n g the L e n g t h of I n t e r t a s k Messages 251

G M o n i t o r i n g the P e r f o r m a n c e of the P a r a l l e l Solution 255

H T e s t S y s t e m s 262

XI

List of Figures

1.1 The components of a modern power system 2

1.2 A model of a synchronous generator connected to the transmission network 6

1.3 The basic von Neumann machine 15

1.4 Ins t ruct ion and data streams in the von Neumann machine 16

1.5 Functional design of a M I M D computer 18

1.6 Static interconnection network topologies 21

1.7 Conceptual overview of the configuration of the Transputer based parallel

machine 23

1.8 Various bounds on parallel performance 25

1.9 Speed-up predicted by Amdahl 's Law 27

2.1 Transmission line equivalent TT circuit model 35

2.2 Equivalent circuit of a practical single phase transformer 36

2.3 General n-port representation of a power system 37

2.4 A simple 10 node graph and its associated mat r ix 53

2.5 Filled graph and associated mat r ix for the simple 10 node example 54

2.6 The eUmination tree of the 10 node example 55

2.7 The effect of storage scheme on nodal degree 56

2.8 Storage Of Sparse M a t r i x Rows In Linked Lists 63

2.9 Storage Of E x t r a Informat ion About The M a t r i x 63

2.10 The in format ion array used for updating 64

3.1 A n elimination tree and the wrap mapping strategy 80

3.2 Structure of conventional parallel solution algori thm 89

3.3 Simple B B D F factorisation example, showing independence between operations 90

3.4 A l g o r i t h m structure of Chan's method, using duphcate cutset computation 93

X l l

L I S T O F F I G U R E S

3.5 The three flavours of Cholesky factorisation 97

4.1 Simple load balancing example 103

4.2 Graphical depiction of the execution of the example program 104

4.3 Three task implementation of the LU-based solution 106

4.4 A supervisor/worker approach to parallel bifactorisation 107

4.5 Par t i t ioning of the ehmination tree and corresponding network parti t ions . I l l

4.6 Treating the lower por t ion of the tree as a separate subnetwork 116

4.7 Geist k Ng's par t i t ioning method applied to a simple tree 117

5.1 The simple 12 node example system 122

5.2 Part i t ioned topologically reordered network 123

5.3 Subnetworks constrained to a binary tree connection structure 126

5.4 The interconnections giving rise to R B B D F 128

5.5 The constrained subnetwork interconnections 129

5.6 Par t i t ioning of the reduced CEGB 734 node system for solution on 8 processors 131

5.7 The block oriented data structure 133

5.8 The row oriented data structure 134

5.9 A l g o r i t h m structure for the Recursively Parallel method 135

5.10 A l g o r i t h m structure for repeated substitution w i t h multiple right hand sides 137

5.11 Overall speed-up results of simulated solution of the four test systems . . . 138

5.12 Factorisation speed-up results of simulated solution of the four test systems 139

5.13 Substi tut ion speed-up results of simulated solution of the four test systems 140

6.1 Task structures w i t h different granularity 147

6.2 Intertask communications in a 7 subnetwork solution 148

6.3 Intertask communications in 3 and 15 subnetwork solutions 149

6.4 The generic task of the Recursively Parallel solution 150

6.5 R B B D F ma t r i x structure showing ' r ' segments 151

6.6 Por t ion of the coefficient ma t r ix stored by a single task 152

6.7 Storage techniques used by the Recursively Parallel method 153

6.8 Assessing the density of the coefficient ma t r ix . 153

6.9 Varia t ion of speed-up w i t h location of changeover point in hybr id storage,

for US 1624 node system 155

X l l l

L I S T O F F I G U R E S

6.10 Modif ied intertask communications for a 7 subnetwork system 159

6.11 A many to one task allocation strategy 162

6.12 The acyclic graphs used in determining task allocations 163

6.13 Contract ion mapping for Recursively Parallel task allocation 163

6.14 Task execution, showing the effect of mult i tasking 164

6.15 Direct and indirect communication 167

6.16 The Muta t ed Tree interconnection network 170

6.17 Performance curves for the Recursively Parallel method, w i t h 2-1 task allo

cation 175

6.18 Speed-up against uniprocessor for the Recursively Parallel method, w i t h 2-1

task allocation 179

6.19 RP method compared to predicted performance 180

6.20 RP method compared to simulated performance 181

6.21 RP method compared to Padhila's W - m a t r i x method 184

6.22 RP method compared to Lau's method 186

6.23 RP method compared to Chan's method 187

7.1 Conceptual view of a simple four subnetwork system and its B B D F mat r ix 196

XIV

List of Tables

1.1 Flynn's Taxonomy 15

2.1 Statistical performance of the ordering algorithms 60

2.2 The effect of ehmination ordering on speed-up 61

3.1 Operation counts for direct and iterative solution schemes 76

4.1 Speed-ups for the load balancing example 105
4.2 Effect of load balancing on speed-up for an LU-based solution 106

4.3 The effect of load balancing on speed-up 119

5.1 Results of the simulated solution of the four test systems 141

5.2 Simulated RP solution vs best sequential solution 143

6.1 The effect of storage scheme on speed-up 154

6.2 Effect of load imbalance on performance 165

6.3 Comparison of performance using pipeline and hypercube architectures . . . 171

6.4 Characteristics of the test systems 172

6.5 Performance of the best sequential algorithm 173

6.6 Performance of the Recursively Parallel solution of the test systems 174

6.7 Performance of the Recursively Parallel solution of the test systems, using

1-1 task allocation 176

6.8 Performance of the Recursively Parallel solution of the test systems - speed

up over uniprocessor 178

6.9 Simulated, predicted and observed factorisation speed-ups for the RP solu

t ion of the test systems 178

XV

Chapter 1

Introduction

M odern electrical power systems represent some of the largest non-linear systems in

existence. Today's power systems are complex interconnected networks consisting of

many thousands of nodes and the analysis of these systems and planning their expansion and

performance is no simple task. The modern power engineer is forced to rely upon powerful

software tools to enable h im to get the best out of the system. As systems continue to

grow more complex and engineers wish to gain deeper insight into their workings there is

a continuaUy growing demand for faster and more powerful software analysis tools. Many

such tools have been developed over the past four decades but there is always more that

can be done. This thesis focuses on the solution of one of the problems which currently

hmits the performance of many power system analysis appUcations. Solving this problem

surmounts an impor tan t obstacle in the creation of more efficient analysis tools.

1.1 The Components of a Power System

Gross [1] defines an electrical power system as

"a network of interconnected components designed to convert non-electrical energy con

tinuously into the electrical form; transport the energy over potentially large distances; trans

form the electrical energy into a specific form subject to close tolerances; and convert the

electrical energy into a usable non-electrical form."

This defini t ion shows that the power system consists of three basic components

1.1 The Components of a Power System

Generation

Transmission

Sub-transmission

Distribution

Use

Non-electrical to electrical conversion

Electrical energy transmission

Electrical to non-electrical conversion

Figure 1.1: The components of a modern power system

• Non-electrical to electrical energy conversion

• Electrical energy transmission

Electrical to non-electrical energy conversion

In fact this can be subdivided further and the modern power system thus has the five

facets shown in Figure 1.1

The generation process turns non-electrical kinetic energy of a rotating shaft into electri

cal energy. Kinetic energy is imparted to the shaft by some form of turbine. Steam, gas and

hydro turbines are the most common prime movers, although wind turbines are making an

increasing contribution to electricity generation. The generator itself makes use of the prin

ciple of electromagnetic induction to generate three sinusoidal alternating voltages which

differ in phase by 120°. This is the most efficient form for electrical energy transmission

as i t makes best use of the transmission cables and give constant power in balanced loads.

The aim of generation is simply to pump enough electrical energy into the system to satisfy

the demand of the end users and to account for the losses which occur in transmission.

1.1 The Components of a Power System

Strictly speaking the transmission network takes power from substations at the gener
ating sites and delivers it to substations in the load centres. The generation sites are often
remote from areas of load for many reasons. Originally generators were located where there
is a ready supply of fuel e.g near coal fields, but such areas are seldom areas of electricity
demand. As i t is cheaper and easier to transport the electrical energy to areas of demand,
power stations have tended to be sited near the fuel supplies. In some cases this is essential
as the 'fuel' cannot be moved e.g. hydropower and wind power. Government policy in
the UK has also affected the location of power generation plant with current legislation
dictating that all fossil fuel burning power plant have to be sited outside urban areas. Con
sequently there is a need for transmitting electrical energy from generators to loads in the
most efficient way possible. The UK national grid is a typical transmission system con
sisting of transmission lines with a total length exceeding 7,500 kilometres. This network
of lines provides a high degree of interconnectivity between the sites of generation and the
major load centres. I t also ties the UK system into other continental systems to increase
the reliability of the system and the availability of power. The transmission system has to
be able to deliver large amounts of power to the loads and to ensure rehability it has to be
able to deliver this power by a number of alternative routes. The process of transmitting
electrical energy is not 100% efficient and the losses are proportional to the square of the
current, making it more efficient to transmit power at high voltage and low current. The
UK grid developed in three distinct phases and it now operates at three different voltage
levels of 132 kV, 275 kV and 400 kV. Transmission voltage levels vary throughout the world
but they all lie in the range 100 kV to I M V .

The distinction between subtransmission and distribution is not altogether clear but

is dependent upon voltage levels and geographical extent. Subtransmission systems take

electrical power from the point of arrival in the load area and deUver i t to a number of

distribution substations throughout this area. Subtransmission operates at much lower

voltages than transmission, with l l k V and 33kV being the typical voltages used in the UK.

As well as the lower voltages, subtransmission systems also have a much smaller geograph

ical extent. Transmission systems extend to cover countries and whole continents whereas

subtransmission systems are usually fimited to the extent of a given urban area.

The distribution network is the final fink in the chain between the generator and the user.

Distribution is distinguished from subtransmission by its lower voltage levels with 12kV

down to 2.4kV being common. The distribution system takes power from the distribution

1.2 Power System Analysis

substation and forwards it to individual users who are located within a short distance (2km)
of the substation.

The purpose of transmitting electrical power through the various stages of the network

is to supply the end user with electrical energy. Upon receipt of this energy the user

converts it back into some more usable non-electrical form using any one of the electrical

appliances available to him. To ensure that his apphances work correctly the user expects

his electricity supply to have constant voltage magnitude, constant voltage frequency and

an ideal sinusoidal waveform. To meet these criteria the power companies specify three

performance measures to which they must adhere

• Voltage regulation - the deviation of voltage magnitude as load varies. Typically this

is around 5%.

• Frequency regulation - the deviation of system frequency from the nominal value. For

a 50Hz system this is typically ±0.1Hz.

• Harmonic content - The ideal supply has only a single sinusoidal component.

There is a complex control system at the heart of every power system which allows

the system operators to control these three parameters so that the user's demands on the

quality of his electricity are satisfied. Controlling such a large and complicated system is

no simple problem and to do so efficiently requires a detailed understanding of the system

and how its constituent parts interact with one another.

1.2 Power System Analysis

Modern power systems are extremely large and complex entities. Planning, maintaining

and operating such a system would be difficult i f i t were not for the wide range of analytical

methods available to help the power engineer. Today there is a wealth of software analysis

tools to help in understanding any conceivable aspect of the power system. Prior to 1940

there were very few interconnected systems of any complexity and analysis methods existed

only for dealing with generators, transformers and transmission fines. With the advent of

interconnected systems came the development of techniques which enable the engineer to

determine the electrical state of the network and how it would respond to given disturbances

{i.e load flow, stabifity analysis). Further work has led to the development of power flow

programs, coirtingency analysis tools and economic analysis packages. Requirements for

1.2 Power System Analysis

low operating and construction costs and the ever increasing complexity of systems have
led to a constant demand for powerful new automated analysis methods. Software tools are
available to aid analysis in the areas of operations planning, systems planning, contingency
and security analysis, refiabiUty and economics. Several of these areas are worth considering
in more detail but first the power flow problem must be examined.

1.2.1 T h e Power F low Prob lem

The appfications outUned in the previous section are all fimited in their performance by

the time taken to solve the power flow equations for the system under consideration. At

the heart of the power flow solution fies a large sparse set of finear network equations. It is

the solution of these equations which is so time consuming and over the last 35 years much

research effort has been expended on improving and accelerating this solution. The set of

algebraic equations is of the form

A x = b (1.1)

where A is the matrix of coefficients of the set of equations, b is a vector of known values

whilst the elements of vector x are the unknowns in the equations. One of the earfiest and

most successful improvements came through the appfication of sparse matrix techniques.

The matrix. A , has few non-zero elements and many zero elements; often more than 95%

of the matrix elements are zero. I t is wasteful both of memory and solution time to store

the zero elements of this sparsely populated matrix. Sparse matrix techniques are used to

store and process only the non-zero coefficients and this gives a significant increase in the

speed of solution [2, 3].

1.2.2 Power S y s t e m Simulat ion

Like many other simulations, power system simulation involves an iterative process of solving

the equations which model the system. On each iteration the simulation time is incremented

and the system equations must be solved again for this new time step. I f the time for one

iteration is less than the time constant of the fast dynamics of the system then the simulation

can be considered real-time. The integration time step of a typical power system simulation

is of the order of one second. This is sufficient to allow all but the very fast (sub-transient)

dynamics to be modeled. I f the simulation is to operate in real-time it is necessary to solve

all the mathematical equations which model the system more than once a second if real-time

1.2 Power System Analysis

EXCITATION MACHINE ROTOR

CONTROL SYSTEM ELECTRICAL CONTROL SYSTEM ELECTRICAL

EQUATIONS EQUATIONS

TURBINE GOVERNOR
MACHINE ROTOR

MECHANICAL

EQUATIONS
EQUATIONS

MACHINE ROTOR

MECHANICAL

EQUATIONS

STATOR

EQUATIONS

INTERCONNECTED

TRANSMISSION

SYSTEM

DIFFERENTIAL EQUATIONS ALGEBRAIC EQUATIONS

Figure 1.2: A model of a synchronous generator connected to the transmission network

simulation is to be achieved.

A power system simulation consists of two distinct sets of equations relating to the differ

ent parts of the system. Firstly there is the network model which describes the transmission

network of the system and the stators of all the machines connected to the system. The

network model consists entirely of algebraic equations. Secondly there is a set of non-finear

machine models which may be broken down into first order non-finear differential equations

that describe all the generators and loads connected to the network. On each iteration the

differential equations must be solved to determine the currents which are injected into the

transmission network. The Unear equations must then be solved to determine the power

flows around the system and the voltage at each system bus. Figure 1.2 depicts a single

machine connected to the transmission network and it shows how the model is divided into

a set of differential equations and a set of algebraic equations.

The differential equations are of the form

(1.2)

and this set of equations contains the differential equations of every machine connected to

the network. Each machine in the system is only coupled to other machines through the

transmission network and, as the network is treated separately, the differential equations

are a collection of uncoupled sets of equations, one set for each machine. The equations

may be represented as [4]

y = f{y,u) = Ky + Bu (1.3)

where A is a sparse, square, block diagonal matrix and B is a rectangular sparse matrix

1.2 Power System Analysis

with a block structure. When the effects of saturation are neglected A and B become
constant in most models. Chapter 2 and Appendix B discuss the mathematical models of
machines in detail.

The algebraic equations are of the form

y = 5(x,u) (1.4)

where u is the vector of stator voltages and is the input to the equations whilst y is a vector

of currents. The equations may be separated into two parts

/ (E , V) = Y V (1.5)

and

u = u (E , V) (1.6)

where Y is the bus admittance matrix, V is the vector of terminal voltages at load busses

and E is the vector of stator voltages at generation busses. I is the vector of bus injection

currents. Injection current at a generator bus is a function of stator voltage whilst the

injection current at a load bus is a function of the terminal voltage. It is important to

note that coefficients of Y depend on the topology of the network and these coefficients

may vary. I f the topology of the transmission network changes due to equipment outages

then the values in the matrix Y are changed. When auto-tap changing transformers are

represented Y can change frequently.

For power system simulation the problem is to solve the differential and algebraic equa

tions simultaneously. The conventional approach is to solve (1.3) separately by integration

to yield values for y. Equation (1.5) is then solved and the solutions are alternated in some

manner. Another approach is to solve (1.3) and (1.5) simultaneously using the impficit

trapezoidal rule. The solution of (1.5) is the bottleneck in the solution process and three

methods of solution exist.

1. Gauss-Seidel - This method is simple to program and easily accommodates changes

in Y as the method operates directly on admittance matrix values [4]. The method

is iterative and convergence to acceptable accuracy varies from problem to problem.

Simple problems may converge in 2 or 3 iterations whereas difficult problems may

require hundreds of iterations

1.2 Power System Analysis

2. Factorisation ofY - Triangular factorisation of Y is a direct method for solving the
algebraic equations. LU decomposition is used to yield the factored form of Y and

I = L . U . V (1.7)

where L is a lower triangular matrix and U is an upper triangular matrix. Forward

and backward substitution with I is used to provide a solution for V . I f Y does not

change then L and U remain constant and V may be obtained by repeat solution of

(1.7). Any change in Y requires a complete refactorisation to yield new values of

L and U , before (1.7) can be solved for V . I t is observed that factorisation takes

up to six times as long as forward/backward substitution [4] but substitution only

takes about 1.5 times as long as a single iteration of the Gauss-Seidel method and it

is difficult for Gauss-Seidel to be competitive.

3. Newton's Method - Newton's Method is also an iterative method for solving systems of

non-finear equations. Equation (1.5) becomes non-finear when non-impedance loads

are connected to the network. Under these conditions the relationship between node

voltage and bus current is non-finear and is defined by the impedance characteristics

of the load. Newton's method finearises the equations using a truncated Taylor series

approximation and forms the Jacobian matrix J [1]. Equation (1.5) can be rewritten

as

F = I-Y.V (1.8)

and F — 0 when the correct solution of V is obtained. The solution is obtained by

iterative correction and each iteration requires the solution of the Jacobian matrix

equation

F = - J . A V (1.9)

LU factorisation and triangular substitution may be used to give a direct solution to

this equation on each iteration. A strict implementation of Newton's method requires

J to be updated and factorised for each iteration but this is computationaUy intensive.

Faster solutions are achieved by allowing the triangular factors of J to be used for

several consecutive iterations.

The choice of the models used in the simulation has impfications for the method chosen

to solve the network equations. I f there is no safiency, saturation or non-impedance loads

8

1.2 Power System Analysis

in the model then the injection currents, I , are a function of stator voltage, E , only. An.
exact solution for the node voltages, V , can rapidly be obtained using (1.7). Introducing
machine safiency leads to a constant term being introduced into the admittance matrix
Y . To compensate for this a corrective term is added to V and this term is a function
of I . I t is necessary to iterate repeat solutions of (1.7) until V achieves convergence.
The representation of non-impedance loads similarly leads to a portion of each load being
represented by a shunt admittance in Y . The remainder of the load appears as a non-finear
function of I in V . Again i t is necessary to iterate repeat solutions of (1.7) until V achieves
convergence.

1.2.3 Power Sys t em Security

In power system engineering terms security is defined as the

'ability of the system to withstand any one of a predefined list of possible contingencies

without serious consequences'

where a contingency is an interruption in the normal functioning of the network caused

by objects in the environment. The objective of power system operators is to maintain

system voltages and power flows within defined fimits regardless of changes in generation

and load. Operating interconnected systems requires strict control over synchronisation; any

loss of synchronisation may be catastrophic. Equipment outages themselves seldom cause

much damage but the readjustment of voltages and power flows throughout the system may

lead to a dangerous cascade of overloads causing large sections of the system to be switched

out or damaged. In the past system security has been assured through the construction of

robust systems. Rising costs and environmental concerns have meant that it is no longer

economically or environmentally feasible to build extremely robust systems. As a result

systems are being operated closer to their fimits with smaller safety margins leading to

a greater exposure to unsatisfactory recovery foUowing disturbances. System security is

no longer seen as a systems planning concern but as an exercise in risk aversion which is

controUed by the system operators. There is therefore a pressing need for operators to keep

a close eye on the security of the system.

Assessment of system security is performed by determining the probabifity that the

system wiU move from its normal operating conditions into an abnormal, or emergency

state. These calculations are based upon a knowledge of the current state of the system,

the conditions at the time and a forecast of load demand. In order to determine the response

1.2 Power System Analysis

of the system it is necessary to apply these data to a model of the system and this is achieved
using computer simulation. Contingency analysis packages attempt to determine what the
response of the system wiU be to any of a fist of possible contingencies, based upon a
knowledge of current system state. A fuU analysis requires a simulation of the system for
each combination of the contingencies in the fist.

Many utifities operate their control systems in conjunction with on-fine security mon

itoring and contingency analysis tools. Operators can continuaUy monitor the state of

system security and how that might be changed by future events (the contingencies). Using

contingency analysis on this basis allows operators to determine what is fikely to happen

to the state of the system and take the appropriate preventative, or corrective, action as

necessary. The many thousands of cases that have to be considered for a fuU contingency

analysis make it prohibitively slow for on-fine usage. Many techniques have been developed

which reduce the fist of contingencies to include only those which are most fikely to occur.

This reduces the time needed to perform an analysis and makes on-fine contingency analysis

possible. Such packages are stiU slow requiring between 5 and 15 minutes [5] to generate

their results. I f the contingency analysis package takes more than 15 minutes to complete

its calculations then it is not worth using i t as its predictions are based upon a model of the

system which was updated too long ago for i t to be accurate. Due to the high volume of

calculations and the speed required, contingency analysis tools usually have to be executed

on expensive, dedicated, high performance computers.

Many of the current contingency analysis tools only consider the steady state system

and ignore the dynamic response of the system to transients. Dynamic analysis is possible

but this requires many more calculations than the steady state analysis and as yet is too

slow for on-fine operation. Future developments would ideally make real - time dynamic

analysis packages available to operators giving them much faster response to contingencies

and improving standards of system security. With the increasing speed and capacity of

modern computers i t should soon be possible to develop such tools using the techniques

of parallel and distributed computing in conjunction with the latest generation of high

performance processors.

1.2,4 S y s t e m P lann ing

System planners are continuaUy seeking ways to improve and expand the current system.

Analysis tools can be useful in this work by aUowing the designer to perform 'what-if' studies

10

1.2 Power System Analysis

on various designs. Such studies are performed using computer models of the systems to
simulate what happens to the systems when various changes are made. As system planning
is not an on-fine appfication there is no pressing need for real - time simulation but continued
improvements in the speed of the tools used by system planners wiU manifest themselves in
a reduction in the design to construction time of system improvements. As a final stage in
the design assessment it may be necessary to undertake a real - time dynamic simulation
to determine the performance of the new design.

1.2.5 Operator Tra in ing

The flow of power in the power system, or part of the system, is controUed from a cen

tral control room by trained operators known as dispatchers. The dispatchers meet the

demand from users by controUing the flow of power around the network and have to deal

with emergencies such as sudden changes in load demanded or equipment outages. New

dispatchers must be trained to operate the control room mechanisms and to handle the

various emergency situations that may arise. Trained dispatchers need to continually im

prove their skiUs, especially those relating to potentiaUy catastrophic emergencies which

seldom occur. I t would be foolhardy to let trainees practice on the real system as an error

in their responses could place the system into a potentiaUy unstable state. Recent advances

in refiabifity have meant that it is difficult to acquire the skiUs needed to cope with all

conceivable operating conditions within the actual operating environment [6]. Some form

of simulated environment is the most effective method of providing the necessary training.

Training with a simulator gives the dispatcher greater confidence to take the correct actions

when faced with the same situation in the actual system. To be most effective it is necessary

for the simulator to provide the same interfaces to the system as the control room provides.

This requires the development of a control room mock-up in which aU interaction with the

simulator is made through the same computers, screens and other hardware used in the real

control room. Due to their effectiveness dispatcher training simulators are now an integral

part of the energy management systems of many power utifities [7].

AU dispatcher training simulators have two main components; a control centre model

and a power system model. The control centre model provides all the main functions of a real

dispatch control centre including data acquisition, supervisory control, system monitoring

and man-machine interfaces. The system model provides an equivalent model of the system

being controUed which must be sophisticated enough to reafisticaUy reproduce the responses

11

1.3 Power Systems Analysis and Computer Architectures

of the actual system. This requires the model to accurately simulate the dynamics of the

system. Two distinct components of the system model can be identified in aU dispatcher

training simulator designs [6, 7, 8] - the static model and the dynamic model.

• Dynamic model - Models the system components to provide dynamic simulation of

generators, loads, prime mover systems, protective relays, substation controls etc.

• Static model - Models the power system network and provides the power flow solu

tion, network topology analysis, system frequency deviation and transient stabifity

calculations.

Biglari [7] and other researchers observe that it is the solution of the power flow equations

which is the most time consuming stage in the power system model. Furthermore, the

solution time of the power flow equations directly determines the iteration cycle time of

the power system model component of the simulator. Although fast decoupled solution

techniques a,re employed the time taken to solve for power flow equations is significant. The

long solution times mean that i t is not possible to accurately represent the responses of the

system's fast dynamics.

1.3 Power Systems Analysis and Computer Architectures

Digital computer analysis of power systems developed in the 1960's when the availabifity

of large digital computers made it feasible to use such technology as a fast and flexible

tool for modefing power system behaviour. Early research into computer analysis tech

niques quickly highfighted the disparity between problem size and the capabifities of the

computer technology available at that time [9]. Researchers concentrated on developing

highly efficient algorithms which would extract the maximum performance from machines

which were primitive and fimited in their performance. As computers have become more

powerful, engineers have exploited this increased power by creating analysis tools to run on

these machines. With the development of extremely high performance supercomputers the

software designers have naturally looked toward these machines to see what benefits they

have in store for power engineering appfications. Whilst they are extremely efficient and

offer incredible performance these machines are expensive and beyond the budget of most

power utifities.

As the sequential computer nears the fimits of its performance much attention has been

12

1.3 Power Systems Analysis and Computer Architectures

focused on the development of parallel computers which offer higher performance from ex
isting technology than conventional sequential machines. These computers are built from
tried and tested processors and achieve their performance by allowing many operations to
be performed simultaneously, thereby reducing the total amount of time taken to execute
a given algorithm. ParaUel computers are not new; they have been in existence since the
digital computer was first developed. Given their performance benefits it may seem surpris
ing that they have not achieved widespread usage in commercial, scientific and engineering
appfications. This apparent unpopularity is due to the lack of commercial software and
the difficulties of developing appfications software. Whilst it may be argued that concur
rency is a more natural and logical way of solving problems, a different approach is required
for the development of parallel programs than is used in developing sequential programs.
Many programmers used to sequential machines are used to the von Neumann model and
find it difficult to work with the different architectural models and programming paradigms
associated with paraUel machines

In recent years a number of smaller 'turnkey' paraUel computing systems have arrived in

the marketplace (e.g. Intel iPSC, Meiko Computing Surfaces and INMOS Transputer based

systems). These systems are built from readily available microprocessors which makes them

cheap and accessible to a wide user base. Even in 1988 for as Uttle as i^l5,000, the price of

a mid-range workstation, i t was possible to buy an oflF-the-shelf paraUel system with more

than 8 processors and a performance approaching 100 MFLOPS [10], which exceeded the

performance of the similarly priced workstation. With the introduction of such systems

the software developers have seen a market niche opening up. Software manufacturers have

expanded to fiU this niche and there are now a variety of operating systems available for

these entry level paraUel systems, including the ever-popular Unix. The development of

paraUel versions of traditional sequential languages {e.g. C and FORTRAN) along with the

introduction of new parallel languages (e.g. Occam) has eased the process of developing

software appUcations. In the past one criticism that has been leveUed at paraUel computers

is that algorithm development and hardware architecture are too deeply intertwined to be

treated independently. The advent of high-level 'parallel' languages has seen a move toward

abstracting the logical development of programs away from the architectural details of the

machine. As these systems faU in price and more software is developed, more details of the

hardware become hidden from the programmer making the machines easier to program.

I t is a generally held befief that paraUel computers wiU become significant in many

13

1.4 Parallel Processing and Parallel Architectures

scientific and engineering appfications. I t is already proven that using readily available
technology simple paraUel computers can exceed the performance of high performance se
quential machines. Trew [11] and Sabot [12] observe that parallel computers tend to be
much more cost eflPective than serial machines with the same level of performance. With
the advent of cheap oflP-the-shelf paraUel systems i t seems that power engineers may have
machines which can satisfy the performance requirements of their software appfications at
reasonable cost. Many of the developments in uniprocessor computers that have occurred
in the last 20 years {e.g. pipefining, coprocessors) have occurred as a result of the appfi
cation of techniques used in paraUel computer systems [10, 13, 14, 15]. I f research into
paraUel machines continues to increase their performance i t is fikely that they wiU satisfy
the performance requirements of scientific and engineering appfications for some time into
the future. Whilst paraUel machines are today primarily the domain of researchers, many
experts predict that by 1998 they wiU be serious contenders to the industrial/commercial
domination of the conventional von Neumann machine.

1.4 Parallel Processing and Parallel Architectures

Almasi and Gottfieb [13] define parallel processing as

'A large collection of processing elements that can communicate and cooperate to solve

large problems fast'

Parallel computers achieves high performance by using multiple processors to solve the

independent parts of a problem concurrently. I f correct results are to be produced then the

individual processors must cooperate with one another by exchanging data and synchro

nizing their operations. An important feature of every parallel machine is the abifity of

processors to communicate with each other other and this is provided by an interconnection

network which finks the processors. Many different type of interconnection network exist

but aU involve some trade-off between cost and performance.

1.4.1 Classification of Computer Architectures

Before discussing paraUel architectures it is worth reviewing the von Neumann model [11] of

sequential computation as this is the model upon which many of today's computer systems

are based. In the von Neumann model program instructions and program data are both

stored in a common memory connected to a single processor, giving the von Neumann

14

1.4 Parallel Processing and Parallel Architectures

Input / Output
System Jvlemory

Bus

Central Processing Unit

C.P.U.

Figure 1.3: The basic von Neumann machine

machine the architecture of Figure 1.3. The flow of instructions and data is shown in Figure

1.4. Instructions are executed sequentially with instruction operands and data being fetched

from memory, operated upon by the Arithmetic Logic Unit (ALU) and data returned back

to the memory. The model employs a single stream of instructions and a single stream of

data.

In 1966 Flynn [16] proposed his scheme for classifying computer architectures which has

become known as Flynn's Taxonomy. Flynn classifies computer architectures according to

the number of instruction (I) and data (D) streams that they have and this yields the four

classes of computer shown in Table 1.1.

Single data stream Multiple data stream
Single instruction stream SISD

(von Neumann)
SIMD

(Array/Vector processor)
Multiple instruction stream MISD MIMD

[true multiprocessor)

Table 1.1: Flynn's Taxonomy.

SISD computers are conventional von Neumann, sequential machines such as PC clones

based on Intel 80x86 processors. This class also includes uniprocessor supercomputers such

15

1.4 Parallel Processing and Parallel Architectures

IS

CohtroIUnit Arithmetic Logic
Unit

CohtroIUnit Arithmetic Logic
Unit

Central Processing Unit

IS = Instruction stream DS = Data stream

Figure 1.4: Instruction and data streams in the von Neumann machine

as the Cray 1 which achieves high performance through pipefining of instructions. The

remaining three categories refer to different types of paraUel computer.

SIMD computers are parallel computers which consist of multiple processors controUed

by the same control unit. Each receives the same instruction from the controUer and

executes i t on a different data stream in synchronous lockstep. The vector processors

used by vector supercomputers are considered as SIMD devices as the processing of vector

quantities is performed by multiple ALU's connected in an array processing manner. SIMD

machines built from multiple CPU's are in existence - the CPU's are interconnected by a

data routing network in the form of a regular array. Such machines are useful for problems

which exhibit a high degree of paraUefism although they are difficult to program and are

appfication specific.

Flynn's classification of a MISD machine sees autonomous processors executing diflFerent

instructions on the same stream of data. The data flows between the processors in a

pipefined fashion. No computer has yet been identified as faUing into this category and many

researchers claim that a MISD machine is purely conceptual as i t is difficult to visuafise an

appfication for which i t would be useful.

16

1.4 Parallel Processing and Parallel Architectures

The M I M D category encapsulates a wide variety of multiprocessor and multicomputer
systems. Multiple processing elements autonomously execute different instructions on dif
ferent streams of data. The MIMD classification is an extremely wide one covering asyn
chronous arrays of microprocessors through to distributed multicomputer systems. The
off-the-shelf Transputer systems suppfied by companies such as Meiko are prime examples
of the sort of M I M D machines which are widely used by scientific researchers.

1.4.2 SIMD Architectures

The SIMD paradigm [17, 18, 13] consists of interconnected processors which receive their

instructions from a central control unit. The interconnection network allows for communi

cation between individual processors and between processors and local memory. AU SIMD

machines are variants of array processors.

Vector processors are considered array processors due to the arrays of ALU's used to

process individual elements of vector operations in paraUel. Some degree of pipefining is

often used in vector processors and this incurs a significant start-up overhead. Due to the

presence of these pipefines vector processors are only efficient i f their pipefines are always

fuU.

Systofic array architectures are processor arrays in which the processing elements are ex

tremely simple and perform an invariant sequence of primitive operations. Data is pumped

through the network from the memory and returns to the memory after processing. Flow

of data through the network is synchronised by a global clock and data appears to pulse

through the network in a similar manner to blood flowing through the heart. Systofic ar

rays are weU suited to intensive computations on regular data. Suitable appfications are

invariably algorithm specific.

Despite their lack of generality SIMD architectures have some advantages over more

flexible M I M D architectures. The synchronous nature of SIMD machines efiminates the

delays associated with synchronisation and the need to wait for the slowest processor. The

single instruction stream aUows the use of a common instruction memory and does not

require local repfication of parts of the program, as in a MIMD architecture. This gives

SIMD a much higher memory efficiency compared to M I M D . The single instruction scheme

also fixes the interleaving of operations, unfike the MIMD paradigm which guarantees some

interleaving of operations although it is not possible to determine which of the possible in-

terleavings wiU occur. The guaranteed order of instruction execution makes SIMD programs

17

1.4 Parallel Processing and Parallel Architectures

Shared
Memory

I / O Channels

1 I . . . 1

Input - output Interprocessor

Interconnection Interconnection

Network Network

MM : Memory module
L M : Local memory

P: Processor

Interprocessor

Interrupt

Network

LM,

(^ P 2) " LMj

LM

Figure 1.5: Functional design of a MIMD computer, after Hwang and Briggs

much easier to create, debug and maintain.

1.4.3 M I M D Archi tectures

M I M D architectures come in two distinct flavours, shared memory and distributed memory.

A third hybrid flavour distributed shared memory is also possible but less popular. Figure 1.5

shows the functional design of a MIMD computer and how the different elements combine

to yield the three flavours.

Shared memory M I M D architectures [17, 18] use some form of bus interconnection net

work to connect aU the processors to a common memory bank. Synchronisation and commu

nication between processes is performed via the common memory. In order to increase the

efficiency of the bus, shared memory machines often utilise some form of local cache at each

processing node to reduce the amount of traffic passing across the bus. There then arises the

problem of cache coherency [18]; each cache can contain a copy of the same memory data.

Correct operation requires some mechanism that ensures that all caches contain the same

values for a given data item. Cache coherency is a major problem in the design of shared

memory systems. Another problem arises in trying to extend the system to use a larger

18

1.4 '. Parallel Processing and Parallel Architectures

number of processors. Whilst the bandwidth of modern memory systems is sufficiently
large to allow the connection of multiple processors, bus contention begins to become more
significant as more processors are added. Bus-based shared memory systems seem to have a
limit of around 20 processors. Other forms of memory interconnection networks have been
devised including crossbar switching and various multistage networks. These allow larger
numbers of processors to be used but impose some penalty on system performance. Even
with these interconnection systems it is not possible to achieve the easy scalability that is
possible with distributed memory architectures.

Distributed memory M I M D architectures [17, 18, 11] have no global memory but each

processor has its own private memory. Both program code and data are partitioned into

the local memories of the processors in the system. Processors which wish to synchronise

their operation or exchange data must do so by passing explicit messages across the com

munications network interconnecting the processors. Unlike shared memory architectures,

distributed memory systems can be scaled up to use any number of processors and com

mercial systems are in existence which use hundreds of processing nodes [11]. Distributed

memory systems are also easier to design and cheaper to build as there is no complex hard

ware required to provide access to a global memory. The major disadvantage of distributed

memory architectures is that delays are associated with the communication of messages,

especially if messages have to be routed via intermediate processors. These delays can seri

ously reduce the performance of the system. Another disadvantage of distributed memory

machines is that their lack of global memory makes i t harder to write and debug programs.

Writing programs for distributed memory architectures requires the programmer to think

in a distributed manner. The global memory of a shared memory architecture'allows the

programmer to utilise the conventional von Neumann programming paradigm to a certain

extent. Despite these disadvantages the cheapness and ease with which distributed mem

ory machines can be built makes the distributed memory architecture ideal for entry level

parallel computing systems. Indeed many of the entry level parallel systems available today

are distributed memory MIMD machines.

Distributed shared memory architectures [17] are a compromise between the distributed

and shared memory approaches which attempts to solve the problems associated with both

of these models. Distributed shared memory machines have both local private memory at

each processing node and access to a common shared memory. Two interconnection net

works are used, one to connect all the processors to allow distributed message passing and

19

1.4 Parallel Processing and Parallel Architectures

one to connect each processor to the common memory. Data exchange and synchronisation
can now be performed either via shared memory or via explicit message passing. These
architectures are more scaleable than shared memory architectures and give better perfor
mance than distributed memory architectures. They are however compficated to build and
few are commercially available.

1.4.4 Interconnect ion Networks for M I M D Architectures

The preceding discussions have made reference to the interconnection network between pro

cessors in the case of distributed memory machines, and between processors and memory

in the case of shared memory machines. The choice of interconnection network can make

or break the performance of the parallel machine and is therefore of critical importance.

Choosing an inappropriate interconnection can severely reduce speed-up due to the extra

communication overheads involved. Often a particular configuration is suitable for one par

ticular algorithm but is inappropriate for a different algorithm, making it difiicult to find

an efficient general purpose interconnection strategy. The most efficient general topology to

date is the hypercube [15, 17, 18, 13, 19, 11] shown in Figure 1.6. Some of the other common

interconnection strategies are also shown in Figure 1.6. These interconnections are referred

to as static topologies as they are determined by a physical interwiring of the processors.

Dynamic interconnection networks are also possible [17, 18, 13] in which interprocessor

communications are made via a multiple stage switching network. The switching network

automatically routes message to the destination processor by configuring the switches ac

cording to address information contained in the message and operation is similar to that

of a modern packet-switched telephone exchange. Dynamic multistage networks are higlily

efficient in that they allow an arbitrary input to be connected to an arbitrary output with

a constant communication delay. Such networks are expensive to implement due to the dy

namically configurable switching hardware required and are beyond the scope of this thesis.

Instead this thesis is based upon work performed on a reconfigurable statically connected

multiprocessor system. In this system physical processors interconnections are made via

crosspoint switch mechanisms which have to be set up before the system can be used. Once

set the network retains that topology until it is reset and a new interconnection topology

defined. The network cannot be reconfigured during the course of a program's execution

and hence the topology is essentially static.

20

1.4 Parallel Processing and Parallel Architectures

Pipeline

Tree

Ring Star

Mesh Systolic array

Completely connected Chordal ring Hypercube

Figure 1.6: Static interconnection network topologies, after Hwang

21

1.4 Parallel Processing and Parallel Architectures

1.4.5 T h e I N M O S Transputer

The INMOS Transputer is a general purpose reduced instruction set (RISC) processor de

signed specifically for use in parallel computers [20, 21, 22]. Each Transputer consists of a

fast microprocessor, four serial communication finks, fast cache memory, external memory

interfacing, floating point coprocessor, real-time clocks and a hardware implemented multi

tasking scheduler. An array of Transputers may be created by interconnecting the serial

finks with those of other Transputers in a point to point fashion. Although i t is possible

for an array of Transputers to access a global shared memory the usual configuration of

Transputer systems is as a distributed memory machine. To enable the easy building of

scaleable paraUel systems INMOS have created a modular system for building Transputer

based machines. This standard is based around the use of Transputer Appfications Modules

(TRAM's) which are small circuit boards measuring 3.6 inches by 1.1 inches. Each TRAM

hosts a single Transputer, RAM and aU necessary interfacing logic and is a complete com

puter in its own right. TRAM's plug into a motherboard which resides in a host PC or

workstation and the motherboard provides aU the power and control signals to each T R A M .

Two of the serial communication finks of each T R A M on the motherboard are hardwired

into a pipefine configuration. The remaining two finks from each Transputer may be con

nected in any desired fashion using the reconfigurable crosspoint switch. In addition the

interface between the motherboard and the host allows the Transputers to access the disk,

screen and keyboard I /O systems of the host computer. Figure 1.7 provides a conceptual

view of the entire parallel machine configuration. Further details about the INMOS Trans

puter are presented in Appendix A. Graham and King [21] provide an exceUent overview

of the Transputer and Transputer-based systems.

The paraUel computing system used throughout the duration of this research project

consisted of 16 INMOS T805 30MHz Transputers and one INMOS T805 20MHz Transputer.

Fifteen of the 30 MHz processors were suppfied with 1 MB of fast RAM whilst one 30 MHz

processor was equipped with 4 MB of RAM. The 20 MHz processor was suppfied with 16

MB of fast R A M and was used as the root processor in the Transputer network. AU of the

Transputers were mounted on two INMOS BOOS compatible motherboards and hosted by

an I B M PC AT clone. Each motherboard could accommodate up to 10 Transputers and was

equipped with an electronic crosspoint switch which allowed the Transputer interconnection

network to be reconfigured from software.

22

1.4 Parallel Processing and Parallel Architectures

Host P C Host P C

1 2 3 4 1 2 3 4

5 6 7 8 5 6 7 8

9 10 11 12 9 10 11 12

13 14 15 16 13 14 15 16

Figure 1.7: Conceptual overview of the configuration of the Transputer based parallel ma
chine

1.4.6 Bounds on Mult iprocessor Performance

The speed-up, S{n), that is obtained in using n processors to solve a problem defines how

much quicker that problem is solved by n processors than by one processor. I f tg is the

time taken to execute the algorithm on one processor and tp is the time taken to execute

the same algorithm on n processors then speed-up is defined as

Sin) (1.10)

This is the strict definition of speed-up and it describes the improvement over a uniprocessor

implementation of an identical algorithm. The most efficient sequential algorithm is not

always the best parallel algorithm and a less efficient sequential algorithm wiU often produce

a better parallel implementation. Due to these possible differences in algorithms the user

is ultimately interested in the speed-up relative to the best sequential algorithm. Equation

(1.10) stiU defines the speed-up but now tg is the time to execute the best sequential

algorithm and tp is the execution time of the parallel algorithm. Both algorithms must be

executed on the same type of processor running at the same clock speed in order to make

23

1.4 Parallel Processing and Parallel Architectures

the analysis vafid. An algorithm which achieves high speed-up but requires a large number
of processors to operate is obviously inefficient. The efficiency of implementing a parallel
algorithm is expressed as the ratio of speed-up to the number of processors required to yield
that speed-up. Hence the parallel efficiency, E{n), is defined as

Ein) = ^ = speed-up
n number oj processors

The maximum speed-up that can be achieved with n processors working simultaneously

is n. This ideal case is known as linear speed-up. The speed-up achieved in practice is

often much less than this due to the inabifity of the algorithm to exploit all the concurrency

in the problem, communication overheads and the time processes spend idfing waiting for

synchronisation and/or communication. Minsky's conjecture [23] gives a lower bound on

the performance that can be expected of the n processor system of S{n) = log2 n but

this is a rather pessimistic estimate of performance. Hwang [15] gives a more optimistic

estimate of a practical upper bound on speed-up which is based upon statistical analyses

of the performance of real programs and thus takes account of communications overheads

etc. Hwang's calculations show that the upper bound on realistically achievable speed-up is

asymptotic to j ^ . These calculations were based upon experiments performed in the early

1980's and since that time advances in parafiel technology have meant that i t is now possible

to achieve speed-ups in excess of those predicted. Figure 1.8 summarises the relationship

between these various predictions of performance and it is obvious from this figure that

actual speed-ups often faU short of the theoretical ideal.

Amdahl [24] gives a quantitative analysis of expected speed-up based upon the amount

of paraUefism in the problem. In any problem there is a certain amount, Wp, which can be

solved in paraUel but Amdahl argues that there is always a sequential part of the problem,

Wg, which cannot be paraUefised. I f we define Cs{n) to be the cost of performing a single

sequential operation on an n processor machine and Cp{n) to be the cost of performing n

paraUel operations , we can define the uniprocessor, and multiprocessor execution times, ts

and tp, as

t. = W.C.m + W,CM ^ tnC^n) ̂ H i W (1.12)

where -{• Wp - I diS Ws and Wp are normafised. I f the cost of a single sequential or

24

1.4 Parallel Processing and Parallel Architectures

16

14 +

12 +

10

a
•6
% a
(0

Gelenbe

Ideal Linear

Hwang

Minsky

6 8 10

Number of processors, n

12 14 16

Figure 1.8: Various bounds on parallel performance

25

1.4 Parallel Processing and Parallel Architectures

parallel operation takes one unit of processing time then

t,^Ws + Wp (1.13)

Considering the n processor machine; if Cs{n) = nCs{l)

W.nC.jl) ^ WpCp _ ^ WpCpjn) ^^^^^
tp =
• ̂ n n n

Similarly, i f we assume that Cp{l) = Cp(n) = 1 then tp becomes

^=.W, + ^ (1.15)
n

Speed-up S{n) is defined as the ratio of uniprocessor execution time to multiprocessor

execution time. Hence

Equation (1.16) is Amdahl's Law and the speed-up it predicts for various numbers of

processors, n, and various values of 14̂ ,̂ is shown in Figure 1.9. This graph vividly shows

the effect that sequential operations in the parallel algorithm have on speed-up. The greater

the sequential part of the problem, the lower the speed-up and the greater the rate of speed

up saturation. For example, consider the case with 16 processors. If only 10% of the problem

must be solved sequentially, the speed-up that can be achieved is only half that of the ideal

linear speed-up.

Amdahl's Law provides an asymptotic upper bound on speed-up of

I t should be noted that Amdahl's Law focuses only on the computations involved and

does not take account of other aspects of multiprocessor performance such as communica

tion overheads and cache misses. Amdahl's Law impfies that a greater speed-up could be

achieved by partitioning a problem into more parallel parts and executing them on more

processors. However this would require much more interprocessor communication and the

measured speed-up is fikely to be significantly less than Amdahl's law predicts. Gelenbe

[25] has proposed a number of extensions to Amdahl's Law which take interprocessor com

munication into account. He notes that as n increases so does the fraction of the execution

26

1.4 Parallel Processing and Parallel Architectures

16.00

= 8.00

Ws=0%

Ws=1%

Ws=5%

Ws=10%

Ws=25%

Ws=50%

Ws=75%

Number of processors, n

Figure 1.9: Speed-up predicted by Amdahl's Law

27

1,5 Parallel Processing in Power System Analysis Problems

time spent in communication, c{n). This makes the communication time the limiting factor

to speed-up for large numbers of processors and the upper bound on speed-up thus becomes

. (1-18) c{n)

A second extension considers the fact that the parallel program does not make fuU use of

the n processors and this gives an upper bound on speed-up of

S < r ^ (1.19) log2n

Gelenbe's bounds on speed-up are plotted in Figure 1.8.

1.5 Parallel Processing in Power System Analysis Problems

EarUer in this chapter the subject of power systems analysis was introduced and standard

problems such as power flow, dynamic simulation, security analysis and operator training

were considered. Many of these, and other power system analysis problems, require the

solution of a set of linear equations. This set of equations is often large and in real-time

analysis software the equations must be solved as quickly as possible. Despite the use of

techniques such as sparse matrix storage it is often not possible to solve these equations as

fast as desired [26, 27, 28, 29, 30, 31, 32, 33, 34, 35]

One of the most promising approaches is to use parallel computers to give a fast solution.

Parallel computers have more than one processor and their high performance results from

their use of these multiple processing units. The basic premise of parallel computing is

that a problem can be solved more quickly if it is split into independent parts which can

be solved simultaneously. With regard to the equations for the power system network, tliis

involves the use of diakoptical techniques to partition the problem for solution by individual

processors. Several successes have been achieved [36, 37] with three- or fourfold decreases

in solution times recorded by a number of researchers.

The use of parallel computers to solve power system analysis problems is not new and

numerous researchers have developed many different parallel approaches to problems such

as transient stability analysis [38, 39, 40], short circuit analysis [41], state estimation [42]

and simulation of electromagnetic transients [43]. A number of researchers [26, 36, 27, 29,

33, 44, 45, 46, 35] have concentrated solely on the parallel solution of the finear network

28

1.6 Summary

equations. Most of the methods developed to date are based on triangular factorisation
and solution although other methods have been attempted, such as the Multiple Factoring
method [46, 29] and an approach based on the use of the Conjugate Gradient method
[28]. The existing methods wiU be considered more fuUy in Chapter 3 but the basis of the
triangular decomposition methods is to partition the set of equations into subsets which
may be solved independently. Unfortunately i t is not easy to spfit the equations into
independent subsets and a successful partitioning strategy requires detailed analysis of the
numerical algorithms [29]. Kron's method of diakoptics [47, 48] is often used to decompose
the system into subsets which may be solved concurrently using multiple processors. A
coordination phase is introduced into the solution algorithm to combine and modify the
individual solutions to give the overaU solution of the set of equations.

None of the methods developed to date has successfuUy exploited the fuU performance

of paraUel computers due to the nature of the problem. Speed-up seems to be fimited to

about 3 or 4 and the coordination phase is recognized as being a bottleneck in the solution

[49]. Some methods do achieve higher speed-ups [26, 46] but they require a large number of

processors which makes them expensive and inefficient. The authors of [50] note that whilst

algorithm development has produced good theoretical results, fittle software has actually

.been developed for parallel machines.

This thesis discusses the development of a paraUel solution which attempts to circumvent

the fimitations of existing paraUel methods. Whilst the thesis only discusses the techruque

in relation to the solution of power system network equations i t is also vafid when appfied

to other similar networks (e.g. telecommunications networks, electronic circuit analysis, gas

and water networks etc). Indeed the technique can be appfied to any network which can be

represented by a set of sparse symmetric diagonally dominant finear equations.

1.6 Summary

This chapter has introduced power systems and paraUel computation. The power system

and its components have been discussed and a number of power system analysis appfications

have been examined. The finear network equations have been clearly identified as having

a central role to play in these appfications. Some of these appfications, such as dynamic

simulation and on-fine dynamic security assessment require real-time or faster operation and

in these appfications i t is essential that the finear equations be solved as fast as possible.

29

1.7 Outline of Thesis

Sequential computers are limited in their abifity to perform these computations within the
required time frame and other computer architectures must be considered if the solutions
are to be accelerated.

Parallel computers have been introduced as a different type of computer from the con

ventional sequential machine. The operation of parallel computers has been considered

and a number of parallel computer architectures have been examined. Using a parallel

computer i t is possible to solve a problem faster than on a sequential machine by dividing

up the problem and solving independent parts-concurrently on the multiple processors of

the parallel machine. Parallel processing seems to be an ideal technique for accelerating

the solution of the power system network equations and indeed this approach has ah-eady

been used. The equations are solved by partitioning them into independent subsets which

may be solved concurrently by the multiple processors. Unfortunately it is not easy to

spfit the equations into independent subsets and a coordinating phase must be introduced

into the parallel solution to combine and modify the results for each of the subsets. This

combination phase is a bottleneck in the solution process and hmits the speed-up of the

parallel solution to about 3 or 4 regardless of the number of processors used. Some of the

existing methods achieve reasonable speed-ups but require many processors to achieve their

performance [46, 26] and they are therefore rather inefficient.

During the early developments in computer-based power system analysis tools signifi

cant performance enhancements were made through improvements in the algorithms used.

Through these improvements the algorithms for the sequential solution of linear equations

have evolved into the highly efficient state we see today. Whilst developments in com

puter hardware will produce faster machines capable of solving the network equations more

quickly than they can be solved at present there is stiU much that can be done to improve

the algorithms used in parallel solutions. Rather than buying a bigger hammer to crack

the nut i t is more profitable to redesign the smaller hammer so that it cracks nuts more

efficiently.

1.7 Outline of Thesis

This aim of this thesis is to explore the derivation of a technique for efficiently solving

power system finear equations on a distributed memory multiprocessor. This introductory

chapter has discussed what these equations are and where they arise. The concepts of

30

1.7 Outline of Thesis

paraUel computing have been introduced and the need for paraUel methods of solving finear
equations has been demonstrated.

Chapter 2 wiU survey sequential methods for solving the finear equations as aU parallel

solutions are based around these sequential methods. LU based triangular decomposition is

introduced as the standard technique whilst sparse matrix methods and optimal reordering

are introduced as ways of minimizing computation and processing time. These techniques

wiU provide a good platform from which to explore paraUel solution methodologies. The

efimination tree wiU be shown to be a powerful tool for providing insight into the solution

process and its introduction is intended to highfight areas of independence and potential

paraUefism in the solution of the equations.

Chapter 3 moves on to discuss existing methods for the parallel solution of the equa

tions. The two flavours of solution, iterative and direct, wiU be considered with the aim

of determining which approach is most suitable for power system computations. Typical

paraUel methods wiU be considered in some detaU for both direct and iterative solutions. I t

is intended that this chapter wiU highUght the beneficial features of these methods so that

they may be used later either to form the basis of a new method or to suggest improvements

to existing techniques.

Chapter 4 returns to the subject of the eUmination tree and wiU show how it can be used

in partitioning the problem for paraUel solution. I t wiU also be shown that the efimination

tree is useful in optimizing the assignment of computations to individual processing elements

in a multiprocessor. The insight provided by the efimination tree wiU be of paramount

importance in improving the amount of paraUefism that can be exploited when solving the

equations concurrently.

Chapter 5 wiU take the insight provided by the eUmination tree and combine it with

the beneficial features of existing paraUel solutions to produce an improved paraUel solution

method. I t wiU be shown that this is not a radical new algorithm but a restructuring of

the problem which aUows more of the inherent paraUefism to be exploited. The benefits

of the method and improvements in performance wiU be iUustrated with the results of

simulations which solve several systems of equations using both the standard technique and

the improved method.

Chapter 6 considers how the improved method may be implemented on a multiprocessor

array. Some of the techniques for improving the sequential solution wiU be revisited and

appUed to the parallel solution whilst other techniques that can be used to further improve

31

1.7 , Outline of Thesis

the implementation of the new parallel solution wiU also be presented. The performance
of a parallel implementation of the new method will be compared with that of existing
methods and the theoretical predictions of Chapter 5. This chapter aims to show that
the new method gives faster and more efficient solutions than those obtained from existing
parallel solutions.

Chapter 7 wiU present suggestions for further work on the methods discussed in this

thesis. Having demonstrated the effectiveness of the new approach. Chapter 8 will conclude

the thesis by assessing what has been achieved. These achievements wiU be compared to

the initial aims and objectives.

32

Chapter 2

Solving the Network Equations

2.1 IVIodeling the Power System

M odern power systems are complex entities consisting of thousands of interconnected

nodes. To analyse such a system it must be described by an equivalent formal

mathematical model. This requires the use of a mathematical model for each different type

of system component and the interrelationship between all these different models yields the

set of equations which form the basic framework of the analysis. Suitable models for the

main system components described in the previous chapter are now discussed.

2.1.1 T h e Generator Model

The synchronous generator has two main components; the rotor and the stator. The stator

is a hollow cyfindrical structure which provides a housing for the rotor. Wound into slots

along the length of the stator casing are coils which are connected together to form three

separate phase windings. The rotor is a sofid cyfindrical structure which can rotate freely

about its axis within the stator structure. A coil wound on to the rotor is excited from a DC

source. This winding produces an intense magnetic field which sweeps the stator as the rotor

rotates, inducing a sinusoidal voltage into each of the stator windings. The voltages are

identical in ampfitude and frequency but are 120° separated in phase. Mechanical rotation

of the rotor is provided by some form of turbine connected to the rotor shaft, with steam,

hydro, gas and wind turbines being the four main types of rotor prime mover.

The synchronous generator can be described in terms of the real and reactive power it

33

2.1 Modeling the Power System

delivers.

where

P = mS] = ^ s i n 5

VEf
Q = 5[5] = - ^ c o s < J - —

(2.1)

(2.2)

(2.3)

5 = complex power delivered

Ej = stator internal voltage

V = stator terminal voltage

P = real power delivered by generator

Q = reactive power delivered by generator

6 = power angle

Xd = direct axis synchronous reactance

The equivalent circuit model of the synchronous generator and the derivation of these

equations is presented in Appendix B . l . Taken together (2.1) to (2.2) provide a model of

the synchronous generator suitable for use in a real-time dynamic simulation.

2.1.2 The Load Model

In analysing an electrical power system it is necessary to consider the loads connected to

the system. Loads at each bus are treated as composite loads and may be modeled as either

constant current sinks or, more usually, as a simple impedance. Appendix B.4 considers

the characteristics of system loads and methods of modeling them,

2.1.3 The Transmission Line Model

I t is possible to derive a set of complex equations which give a complete mathematical

model of a transmission line. This model has an analogous electrical equivalent circuit

model, shown in Figure 2.1 as the equivalent TT circuit model. The model comprises a

series impedance term, Z, which accounts for the resistive and inductive losses on the hue.

Similarly a shunt admittance term, Y, is included to account for the shunt displacement

currents arising from the electric fields between the conductors. I t is usual to place half of

this shunt admittance at either end of the line. Appendix B.2 derives the values of the series

34

2.2 Formalizing the Problem

Vr

Figure 2.1: Transmission line equivalent TT circuit model

impedance and shunt admittance and discusses transmission hne modehng in more detail.

In the problem formulation which follows i t is assumed that the values of the parameters Z

and Y are given for each line.

2.1.4 The Transformer Model

The transformer is a constant power device comprised of two or more coils used in electrical

power systems to transform voltage and current levels. The coil connected to the power

source is known as the primary winding and the coil connected to the load is known as the

secondary winding. Assuming the transformer to be ideal, the power input to the primary

winding is equal to the power delivered by the secondary winding. I f there are turns

on the primary winding and Ni turns on the secondary winding then the terminal voltages

and currents are related by

(2.4)
V2 N2

h

h

N2

A practical single phase equivalent circuit model of a two winding transformer is given

in Figure 2.2. The model accounts for finite core permeability, winding resistance, imper

fect flux linkage and eddy current and hysteresis losses. The parameters of the model are

expressed in terms of the series resistance and flux leakage of the primary and secondary

windings, xi and X2 account for flux leakage in the primary and secondary windings respec

tively. Similarly r i and r2 are the series resistances of the primary and secondary windings.

Appendix B.3 provides a ful l derivation of the model.

2.2 Formalizing the Problem

Given a power system we would like to address issues such as

35

2.2 Formalizing the Problem

Xi

^1
> A

G N
V,

Ideal

Figure 2.2: Equivalent circuit of a single phase transformer

• What are the loads on transformers, Hues and generators in the system ?

• What are the voltages and currents at each point in the system ?

This is the power flow problem and it is concerned with calculating the voltage magnitude

and phase at each bus in the system.

A system bus is defined as a point of physical interconnection of system components

and a power system consists of many buses interconnected by a transmission network. At

each bus there will be three components contributing to the total power dehvered at that

point; generation, load and transmission although either generation or load may be missing.

Generation delivers power into the bus whilst transmission and load extract power from the

bus, i.e

Sg = Si + St (2.5)

where

Sg — complex power delivered into the bus by the generator

Si = complex power absorbed by the load

St = complex power extracted / dehvered by the transmission network

The distribution of power is achieved by the transmission network and it is this network

which must be analysed to determine the voltage characteristics at each system bus.

We can consider the transmission network as an n-port network to which generators and

loads are connected to form the power system, as depicted in Figure 2.3 As generators and

loads are external to the n-port transmission network they need not be considered further.

Should the generator voltages and currents be required they can be calculated using the

equations of Section 2.1.1. For the purposes of this thesis i t is assumed that at each system

36

2.2 Formalizing the Problem

O -

O

o

S G i S L i V i

- o -

o -

-O- ref

n P O R T

T R A N S M I S S I O N

N E T W O R K

Figure 2.3: General n-port representation of a power system

bus the current li-^^ ^ is given, where /,• is a current due to generation less load at bus i.

The transmission network is simply a network of impedances as each transmission Une in

the network can be replaced by its equivalent TT circuit, as described in Appendix B. Given

that the current li is known at each bus and that the impedances comprising the network

are known, the Ohmic equation

V = I Z (2.6)

can be used to obtain the voltage characteristics of each bus. It is more usual to consider

the transmission network in terms of its admittance as the impedance matrix, Z , is dense

whereas the admittance matrix, Y is sparse. This has important consequences for compu

tational efficiency, as later sections will show. With the network described in terms of its

admittance, the currents injected at each bus become the inputs to the system whilst the

unknown bus voltages become the output of the system. Hence (2.6) becomes

(2.7)

where V is the vector of bus voltages and I is the vector of bus currents. Y is known as the

bus admittance matrix and this characterizes the admittance of the transmission network.

The solution of (2.7) is the problem on which the work in this thesis is based. The solution

for the unknown voltage vector is given by

V = Y - ^ I (2.8)

37

2.3 Linear Equations, Matrices and Sparsity

2.3 Linear Equations, Matrices and Sparsity

Many real world systems can be modeled by a set of simultaneous hnear equations of the

form
aixi + a2X2 + a^x^ = bi

04X1 -I- 052:2 -I- aex^ = 62 (2-9)

a7Xi + asX2 + asX3 = 63

This set of equations can be represented in matrix notation as A.x = b, which is

expressed in fuU as
r

a i 02 0-3

04 as ae
a? ^8 09

Xi h

X2 = b2

X3

(2.10)

Most real systems have many zero entries in the A matrix and these systems are known

as sparse systems. The matrix of coefficients. A , is known as a sparse matrix. Such systems

are of special significance in the design of a computer program for solving hnear equations

and will be considered shortly.

The values of x are unknown and a solution for the elements of this vector is required.

The usual method for solving a set of simultaneous equations involves some form of Gaussian

ehmination of the set of equations followed by substitution to yield the unknown values.

Given the set of equations i t can be seen that the problem of finding a solution to x requires

determination of the matrix inverse A~^. Once the inverse has been determined the vector

X is obtained by the simple matrix multiphcation

x = A-^b (2.11)

In power systems analysis i t is necessary to solve the voltage at each node in the system

using the equation

Y . V = I (2.12)

where

Y = System nodal admittance matrix

V = Nodal voltage vector

I = Nodal current vector

38

2.4 Direct Solution of the Linear Equations

The matrix Y is derived using nodal admittance analysis of the given power network, as
described in Appendix C, and for systems of any reasonable size this matrix exhibits some
degree of sparsity i.e many of the elements in this matrix are zero. This admittance matrix
is symmetrical by virtue of the structure of the network and it is diagonally dominant.
This allows computer solution techniques to achieve greater accuracy through a reduction
in relative numerical error.

As the admittance matrix is sparse only non - zero matrix elements contribute to a

solution and hence only those elements need enter into calculations. This has strong impli

cations for the design of computer algorithms which store and operate on these matrices.

2.4 Direct Solution of the Linear Equations

The determination of the inverse of A is an inefficient, computationally expensive procedure.

The key to solving the network equations is to produce the ejfect of the inverse without

actually calculating the fuU matrix inverse. The basis of the method is to decompose the

coefficient matrix into a number of factor matrices which are multiplicatively combined to

produce the effect of the inverse. This approach is significantly more efficient, requiring

fewer calculations than the determination of the fuU inverse and a solution obtained using

this method is termed a direct solution.

Three of the more common methods are now introduced. The method used exclusively

throughout the research work described in this thesis, Zollenkopf's Bifactorisation method,

is described in more detail.

2.4.1 Gaussian Elimination and Fill-Ins

The set of linear equations A x = b arises directly from the structure of the network they

model. The known vector b can be considered as the input to the system and the unknown

vector X corresponds to the system output. The structure of the matrix of coefficients. A, is

directly determined by the topology of the network. Graph theory [51] teUs us that there is

a duality between graphs and matrices and that a matrix may be used to describe a graph.

The adjacency matrix associated with a graph is square and has as many rows/columns as

there are nodes in the graph. I f nodes i and j of the graph are directly connected then

39

2.4 Direct Solution of the Linear Equations

non-zero entries are inserted into the matrix at elements and ^. The

values added to these elements usually represent some parameter of the network and in the

case of power systems the values represent the admittance connected between nodes i and

j. The bus admittance matrix (Appendix C) is thus the adjacency matrix of the power

system network.

Given A and b the problem is to solve the equations to yield x. This is usually achieved

through some form of Gaussian eUmination in which the aim is to modify matrix A using

successive column ehminations to reduce i t to upper triangular form. Back substitution with

b then yields the vector x. Given the graph-matrix duaUty one would expect operations

on the matrix to manifest themselves in the associated graph. EUmination of columns from

the matrix is equivalent to the ehmination of nodes from the graph.

Consider the example graph and adjacency matrix shown below

15

5

5

5

10

10

5

5

5

10

10

The first stage in the Gaussian eUmination of this system is to eUminate elements in

column 1 of rows 2 to 6. This is achieved by subtracting multiples of row 1 from rows 2-6 so

as to make the first element of each row equal to zero. For example, column 1 is eUminated

from row 2 by subtracting | of row 1 from row 2. This modifies the elements of the second

row and the matrix becomes

15 5
25 _ 5
3 3

5 - I 5

3 ^

10 5 5

5 - | 5 10

10

Notice that two new elements have appeared in columns 3 and 5 of row 2. The signifi-

^This assumes an undirected connection between i and j. If the connection is directed from » to j then
non-zero values will only be inserted in elements

40

2.4 Direct Solution of the Linear Equations

cance of these elements can be seen by examining the connectivity of the adjacency graph.

Node 2 is indirectly connected to nodes 3 and 5 via node 1. When node 1 is eliminated from

the graph new connections must be inserted between 2 and 3 and 5 and 3 to preserve the

connectivity of the network. These new connections, known as fill-ins appear in the matrix

as the new elements (2,3) and (2,5). Once column 1 has been eliminated from rows 2-6 the

matrix and the graph have been modified to give

15
25
3

5 - 5

10

5

5

'4 5

10

The elimination of node 1 has produced fiU-in connections in the graph between 2 & 3, 2

& 5 and 3 & 5. New fill-in elements have been created in the adjacency matrix at elements

(2,3), (2,5), (3,2), (3,5), (5,2) and (5,3). Following the elimination of each node in the

network at successive steps of the Gaussian elimination algorithm, i t may be necessary to

introduce fill-ins to preserve the connectivity of the network. Note that even if fill-ins are

not created, the values of existing matrix elements may be modified.

The significance of fiU-ins becomes apparent when the number of operations required

to eliminate all nodes is considered. The original coefficient matrix is sparse. In eliminat

ing columns from the matrix i t is only necessary to operate on non-zero elements. The

introduction of fill-ins increases the number of non-zeros and thus increases the number of

operations required to eliminate all the nodes. The more fiU-ins there are, the longer i t wiU

take to complete the elimination. It is possible to reorder the matrix in such a way that the

amount of fiU-in is reduced. Reordering the matrix to give the minimum fLU-in also gives

rise to the minimum solution time. Section 2.5 and Section 2.7 consider matrix ordering in

more detail.

Fill-ins are also important when the storage requirements for a solution are considered.

Wi th a sparse matrix it is only necessary to store the non-zero elements. Introducing fiU-ins

increases the storage required and this could be a problem if memory is limited. Minimum

fiU reorderings are useful in that they also minimize the amount of memory required.

41

2.4 Direct Solution of the Linear Equations

2.4.2 L U Decomposition

The LU factorisation technique is one of the more widely used triangular factorisation

techniques. The coefficient matrix is considered to be the product of two triangular factor

matrices

A = L U (2.13)

where

L is a lower triangular matrix in which the leading diagonal elements are unity

U is an upper triangular matrix

Hence
a-ii ai2 ais

a2l 022 «23

«31 ^32 ^33

1

/21 1

3̂1 3̂2 1

•"11 Wl2 '''13

^22 ^23

î33

(2.14)

The LU factorisation is used as the first stage in the three stage solution of Unear equations

Stage 1 Factorise A = L U

Stage 2 Forward substitute to solve for y L y = b

Stage S Backward substitute to solve for x Ux = y

The vector, y, is a vector of intermediate results. The advantage of this approach is that

operations on the right hand side (stages 2 and 3) may be performed independently of the

factorisation stage. This aUows the same system to be solved with multiple right hand side

vectors.

The formulae for generating the elements of L and U are

Q.J - E L i h,kUk,j
Ui

k j = ^ ^ > c = i - ' - — ^ j ^ k + l . . . n (2.15)

(2.16)

fc=i

The coefficients of L and U may be merged and stored in a single {n X n) matrix, Ap- A p

is created by overwriting the elements of A as the factorisation progresses. Note that if

A is symmetric, the LU factorisation destroys the symmetry as A p is not symmetric i.e.

h,3

42

2.4 Direct Solution of the Linear Equations

By way of example, consider the LU factorisation of the matrix

16 4 8

4 5 - 4

8 - 4 22

This results in the factor matrix

-till Ul2 Ul3 16 4 8

A F = hi U22 U23 = 0.25 4 - 6

Isi I32 U33 0.5 -1.5 9

2.4.3 L D U Decomposition

Another triangular factorisation method often used in power system computations is the

L D U factorisation. The coefficient matrix is considered to be the product of three factor

matrices, L ' , D and U .

Here

L ' is a lower triangular matrix with unity elements on the leading diagonal

U is an upper triangular matrix in which the leading diagonal elements are unity

D is a diagonal matrix

The method is similar to L U factorisation and the diagonal elements of the U matrix in

LU factorisation appear as the the diagonal elements of the D matrix in LDU factorisation.

The lower triangular matrix of LDU factorisation, L ' , is obtained from the lower triangular

matrix of L U factorisation, L , by dividing each column of L by the diagonal element of that

column.

Consider the following matrix by way of an example

3 - 1

. - 1 2
A =

' -1 2 1

- 1 1

43

2.4 Direct Solution of the Linear Equations

L U factorisation of this matrix gives L =
•1 1

-1 1

U

L D U factorisation of A yields

1

L ' = •I 1

1
8 ^

D =

Notice that if A is symmetric then

U = L iT

u =

1 _ 1 _ 1
^ 3 3

1 - i

Hence

A = L ' D L iT

This has important consequences for storage of the matrix factors as i t is only necessary

to derive and store L ' and D. As power system network matrices are often symmetric

this factorisation method finds widespread usage in power system computations. The L D U

factorisation again forms the first stage of a three stage solution process.

Stage 1 Factorise

Stage 2 Forward substitute to solve for y

Stage 3 Backward substitute to solve for x

A = L D U ^ L ' D L ' '

L 'Dy = b

Ux = y (L'2^x = y)

2.4.4 Bifactorisation

Bifactorisation is another factorisation technique similar to L U and L D U decomposition.

Given an {n x n) matrix this method spUts it into 2n factor matrices, each of order (n x n).

The method produces n left hand factor matrices L ^ ^ ' , L ' ^ ^ , . . . , L^"^) and n right hand factor

matrices R (^) , R (^) , . . . , R (") . The factor matrices satisfy the constraint that

L (" ' . L (" - I) . . . L (2) . L (^) . A . R (^) . R (2) . . . R (' ^ - I) . R (") = I (2.17)

44

2.4 Direct Solution of the Linear Equations

where I is the unit matrix of the same order as A . Note that

A - i = R (I) . R (2) . . . R (" - I) . R W . L W . L (" - I) . . . L (2) . L (I) (2.18)

One factor matrix exists for each row and column of the coefficient matrix and each

factor matrix differs from the unit matrix by only one row, if i t is a right hand factor, or

one column if i t is a left hand factor. Once again i t is possible to merge the 2n factor

matrices to create a single (n X n) factored matrix A p .

(2.19)

R\,2 Rl,3 Rl,4

1^2,1 £2,2 R2,3 R2,4

-C'3,1 L3,2 L3,3 R3,4

L4,2 LA,3 L4,4

For a symmetric matrix Lij = Ej,,- and hence only the left hand factor elements need to

be derived. A further saving on memory can be made by storing only the left hand factor

elements so that the factored matrix becomes

A F

^1,1

-£2,1 •£2,2

^3,1 L3,2

-t'4,1 L4,2

•'3,3

•'4,4

(2.20)

Consider again equation (2.18). As x = A b̂ i t is possible to write

X = R (I) . R (2) . . . R (» - I) . R W . L (") . L (" - I) • • •L(2).L(^).b (2.21)

Commencing from the left hand end the first operation involves post multiplying R^^) by

R (2) yielding

1 a 6 c 1 1 a ad-\- b ae + c

R (I) R (2) =
1 1 d e 1 d e

(2.22) R (I) R (2) =
1 d e - (2.22)

1 1 1

1 1 _ 1

where a, b, c, d, e are values produced by the factorisation of the coefficient matrix and

45

2.4 Direct Solution of the Linear Equations

may, or may not, be zero. The result of post multiplying any {n x n) matrix by any other

(n x n) matrix is itself an (n X n) matrix . By the time all the factor matrices have been

multipUed 2n matrix multipUcations wiU have occurred, each of which produces an (n X n)

matrix result. The final operation to obtain the solution vector, x, is the post multiphcation

of the product of the matrix factors {i.e the fuU matrix inverse) by the vector b.

x -

k I m n bi kbi + lb2 + mbs + nb^

o p q r b2 obi + pb2 + qb3 + rb4

s t u V bz sbi + tb2 + ub^ + vb4

w X y z b4 wbi + xb2 + ybz + 264

(2.23)

which produces an {n X 1) vector result.

Now consider performing the same factor multipUcations but commencing from the

right hand side. The final result is the same as in the previous case (2.23) but now the

first operation is the post multipUcation of L^^' by b. i.e.

L(i)b

' k ' 61 " kbi

a 1 62 (a-f 1)62

b 1 63 (6 + 1) 6 3

c 1 _ (c + 1)64 _

(2.24)

and the result is an (n X 1) vector. Subsequent operations involves post multiplying factor

matrices by intermediate vector results to yield an (n x 1) vector result. Note that in

multiplying from right to left no matrix inverse is generated but its effect is obtained.

Tinney [3] notes that this right to left multiphcation, when appUed to a dense matrix,

requires n additions and - n multipUcation - additions to compute a solution whereas left

to right multipUcation requires (n - l)(2n^ + n) additions and 2n^(n^ + n) multipUcations

to yield the same solution. Right to left multipUcation is therefore much more efficient and

wiU yield faster solutions with the added advantage of requiring less intermediate storage.

As with LU and LDU factorisation the factor matrices are derived in n steps. At the

k*^ iteration the factor matrices L^'^' and R^*^) are determined and the coefficient matrix is

updated to produce a new coefficient matrix A ' ' .

46

2.4 Direct Solution of the Linear Equations

The formulae for determining left and right factors at the A;*'' iteration step are

T (fc) _ 1 v>W
1-11. L. —
'kk - (fc_l) ^^kk Rr.̂ = 1 (2.25)

^kk

'kk

(k-i)
(2.26)

(2.27) Rif = ^$^ j = k + l,...n

where is referred to as the pivot or pivotal element.

I t is clear that L^''^ = R'''' for a symmetric matrix and as only left hand factors need to

be determined the rules for deriving the factors from a symmetric coefficient matrix become

^k,k - j k - i)
"•k,k

(k)
'i,k

- \ k
(fc-i)

where Lp^' is stored in A f) . , , and Ap stores the compact factored matrix.

The coefficient matrix is updated according to

Jk) _ Jk-l) _ ^]k -^l, _ (k-l) (k-l) Ak) . . ,

(2.28)

(2.29)

(2.30)

Equations (2.29) and (2.30) imply that they must be applied to every matrix element

aij for which i,j = k + 1 , . . . , n. For a sparse matrix this is clearly inefficient as many of

these elements wiU contain zeroes. Equations (2.29) and (2.30) only need to be apphed to

non-zero elements aij for which

k + l < i , j <n (2.31)

As an example of the bifactorisation method, consider the factorisation of the matrix

A(o)

3 - 1 - 1

- 1 2

- 1 2 - 1

- 1 1

0 ©

® 0
At the first step k = 1. Applying (2.29) to row 1 of the matrix produces the first left

47

2.4 Direct Solution of the Linear Equations

hand factor matrix L^^^.

L (I) =

1
3

I 1

Applying (2.30) to row 1 of the matrix causes the remaining rows of the matrix to be

modified. The result is

0 /?
A(i) =

5 _ 1
3 3

1 5
3 3

- 1 1

1

Notice that fiU-ins occur at (2,3) and (3,2) and that rows 2 and 3 of the matrix have

been updated as nodes 2 and 3 are the neighbours of node 1.

At the second factorisation step k = 2. Applying (2.29) gives

L(2)
3
5

\ 1

and using (2.30) to modify rows 3 and 4 produces

A(2) =
\ - 1

•1 1

0 ©

©—0
No fiU-ins occur during this step and row 3 is updated as node 3 is the neighbour of

node 2.

Step 3 (/c = 3) results in

L(3)

1

1
5
8

^ 1 8 ^

and

48

2.4 Direct Solution of the Linear Equations

0 ©

© 0
Again no fiU-ins occur and row 4 is modified as node 4 is the neighbour of node 3.

The final step (k — 4) simply creates L^''). No updating of the coefficient matrix is

required as all nodes have been eliminated.

L(4) = A(4)
1

1

A further point to note about symmetric coefficient matrices and their factored coun

terparts is that all the information about the matrix is contained in both upper and lower

triangles of the matrix. The rules for factorising and updating the coefficient matrix need

only be applied to this triangular form, reducing the computation time as well as reducing

the amount of memory needed to store the matrix. Given the matrix A in triangular form

the bifactorisation method can be used to produce a triangular factored matrix. After the

n*'* iteration step the coefficient matrix. A , has been reduced to a unit matrix and n factors

have been produced and stored in the factored matrix. Note that the R (") factor is a unit

matrix and can be disregarded as it has no effect in the subsequent multiphcations.

Although the admittance matrix, Y , is often symmetrical there are situations under

which i t is only incidence symmetric^. These situations arise from the presence of system

components such as quadrature boosters, which are transformers with complex transforma

tion ratios. Their effect is to introduce unequal admittances into symmetric locations of

the admittance matrix and the techniques for storing and processing symmetric matrices

can no longer be used. The square representation of the admittance matrix must be used

and factorisation generates left and right hand factors for which L | ^ ^ 7̂ Î'̂ t'- ^ compact

representation of the factors is no longer possible and both the left and right hand factors

must now be stored explicitly. The formulae for generating factors from symmetric matrices

(equations (2.28)- (2.29)) can no longer be used and equations (2.25)- (2.27) must be used

instead.

^ An incidence symmetric matrix is only symmetric in terms of element locations, not in terms of element
values. When the element values are ignored the matrix is seen to be symmetric.

49

2.5 Pivotal Ordering

The test systems used in this thesis do not include devices which result in incidence sym
metry and the admittance matrices of all the test systems are symmetric. This has allowed
the more efficient symmetric storage and processing techniques to be used throughout.

2.5 Pivotal Ordering

When operating on a coefficient matrix to obtain the effect of its inverse i t is not necessary

to operate on rows or columns in the natural order in which they occur I t is possible to

process rows and columns in a different order so that a given diagonal element is selected

as the pivot at a given iteration step.

There are three reasons for choosing to operate on a matrix in an order that is not

necessarily the naturally determined order.

• increased numerical accuracy due to minimisation of round - off error.

• preservation of matrix sparsity.

• increase in computational efficiency.

These desirable properties result from minimizing the amount of fill-ins introduced during

elimination. Minimizing the fiU-ins reduces the amount of computation needed to yield a

solution, thus increasing computational efficiency. Preserving the sparsity of the matrix

also gives increased numerical accuracy as fewer round-off errors are introduced.

I t has been observed that the matrices associated with power systems networks are di

agonally dominant and by determining the elimination ordering based upon an examination

of only the diagonal elements sufficient numerical accuracy is retained for most applications

[2]. This allows the matrix ordering to be chosen so as to preserve sparsity and reduce

memory requirements and computation time.

There are two main forms of ordering strategy used in matrix computations - Pre -

Ordering and Dynamic Ordering.

2.5.1 P r e - Order ing

Pre - ordering strategies are used before processing the matrix and have short execution

times. Such strategies cannot take account of changes in the coefficient matrix due to the

factorisatioii process and are unlikely to produce the most optimal ordering. Despite this

50

2.5 Pivotal Ordering

pre - ordering strategies can be very useful for simple problems although they are often not
very good at preserving sparsity. •

As an example of a pre-ordering strategy consider the 'least number of connected

branches' method. This orders matrix rows(columns) for elimination in ascending order of

number of non - zero off diagonal elements. When two rows (columns) have the same num

ber of non - zero elements the ordering becomes most efficient when these rows (columns)

are taken in their naturally occurring order. For the matrix below the following ordering is

obtained

• • *
Natural Ordered

1 3

2 1

3 4

4 2

Note that the ordering strategy merely requires a knowledge of the location of non zero

matrix elements. The actual values of these elements are irrelevant.

2.5.2 D y n a m i c Order ing

Dynamic ordering strategies differ from pre-ordering strategies in that they are used after

each step of the factorisation algorithm to determine the most optimal order of elimination

based upon an examination of the updated coefficient matrix. Such strategies slow down

computation time, which is their main drawback, but they are very good at preserving

sparsity. The simplest dynamic ordering strategy applies the 'least number of connected

branches' algorithm after each iteration and this is the weU known Minimum Degree algo

ri thm [3]. BrameUer et. al. [2] suggest the use of a semi - optimal ordering strategy. This

has the advantage of off-line usage (like a pre-ordering) which does not slow down the ac

tual computations yet still retains the sparsity preserving properties of a dynamic ordering

strategy. The ordering is applied prior to processing of the matrix and uses the coeificient

matrix sparsity pattern and a simulation of the factorisation process to determine the order

which introduces least fiU-in. This technique is very attractive i f several solutions are to be

obtained for matrices which have different numerical values but the same sparsity pattern

as the same elimination order can be used for each matrix.

The semi-dynamic ordering algorithm operates by reading connection information for

the required system from a datafile held on disk. The data in this file is used to establish

51

2.5 Pivotal Ordering

linked lists for each row which define the topology of the admittance matrix. These lists
hold only column indices and no element values are stored, as depicted below.

• *
•k -k

-k -k -k

k -k

1 -> 2 ^ 3 ^ NULL

1 -> 2 ^ NULL

l ^ 3 ^ 4 ^ NULL

3 ^ 4 ^ NULL

A suitable ordering strategy (e.g. Minimum Degree) is applied to determine the first

row/column to be eliminated. The bifactorisation update rule (2.30) then determines where

in the matrix fiU-in wiU occur due to the elimination of this row and column. I f a fiU-in

occurs in row k column i the topology list for row k is modified by the insertion of an entry

for column i. After all fiU-ins have been identified and the topology lists altered the list

of the eliminated row is marked so that i t will not be consulted further. Similarly all the

other lists which make reference to the eliminated column have the entry for that column

removed. The ordering strategy is again used to determine the next row and column to

be eliminated and the necessary updating of lists is performed. This continues until all

rows are marked as eliminated. The output of the ordering algorithm is a mapping array

which specifies how the system nodes are to be renumbered so that when the nodes in the

renumbered system are eliminated in ascending order, the optimal elimination ordering is

being followed.

In the case of a symmetric matrix only the lower triangle needs to be stored to completely

specify the matrix. Analysis of the ordering algorithms shows that if the Hnked lists store

only the topological information for a triangular matrix a different ordering is produced

than i f the lists contain the topology information of the whole symmetric matrix. I t is

observed that the former case does not produce the optimum ordering of system nodes

whilst the latter case does. Hence the ordering algorithm must use a fuU representation of

the matrix whilst the actual solution for the algebraic network equations only makes use of

a triangular matrix. Creating an ordering using the fuU matrix ensures that the triangular

matrix used by the factorisation routine will be optimaDy ordered.

52

2.6 Elimination Trees

1

2

3

4

5

6

7

B

9

10

1 2 3 4 5 6 7 8 9 10

~ X X
X X X

X X X
X X X

X X X X
X X

X X X
X X X X

X X X X
X X X X X

(a) (b)

Figure 2.4: A simple 10 node graph (b) and its associated matrix (a)

2.6 Elimination Trees

The elimination tree is an extremely powerful tool that can be used to describe the prece

dence relationships which exist between nodes in the factorisation and substitution phases

of LU decomposition. Liu [52] recognizes the elimination tree as a tool previously used

in many different guises by a number of authors. First formalized by Schreiber [53], the

elimination tree was applied to parallel processing by Jess [54] in the early eighties. Such

trees were first introduced in a power systems context in the mid-eighties [55] and since

that time they have been used extensively in examining the parallelism in the solution of

large sparse sets of linear equations.

The duality between graphs and matrices is well known [51]. For a particular graph,

G{A) = V{A), E(A), with vertices V{A) and edges E{A) there exists an associated incidence

matrix. The matrix contains numeric data when the edges E(A) have weights associated

with them. In an electrical network the edge weights are the admittances (or impedances)

associated with each edge, or circuit branch. The matrix then becomes the admittance

(impedance) matrix of the system. Figure 2.4 shows the duality of graphs and matrices

with a simple 10 node network example.

I f the matrix. A , is the coefficient matrix of a set of linear equations then the matrix may

be factorised using one the Gauss-based L(D)U decomposition techniques. As elimination

proceeds fiU-ins are generated in the matrix A creating the filled matrix, F . The creation

of F is equivalent to introducing extra connections in the graph, G{A) to create the fiUed

graph, G{F). Figure 2.5 shows the filled graph, G{F) for the simple 10 node example given

53

2.6 Elimination Trees

1

2

3

4

5

6

7

8

9

10

1 2 3 4

3r
a 10

X X

X X
X X

X X
X X X

X X X
X X o

X X X o
X X X o

X O O X X X
X O X X

(a) (b)

Figure 2.5: Filled graph (b) and associated matrix (a) for the simple 10 node example

above along with the corresponding filled matrix, F .

The elimination tree of a set of n linear equations is a rooted tree with n vertices labeled

1 to n. The labeling of the vertices in the tree corresponds to columns in the filled matrix,

F . The root of the tree is the last column, n. Tracing the paths through the elimination

tree gives the factorisation paths for given nodes. The factorisation path for a node, k, is an

ordered list of nodes starting at k. The list contains the index of the first non-zero element

below the diagonal in column k of the filled matrix F . This element is then taken as a

column and the first non-zero element below the diagonal in this column of the fiUed matrix

is added to the list. The process is repeated until no more unvisited nodes exist below the

diagonal in column k. The elimination tree is generated by tracing the factorisation path

of the last node, n. A node such as k is referred to as a child or descendant node and the

node corresponding to the first non-zero below the diagonal is referred to as the parent or

ancestor node. The root of the tree is unique in that i t has no parent node and leaf nodes

of the tree have no children. Every other node is both a child and a parent of another node

in the tree. The elimination tree for the simple 10 node example system is shown in Figure

2.6. In this tree, node 10 is the root whilst nodes 1, 2, 3, 4 are leaf nodes. Node 6 is a child

node and node 7 is its parent. Node 6 is also the parent of node 1. The factorisation path

for node 6 is the list 6 ,1 .

54

2.7 Near Optimal Ordering Strategies

Figure 2.6: The elimination tree of the 10 node example

2.7 Near Optimal Ordering Strategies

Much research attention has been given to the subject of near optimal ordering in the last

few decades and this section presents a brief summary of the most popular and effective

methods developed to date. The various ordering schemes can be characterized by the

amount of fiU-in they introduce and the effect they have on the shape of the elimination

tree.

2.7.1 T h e M i n i m u m Degree Algor i thm

The degree of a node in the graph G{A) is the number of other nodes to which that node

is connected i.e. the number of connections branching out from that node. For example,

node 1 of Figure 2.4(b) has degree 2 whilst node 9 has degree 4. Comparing Figure 2.4(b)

with Figure 2.4(a) shows the degree of a node to be equivalent to the number of non zero

off diagonal entries in the row of the matrix corresponding to that node.

The Minimum Degree algorithm [3, 56, 2] determines the order of elimination based on

an analysis of the degree of the nodes involved. The aim of the algorithm is to minimize the

number of fiU-ins introduced as a result of the elimination process as this reduces the amount

of computation required to achieve a solution. At each stage of the elimination process the

algorithm chooses the next node to be eliminated as the one which has the smallest degree.

In the event of a two or more nodes having the same, smallest degree the choice of which

55

2.7 Near Optimal Ordering Strategies

Degree
0 1

0 2

0 3

0 4

1 5

1 6

2 7

2 8

3(4) 9

4 10

1 2 3 4 5 6 7 8 9 10

r "

X
X

X
X X

X X
X X X

X X X
X X 0 X X
_ X X X x _ x

(a)

1 2 3 4 5 6 7 8 9 10

Degree
2 1 nr X X
2 2 X X X
2 3 X X X
2 4 X X X
3 5 X X X X

2(3) 6 X X X 0
2 7 X X X
2 8 X X X X

4(5) 9 X X 0 X X X
4 10 [_ X X X X _ X

(b)

Figure 2.7: The effect of storage scheme on nodal degree a) triangular storage b) square
storage

node to eliminate is an arbitrary choice from the set of nodes with smallest degree. The

algorithm has to be applied dynamically or semi-dynamicaUy as the degree of the nodes in

G{A) changes as elimination progresses. This is due to the removal of connections due to

elimination and the introduction of new connections due to fiU-in. Allowing the algorithm

to take account of the changing degree of the nodes ensures that the minimum fill ordering

is produced.

A description has already been given of how the sparse coefficient matrix, A (or Y) ,

maybe stored efficiently in memory. The scheme exploits the symmetry of the matrix

by storing only the upper or lower triangle of the matrix as either of these contains all

the numeric information required. When applying an ordering strategy to the coefficient

matrix i t is not sufficient to use a triangular representation as the resulting ordering differs

from that generated using the fuU coefficient matrix. This is due to the observation that

the degree of a node is equivalent to the number of off diagonal non zero elements in the

corresponding row of the matrix. This observation holds true only for a complete matrix

and does not hold for the triangular representation. Figure 2.7 shows a triangular and

complete representation of the coefficient matrix for the 10 node example system of Figure

2.4.

I t is easy to see that row 1 in Figure 2.7(b) has the correct degree of 2 whilst row 1

in Figure 2.7(a) has degree 0. Furthermore, if node 1 is eliminated from the graph G{A)

56

2.7 Near Optimal Ordering Strategies

a fiU-in is introduced at elements (6,9) and (9,6) in the complete matrix, increasing the
degree of nodes 9 and 6 by 1. In the triangular matrix fill-in is only introduced at element
(9,1). The degree of node 9 is correctly increased by 1 whereas node 6 incorrectly retains
its original degree.

In creating a computer program to determine the elimination ordering it is easier to use

the square representation of the sparse matrix. I t is possible to use the triangular matrix

representation in the ordering algorithm but this requires greater programming effort as an

extra data structure has to be used to store information about the degree of each node. The

only situation where this might be useful would be in processing a very large system on a

computer with a small amount of memory. Given the cheapness and availability of modern

memory chips, and the use of fast, cache supported virtual memory, this situation is unlikely

to occur. The type of storage used by the ordering routine does not create any problems

for the solution algorithm as the ordering routine is applied oflF-Une prior to solution.

2.7.2 ' T h e M i n i m u m Length Algor i thm

Like the Minimum Degree algorithm the Minimum Length algorithm orders the elimination

of nodes from the network so as to minimize a given constraint, in this case the length of

the elimination tree associated with the network. At each stage of the elimination process,

the next node selected for elimination is the one which has the shortest path length. In the

event of a tie the choice is arbitrary. Here path length is defined to be the length from the

initial (root) node of the tree to the node currently under consideration. AU nodes start

with a path length of zero and, at each stage of the ehmination the path length of nodes

referenced by the elimination are updated using a simple formula [56]. Suppose node k has

just been eliminated and that row k of the matrix has entries in columns i and j. Clearly

an update or fill-in will be made to elements aij and a^i. an will be similarly updated and

the path length of an, written as da, is modified according to

dn = max[dkk + 2, da + 1]

The path length of the last node to be eliminated is equal to the length of the critical path

in the elimination tree.

Betancourt and Taylor [56, 57] both observe that the Minimum Length algorithm should

result in a short critical path length for the elimination tree. As the algorithm does not

57

2.7 Near Optimal Ordering Strategies

consider the degree of the nodes it cannot be expected to have good sparsity preserving
properties. Whilst this algorithm is found to give shorter trees than the Minimum Degree
algorithm, it is also found that it introduces significantly more fill-in.

2.7.3 T h e M i n i m u m Degree M i n i m u m Length Algor i thm

Both of the algorithms described above operate by attempting to minimize a certain pa

rameter. The decision as to which node to ehminate next is based purely on which node

minimizes the desired parameter. When two equally likely nodes are encountered there is

no protocol for breaking the tie and an arbitrary choice has to be made. Many implemen

tations simply choose the first or last tied node encountered so as to ease the programming

of the algorithm. I t has been found [56, 57] that using a second criterion to resolve conflicts

between tied nodes gives a significant improvement in the resultant ordering. The Minimum

Degree Minimum Length (MDML) algorithm uses path length as the criterion used to re

solve tie break situations. At each stage of the elimination, the next node to be ehminated

is chosen to be the one with minimum degree. If more than one node has minimum degree

then the path lengths of the tied nodes are examined. The node with the minimum path

length is chosen as the next to be eliminated. I f more than one node has minimum path

length then the choice is again arbitrary. As the primary selection criteria is the degree of

the nodes the M D M L algorithm has the sparsity preserving properties of the MD approach

but the secondary selection criteria reduces path lengths. MDML-ordered systems have

similar amounts of fill-in to their MD counterparts but with shorter ehmination trees.

2.7.4 T h e M i n i m u m Length M i n i m u m Degree Algor i thm

I t is also possible to use path length as the primary selection criterion with the degree

of the nodes used as a secondary selection criterion in the event of a tie. This gives rise

to the Minimum Length Minimum Degree (MLMD) algorithm. This algorithm results in

short path lengths, as in the ML approach, but also reduces the amount of fiU-in produced.

However the fiU-in is still significantly greater than that introduced by the Minimum Degree

algorithm.

58

2.7 Near Optimal Ordering Strategies

2.7.5 T h e M i n i m u m Degree M i n i m u m Length Least Recent ly Used A l
gori thm

Taylor [57] introduces a variant of the M D M L strategy which he refers to as the Minimum

Degree Minimum Length Least Recently Used (MDMLLRU) algorithm. A third selection

criterion is used to resolve the conflict between nodes which remain tied after the application

of the first two selection criteria. This criterion selects the next node for elimination as the

tied node which has been least recently referenced by the elimination process. Suppose node

k has just been eliminated and that row k of the matrix contains entries in columns i and j.

Nodes i and j are thus referenced in updating the matrix A following the elimination of k.

Associated with each node in the network is a timestamp which indicates when that node

was last referenced. These timestamps are altered each time a node is referenced during

an update or fill-in operation. When a tiebreak occurs the timestamps of the tied nodes

are examined and the one with the smallest timestamp is chosen. If the tie still cannot

be broken the choice is once again arbitrary. The timestamps used in this method do not

have to be actual times but may be a simple integer value indicating at which step in the

elimination the given node was last referenced.

The use of the Least Recently Used criterion ensures that the MDMLLRU algorithm

does not continue following the same path through the elimination tree when a tie occurs

but allows it to jump to other paths in the tree. Instead of focusing its attention on a

particular part of the tree until that path has been efiminated, the MDMLLRU algorithm

distributes its focus more evenly over the entire tree. This results in ehmination trees which

are both short and wide. The use of Minimum Degree as the primary selection criterion

maintains good sparsity preserving properties.

2.7.6 Comparat ive Analys i s of the Ordering Methods

A simple computer program was written to allow an analysis to be undertaken on the

performance of each of the algorithms described above. The selected ordering technique

was repeatedly applied to the given system, usually the CEGB 734 node system, for 1000

iterations. Before each iteration the nodes in the test network were randomly reordered to

something other than their natural order. The ordering algorithm was applied and the path

length and fiU-in resulting from the chosen algorithm were recorded. At the end of the test

run these figures were used to derive a set of statistics which characterized the performance

59

2.7 Near Optimal Ordering Strategies

FiU-in Path length
Ordering Scheme Minimum Mean Minimum Mean Maximum

MD 616 636 28 38 45
M D M L 616 628 23 31 37
M L M D 877 970 22 26 31

MDMLLRU 617 629 24 30 33

Table 2.1: Statistical performance of the ordering algorithms

of the chosen ordering scheme in terms of path length and fiU-in. Applying this test to

the same system for each ordering scheme allows the performance of these algorithms to be

compared. Table 2.1 shows the results of this testing.

As Table 2.1 shows, the ordering algorithms behave much as expected. The Minimum

Degree algorithm gives a small amount of fill-in but results in long elimination trees. Mini

mum Length reduces the length of the tree at the expense of the amount of fiU-in. Minimum

Degree Minimum Length improves on the situation by maintaining the low fiU-in of Min

imum Degree whilst reducing the length of the tree. Minimum Length Minimum Degree

has good length qualities but poor fiU-in performance. The best ordering algorithm is the

MDMLLRU algorithm, which has short tree lengths and good fiU-in performance. As Taylor

predicts, the use of this algorithm gives rise to short, broad trees. Broad trees are desirable

to facilitate the partitioning of the tree into subtrees for parallel processing whilst the short

critical path length gives shorter execution times than those produced as a result of other

ordering algorithms. Table 2.2 shows the effect of the different ordering strategies on the

speed-up obtained by processing the CEGB network in parallel. The table clearly shows

the beneficial effect of introducing tie-breaking criteria into the ordering strategy. Each

result was obtained by partitioning the reordered system into the same number of indepen

dent parts which were solved using four processors. The actual parallel solution algorithm

used to achieve the solution is unimportant as all the results were obtained using the same

solution algorithm. The relative speed-ups show the effect of ordering on speed-up.

I t is observed that in Table 2.1 there are certain shortest paths and minimum fills encoun

tered which differ considerably from mean path length and mean fill-in. This phenomenon

merits explanation. Although they are often referred to as optimal ordering strategies, the

ordering schemes outlined above can best be thought of as approximate, near optimal tech-

niques. Consider a graph with n nodes - there are n\ different ways in which the nodes in the

60

2.7 Near Optimal Ordering Strategies

Ordering Scheme FiU-in Path Length Speed-up

MD 655 35 3.07
M D M L 631 31 3.17

MDMLLRU 634 24 4.52

Table 2.2: The effect of elimination ordering on speed-up

graph can be renumbered (reordered). To find the optimal elimination ordering the ordering

algorithm must examine all n\ possible reorderings. When n is of the order of 1000 this

becomes an intractable problem and it is in fact NP-complete [58, 59]. It is not possible to

examine all possible orderings in a reasonable time so the near optimal ordering algorithms

work by optimizing the elimination based upon the initial network ordering provided. Un

fortunately these techniques are sensitive to the initial ordering and certain initial orderings

result in better than average elimination orderings, as characterized by short path lengths

and low fiU-in. These solutions cannot in any way be considered optimal unless the whole

solution space has been searched - i t is always possible that a better reordering may be

found in a difll'erent area of the solution space. The observed shortest paths and minimum

fill-in of Table 2.1 are a direct result of randomly ordering the network before applying the

chosen ordering algorithm. The initial random ordering causes the program to leap around

the n\ search space and it occasionally happens upon a better than average resultant order

ing. A similar argument explains why worse than average orderings are also encountered.

Chapter 7 proposes a technique based on the use of genetic algorithms, which may help in

rapidly locating the better than average orderings which exist within the solution space.

2.7.7 D e r i v i n g the E l i m i n a t i o n Tree

There are a number of methods available for deriving the elimination tree from the filled

graph of a given system. One technique eliminates all olf-diagonal non zeroes from the filled

graph except for the first non zero below the diagonal in each column. This matrix, referred

to as Ft has a tree structured graph G{Ft) associated with i t . This graph depends entirely

on the structure of the original matrix A and its initial ordering and is the elimination tree,

r (A) , for the system described by A , G{A) and F , G(F).

Another method of obtaining the elimination tree is to perform a depth first search using

the data in F. Depth first search [58] is an eflRcient recursive algorithm for systematically

visiting vertices in a tree. The search starts at the root of the tree and travels to unvisited

61

2.8 Implementing a Sequential Solution of the Netw^ork Equations

nodes along a path until i t reaches the end (leaf node) of the path. The search then recurses
back to previously visited nodes and from there travels to unvisited nodes on different paths
until a leaf is reached again. Eventually all the nodes in the tree are visited and the search
recurses back to the root. This approach is equivalent to starting with the last row of the
matrix, F^, corresponding to node n, as the root of the tree. The tree is derived as the
factorisation path of node n as follows. From row n, take the first non-zero to the left of the
diagonal as the first entry in the ordered list. Take this as a row and place the index of its
first entry to the left of the diagonal in the list. Repeat the process until a row is reached
which has no non-zeroes to the left of the diagonal. This corresponds to a leaf node. Now
trace back through the path of visited nodes to the first row which has unvisited nodes to
the left of the diagonal. Place the index of the first unvisited entry to the left of the diagonal
in the list and begin the search again, backtracking as necessary. The search continues until
the list contains n entries. Sedgewick [58] provides a more detailed discussion of the depth
first search algorithm. The algorithm is particularly suitable for computer implementation
and the program which automatically plots the tree diagrams shown in this thesis is based
on the use of a depth first search method.

2.8 Implementing a Sequential Solution of the Network Equa

tions

A program which solves the algebraic network equations has two main components - an

offline ordering routine to determine the optimal elimination order and the triangular fac

torisation {eg bifactorisation) routine which solves the equations for the unknown values.

This section considers some of the practical aspects of implementing a sequential solution.

2.8.1 Storage of Sparse Matr ices

The usual method of representing a matrix within a computer program is as a two dimen

sional array. Given a sparse matrix i t is inefficient to store all the zero elements as these do

not contribute to the solution. A better approach is to store only the non - zero matrix ele

ments, [2, 60]. Under this scheme each row of the matrix is stored in memory as a linked list

of the row elements, with only the non - zero elements being stored. Also stored alongside

each element is its column index. The storage method is illustrated graphically in Figure

2.8. This data structure is implemented using a standard form of linked list created and

62

2.8 Implementing a Sequential Solution of the Network Equations

Value - 1 - 1 ,,
„ , _ —^ „ —> Null
Column 2 3

Value - 1 , r ,,
„ , ^ ^ Null
Column 1

Value - 1 - 1 ,,
Column 1 4

Column 3

Figure 2.8: Storage Of Sparse Matrix Rows In Linked Lists

Diag Irap Noze
3.0 + j4.0 1140 1
2 . 0 - i l . O 1180 0
2.0 + J5.0 1200 1
1.0-I-jO 1240 0

Figure 2.9: Storage Of Extra Information About The Matrix

managed by functions similar to those presented by Kelley & Pohl [61]. In the C language,

each node of the linked list is a structure which has two fields

• val- A double floating point complex variable holding the value of the matrix element

• coLno - Integer variable holding column index of this element

Other information about the matrix also needs to be stored and this can be held in a

two dimensional array with n rows, where n is the number of rows in the matrix. This

arrangement, shown in Figure 2.9, allows diagonal elements to be accessed quickly and

provides for easy searching of the row linked lists. The three fields of the array are

• diag - Double floating point complex value holding the diagonal matrix element value

• irap - Pointer to the memory address of the head of the linked list for this row

• noze - Integer variable holding number of non - zero entries in row

2.8.2 Determinat ion of E l i m i n a t i o n Ordering

The ordering algorithm operates by reading network connection data from the data file

and is used prior to setting up the admittance matrix to determine the required order of

63

2.8 Implementing a Sequential Solution of the Network Equations

Column Index

Element Value

Element Value

1 2 3 4
1

1

A . A 2k A 3k A .
4k

A .
ik

A F
~k2

A F
' k3

A F
~k4

A F

Figure 2.10: The information array used for updating

elimination. This is used to estabhsh a mapping between physical system node numbers

and the required new node numbers.

A selection sort algorithm, adapted from one presented by Sedgewick [58], can be used

to examine the topology lists of the matrix and determine the one which has the lowest value

of a given parameter as the next one to be eliminated. I f more than one fist has the lowest

value then the next row to be eliminated is taken to be the first one occurring in the matrix.

The selection sort routine is employed between simulated elimination steps to identify the

next row/column for elimination. The factorisation routine forms the admittance matrix

by reading in data from the disk file and renumbering each pair of node numbers before the

data associated with them is inserted into the admittance matrix.

2,8.3 Coefficient M a t r i x Factorisation Us ing Bifactorisation

Having stored the coefficient matrix as a set of linked lists and determined the order of

elimination of matrix rows, the factored matrix, Ap, can be created as described previously.

The formulae for obtaining the elements of the factored matrix are those presented in

Section 2.4.4. Whilst determining the factors of the row being eliminated an array is created

which holds holds the column index and the value of A^^,. for each entry in the row linked

list. This array provides for fast and efficient updating of the matrix elements as entries of

the coefficient matrix are updated according to the entries of this array.

Suppose we are in the pth column of the array. App is modified by adding to it Apt* A^^p

64

2.9 Summary

yielding

Then the elements p -f- 1 , . . .n are used according to

^pl - ^ p l + ^ p k *^Fk,

where I = p + I,.. .n. I f at any step Ap; does not exist in the row finked list for row p i t is

assumed to be zero and

^pl - ^pk * ^Fkt

Once the factored matrix has been derived it is necessary to multiply its entries to

achieve the right to left multipUcation of equation (2.18) and hence the direct solution.

Multiplication of x by all n left hand factors is performed followed by multiphcation

of aD the right hand factors. Throughout the multiplication only non zero elements are

used and efficient use is made of the fact that multipHcation by unity is equivalent to no

multiplication at all. After multipfication by the last factor x contains the solution to the

system of equations.

2.9 Summary

This chapter has introduced the subject of power system modehng. Basic models of power

system components have been presented and the derivation of these models is given in detail

in Appendix B. Particular attention has been given to the representation of the network

and how this gives rise to the finear equations which have to be solved in many power

system computations. Efficient sequential algorithms for obtaining a direct solution of the

network equations have been presented and sparse matrix techniques were introduced as an

efficient method for representing and processing the coefficient matrix within a computer

program. The operation of these algorithms can be examined by resorting to the elimination

tree, a simple structure which identifies the precedence relationslups in the factorisation

and substitution phases of the algorithms. Elimination trees are extremely important in

analysing the behaviour of both parallel and sequential solutions and a simple method

for deriving the elimination tree of any coefficient matrix has been introduced. The use

of near-optimal ordering methods has been presented as a way of reducing the amount

of computation needed to solve the equations and thus minimizing the solution time. In

65

2.9 Summary

addition practical considerations for the implementation of a solution program have been
examined.

The next chapter extends the discussion to focus upon parallel algorithms for solving

the network equations. Many of the direct parallel methods are based upon the direct

sequential methods presented in this chapter. Iterative methods, which are of limited use

for sequential solutions, also provide effective parallel solutions. The relative merits of both

approaches are considered in respect to the solution of power system network equations.

66

Chapter 3

Parallel Methods of Solving the

Network Equations

3.1 Introduction

rX"^ he solution of large sparse sets of linear equations is a common computational problem

- - encountered in many branches of science and engineering. Such systems of equations

appear in fields as diverse as analysis/simulation of electrical networks, finite element meth

ods, structural analysis and analysis/simulation of hydraulic networks. Sequential methods

for solving these equations have been presented but i t is also possible to solve them us

ing parallel processing techniques. Tylavsky et al. [50] note that parallel dense matrix

algorithms are not competitive with sequential sparse matrix algorithms, but i t is possible

to create parallel sparse matrix algorithms by exploiting independences in the equations.

Sparse matrix computations contain more inherent parallelism than their dense matrix

counterparts but due to the irregular pattern of sparsity in power system matrices it has

been difficult to find efficient sparse parallel methods [50].

Two flavours of parallel sparse solution exist - direct and iterative. These two distinct

methods have different computational characteristics and are best suited to different types

of problem. Direct methods are more suitable for power system problems [50] and much

research effort has been concentrated on the development of parallel LU solution methods.

Outside the power system field much work has been done on parallel implementations of

the Cholesky factorisation techniques.

This chapter examines some issues in the solution of sparse sets of linear equations

67

3.2 Iterative Methods for Solving Linear Equations

on parallel computer architectures. The chapter begins with a discussion of direct and

iterative methods and assesses which is most suitable for power system problems. Issues

faced in the design and use of direct methods are then considered before existing techniques

are presented. Cholesky methods are examined to illustrate the principles of common

approaches and a summary of the LU techniques used in power systems work is presented.

3.2 Iterative Methods for Solving Linear Equations

The fundamental difference between direct and iterative methods is the number of passes

through the algorithm required to give the complete solution. Direct methods apply heuris

tic rules to manipulate the equations and achieve an exact solution with only one pass

through the algorithm. As the name suggests, iterative methods require more than one

pass through the algorithm and the solution algorithms come in two distinct flavours, sia-

tionary techniques and gradient descent techniques [62]. Al l iterative methods operate by

choosing trial values for the unknown variables and using iterative correction to improve on

previous values. The true solution will not be obtained in practice and the iterative method

must be terminated once a suitably accurate solution has been achieved. Three common

iterative techniques will now be examined.

3.2.1 T h e Jacobi Method

The Jacobi method was one of the first iterative techniques developed and it is a stationary

iterative technique. As convergence is only guaranteed in the presence of a dominant leading

diagonal the coefficient matrix is usually scaled to give unit coefficients on the leading

diagonal. Hence the linear equations A x = b may be written as

1 0.12 0.13 Oln Xi bi

021 1 023 02n X2 b2

031 ^32 1 Oln X3 — b3

O n l fln2 On3 1 bn

(3.1)

The coefficient matrix may be expressed in terms of an upper and lower triangular compo

nent, U and L respectively, as

A = I - L - U (3.2)

3.2 Iterative Methods for Solving Linear Equations

where

and

L =

0

-a2i 0

-asi -(132 0

-a„i -an2 -ftn.n-l 0

u =

0 - a i 2 - a i 3

0 -023 -0,271

0 -an-l,n

0

To solve the equations using the Jacobi method a trial vector, x(°^ is selected. I t is

usual to set all elements of this initial vector to zero. A new trial vector is derived at each

iteration by modifying the trial vector of the previous iteration. This process of iterative

modification continues until the solution converges to within some desired tolerance. The

benefit of the Jacobi method is that convergence is guaranteed for diagonally dominant

matrices [63].

At the k^'^ iteration the elements of the new trial vector x(''"+̂) are derived according to

ik) (k) (k) a- x^''^ (3.3)

The complete iteration step may be expressed in matrix notation as

x̂ '̂ +i) = h + {L + U)x('=) = b -I- (I - A)x (fc) (3.4)

Defining the residual vector r̂ ^̂ = b - Ax^^^ allows (3.3) to be expressed in terms of this

residual [63].

(k) (3.5)

I f the coefficient matrix has been scaled to give unit diagonals

, (^ + 1) ^ + (3.6)

69

3.2 Iterative Methods for Solving Linear Equations

The complete iteration step is expressed in matrix notation as

xC^+i) = r(*=) + x̂ '̂) (3.7)

Equation (3.6) provides the key to the efficient parallel implementation of the Jacobi

method. I f the vectors are assigned to processors such that x\''^ and r'''^ reside on the same

processor then (3.6) may be computed without the need for interprocessor communication.

If a;(fc) has n elements then it is possible to calculate all n elements of a;('̂ +)̂ in parallel using n

processors. Calculation of the residual vector rC)̂ requires interprocessor communication as

a result of the matrix-vector multiplication Ax '̂'̂ . The decision to terminate the iterations

is based on the residual norm |r'*^)| and the termination condition is

< tolerance (3.8)

The tolerance value is normally set to less than 0.001 to ensure that the solution vector is

correct to at least three significant figures.

3.2.2 T h e Gauss-Se ide l Method

The Gauss-Seidel method is similar to the Jacobi method and is also a stationary iterative

method. The equations are once again expressed as in (3.1) and (3.2). A trial vector is

selected and the elements of this vector are iteratively modified until the solution converges

to within an acceptable tolerance.

At the A;*'̂ iteration step the values of Xi,X2,. • •, a;,_i of the vector a;('=+)̂ will have been

derived from the previous trial vector x^'^^ but the values of .. .,Xn remain to be

determined. The i* '* element of x is modified according to

x^'^ = 6. - a , i x f a,,_ixl^^ - a,,^ix^, a ^ ^ (3.9)

Equation (3.9) may be written in matrix notation as

(I - L)x(''-+^) = b + Ux̂ '̂) (3.10)

The successive correction procedure is iterated until the error in the solution falls below

some specified tolerance limit. The decision to terminate this iterative process is based on

70

3.2 Iterative Methods for Solving Linear Equations

the calculation of a residual norm. Termination occurs when

< tolerance (3-11)

where r̂ '"') is the residual and is calculated as

r̂ '') = b - Ax '̂̂) (3.12)

Again the tolerance value is normally set to less than 0.001 to ensure that the solution

vector is correct to at least three significant figures.

The Gauss-Seidel algorithm has often been used in sequential power system analysis

programs. Wi th suitable modifications i t is also possible to implement a parallel version of

the Gauss-Seidel method. Suppose that the coefficient matrix can be reorganized to give i t

a block structure. Each matrix block can then be assigned to an individual processor of a

parallel machine. A central pool of values for i,-*^^ is maintained. On each iteration each

processor applies the Gauss-Seidel algorithm to the nodes within its own matrix block and

uses the values available in the pool at the start of the iteration. Upon completion of an

iteration the processors send the modified values of x,-''"'"̂ ^ back to the pool. The algorithm

is asynchronous and each processor may begin a new iteration once the previous iteration

is complete and values have been sent to the pool. I t is hkely that the parallel Gauss-

Seidel solution of a given system wiU require more iterations than a sequential solution of

that system due to the asynchronous nature of the algorithm. Even if the same number

of iterations occur the parallel algorithm wiU require more total processing time due to the

contention between processors accessing the central pool of x,-'̂ ' values.

3.2.3 T h e Conjugate Gradient Method

The Conjugate Gradient method is a specific example of a category of iterative solution

techniques known as gradient descent methods. Gradient descent methods are based on

the premise that solving a set of n simultaneous equations is equivalent to locating the

minimum of an error function in n-dimensional space. At each iteration the set of trial

values for the variables are used to create a new set of values which correspond to a lower

value of the error function. The location of the global minimum of the error function in the

n-dimensional space corresponds to the solution of the set of simultaneous equations.

71

3.2 : Iterative Methods for Solving Linear Equations

I f X is the vector of trial values then a residual vector, r, can be calculated as

r = b - A x (3.13)

The error function, h, may be defined as

h = r^A-^r (3.14)

I f the matrix is positive definite symmetric-' then the error function will have a positive

value for all vector x except for the correct solution x = x where r = 0 and h = 0. The

vector x a ; represents a point in the n-dimensional space and the equation

X = x;t + adk (3.15)

defines a line which passes through x^ with a direction determined by d^. a is a parameter

which is directly proportional to the distance of x from x/;. Note that x̂ : is the value of x

obtained at the A;*'' iteration. The error function h varies quadratically [65, 62] with a and

has a local minimum at

£ = 2d[[aAd;t - Tfc] = 0 (3.16)

Al l the gradient descent methods use the location of this local minimum to derive the next

value of the trial vector according to

"-t = i A J ^-t-n = Xfc -t- akdk (3.17)
dfc Adfc

The only difference between the various gradient descent methods is the choice of the

direction vectors dk- In the Conjugate Gradient method the direction vectors are chosen

to be a set of vectors po, p i , . . . , which represent the steepest descent of the points

x o , X i , . . . ,Xfc. Additionally the pk vectors are chosen to be conjugate (i.e. orthogonal with

respect to A) . The vectors thus satisfy the condition

pf A p , = 0 i ^ j (3.18)

^ A symmetric matrix is positive definite if all of its eigenvalues are positive [64]. Alternatively, the n x n
symmetric matrix A is positive definite iff x ' A x > 0 for every n-dimensional column vector x ^ 0. Power
system admittance matrices do not obey these conditions and are not positive definite. In many conditions
they are almost positive definite and these techniques have been used with limited success.

72

3.2 Iterative Methods for Solving Linear Equations

To solve a set of equations using the Conjugate Gradient method initial values (k = 0)
must be specified for p according to

p = ro = b - Axo (3.19)

Xo may be initialized to zero. At the A;"* iteration

Ufc = Apfc (3.20)

ak = ^ (3.21)
Pfc "fc

Xk+i =Xk + ctkPk (3.22)

r^+i = r k - OkUk (3.23)

r^rk
Pi+i = r^+i + Pk + Pk (3.25)

Theoretically the correct solution is obtained after n iterations but if the equations are

ill-conditioned or the matrix is densely populated then it may take more than n iterations

to reach convergence.

Equations (3.20) to (3.25) are calculated on each iteration and the potential paraUehsm

in the method is visible in equation (3.22) to (3.23). Neither of these equations depends

on values calculated in the other and they can be computed concurrently. I f there are

n simultaneous equations and n processors are available in the parallel machine then the

minimum number of processing steps taken on each iteration is 27i4-3[log2(n)]-|-10. Tliis is

3[log2(n)] -I-10 steps more than the 2n minimum steps required by the Gauss-Seidel method

but the Conjugate Gradient method is hkely to achieve convergence significantly quicker.

The Conjugate Gradient method is particularly well suited to solving large sparse sys

tems of equations, such as those occurring in power systems analysis. Unfortunately power

system admittance matrices are not positive definite and the Conjugate Gradient equations

must be changed to a form suitable for symmetric indefinite systems. The error function

changes to become

h = r^r (3.26)

73

3.2 Iterative Methods for Solving Linear Equations

and

13k
f̂c+i

ffcArfc
U ^ U i

Arfc+i

p f A^p, = 0 i ^ j

(3.27)

(3.28)

(3.29)

Decker et al. [28] proposed a parallel method for solving the power system network

equations which combines both the LU decomposition and Conjugate Gradient methods.

Given the set of network equations in Bordered Block Diagonal Form

I I

I2

Ip

I .

Yi

Y2

Yp Yp

Yl Ys

V i

V2

(3.30)

Decker notes that Block Gaussian elimination may be used to solve this set of equations in

two stages

1. Step 1 : Solve

Y , V , = I , (3.31)

where

Y , = X^Y*Y-iYi
i=i

l, = l,-j2Y\Y-'li
i=i

2. Step ^ ; For i = 1,2,..., p, solve

(3.32)

Step 2 is inherently parallel and if p processors are available then the solutions for all p

subnetworks can be obtained simultaneously. Step 1 is inherently serial and although it can

be solved by a parallel direct method Decker does not advocate this approach as

the parallel implementation of direct methods is not an easy task [28]

74

3.3 Direct vs Iterative Methods

. Instead Decker proposes the use of the Conjugate Gradient method to solve the cutset
equation (3.31). This requires the formation of Y^V^, is,Ysd'' and the residual r° at
each iteration. I f the subnetwork equations (3.32) are solved by direct LU factorisation
techniques the factors of Yi,i=i,...,p can be used to efficiently calculate Y^V^, I^ and Ygd''
in parallel.

Decker [28] formulated this approach as part of a transient stabihty simulation imple

mented on an array of 8 Transputers connected in a hypercube configuration. The solution

of the network equations was actually implemented using a combined LU factorisation and

preconditioned conjugate gradient method. Preconditioning techniques modify the residual

vector formed at each iteration to accelerate convergence. Decker notes that the use of this

conjugate gradient based method produces substantial reductions in total computation time

when compared to the best sequential method, although the sequential method he uses for

comparison utilizes only LU factorisation. Speed-up figures are provided for the complete

transient stabihty program and these show a speed-up of between 1.2 and 3.9 with 2 and

8 processors respectively. Unfortunately no results are provided for just the network solu

tion phase of the simulation. The use of preconditioning reduces the number of iterations

required by the conjugate gradient method but does not always produce a similar reduc

tion in computation time dues to the extra overheads introduced by the preconditioning

calculations. The decomposition of the network is significant as it affects the load balancing

of the method. A poor partitioning produces an imbalanced load which adversely affects

performance. The network decomposition also has an affect on the number of iterations

required by the conjugate gradient method. A poor decomposition produces iU-conditioned

equations which take longer to converge, although this can usually be corrected through

the use of suitable preconditioning techniques.

3.3 Direct vs Iterative Methods

The difference between the direct and iterative approaches can be characterized in terms

of the number of steps required to yield a solution [62]. Table 3.1 illustrates the computa

tional requirements of the two approaches for two common algorithms operating on a set

of equations with n variables.

Direct methods often require more operations in total to yield a solution than iterative

techniques but there are two major advantages of the direct methods. Firstly the fac-

75

3.3 . Direct vs Iterative Methods

Number of steps
Method Factorisation Substitution Total Iterations

LU Decomposition 3 (n - 1) 5n - 4 8 n - 7 1
Gauss-Seidel - - 2nK + [log2(n + 1)] - 1 K

Table 3.1: Operation counts for direct and iterative solution schemes

torisation and substitution operations of direct methods {e.g. LU decomposition) may be

performed separately. This allows easy solution of systems with multiple right hand sides as

the coefficient matrix only needs to be factorised once. After factorisation the substitution

operation may be used any number of times to solve for different right hand sides. As the

number of right hand side solutions becomes large, the number of steps taken to yield a

solution tends to 5n - 4 and the direct methods become significantly more efficient than

iterative methods. Iterative techniques do not provide separate factorisation and substitu

tion operations and 2nK + [log2{iT. + 1)] ~ 1 operations are required to yield a solution for

each right hand side vector. In a power system simulation much of the time is taken up in

solving the same system of equations with different right hand side vectors and this explains

why direct methods find such widespread usage in the field of power systems analysis.

The second advantage of direct methods is that they do not suffer the convergence

problems which are prevalent in iterative techniques. The value K in Table 3.1 is the

number of iterations required for the iterative method to produce a solution which meets

some predefined tolerance limits. I f the tolerance limits are narrow or the equations are

poorly conditioned K can become quite large, significantly increasing the time taken to

reach a solution. For power system problems it has often been found that iterative methods

do not converge quickly enough to a solution of sufficient accuracy. If iterative methods are

employed either approximate solutions or long solution times must be accepted, neither of

which is appropriate for accurate, real-time simulations. The problems with convergence

have tended to preclude the use of iterative techniques for the solution of power system

linear equations.

This thesis is concerned only with the direct method of solution and iterative methods

will not be considered further. The development of efficient parallel formulations of direct

methods for sparse linear systems is an area of research currently ehciting much interest.

Substantial parallelism exists in direct methods but only limited success has been achieved

in the development of parallel formulations. There are two reasons for this. Firstly the

76

3.3 Direct vs Iterative Methods

amount of computation involved is small in relation to the size of the system to be solved.
Even a small amount of interprocessor communication can significantly alter the balance
between computation and communication and this results in poor efficiencies. The second
reason for the inefficient parallel solutions developed to date is that most of them are based
on good sequential algorithms. It is not always the case that paralleUsing the best sequential
algorithm will give the best parallel algorithm [63, 66, 44]. The goals of a serial algorithm are
often inappropriate in a parallel environment. Numerous parallel direct methods have been
developed and they have all been based upon Gaussian ehmination or Cholesky factorisation.
This thesis examines ways to improve upon the existing methods to provide a faster and
more efficient method of solution.

Heath et al. [67] and Kumar et al.[63] observe that a complete direct sequential solution

consists of four phases

• Ordering - find a good ordering of the matrix such that minimal fill-in is introduced

• SymboHc Factorisation - Determine the structure of the factor matrices and set up

data structures to hold them

• Numeric Factorisation - Compute the factor matrices of the coefficient matrix, A

• Triangular Solution - Using the factor matrices and the right hand side vector perform

the forward/backward substitution operations to determine the values in the unknown

vector X

In most power system computations the ordering and symboUc factorisation opera

tions are required infrequently and there is not the same need for high performance which

arises from the frequently used operations. As the admittance matrix of the system seldom

changes, the numerical factorisation operation is also infrequently used. In real-time simu

lations i t may be necessary to refactorise the admittance matrix in response to a change in

the network topology. Inefficient numerical factorisations have no place in real-time simu

lations as they may cause the simulation to leave real-time. Consequently there has been a

significant amount of research into the development of efficient parallel numeric factorisa

tions [35, 32, 68, 31, 50, 46, 29] although the performance of methods developed to date is

not very impressive. Tylavsky et al. [50] observe that much of the algorithm development

has been purely theoretical and httle software has actually been developed for parallel ma

chines. The software which has been produced [32, 40] shows that a fuU factorization can

77

3.4 Parallel Algorithms for Direct Solution

be achieved with a speed-up of about 2, whilst a speed-up of about 10 may be achieved
if factorization is halted before the densest part of the matrix is encountered. The most
frequently used operation in power system computations, and particularly in simulations,
is the triangular solution operation. I f power system analysis and simulation algorithms
are to be efficient then efficient parallel triangular solution methods are required. This has
also been the focus of much research attention [31, 32, 26, 37, 36] but again the results are
disappointing with speed-ups seldom exceeding 3 or 4 [69, 70, 57]. The reasons for the poor
performance have been analysed by Bialek [49].

This thesis concentrates on the numeric factorisation and triangular solution operations.

Symbolic factorisation is not considered as efficient sequential techniques have already been

developed for this operation [67, 71, 72]. As Heath [67] points out, there is little that can be

done to parallelize the symbolic factorisation operation and this operation is perhaps best

performed sequentially on a single processor in a multiprocessor array. Ordering techniques

are considered here but only in relation to improving the amount of inherent parallelism

exploited in the numeric factorisation and triangular solution operations. No consideration

is given to the development of parallel ordering algorithms as highly efficient sequential

techniques already exist.

3.4 Parallel Algorithms for Direct Solution

3.4.1 G r a n u l a r i t y of Solution

To solve any problem in parallel requires that problem to be divided into separate tasks

which can be assigned to individual processors. The solution of power system network

equations requires the set of equations to be decomposed into independent subsets. Unfor

tunately the algebraic equations are not easy to decompose as they are global and relate

to all nodes in the network. Conventional diakoptics techniques make use of either node

- tearing or branch cutting to split the network into subnetworks, thus allowing a parti

tioning of the equations. Direct methods can then be used to solve individual subnetworks

concurrently with the solutions being combined to give an overall solution for the algebraic

equations. The number and size of subnetworks required really depends on the capabilities

of the target parallel machine. Granularity is a qualitative measure of the size of the parallel

tasks. Three levels of granularity can be identified and Kumar [63] defines them as

• Fine-grain parallelism - Parallelism at the level of individual floating point operations

78

3.4 Parallel Algorithms for Direct Solution

• Medium-grain parallehsm - ParaUehsm in performing groups of floating point opera
tions, for example on an entire matrix row or column

• Coarse-grain paraUehsm - ParaUeUsm in operating on independent groups of matrix

rows / columns

The exploitation of fine-grain paraUeUsm is not suitable for message passing, distributed

memory machines due to the excessively high amount of interprocessor communication

required. Fine-grain paraUel solutions are really only suited to massively paraUel computing

platforms containing thousands of relatively simple processing units or to shared memory

architectures. Message passing architectures are better married with the exploitation of

medium and coarse grain paraUeUsm and research has been directed toward developing

solutions at these levels. When designing a paraUel algorithm it is not possible to ignore

the architecture of the machine on which that algorithm is to be executed. As Lin and Van

Ness [33] point out

... the architectural dijferences between the machines is a far more important

factor (in speed-up) than the variations in the way that the algorithm is applied.

Coarse grain paraUeUsm arises as a direct result of the sparsity of the coefficient matrix.

Due to the sparse nature of the matrix i t is possible to identify independent groups of rows

and columns which may be processed in paraUel. No such groups exist in dense systems

and coarse grain paraUeUsm cannot be exploited. Dense parallel solutions are therefore

restricted to the usage of medium grain paraUeUsm.

For a coarse grain solution the groups of independent matrix rows/columns correspond

to subnetworks within the network. Individual subnetworks are processed by separate pro

cessors with a central coordinating processor being used to combine individual subnetwork

results to give the overall result. The use of the central coordinating processor introduces a

large sequential stage in the paraUel algorithm and is a bottleneck in the process, Umiting

the efficiency of the solution of the equations. Any method which increases the amount of

paraUeUsm extracted from these equations and reduces the size of the sequential step wiU

significantly increase the speed of solution.

3.4.2 T a s k Mapping and L o a d Balancing

Two of the fundamental issues in the design of any paraUel program are those of task

mapping and load balancing. Chapters 4 and 6 consider these issues in more detail but a

79

3.4 Parallel Algorithms for Direct Solution

33

I
29

I
25

17

41

I
39

I
37

18

34

I
30

I
26

19

49

I
48

I
47

I
46

I
45

I
44

I
43

20

35

I
31

I
27

21

42

I
40

I
38

22

36

I
32

I
28

23 24

A A A A A A A A
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0

A A A A A A A A
0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

(a) (b)

Figure 3.1: An ehmination tree (a) and the wrap mapping strategy (b)

brief introduction is now presented.

Having partitioned the problem into a number of smaller subproblems, or tasks, it is

necessary to assign processing resources to carry out these tasks. Tasks may be assigned to

processors in any order.but i t is desirable to minimize the amount of communication between

tasks on different processors. The task mapping operation must find the optimum placement

of tasks which minimizes the delays associated with synchronisation and communication.

One of the most common task mappings used for Cholesky factorisations is known as

the wrap mapping. Consider the elimination tree of Figure 3.1(a) which shows the prece

dence relationships between the tasks which make up the problem. Suppose that there are

p processors available and there are i tasks in the problem. Generally p < i and the wrap

mapping assigns the i * ' ' task to the processor {{i - 1) mod p) [73]. The tasks in the tree are

wrapped on to the available processors, as shown in Figure 3.1(b). (The numbers in the

diagram refer to the processor to which each task is assigned). The wrap mapping assigns

aU potentially concurrent operations to different processors and distributes the communica

tion load evenly across the processors. The volume of communication associated with this

mapping scheme is high and Chapter 4 wiU introduce a more efficient strategy.

80

3.4 Parallel Algorithms for Direct Solution

Load balancing is aii issue of critical importance to the efficiency of any paraUel algo
ri thm. Maximum speed-up can only be attained if the computational workload is equally
divided amongst aU the processors and these processors are kept constantly busy [19]. De
spite this many researchers seem to ignore the load balancing issue. In fact some go further
and claim that load balancing is unimportant [44], a view which challenges the beUefs of the
parallel computing community. Load balancing techniques may have one of two flavours
- static or dynamic. Static approaches are the simplest and balance the load by a careful
division of the problem into tasks and optimum assignment of tasks to processors based
on some a priori knowledge. Dynamic strategies equaUze the load whilst the program is
running by moving tasks and data between the processors. Due to the relatively high
communication requirements of dynamic strategies they can be inefficient when appUed to
distributed memory machines. The Transputer and its languages do not provide support
for task migration [19] and other dynamic load balancing operations. This thesis considers
only the simpler static load balancing strategies.

3,4.3 Order ing Strategies for Paral le l Solutions

Sequential solutions employ ordering techniques to reduce the memory requirements and

computational workload by minimizing the amount of fiU-in resulting from eUminations.

The same considerations apply to paraUel solutions but there are additional reasons for

reordering the coefficient matrix. Reordering the matrix alters the shape of the eUmination

tree associated with that system. In their natural order certain systems appear to have

Uttle exploitable paraUehsm. For example the eUmination tree associated with a tridiagonal

system is simply a Unear chain of tasks. Applying an appropriate reordering can modify

this system such that its eUmination tree has a more traditional tree-Uke structure and this

allows some concurrent execution of tasks to occur. One of the main goals of ordering for

paraUel solution is to rearrange the system to allow the exploitation of more of the potential

paraUeUsm in the problem.

Another frequently cited goal of ordering for paraUel solution is to reduce the height of

the eUmination tree. Many authors [67, 69, 54, 74, 57] consider tree height to be critical

in obtaining short execution times. Execution time is proportional to the length of the

critical path through the eUmination tree and critical path length is the same as tree height

by definition. Applying orderings which minimize the height of the tree is an attempt to

minimize the execution time of the paraUel algorithm although Heath impUes that there

81

3.5 Diakoptical Based Solution Methods

is no proof tliat systems witl i sliorter trees execute quicker than tliose witli long trees.
His view is that those authors who choose to use short trees base their choice on instinct
rather than on theoretical proof. This author believes that in general shorter trees do give
rise to shorter execution times and this view is supported by empirical observations made
throughout the course of this research project.

3.5 Diakoptiral Based Solution Methods

3.5.1 The Method of Diakoptics

The method of diakoptics may be used to divide the network equations into sets of equations

corresponding to interconnected subnetworks. The techniques of diakoptical analysis [47, 75,

76, 77, 78] were developed in the 1950's by Gabriel Kron. The word diakoptic is derived from

the Greek kopto, meaning to break or tear apart [47], and this neatly summarises the whole

concept of diakoptical analysis. The essence of the technique is to solve a large system by

tearing i t into smaller subsystems which are then solved independently. The solution for the

whole system can be found by combining and modifying the individual subsystem solutions.

Developed as a method for solving large network problems, diakoptical analysis is an ideal

approach for the treatment of electrical power systems. In fact the diakoptics method was

devised by Kron as a solution to a particular power engineering problem [47]. For diakoptical

solution the power network must be partitioned into subnetworks and the partitioning can

be based on geographical or political considerations, on ownership of utilities comprising

the network or on consideration of the complexity of computing a solution. Regardless

of how the split is obtained, diakoptical analysis gives a mathematical structure which

is particularly amenable to multiprocessing computer environments using either parallel

or distributed computing techniques. Combining diakoptical methods with sparse matrix

techniques and triangular decomposition methods provides a powerful tool for simple, rapid

solution of large sparse network problems [3, 2, 78].

Two approaches exist for partitioning a given network into a set of subnetworks. The

easiest method to visualise is the branch cutting method. This partitions the network by

cutting some of the branches which connect the nodes in the network. The branches are

chosen so that, when cut, they separate the nodes into independent regions, or subnetworks.

The second partitioning method splits the network into subnetworks by tearing some of

the network nodes apart. This is known as the node tearing method and the nodes are

82

3.5 Diakoptical Based Solution Methods

chosen such that tearing them apart decomposes the network into distinct subnetworks.

Appendix D provides a more detailed and mathematical treatment of the two methods.

Partitioning of the network using node tearing has an effect on the system's admittance

matrix. The process of partitioning transforms the matrix into the Bordered Block Diagonal

Form (BBDF) shown below.

5̂ 11 Yic h

Y22 Y2C V2 h

Ykk Ykc Vk h

Yc2 • •• Yck Y Vc Ic

(3.33)

The name arises from the fact that the matrix has blocks of non-zero elements along the

leading diagonal and along the lower and right edges. Elsewhere in the matrix the elements

are all zero. I f branch cutting is used the Bordered Block Diagonal Form is not produced

directly as extra elements may exist in the matrix between the diagonal blocks and the

borders. Appendix D shows that i t is possible to restructure the problem such that the

admittance matrix produced by branch cutting also exhibits BBDF.

The diakoptic method may be married with the triangular decomposition approach [78]

to obtain a solution for network node voltages given the network branch currents. The

BBDF admittance matrix Y is decomposed into a series of triangular factors and forward

and backward substitution with the right hand side yields the solution for the unknown node

voltage vector V . I t is observed that the BBDF is maintained in the factored admittance

matrix.

The bordered block diagonal form (3.33) has important consequences for the parallel

solution and it defines the algorithmic structure of conventional parallel solutions for (2.7).

Y\\.,Y22-, • • • lYkk â re the admittance submatrices corresponding to the k independent sub

networks created by the removal of the tearing nodes or branches. Similarly Vk and Ik

are the node voltages and branch currents for the /cth independent subnetwork. As the

subnetworks associated with F n , . . . , Ykk are independent i t is possible factorise the entries

of Yii,Yci and Yic in parallel, where i = 1,.. .,k. Ycc must be factorised after this is com

pleted as the presence of Yd and Yic results in the triangular decomposition updating the

values of Ycc- I t is then possible to forward/backward substitute with Ic to yield values

for the cutset voltages Vc. Once this has been done, forward/backward substitution can be

83

3.6 The Multiple Factoring Method

performed in parallel for each subnetwork to yield solutions for F i , V 2 , • • •, ^ i - Note that

the distributive effect of Ycc through forward and backward substitution prevents the com

mencement of parallel substitution for individual subnetworks until the cutset voltages have

been determined.

3.6 The IVLultiple Factoring IVEethod

The multiple factoring method [46, 29] is aimed at the substitution phase of the solution

of linear equations and is based on a standard LU decomposition. An improvement in

the substitution phase is achieved at the expense of factorisation, as extra work has to

be introduced at the factorisation stage. The efficiency of the method lies in the fact that

factorisation only needs to be performed infrequently. Multiple factoring is a prime example

of an inefficient sequential algorithm being used as the basis of an efficient parallel algorithm.

Consider the equations A x = b factored into lower, L , and upper, U , triangular matrices

such that L U x = b. The multiple factoring method requires these matrix factors to be

factored further. The basic scheme, known as diagonal partitioning, is

(3.34)

where La and JJjj are lower and upper triangular matrices respectively, I is the identity

matrix and K and R are rectangular matrices. (3.34) can be easily solved as

I L i i U n I R

K I L 2 2 U 2 2 I

U i i

I

K I

L 2 2

U 2 2

I R

I

W2

= b

W i

VV̂ 3 = W2

W3

(3.35)

(3.36)

(3.37)

(3.38)

Given b the vectors w^i, W 2 , W 3 and x may be found successively. In examining the structure

of (3.35) i t is observed that the upper part of w i will be identical to the corresponding part

84

3.6 The Multiple Factoring Method

of b. The lower part of W i may be found by substituting the upper part into successive rows
of the lower part. No precedence relationships exist in solving for the lower part of w i so
the rows may be processed in parallel and in any order. (3.36) is solved to yield values for
W 2 by forwarding substituting L n and L 2 2 with the values obtained for wi. Substitution
with L i i can take place immediately as the upper part of W i is known to be identical
to the corresponding part of b. I t is not necessary to wait until w i has been completely
obtained before processing begins with L n and the generation of the upper part of W2 may
be computed in parallel with.the computation of the lower part of wi if desired. The fact
that no coupling exists between the upper and lower parts of this matrix also allows the
upper and lower parts of ŵ 2 to be computed in parallel. (3.37) is similar to (3.36) but
processing cannot commence until W2 is completely determined. Again no coupUng exists
between upper and lower parts of the matrix and upper and lower partitions of can be
computed in parallel. Solution of (3.38) is similar to the solution of (3.35) and once again
the upper and lower parts of the vector x may be computed in parallel.

By multiplying together the first and last two matrices of (3.34)

L i i

K L i i L 2 2

U „ U n R

U 2 2

= A (3.39)

I ' l l , L 2 2 , U i i and U 2 2 can be seen to be simple submatrices of the lower and upper trian

gular factors of A . K and R may be found from the equalities

K L i i = L 2 1 (3.40)

U i i R = U 1 2 (3.41)

The generation of all the required factor information is a two step process. Firstly a standard

LU decomposition must be used to determine the lower and upper triangular factors L and

U . L i i , L 2 2 , U i i and U 2 2 may then be determined directly and K and R can be found

from (3.40) and (3.4.1).

The power of the multiple factoring method becomes apparent when the L and U factor

matrices are subdivided many times. Three possible schemes exist for subdividing the

matrix factors of A .

85

3.6 The Multiple Factoring Method

Scheme 1 : Forw^ard factoring

Scheme 1 subdivides the factor matrices according to

I

K 2 1 I

K31 I

I Rl3

I R23

I

I

K32 I

I R 1 2

I

I

L i i

J22

--33

(3.42)

U 11

u 22

U: 33

(3.43)

A consequence of this scheme is that extra fiU-ins, over and above those resulting from

LU decomposition, are introduced into the matrices by the subdivision process. With the

factors divided in this fashion it can be seen that results from each step must be propagated

to the next step of the solution process. For example, the computations involving K21

and K31 can commence immediately with these computations taking place concurrently.

The computations involving K32 cannot proceed until the computations involving K31 are

complete as substitution with K32 depends on values which are altered in substituting with

K31.

Scheme 2: Backward factoring

The second strategy for division partitions the factor matrices according to

I

I

K31 K32 I

I R 1 2 R l 3

I

I

I

K 2 1 I -'22

--33

(3.44)

I R23

I
u 22

U 3 3

(3.45)

Under this scheme there are no precedence relationships between the K (R's) blocks and

this means that there is no propagation of results between the steps of the solution. Hence

the potential for parallelism is great. However Van Ness [46] notes that this partitioning

strategy introduces much more fiU-in than the first strategy. As a result he suggests that

the first strategy should be applied to the partitioning of the majority of the matrix, which

86

3.6 The Multiple Factoring Method

is sparse. The lower right hand corner of the matrix is usually fairly densely populated and

here fiU-in is of little consequence. Van Ness suggests that this region should be treated using

the second partitioning scheme. The lowest submatrix in each of the L and U chains are

both fuUy populated. These submatrices have to be processed consecutively (the sequential

part of the method) and Van Ness advocates representing this fuUy populated section using

its fuU matrix inverse.

Scheme 3 : ,Row oriented factoring

Both of Van Ness's partitioning schemes are based on the use of diagonal partitioning.

Berry et al. [29] have proposed a third partitioning scheme which is row oriented. Under

this scheme

U =

U i i Ri2 Ri3

I

I

U 2 2 R23

I u 33

(3.46)

This is similar to the column oriented partitioning of L factors under Scheme 2. Solution

of the equations requires scheme 2 partitioning of the L matrix with scheme 3 partitioning

used for the U matrix. Berry et al. found that although this approach introduces a large

amount of fi l l- in, the solution is achieved faster then when using either scheme 1 or scheme

2 factors alone.

Both Van Ness [46] and Berry [29] cite results in their papers but neither really sheds any

light on the speed-up performance of the multiple factoring method. Berry gives absolute

execution times for the solution of a 60 bus test system but gives no reference sequential

execution time from which speed-up may be calculated. Van Ness provides the theoretical

minimum computation time and and 'actual' computation time obtained from a simulation

of the method. As with most parallel simulations no attempt is made to account for the

effects of interprocessor communication or task switching overheads. The absence of a

sequential reference time makes it impossible to calculate the speed-up. When a large

number (50^-) of processors are used Van Ness finds the 'actual' computation time to be

similar to the theoretical minimum computation time, indicating that speed-up with a large

number of processors is close to the theoretical predicted maximum speed-up, whatever that

may be. When a more modest number of processors (« 20) is used the 'actual' computation

time is three times greater than the theoretical minimum time, indicating that speed-up

87

3.7 Parallel L U Decomposition Techniques

can be no more than | of the theoretical maximum. Evidently a large number of processors
are needed to give maximum speed-up, making the solution both expensive and inefficient.
Reducing the number of processors used to a more economic level has the effect of drastically
reducing the performance.

3.7 Parallel L U Decomposition Techniques

A survey of the available literature reveals a number of publications on the parallel solu

tion of power system equations by LU based methods. Some of these pubUcations detail

interesting and innovative work but most are nothing more than subtle modifications to

existing methods. This section presents a survey of some of the parallel LU decomposition

methods currently available. AU parallel techniques developed to date have a structure

similar to that of sequential LU decomposition algorithms {i.e. factorisation of the admit

tance matrix followed by forward and backward substitution). The factorisation phase sees

each subnetwork being factorised in parallel on an individual processor. Once all subnet

works have been factorised any information relating to the cutset block must be passed

to the processor responsible for that block. The cutset block is then factorised and for

ward and backward substitution of this block with the current vector is performed. This

generates information relating to all the other subnetworks and hence the result of this for

ward/backward substitution must be sent to all other processors before substitution can be

completed. The parallel algorithm has the structure shown in Figure 3.2. The cutset block

must be processed by a central coordinating processor which receives information from and

passes information back to all the other processors, controffing their operation in a Master

- Slave fashion.

A simple example of a 5 X 5 matrix with Bordered Block Diagonal Form is shown in

Figure 3.3. The matrix consists of two 2 x 2 blocks are arranged on the diagonal and there

is a single element cutset block. Figure 3.3 also shows aU the operations that must be

performed to factorise this matrix. The independence of operations on each block is clearly

illustrated in this example. Factorising rows 1 and 2 causes the cutset element in row 5 to

be modified but no modifications to rows 3 or 4 take place. Similarly, factorising rows 3 and

4 results in the the cutset element of row 5 being modified but no modifications to rows 1 or

2 take place. The operations on blocks 1 & 2 and 3 & 4 can be performed concurrently with

the cutset block being processed once the processing of the other two blocks is complete

3.7 Parallel L U Decomposition Techniques

Factorise Factonse Factorise Factonse

Factorise Cutset Block
Forward & Backward Substitute

Forward
Substitute

Forward
Substitute

Forward
Substitute

Forward
Substitute

Backward
Substitute

Backward
Substitute

Backward
Substitute

Backward
Substitute

Figure 3.2: Structure of conventional parallel solution algorithm

and all modifications have been made to the cutset block.

Several researchers [79, 57, 80] have noted that when more than about five processors are

used the benefits of partitioning the network and solving it in parallel tend to saturate - i.e.

introducing more processors does not decrease the overall solution time. This saturation is

attributed to the significant size of the cutset block, which must be processed sequentially,

and the amount of interprocessor communication resulting from the Master - Slave approach

of the conventional parallel solution. Despite the significant research effort devoted to this

problem speed-ups for both the factorisation and substitution steps of the LU decomposition

remain disappointing. The results of Lau's approach [32] to parallelizing the factorisation

part of the method reveal a maximum speed-up of two even when as many as 32 processors

are used. Techniques for parallelizing the substitution phase have fared little better. Abur's

technique [26] requires 57 processors to achieve a speed-up of 3.8 for the substitution stage

of the solution of the IEEE 118 node test system and as many as 281 processors are required

to achieve a speed-up of 5 from a system containing only 590 nodes. Whilst this method

gives a better speed-up than many previous methods it is extremely inefficient due to the

large number of processors required.

89

3.7 Parallel L U Decomposition Techniques

1 2 3 4 5

Calculate

' ' I I
« I 2 —

" I I

L
" A l

A s

" 1 1

^ ' A ,
Update t ' ^ 2 | ' ^ I 5

• ^ 2 5 - " 2 5 ,

•^ll

"22 - ^22 ,
A l

J A i ' ^ 1 2
" 5 2 - " 5 2 .

A l

4 4 A l - ^ I S
" 5 5 - " 5 5 .

A l

Calculate

" 2 2

-
"~ T

" 2 2

A22

Update A - A A2 '425
" 5 5 - " 5 5 .

A2

Calculate

".1.1 A„

L
" A

" J 3

p _ A s

" J 3

^ ' A ,

Update
" < 5 ~ " 4 5 .

^ 3

_ . -^flAs

A J

4 _ 4 '^53'4.V.
' ' 54 ' "54 .

A J

4 _ 4 A3A15
".55 - " "S5 .

A3

Calculate
^ 4 4 = - ^

" 4 4

P - ^ ' ^

" 4 4

^' A " 4 4

Update 4 _ 4 A4A5
" 5 5 - " " 5 5 .

-^44

Calculate

" 5 5

1 2 3 4 5

Figure 3.3: Simple BBDF factorisation example, showing independence between operations

90

3.7 Parallel L U Decomposition Techniques

The fact that most of the existing LU factorisation techniques have very similar algo
rithms is not surprising. Al l of the techniques rely on the use of BBDF matrix structure for
exploiting parallelism. The structure of the algorithm is a function of the BBDF structure
not a function of the particular LU-based method chosen. The bottleneck introduced by
the cutset solution is also a function of the BBDF matrix topology. This implies that any
improvement over existing parallel methods must begin by improving the structure of the
matrix to allow greater exploitation of parallelism. The actual LU or LDU-based factori
sation chosen wiU have only a minor effect on performance. The main differences between
existing techniques are the way in which they store data and the architecture of the target
parallel machine.

3.7.1 Chan's Method

One recently developed technique is that of Berry, Chan and Dunn [36]. Their technique

is designed for M I M D machines but they do not specify in their paper whether shared or

distributed memory machines are the target architecture. A personal communication with

the authors [81] has subsequently revealed that the target architecture was a distributed

shared memory machine. Communication of all data was performed via the global shared

memory and the message passing faciUties of the architecture were only used for synchroniz

ing the operation of the program tasks. The need for a custom parallel machine renders this

approach unsuitable for use with off-the-shelf distributed memory machines but it is still a

useful and interesting method. BBDF is the prominent feature of the approach but the au

thors successfully divorced the BBDF structure from the conventional algorithm structure.

Algorithms which use BBDF normally assign the cutset block to a central coordinating

processor. AU other processors in the machine must communicate their updates to the cen

tral processor which then becomes the bottleneck in the solution process. Chan dispenses

with the need for the central coordinating processor and the Master-Slave architecture by

assigning a copy of the cutset block to each processor in the network. Instead of com

municating updates to a central processor each processor broadcasts its updates to every

other processor in the network. Al l the other processors then update their local copy of the

cutset matrix data. When all the processors have performed all the updates supplied by all

the processors they each solve their own local version of the cutset block in parallel before

solving their respective subnetworks. There are two interesting points to this approach

91

3.7 Parallel L U Decomposition Techniques

1. The elimination of the need for a central coordinating processor means that this
method uses one processor less than a more traditional BBDF approach and should
be more efficient

2. The assignment of a copy of the cutset block to each processor removes a commu

nication step from the algorithm. I t is no longer necessary to broadcast the results

of the cutset solution throughout the network as each processor holds its own local

solution. Provided that each processor maintains a coherent copy of the cutset matrix

data prior to its solution, all the processors should obtain the same answer from the

solution of the cutset block. The extra communication step is eliminated at the ex

pense of implementing a method for ensuring coherency between local copies of data

structures held by all processors.

That there are differences between this method and the traditional methods is quite ob

vious from its algorithm structure, shown in Figure 3.4. The bottleneck of communications

to the central processor is no longer present but has been replaced by a much larger collec

tion of intertask communications. The explicit communication following cutset solution has

been eliminated. Chan actually found that the duplicated computation of the cutset by aU

processors is the dominant feature in the total amount of computation. As the inverse of

the cutset block is not significantly denser than the cutset block itself, Chan found it more

efficient to solve the cutset block by calculating its fuU inverse using a single processor.

This is carried out after the parallel factorization of subnetwork blocks is complete and

an extra communication step is required to pass the result of inverting the cutset to the

subnetwork processors. The algorithm structure once again becomes the same as that of

the conventional structure (Figure 3.2).

Whilst the method is interesting its speed-up performance is little better than that of

other approaches. Speed-ups are only marginally improved, i f at all, but the benefit of the

approach is its increase in efficiency. Similar speed-ups to other methods can be achieved

using fewer processors.

3.7.2 The W-matrix Method

The W-matrix method was first proposed by Alvarado [37] and adapted by Padhila and

Morelato [44] in 1992. The approach is based on a sequential solution technique known

as matrix inverse factors, or the W-matrix method. The authors note that the W-matrix

92

3.7 Parallel L U Decomposition Techniques

Factorise Factorise Factorise Factorise

Solve Cutset Solve Cutset Solve Cutset So ve Cu se

Subsitute Substitute Subsitute Substitute

Figure 3.4: Algorithm structure of Chan's method, using duplicate cutset computation

method is not the most efficient solution algorithm for sequential machines but it holds

promise for parallel solutions as the techniques gives a degree of independence between

elementary operations.

The W-matrix method is based on LDU factorisation and it decomposes the coefficient

matrix. A , into three matrix factors such that

A = L D U (3.47)

The solution to the set of equations is given by

x = U - ^ D - ^ L - i f t (3.48)

A matrix, W , is defined as

W = L " ^ (3.49)

and this can be expanded into n separate factors, W i , W 2 , . . . , W „ , where Wi = L^^ and

L^^ is a matrix which differs from the unit matrix in the i^^ column, which is the same as

the i*'^ column of L . Hence

X = W ^ D - ^ W b = W^W^ ... W „ r D - i W i W 2 . . . W „ b (3.50)

A parallel formulation of the method is achieved by partitioning the W-matrix such that

93

3.7 Parallel L U Decomposition Techniques

multiplications between columns of W and elements of the righthand side vector become
independent [44]. The partition is accompUshed by horizontal division of the elimination
tree associated with the system and if p partitions are produced then these must be processed
consecutively. The solution of (3.50) can be seen as an ordered sequence of updating tasks
operating on the components of the right hand side vector, b. Each update task is formed
from multiplication and addition operations and is of the form

hj = hj + wk,jhk (3.51)

The W-matrix method allows all multiplications between W matrix elements and elements

of b to be performed concurrently within each partition. As each multiplication requires

read-only access to one row of W (W^t) and read-only access to the vector b^, each row-by-

vector multiplication is independent and can be performed concurrently without introducing

any problems of data coherency. Unfortunately the additions cannot all be performed

concurrently as each addition requires the latest value of b j and this may be under processing

when it is required for addition. Hence some of the additions (not previously known [44])

must be performed after the parallel multiplications are complete.

The approach described by Padhila and Morelato is aimed at improving the parallel

substitution operations required to solve for the unknown vector once the matrix has been

factorised. The disadvantages of the method are

• An extra stage is required in the solution process to calculate the matrices. This

would introduce a large overhead into a one-off solution but in applications such as

power system simulation where repeated solution with multiple right hand sides is

required the extra overhead introduced in not all that large.

• Although the method can be used on a message passing machine the best performance

is obtained when the right hand side vector is stored in common shared memory.

The method is therefore best suited to distributed shared memory or shared memory

machines.

The results quoted for the substitution phase speed-up are better than those for many

other methods and Padhila's results are better than those obtained by Chan. For similar

size systems Chan achieves a speed-up of 3.36 using 8 processors whereas Padhila observes

a speed-up of 5.14 with the same number of processors. In a recent paper [33] Lin and

94

3.8 Cholesky Factorisation Techniques

Van Ness show that the W-matrix method is mathematically equivalent to the multiple
factoring method and give performance results for a shared memory implementation of the
multiple factoring method. These results are very similar to Padhila's results for the W-
matrix method, highlighting the equivalence between the two approaches. Unfortunately
the results for a distributed memory implementation of the multiple factoring method are
not nearly as good. The speed-ups produced are less than half of those produced by the
shared memory implementation.

3.8 Cholesky Factorisation Techniques

Cholesky factorisation is a commonly used method for solving sparse symmetric positive def

inite linear equations. Power system finear equations are not positive definite and Cholesky

methods may not be used to solve them but i t is worth considering these methods for the

sake of completeness. Certain forms of Cholesky factorisation suggest ways in which parallel

LU decomposition based solutions may be improved.

Cholesky factorisation was originally developed as a sequential method of solving equa

tions. Wi th the advent of high performance computers much research effort has been appfied

to the development of parallel Cholesky techniques, particularly within the applied mathe

matics community. A number of issues have been confronted in the development of these

parallel techniques which are also encountered with other parallel factorisation methods.

Given a system of linear equations

A x = b (3.52)

where A is the coefficient matrix, b is the known vector and x is the unknown vector, a

solution for x may be obtained by computing the Cholesky factorisation

A = L L ^ (3.53)

L is the Cholesky factor and it is a lower triangular matrix which has positive entries on

its leading diagonal. The unknown vector x can be be easily computed as

L y = b L^x = y (3.54)

95

3.8 '. Cholesky Factorisation Techniques

Two substitutions are required to calculate first y and then x. As in LU decomposition no
pivoting is required to maintain numerical stabihty and ordering techniques may be appUed
to enhance the preservation of sparsity.

Cholesky factorisation is a variant of Gaussian eUmination, as is LU decomposition, and

is therefore based around the equation

ioikjikj) _ ^ ciik akj ^2 55)
O-kk " ^yO'kk y/CLkk

The difference between LU decomposition and Cholesky factorisation is that element values

in Cholesky factorisation are normahzed by the square root of the pivot. The matrix L

must be real but if A is not symmetric positive definite L will not be real. Hence the

coefficient matrix for Cholesky factorisation must be symmetric positive definite. Jennings

[62] notes that i t is possible to apply Cholesky factorisation to a matrix which is symmetric

but not positive definite but the procedure is made significantly more complicated by the

introduction of imaginary elements in L .

Cholesky factorisation is similar to both LU and LDU factorisation. However Cholesky

factorisation has the disadvantage of requiring the calculation of n square roots. As square

root calculations are usually the slowest arithmetic operations on a computer Cholesky

factorisation may be slower than LU factorisation.

Note that three subscript indices i, j, k exist in equation (3.55) and in a computer

implementation three nested loops are used to increment these indices to scan through the

coefficient matrix. Three different Cholesky factorisation algorithms wiU result depending

upon which of these indices is controlled by the outer loop.

1. Row Cholesky algorithm - i is controlled by the outer loop and successive rows of the

matrix L are computed on each iteration. The inner loops solve a triangular system

in terms of previously computed rows.

2. Column Cholesky algorithm - j is controlled by the outer loop and successive columns

of L are computed. The inner loops perform matrix-vector multiplication of previously

computed columns on the current column.

3. Submatrix Cholesky algorithm - k is controlled by the outer loop and successive rows

of the factor matrix are computed on each iteration. The inner loops update the

submatrix to the right of the current column.

96

3.8 Cholesky Factorisation Techniques

Row
Cholesky

Column
Cholesky

Submatrix
Cholesky

Used for modifications

Modified

Figure 3.5: The three flavours of Cholesky factorisation

The row and column Cholesky algorithms are leftward looking algorithms as all the infor

mation required to modify the current row/column can be found to its left. Submatrix

Cholesky factorisation is a rightward looking algorithm as all the information in the current

column is used to modify the submatrix to the right of it. LU decomposition is also a

rightward looking method and similar in its operation to submatrix Cholesky. The three

flavours of sequential Cholesky algorithm, illustrated in Figure 3.5, develop directly into

two parallel Cholesky algorithms. Row/column Cholesky factorisation gives rise to the par

allel method known as the 'fan-in' algorithm whilst submatrix Cholesky gives rise to the

'fan-out' algorithm.

3.8.1 The Parallel Fan-In Algorithm

The parallel fan-in algorithm, originally proposed by Ashcraft, Eisenstat and Liu [82], is

based on the sequential column Cholesky method. Columns of the coefficient matrix are

assigned to processors and each processor performs a local processing and data reduction

phase before participating in a global data reduction phase. The algorithm is demand driven

and it requires aggregated update columns to be passed between processors. If the results

97

3.8 Cholesky Factorisation Techniques

of processing on a given processor relate to columns on other processors then that processor
sends the aggregated update columns to the appropriate recipient, which then incorporates
them into its calculations. The fan-in algorithm has a very regular communication struc
ture and a low volume of communication traffic, making it more efficient than the fan-out
Cholesky algorithm described in the following section.

3.8.2 T h e Para l l e l F a n - O u t Algor i thm

The fan-out algorithm, which is based on the sequential submatrix Cholesky algorithm,

assigns columns to processors. UnUke the fan-in algorithm, the fan-out algorithm is data

driven and the data which pass between processors are matrix columns. Each processor

continually checks for incoming columns, which may be used to update the local niatrix

data, and when the processor has completed the processing of its own columns it sends the

results to aU other processors which may require them.

The fan-out algorithm is not very efficient and this is a function of its poor communica

tion performance. The algorithm gives rise to a large number of long messages and although

aggregation techniques have been employed to improve the performance i t is still less effi

cient than the fan-in algorithm or multifrontal methods. Complicated message structures

are required and these must be assembled before transmission and unpacked upon receipt.

This, and the searching that is required to allow updating of the matrix, results in low serial

efficiency. Eg, where

Es = ^ (3.56)
tup

where tg is the execution time of the best sequential solution and t^p is the execution time

of the parallel algorithm executed on a single processor.

3.8.3 Fronta l Methods

Frontal methods provide another approach to the paraDel solution of linear equations. These

method are sophisticated variations of submatrix Cholesky techniques and are significantly

more complicated than any of the basic Cholesky algorithms. They were originally devel

oped [67] to make more efficient use of auxiliary storage {i.e. disk storage) in the days

when memory was expensive and limited in size. The essence of the method is that a small

'window' oi: front of active computation moves through the coefficient matrix and a fuU

matrix representation is used to store the frontal submatrix in memory. The use of ful l

98

3.9 Summary

matrix representation makes solution more efficient on scalar machines and allows vector
architectures to be used to speed up the computations on the frontal submatrix. Parallel
multifrontal methods have been developed but they appear to be no more efficient than
the fan-in algorithm. The success of frontal methods depends on keeping the active window
as small as possible so as to keep to a minimum the amount of dense storage required. The
main disadvantage of these methods is the complexity of the algorithms. Continual con
version between sparse and fuU matrix representations is required and sophisticated data
management methods are needed. However Chapter 6 wiU show that the adoption of fuU
matrix representation for parts of an LU solution can lead to an increase in the efficiency
of parallel LU factorisation.

3.9 Summary

This chapter has examined existing parallel methods for solving linear equations. Two

classes of solution have been identified. Jacobi iteration, Gauss-Seidel iteration and the

Conjugate Gradient method have been introduced as examples of iterative solutions. Meth

ods in this class of solution make an initial guess at a solution and refine it through a

procedure of iterative correction until an acceptably accurate result is achieved. Iterative

techniques suffer from two main drawbacks. Firstly i t is not possible to achieve multiple

solutions of the same system of equations with different right hand side vectors quite as

readily as i t is using direct methods. Secondly, iterative techniques may require many iter

ations to reach convergence if the equations are ill-conditioned or if a high precision answer

is required. Direct methods, of which LU and Cholesky factorisation are examples, provide

an exact solution for the equations but may require more total computation than iterative

methods. Direct methods do not suffer from convergence problems and have the advantage

that separate factorisation and substitution operations are available. Factorisation of the

matrix only needs to be performed once and then the substitution operation may be used

to solve for multiple right hand sides. In applications such as power system simulation,

where most of the processing involves solving the same set of equations with different right

hand sides, direct solutions are significantly more efficient than iterative solutions. Iterative

solutions are used in power systems computations but direct methods hold the greatest

promise for high performance solutions.

Existing direct solution methods have been examined to determine the relative advan-

99

3.9 Summary

tages and disadvantages of the various approaches. Cholesky techniques are not suitable

for power system applications as they can only be applied to symmetric positive definite

systems and power system equations do not fall into this category. This leaves parallel LU

and LDU-based methods as the only really suitable solution methods for power system ap

plications. Numerous different techniques have been attempted but the speed-up resulting

from them is unimpressive and quickly saturates as the number of processors increases. The

inefficiencies are attributed to a sequential bottleneck present in aU these methods. The

algorithms for each of the methods are similar and arise as a direct result of the use of the

BBDF structure as a device for exploiting parallelism. I t is the BBDF structure and not

the particular flavour of LU-based solution which gives rise to the sequential bottleneck and

performance limitations.

Improving upon existing LU methods requires the BBDF structure to be improved. The

sequential bottleneck must be eliminated and more parallelism exploited. The review of the

various existing methods presented in this chapter suggests ways in which improvements

can be made to this structure. Chapter 5 takes these suggestions and uses them to develop

an efficient new matrix structure suitable for parallel LU-based solutions. Before examining

this structure i t is necessary to consider the elimination tree again and what implications

it has for network partitioning and balancing the computational load.

100

Chapter 4

Elimination Trees, Network

Partitioning and Load Balancing

4.1 Introduction

- - n a sequential computer the processor executes a program by operating on the required

- - data using the sequence of operations prescribed by the program until all operations are

complete. Throughout the lifetime of the program the processor is always busy and spends

most of its time performing useful^ work. In a parallel computer each task executes on its

own in isolation from the other tasks. When cooperation with other tasks is required some

time may be spent waiting for the other tasks to reach their synchronisation points and

valuable processing time is wasted in these idle wait states. In order to achieve maximum

efficiency i t is desirable to have all the processors performing useful work aU of the time.

Maximum speed-up can only be achieved if all of the processors are constantly kept busy.

Ensuring that processors are always busy requires the partitioning of the total workload

into equally sized tasks which are then assigned to each available processor. The process of

spreading the workload over the processors is known as load balancing and a balanced load

occurs when equal portions of the workload are assigned to each processor.

Consider the computer solution of the linear equations associated with a large network

problem. The workload in this case is the solution of the hnear equations and the division

of the workload requires the solution of the equations to be divided equally across the

''Useful' in this context means work that is of value to the user and is generally taken to mean the
execution of the user's program. Non-useful work would include such things a servicing operating system
interrupts, hardware interrupts etc..

101

4.2 Balancing the Computational Load

processors. Splitting the equations up is equivalent to tearing the network into subnetworks
using Kron's method of diakoptics, thereby reducing the load balancing problem to one of
network partitioning. A balanced loading can be seen as the partitioning of a network into
a number of subnetworks which require equal amounts of processing. This partitioning is
seldom easy and ideal load balancing is rarely achieved in all but the most trivial of cases.

Within the general literature of parallel computing much emphasis is placed on the

importance of achieving an ideal balanced load. Strategies are presented for achieving this

balance but most authors [19, 25] observe that if the workload is known a priori then near-

optimal load balance can be achieved through a static distribution of workload at compile

time. A knowledge of the true workload requires a detailed knowledge of the program, the

operating system and the hardware on which it is executed. Many programmers resort

to using approximate load balancing techniques. One technique often used when solving

network equations is to partition the network into subnetworks such that each subnetwork

contains an equal number of nodes. This method does not guarantee that each subnetwork

requires an equal amount of processing and this chapter describes the development of a

better technique which is based upon an analysis of the computational complexity of the

solution and the use of the elimination tree.

4.2 Balancing the Computational Load

In executing any program on a multiprocessor computer the aim is to achieve maximum

speed-up using the available processors. It was stated previously that this is only possible

i f all of the available processors are constantly busy. This is achieved through dividing the

processing load into equal portions which are assigned to individual processors (balanced

loading). Careful consideration must be given to the decomposition of the algorithm into

logical tasks and the partitioning of the data into distinct subsets. These two issues are

closely interrelated. Of particular importance to the efficiency of a parallel program is task

synchronisation and the use of interprocessor communication. A well partitioned problem

will require only a minimal amount of interprocessor communication and good speed-ups

can be expected. A poorly partitioned problem is characterized by large amounts of inter

processor communication and many process synchronisation requests. Interprocessor com

munication incurs overheads and if the amount of interprocessor communication is large

then the penalty incurred can seriously limit the speed-up obtained. Poorly partitioned

102

4.2 Balancing the Computational Load

TASK A TASK B
begin begin .

c a l c u l a t e F{Da) c a l c u l a t e F{Db)
send r e s u l t s to task B get r e s u l t s from, task A
get r e s u l t s from- task B send r e s u l t s to task A

end end

Figure 4.1: Simple load balancing example

programs can be less efficient than sequential programs designed to solve the same problem

simply because of the penalty incurred by interprocessor communication. Few problems are

easy to partition well and many problems fall into the 'hard to partition' category. Badly

partitioned programs are more often a function of the problem and its inherent lack of

parallelism than of the designer.

As an example of the need to obtain a balanced load consider the simple program

whose algorithm is given in Figure 4.1. This program consists of two tasks with similar

structures which are executed in parallel on independent processors. Each tasks applies the

function F() to its dataset before passing the results to the other task. Function F() has

the property that its execution time is proportional to the size of the dataset on which i t

operates. Suppose also that the dataset for the problem, D, is partitioned into two subsets

,Da and Db, such that

D = DaUDb (4.1)

Data subset Da is used by task A whilst Db is used by task B.

Let us assume that D is not partitioned equally and that Da holds one tenth of the

information from D with the remaining nine tenths being held in Db- As the execution

time of FQ is proportional to the size of the data i t operates on, F{Db) will take nine times

longer to execute than F{Da). Task A wiU complete the appfication of F{) to Da and try

to send the results to task B long before B has finished the operation F{Db). Task A will

then be forced to wait until task B finishes F{Db) before it can send its information. If

we assume that the time taken to perform F(Da) to be the basic unit of time, then task

A will waste 8 units of time waiting for task B to finish the operation F{Db). This is

shown graphically in Figure 4.2(a). Suppose now we alter the partitioning of D such that

DA and DB both contain half of the information from D. F{DA) and F{DB) will now

execute in identical times of 5 time steps. Task A no longer has to wait before sending its

information and the processor spends all of its time performing useful computations. The

103

4.2 Balancing the Computational Load

11

10

9

RX

I
D

L

E

RX

Execution Time

Computation
Time

F I D B

7

6

5

B

RX TX

mm RX

A B

Execution Time

Computation
Time

(a)

Figure 4.2: Graphical depiction of the execution of the example program with a) imbalanced
load b) balanced load

elimination of the idle time reduces the overall execution time for the program to 7 time

steps, as opposed to 11 time steps for the previous case. This is the optimum execution

time and it arises from the equalization of the computational load between the processors.

Any imbalance in the division of the computational load between the processors results in

one of the processors taking longer to execute. The other process is forced into an idle

wait state and this increases the total execution time of the program. The situation for the

balanced load is shown graphically in Figure 4.2(b).

The effect of imbalanced loading manifests itself in the execution time of a program, and

consequently in the speed-up. The speed-up, 5(n), is the ratio of the sequential execution

time to parallel execution time on n processors. For the example above consider only the

computations, that is the operation F{), and ignore the interprocessor communication.

Amdahl's Law allows us to predict the maximum speed-up we can hope to obtain provided

we know the sizes of Wp, the amount of work which can be performed in parallel, and W,,

the amount of work which cannot be parallelised and has to be processed sequentially. The

simple program of Figure 4.1 has all the work performed in parallel. Hence

I ^ p = 1

104

4.2 Balancing the Computational Load

Computation Time
Load Condition Parallel Sequential Speed-up

Balanced 5 10 5 = f = 2
Imbalanced 9 10 S=f = 1.11

Table 4.1: Speed-ups for the load balancing example

Amdahl's Law predicts that, for Wg - 0, S{n) = n indicating that hnear speed-up is

achievable. As the example program uses two processors the maximum speed-up that can be

achieved is two. Assuming that the function FQ obeys the principle of Unear superposition

then the time taken to execute F{D) {i.e. the sequential solution) will simply be the sum

of the times taken to execute F{DA) and F{DB), which is 10 time steps. This allows

the calculation of the speed-ups for the two loading examples, which are shown in Table

4.1. As Lewis predicts [19], maximum speed-up is achieved under conditions of balanced

loading whilst the imbalanced load case performs Uttle better than the sequential program.

The importance of this result is that in trying to extract the maximum speed-up from

any program it is essential to achieve a load balance which is as near as possible to the

ideal balanced load. I f the load balance is ignored then the resulting speed-ups will not

be optimal. Table 4.2 shows similar speed-up figures obtained from an LU-based solution

program implemented as three tasks running on three processors. The data for this test,

the CEGB 734 node system, is similarly divided into three subnetworks. The program

has the structure shown in Figure 4.3. Tasks A and B operate in parallel and pass their

results to task C which then operates sequentially. One subnetwork is processed by each

task and the workload for each task is changed by altering the partitioning of the network

into subnetworks. The amount of the problem which has to be processed sequentially, Wg,

is the workload of task C. Table 4.2 shows the effect on speed-up of changing the workloads

assigned to tasks A and B - the more unequal the load the further the resulting speed-up is

from the ideal speed-up predicted by Amdahl's Law. Note that i t is usually not possible to

achieve an exact load balance and the first row of Table 4.2 gives figures for the most equal

loading possible with this data.

4.2.1 T h e T w o Approaches to Load Balancing

The previous section has shown the need for, and the benefits of, computational load bal

ancing but has not discussed the method of achieving a balanced load. Section 4.1 has

105

4.2 Balancing the Computational Load

Figure 4.3: Three task implementation of the LU-based solution

Percentage of work performed by Amdahl's Law
Task A Task B Task C Speed-up Predicted Speed-up

48.5 50.9 0.4 2.23 2.98
42 56 2.7 1.98 2.85
25 70 4 1.55 2.77
22 75 3 1.48 2.83

Table 4.2: Effect of load balancing on speed-up for an LU-based solution

indicated that if the structure of the algorithm and the size and nature of the workload

are known a priori then i t is possible to achieve static load balancing by assigning parts of

the problem to tasks at compile time. Static load balancing techniques can be categorized

into four distinct approaches with graph theoretical approaches being the most common.

The technique relies on the use of two graphs - a graph representing the target machine

{i.e. the physical processor interconnections) and a task graph which shows the relation

ship between tasks and the communication requirements of each task. The problem of load

balancing reduces to one of mapping the task graph to the hardware graph in a manner

which minimizes interprocessor communication and execution time. This is a graph theory

problem and much work has been undertaken in this area [83, 19, 84]. Dynamic load balanc

ing, where the distribution of the computational workload changes during the course of the

program's execution, is also possible but harder to achieve. The major difference between

the two approaches is that static load balancing can be performed by the programmer but

dynamic load balancing is controlled by the operating system or appHcations software and

is beyond the control of the programmer/user.

Distributing the workload throughout the processors in the system can be performed

either in a. domain decomposition or control decomposition based manner [19]. Control de-

106

4.2 Balancing the Computational Load

Supervisor

Figure 4.4: A supervisor/worker approach to parallel bifactorisation

composition is concerned with the structure of the algorithm and the way i t is spht into

logical tasks which can then be assigned to individual processors. One typical approach to

control decomposition is the supervisor/worker approach which is based on the client/server

and processor pool models of distributed computing [85]. There are a number of worker

tasks which aU perform the same function. The supervisor is responsible for allocating work

to each worker task. When a worker finishes its work i t sends the results back to the super

visor and if there is stiU work to be performed the supervisor allocates another job to the

worker. In this manner all the workers are kept busy performing the work scheduled by the

supervisor until all the work has been completed. This approach often has groups of tasks

which perform certain functions, each group consisting of multiple instances of the required

task. This is shown in Figure 4.4 which depicts a possible supervisor/worker approach to a

parallel implementation of bifactorisation. Three groups of tasks exist; one group consists

of tasks to perform factorisation, the second has tasks to perform left multiplication and the

third consists of tasks which perform right multipfication. Note that the supervisor/worker

approach is a dynamic load balancing approach implemented in the apphcations software.

Domain decomposition on the other hand is concerned with the data to be operated upon

by the program. The domain of the input data is partitioned and the different subsets are

assigned to the available processors.

Both control and domain decomposition are used in implementing an LU-based solution.

107

4.2 Balancing the Computational Load

There is domain decomposition in that the input data (i.e. the network) is partitioned into
subnetworks which are then assigned to individual processors. The program consists of
multiple instances of the same task, one for each subnetwork. This single task performs
all the necessary processing for a subnetwork and each task is assigned to an individual
processor, thus embodying the principle of control decomposition. The implementation is
also loosely based on the supervisor/worker model in that there needs to be a supervisor
task which partitions the data and forwards it to the subnetwork tasks before solution
commences. Each task is assigned only one unit of work throughout the program's lifetime.
Once the data has been distributed by the supervisor it becomes redundant and the worker
tasks operate autonomously.

The supervisor/worker model is often used as a dynamic load balancing strategy to

allow a supervisor, usually the operating system, to distribute work across the system in

a dynamic fashion according to the resources {i.e. worker tasks) available at the time.

The parallel LU-solution is only loosely based on the super visor/worker model in that the

partitioning of data is statically determined a priori by the domain decomposition. A

dynamic supervisor/worker scenario has no prior knowledge about the workload and must

adapt the distribution of work as the program executes. A different approach to dynamic

load balancing is based on the use of task migration. Tasks are initially assigned to certain

processors but as the program executes the operating systems can reassign tasks and their

data to different processors in order to equalize the computational loading. Suppose two

tasks are assigned to each processor in the array and that on a certain processor. A, these

tasks complete before the corresponding tasks complete on processor B. A is now idle

whilst B is busy. A better computational loading is achieved if one of B's tasks is moved

to processor A and allowed to complete its computation there. Whilst the concept of

task migration is weU understood for both parallel and distributed systems, it remains a

largely theoretical concept as few practical implementations exist in commercially available

operating systems [85].

Most off-the-shelf Transputer systems are not supplied with an operating system which

has global control of the Transputer array. Each processor has built in hardware which is

responsible for providing local process scheduling and facilities for interprocess communica

tion. This basic microcoded kernel is sufficient to allow most applications to be implemented

with careful programming. I t is possible to buy operating systems which give global control

of the network but these are expensive and for the amount of usage it would receive, i t was

108

4.2 Balancing the Computational Load

decided that the expense was not warranted for this research project. Consequently the
programs developed during the project had to rely on facihties provided by the Transputer
hardware. As the Transputer provides no support for dynamic load balancing a static load
balancing approach with domain decomposition was used throughout. It is the author's view
that the use of dynamic load balancing techniques for this problem would merely provide a
fine tuning mechanism for wringing the last httle bit of speed-up out of the system but the
benefits of implementing a dynamic load balancing mechanism are probably outweighed by
the complexity of its implementation.

4.2.2 L o a d Ba lanc ing Methodologies Adopted by Other Paral le l Solutions

Chapter 3 surveyed some of the existing parallel algorithms for solving sparse sets of finear

equations. The same load balancing problem has been encountered in the development of

these methods and various techniques for achieving approximately balanced loads have been'

developed. Many of the researchers avoid the subject of load balancing in their publications

and it is not clear whether they have addressed the issue or simply ignored i t . Fadhila and

Morelato [44] go one step further and state that

'load imbalancing is not an issue ... The solution with the best load balance is

not necessarily the fastest.'

This is certainly a different view from that held by most of the parallel computing com

munity which beUeves load balancing to be an issue of critical importance, as the previous

sections-have shown. Where load balancing has been considered i t is usually performed in a

simple and inefficient way. Many authors [86, 27] simply assign each column of the matrix

to an individual processor but this is expensive in terms of the computing hardware re

quired and it ignores the fact that columns with different numbers of off-diagonal elements

require different amounts of computation. Columns with many off-diagonals give rise to

a large amount of computation whereas columns with few off-diagonals require relatively

little computation and their processors spend most of their time idfing. Whilst this scheme

divides the load across the processors it takes no account of the characteristics of the load

and results in an i l l balanced computational loading. Variations on this scheme exist [86]

which assign multiple columns to processors but these also ignore the characteristics of the

load and fare little better in achieving a balanced load. This is the load balancing strategy

adopted by Padhila and Morelato [44] in their parallel solution, despite their claim that

109

4.3 _ The Elimination Tree and Parallel Processing

load balancing is unimportant.

Other researchers [57, 32] assign multiple columns to individual processors in a manner

that tries to equafize the number of non-zero elements processed by each processor. I t is

not clear whether i t is the number of non-zeroes before or after fill-in that is equalized.

As this scheduling is based on the use of the elimination tree, and the coefficient matrix

must be at least symbofically factorised before the tree can be derived, i t is reasonable to

assume that i t is the number of non-zeroes after fiU-in which is equalized. I f the number of

non-zeroes prior to efimination was equafized then the schedule would fail to take account

of fiU-ins that occur as a result of ehmination. As factorisation proceeded the load across

the network would become significantly imbalanced. This would be especially true for rows

at the lower right of the matrix which become much more densely populated than rows at

the top left of the matrix.

Liu [52] proposes a different approach based on the use of ehmination trees to determine

the schedufing strategy which gives the best load balance. Geist and Ng [73] also use this

approach to balance the load in the parallel Cholesky factorisation method. This method

gives a reasonably even load balancing and has been adapted for use with the LU-based

solution.

4.3 The Elimination Tree and Parallel Processing

The factorisation path for each node in the elimination tree determines the precedence

relationship in the factorisation and substitution phases of the triangular solution of the set

of equations represented by matrix A . Nodes which do not belong to the same factorisation

path are independent and may be processed simultaneously by assigning them to different

processors in a multiprocessor array. This is true for both the factorisation and substitution

operations of the solution. For example, nodes 5 and 6 in the 10 node example of Figure

2.6 belong to different factorisation paths and may be processed in parallel.

The power of the eHmination tree Ues in the fact that i t is a useful tool for visuahsing

the factorisation/substitution processes and the paraUehsm inherent in them. Recall that

factorising a column of the coefficient matrix is equivalent to eliminating a node from the

graph G{A) and hence from the tree T[A]. It is easy to see that removing aU the leaf nodes

from the tree exposes a new layer of leaf nodes. Repeating the process again exposes another

layer of leaf nodes, and so on. As each leaf node belongs to a different factorisation path

110

4.3 The Elimination Tree and Parallel Processing

0 ©

(a) (b)

Figure 4.5: Partitioning of the elimination tree (a) and corresponding network partitions
(b)

they can be simultaneously eliminated. This is true for each exposed layer of leaf nodes and

exemplifies one typical approach to parallelising the triangular solution [73].

A different approach to the exploitation of parallelism is based on an analysis of the elim

ination tree. The essence of the method is to group nodes within the tree into subtrees and

this is equivalent to grouping the nodes of the network into subnetworks. Many researchers

who have used the elimination tree in their approach to parallel triangular decomposition

have not explicitly recognized this fact [87]. As the subtrees contain independent factori

sation paths they may be processed in parallel by independent processors. This method

gives a coarse grain parallel solution whereas the wrap mapping method described above

produces a fine grain solution. Figure 4.5(a) shows how the 10 node example tree of Figure

2.6 could be partitioned into subtrees. Subtrees 1 and 2 are independent and may be pro

cessed in parallel. The remainder of the tree corresponds to the cutset in the partitioned

network for this system and i t must be processed after the subtrees have been processed.

Figure 4.5(b) shows how the elimination tree partitioning corresponds to the partitioning

of the network into subnetworks

Within any elimination tree i t is always possible to find a longest path through the

tree. This path is referred to as the critical path of the tree and the length of this path

has important consequences for parallel solutions. The longer the critical path the slower

the elimination process will be. As a consequence, systems which have very short critical

111

4.3 The Elimination Tree and Parallel Processing

paths can be processed much faster than systems with long critical paths. Consider the
fine grain approach which exposes successive layers of leaf nodes. I f the critical path has
p nodes on it then p parallel steps wiU be required to complete the ehmination. This can
be verified by assuming that the processing of each node on the critical path is performed
in unit time. Hence a system with p nodes on the critical path will execute in p units of
time and a system with 10 nodes on the critical path will take twice as long to execute as
a system with 5 nodes on the critical path. A similar argument can be made for the coarse
grain approach and the result is the same in both cases.

Unfortunately this assumption is not valid for real triangular solution programs. The

processing of each node is achieved in a time which is proportional to the number of nonzero

elements in the row of the matrix corresponding to that node. Consequently a short path

consisting of nodes with a large computational overhead may take longer to execute than

a long path consisting of nodes with a small computational overhead. The critical path

is not necessarily the longest path, but the path with the largest aggregate computational

overhead.

4.3.1 T h e E l i m i n a t i o n Tree and Network Part i t ioning

Section 2.7 states that i t is possible to swap rows and columns of a matrix before performing

Gaussian elimination. This is equivalent to reordering the nodes in the network, and hence

in the graph G{A). In his paper on the role of elimination trees Liu [52] introduces the

concepts of topological and equivalent reorderings. A topological reordering of the ehmina

tion tree reorders the nodes such that all child nodes are numbered before their parents.

The consequence of such an ordering is that the last row/column of the matrix always cor

responds to the root of the elimination tree. An equivalent reordering is defined as follows;

i f there is a symmetric matrix A and two orderings P and Q, then P and Q are said to

be equivalent if the fiUed graphs of PAP-^ and QAQ-^ are the same {i.e. isomorphic).

Furthermore P (or Q) is said to be an equivalent reordering if the filled graph of PAP-^

has the same structure as the filled graph of A. The benefit of equivalent reorderings is

that the reordered matrix incurs the same computational and storage costs as the original

matrix and in terms of performance, the equivalent reordering is every bit as good as the

original ordering. This implies that i f the matrix A has been ordered with some form of near

optimal ordering algorithm applying an equivalent reordering will not destroy the optimal

nature of the solution.

112

4.3 The Elimination Tree and Parallel Processing

Liu proves a number of theorems which are needed to explain how ehmination tree based
partitioning works. The proofs of these theorems are given in Appendix D.

Theorem 1 For each node Xj in G{A), the subgraph of G{A) (or G{F)) which consists of

nodes in the tree T[xj] is connected, where T[xj] is the subtree rooted at node Xj.

This theorem impHes that partitioning the tree into disjoint subtrees is the same as

partitioning the network into subnetworks. Considering Figure 4.5(a), partitioning the tree

into disjoint subtrees T[7] and T[8], rooted at nodes 7 and 8, is the same as clustering the

corresponding nodes in the network into two subnetworks, as shown in Figure 4.5(b).

Theorem 2 Given the matrix. A, and an equivalent reordering, F, the filled graphs of

G{A) and G(PAP-^) are isomorphic if they are treated as unlabeled structures.

Theorem 2 implies that every topological reordering of A is an equivalent reordering of

the matrix A . The corollary to this theorem is that the tree T[PAP-^] is isomorphic to

r [A] i f they are treated as unlabeled structures.

Combining the results of these two theorems allows us to perform a partitioning of the

network into subnetworks based upon an inspection of the elimination tree. If the matrix A

has been ordered using a near optimal ordering strategy, subtrees can be identified within

r [A] to partition the network into the required number of subnetworks, as in Figure 4.5. At

this stage the choice of subtrees is arbitrary but Section 4.3.2 introduces criteria for selecting

the roots of the subtrees so that the resulting network partition gives an approximately

balanced load across the processors. The results of theorem 2 allow the optimally ordered

coefficient matrix to be reordered so as to give the coefficient matrix a particular desired

structure. As this reordering is an equivalent and topological reordering no extra fiU-ins will

be introduced when processing the matrix and the same number of arithmetic operations

are required to process both this and the original matrix. The importance of this result

cannot be overstated as it is the foundation of the proposed parallel method. Given a

system of equations a near optimal ordering may be apphed to minimize the fiU-in resulting

from the factorisation of that system. Theorem 2 allows this minimum fiU-in reordering

to be ordered again using an equivalent reordering to give some desired matrix structure

without introducing any extra computations or information. Examining the ehmination

tree of this system and using theorem 1 allows independent subtrees to be identified within

the eUmination tree. These subtrees may be processed in parallel by assigning them to

113

4.3 The Elimination Tree and Parallel Processing

different processors in a multiprocessor array. A parallel solution lias been created by
simply rearranging the system of equations.

Theorem 1 allows the paraUehsm inherent in the system to be exploited and theorem

2 ensures that both sequential and parallel solutions wiU require the same total amount of

computation. This contrasts with a number of existing parallel solutions [44, 29, 35] which

rely on the introduction of extra information or computations to allow the exploitation of

parallelism. The new approach wiU be more efficient than existing methods, assuming that

all methods exploit the parallelism in a given problem to the same extent and in the same

way. Note that no reference has been made to the particular triangular decomposition

method adopted. This is because the paralleUsation based on theorems 1 and 2 depends

only on the structure of the coefficient matrix and is independent of the decomposition

technique. Hence a parallel solution can be devised which utilizes any of the available

triangular decomposition methods.

I t has been stated that partitioning the elimination tree into subtrees is the same as

partitioning the network into subnetworks. Partitioning the elimination tree has the effect

of giving the coefficient matrix a block based structure, in the same way that partition

ing the network does. Each block in the matrix corresponds to one or more subtrees in

the elimination tree. Allocating the main row/column blocks to individual processors, as

described in Section 3.4.1, is the final stage of the partitioning process.

4.3.2 U s i n g the E l i m i n a t i o n Tree to Achieve Load Balancing

Section 4.3 describes how the computational load may be spread across an array of pro

cessors by assigning subtrees of the elimination tree to separate processors. This approach

is based on a method due to George et. al [88] known as the subtree-to-subcube mapping.

George et. al pioneered the method to assign subtrees of the elimination tree onto disjoint

subcubes of a hypercube multiprocessor. Section 4.3 made no attempt to discuss how suit

able subtrees are identified so that there are always exactly the same number of subtrees as

processors, or how to assign subtrees to processors if there are more subtrees than proces

sors. The problem of dealing with the portion of the tree below the chosen subtrees {e.g.

nodes 9 and 10 in Figure 4.5) has also not been considered.

Geist & Ng [73] observe that the subtree-to-subcube mapping is only efficient when

applied to balanced trees with a regular structure, such as those resulting from grid-based

problems {e.g. finite element problems). Applying the method to imbalanced trees results

114

4.3 The Elimination Tree and Parallel Processing

in a large increase in the amount of interprocessor communication which degrades the
performance of the solution algorithm. Furthermore the method assumes there to be exactly
the same number of subtrees as there are processors. Geist & Ng discuss ways of treating
the lower portion of the matrix when using the subtree-to-subcube mapping and they put
forward two approaches. The first uses a fine grain mapping to assign alternate nodes
from the lower portion of the tree to the different processors whilst the second approach
considers the entire lower portion of the tree to be a subtree, rooted at the root of the full
tree. The latter technique was adopted here as it is more in keeping with the concept of
minimally interconnected subnetworks. Consider treating nodes 9 and 10 of Figure 4.5(a)
as a third subtree. This causes nodes 9 and 10 in the associated graph (Figure 4.5(b))
to be encapsulated into a third subnetwork lying between the two existing subnetworks
(Figure 4.6). This new subnetwork has the property that, i f it and the branches connected
to i t are removed, i t separates the remaining network into disjoint subnetworks. Recalling
the discussion of the diakoptic method from Section 3.5.1 highlights the fact that this new
subnetwork has aU the properties of the cutset block of the diakoptic method, and it is in fact
the cutset of the system. This can easily be verified by considering the ehmination tree and
the role played by the third subtree (Figure 4.6(a)). Removing this subtree separates the
tree into two disjoint subtrees. This cutset can be assigned its own processor but i t cannot
be processed in parallel with the other subtrees. As the structure of the elimination tree
shows this cutset subtree must be processed after the other subtrees have been processed
in parallel. This gives rise to the Master-Slave structure of Figure 3.2.

Geist & Ng refine the subtree-to-subcube mapping to create a method which is suitable

for use with unbalanced trees. Given an arbitrary tree and a set of n processors the technique

finds the smallest set of branches in the tree which can be partitioned into exactly n subsets

whose solution requires approximately the same amount of work. The key to method is

the use of a weighted elimination tree. Each node i in the tree is assigned a weight equal

to the number of operations required to eliminate node i plus the sum of the weights of

its child nodes. The weight of node i corresponds to the number of operations required

to eliminate the subtree rooted at node i and the weight of the root node corresponds to

the total number of operations required to factorise the matrix. An heuristic bin packing

technique [73, 89, 90] is used to partition the tree into n subsets of approximately equal

weighting. The initial step is to select the first n branches and place their weights in the n

bins. A breadth first search then scans the tree selecting nodes and adding their weights to

115

4.3 The Elimination Tree and Parallel Processing

(a) (b)

Figure 4.6: Treating the lower portion of the tree as a separate subnetwork a) partitioned
elimination tree b) partitioned network

each of the bins in turn. The algorithm continues until the difference between the weights

in the bins falls below some user defined tolerance. The contents of each bin {i.e. the nodes

associated with i t) are then assigned to individual processors. The remaining portion of

the tree, referred to as the separator set, can then be treated using a wrapping assignment

or a separate subtree. Figure 4.7 shows the results of this mapping for a simple tree, to be

processed using 4 processors. A wrapping technique is used to assign the members of the

separator set to different processors. Members of the separator set are denoted by double

circles.

As Figure 4.7 shows, a significant portion of the tree is actually contained within the

separator set. Treating the whole separator set (cutset) as a subtree is inefficient as this

has to be processed sequentially after the other subtrees have been eUminated. The more

nodes there are in the separator set, the more processing has to be performed sequentially,

reducing the amount of potential parallelism in the problem. Geist's technique becomes

inefficient when the cutset is treated as a separate subtree.

4.3.3 Advantages of the Tree-based Approach

The use of weighted elimination trees has a number of advantages besides those already

mentioned. I t has been suggested that the execution time of the parallel algorithm is

proportional to the length of the critical path. More precisely, the parallel execution time is

116

4.3 The Elimination Tree and Parallel Processing

Figure 4.7: Geist & Ng's partitioning method apphed to a simple tree (after Geist & Ng)

directly proportional to the number of operations that have to be performed to eliminate the

nodes on the critical path during the factorisation stage (i.e.the weight of the critical path

Wcp). The total number of operations required to factorise the whole matrix is equal to the

weight of the root node, Wroot- Hence the time taken to factorise the matrix sequentially

is proportional to Wroot- In solving any problem on a parallel computer we are interested

in the amount of speed-up which the parallel solution gives us. The speed-up, S, is the

ratio of the execution time of the best sequential program, tgeq, to the execution time of

the parallel program, tpar- Combining this with the two observations made above allows

the derivation of a simple rule of thumb for estimating the speed-up that can be obtained

for the parallel solution of a set of equations. As

tseq = OiiWroot (4.2)

and

•-par a2W, cp (4.3)

117

4.3 The Elimination Tree and Parallel Processing

where 0 1 , 0 2 are constants of proportionality, speed-up can be expressed as

I f the sequential and parallel solutions are executed on the same type of processor running

at the same clock speed

a-i Ki a2 (4.5)

and hence

Overheads and interprocessor communication have been ignored and (4.6) is a simple rule-

of-thumb for estimating the speed-up that can be expected for a given system.

When considering networks with many thousands of nodes the ehmination tree can

become very large and it is difficult to plot this on a reasonably sized sheet of paper.

Associating weights with each node in the tree allows the tree to be pruned to a more

manageable size by replacing entire subtrees with a single node of the same weight. I f a

toleranced threshold weight is set it is possible to replace aU subtrees with a weight that

falls inside the tolerance band by single nodes of equivalent weight. During the course of

this research project a software package was developed to derive and plot the elimination

tree for any desired system. The toleranced threshold technique was used to automatically

reduce the elimination tree diagram to an acceptable and easily managed size. The tolerance

band in the program was set to ±10%. The threshold value is calculated for each system

according to the number of subnetworks required, n, and the total weight of the elimination

tree. Hence

W,,resh = — ± 1 0 % (4.7)
n

As the partitioning of the ehmination tree into subtrees is currently performed by inspection

it is advantageous to have trees of a manageable size'. The reduced trees can be used to

determine the network partitioning but nodes replacing the pruned subtrees must be clearly

marked so that when nodes are assigned to processors the pruned subtrees can be expanded

back into their original form.

118

4.4 Summary

Subnetworks Speed-up Predicted
System Size SA SB speed-up

734 3 2.29 2.27 1.94
734 7 5.68 4.00 3.46
734 15 5.52 5.33 5.40

Table 4.3: The effect of load balancing on speed-up

4.3.4 Performance of the Tree-based Load Balancing

Table 4.3 shows speed-up results for a number of test systems partitioned into different

numbers of subnetworks. For each case the speed-up resulting from two different load

balancing techniques is shown. Scheme A equalizes the number of nodes in each subnetwork

whilst scheme B equalizes the computational complexity of each subnetwork based on the

weighted elimination tree analysis. SA is the speed-up resulting from the former scheme

whilst SB is the speed-up resulting from the latter. The speed-up predicted by the rule-of-

thumb of (4.6) is also shown for the sake of comparison.

Table 4.3 clearly shows the efficacy of the tree-based load balancing strategy, which

consistently results in higher speed-ups. The speed-ups produced in practice are similar to

those predicted using (4.6). At present, partitioning of the elimination tree is performed

by visual inspection. However the process is an heuristic one and it should be possible

to develop a set of heuristic rules which wiU form the basis of an automatic partitioning

algorithm. This idea is developed further in Chapter 7.

4.4 Summary

This chapter has considered the role played by the elimination tree in the creation of parallel

solution methods. I t has been demonstrated that the elimination tree is an indispensable

aid to be used in meeting the combined goals of network partitioning and load balancing.

The need for a balanced computational load has been stressed in this and other chapters

and a method has been presented which allows the network to be partitioned to give the

most balanced load. The method is based on the use of a weighted elimination tree and

it partitions the network in a way which tries to equalise the computational requirements

of each subnetwork. Results from a number of test systems have shown that this method

produces good parallel performance. A simple technique for estimating the maximum speed-

119

4.4 Summary

up that can be expected from the parallel solution of a set of equations has also been
introduced.

The most significant point emerging from this chapter is that it is possible to improve the

performance of a parallel solution of a given system simply by rearranging the elimination

tree associated with that system. The concept of an equivalent reordering has been intro

duced and a theorem has been presented which states that applying an equivalent reordering

changes the matrix structure and ehmination tree of that system but not the amount of

computation required to yield a solution. This allows a parallel solution to be formulated

which requires the same total amount of computation as the best sequential solution and

this is an improvement over existing parallel formulations, many of which introduce extra

computation steps to allow the exploitation of paraUehsm. The new method is independent

of the solution algorithm chosen as i t depends only on the structure of the elimination tree.

Hence it is possible to formulate a parallel solution using any desired triangular solution

method. The next chapter discusses the design of a Transputer implementation of this new

parallel formulation, based around the bifactorisation algorithm.

120

Chapter 5

A n Improved Parallel

Factorisation

5.1 Introduction

r I "\ his chapter considers in detail how the insight provided by the eUmination tree can

be used to create an improved parallel triangular factorisation and solution. For

power system simulations i t is most important to improve the performance of the for

ward/backward substitution operations of the algorithm as it is these operations which are

continuously repeated in a dynamic simulation. Factorisation only needs to be performed

once before repeated solution can occur and poorer performance can be tolerated. Any

event which causes a change in the topology of the system network requires a refactorisa-

tion of the matrix before further solutions can be obtained. When the topology does change

it is vital that the refactorisation be performed as quickly as possible so that real-time so

lutions remain in soft real-time^. Therefore i t is also desirable to improve the performance

of the factorisation part of a triangular method. Terformance' in this context equates to

the speed-up obtained from the method under consideration.

The previous chapter has discussed existing parallel Cholesky and LU-based methods

for the solution of linear equations. In the development of these methods the authors

have adopted various algorithmic approaches. The method described in this chapter draws

upon these different approaches and uses a combination of the best techniques to give an

^Soft real-time systems are those in which response time is important but the system still functions
correctly if some deadlines are missed. More specifically, soft real-time systems are real-time systems which
are tolerant of the occasional missed deadline or deadhnes which are not missed by much [91].

121

5.2 Development of the Recursively Parallel Method

® 0 — ©

1 2 3 4 5 6 7 8 9 1011 12
1 X X X

2 X X X

3 X X X X

4 X X X

5 X X X X

6 X X X

7 X X X

8 X X X X

9 X X X X

10 X X X X
11 X X X

12 X X

(a) (b) (c)

Figure 5.1: The simple 12 node example system a) network graph b) coefficient matrix
structure c) elimination tree

improvement in both the factorisation and substitution steps of a parallel LU-based solution

algorithm.

5.2 Development of the Recursively Parallel IVEethod

5.2.1 Ident i fy ing the Potential Paral le l i sm

The discussion on the identification of potential parallelism is best treated with regard to

a specific example. The example used here is a simple 12 node system and the network,

its associated matrix and elimination tree are shown in Figure 5.1. The elimination tree of

the system, which has already been ordered using an optimal ordering algorithm, shows the

parallelism existing in the problem.

To implement a parallel solution the workload must be divided up and assigned to

the individual processors. Consider the factorisation phase of the solution algorithm (a

similar argument applies to the substitution phase). The workload in this case is the set

of nodes which must be eliminated from the network (i.e. the nodes in the elimination

tree). Dividing the workload is equivalent to assigning nodes to processors for processing,

or in terms of the elimination tree, dividing up the tree and assigning the partitions to the

available processors. Two approaches exist for partitioning the tree - the first considers

each node in the tree individually whilst the second groups nodes into collections of nodes

122

5.2 Development of the Recursively Parallel Method

1 2 3 4 5 6 7 8 9 10 11 12

(a) (b) (c)

Figure 5.2: a) Partitioned topologically reordered network, b) admittance matrix structure
and c) effect on elimination tree

which are then assigned to individual processors. The first method also clusters tree nodes

into groups but each group contains nodes which are scattered throughout the tree. This

approach is equivalent to a wrap mapping and results in a large volume of interprocessor

communication. As a result this form of partitioning is really only useful for algorithms

implemented on parallel machines with shared memory. The latter method is more suitable

for distributed memory machines as it groups together nodes in the same region of the tree

and results in a lower volume of interprocessor communication.

Consider the example network - i t is possible to identify four subtrees which may be

processed concurrently. To partition the network into four independent subnetworks a topo

logical reordering must be applied. It is assumed that the network of Figure 5.1 has already

been optimally ordered. The four independent subtrees are {1,6},{4,11},{2,5},{3,12} and

the remainder of the network ({7,8,9,10}) are the cutset. The topological reordering wiU

reorder the network such that nodes in the independent subtrees are numbered first and

cutset nodes are numbered last. The nodes in the first subtree {1,6} will be renumbered as

{1,2} whilst the nodes in the last subtree will be renumbered as {7,8}. The cutset nodes

will be renumbered as {9,10,11,12}. Figure 5.2(a) shows the renumbered network after

topological reordering and Figure 5.2(c) shows how the ehmination tree is divided into the

four independent subtrees which correspond to the four subnetworks. Parallel factorisation

can be accompUshed by assigning the four subnetworks to four different processors. The

123

5.2 Development of the Recursively Parallel Method

problem then arises of how to deal with the cutset nodes. These nodes may be assigned
to the four processors along with the subnetworks using a wrap mapping [73] but this in
troduces a large volume of communication during the cutset solution. A better approach
[73] is to treat the cutset as a separate subtree and assign it to its own (fif th) processor.
Figure 5.2(c) implies that the cutset must be processed after the processing of the other four
subnetworks is complete. Information from all the other processors must be passed to the
processor which hosts the cutset so the cutset must be processed by a central coordinating
processor. The algorithm structure is that of Figure 3.2.

The problem in treating the cutset as a separate subtree is that i t ignores potential

parallelism existing within the cutset. In the cutset of Figure 5.2 nodes 9 and 10 may be

processed simultaneously, as indicated by Figure 5.2(c). Three further subtrees may now be

created { 9 } , {10} and {11,12}. These subtrees are derived by partitioning the cutset and

are referred to as minor subtrees, or minor subnetworks. Subtrees {1,2},{3,4},{5,6},{7,8}

are created by the existence of the cutset and are referred to as major subtrees, or major

subnetworks. Subtrees {9} and {10} can be assigned to separate processors and factorised

in parallel whilst subtree {11,12} is factorised after these two have completed. Extra paral

lelism has been exploited by partitioning of the cutset thus reducing the amount of sequential

computation. The elimination tree now consists of three distinct levels. Each level contains

a number of subtrees (subnetworks) and all the subtrees in a level are independent and may

be processed in parallel. For the example of Figure 5.2 the levels are

Level 1 {1,2},{3,4},{5,6},{7,8}

Level 2 {9},{10}

Level 3 {11,12}

Although the processing within levels can be performed concurrently, the levels themselves

must be processed in sequence (i.e. Processing of level 2 cannot begin until the processing

of level 1 is complete).

The scheduhng strategy can be used to make this approach more efficient as i t is ob

served that subtrees {1,2},{3,4},{5,6} and {7,8} must be factorised before {9} and {10}

can commence factorisation. The processors which dealt with {1,2},{3,4},{5,6},{7,8} are

lying idle and may be used to factorise {9} and {10}. The same argument can be apphed

to subtree {11,12} and only four processors are required to factorise the seven subtrees.

Each subtree constitutes a separate computational task and more than one task is assigned

124

5.2 Development of the Recursively Parallel Method

to each processor. For example, one processor wiU host the tasks (subtrees) {1,2}, { 9 } ,
{11,12} whilst another might host {5,6} and {10}. This is a departure from existing ap
proaches which divide the problem into computational tasks and assign each task to its own
processor. The essence of the method is to exploit the parallelism which exists within the
cutset by making use of idhng processors and the method has been termed the Recursively
Parallel (RP) method.

5.2.2 T h e Recurs ive Bordered Block Diagonal F o r m

I f the Recursively Parallel solution is to be efficient it is necessary to ensure that exploiting

parallehsm within the cutset actually reduces the volume of communications to the last task.

This has been achieved by constraining the RP method to make use of a particular coefficient

matrix structure known as the Recursive Bordered Block Diagonal Form (RBBDF).

The RBBDF matrix can be derived by considering a graph of the network described

by the hnear equations. Normally the network is comprised of a number of subnetworks

connected in some arbitrary fashion. Suppose there exists a system with fifteen subnetworks,

eight major and seven minor, and that the interconnections are constrained such that the

subnetworks are arranged in binary tree structure. Figure 5.3(a) shows the tree structure

and Figure 5.3(b) shows the matrix associated with the network. This matrix structure

is similar to the BBDF structure in that there are blocks along the leading diagonal and

a border region along the bottom and right of the matrix. Most of this border region is

empty and it contains only two fines of blocks which run diagonally across to the lower right

corner of the matrix. There is a significant amount of parallefism available for exploitation

in this structure as the constrained interconnection creates very Uttle dependence between

the matrix blocks. There are no dependencies between the first eight blocks and these may

be processed in parallel. Significantly these first eight blocks are all the subnetworks in the

leaf level (level 0) of the tree-based network {i.e. the major subnetworks). Dependencies

do exist between the major and the minor subnetworks themselves. During factorisation of

blocks 1 to 8 updates will be made to blocks 9 to 12 and hence 9 to 12 cannot be processed

until aU processing on blocks 1 to 8 is complete. There are no dependencies between blocks

9 to 12 and these may also be processed in parallel. These blocks together constitute level

1 of the tree-based network graph. Processing of blocks 9 to 12 updates blocks 13 and 14

and the processing of these two blocks must commence after the processing of blocks 9 to

12 has completed. The lack of dependencies between 13 and 14 allows these two blocks

125

5.2 Development of the Recursively Parallel Method

1 2 3 4 5 6 7 8 LevelO

\ / \ / \ / \ /
9 10 11 12 Level 1

13 14 ljevBl2

15 Levels
•k •

•k

-k

•k

kr

-k -k

•k

•k

k

•k

•k

* -k

-k k

k k

•k k k k

k k k

Figure 5.3: Subnetworks constrained to a binary tree connection structure a) elimination
tree b)coefficient matrix structure

to be processed in parallel and they constitute level 2 of the network graph. Finally block

15 may be processed after 13 and 14 have completed and this block corresponds to the

root node of the tree structured network graph. The four levels of the tree give rise to

four regions of independence within the matrix. AU the blocks within each of these regions

may be processed in parallel. However the regions must be dealt with one after another

in a sequential manner. Constraining the network graph to have a binary tree structure

immediately introduces four phases of paraUehsm into the factorisation and substitution

operations on the coefficient matrix. Unfortunately the network is somewhat artificial and

it would be very difficult to partition a real network, particularly one as complicated as

a power system, such that its constituent subnetworks were connected together to form a

binary tree.

Suppose that the strict binary tree connection constraint is relaxed so that an additional

connection is allowed between every subnetwork and the last subnetwork (i.e. the root) of

the tree. Adding in the extra connections creates a border in the last row and column of

the matrix but this does not affect the exploitation of parallelism described in the preceding

paragraph. Four phases of parallelism stiU exist corresponding to the four levels in the tree

and aU subnetworks which lie in the same level of the tree may be processed in parallel.

The only consequence of allowing the extra connections in the network graph is that extra

updates have to be performed between the parallel phases. For example the processing of

126

5.2 Development of the Recursively Parallel Method

level 0 {i.e. blocks 1 to 8 in parallel) requires updates to block 9 to 12 but also to block
15. Relaxing the connection constraints still further allows any subnetwork to be connected
to any other subnetwork below it in the tree. Connections across the tree are not allowed.
Implementing'this strategy would allow subnetwork 1 to be connected to subnetworks 9,
13 and 15. This is depicted in Figure 5.4(a) and the associated matrix is given in Figure
5.4(b). This matrix exhibits Recursive Bordered Block Diagonal Form. If the diagonal
blocks corresponding to the subnetworks in level 0 of the tree are considered i t can be seen
that the remaining blocks form a border block below and to the right of them. The diagonal
blocks corresponding to the first two levels (1 to 12) are also bordered below and to the
right by the remaining network blocks. Similarly the diagonal blocks for the first three levels
are also bordered below and to the right by the remaining network blocks. The bordered
block diagonal form is recurrent in the matrix giving rise to the name of Recursive Bordered
Block Diagonal Form.

Interconnecting the subnetworks such that the associated matrix has RBBDF imposes

constraints on the network partitioning but these are reasonably loose constraints. Many

connections are allowable in the network and it is relatively easy to partition any real

network such that the coefficient matrix is in RBBDF. The structure is even more flexible

in that some of the connections may be missing. For example if the connection between

1 and 15 is missing i t does not significantly alter the matrix structure and the same four

phases of parallelism can be exploited. In fact any of the connections may be missing and

more than one may be missing simultaneously. The only requirement is that there must

be at least one connection to each subnetwork which is present. An even greater degree

of flexibiUty is offered when it is recognized that not all of the subnetworks have to be

present either. I f insufficient network partitions can be found to give the required number

of subnetworks without violating the connection constraints then some of the subnetworks

can be missed out. For example if only 14 subnetworks can be found, subnetwork 1 in

Figure 5.4(a) can be missed out ^ so that only seven subnetworks exist in the first level.

Multiple subnetworks can be missing simultaneously, the only condition being that the root

of the tree must always exist.

The constraints which must be imposed on the network partitioning in order to produce

^The numerical labeling of the subnetworks must be contiguous. In this example, level 0 would consist
of nodes 1 to 7, level 1 consists of nodes 8 to 11, blocks 12 and 13 lie in level 2 and the root of the tree is
block 14.

127

5.2 Development of the Recursively Parallel Method

1 2 3 4 5 6 7 8 LevelO

Level 1

Level 2

Level 3

k k:

k: •

k k

k: k k k

-k -k -k k; k

-k

k

k k

k

• -k

•k

•k

kr

•k

k

k

k

*

•k

k

k

k

k

k

Figure 5.4: The interconnections giving rise to RBBDF a) ehmination tree b) coefficient
matrix structure

an RBBDF coefficient matrix may be summarized as

• The interconnection of subnetworks is based on a binary tree with additional connec

tions

• There may be up to 2 " - 1 subnetworks connected in a tree-like fashion, where m is

the number of levels in the tree and indicates the number of parallel phases that can

be exploited in either factorisation of substitution

• The subnetwork which forms the root of the tree must always be present - any other

subnetworks may be missing

• The subnetworks which are present must be labeled contiguously

• Connections may be missing from the tree structure but there must be at least one

connection to every subnetwork which is present. In other words, subnetworks which

are present must be connected to the tree and cannot be isolated.

• Any subnetwork is allowed to connect to any other subnetwork below it in the tree.

Connections across the tree are not allowed

Figure 5.5 shows the possible interconnections for networks with 3, 7, 15 and 31 subnetworks.

128

5.2 Development of the Recursively Parallel Method

-I 2

1 2 3 4

Figure 5.5: The constrained subnetwork interconnections

Given the coefficient matrix of a system it may be placed into RBBDF in three simple

steps

1. Apply an optimal ordering to this system to ensure minimum fiU-in and short path

lengths

2. Determine the ehmination tree of the system

3. Using the eUmination tree, apply the equivalent reordering which converts the matrix

into RBBDF.

The equivalent reordering is determined by visual inspection of the elimination tree. The

tree is divided into the required number of subtrees and these subtrees must be arranged

within the tree such that their interconnections do not breach the connectivity constraints

necessary for RBBDF. The individual nodes of the tree must then be renumbered. Suppose

that k subtrees have been identified and that subtree 1 encloses n i nodes, subtree 2 encloses

n2 etc. The individual tree nodes are renumbered a subtree at a time in ascending subtree

order. The n i nodes in subtree 1 are renumbered as 1 to n i . The nodes in subtree 2 are then

renumbered as n i -f 1 to n i + n2 etc. Once all the nodes in the tree have been renumbered

129

5.2 Development of the Recursively Parallel Method

the matrix associated with the tree will have been restructured to give RBBDF.
5.2.3 Ba lanc ing the L o a d

The subtree-to-subcube mapping (Section 4.3.2) is not adequate for partitioning trees for

solution with the Recursively Parallel method. A variation of this technique has been

developed to partition the tree so as to exploit the potential paraUehsm existing in the

cutset itself. As with subtree-to-subcube mapping, the approach is based on the use of a

weighted eUmination tree. For each node i in the tree the number of multiphcation-additions

required to ehminate that node from the network is calculated. This is the computational

complexitr^ C{i) of ehminating node i and if row i of the matrix contains k non zero elements

C (0 = 1 + A: + M ^ (5.1)

The nodes in the tree are assigned a weight, W{i), defined to be the computational com

plexity of node i plus the weight of the descendant nodes. The weight of the root node is

the computational complexity of factorising the whole matrix. The method then assigns

nodes to processors by selecting the correct number of subtrees from the eUmination tree.

For example, to partition the network into eight main subnetworks up to fifteen subtrees

have to be identified - the eight main subtrees and seven minor ones. These subtrees must

be connected in the manner shown in Figure 5.5.

When partitioning an ehmination tree i t is necessary to pick subtrees such that those

subtrees which Ue in the same level of the appropriate tree in Figure 5.5 have roughly

equal weights. For example subtrees 1 to 8 he in the same level and they should have

approximately equal weights. Consider the tree of the reduced CEGB 734 node system

shown in Figure 5.6 and how it is partitioned into subtrees for a solution with eight main

subnetworks on eight processors. The subtree rooted at * has a weight of 1228 whilst the

subtree rooted at ** has a weight of 1246. In real systems it is not usually possible to

identify subtrees with exactly the same weight and some imbalance in the computational

loading has to be accepted. As following chapters wiU show, this imbalance can be used to

improve speed-up.

^Several other formulae for determining computational complexity may also be used e.g. total number
of nonzeroes in the corresponding matrix row, total number of machine level arithmetic operations for
factorisation, total number of machine level arithmetic operations for substitution

130

5.2 Development of the Recursively Parallel Method

* 31*

Figure 5.6: Partitioning of the reduced CEGB 734 node system for solution on 8 processors

5.2.4 R e d u c i n g the Sequential Par t of the Method

The RBBDF matrix structure may be used to reduce the size of the sequential part of a

conventional parallel LU solution and can increase performance. Section 5.2.1 showed that

potential parallelism exists in the processing of the cutset and the use of RBBDF allows

this parallelism to be exploited.

Consider the network represented in Figure 5.4(a). The sequential part of the algorithm

is reduced by partitioning the cutset blocks into minor subnetworks found in level 1 and

below. In Figure 5.4(a) minor subnetworks 9 to 15 together constitute the cutset block and

they would be solved sequentially as a single block in a conventional triangular solution.

Blocks 1 to 8 are the subnetworks in the traditional approach and parallelism is only ex

ploited in the processing of these subnetworks. Giving RBBDF structure to the coefficient

matrix and partitioning the cutset into minor subnetworks allows parallelism to be exploited

in the solution of both main subnetworks and the cutset. ParaUeHsing cutset processing

reduces the size of the sequential part of the method and will result in improved speed-ups.

For example, consider the system of Figure 5.4(a) and assume that the processing of each

subtree requires one unit of computation. In a conventional BBDF-based parallel solution

131

5.3 A Simulation of the Recursively Parallel Method

subtrees 1-8 would be processed in parallel whilst subtrees 9-15 would be aggregated into
a single subtree and processed sequentially. Processing of 9-15 would take seven units of
computation whilst parallel processing of 1-8 would take one unit of computation. The
BBDF-based solution requires eight units of computation time to yield a solution. Now
consider the RBBDF-based triangular solution. Subtrees 1-8 are again processed in parallel
requiring one unit of computation. Now 9-12 are also processed in parallel, requiring one
unit of computation. Processing 13 and 14 concurrently requires one unit of computation
and processing of 15 requires one further unit of computation. The RBBDF-based solution
requires only 4 units of computation time to yield a solution, which is a significant improve
ment over the BBDF-based solution. Note that both solutions require the same amount of
total (sequential) computation but the RBBDF solution allows idle processors to be used
to process the cutset in parallel. The exploitation of paraUeUsm within the cutset is made
possible by the use of the RBBDF coefficient matrix.

5.3 A Simulation of the Recursively Parallel Method

In order to verify the effectiveness of the Recursively Parallel method a simulation of the

approach was implemented on an IBM PC-AT clone. A suite of four test systems was

used in the simulation and these were partitioned into various numbers of subnetworks for

solution. There were three aims to the simulation

1. To verify that the RP method worked correctly, particularly in the presence of missing

connections and subnetworks.

2. To verify that the RP method, when executed on a parallel machine, would give a

faster solution than the best sequential method. Also to verify that the total compu

tation time for the RP method was the same as that of the best sequential method.

3. To verify that the RP method, executed on a parallel machine, would give a faster

solution than existing parallel LU based solution techniques.

This section discusses the implementation of the simulation and the results obtained from

i t .

132

5.3 A Simulation of the Recursively Parallel Method

Figure 5.7: The block oriented data structure

5.3.1 Implementat ion

The simulation of the RP method is based around ZoUenkopf's bifactorisation method.

Bifactorisation is used to decompose the RBBDF coefficient matrix into the relevant factor

matrices and these are multiplied together to yield the solution for the unknown vector. The

use of the R B B D F coefficient matrix allows the factorisation and substitution operations to

be performed in a number of parallel phases, as described in the previous section. Timing

mechanisms have been built into the simulation to allow the computations to be accurately

timed. This enables an estimate to be made for the computation time of a multiprocessor

implementation of the method. The overall execution time may be monitored and it is also

possible to time the processing of individual regions of the coefficient matrix. To maintain

maximum accuracy timing is performed using an external digital counter/timer connected

to the PC's parallel port. This timer has a resolution of ^th. of a millisecond and timing

is triggered by start and stop signals sent from the PC. The times recorded by the timer

are manually entered into the simulation by the user.

The heart of the simulation, and of the multiprocessor implementation, is the data

structure used to store the coefficient matrix. Two data structures were used in the sim

ulation, each giving rise to a shghtly different algorithm. The first structure, depicted in

Figure 5.7, treats the coefficient matrix in a blockwise manner. Each populated region

in the matrix, shown shaded in Figure 5.7, is treated as a separate block and bifactorisa

tion is accompHshed by performing elementary operations on the individual matrix blocks.

Computation time is monitored by timing the elementary operations on individual blocks.

The method is described further in Chapter 8 where it is shown that this block oriented

treatment of the matrix may form the basis of a different type of parallel solution. For

133

5.3 A Simulation of the Recursively Parallel Method

Figure 5.8: The row oriented data structure

the method described in this chapter the block-oriented approach does not give the most

efficient solution. The second data structure treats the matrix in a row-oriented fashion.

Again the matrix is stored in sections, as in Figure 5.8, and if there are n subnetworks

then there will be n sections in the matrix. Each of the sections extends from the diagonal

to the righthand edge of the matrix and covers both populated (shaded) and unpopulated

(unshaded) regions of the matrix. It is observed that the lower right corner of the matrix is

more densely populated and sections in this region may employ full array storage for matrix

elements whilst those in the rest of the matrix make use of sparse linked hst storage. The

location of the changeover between sparse and fuU storage is specified by the user. For many

of the simulation runs only the last section made use of full array storage. Bifactorisation

is accomplished using the bifactorisation rules of equations (2.28) to (2.30). Timing of

the computation is restricted to monitoring the processing time for each section but this is

sufficient to allow a prediction of parallel computation time.

During a simulation run a time is returned for the factorisation, left multiplication and

right multiplication operations on each block. If the system is partitioned into n blocks

there will be n factorisation times t } [\] . . . t j [n \ , n left multiplication times t i [l \ . . .ti[n] and

(n - 1) right multiplication times tr[l] . . . t r [n - I] . These (3n - 1) timing statistics may be

manipulated to produce a value for the total computation time of the RP method and an

estimate of the execution time of the RP method on a parallel computer. Total computation

time is easily found by summing all (3n - 1) times and this should be similar to the total

computation time for the best sequential method. If this does not hold then the RP method

will be inherently less efficient than the sequential method. Total computation time may

be subdivided into total times for each of the three solution operations (i.e. factorisation,

134

5.3 A Simulation of the Recursively Parallel Method

Figure 5.9: Algorithm structure for the Recursively Parallel method

left multiphcation and right multipUcation). The following relationships wiU be true if the

RP method is as efficient as the best sequential method

n

n

(5.2)

(5.3)

(5.4)
1=1

The estimated execution time for the parallel RP solution can be determined by consid

ering the tree-based interconnection of subnetworks. This gives rise directly to the algorithm

structure of the RP method which is of the form shown in Figure 5.9. Consider the fac

torisation operations. Fi, F2, F3, F4 all commence at the same time. -F5 cannot commence

until both -Fi and F2 complete whilst Fe cannot commence until F3 and F4 are complete.

Fr commences when both F5 and FQ are complete. Suppose that Fi takes much longer to

perform than F2, F3, F4. F3 and F4 will complete and FQ will be able to commence its op

eration. F2 wiU also have completed but F5 is held up awaiting the completion of i ^ i . When

135

5.3 A Simulation of the Recursively Parallel Method

Fj finally finishes F5 wiU commence but this wiU occur some time after the commencement
of FQ. I f F5 and Fe take equal times to process then Fe will complete before F5 and Fj wiU
be held up awaiting the completion of F5. The long processing of Fi can be seen to ripple
down through the tree causing other operations to wait and Fi has a direct effect on the
total time for parallel factorisation. In fact the longest operation in the first level of the
tree defines a critical path from this operation to the root of the tree. Summing the times of
factorisation operations on this critical path gives the total time for parallel factorisation,
tpARf Summing the left and right multiphcation times along the same path defines the
total left and right multiphcation times, ip^ifi, and tpAR^ respectively.

A cursory examination of the algorithm structure shows that the total parallel execution

time is not the sum of the total parallel times for each of the three operations. Many of

the left multipUcation operations occur in paraUel with the factorisation operations and are

effectively hidden behind the factorisations. Only one left multipUcation operation is not

performed in paraUel with the factorisations and aU of the right multipUcations have to be

performed after the left multipUcations are complete. The total paraUel execution time for

the RP method is therefore given by

tpARtotai = ^PARf + tPARr + tl[n\ (5.5)

The speed-ups can be calculated as

5; = ^ (5.6)

S = (5.7)
tPARtotal

where 5/ is the factorisation speed-up and S is the overall speed-up. Substitution speed-up

must be calculated in a different manner. In a power system simulation, where the network

equations are solved for many different right hand sides, factorisation is performed only

once but substitution is performed repeatedly. Under these conditions the structure of the

algorithm changes to that shown in Figure 5.10. None of the left multipUcations are hidden

behind other operations and the time for parallel substitution, tpARsubsti becomes

tPARs^tst = iPARi + tPARr (5-8)

136

5.3 A Simulation of the Recursively Parallel Method

c

Figure 5.10: Algorithm structure for repeated substitution with multiple right hand sides

Hence the substitution speed-up, Ss, is given by

tpARi + tpARr

tsEQi + tsEQr
(5.9)

5.3.2 Resu l t s of the Simulat ion

The results of the simulation are encouraging and bear out all the theoretical predictions

presented earlier in this chapter concerning the performance of the RP method. Table 5.1

lists the speed-up results for both the RP method and a standard parallel LU method for

the four test systems. Figure 5.11 to Figure 5.13 show these results graphically.

I t is easy to see from the graphs that the RP method performs better than the existing

approaches to parallel solution. Higher absolute speed-ups are obtained and as the number

of processors increases the speed-ups carry on increasing and do not appear to suffer from

the saturation which affects the standard solution. This does not mean that the RP solution

never saturates, simply that saturation is not observed within the region of interest. Given

that the RP method returns higher speed-ups than the standard method from the same

number of processors i t is obviously more efficient.

The results obtained from the simulation are somewhat optimistic as there are certain

characteristics of a parallel program that are not included in the simulation. The main

omission is that of interprocessor communication and the overheads it introduces. A com

munication between two processors takes a finite amount of time and this depends not only

137

5.3 A Simulation of the Recursively Parallel Method

10 T

9 +

7 +

Q.

I '
Q.
Ui

118 Node RP

_l 1 i 1

4 6 8 10 12

Number of p rocessors , n

734 Node RP

1624 N o d e R P

A 629 Node RP

1624 Node

118 Node

629 Node

14 16

Figure 5.11: Overall speed-up results of simulated solution of the four test systems - solid
lines correspond to the standard parallel method whilst dashed lines correspond to the RP
method

138

5.3 A Simulation of the Recursively Parallel Method

„ 4

3 +

_. 734 Node RP

1624 Node RP

. ' ' 629 NodeRP

118 Node Re-'

1624 Node
629 Node

Node

118 Node

-+- -+-
6 8 10

Number of p rocessors , n

12 14 16

Figure 5.12: Factorisation speed-up results of simulated solution of the four test systems
- solid lines correspond to the standard parallel method whilst dashed lines correspond to
the RP method

139

5.3 A Simulation of the Recursively Parallel Method

7 +

S 5

4 +

2 +

1 +

1624 N o d e R P

734 Node RP

. 629 Node RP

'1624 Node

734 Node

629 Node

118 Node

-+- -+- -+- -+-

4 6 8 10 12

Number of processors , n

14 16

Figure 5.13: Substitution speed-up results of simulated solution of the four test systems -
soUd Unes correspond to the standard paraUel method whilst dashed Unes correspond to the
RP method

140

5.3 A Simulation of the Recursively Parallel Method

Recursively Parallel Speed-up St andard Speed-up
System CPU's Overall Factorise Substitute Overall Factorise Substitute

118 2 1.50 1.55 1.62 1.50 1.55 1.62
118 4 3.43 2.72 2.72 2.55 2.63 2.42
118 8 5.34 4.41 3.86 3.13 3.28 2.94
629 2 1.94 1.94 1.94 1.94 1.94 • 1.94
629 4 2.77 2.41 2.49 2.34 2.31 2.41
629 8 4.62 3.96 4.29 3.39 3.24 3.69
629 16 7.12 6.17 6.57 4.29 4.09 4.73
734 2 1.92 2.01 1.87 1.92 2.01 1.87
734 4 4.43 3.34 3.08 3.12 3.14 2.95
734 8 6.12 5.37 4.98 3.76 3.66 3.95
734 14 9.71 6.67 8.14 4.2 3.91 4.95
1624 2 1.85 1.79 1.97 1.85 1.79 1.97
1624 4 3.46 2.41 3.07 3.36 2.34 3.01
1624 8 6.36 5.15 5.58 4.92 3.92 4.65
1624 13 8.00 6.27 8.99 4.5 3.77 5.80

Table 5.1: Results of the simulated solution of the four test systems

on the length of the message but also on the state of the receiving task. I f the intended

recipient is not ready to receive information the communication wiU be blocked until the

receiving task reaches its synchronisation point. Whilst the transfer time of the message is

proportional to the length of the message the delays due to blocking are non-deterministic

and difficult to simulate. Accounting for the communication delays would make the simula

tion significantly more complicated. The results for the standard solution are also obtained

by simulation and neither set of results includes the effects of communications. Given that

the volume of communications involved in each method is roughly similar this allows a

relative comparison of the performance of the two methods. The absolute performance of

either method will be worse than that given in Table 5.1 due to the delays resulting from

communication and scheduling. In a multiprocessor environment the communication delays

will be affected by the target processor topology and communication routing protocols used.

Omitting communication from the simulation means that i t cannot be used to assess the

suitability of different target architectures for the RP method.

I t was stated earlier that if the RP method of solution is efficient the sum of its compu

tation times should be approximately equal to the computation times of the best sequential

method. Table 5.2 compares the total computation time of the RP solution with that of

the best sequential solution for each of the test systems. In most cases the results are

141

5.3 A Simulation of the Recursively Parallel Method

similar, indicating the efficiency of the RP method. However there are a few differences
which should be noted. In certain cases (e.g. the 118 node system using 8 processors) the
total computation time of the Recursively ParaUel method is greater than that of the best
sequential method. Where there are differences they are not that large, ranging from 15%
for the 118 node, 8 processor case down to 6% for the 734 node, 16 processor case. For
the 1624 node systems it is noted that the total computation time of the RP method is
always less than the total computation time of the best sequential method, by up to 3%.
AU these discrepancies are due to the fact that the data structures used in the two solution
methods are different. The best sequential method uses a Unked Ust data structure which
optimises storage and processing for a sequential solution. The RP method uses data struc
tures that mimic the data structures which would be used in a parallel implementation.
This introduces extra overhead into the solution and its effect is more noticeable in the
solution of smaUer systems. The RP method uses a hybrid storage scheme so that some of
the elements in the dense lower right corner of the matrix are stored in arrays. When the
lower right corner becomes densely populated, array storage is more efficient and leads to
faster processing. The effect is more noticeable for larger systems and this explains why
the total times for the 1624 node RP solution are less than the best sequential times. The
overhead introduced into the simulated RP solution by the more complex data structures
stiU exists but its effect is counteracted by a decrease in execution time due to array stor
age. This effect probably occurs in some of the smaUer systems but here it is Ukely that the
reduction in execution time produced by hybrid storage in not sufficient to counteract the
adverse effects of the overhead introduced by the more complex data structures. Hybrid
storage is not implemented in the best sequential solution but the fact that it reduces the
execution time of the more complex RP method to below that of the sequential method
provides further evidence to support the claim that hybrid storage may play a significant
part in improving existing sequential methods.

One of the main causes of inefficiency in a paraUel program is the overhead introduced by

interprocessor communication. I f the communication overheads introduced into the parallel

implementation can be kept to a minimum the performance achieved wiU be similar to

that predicted by Table 5.1. Low communication overheads wiU lead to near-unity serial

efficiency. As Tylavsky et al. [50] observe, the serial efficiency of a paraUel algorithm relates

to its scalabiUty. An algorithm which has a unity serial efficiency wiU display increasing

speed-up as the number of processors used to execute the algorithm increases. An efficiency

142

5.4 Summary

System CPU's
Recursively Parallel

Total Computation Time
Best Sequential

Computation Time

118 2 13.63 13.24
118 4 14.47 13.24
118 8 15.32 13.24
629 2 80.07 76.49
629 4 82.43 76.49
629 8 81.91 76.49
629 16 82.00 76.49
734 2 95.87 94.89
734 4 99.55 94.89
734 8 99.82 94.89
734 14 100.45 94.89
1624 2 273.04 275.40
1624 4 274.32 275.40
1624 8 268.08 275.40
1624 13 269.19 275.40

Table 5.2: Simulated RP solution vs best sequential solution

greater than unity indicates that the speed-up will saturate as the number of processors

increases and may eventually fall off. The greater the serial efficiency, the quicker the speed

up wiU saturate. Tylavsky et al. note that an efficiency of less than about 4 or 5 is needed

in order to achieve a speed-up greater than unity.

5.4 Summary

The previous chapter discussed existing parallel methods for solving systems of linear equa

tions. This chapter has considered how those methods can be modified to create a parallel

solution which has a better performance. The increase in performance is achieved through

the use of a particular coefficient matrix structure, the Recursive Bordered Block Diagonal

Form. This results from constraining the subnetwork interconnections so that the network

graph has a tree-like structure. Within the RBBDF matrix there are regions of indepen

dence and all subnetworks contained in these regions may be processed in parallel. Several

independent regions exist in the matrix and solution involves sequential execution of several

parallel phases.

A simulation of the method has been implemented and the results for the solution of four

test systems have been presented. The simulation results support all the claims made for

143

5.4 Summary

the RP method and show that i t offers better speed-up performance than standard methods
in aU phases of the solution. As the total amount of computation involved is the same as in
the best sequential method it is possible to create a highly efficient parallel implementation
i f the communication overheads can be kept to a minimum.

The Recursively ParaUel method is not a revolutionary new algorithm for the solution

of Unear equations. I t is simply a restructuring of the problem to allow existing methods

to exploit more of the potential paraUeUsm in the problem. This restructuring is achieved

by constraining the topology of the network interconnections to a particular form. Despite

the constraints, this form of interconnection is very fiexible and should allow the solution

of any real system.

144

Chapter 6

Issues of Parallel Implementation

6.1 Introduction

- - n the previous chapter the general algorithm of the Recursively ParaUel solution method

- - was discussed without reference to how it might be implemented on a MIMD computer.

Chapter 4 considered the partitioning of the problem and argued the case for obtaining

an equal division of work through a careful analysis of the system to be solved. This

chapter considers some aspects of implementing the Recursively ParaUel solution on a MIMD

machine, in particular on an array of INMOS Transputers. These issues relate to the

algorithm (e.g. number of tasks, data structures, methods of communication etc.) and to

the architecture of the solution, both the physical architecture of the target machine and

the software architecture of the interconnected tasks and their placement on the available

processors.

The INMOS Transputer was designed to provide an implementation of Hoare's Com

municating Sequential Processes (CSP) paradigm of parallel computation [92, 93]. CSP

considers a parallel program to be made of a coUection of independently executing tasks,

where each task is an autonomous unit of sequential code which executes in the same man

ner as a normal sequential program. Tasks synchronise their actions and share data through

expUcit interprocess communications along virtual, unidirectional communication channels.

Many paraUel languages (e.g. aU the INMOS parallel languages, Ada etc.) are based on

the CSP paradigm and the comments made in this chapter concerning an INMOS ' C im

plementation apply equaUy weU to implementations in other CSP-based languages. Certain

specific issues of a Transputer implementation are considered but i t should be noted that

145

6.2 : Algorithmic Issues

the Transputer has only been used as a cheap testbed on which the methodologies may be
proven. Having verified the methods on a Transputer system it is easy to generalize them
for any MIMD/CSP implementation and also implementations on distributed computer
networks {e.g. workstation clusters [85]).

6.2 Algorithmic Issues

6.2.1 P r o g r a m Structure and Task Design

The design of a parallel program requires careful consideration of the algorithm it embodies.

The algorithm must be decomposed into individual tasks in a manner which maximizes the

speed-ups that can be obtained. Particularly important is matching the number of tasks

to the available processing hardware. I f there are more tasks than there are processors the

performance can be degraded due to overheads introduced by multitasking. Hence it is

important to choose the right grain of parallelism for the implementation.

The Recursively Parallel program implemented in this research project is based upon

ZoUenkopf's Bifactorisation method of triangular decomposition. Within this method three

distinct operations can be identified - factorisation of the coefficient matrix, multiplication

of left hand factors and multiplication of right hand factors. For the RP solution of a given

system, p distinct subnetworks will be created within the network. The three basic opera

tions must be applied to each subnetwork and it is perhaps easiest to consider the parallel

program to be made of 3p tasks; p factorisation tasks, p left factor multiphcation tasks and

p right factor multiplication tasks. One each of the factorisation, left and right multiph

cation tasks would be associated with each subnetwork. This approach can be seen to be

inefficient when the bifactorisation process is considered as a whole. First the factorisation

operation is performed followed by left factor multiphcation and then right factor multipli

cation. Left factor multiphcation cannot commence until factorisation completes and right

factor multipUcation cannot commence until left factor multipUcation completes. Applying

this to an individual subnetwork we have the same sequence of operations. As neither of

the multipHcations can occur at the same time as factorisation both multipUcation tasks

would be idle whilst the subnetwork is being factorised. A similar argument shows that at

any point in time only one of the three tasks associated with a given subnetwork is active,

the other two being idle (Figure 6.1(a)). A single task can be created which performs the

three operations one after another on a given subnetwork. Now only p tasks are required to

146

6.2 Algor i thmic Issues

(a)

•' "" "

i L

(b)

Right
Multiply

Left
Multiply

Factorise

k

BUSY

Factorise Left Right ^
Multiply Multiply

Figure 6.1: Task structures with different granularity a) fine grain b) coarse grain

process the p subnetworks and each of these tasks is busy at all points in time. Referring

to the inherent sequentiaUty of the bifactorisation process reveals that there is little point

using 3p tasks when p tasks will suffice. From the programmer's point of view it is much

simpler to manage only p tasks. Figure 6.1(b) shows the structure of a task in the p task

solution.

Having determined the number and structure of the tasks it is necessary to connect up

the tasks so that they can cooperate and share data. For the remainder of this discussion it

is assumed that task T;, where i = 1 . . .p, is responsible for processing the i th subnetwork.

Consider Figure 6.2 which shows the structure of the coefficient matrix for a system with

4 main subnetworks and 3 minor ones. The analogy of blocks in the matrix diagram being

elements in a 7 X 7 matrix with the same structure is used. In factorising the first row

of the matrix updates will be made to elements (5,5), (5,7) and (7,7) as defined by the

equations of Section 2.4.4. In terms of the subnetworks in the RP solution, processing of

the first subnetwork leads to values in the fifth and seventh subnetworks being modified. As

the three subnetworks involved are processed by separate tasks these tasks must cooperate

and share the information between themselves. In other words Ti must send information

on modifications to T5 and T7. An analysis of the communications required for the other

subnetworks in all three stages of the Recursively Parallel solution yields the dataflow-

diagram of Figure 6.2. Circles in the diagram represent tasks and the arcs linking them

show the communications between the various tasks. The flow of data is shown by the

147

6.2 Algorithmic Issues

•k -k

•k

-k

-k

•k

-k

•k

-k

•k

•k

Figure 6.2: Intertask communications in a 7 subnetwork solution a) and corresponding
coefficient matrix structure b)

arrowheads.

I f one task is used for each subnetwork it is obvious that the tasks are connected in a

tree form. Figure 6.3 shows the task intercommunications that are required for solutions

with 3 and 15 subnetworks. Observe that no connection is ever required between tasks in

the same level of the tree. These observations will be used in Section 6.2.3 to realize a

reduction in the number of intertask communications.

The basic task structure of Figure 6.1(b) can be refined to take account of the communi

cations that occur between tasks in the program. Figure 6.2 shows how data moves in two

directions through the tree. The factorisation and left factor multiphcation operations both

produce data that flows down the tree from the leaves towards the root. The right factor

multiphcation operation generates data which flows in the opposite direction back towards

the leaves. After factorisation a task Ti must send any data pertaining to the modification

of other subnetworks to the tasks responsible for processing those subnetworks. These tasks

all lie below (i.e. toward the root) task Ti in the tree. Modifications to other subnetworks

resulting from left multiphcation with subnetwork i again requires task to send data to

tasks lower down the tree. Modifications resulting from right multipUcation require task

r , to send data to tasks higher up the tree (i.e. toward the leaves). When a task is the

recipient of any of these communications it must add the modifications to its data before it

performs the relevant operations on its subnetwork. The refined task structure is shown in

148

6.2 Algorithmic Issues

1 2

1 2 3 4 5 6 7 8

Figure 6.3: Intertask communications in 3 and 15 subnetwork solutions

Figure 6.4. Note that stages 2 and 12 do not occur for tasks at the leaves of the tree and

that stages 5, 9 and 10 do not occur for the task at the root of the tree.

One important issue not yet addressed is where do the tasks originally obtain their

data from ? The collection of generic tasks which perform the computation of the solution

can be viewed as a set of worker tasks in a supervisor / worker scenario (Figure 4.4).

A supervisor task is needed to take control over the generic workers. This supervisor

is responsible for passing the appropriate subnetwork data to each worker task. Stage

1 of the generic task is responsible for accepting the initial subnetwork data from the

supervisor task. The supervisor is also responsible for gathering the results from each

worker once computation is complete (stage 13) and assembhng them into a single resultant

vector. For the purposes of monitoring the performance of the Recursively Parallel method,

the supervisor also synchronizes the start of computation within the set of workers. This

is necessary to aUow an accurate time to measured for the computation of the solution.

Appendix G gives further consideration to the role of the supervisor in monitoring the

performance of the computations.

149

6.2 Algorithmic Issues

1: Receive i n i t i a l subnetwork data from supervisor task
2: Receive modification data from a l l connected tasks higher up the tr e e
3: Modify subnetwork data
4: F a c t o r i s e the subnetwork
5: Send modifications to a l l connected tasks lower down the tr e e
6: Receive modifications from a l l connected tasks higher up the tr e e
7: Modify r i g h t hand side vector data
8: L e f t m u l t i p l y with the subnetwork
9: Send modifications to a l l connected tasks lower down the tr e e
10: Receive modifications from a l l coimected tasks lower down the t r e e
11: Right m u l t i p l y with the subnetwork
12: Send modifications to a l l connected tasks higher up the tr e e
13: Send r e s u l t s to supervisor task

Figure 6.4: The generic task of the Recursively Parallel solution

6.2.2 D a t a Storage and D a t a Structures

The worker task must store, modify and process the data associated with the subnetwork

for which i t is responsible and the choice of the correct data structures is crucial to the

performance of the parallel program. For the solution of finear equations the data is the

coefficient matrix and the known right hand side vector of the set of equations. Matrices

are usually stored by computer as a two dimensional array of an appropriate type but

sparse matrix techniques are a more efficient method of storing the large coefficient matrices

associated with network problems. These techniques store only the non-zero matrix elements

and these are held in finear finked fists. The known right hand side vector is stored as a

one dimensional array as i t is usuaUy densely populated, particularly as computation draws

to a close. In a paraUel solution there is no longer a single coefficient matrix structure

corresponding to a single network. Instead there are a number of subnetworks, which

correspond to a number of submatrices of the coefficient matrix. Consideration has to be

given as to what are the best methods of storing these submatrices and the portion of the

right hand side vector associated with each subnetwork.

I f a system is divided into m subnetworks to be solved using the Recursively Parallel

approach then the coefficient matrix of the system wiU have Recursive Bordered Block

Diagonal Form with p — 2m —1 'r' shaped segments stacked along the diagonal, as in Figure

6.5. Each task requires the data held in a single 'r' shaped segment and is responsible for

storing this segment. For example, the data associated with subnetwork 1 is contained in

the shaded 'r ' shape segment of Figure 6.5 and task Ti must store this data in an appropriate

150

6.2 Algorithmic Issues

2
1 1 1
1 1 1
1 1 1

3

4

5

6

7

Figure 6.5: RBBDF matrix structure showing 'r' segments

data structure. Suppose that the ith 'r' segment begins at row a, extends to row b and that

there are n rows in the matrix. If the traditional two dimensional array is used to store the

'r' segment for this task then a square array of the same height and width as the 'r' segment

is required and this is extremely wasteful of memory, especially when the subnetworks of the

first level of the tree are considered. Within the 'r' segment of these subnetworks there are

only four possible regions where non-zero elements can be located {e.g. blocks 1,5 1,7 5,1

7,1). A more efficient storage scheme stores only these non-zeros and this is implemented

through the use of a sparse matrix Unked Ust representation. Under this scheme (n - a) Usts

will be required for the given subnetwork. Most of these Usts will contain few, if any, entries

and substantial savings on memory can be realized. Further savings result from examining

the nature of the coefficient matrices for power system problems. As Chapter 2 has shown,

the coefficient matrix is often symmetric and if this is the case it is not necessary to repUcate

data by storing both arms of the 'r' segment. A single arm contains aU the information held

within the 'r' segment and only (6 - a) Unked Usts are now required. Figure 6.6 shows the

portion of the coefficient matrix stored in the Unked Ust data structures by task T i . This

storage scheme proves to be the most efficient for storing the major subnetwork. Inspecting

the olf-diagonal blocks corresponding to the minor subnetworks reveals a diflTerent picture.

These blocks contain many more non-zeros than zeros and in moving from the top left corner

of the matrix to the bottom right corner the density of the off-diagonal blocks increases.

Most of the off-diagonal blocks corresponding to the minor (cutset) subnetworks are in fact

151

6.2 Algorithmic Issues

. J-..

r " • •
I # ,sJ
1 -

f

I

2
1
1
1

3

4

5

6

7

Figure 6.6: Portion of the coeflficient matrix stored by a single task

fuU of non-zero entries. BrameUer et. al [2] observe that there is a threshold beyond which

it is ineflRcient to use sparse matrix techniques and in the minor subnetwork off-diagonal

blocks this threshold is easily exceeded. The empty spaces between the blocks in these

regions of the matrix are smaU, accounting for a only a small percentage of the total length

of the row to the right of the diagonal. It is more efficient to process the minor subnetworks

as two dimensional arrays rather than as sparse matrix finked fists. Unfortunately the

point at which the density exceeds the threshold value does not usuaUy coincide with the

boundary between major and minor subnetworks. The changeover point differs from system

to system and it often found that i t is more efficient to treat the first few minor subnetworks

using sparse matrix techniques, reserving the use of array storage for the remaining minor

subnetworks. Figure 6.7 shows the parts of the coefficient matrix stored in the Recursively

ParaUel solution and the type of storage scheme used by each task/subnetwork.

When the optimal ordering routine is appfied prior to solution, a simulation of the

factorisation process is performed to determine the effect of fiU-ins. This simulation can

be adapted so that i t assesses the density of the coefficient matrix after the simulated

factorisation is complete. Starting with the element at the bottom right corner of the

matrix, the algorithm works back up the diagonal and as i t goes it examines the square

region below and to the right of the diagonal (Figure 6.8). The number of non-zeros in this

region is counted and the total number of elements enclosed by the region is calculated. I f

the density of the region exceeds the sparsity threshold the search continues moving back

152

6.2 Algor i thmic Issues

SPARSE LINKED
LIST STORAGE

2 DIMENSIONAL
ARRAY STORAGE

Figure 6 .7: Storage techniques used by the Recursively Parallel method

X X X
X X X

Figure 6.8: Assessing the density of the coefficient matrix

153

6.2 Algorithmic Issues

Speed-up with Speed-up with
System Subnetworks original storage hybrid storage

118 3 1.42 1.42
118 7 1.93 2.08
118 15 2.12 2.47
629 3 2.18 2.23
629 7 2.52 2.70
629 15 3.71 4.04
734 3 2.46 2.46
734 7 3.59 4.10
734 15 4.56 5.83
734 31 4.71 5.98
1624 3 2.64 2.64
1624 7 4.00 4.15
1624 15 6.54 7.55
1624 31 7.26 9.38

Table 6.1: The effect of storage scheme on speed-up

up the diagonal until the density of the region falls just below the threshold. The location

of this point aUows the data structures of the Recursively Parallel program to be tailored

to give the most efficient storage and processing of each individual system. Everything

above and to the left of the changeover point is most efficiently processed using sparse

matrix techniques whilst aU rows below and to the right are most efficiently dealt with

when stored in two dimensional arrays. Performing this sort of density test on a system

prior to processing determines which subnetworks should store their submatrix in finked

fists and which should store it in arrays. Future work may aUow the changeover point to

occur within a subnetwork but for the present the changeover point is constrained to fie

on a subnetwork boundary. The program implemented for this project allows any of the

minor subnetworks, except the last, to use either sparse matrix or array storage as the need

requires. The last subnetwork is always processed using arrays and the major subnetworks

employ sparse matrix storage techniques.

The benefits of this hybrid storage scheme are evident in the speed-up results. Table 6.1

shows the factorisation speed-ups for a number of systems processed both with and without

hybrid storage. Figure 6.9 shows the variation in speed-up for the 1624 node US power

system as the changeover between sparse and array storage is moved between the minor

subnetworks. Changing the number of subnetworks which are stored using array storage has

a dramatic effect on the speed-up. Notice that i t is possible to vary the factorisation speed-

154

6.2 Algorithmic Issues

Figure 6.9: Variation of speed-up with location of changeover point in hybrid storage, for
US 1624 node system

up between 7.3 and 9.5 simply by altering the point at which dense storage is introduced.

I f Uttle use is made of array storage (changeover point to the right of the graph) then the

factorisation speed-up is poor. Increasing the amount of array storage (changeover point

moving towards the left of the graph) has the effect of increasing the speed-up, although

there is a certain point beyond which i t is not efficient to use array storage as the factorisa

tion speed-up begins to decrease again. Examining a number of graphs Uke this has revealed

that there is often a clearly defined optimum location for the changeover point which results

in the maximum factorisation speed-up. For the system shown in Figure 6.9 the maximum

factorisation speed-up is obtained when subnetworks 25 to 31 are stored using array storage.

The effect of hybrid storage on the substitution speed-up is somewhat different. I t can be

seen from the graph that the substitution speed-up can be varied between 3.3 and 4.3 sim

ply by altering the point at which array storage is first introduced. The graph shows that

increasing the amount of array storage actuaUy reduces the substitution speed-up. Again,

an examination of a number of graphs Uke this has revealed that maximum substitution

speed-up is obtained when only the last subnetwork is stored using array methods. I f any

other subnetworks are stored using arrays the speed-up rapidly drops off. The use of hybrid

storage has different effects on the performance of factorisation and substitution. Using a

significant amount of array storage improves the performance of factorisation as the factori

sation algorithm performs many update operations to the lower right of the matrix. I f this

155

6.2 Algorithmic Issues

is region is stored using finked fists then each update requires a search through the finked
fist for the relevant row to find the desired element for updating. I f this region is stored
using arrays then it is possible to jump directly to the desired element, thus removing the
need for time-consuming searches. The extra overhead of examining zero elements during
the factorisation of this region is countered by the significant reduction in processing time
produced by the efimination of a large number of finked fist searches. The situation is some
what different with substitution where increasing the use of array storage has a detrimental
effect on perforihance. There are two effects which contribute to this phenomenon. Firstly,
substitution simply involves the multipfication of matrix rows or columns by a vector. The
algorithm for performing this operation simply scans through the stored data and performs
an element by element arithmetic operations. No lengthy searches are involved when finked
fists are used so the use of array storage would not efiminate any fist searches. However,
when array storage is used the multipfication algorithm must perform element by element
arithmetic on aU elements of the array, even if they are zero. I t is possible to reduce the
amount of work by first examining the current element to check its value. Only if the el
ement is non-zero is any arithmetic operation involving that element performed: However
the examination of each element to determine its value stiU adds a computational overhead.
Linked fist storage is more efficient as no zero elements are stored and no examination of
element values needs to be performed. AU elements in the fist must automaticaUy take part
in multipfication and the algorithm simply performs element by element arithmetic using
aU the values in the fist. The computational overhead associated with the multipfication
using finked fists is less than that using arrays, making it more efficient for substitution to
store as much of the coefficient as possible using finked fists. The last subnetwork in the
matrix is always stored using arrays as this subnetwork is always fuUy populated. It makes
fittle difference to the amount of computation involved whether finked fist or array storage
is used.

The effect iUustrated by Figure 6.9 has profound impfications for the parallel solution.

I t is possible to maximize speed-up by tailoring the storage scheme to the characteristics

of either the factorisation or substitution phase, but not both. I f the storage strategy is

chosen to maximize substitution speed-up then factorisation speed-up is stiU reasonable.

However if the situation is reversed and the storage strategy is chosen to maximize fac

torisation speed-up then the substitution speed-up is poor. The ideal requirement is for a

storage scheme which maximizes both speed-ups, but as Figure 6.9 shows, this is clearly

156

6.2 Algorithmic Issues

not possible. In power system simulation the factorisation operation is only required when
the topology of the network changes. This occurs infrequently and it is perhaps possible
to use the optimum storage for factorisation when factorising and then transform the data
storage so that data is then stored in the optimum manner for substitution. This would
maximize the performance of both the factorisation and substitution operations but would
introduce a large overhead when the network topology changes. An alternative is to use
two data storage mechanisms. The solution implemented on the Transputer saves on mem
ory requirements by overwriting the original coefficient matrix with the factored matrix as
factorisation progresses. I f memory size is not a Umitation then it would be possible to
store the coefficient matrix in the optimum form for factorisation and to store the factored
matrix separately in the optimum form for substitution. No transformation overheads are
introduced when the topology changes and both factorisation and substitution would be
able to achieve maximum performance. Some small overhead would be introduced into the
factorisation computations.

I t is interesting to note that the hybrid storage scheme can also be used to improve the

performance of sequential solution techniques. With a sequential solution the coefficient

matrix does not need to be arranged into BBDF or RBBDF. Optimal ordering is appUed

to minimize the amount of fiU-ins that occur. I f the fiUed matrix is examined the increase

in density in moving from the top left to the bottom right of the matrix is again observed.

Usually aU the matrix rows are stored in sparse Unked Usts but in the lower right corner of

the matrix many of the rows may contain only non-zero elements. Once again the threshold

of efficiency for sparse matrix storage is exceeded and it would be more efficient to store

these rows in conventional arrays. Search operations would be performed faster with these

rows stored as arrays and this would decrease the execution time of the sequential solution.

This theory has not been tested in practice and the implementation of hybrid storage in a

sequential solution has been left as an item of further work. However the argument presented

for the sequential solution is identical to that for the parallel case. Having observed the

beneficial effect of hybrid storage on the performance of the parallel solution i t is reasonable

to assume that a similar effect would be observed if hybrid storage were to be implemented

for sequential solutions.

Given that i t is not necessary for each task to store the entire coefficient matrix, perhaps

similar savings can be achieved in storing the right hand side vector by only storing the

relevant portion of the vector. Unfortunately this does not turn out to be the case, as can

157

6.2 Algorithmic Issues

be seen by considering the multipfication stages of the bifactorisation algorithm. Taking

left multipfication as the example, consider the multipUcation of the right hand side vector

by the first left factor, X^^ l Assume i^^) and the right hand side vector have the form

shown below.

X

0

X

X

X

0

X

0

(6.1)

Performing this multipfication results in a new vector ,b', which differs from b in elements

1, 5 and 7. Assuming that the resultant vector is generated by successively overwriting the

original right hand side vector, 6, left multipfication by the i*'^ subnetwork could possibly

alter elements a to n of the right hand side vector where a is the first node in the i * ' '

subnetwork. Thus i t is necessary to for the i * ' ' task to store elements a to n of the right

hand side vector otherwise the result of left factor multipfication within that task wiU be

incorrect. A similar analysis of right factor multipfication shows that the same range of

RHS vector elements must be stored to obtain correct results from right multipfication. A

simple examination for the RBBDF matrix structure shows that for a given subnetwork

only certain elements of the RHS vector are modified and others are never referenced. For

example, multipfication by subnetwork 1 only ever references elements in blocks 1, 5 and

7 of the RHS vector. An eflRcient scheme for storing only the RHS vector blocks required

by each task could be devised but the saving on memory does not reaUy warrant the extra

overhead and complexity involved in managing such a structure. The largest test system

used in this research project required less than 12 kB of memory to store the entire right

hand side vector. Given the amount of memory avafiable in modern computing systems

it is simplest for each task to store aU the nodes a through to n of the RHS vector even

though some of them are never referenced.

158

6.2 Algorithmic Issues

Figure 6.10: Modified intertask communications for a 7 subnetwork system

6.2.3 R e d u c i n g the Communicat ion Overhead

Although the basic program structure and intertask communications have been defined there

are several refinements that can be made which significantly improve the performance of the

paraUel program. These refinements are based on aggregating the intertask communications.

The first improvement aggregates communication messages so as to reduce the total

number of messages passed between the tasks in the system. Consider the dataflow diagram

of Figure 6.2. Suppose that task Ti has performed its factorisation operation. This results

in data which has to be passed to T5 and Tj. The transmission of data to T 5 is critical to

the next stage of processing and this communication must be performed first. When this

finishes data can be sent expUcitly to task Tr as this communication is not critical to the next

stage of processing. In fact T 7 does not require the data from Ti until T 5 has completed

its factorisation operation. The use of a suitable store-and-forward aggregation scheme

eUminates the need for the exphcit communication between Ti and T 7 . If Ti aggregates the

data i t sends to T5 and T 7 into a single message sent to T5, T 5 can use the data pertaining

to itself and simply ignore the data relating to T7. When T5 has factorised its submatrix

it adds the data i t created for Ty to the stored data generated by T j and sends the single

message to Tj. The expUcit communication between Ti and Ty is thus avoided. Applying

this technique across the whole task graph reduces the intertask communications shown in

Figure 6.2 to those of Figure 6.10. The worker tasks which make up the paraUel program

are connected in a simple binary tree structure. The use of this aggregation technique

eUminates eight communications in a seven subnetwork solution and forty communications

in a fifteen subnetwork solution resulting in a significant improvement in efficiency.

The second improvement is at a much lower level and reduces communication times by

159

6.3 _ _ Architectural Issues

decreasing the length of the intertask messages using a data grouping technique. This tech

nique is described fuUy in Appendix F but i t basicaUy operates by minimizing the amount of

addressing information needed to uniquely identify an element within the coeflRcient matrix

by making use of impficit information about the matrix structure.

6.3 Architectural Issues

In examining the architectural issues concerning parallel program design there are two

aspects which must be considered. The software architecture describes the tasks which make

up the paraUel program and how they are interconnected to give the best performance. The

hardware architecture is concerned with the physical processors of the target machine. The

way these processors are connected and the way in which data is routed between them can

have an effect on the performance of the paraUel program.

6.3.1 T h e Software Archi tec ture

A paraUel program is made up of a set of autonomous tasks which cooperate through

synchronizing their actions and sharing data using expficit intertask commuifications [92,

94]. These tasks must be assigned to the available processors. Given a parallel program

consisting of n tasks, these must be placed on the p processors available and two scenarios

can be envisaged

• n > p More than one task must be assigned to each processor and support for a

multitasking environment is required to execute the tasks simultaneously

• n < p Each task in the program can be assigned to its own processor

Whilst the latter scenario provides the easiest implementation i t may not be the best solu

tion. Assigning more than one task to each processor is often most economic as i t requires

fewer processors. The efficiency of a paraUel program, E, is given by

J J = ^ W (6.2)
n

and (6.2) clearly shows that program efficiency is a direct trade-off between the number

of processors used and the speed-up obtained. The more processors that are thrown at the

problem to achieve a desired speed-up the less efficient that solution becomes. Programs

160

6.3 Architectural Issues

which assign a number of tasks to each processor generally achieve a higher efficiency at

the expense of lower speed-up.

A simple examination of the structure of the Recursively ParaUel program quickly iden

tifies the optimum number of processors required. Taking a seven subnetwork (four major

and 3 minor subnetworks) system as an example, the program structure is as shown in

Figure 5.9. Operations with the same subscript are aU parts of the same task {e.g. task

T i comprises the operations Fi,Li and i ^ i) . As the factorisation operation is the most

computationaUy intensive part of the solution only the factorisation operations of Figure

5.9 wiU be considered in the foUowing argument. At level 1 there are four concurrently

executing factorisation operations and the fastest computation occurs when each operation

is assigned to its own processor. Hence level 1 requires four processors. Level 2 has only two

concurrently executing operations requiring only two processors whilst the final operation

in level 3 requires only a single processor. By virtue of the way in which the program oper

ates, all the first level operations {i.e. Fi,F2.,F^,Fi) must have completed before the second

level operations {i.e. F5,FQ) begin. The four processors which executed Fi . ..F4 are thus

idle at the end of level 1 and two of them can be used to perform the operations of level

2. Similarly the two processors responsible for executing level 2 operations are idle at the

end of level 2 and one of them can process level 3. Consequently the maximum number of

processors required is the same as the number of concurrent operations in the first level and

a possible task to processor allocation is shown in Figure 6.11(a). This allocation strategy

results from the fact that operations Fi .. .F7 are constituent parts of the tasks T i . . .Ty.

Consider the aUocation strategy of Figure 6.11(a) from the point of view of the factorisation

operations and recaU the previous discussion of load balancing and recall that maximum

speed-up only occurs when all of the processors are busy all the time. This strategy results

in processors P3 and P4 being unused for more than half of the total computation time

and this is wasteful of processing resources. The efficiency of the task allocation can be

improved by moving task Ty from processor Pi onto one of the 'spare' processors P3 or P4.

The modified strategy is shown in Figure 6.11(b).

The aUocation of tasks to processors is often considered using two acycUc directed graphs

[19, 83]. One graph is used to represent the processors of the target machine and their in

terconnection. The second graph is the task graph and this describes the interconnection

between the tasks which make up the program. The task graph nodes are often annotated

with computation and communication requirements. Figure 6.12 gives an example of these

161

6.3 Architectural Issues

Figure 6.11: A many to one task allocation strategy a) initial task allocation b) improved
task allocation

two graphs The task allocation process then becomes one of mapping the task graph to the

target machine graph in the way that minimizes computation and communication require

ments. Berman [83] considers the task allocation process as a 'contraction' of the task graph

to f i t the target machine graph. To describe the task allocation strategy for a general Recur

sively Parallel solution it is useful to think of the contraction of the factorisation operations

of Figure 5.9. The first step of the process is to squash levels 2 and below into a single level

by superimposing the levels onto one another such that they become interleaved. Vertically

adjacent tasks of level 1 and the new level 2 are then assigned to the same processor. The

contraction for a 15 task system is shown in Figure 6.13. Note that there are never more

than two tasks assigned to each processor but there is always one processor which hosts a

single task. As there is one task for each subnetwork in the system it is easy to verify that

= ^ (6.3)

are required for the RP solution of a system with n subnetworks.

This argument has so far ignored the effects of left and right factor multiplication on the

task allocation strategy. Returning to the allocation strategy of Figure 6.11(b) we see tasks

T\ and T5 sharing the same processor P\. This allocation was derived on the assumption

that F\ must complete before F5 starts and by making these two tasks share the same

processor each wiU effectively have the whole processor at its disposal. When is being

executed F\ must have completed and F5 will be the only operation available for processing

on processor P i . Recalling that the task Ti consists of the operations {F^^Li^Ri] executed

162

6.3 Architectural Issues

Figure 6.12: Tlie acyclic graphs used in determining task allocations a) the hardware graph
showing interconnection of processors b) the task graph showing dataflow between tasks

1

9

A

Pi

i
2

13

3

10

Contracted Task Graph

4 5 6

15

A
P4

11 14

7

12

Target Machine Graph

8

Ps;

T

Figure 6.13: Contraction mapping for Recursively Parallel task allocation

163

6.3 Architectural Issues

(a) (b)

Figure 6.14: Task execution, showing the eflFect of multitasking (a) Naive view of operation
execution (b) true execution of individual operations

in sequence and referring to level 2 in Figure 5.9 reveals that this assumption is invalid.

When task Ti completes the operation i^i it immediately commences the operation Li, and

this requires processing at the same time as F5. As both Ti and T5 reside on the same

processor Pi resorts to multitasking to timeslice execution between Ti{Li) and T5(-F5).

Now neither task has the whole processor at its disposal and the efficiency of the allocation

strategy is reduced. However the left multiplication operation Li is not as computationally

intensive as the factorisation Fk and as a result it only executes for a short time compared

to Fk. Once Li is completed task Ti suspends itself waiting for data to be passed to i t

following the operation Ri. Now Fk has the whole processor at its disposal and it executes

Fk to completion without interruption, as shown in Figure 6.14(b). The effect of the left

multiplication operations is to increase the overall execution time of the parallel program

and reduce its efficiency. For the seven subnetwork system of Figure 5.9 execution time is

increased by

MAX\Li + i s l , |i^2 + Lsl\L3 + Lei 1̂ 4 + Le\ (6.4)

A method exists for improving the efficiency of the allocation strategy and this relies

upon eliminating the contention between Li and Fk. The contention arises because these

two operations wish to execute concurrently. I f it were possible to prevent Fk from executing

until Li completes then the contention could be avoided. Figure 5.9 shows the prerequisite

of JPS'S operation is that both Fi and F2 have completed. I f F2 takes much longer to

164

6.3 Architectural Issues

Balanced Load Imbalanced Load
Execution Execution

System Size Subnetworks Time (ms) S(n) E(n) Time (ms) S(n) E(n)

118 3 27.24 1.28 0.64 27.24 1.28 0.64
118 7 18.88 1.85 0.46 20.22 1.72 0.43
118 15 14.53 2.40 0.30 14.53 2.40 0.30
629 3 112.81 2.00 1.00 110.06 2.05 1.03
629 7 88.38 2.55 0.64 83.33 2.71 0.68
629 15 60.22 3.75 0.47 55.1 4.09 0.51
734 3 129.97 2.16 1.08 127.60 2.20 1.10
734 7 77.06 3.64 0.91 70.27 3.99 1.00
734 15 54.46 5.15 0.64 50.37 5.57 0.70

Table 6.2: Effect of load imbalance on performance

execute than Fi, task Ti can perform operation Li whilst T'5(i^5) is suspended awaiting the

completion of F2. When F2 completes T5 commences its factorisation operation JF5 and has

the whole processor at its disposal. For this method to work

t(F2) > t{F,) + t{Lr) (6.5)

where t(x) is the time taken to perform operation x. Obviously if t{F2) is much greater than

t(Fi) + t{Li) processor Pi will waste time in idle wait states, thus reducing the efficiency.

Optimum performance occurs when

t{F2) = tiFr) + t{L^) (6.6)

To make this method work i t is necessary to be able to adjust the execution time of each

of the tasks and their constituent operations. The amount of time taken to complete one

of the three fundamental operations within a task is directly proportional to the amount of

computational work to be performed. Modifying the execution time of the operations can

be achieved by altering the load balancing strategy and assigning a greater proportion of

the workload to T2 than to T i , thus satisfying the inequahty of (6.5). For the test systems

used here i t has been found that significant performance benefits result from increasing the

workload of some tasks by up to 25% and similarly decreasing the loading of other tasks.

Table 6.2 shows the benefits of this approach over the equally loaded case. Whilst i t may

appear that there is an imbalanced load it must be remembered that i t is only the workload

of each task that is imbalanced. The loading on each processor wiU in fact be balanced.

165

6.3 Architectural Issues

This technique of imbalancing the load is essentially a latency hiding method. Latency
hiding [95] is a way of using the available multitasking facilities to keep processors busy
during communication events. A program task wiU block and wait on the arrival of a
message it requires if the sender is not ready to send, thus placing the processor into an
idle state. I f other program tasks are available for execution the processor may continue
computing whilst the first task is awaiting the arrival of its message. In this manner the
latency introduced into the first task by the necessity of waiting for a communication is
hidden by the processing of other tasks. In the technique described above, increasing the
execution time of F2 allows task Ti to complete Fi and Li. Once Li is complete the task
blocks and waits until it can send a message to a subsequent task. This now allows task
T5, which resides on the same processor, to be executed whilst Li is waiting to send it's
message. This ensures that processor Pi is kept continuously busy. The hiding of some
of the latency in the program results in a decrease in execution time and an increase in
speed-up.

6.3.2 The Hardware Architecture

Given a set of processing elements there are many different ways in which those processors

may be connected. Section 1.4.4 and Figure 1.6 describe some of the standard processor

interconnection topologies and i t was observed that different topologies are suited to certain

types of problem. For general parallel problems the hypercube topology often gives the best

performance. Chapter 1 observed that the choice of the interconnection network can make or

break the performance of the parallel machine and the parallel algorithm executed on i t . The

general literature of the field of parallel computing observes that parallel computers are often

used to solve a single parallel problem and in this case the hardware architecture becomes

an intrinsic part of the problem and its solution. It is essential to use the interconnection

network that gives the optimum performance and this section considers which of the many

interconnection topologies is most suitable for a dedicated Recursively Parallel solution.

Architecture and Performance

The hardware architecture of a parallel computer affects performance through its impH-

cations for intertask communication. When the parallel tasks reside on different physical

processors intertask communication then becomes interprocessor communication. Messages

traveling between the tasks flow physically along the wires interconnecting the processors.

166

6.3 Architectural Issues

(a) (b)
Figure 6.15: Direct 1 hop communication (a) and indirect 2 hops communication (b)

There is a finite delay introduced into the execution of the program which is due to the finite

amount of time taken for the message to travel between the two communicating processors.

When tasks on adjacent processors communicate this delay is negligible. I f the tasks reside

on non-adjacent processors and communicate indirectly via an intermediate processor then

these delays can become significant. The intermediate processor uses a store-and-forward

protocol to route messages to other processors. I t receives incoming messages and stores

them in a buffer. When this processor makes time for communication, and when the receiv

ing processor is ready, the intermediate processor forwards the message from the buffer to

the receiver. If each message is acknowledged, as in Transputer systems, the original sending

processor cannot continue executing the task which requested the communication until the

acknowledgment from the receiver travels back through the intermediate processors. Rout

ing through any number of intermediate processors is possible but the more intermediaries

there are, the greater the delays involved in communication.

Two adjacent processors in a network are said to be separated by a distance of one

hop (Figure 6.15(a)) whilst two processors communicating via a single intermediary are

separated by a distance of two hops (Figure 6.15(b)). The concept of distance is important

in understanding the effect of different interconnection topologies on performance. The delay

in communications between two processors is proportional to the distance between them

and the various interconnection networks of Figure 1.6 can be characterized in terms of their

maximum, minimum and mean communication distances. For example, the star network

has a minimum distance of 1, a maximum distance of 2 and a mean distance of slightly less

than 2. These distances are constant irrespective of the number of processors used. The

ring network on the other hand has distances which vary with the number of processors -

the minimum is constant at 1 but the maximum is ^. These characteristics of the different

topologies make them suitable for certain applications but not for others. A program based

on the supervisor/worker approach would achieve good performance on the star network

with the supervisor located at the centre and the nodes at the radii. Communication always

167

6.3 Architectural Issues

takes place between adjacent processors as the only communications are those between the
supervisor and the workers. For other programs communication may have to be routed
through the centre making the central processor a bottleneck in the system which limits
its performance. In general the average communication delay for a given topology will be
proportional to the average communication distance. A topology with a low average distance
will often be the best choice. This is one of the reasons for the hypercube's popularity. Of all
the topologies in Figure 1.6 the hypercube has the lowest average communication distance.
Another explanation of its popularity is that a number of other topologies {e.g. pipeline,
ring, tree) can be embedded into a hypercube. By purchasing a machine configured as a
hypercube users may also make use of any of the interconnection topologies which can be
embedded into a hypercube. The hypercube arrangement is one of considerable flexibility.

The benefits of an efficient communication topology can be undermined if the task to

processor allocation is not undertaken carefuUy. Assigning two communicating tasks to

opposite ends of a pipeUne would be extremely inefficient. The ideal is to place commu

nicating tasks on adjacent processors, thus minimizing the communication delays. This is

not always possible and a compromise often has to be reached. The best system design is

a close marriage between efficient hardware connection and sensible task allocation.

A Suitable Architecture for the Recursively Parallel Solution

Processor interconnection networks are often represented as undirected graphs in which

nodes represent processors and edges represent physical bidirectional communication finks

between them. I f this convention is adopted. Figure 6.2 immediately suggests a possible

interconnection for the processors in a system dedicated to the Recursively Parallel solution,

assuming each task is assigned to an individual processor. As the Transputer has four

bidirectional communication finks per processor this topology is only reafisable for systems

of seven subnetworks or less. For system with more than seven subnetworks indirect routing

of communications would be required. Assigning two tasks to each processor improves the

situation somewhat and it becomes possible to realize systems with fifteen subnetworks.

Systems with more than fifteen processors again require indirect communications. Early in

the project a novel architecture, the Mutated Tree architecture [96], was proposed based

on an analysis of Figure 6.2. Alterations made to the method since the design of this

architecture have rendered it non-optimal as some of the assumptions on which it was

based are no longer valid. I t is worth considering the Mutated Tree architecture for the

168

6.3 Architectural Issues

sake of completeness.

The Mutated Tree architecture was conceived prior to the introduction of the hierarchical

message aggregation scheme (Section 6.2.3) and its design is based on the assumption that

explicit communications are allowed to occur between the last task and every other task

in Figure 6.2. I f the adjacency constraints for communicating tasks are to be satisfied it is

clear that every task must be directly connected to the last one in a radial fashion. This

suggests the use of a star network but such a topology cannot be easily realized with the

Transputer due to the large number of connections to the central processor. Considering

how the algorithm works reveals that the communications Pi - P7, P2 - P7, P3 - P7,

P4 — P7 are not critical to the next stage of processing whereas Pi - P5, P2 — P5, P3 - Pe,

P4 - Pe, P5 — P7, Pe - P7 are. To minimize execution time the critical communications must

be performed without delay whilst the non-critical communications can withstand some

degree of delay. This observation allows a better interconnection of the processors to be

achieved by allowing non-critical communications to be routed via intermediate processors

whilst ensuring that critical communications occur only between adjacent processors. The

resulting interconnection is the Mutated Tree topology and Figure 6.16(a) shows the 4,

8 and 16 processor Mutated Tree interconnections. Redrawing Figure 6.16(a) gives the

diagrams in Figure 6.16(b) and these clearly show a modified form of binary tree, hence

the name Mutated Tree. I f the assumption concerning explicit last task communications is

valid then the Mutated Tree architecture has better communication characteristics than a

hypercube with the same number of processors. In each case the Mutated Tree has a total

communication distance as good as, i f not better than, its hypercube counterpart. Unhke

the hypercube the Mutated Tree never requires critical communications to be routed via

intermediate processors. Figure 6.16 reveals another useful property of the Mutated Tree,

that of scalability. The architecture scales easily to 2^ processors, where p is a positive

integer, and never requires more than four interconnections per processor. Large Mutated

Tree structures are therefore realizable using Transputers. The limitation of four links per

processor means that i t is not easy to build Transputer-based hypercubes with more than

sixteen processors.

The use of an hierarchical message aggregation protocol invalidates the assumption

concerning explicit last task communications and the dataflow diagram of Figure 6.2 is

reduced to a simple binary tree. There is no longer any need for the extra connections

provided by the Mutated Tree structure and a binary tree interconnection wiU suffice. The

169

6.3 Architectural Issues

1

(a) (b)

Figure 6.16: The Mutated Tree interconnection network a) shown as modified pipefine b)
shown as modified binary tree

simplest topology which satisfies the adjacency constraints is a straightforward pipefine of

processors, as shown in Figure 1.7. This is ideal for Transputer implementation as any

length of pipefine can be constructed. One interesting feature of the pipefine is that i t can

be embedded into many of the other structures in Figure 1.6 (e.^.ring, mesh, hypercube,

chordal ring). Most of the results shown in this thesis were taken with the Transputer

network configured as a pipefine, although hypercubes and rings were occasionally used.

The results obtained are independent of topology iff the topology supports the embedding

of a pipefine. This argument is supported by the results of Table 6.3 which shows the same

systems solved by the RP method using pipefine and hypercube processor interconnection

topologies. The results are identical for both topologies. Results for sixteen processor

hypercubes have not been obtained as it was not possible to configure the experimental

hardware as a four dimensional (sixteen processor) hypercube. I f the RP method were to

be used to successively solve different systems of equations then the hypercube topology

would probably give the best results. The embedded pipefine within the hypercube satisfies

the requirements for the computation phase whilst the low communication delays of the

hypercube are beneficial in minimizing the time taken to transfer data from the supervisor

task to the worker tasks.

170

6.3 Architectural Issues

System Subnetworks Overall
Pipeline

Factorise Substitute Overall
Hypercub

Factorise
e

Substitute

118 3 1.42 1.42 1.39 1.42 1.42 1.39
118 7 2.04 2.08 1.89 2.08 2.08 1.84
118 15 2.50 2.47 1.89 2.50 2.49 1.90
629 3 2.13 2.23 1.84 2.13 2.23 1.84
629 7 2.73 2.70 2.17 2.65 2.67 2.19
629 15 3.97 4.04 3.06 3.94 4.05 3.08
734 3 2.20 2.46 1.84 2.29 2.46 1.84
734 7 3.96 4.10 3.00 3.89 4.02 3.01
734 15 5.68 5.83 4.14 5.56 5.78 4.18
734 31 5.90 5.98 3.98 - - -
1624 3 2.51 2.64 1.82 2.51 2.64 1.82
1624 7 4.02 4.15 2.88 4.02 4.15 2.88
1624 15 7.31 7.55 4.52 7.31 7.56 4.55
1624 31 8.84 9.38 5.46 - - -

Table 6.3: Comparison of performance using pipeline and hypercube architectures

Consider again the task graph of Figure 6.13 and the intertask communications that are

required. At some point in the solution tasks 13 and 14 must communicate with task 15. I f

the task allocation of Figure 6.13 is adopted and the processors are configured in a pipeline

then tasks 13 and 14 both reside on processors which lie a distance of two hop from the

processor hosting task 15. Communications with task 15 must therefore take place via an

intermediate processor and this wiU increase the communication time. The communication

time would be reduced if a processor topology was used which directly linked the processors

hosting tasks 13, 14 15 and this can be achieved by adding two extra connections to the basic

pipeline. However when this topology is implemented i t is observed that it has very little

effect on the speed-up obtained (a difference in speed-up of less than 0.08 for the CEGB 734

node system). There are two reasons for the apparent ineffectiveness of this modification.

Firstly, the messages that are passed in the indirect communications are short and the

transfer time for these communications is negligible. The extra connections do reduce the

transfer time but as these times are small anyway the effect is not noticeable. Secondly it

is observed that when a simple pipeline is used the latency of the indirect communications

can be hidden by the introduction of an imbalance in the computational loading of each

processor (Section 6.3.1). The pipeline topology is therefore the simplest topology for this

application.

In relation to the Recursively Parallel solution there seems to be little point in adding any

extra connections to the basic pipeline as there are only a few indirect communications which

171

6.4 Performance of the Recursively Parallel Solution

System Nodes Non-zeros Sparsity(%)
IEEE Test System 118 476 3.4

Reduced CEGB System 629 2301 0.58
CEGB System 734 2696 0.50

Reduced US Eastern Seaboard 1624 6050 0.23

Table 6.4: Characteristics of the test systems

would benefit marginally from their inclusion. A benefit is perceived when the supervisor

task is considered. As this task has to communicate with all the processors the additional

connections can help in reducing the time taken to transfer data before and after solution.

I f the Recursively Parallel method were to be appfied in a situation where different sets

of equations needed to be solved in succession then the provision of extra connections to

reduce indirect communications would be of paramount importance in reducing the start

up overhead of each solution. Extra connections would also be useful for a fuU dynamic

simulation in which the RP method is used to solve finear equations. Although the extra

connections have fittle benefit for the RP solution, they may be necessary for the other

simulation algorithms to achieve maximum speed-up.

6.4 Performance of the Recursively Parallel Solution

Having discussed the development of the Recursively ParaUel solution tliis section presents

the results of applying the method to various test systems. Observing the performance of

the program requires the accurate recording of its execution time and this is not straight

forward. Appendix G gives some consideration to the problems of performance monitoring

and visuaHsation.

The performance of the Recursively ParaUel solution has been evaluated using a number

of test systems drawn from power system appUcations. One of the systems is a standard

test system whilst the others are derived from real power system networks. Table 6.4

characterizes the members of the test suite. Using the two-to-one task allocation allowed

each of the test systems, except the IEEE 118 node system, to be partitioned and solved as

2, 4, 8 or 16 main subnetworks. The IEEE 118 node system is too small to be effectively

partitioned into 16 main subnetworks but afi the other partitions can be achieved.

In examining the performance of the RP solution the most important result is the speed

up. Speed-up, S{n), is defined as the ratio of uniprocessor execution time to multiprocessor

172

6.4 Performance of the Recursively Parallel Solution

System Solution Time (ms) Factorisation Time (ms) Substitution Time (ms)
118 34.895 25.23 9.67
629 225.619 175.81 49.81
734 280.725 221.91 58.81

1624 969.49 825.56 143.69

Table 6.5: Performance of the best sequential algorithm

execution time for the same algorithm. To adhere to this strict definition requires the

calculation of the ratio of the execution times of the RP solution executed on one processor

to the execution time of the RP solution executed on n processors. This figure wiU be

referred to as speed-up over uniprocessor. The end user is not interested in this largely

theoretical figure as i t does not reflect the realistic beneflts of using a parallel solution.

The true benefits of parallel solution are characterized by the speed-up over best sequential

solution. This quantity is defined as the ratio of the execution time of the best sequential

solution to the multiprocessor execution time. Only i f the multiprocessor and best sequential

algorithms are identical do the two speed-ups have the same value. In most cases there are

necessary differences in the two algorithms and the two speed-ups are different for the same

system. The speed-up over best sequential method is the important figure as it reflects the

performance benefit of implementing a paraUel solution.

The performance of the best sequential method must be considered before the perfor

mance of the multiprocessor method can be examined. Chapter 2 described the sequential

solution and this is implemented in INMOS C on a single Transputer. The partitioning of

the parallel solution is performed by applying the near optimal MDMLLRU ordering and

then applying a topological reordering to the system to achieve RBBDF structure. The

data suppfied to the sequential solution also undergoes the MDMLLRU ordering and topo

logical reordering so that both sequential and parallel programs solve identical systems.

Table 6.5 details the performance of the best sequential solution of the test systems. It

is found that the topological reordering of the network makes no difference to the sequen

tial solution times. This is to be expected as a topological reordering is defined as one

which introduces no extra operations or fiU-ins. Factorisation and substitution times are

independently identified for the purposes of later analysis.

The performance of the multiprocessor solution has been evaluated for each of the test

systems using 2, 4, 8 and 16 processors. Table 6.6 gives the results for all the test cases.

173

6.4 Performance of the Recursively Parallel Solution

Complete Solution Factorisation Substitution
System CPU's te Sin) E{n) te Sin) Bin) te Sin)

118 2 24.574 1.42 0.71 17.768 1.42 0.71 6.957 1.39 0.70
118 4 17.105 2.04 0.51 12.130 2.08 0.52 5.116 1.89 0.47
118 8 13.598 2.50 0.31 10.215 2.47 0.31 5.116 1.89 0.24
629 2 105.924 2.13 1.07 78.839 2.23 1.12 26.354 1.84 0.92
629 4 82.644 2.73 0.60 65.115 2.70 0.68 22.954 2.17 0.54
629 8 56.831 3.97 0.53 43.517 4.04 0.51 16.278 3.06 0.38
734 2 122.587 2.29 1.15 90.207 2.46 1.23 31.962 1.84 0.92
734 4 70.890 3.96 0.99 54.124 4.10 1.03 19.603 3.00 0.75
734 8 49.423 5.68 0.68 38.063 5.83 0.73 14.205 4.14 0.52
734 14 47.581 5.90 0.42 37.109 5.98 0.43 14.776 3.98 0.28
1624 2 386.257 2.51 1.26 312.720 2.64 1.32 78.951 1.82 0.91
1624 4 241.167 4.02 1.01 198.930 4.15 1.04 49.892 2.88 0.72
1624 8 132.625 7.31 0.91 109.346 7.55 0.94 31.790 4.52 0.57
1624 13 109.671 8.84 0.68 88.013 9.38 0.72 26.317 5.46 0.42

Table 6.6: Performance of the Recursively Parallel solution of the test systems

Figure 6.17 offer a graphical interpretation of these results and shows the scalability of the

RP method. As the problem gets larger (z'.e.more nodes in the network) the greater the

speed-up that can be obtained from the parallel solution. This is because it becomes easier

to partition the system into a suitable number of equally sized subnetworks as the system

gets larger. Obviously there is a limit to the speed-up that can be obtained and this upper

limit is the linear speed-up, n, produced by n processors In practice the finear speed-up is

unlikely to be achieved and the upper bound on speed-up wiU be given by Amdahl's Law

for the system under consideration.

The factorisation time and substitution time are identified independently in Table 6.6.

This is made possible by the detailed timing results returned from the performance mon

itoring schemes described in Appendix G. Simple inspection of the timing results or the

Gannt chart allows the critical path through the subnetworks to be identified and the fac

torisation and substitution times are obtained by summing the relevant values along the

critical path. Note that the execution times for factorisation and substitution in Table 6.6

do not add together to give the overall execution time. This is because the substitution

operation is timed as a stand-alone operation (Figure 5.10) and the latency of some of the

computations is no longer hidden by factorisation computations (Figure 5.9). I t should also

be noted that the overall and factorisation execution times were obtained with the storage

scheme optimized for factorisation. The substitution time was obtained with the storage

scheme optimized for substitution. Table 6.6 also lists efficiency figures for each phase of

174

6.4 Performance of the Recursively Parallel Solution

c 6
m
d
? 5
•a

5^ 4

3 +

10

-+-

0 5 10 15

Number of processors, n

Q.
3

5 +

4

3

2

-+-

1624
Node

734Node

0 5 10 15

Number of processors, n

(a) (b)

W 2.5

0 5 10 15

Number of processors, n

(c)

Figure 6.17: Performance curves for the Recursively Parallel method, with 2-1 task alloca
tion a) overall b) factorisation c) substitution

175

6.4 Performance of the Recursively Parallel Solution

Complete Solution Factorisation Substitution
System CPU's te Sin) Bin) te S{n) Fin) te S{n) E{n)

118 2 24.77 1.41 0.71 17.73 1.42 0.71 7.2 1.35 0.68
118 4 16.96 2.06 0.52 12.22 2.06 0.52 5.63 1.72 0.43
118 8 13.95 2.50 0.31 10.30 2.45 0.31 5.57 1.74 0.22
629 2 106.30 2.12 1.06 80.51 2.18 1.09 27.33 1.82 0.91
629 4 85.57 2.64 0.66 66.11 2.66 0.67 23.32 2.14 0.54
629 8 57.47 3.93 0.49 43.20 4.07 0.51 17.54 2.84 0.36
734 2 122.69 2.29 1.15 90.11 2.46 1.23 32.13 1.83 0.92
734 4 72.96 3.85 0.96 55.23 4.02 1.01 20.10 2.93 0.73
734 8 50.30 5.85 0.73 35.53 5.76 0.72 17.98 3.27 0.41
1624 2 386.43 2.51 1.26 313.10 2.64 1.32 78.98 1.82 0.91
1624 4 241.28 4.02 1.01 198.98 4.15 1.04 50.43 2.85 0.71
1624 8 132.93 7.29 0.91 109.31 7.55 0.94 36.42 3.95 0.49

Table 6.7: Performance of the Recursively Parallel solution of the test systems, using 1-1
task allocation

the solution of the test systems.

For the purposes of comparison Table 6.7 details the performance of the multiprocessor

solution when a one-to-one task allocation is used. The figures show that the one-to-one

allocation gives greater speed-ups for systems with only a small number of subnetworks. As

the number of subnetworks increases the speed-up rapidly saturates. The two-to-one task

allocation gives lower speed-ups for smaU systems but the speed-up saturates more slowly

as the number of subnetworks increases.

Note that in Table 6.7, superfinear speed-up is recorded for some of the systems. Super-

finear speed-up is the name given to speed-ups greater than n produced using n processors.

Superfinear speed-up is a rare event and usuaUy only occurs under certain weU-defined

algorithmic conditions [97, 98, 99] such as combinatorial implosiveness [100]. In tliis case

such conditions do not arise and the superfinear speed-up is a function of the differences

between the best sequential and parallel algorithms. The major algorithmic difference re

lates to the data structures and storage schemes employed by the algorithms. The parallel

algorithm uses the highly efficient hybrid storage scheme whilst the sequential algorithm

uses less efficient sparse finked fist storage. For . a true comparison the speed-up figures

should be calculated using the execution times from a sequential method which also makes

use of hybrid storage. As Section 6.2.2 points out, this storage scheme has not yet been

implemented in a sequential solution so the comparison cannot be made here. I t is stiU

reasonable to compare multiprocessor performance to that of the best sequential method

as this sequential method is the current 'industry accepted' standard and it is interesting

176

6.4 Performance of the Recursively Parallel Solution

to quantify the improvement provided by the multiprocessor solution over the standard
method. Perhaps a fairer analysis of performance can be made by resorting to the speed
up over uniprocessor figures (Table 6.8 and Figure 6.18). In calculating the speed-up over
uniprocessor the same program is used for both uniprocessor and multiprocessor solutions
so there can be no differences in the data structures and algorithms used. Therefore the
speed-up over uniprocessor reflects more accurately the benefit that can be gained from
increasing the number of processors used to obtain a solution. In examining the results
(Table 6.8) i t is immediately apparent that superlinear speed-up no longer occurs. Hence i t
may be concluded that the superlinear speed-up recorded in Table 6.6 is due entirely to the
different data structures used by the parallel and best sequential algorithms. The speed-up
curves (Figure 6.18) are shghtly different to those for the speed-up over the best sequential
solution. The absolute speed-ups are similar for the factorisation, substitution and overall
solutions. This is different than for the speed-up over the best sequential solution where it
was observed that factorisation and overall speed-ups were similar but substitution speed
up was smaller. The curves of Figure 6.18 confirm the expectation that factorisation and
substitution speed-up should be similar. Another striking feature of these curves is that
saturation of the speed-up is much less noticeable than in Figure 6.17 particularly for the
734 node system. This indicates that the speed-up saturation demonstrated in Figure 6.17
is a function of the differences in data structures between the best sequential and paral
lel algorithms. The lower rate of saturation in the speed-up over uniprocessor results is
manifested in Figure 6.18 as 'straighter' curves which are much closer to an ideal straight
line than those of Figure 6.17. The lower rate of saturation implies that the RP algorithm
is easily scaleable and that few overheads are introduced as the number of processors is
increased.

In evaluating the performance of the RP solution i t must be compared with the speed-

ups obtained in simulation and the speed-up predicted by ah analysis of the elimination tree.

To establish the validity of the RP solution i t is also necessary to compare the performance

of the RP solution with the performance of other multiprocessor solutions.

Table 6.9 and Figures 6.19 and 6.20 show the theoretically predicted speed-up and the

simulated speed-ups for each of the test systems. It can be seen that the performance of

the Transputer implementation matches, and sometimes exceeds, the predicted performance

of the method. The factorisation speed-up is encouraging as i t is often greater than that

predicted or obtained in simulation. The main reason for this is that the simulation uses the

177

6.4 Performance of the Recursively Parallel Solution

—Complete Solution— —Factorisation— —Substitution—
System CPU's S{n) Sin) S{n)

118 2 1.51 1.49 1.56
118 4 2.47 2.58 2.40
118 8 3.98 3.98 3.35
629 2 1.87 1.90 1.91
629 4 2.62 2.54 2.39
629 8 4.05 3.96 3.70
734 2 1.90 1.92 1.88
734 4 3.52 3.44 3.21
734 8 5.51 5.36 5.05
734 14 7.08 6.84 6.05
1624 2 1.76 1.69 1.91
1624 4 2.93 2.78 3.23
1624 8 5.48 4.98 5.24
1624 13 7.43 7.04 6.43

Table 6.8: Performance of the Recursively Parallel solution of the test systems - speed-up
over uniprocessor

Predicted Simulation Observed Speed-Up
System Processors Subnetworks Speed-Up Speed-Up vs Sequential vs Uniprocessor

118 2 3 1.55 1.55 1.42 1.49
118 4 7 2.93 2.72 2.08 2.58
118 8 15 4.17 4.41 2.47 3.98
629 2 3 1.92 1.94 2.23 1.90
629 4 7 2.38 2.41 2.70 2.54
629 8 15 3.91 3.96 4.04 3.96
734 2 3 1.94 2.01 2.46 1.92
734 4 7 3.46 3.34 4.10 3.44
734 8 15 5.40 5.37 5.83 5.36
734 14 31 7.67 6.67 5.98 6.84
1624 2 3 1.80 1.79 2.64 1.69
1624 4 7 3.07 2.41 4.15 2.78
1624 8 15 5.21 5.15 7.55 4.98
1624 13 31 8.78 6.27 9.38 7.04

Table 6.9: Simulated, predicted and observed factorisation speed-ups for the RP solution
of the test systems

178

6.4 Performance of the Recursively Parallel Solution

1624 Node
734 Node

629 Node

118 Node

3.00 +

0 4 8 12 16

Number of processors, n

(a)

7.00

1624 Node

734 Node

629 Node

118 Node

3.00 +

Number of processors, n

(b)

624 Node

734 Node 6.00 +

4.00 +
629 Node
118 Node

S 3.00 +

2.00 +

1.00 +

0 4 8 12 16

Number of processors, n

(c)

Figure 6.18: Speed-up against uniprocessor for the Recursively Parallel method, with 2-1
task allocation a) overall b) factorisation c) substitution

179

6.4 Performance of the Recursively Parallel Solution

S 5

0)

^ 4

1 +

-+- -+-

118 Predicted

118 Observed

629 Predicted

629 Observed

734 Predicted

734 Observed

1624 Predicted

1624 Observed

4 6 8 10

Number of processors, n

12 14

Figure 6.19: RP method compared to predicted performance (factorisation only - speed-up
over best sequential)

180

6.4 Performance of the Recursively Parallel Solution

10

9 +

? 5
•D
0)
0) a.

CO

-+- -+- -t-
4 6 8 10

Number of processors, n

12

118 Simulated

118 Observed

,— 629 Simulated

629 Observed

734 Simulated

- 734 Observed

1624 Simulated

1624 Observed

14

Figure 6.20: RP method compared to simulated performance (factorisation only - speed-up
over best sequential)

181

6.4 Performance of the Recursively Parallel Solution

hybrid storage mechanism to a lesser extent and the parallel implementation is therefore
inherently more efficient. As the factorisation requires many search operations to find the
relevant matrix elements hybrid storage improves the performance by keeping the number
of less efficient linked list searches to a minimum. The effect is more noticeable on larger
systems thus explaining why the performance of the 734 and 1624 node systems are better
than predicted. A second effect is also at play in the parallel factorisation which is not
accounted for in the simulation and that is the effect of interprocessor communication. This
has the effect of reducing the speed-up and is particularly noticeable in smaller systems. I t
is partly this effect that is responsible for keeping the speed-up of the 118 node system below
that expected of i t . In larger systems this effect tends to reduce the benefits produced by
the hybrid storage scheme. The influence of communication becomes greater as the number
of processors is increased and it is the interprocessor communication which is responsible
for the tailing off of the speed-up as more processors are introduced [25]. When the speed
up over uniprocessor results are compared with the predicted speed-ups of Table 6.9 it is
found that observed speed-ups match very closely to the theoretical predictions. When
eight (or fewer) processors are used the observed speed-ups are similar to the predicted
speed-ups and for the 734 node system the two sets of figures are almost identical. As the
number of processors increases beyond eight the observed speed-up starts to fall away from
the theoretical predictions and this provides evidence to support the claim that increased
communication overheads are responsible for the tailing off of speed-ups as the number
of processors increase. It also confirms that the improved performance offered by the RP
method is due to the improved partitioning of the problem.

The substitution speed-up is much less encouraging as i t seldom comes close to the

predicted or simulated performance. This is due to the inherent difficulties in parallelising

the substitution operation. Highly efficient sequential substitution algorithms exist which

execute extremely rapidly. Because the sequential substitution algorithms are so fast i t is

difficult to create parallel versions which do not introduce extra overheads into the compu

tation and detract from the performance. The interprocessor communication which results

from parallelising the substitution operation introduces the greatest overheads. Although

these communications are responsible for only a very smaU amount of time in factorisation

they become much more significant in substitution due to its short execution time. This

explains the almost universal difficulty in creating a parallel substitution algorithm which

has a speed-up greater than about 3. Although the actual performance (over the best se-

182

6.4 Performance of the Recursively Parallel Solution

quential method) falls short of the theoretical and simulated performance it is stiU good
when compared to the performance of other multiprocessor substitution algorithms and
some relatively high speed-ups have been achieved using only a small number of processors.
When substitution performance over uniprocessor is compared to predicted performance the
outcome is much more encouraging. The speed-ups are much closer to those predicted and
the absolute speed-ups are greater than the speed-ups over best sequential. This indicates
that the poor speed-ups over best sequential are once again a function of the differences in
data structures between the best sequential and parallel algorithms. As with the speed-up
over best sequential, substitution speed-up over uniprocessor falls off as the number of pro
cessors increases and it falls off at a faster rate than the factorisation or overall speed-up.
The implication of this is that interprocessor communication and other scaling overheads
are primarily responsible for saturation of the substitution speed-up.

Unfortunately i t is not very easy to directly compare the performance of the RP method

against the performance of other multiprocessor solutions. Few authors cite actual speed-up

figures in their publications, although there is an argument that i t is more valid to present

actual execution times [101]. Unfortunately i t is not possible to compare the same method

executed on different architectures using only absolute execution times as the execution

time depends on characteristics of the machine, such as the instruction set and the clock

speed. Comparisons are made possible if authors publish absolute execution times for their

parallel algorithms along with execution times for the best sequential algorithms. Some

authors do give absolute execution times for their methods but fail to give the execution

time for the best sequential solution on the same processor. This rules out the possibiMty

of calculating speed-ups from the quoted timings. Where results are available they seldom

refer to the same systems as those used here and some interpolation of results is necessary

to allow comparison. A few authors have published performance figures which do allow

some comparison to be attempted. In the following pages the performance of other paral

lel methods are compared with the speed-ups (over best sequential) produced by the RP

method.

Padhila & Morelato [44] cite results for three systems similar to those used here. Pad-

hila's results,shown below, were obtained using both 8 and 16 processors.

183

6.4 Performance of the Recursively Parallel Solution

Speed-Up Over Sequential Efficiency

System 8 Processors 16 Processors 8 Processors 16 Processors

118 4.76 f« 8 0.595 0.5

725 5.14 ^ 9 0.643 0.563

1729 5.95 ^ 11 0.744 0.688

RP 1 i a Node

L i m b * r of procosaora. n

Padl-iila

PacJhila

R P 1 82-4 Nodo

R P 73-4 IMocdo

Figure 6.21: RP method compared to Padhila's W-matrix method

These results, which are for substitution only, appear impressive at first sight. The 8

processor results for the larger systems are not significantly different from those produced by

the RP method. The 16 processor results seem to significantly better than those obtained

from the RP solution. However the 16 processor results are only simulated residts and

Padhila points out that the simulation neglects communication and also does not account

for the processing of diagonal elements. I t is not possible to compare these figures to the

RP method as actual results are not available but is suspected that the effect of diagonal

processing and communication will be to reduce the 16 processor performance to something

more akin to that of the RP method. Another factor which is significant in making Padhila's

results more impressive is the architecture on which the parallel program was implemented.

The machine was a distributed shared memory machine in which each processing node

184

6.4 Performance of the Recursively Parallel Solution

consisted of an Intel 80286 processor coupled with an Intel 80287 floating point maths
coprocessor. The presence of the coprocessor introduces parallel processing at each node as
the coprocessor can perform mathematical operations in parallel with the main processor.
The fact that a large shared memory was present makes one suspect that communication
between processors was achieved via the shared memory and few, if any, interprocessor
communication delays were introduced.

Lau [32] presents performance figures for systems similar in size to the smaller of the two

test systems used here. The performance quoted by Lau is for the factorisation operation

and no results are presented for substitution. Table 6.6 clearly shows the performance of

the RP method to be far superior to that of Lau's method. The performance of Lau's

method is surprisingly poor as the method itself is similar to the RP method. Lau bases

network partitioning on an analysis of the elimination tree and tries to achieve a balanced

computational loading. The major difference is that Lau's method uses a standard BBDF

coefficient matrix which requires the cutset to be processed sequentially. Even when hybrid

storage is not used the RP factorisation speed-ups are significantly better than Lau's. This

would imply that the improved performance of the RP solution is due mostly due to the

exploitation of the extra parallelism introduced by the RBBDF coefficient matrix structure.

185

6.4 Performance of the Recursively Parallel Solution

118 Node System 662 Node System

Processors S{n) E{n) Sin) E{n)

1 1 1 1 1

2 1.6 0.8 1.4 0.7

4 1.9 0.95 1.7 0.85

8 1.8 0.9 1.65 0.83

16 1.4 0.7 1.5 0.75

RP B20 Node

RP l i e Node

Numb*r of proc*»«ora, n

Uau's eZO Node
Lau'a -11 a Node

Figure 6.22: RP method compared to Lau's method

Chan [36] provides result for the CEGB 811 node network. These results, which are for

substitution, are useful as the CEGB 734 node network used here is a reduced version of

the 811 node network used by Chan. The results for the RP solution of the CEGB 734

node network are superior to those obtained by Chan and the results for the US 1624 node

network, which is more than twice the size of Chan's system, are also superior. Chan's

results are disappointing when it is considered that they were obtained using a distributed

shared memory architecture [81]. As aU interprocessor communication is performed via the

shared memory Chan's method should not suffer from the communication delays inherent

in message passing distributed memory machines. One would therefore hope that Chan's

186

6.4 Performance of the Recursively Parallel Solution

method would be more efficient than a distributed memory solution. The fact that the

results from RP solution were collected using a distributed memory multiprocessor serves

to highlight the improvements in performance offered by the RP method.

Processors Speed-Up S{n) Efficiency E{n)

2 1.77 0.94

4 2.55 0.78

8 3.36 0.58

16 3.65 0.33

RP method compared to Chan's method

R P tGZ4 Nodo

R P 734 Modo

Chan'a SI 1 Node

12 1-4
Numbvr of procaaaora, r

Figure 6.23: RP method compared to Chan's method

Van Ness [46] provides results for the substitution of a 1723 node system using the mul

tiple factoring method. As with many other authors. Van Ness provides only the results

of a simulation and does not provide real results from a practical implementation of the

method. Based on the figures given it would appear that the multiple factoring method

produces a speed-up of 15 using 20 processors and a speed-up of 9.7 using 50 processors.

The introduction of parallel overheads and interprocessor communication would reduce the

speed-ups somewhat but they do appear to be greater than those produced by the RP

method. In a recently published paper [33] Van Ness does provide results from implemen-

187

6.4 Performance of the Recursively Parallel Solution

tations of the multiple factoring method on both shared and distributed memory machines.
Again these results are for a 1723 node system and the results for the distributed memory
implementation are disappointing, with the highest speed-up being 2.47 using 8 processors.
I f the number of processors is increased further the speed-up drops off and a speed-up of
2.02 is achieved using 12 processors. The Transputer-based RP solution, which is also a
distributed memory implementation, fares much better. The 1624 node system is solved
with a speed-up of 4.52 using 8 processors and a speed-up of 5.46 using 13 processors. Not
only does the RP method give greater speed-ups but i t also has quicker factorisation then
the multiple factoring method, which requires an extra factorisation stage to partition the
factored coefficient matrix. The multiple factoring method performs much better when im
plemented on a shared memory machine. For the same 1723 node system the speed-ups are
now 5.55 with 8 processors, 5.96 with 12 processors and 7.48 with 16 processors. Although
this performance is almost three times better than that of the distributed memory imple
mentation i t is still comparable with that of the distributed memory RP implementation.
The main drawback of the multiple factoring method is that extra information has to be
introduced into the problem to enable a parallel solution to be implemented.

Several other authors also provide performance statistics in their pubUcations but these

all relate to the IEEE 118 node system which is perhaps too small to provide a valid test of a

parallel solution. Abur [26] quotes a speed-up of 3.8 for the IEEE 118 system which appears

encouraging until one realizes that between 48 and 57 processors are required to achieve

this performance. Not only is Abur's method extremely inefficient (0.079 < E{n) < 0.067)

it is also extremely expensive when one considers the amount of processing power needed.

El-Kieb et al. [30] provide results for the performance of their parallel solution but these

results are for system that have no more than 30 nodes and again these systems are too

small to provide a valid test of performance. However El-Kieb does claim a fourfold speed

up for the solution of the IEEE 118 node system using 10 processors, although he gives no

specific results,' to support this claim.

The comparisons drawn have shown the RP method to give a better performance than

a number of existing LU-based multiprocessor solutions. The RP method produces higher

speed-ups at greater efficiencies over a range of test systems. An extensive comparison of

the methods is not possible as insufficient data is available for the methods developed by

other authors. Similarly, the four systems used in assessing the RP method do not make for

a comprehensive test. Obtaining the data for real systems is not easy as the required data

188

6.5 Summary

is often commercially sensitive. Using the limited data available one must conclude that
the RP method offers performance advantages over existing methods. As the performance
compares closely with theoretical predictions one must assume that the RP method is an
efficient and effective method for solving linear network equations in parallel.

6.5 Summary

This chapter has considered many of the implementation issues encountered in developing

an RP solution program for a distributed memory MIMD environment. Following from the

initial specifications and basic algorithms of Chapter 5, refinements have been introduced

which significantly improve the performance of such an implementation. Results of the

Transputer-based implementation have been presented and the performance of the method

has been compared with that of other methods. It has been demonstrated that the RP

method offers comparable performance to other methods using fewer processors, making

the RP method more efficient and economically viable.

189

Chapter 7

Further Work

Whilst the Recursively Parallel method performs almost as well as the theory predicts

there is always room for improvement. Throughout this discourse various suggestions have

been made regarding further work which may be undertaken to improve the method and

make i t more amenable to incorporation into power system analysis apphcations. These

suggestions are concerned with the partitioning of the network, the selection of an optimal

ordering and the use of vector processing techniques. OutHnes of the problems requiring

further investigation are given along with suggestions as to how these problems may be

solved.

7.1 Automatic Network Partitioning

Chapter 4 showed how the elimination tree may be used as a tool to assist in the partitioning

of the network. At present the partitioning is achieved by visual inspection of the elimination

tree. This is far from ideal and a significant amount of preparation is required prior to the

solution of a system. A method which automatically partitions a system is more appropriate

and will allow for faster processing of systems. Fortunately the techniques used in dividing

the tree are heuristic and a set of rules can be derived which form the basis of an automatic

partitioning algorithm. The method wiU be based upon a bin packing approach [89, 90] and

the heuristic rules are used to select which nodes or subtrees to place in each bin. Whilst

many of the rules are already known it is unclear how certain parts of the method will be

implemented and it is these topics which require further investigation.

The bin packing approach works by designating a number of 'bins' into which parts of

the problem are placed. For network partitioning the bins correspond to subnetworks and

190

7.1 Automatic Netvv̂ ork Partitioning

subtrees of the elimination tree are assigned into each subnetwork. Hence each subnetwork is
a collection of subtrees of the elimination tree. It is important to note that the subnetworks
may consist of disjoint subtrees. A subnetwork can therefore be constructed from a number
of small subtrees which are not directly interconnected.

Consider the method for partitioning a system for solution by a typical Master/Slave

type parallel solution algorithm [87]. A number of subnetworks are to be produced along

with a single cutset block. The first step in the method is to chose a threshold weight which

is used in analyzing the weighted eUmination tree (Section 4.3.2). I f the entire tree has a

weight of W and m subnetworks are to be created then the ideal threshold weight is

Taking into account the presence of the cutset block, the threshold weight is given by

An upper and lower bound on subnetwork(bin) weight is also required and the idea is to

assign subtrees to a subnetwork until the weight of the subnetwork Ues in between the

upper and lower bound on subnetwork weight. I f has been found empirically that setting

the upper and lower bounds (V7„ and Wi) to Wth ± 5% gives good results. Hence

Wu = IMWth W, = 0.95Wtk (7.2)

The partitioning algorithm has six steps. In the following outline algorithm Wi is the

weight of the i^'^ subnetwork and i — 1.. .m.

1. Scan the elimination tree, starting from the root, and pick the first nodes encountered

on each branch which have a weight lower than or equal to Wth- Order these nodes,

which are the root nodes of subtrees, in descending order of weight.

2. Choose the subtree corresponding to the node of the largest weight and assign i t to

subnetwork i

3. I f Wi < Wi try adding other subtrees (in descending weight order) until the weight of

subnetwork i obeys Wi < Wi < Wu-

I f Wi > Wu remove subtrees from the subnetwork until Wi < Wi < Wu and add

the removed subtrees into other subnetworks so that their weights fall in the desired

range.

191

7.1 Automatic Network Partitioning

4. Repeat steps two to four until all the subtrees have been assigned to the subnetworks
and each of the m subnetworks consists of at least one subtree.

5. I t may be necessary to fine tune the partitioning if there are some subnetworks for

which Wi < Wi. Fine tuning may also be required if some subnetworks have Wi ^ Wu

whilst others have Wi ^ Wi. Fine tuning is accomphshed by removing constituent

subtrees from subnetworks with large weights and assigning them to subnetworks with

smaller weights in an attempt to balance out the weight of the subnetworks. This stage

may be repeated until the best balance is found.

6. AU the nodes which lie between the root of the elimination tree and the identified

subtree roots constitute the tearing nodes and these are grouped together to form the

last subnetwork (i.e the cutset).

This algorithm works well for partitioning a network for solution by a conventional

parallel approach where m subnetworks and a single cutset are required. The problem

becomes more complicated when an automatic method of partitioning for RP solution is

required. With the RP method there are several distinct levels of subnetworks within the

task graph. A l l the subnetworks in each level should have roughly the same weight and

these weights should decrease in moving through the levels from the leaves to the root of

the task graph tree. I f there are k levels in the tree and WLj is the desired weight of all

nodes in level j then

WLj>WLj+i j = l . . . k - l (7.3)

Instead of a single upper and lower bound on subnetwork weight an upper and lower bound

is now required on WLj, where j — I.. .k. Again the ± 5 % tolerance can be applied to

yield

WLu^ = IMWLj WLi. = O.Q5WLj (7.4)

but some heuristic must be found to determine the relationships between the various values

of WLij,WLuj,WLj and Wth- At present no heuristic has been derived and further work

is required. Assuming that the values of WLj can be found the algorithm for partitioning

for RP solution is

1. Scan the elimination tree, starting from the root, and pick the first nodes encountered

192

7.2 The Search for an Optimal Ordering

on each branch which have a weight lower than or equal to Wth- Order these nodes,
which are the root nodes of subtrees, in descending order of weight.

2. Use steps two to four of the previous algorithm to allocate subtrees to the m subnet

works in level j, where j = 1.. .k.

3. Repeat step two until subtrees have been allocated to all the subnetworks in the k

levels of the tree.

4. Fine tune the partitioning to achieve the best inter-level balancing.

There are variations on this algorithm but these wiU not be considered further as the

aim is only to highlight the issue as a topic for further investigation rather than to solve the

problem. Another complication for RP partitioning also requiring further study is implicit

in steps three and four of the first algorithm. In partitioning for a standard parallel solution

the choice of which subtree to add to which subnetwork is not constrained in any way. In

partitioning for RP solution subtrees must be selected so that they do not violate RBBDF

structure constraints as well as satisfying the weight constraints. An additional heuristic

must be derived which checks to see whether the inclusion of a given subtree violates the

RBBDF constraints.

7.2 The Search for an Optimal Ordering

Section 2.7.6 compares the performance of a number of near-optimal ordering strategies and

describes a simple computer program which was written to assess the performance of each

of these methods. The performance of a given ordering strategy is observed by iteratively

applying that ordering to a given system. Before each iteration the system is randomly

reordered and performance is quantified in terms of the fill-in introduced and the length

of the critical path. Whilst most of the path lengths and fiU-ins are close to the mean

values, certain random reorderings give significantly shorter paths and fewer fiUs. Other

random orderings give rise to much higher fill and longer paths. The ordering which gives

the shortest path and minimum fiU-in is of interest as this is the optimum ordering of the

system.

Chapter 2 observed that a graph with n nodes may be reordered in n! different ways,

some of which are, in some sense, 'more optimal' than others. When n is of the order of

1000 the problem is NP-complete and it is not reaUstic to examine all the possible orderings

193

7.2 The Search for an Optimal Ordering

to find the optimum. However the use of the optimum ordering can have a profound effect
on the performance of the solution algorithm and if i t is possible to find this ordering
without incurring large computational overheads then it is surely worth doing. Existing
near-optimal strategies go some way to optimizing the elimination but they are sensitive
to the initial network ordering and the orderings they produce can only be considered as
locally optimal.

As the problem is NP complete it would be inefficient to perform an exhaustive search

to locate the optimum ordering. Genetic algorithm techniques [102] suggest ways in which

the space of all possible reorderings may be searched to find the optimum solution. Genetic

algorithms are based upon the biological processes of evolution and natural selection, often

referred to as survival of the fittest. Each organism in nature carries a blueprint of itself in

its genes and each gene consists of smaller segments caJled chromosomes which define certain

aspects of the organism and its behaviour. Evolution occurs when the organism reproduces

and is accomplished through the action of mutation and crossover. In reproduction each

of the parent organisms passes some of its genetic structure to the child. Crossover is the

operation which splices together the two parent genes to produce the child's gene which is

slightly different from that of either parent and this makes each child a unique individual.

Mutation is the process which may randomly alter some of the child's chromosomes. The

alteration to genetic structure provided by crossover and mutation gives the child slightly

different structure and behaviour to its parents and this enables organisms to adapt to their

environment over a period of several generations. Those organisms which are best adapted

to their environment reproduce vigorously and produce many offspring with similar genetic

make up. Those organisms least suited to the environment produce few offspring. Over a

number of generations the strong genes survive and are spread throughout the population

whilst the weak genes die out.

Genetic algorithms (GA's) are a type of search algorithm which 'evolve' toward the

most optimum solution of a given problem. They are especially useful for problems in

which the solution space is very large or for NP complete problems. In order to use a

GA it is necessary to parameterize the characteristics of a solution to the problem. These

parameters are the 'chromosomes' of the solution and are concatenated to form a gene

string. An initial population of gene strings is required and it is usual to use a population

with tens of members. The members of the population initially have their strings initialized

with random values. Some form of fitness function is required to assess how good each

194

7.2 The Search for an Optimal Ordering

gene string is as a solution to the problem. Those strings which are found unfit are kiUed
off and reproduction of the remaining strings is used to generate an equivalent number of
new strings. Crossover is used in reproduction and a small (less than 1%) percentage of
the strings in the population are mutated. The cycle of fitness testing and reproduction
continues until the majority of the population converges to an acceptable solution.

The most difficult part of any genetic algorithm is knowing when to terminate the search.

The operation of a GA can be seen as a sort of parallel search of the problem's solution space.

Somewhere within that space lies the optimum solution. Starting from random locations

within that space the selection, mutation and crossover operations cause the search points

to jump through the space towards the region where the optimum solution lies. Most of

the population will eventually hold the gene string representing the optimum solution but

not all strings will converge to this solution due to the action of the mutation operation,

which is needed to prevent the search getting trapped by local optima. The search can be

terminated when a defined number of the population have converged to the same solution.

The search for the optimum matrix reordering can be coded as a GA by making each

gene a string which defines how the naturally ordered network is to be reordered. Each

gene in the population is initially given a random reordering. The selection, mutation and

crossover operations are applied to produce new populations. Mutation simply shuffles some

of the elements in a given gene and effectively produces a new random reordering. Crossover

splices together two genes to give a child gene which encodes a different reordering. Care

must be taken to ensure that the ordering specified by the child does not contain any

repeated entries. The selection operation is the fitness function and this must assess which

reorderings are good and discard those that are not good. This is the most difficult part of

the proposed method and it is this aspect of the problem which requires further work.

The fitness of a given ordering can be quantified in terms of the fiUs and critical path

length, as in the program described in Section 2.7.6. The determination of path length and

fiU-in can only be obtained by simulating the elimination of nodes from that system and

although this is quicker than actual elimination i t is stiU a slow process. The simulated

elimination must be performed for each gene in the population. Considering that hundreds

of generations may be required to achieve convergence it is easy to see that this approach will

lead to long run times and the benefits of using the optimal ordering may be outweighed by

the computational overhead required to identify that ordering. What is needed is a diflFerent

method of assessing fitness that does not rely on simulated elimination. Any such method

195

7.3 Block-oriented Solution and Vector Processing

CUTSET

1,1 1,5

2,2 2,5

3,3 3,5

4,4 4,5

5,1 5,2 5,3 5,4 5,5

(a) (b)
Figure 7.1: Conceptual view of a simple four subnetwork system (a) and its BBDF matrix
(b)

must be fast so as to minimize the time to convergence. I f convergence is still too slow the

search could be accelerated by using a number of copies of the GA executing on different

processors in a parallel machine. Any gene which fails the fitness test represents a location

in the search space at which the optimum solution does not exist. I f this information is

shared between the parallel copies of the algorithm then the search space of each copy can be

reduced and the optimum solution may be found more quickly. The increase in performance

is produced by the combinatorial implosiveness [100] of the parallel GA method.

7.3 Block-oriented Solution and Vector Processing

Chapter 4 stated that it is possible to achieve a parallel solution of the hnear equations in a

block oriented manner rather than in the rowwise manner which has been adopted through

out this thesis. Consider the network of Figure 7.1(a) which consists of four subnetworks

separated by a cutset. Figure 7.1(b) shows the BBDF coefficient matrix associated with

this network.

The rowwise method of processing factorises the coefficient matrix into left and right

196

7.3 Block-oriented Solution and Vector Processing

hand factor matrices by applying the bifactorisation rules of Section 2.4.4 to individual

matrix elements. For the matrix in Figure 7.1(b) the bifactorisation rules may be modified

such that they act on entire matrix blocks. The solution for the unknown vector, x, is stiU

given by

but the rules for creating L^andR'' are

(7.5)

= -A i = k + 1.. .n

j = k + 1.. .n

i,j = k + l...n

(7.6)

(7.7)

(7.8)

For a symmetrical matrix

Rlk = {Lli) (7.9)

The left and right hand factor matrices can be obtained entirely by operating on the

matrix at block level. Block manipulations simply require multiplication and additions of

matrix blocks, which can be treated as matrices in their own right. Only one step is more

complicated and that is the step which requires a multiplication of the form

C = A-,lB (7.10)

where Akk,B and C are matrix blocks. It is not necessary to obtain the fuU inverse of Akk

although it may be more efficient to do so if Akk consists mostly of non-zeros. The effect

of A^^ can be obtained by factorising the matrix block Akk to yield the factored form Akk

and the multiplication can be performed using the algorithm

loop i f rom 1 to T Z

Ci = Akk-Bi

end i loop

where Ci and 5, are the i^'^ columns of C and B respectively. The multiplication by

A^^ can thus be reduced to a matrix by matrix multiplication if the fuU inverse is used, or

a series of n matrix by vector multiplications if the factored form is used. Again the basic

197

7.3 Block-oriented Solution and Vector Processing

operation is that of block multipUcations.

The benefit of this method is its suitability for use with vector processors. A vector

processor achieves high performance through the use of a number of pipehned arithmetic

units. I f there are n arithmetic units then an increase in performance of at almost n times

can be obtained. For example i f two vectors are to be multiplied then the pipeUne of arith

metic units performs the operations on individual vector elements and the multiplication is

performed almost n times faster than on a non-pipeUned (scalar) processor. The advantage

of vector processors is that they have built in support for vector based operations. A vector

by vector multiplication can be performed using a single machine instruction and it wiH be

performed n times faster than on a scalar processor. I f the matrix blocks in Figure 7.1(b)

are assumed to be densely populated and stored as arrays then the block bifactorisation

can be performed using only a small number of of machine instructions. An increase in

performance over a scalar processor wiU be observed due simply to the pipeUned vector

processor. An even bigger increase in performance may be achieved by using either vector

processors as the processing elements in a parallel machine. As the four subnetworks in

Figure 7.1(b) are independent it is possible to process them in parallel and a parallel vector

processor with 5 CPU's could be used to give a 3 or 4 fold increase over the performance of

the single vector processor solution. The number of pipelined arithmetic units, n, depends

the processor used but i t is typically less than 12 for a simple vector microprocessor. Hence

a single vector microprocessor could theoretically give a 12 fold increase in performance

over a scalar processor. Using a parallel vector processor could give as much as a 48 fold

increase in performance over the best sequential method executed on a single processor

scalar machine.

The disadvantage of vector processing is that it is only efficient if operations are per

formed on dense vectors. When sparse matrices and vectors are used scalar processors are

often found to be more efficient. To enable good speed-ups to be obtained from a paral

lel vector processor it is necessary to ensure that all matrix blocks are sufficiently dense

for the vector processor to operate efficiently. This is not a problem with the cutset as i t

generally tends to be densely populated. Unfortunately the matrix blocks associated with

the subnetworks are more sparsely populated and it may be inefficient to operate on these

blocks using vector methods. A hybrid parallel machine consisting of both scalar and vector

processors can be envisaged. The scalar processors may be used to process the subnetwork

blocks whilst a vector processor may be used to process the cutset blocks, giving a highly

198

7.4 Summary

efficient solution. This approach has benefits for both standard parallel algorithms and for
the Recursively Parallel algorithm. Under the RP scheme the main subnetworks would be
processed using sparse matrix techniques on scalar processors whilst the vector processors
could be used to process the minor subnetworks which constitute the cutset block. Little
work has been done on using parallel vector machines and hybrid scalar/vector parallel
machines for solving the linear equations associated with network problems. I t would be
interesting to investigate the performance of both standard and RP solution techniques on
these architectures as great performance benefits may lie in store.

7.4 Summary

Although it has been demonstrated that the Recursively Parallel method exhibits good per

formance there is always room for improvement in any method. This chapter has considered

some suggestions for improving on the methods described in this thesis to make the Recur

sively Parallel method more appropriate for use in power systems analysis applications.

The method presented for partitioning the network prior to RP solution works well but

relies on visual inspection by the user. This is time consuming and it would be advantageous

to have an automatic method for partitioning the system. Based on the existing method

which utilizes a weighted elimination tree, an heuristic bin packing method has been pro

posed to partition systems for solution by a conventional parallel method. Unfortunately

the situation is more complicated for the RP method as the heuristic partitioning must

cope with multiple levels of parallelism and ensure that the chosen decomposition does not

violate RBBDF constraints. Further work is required to develop the rules which wiU allow

the automatic heuristic partitioning approach to cope with the constraints imposed by the

RP solution.

Near-optimal ordering strategies are often used to optimize the elimination process dur

ing triangular solution but these strategies are sensitive to the initial network ordering and

the orderings that they produced can only be considered locally optimum. Throughout the

space of all n! possible reorderings, some orderings may be found which are 'more optimal'

than those produced by the near-optimal strategies and these can have a profound eflFect

on improving the performance of the multiprocessor solution. I t would be advantageous to

find the (globally) optimum ordering if this does not require the expenditure of too much

computational effort. An approach has been proposed which uses a genetic algorithm to

199

7.4 Summary

rapidly search the space of all possible reorderings. The problem with the method is that a
fitness function is required which can be used to assess the optimality of each potential solu
tion produced by the genetic algorithm. Optimality is characterized by the path length and
fiU-in produced by the ordering and this can only be determined by performing a simulated
elimination using that ordering. This is computationally intensive and it would require
more computational effort to find the optimum ordering than would be saved by using that
ordering during elimination. Further work needs to be undertaken to find a less intensive
method of assessing the fitness of potential solutions. I f such a method can be found, the
genetic algorithm-based optimal ordering may be useful in improving the performance of
all parallel methods.

The RP method solves the network equations in a row-oriented manner but it is also

possible to solve them in a block-oriented manner. Block-oriented solution is particularly

suited to the use of vector processors which use pipelines of multiple arithmetic units to

provide machine-level instructions for performing vector arithmetic operations. A vector

microprocessor with a pipeline of n ALU's can, theoretically, show an n-fold increase in

performance over an ordinary scalar microprocessor. A multiprocessor computer made

from vector microprocessors could combine the performance benefits of vector computers

with those of parallel computers to give speed-up which are not possible from either vector

or parallel processing alone. Such a computer could be used to step over the current

performance limitations and to significantly reduce the time taken to solve large sets of

linear equations. Unfortunately vector processing requires vectors and matrices to be stored

as arrays and the use of array storage may detract from the possible performance benefits. A

hybrid parallel scalar-vector computer can be envisaged in which parallel vector processors

are used to solve the dense cutset block whilst parallel scalar processors are used to solve the

remainder of the matrix. This type of architecture certainly deserves further investigation.

200

Chapter 8

Conclusions

8.1 Conclusions

f I 1 his thesis has examined how the linear equations associated with network problems

may be solved using parallel computing techniques. In particular, the solution of the

linear equations arising from the study of large electrical power systems has been considered.

For most real-time power system simulations i t is necessary to solve these equations as fast

as possible and the work described here has focussed on the development of a method which

offers faster and more efficient solutions than existing parallel techniques.

Parallel methods have been developed for the solution of general sets of linear equations

and many more methods have been developed to solve the equations which arise from spe

cific problems. The field of power system analysis is no exception to this and numerous

researchers have attempted different methods of solving the network equations. Most of

the methods use some form of Gaussian elimination and diakoptical techniques are used to

partition the problem into independent parts. The fine details of the Gauss-based algorithm

aiid the target parallel architecture are the main differences between the methods. Different

Gauss methods allow different levels of parallelism to be exploited and the parallel architec

ture can have an effect on the efficiency of the method. Shared memory machines can give

better performance due to the lower interprocessor communication overheads but cheap,

off-the-shelf distributed memory machines are widely available. From the user's point of

view massively parallel computers are perhaps not appropriate for a power system simula

tion due to the large capital outlay required in the purchase of such a machine. The aim of

the work described here has been to develop a parallel solution method suitable for use with

201

8.1 Conclusions

distributed memory machines. An array of Transputers has been used as the development
platform but the solution has not been developed specifically for Transputers. This plat
form has been used to verify the effectiveness of the method but any method which works
on the Transputer array should also work on other platforms including distributed memory
multiprocessors, distributed systems of workstations and multitasking sequential machines.
Existing solutions are inefficient in that speed-up for either factorisation or substitution
seldom exceeds a value of three or four and a large number of processors are required to
achieve this speed-up. The aim was to develop a solution technique that would give greater
speed-ups than existing methods with only a small number of processors. I t was hoped
that this could be achieved through the elimination of the speed-up saturation observed in
existing solutions due to the existence of a large sequential section in the solution algorithm.

The development of the Recursively Parallel method has been described and, hke existing

methods, i t is based on diakoptics and Gaussian eUmination. The method has been devised

by considering the structure of the coefficient matrix and the precedence relationships which

arise from i t . Using the insight provided by the efimination tree a novel coefficient matrix

structure has been created by constraining the interconnection of subnetworks. This struc

ture introduces greater independence into the treatment of cutset elements and allows the

cutset to be processed in parallel as a number of subnetworks. The size of the sequential

part of the method has been significantly reduced and more parallelism has been exploited.

Partitioning the system for parallel solution is simplified by resorting to the use of the

elimination tree and analyzing the complexity of processing nodes. I t has been demon

strated that subtrees are equivalent to subnetworks and selecting subtrees is equivalent to

partitioning the network into subnetworks. Load balancing has been introduced as an im

portant issue in parallel computing and the need for achieving a balanced load has been

identified. Using the weighted eUmination tree reduces the problem of load balancing to one

of selecting subtrees with appropriate weights. Using an aggregate weighting technique it is

possible to find subtrees of the ehmination tree with nearly equal weights and an ideal bal

anced load is achieved when the subtrees aU have equal weights. Examining the partitioned

elimination tree allows a prediction to be made for the speed-up that can be obtained by

solving the system in parallel. Using this technique it has been possible to partition all the

test systems described in this thesis. These test systems are based on real networks and

the method is powerful enough to allow partitioning of any power system network.

The performance of the RP method depends heavily on the efficiency of the data struc-

202

8.1 Conclusions

tures and algorithms used in its implementation. Suitable data structures and outline algo
rithms of efficient parallel tasks have been presented throughout the course of the discussion.
A hybrid data storage scheme has been proposed and this allows maximum performance
to be obtained by tailoring the data storage and processing to the characteristics of the
individual system. This hybrid parallel data structure has suggested a way of improving
the performance of existing sequential solution methods. In addition i t is also possible to
optimize the network partitions and data structures for either the factorisation or substi
tution phases of the solution thereby improving the performance of these operations. An
optimal assignment of tasks to processors has been derived to minimize interprocessor com
munications and number of processors required whilst stiU allowing for easy scalability. I t
has also been demonstrated that the performance of the method is independent of the tar
get architecture if a pipeline can be embedded in that architecture. This is true for most
topologies apart from trees. A method of visualising the operation of the parallel program
has also been described along with a strategy for accurately timing the execution of the
solution and events within the solution.

The performance of the new method is very encouraging. Simulations of the method

have shown its effectiveness, producing speed-ups which are better than those of many

other LU-based solution methods when using the same number of processors. The method

is effective even with a large number of processors and scales easily from a small number

of processors to a larger numbers of processors. An actual parallel implementation on an

array of Transputers concurs with the results of the simulations. The resulting speed-ups

are similar to those predicted by both the theory and the simulation. Whilst the overall

speed-ups and factorisation speed-ups are significantly better than those obtained from

existing methods the substitution speed-ups are somewhat disappointing but stiU show

an improvement over other methods. This highlights the difficulties of speeding-up the

substitution phase. Highly efficient sequential substitution algorithms already exist and due

to the short execution times of these algorithms it is difficult to exploit paraUefism without

introducing overheads which detract from performance. When the differences in the data

structures used by the parallel and sequential solutions are ignored the performance of the

substitution phase becomes similar to that of the overall and factorisation performance.

Although saturation is stiU observed it is less significant than in other methods and is

primarily due to the overheads associated with interprocessor communication.

I t has been demonstrated that the performance of both the simulated and actual parallel

203

8.1 '. Conclusions

implementations is dependent on the load balance. Static load balancing is employed by the
RP method and the load balance is adjusted by altering the partitioning of the network. The
abihty to predict speed-up based upon an analysis of the partitioned eUmination tree allows
the load balance to be assessed prior to solution. The adjustments to the load balancing
strategy presented in Chapter 6 allows the optimum network partitioning, and hence load
balance, to be easily determined.

The major benefit of the RP method is that it is more efficient than existing solution

methods as fewer processors are required to yield comparable speed-ups. This property

of the method offers important economic advantages for the user. The strategy used for

assigning tasks to processors offers the advantage of easy scalabiUty. The architectural

independence of the RP method allows it to be implemented on the simplest of architectures,

or on more compUcated ones. The fact that the method works as well on the simple pipeUne

as i t does on any other architecture is advantageous as the pipeUne topology is cheap and

easy to implement. Although the RP method works weU on a distributed memory machine

it should be simple to adapt the RP solution to work with shared memory machines. The

method is also suitable for implementation on a distributed network of workstations. This

is important when it is considered that the RP method is designed to be the engine for

solving the Unear equations in a power system simulation. Whilst the performance of the

method on networked workstations wiU be poorer than on a dedicated multiprocessor, it

may stiU be acceptable for simulation appUcations. I f this is the case then the end user of

the simulation would not necessarily have to invest in a dedicated multiprocessor but could

make use of existing networked computing faciUties.

Although the RP method performs as expected there is always room for improvement

and suggestions have been made for further work on the method. I f the RP method is to

be used as a solution engine in power system analysis software then it wiU be necessary

to implement an automatic method of partitioning the- system. I t has been shown that

the eUmination ordering has an effect on the performance of the solution and it would be

advantageous to find a fast method for locating the most optimum ordering for a given sys

tem. Parallel processing techniques have been successfuUy appUed to speed-up the solution

of the network equations but vector processors also show promise for accelerating solutions.

Significant increases in the speed of solution could be achieved by combining the techniques

of parallel processing and vector processing through the use of a parallel vector processor

architecture and this approach to solution deserves further research.

204

8.1 Conclusions

In conclusion, the RP method proposed here has proved to be an effective method for
solving linear network equations in parallel. I t is more efficient and produces better speed-
ups than many other parallel solutions. For the method to be of any use in a real-time
power system simulation it must solve the network equations as fast as possible on each
iteration, and each iteration must completed in a time shorter than the integration step of
the simulation. Given that the integration step is of the order of 1 second and that the RP
method solves a 1624 node network in 36 milliseconds, the RP method is certainly suitable
for use as part of a real-time power system simulator.

205

Bibliography

[1] C.A. Gross, Power Systems Analysis. Wiley, second ed., 1986.

[2] A. Brameller, R.N. Allan, and Y . M . Hamam, Sparsity - Its practical application to

systems analysis. Pitman, 1976.

[3] W.F. Tinney and J.W. Walker, "Direct solutions of sparse network equations by

optimally ordered triangular factorisation," Proceedings of the IEEE, November 1967.

[4] B. Stott, "Power system dynamic response calculations," Proceedings of the IEEE,

pp. 219-241, February 1979.

[5] Balu et. al, "Online power system security analysis," Proceedings of IEEE, pp. 260-

280, February 1992.

[6] I . Susmago et al., "Development of a large scale dispatcher training simulator and

training results," IEEE Transactions on Power Systems, pp. 67-75, May 1986.

[7] H. Biglari et al, "A dispatcher training simulator design with multi-purpose inter

faces," IEEE Transactions on Power Apparatus and Systems, pp. 1276-1280, June

1985.

[8] R. Podmore et al, "An advanced dispatcher training simulator," IEEE Transactions

on Power Apparatus and Systems, pp. 17-25, January 1982.

[9] J. Arillaga and CP. Arnold, Computer Analysis Of Power Systems. Wiley, 1990.

[10] C. Lazou, Supercomputers And Their Use. Oxford Science Publications, 1988.

[11] A. Trew and G. Wilson, eds.. Past, Present and Parallel: A survey of available parallel

computing systems. Springer-Verlag, 1991.

206

B I B L I O G R A P H Y

[12] G. Sabot, The Paralation Model - Architecture independent parallel programming.
M I T Press, 1988.

[13] G. S. Almasi and A.J. GottUeb, eds., Highly Parallel Computing. Ben-

jamin/Cummings, second ed., 1994.

[14] J.P. Hayes, Computer Architecture And Organisation. McGraw-HiU, 1988.

[15] K .H . Hwang and F.A. Briggs, Computer Architecture And Parallel Processing.

McGraw-HiU, 1984.

[16] M.J. Flynn, "Very high speed computing systems," Proceedings of IEEE, pp. 1901-

1909,1966.

[17] K . H . Hwang, Advanced Computer Architecture - Parallelism, Scalability, Programma-

bility. McGraw HiU Series In Computer Science, McGraw HiU, 1993.

[18] A .L . DeCegama, Parallel Processing Architectures And VLSI Hardware, vol. 1. Pren

tice HaU, 1989.

[19] T.G. Lewis and H. El-Rewini, Introduction To Parallel Computing. Prentice Hall,

1992.

[20] J. Hinton and A. Pinder, Transputer Hardware And System Design. Prentice HaU

International, 1993.

[21] I . Graham and T. King, The Transputer Handbook. Prentice Hall, second ed., 1990.

[22] R. Taylor, Selected Notes On Transputers. University of York, 1991.

[23] M . Minsky and S. Papert, "On some associative paraUel and analog computations,"

in Associative Information Techniques (E.J. Jacks, ed.), Elsevier, 1971.

[24] G.A. Amdahl, "Limits of expectation," International Journal of Supercomputing,

pp. 88-94, Spring 1988.

[25] E. Gelenbe, Multiprocessor Performance. Wiley Series In ParaUel Computing, Wiley,

1989.

[26] A. Abur, "A parallel scheme for the forward/backward substitutions in solving sparse

Unear equations," IEEE Transactions on Power Systems, pp. 1471-1478, November

1988.

207

B I B L I O G R A P H Y

[27] G. Cafaro, P. Pugliese, and F. Vacca, "Parallel solution of torn network equations,"
Electrical Power and Energy Systems, pp. 131-138, July 1984.

[28] I.e. Decker, D .M. Falc ao, and E. Kaszkurewicz, "Parallel implementation of a power

system dynamic simulation methodology using the conjugate gradient method," IEEE

Transactions on Power Systems, pp. 458-465, February 1992.

[29] T. Berry, A.R. Daniels, and R.W. Dunn, "Parallel processing of sparse power system

equations," lEE Proceedings C, pp. 68-74, January 1994.

[30] A.A. El-Kieb, H. Ding, and D. Maratukulam., "A parallel load flow algorithm," Elec

tric Power Systems Research, pp. 203-208, 1994.

[31] J. Fong and C. Pottle, "Parallel processing of power system analysis problems via

simple parallel microcomputer structures," IEEE Transactions on Power Apparatus

and Systems, pp. 1834-1841, September/October 1978.

[32] K. Lau, D.J. Tylavsky, and A. Bose, "Coarse grain scheduling in parallel triangular

factorisation and solution of power system matrices," IEEE Transactions on Power

Systems, pp. 708-714, March 1991.

[33] S. Lin and J.E. Van Ness, "Parallel solution of sparse algebraic equations," IEEE

Transactions on Power Systems, vol. 9, pp. 1117-1125, May 1994.

[34] M . Rafian, M.J.H. SterHng, and M.R. Irving, "Parallel processor algorithm for power

system simulation," lEE Proceedings Part C, pp. 285-290, July 1988.

[35] D. Yu and H. Wang, "A new parallel LU decomposition method," IEEE Transactions

on Power Systems, pp. 303-310, February 1990.

[36] T. Berry, K.W. Chan, and R.W. Dunn, "A parallel computer algorithm for real-time

electro-mechanical transient power system simulation," in Proceedings of 27 Univer

sities Power Engineering Conference, vol. 1, pp. 32-12, University of Bath, 1992.

University of Bath, ENGLAND, 23-25 September 1992.

[37] F.L. Alvarado, D.C. Yu, and R. Betancourt, "Partitioned sparse A~^ methods," IEEE

Transactions on Power Systems, pp. 452-459, May 1990.

208

B I B L I O G R A P H Y

[38] M.La Scala, G. Sblendorio, and R. Sbrizzai, "ParaUel in-time implementations of tran
sient stabiUty simulations on a Transputer network," IEEE Transactions on Power
Systems, pp. 1117-1125, May 1994.

[39] G.P. GranelU, M . Montagna, M . La Scala, and F. TorelU, "Relaxation-Newton meth

ods for transient stabiUty analysis on a vector/paraUel computer," IEEE Transactions

on Power Systems, pp. 637-643, May 1994.

[40] S.Y. Lee, H.D. Chiang, K.G. Lee, and B.Y. Ku, "ParaUel power system transient

stabiUty analysis on hypercube multiprocessors," in Proceedings of the IEEE Power

Industry Computer Applications Conference, May 1989.

[41] F. Sato, A.V. Garcia, and A. MonitceUi, "Parallel implementation of probabiUstic

short-circuit analysis by the Monte-Carlo approach," IEEE Transactions on Power

Systems, no. 2, pp. 826-832, 1994.

[42] A.A. El-Kieb, J. Nieplocha H. Singh D.J. Maratukulam M.K. CeUk, and A. Abur,

"A decomposed state estimation technique suitable for parallel processor implemen

tation," IEEE Transactions on Power Systems, no. 3, pp. 1088-1097, 1992.

[43] D .M. Falc ao, E. Kaszkurewicz, and H.L.S Almeida, "AppUcation of paraUel process

ing techniques to the simulation of power-system electromagnetic transients," IEEE

Transactions on Power Systems, no. 1, pp. 90-96, 1993.

[44] A. PadhUa and A. Morelato, "A W-matrix methodology for solving sparse net

work equations on multiprocessor computers," IEEE Transactions on Power Systems,

pp. 1023-1036, August 1992.

[45] D.J. Tylavsky, S. Nagaraj, and P.E. Crouch, "Parallel-vector processing synergy and

frequency domain transient stabiUty simulations," Electric Power Systems, pp. 89-97,

1993.

[46] J.E. VanNess and G. MoUna, "The use of multiple factoring in the paraUel solution of

algebraic equations," IEEE Transactions on Power Apparatus and Systems, pp. 3433--

3438, October 1983.

[47] H.H. Happ, Piecewise Methods And Applications To Power Systems. Wiley, 1980.

209

B I B L I O G R A P H Y

[48] G. Kron, "A set of principles to interconnect the solutions of a physical system,"
Journal of Applied Physics, pp. 965-980, 1953.

[49] J. Bialek, "Parallel solution of torn networks for power system simulation," in Pro

ceedings of 6th International Conference on Present Day Problems In Power Systems,

vol. 2, pp. 75-82, 1993. Gliwice, Poland.

[50] IEEE Committee Report by a Task Force of the Computer and Analytical Meth

ods Subcommittee of the Power Systems Engineering Committee, "Parallel Processing

in Power Systems Computation," IEEE Transactions on Power Systems, pp. 629-638,

May 1992.

[51] B. Carre, Graphs and networks. Oxford applied mathematics and computing science

series, Oxford University Press, 1979.

[52] J.W.H. Liu, "The role of elimination trees in sparse factorisation," SI AM Journal of

Matrix Analysis Applications, pp. 134-172, January 1990.

[53] R. Schreiber, "A new implementation of sparse Gaussian elimination," ACM Trans

actions on Mathematical Software, pp. 256-276, 1982.

[54] J.A. Jess and G.H. Kees, "A data structure for parallel LU decomposition," IEEE

Transactions on Computing, pp. 231-239, March 1982.

[55] W.F. Tinney, V. Brandwajn, and S.M. Chan, "Sparse vector methods," IEEE Trans

actions on Power Apparatus and Systems, pp. 295-301, February 1985.

[56] R. Betancourt, "Efficient parallel processing algorithm for inverting matrices with

random sparsity," lEE Proceedings Part E, pp. 235-240, July 1986.

[57] A.J.E. Taylor, Techniques For Power System Simulation Using Multiple Processors.

PhD thesis, University of Durham, UK, 1990.

[58] R. Sedgewick, Algorithms, 2nd edition. Addison-Wesley, 1988.

[59] I . Peterson, The Mathematical Tourist - Snapshots of modern mathematics. W. H.

Freeman & Co., 1988.

[60] I.S. Duff, A.M. Erisman, and J.K. Reid, Direct Methods For Sparse Matrices. Oxford

Press, 1986.

210

B I B L I O G R A P H Y

[61] A. Kelley and I . Pohl, A Book on C. Benjamin/Cummings, second ed., 1984.

[62] A. Jennings and J.J. McKeown, Matrix Computations. Wiley, second ed., 1992.

[63] V. Kumar, A. Grama, A. Gupta, and G. Karypis, Introduction To Parallel Computing

- Design and analysis of algorithms. Benjamin/Cummings, 1994.

[64] R.L. Burden and J.D. Faires, Numerical Analysis. PWS-Kent, fourth ed., 1988.

[65] G.H. Golub and C.F. Van Loan, Matrix Computations. North Oxford Academic,

first ed., 1983.

[66] M.J. Quinn, Designing Efficient Algorithms for Parallel Computers. McGraw-Hill

Series in Supercomputing and Artificial Intelligence, McGraw-HiU, 1987.

[67] M.T. Heath, E. Ng, and B.W. Peyton, "Parallel algorithms for sparse linear systems,"

SIAM Review, pp. 420-460, September 1991.

[68] D.J. Tylavsky, "Quadrant interlocking factorization: a form of block LU factoriza

tion," Proceedings of the IEEE, 1986.

[69] J. Bialek and D.J. Grey, "The application of clustering and factorisation tree tech

niques for the parallel solution of sparse network equations," lEE Proceedings Part

C, pp. 609-616, November 1994.

[70] J.S. Chai and A. Bose, "Bottlenecks in parallel algorithms for power system stability

analysis," IEEE Transactions on Power Systems, pp. 9-15, February 1993.

[71] A. George and W.H. Liu, "An optimal algorithm for symbolic factorization of sym

metric matrices," SIAM Journal of Computing, pp. 583-593, 1980.

[72] A. George and W.H. Liu, Computer Solution of Large Sparse Positive Definite Sys

tems. Prentice-Hall, 1981.

[73] G.A. Geist and E. Ng, "Task scheduling for parallel sparse Cholesky factorisation,"

International Journal of Parallel Processing, no. 4, pp. 291-313, 1989.

[74] J.W.H. Liu, "Reordering sparse matrices for parallel elimination," Parallel Comput

ing, pp. 73-91, 1989.

211

B I B L I O G R A P H Y

[75] F.F. Wu, "Solution of large scale networks by tearing," IEEE Transactions On Cir
cuits and Systems, pp. 706-713, December 1976.

[76] L.O. Chua and L.K. Chen, "Diakoptic and generalized hybrid analysis," IEEE Trans

actions on Circuits and Systems, pp. 706-713, December 1976.

[77] Z. Homing, X. Niande, and S. Wang, "Unified piecewise solution of power system

networks combining both branch cutting and node tearing," Electrical Power and

Energy Systems, pp. 238-288, October 1989.

[78] I.S. DufF, "A survey of sparse matrix research," Proceedings of the IEEE, pp. 500-535,

April 1977.

[79] J. Bialek, D.J. Grey, and J.R. Bumby, "Parallel decomposed network solution method

for power system simulation," in Proceedings of 27th Universities Power Engineering

Conference, vol. 1, pp. 193-196, University of Bath, 1992. University of Bath, ENG

LAND, 23-25 September 1992.

[80] M.R. Irving and M.J.H. Sterling, "Optimal network tearing using simulated anneal

ing," lEE Proceedings Part C, pp. 69-72, January 1990.

[81] R.W. Dunn. Personal Communication, 1993. Stafford.

[82] C. Ashcraft, S.C. Eisenstat, and J.W.H. Liu, "A fan-in algorithm for distributed

sparse numerical factorisation," SIAM Journal on Scientific and Statistical Comput

ing, pp. 593-599, 1990.

[83] F. Herman and L. Snyder, "On mapping parallel algorithms into parallel architec

tures," Journal of Parallel and Distributed Computing, pp. 439-458, 1987.

[84] R.L. Graham, "Bounds on multiprocessor timing anomalies," SIAM Journal of Ap

plied Mathematics, pp. 416-429, March 1966.

[85] G.F. Coulouris and J. DoUimore, Distributed Systems. Addison Wesley International

Computer Science Series, Addison Wesley, 1988.

[86] T. Oyama, T. Kitshara, and Y. Serizana, "Parallel processing for power system analy

sis using band matrix," IEEE Transactions on Power Systems, pp. 1010-1016, August

1990.

212

B I B L I O G R A P H Y

[87] J. Bialek and D.J. Grey, "An automatic clustering algorithm using factorisation tree
for parallel power system simulation," in Proceedings of MELECON 1994, 1994.

[88] J.A. George, J.W.H. Liu, and E.G.Y. Ng, "Communication results for parallel sparse

Cholesky factorisation on a hypercube," Parallel Computing, pp. 287-298, 1989.

[89] M.A. Weiss, Data Structures And Algorithms. Benjamin/Cummings, 1992.

[90] H.S. Will, Algorithms And Complexity. Prentice-Hall, 1986.

[91] A. Burns and A. WeUings, Real-time systems and their programming languages.

Addison-Wesley International Computer Science Series, Addison-Wesley, 1989.

[92] C.A.R. Hoare, "Communicating Sequential Processes," Communications of the ACM,

pp. 666-777, 1978.

[93] C.A.R. Hoare, Communicating Sequential Processes. Prentice-HaU International ?,

1980.

[94] P. Brinch Hansen, "Distributed Processes: A concurrent programming concept," ACM

Transactions on Programming Languages, no. 4, pp. 405-430, 1978.

[95] K.M. Chandy and S. Taylor, An introduction to parallel programming. Jones and

Bartlett Publishers, 1992.

[96] J. Bialek and D.J. Grey, "A mutated tree architecture for real-time parallel power

system simulation," in Proceedings of 28th Universities Power Engineering Confer

ence, vol. 2, pp. 458-461, University of Stalfordshire, 1993. University of Staffordsliire,

ENGLAND, 21-23 September 1993.

[97] D.P. Helmbold and C.E. McDowell, "Modeling Speedup (n) greater than n," IEEE

Transactions on Parallel and Distributed Systems, pp. 250-256, April 1990.

[98] D. Parkinson, "Parallel efficiency can be greater than unity," Parallel Computing,

pp. 261-262, 1986.

[99] B.W. Weide, "Modeling unusual behaviour of parallel algorithms," IEEE Transactions

on Computers, pp. 1126-1130, November 1982.

[100] W.A. Kornfeld, "CombinatoriaUy implosive algorithms," Communications of the

ACM, pp. 734-738, October 1982.

213

[101] L.A. Crowl, "How to measure, present and compare parallel performance," IEEE

Parallel and Distributed Technology, pp. 9-25, Spring 1994.

[102] D.E. Goldberg, Genetic Algorithms. Addison-Wesley, 1989.

[103] Inmos, "IMS D7314A ANSI C Compiler Language Reference Manual," 1992.

[104] W.D. Stephenson, Elements Of Power System Analysis. McGraw HiU, third ed., 1975.

[105] B.M. Weedy, Electric Power Systems. Wiley, third ed., 1987.

[106] H. El-Rewini and T.G. Lewis, "Scheduling parallel program tasks onto arbitrary target

machines," Journal of Parallel And Distributed Computing, pp. 138-153, 1990.

[107] N.T. Karonis, "Timing parallel programs that use message passing," Journal of Par

allel And Distributed Computing, pp. 29-36, 1992.

214

Appendix A

The INMOS Transputer

The INMOS Transputer first entered the microprocessor marketplace in 1982 with the

release of the T212 Transputer. It was designed to be a general purpose microprocessor

which could be used as a building block for creating high performance parallel processing

systems. Nowadays the transputer is a cheap component that can be connected into large

arrays to form a high performance machine. Taylor [22] notes that the following three main

features can be identified in the design of the transputer;

• Support for multitasking so that many logically concurrent tasks may reside on the

same processor.

• Support for synchronous communications so that tasks on the same or different pro

cessors may communicate efficiently with one another.

• Modular design and support for the construction of systems of processors.

An additional feature not explicitly noted by Taylor is that of creating a hardware platform

for an implementation of Hoare's [92, 93] Communicating Sequential Processes paradigm of

parallel computing.

The architecture of the transputer is such that it allows the size of a system to be

easily scaled. The multi-tasking scheduler built into the chip allows multiple tasks to be

executed on a single transputer. Large parallel programs may be executed on one or many

transputers.

The communication facilities that are provided aUow synchronous communication be

tween tasks on the same or different processors. The synchronous nature of the communi

cation primitives requires messages to be acknowledged and this gives a reliable protocol

215

for data transfer. Complete multiprocessor systems are built simply by interconnecting

the communications links of the constituent transputers. Communications are point-to-

point and each serial link consists of two unidirectional communication channels, one in

either direction. The links operate concurrently with the processor in order to maximize

performance and maximum data transfer rate is 20 Mbit/sec.

To address the modular design issue the transputer incorporates many of the supporting

systems required by other microprocessors onto the same piece of silicon as the processor

itself [20]. Each transputer consists of a microprocessor, serial communication links, fast

cache memory, external memory interfacing, floating point coprocessor, real-time clocks

and a hardware implemented multi-tasking scheduler. As so much is implemented on the

transputer itself, systems can be built with only a few external components. Printed circuit

boards can be small and power consumption is lower than in many comparable designs

which use other processors. AU the resources required by a transputer were designed to be

local and not globally shared, eliminating the need for complicated bus interfaces. In fact

the only external signals a transputer needs to enable it to boot and run a program from an

attached ROM are the power, ground and clock signals. This makes the building of large

systems straightforward.

A . l The Architecture of the Transputer

The first generation of transputers, known as the Txxx family of processors, are essentially

similar in their design. Although three distinct generations exist with slightly different char

acteristics, all generations share the same basic architecture and communication interfaces

and have similar instruction sets. Figure A . l illustrates the basic architecture of the Txxx

series. In recent months the first of the second generation transputers, the T9000, has been

released to market. This has a different architecture to the Txxx family and is not directly

compatible with the earlier processors. It claims to give an order of magnitude greater

performance over the Txxx family but problems are being experienced with this processor

and it does not yet perform as well as expected. As it has only just been released it was

not available for use in this research project and wiU not be considered further.

The Transputer processors are based around the RISC philosophy. Each instruction is

8 bits long, consisting of a 4 bit instruction code and a 4 bit operand. This allows 78%

of all instructions to be coded in a single byte [22] and each memory access fetches 3 or 4

216

RAM

Interface

Processor

/ I — ^ ^ J n k
\ — 1 / Interface

/I—Mliiik
— 1 / Interface V

/ I — l \ [L i n k
^ — 1 / Interface

/ I — f \ [L i n k
\ j — / Interface

Figure A . l : Basic internal architecture of a Transputer

instructions. This makes the transputer's instruction set extremely efficient. The transputer

also has a minimal register set which speeds up the context switching that occurs during

multitasking.

Depending upon the processor, 2, 4 or 8 KBytes of memory are included onboard the

transputer. This memory is single cycle static memory and access to it is extremely fast.

External memory addresses are contiguous with internal addresses and to improve per

formance the external memory interface is only utilized when an invalid internal memory

address is generated. The external memory interface is designed such that external mem

ory systems may be connected with the minimum of extra components. Given the compact

instruction set and fast internal memory it is possible to use transputers without external

memory, although this severely limits program size and is insufficient for many applications.

Each transputer has four serial communications links and each link may be connected

to any link of any other processor. Communication channels (Section A.2.1) between pro

cessors are implemented across these links. The hardware links themselves are implemented

using direct memory access to aUow high speed data transfer concurrently with the opera

tion of the processor. Communication between tasks on the same processor simply requires

217

the copying of information held in the memory. This is implemented using an efficient block

move instruction in the instruction set.

Most computer systems provide multitasking through the use of a software scheduling

kernel. The transputer implements this multitasking scheduler in hardware for maximum

efficiency. Executable tasks are arranged into two process queues; one for low priority pro

cesses and one for high priority processes. Low priority tasks are given a 1024 microsecond

timeslice whilst high priority processes are allowed to execute until they become blocked.

Tasks may block if they are waiting for a communication, waiting on a timer or waiting

on an interrupt. When a task blocks, or its timesHce expires, it is placed at the bottom of

its process queue and the task at the head of the process queue then executes. If the high

priority process queue becomes non-empty at any time then the low priority task currently

executing is pre-empted and the high priority task is executed until it blocks. If any further

high priority tasks are available they will run until the high priority queue is empty. At this

point the processor returns to handfing the low priority tasks.

The transputer has two hardware timers onboard which can be accessed by the pro

grammer. These timers are autonomous and run concurrently with the processor. The high

priority timer ticks every 64 microseconds whilst the low priority timer ticks every 1024

microseconds. These timer speeds are independent of the transputer's clock speed. If a

high priority task makes a call to the timer then it accesses the high priority timer whilst

low priority tasks access the low priority timer. The timers are used by the scheduler to

control timesficing and may be used by the programmer to time events or implement delays.

A.1.1 The T2 Family

The T2 family of Transputers consists of the T212, T222 and f225 processors. The basic

architecture is that of Figure A . l and all members of this family are 16 bit processors. The

T212 was the first Transputer released and has 2KB onboard RAM, 10 MBit/sec link speed

and 20 MHz clock speed. The T222 has 4KB onboard RAM, 20 MHz clock speed and 20

MBit/sec link speed. The T225 processor was the last in this family and is identical to the

T222 but with a clock speed of 30 MHz. This gave the T225 a bidirectional data transfer

rate across its finks of 2.4 MByte/sec and the processor can achieve 0.06 MFLOPS.

218

P r o c S p e e d
S e l e c t O - 2 -

R e s e t -
A n a l y s e -

E r r o r l n -
E r r o r -

B o o t F r o m R O M -
C l o c k l n -

V C C -
G N D -

C a p P l u s .
C a p M l n u s -

P r o c C l o c k O u t . <
n o t M e m S 0 - 4 . >

notMemWrB0-3 -<
n o t M e m R d - "
n o t M e m R f "

M a m W a l t
M e m C o n f Ic

M e m R e c
M e m G r a n t e d -

Floaling-point unit

System
s e r v i c e s

T i m e r s

4 Kbytes
ot

o n - c h i p
RAM

Ex te rna l
m em o ry
interface

3 2

3 2

32

3 2

32

3 2

32

32-bit
P r o c e s s o r

Link
s e r v i c e s

Link
interface

Link
interface

Unk
interface

Unk
interface

E v e n t

32

L I n k S p e c l a l
L I n k O S p e c l a l
L l n k 1 2 3 S p e c l a l

LtnkInO
L I n k O u t O

L I n k l n l
L i n k O u t I

L i n k l n 2
L i n k O u t 2

L I n k l n S
L I n k O u t a

• E v e n t R e q
E v e n t A c k
M e m A D 2 - 3 1
M e m n o t R f D1
IVIemnotWrOO

Figure A.2: Basic internal architecture of a the T8 Transputer family

A. 1.2 The T4 Family

The T4 family consists of the T414 and T425 processors. The basic architecture is again

similar to that of Figure A . l but the T4 family are 32 bit processors. The instruction set

was modified to improve floating point performance. The T414 runs at a clock speed of

20 MHz and incorporates 2KB of onboard RAM. The communication links operate at 20

MBit/sec. The T425 is capable of running at 30 MHz and has 4KB of onboard RAM.

Enhanced links are incorporated which are capable of a bidirectional transfer rate of 2.4

MByte/sec. An enhanced instruction set improves error checking. The T425 is capable of

30 MIPS and 0.13 MFLOP.

A . 1.3 The T 8 Family

The 32-bit T8 family is the last of the first generation of Transputers and includes the T800,

T801 and T805 processors. The architecture of this family includes a 64 bit floating point

coprocessor unit and the basic architecture is shown in Figure A.2. The floating point unit

(FPU) gives single and double precision floating point operations to the ANSI-IEEE 734

standard. The addition of the FPU makes this family of processors well suited to compu-

219

tationaUy intensive scientific computing appUcations.

The T800 was the first processor of the T8 family and is basically a T425 with the

addition of the FPU and an expanded instruction set. Clock speed is 30 MHz and 2.4

MByte/sec fink transfer rate is achievable.

The T805 is an improved T800 offering an enhanced memory interface and improved

interrupt handfing. The instruction set is also enhanced to facifitate debugging. Running

at 30 MHz, the T805 is capable of 30 MIPS and 4.3 MFLOPS peak. The sustained rate for

floating point operations is 3.3 MFLOPS, making the T805 a powerful processor in its own

right.

Both the T800 and T805 have an external memory access rate fimited to 40 MByte/sec

due to their multiplexed data and address busses. The T801 is a repackaged T805 which

has the address bus and data bus separated allowing an external memory access rate of 60

MByte/sec.

A.2 Programming the Transputer

A.2.1 Tasks and Channels

According to the CSP paradigm [92, 93], parallel programs are made up of sequential

modules called tasks. Each task is an autonomously executing unit but two tasks may syn

chronise their operation or share data through communication. An expficit message passed

between the two tasks is used to transfer data and the communication automatically forces

them to synchronise their operations as neither task can continue until the communication

is complete. Tasks can run concurrently on separate processors or may reside on the same

processor and execute through timeshared multitasking. A typical transputer program con

sists of both concurrent and timeshared tasks. A simple configuration file is used to describe

how tasks are placed on the available processors.

Communications between tasks are performed using channels. A channel is a logical,

unidirectional communication fink which exists between two tasks. In an intertask com

munication the sending task inserts data into the channel at one end and the receiving

task removes the data at the other end. Channels can exist between tasks on two different

processors or between tasks on the same processor. A channel between tasks on the same

processor is known as a soft channel and is implemented using memory copy instructions.

If the tasks reside on different processors then the channel is assigned to the physical con-

220

nection between the processors and is known as a hard channel. The Transputer's links can

accommodate two channels, one in each direction. As there are only four hnks per processor

it would appear that only four pairs of hard channels may be assigned by each processor. It

is possible to increase this number through the use of channel multiplexing and virtual chan

nels. As far as the programmer is concerned virtual channels are identical to hard channels

in their use and operation. Many virtual channels may be assigned by each processor and

more than two virtual channels may be assigned to each Transputer link. This is achieved

by multiplexing the data from the virtual channel communications and passing it through

the two hard channels which are assigned to the link. Demultiplexing at the receiving end

splits the data up again and maintains the appearance of virtual channels passing across

the link. When two processors which are not directly connected need to communicate a

virtual channel between the two processors may be used. The virtual channel is imple

mented by passing messages from the sender to the receiver via intermediate processors.

The latest versions of the INMOS Toolsets [103] incorporate virtual channels and provide

routing software which automatically handles communications involving processors which

are not directly linked.

A.2.2 Programming Languages

Occam was developed by INMOS as the language for programming the Transputer. It

provides a strict implementation of Hoare's Communicating Sequential Processes (CSP)

paradigm [92, 93] and allows all aspects of parallelism to be easily expressed. Occam

is a small and somewhat terse language that allows the parallelism in a problem to be

expressed in terms of jobs which must be performed in parallel and jobs which must be

performed sequentially. The concept of a task stiU exists in Occam but fine grain parallehsm

is also possible as the language allows parallel execution of individual statements. In fact

Occam views a program as an hierarchical arrangement of tasks and communication between

tasks is synchronous via channels. Guarded commands are the other main feature of the

language and these are implemented through the ALT construct. A number of C and

Fortran compilers are available and compilers for other languages such as Ada, Modula-2,

Lisp and Parlog are available commercially, although these are not very widely used. AU

the C and Fortran compilers provide extensions to standard versions of these languages

in terms of functions for exploiting parallelism and performing communications. Parallel

implementations of C are based on extensions to standard ANSI C whilst parallel versions

221

of Fortran are usually based on the Fortran 77 standard.

The INMOS C Toolset was used throughout this project and aU the code written for

the transputer system was written in INMOS' implementation of parallel C. This is an

extended ANSI C which incorporates channel communication functions, task creation and

management functions, functions to control the scheduUng of tasks and functions to access

the other Transputer features such as event handfing and the hardware timers. Each parallel

task can be written as a separate C main() routine and compiled individually into binary

units. A configuration language is also provided to create the configuration files which

describe how the tasks in the system are connected to form the complete program. Once

the program has been configured the individual task binaries are finked to produce a single

binary program file which may be loaded on to the transputer array. The benefit of using the

C language is that existing sequential code written in C can easily be ported to the parallel

environment, providing a much quicker route to software implementation than through the

use of Occam. The latest version of the C Toolset [103] was used throughout this project

and this provided support for virtual channels and channel routing.

A.3 Building Parallel Systems with the Transputer

A.3.1 The T R A M Standard

To enable the easy building of scaleable paraUel systems INMOS have created a modular

system for building Transputer based machines. This standard is based around the use

of Transputer Appfications Modules (TRAM's) and TRAM motherboards. The TRAM

is a smaU circuit board measuring 3.6 inches by 1.1 inches. Each TRAM hosts a single

Transputer, R A M and interfacing logic and is a complete computer in its own right. AU

T R A M ' S have a simple 16 pin interface which allows them to be connected to a mother

board and the power and control signals from the motherboard are passed through this 16

pin interface. Processors on different TRAM's are connected through their finks via the

motherboard. Many motherboards configure two finks of each processor into a pipefine and

take the remaining finks to an external patch board. Different interconnections are built

using jumper leads plugged into the patch board. Some motherboards provide an additional

C004 reconfigurable electronic crosspoint switch to which the spare finks are connected. The

settings of this switch can be controUed using the vendor-suppfied software and this allows

different interconnection networks to be estabfished without the need to physically rewire

222

the machine. The C004 switch is a static switching device and interconnection topologies

cannot be changed whilst a program is running.

A T R A M motherboard must be interfaced to a host machine. Motherboard cards are

usually designed so that they may reside within the host computer enclosure. PC's and

Sun workstations are the usual hosts although other hosts may be used. Connecting the

T R A M ' S to the host via the motherboard-host interface allows the transputers to utihse the

facilities offered by the host in terms of disk storage, screen output and keyboard input. AU

1/0 communications between the transputers and the host must be performed via the first

processor in the network as this is the only processor which connects directly to the host.

Any other processor that wishes to communicate with the host must use the first processor

as an intermediary.

A.3.2 The Experimental Setup

The parallel computing system used throughout the duration of this research project con

sisted of 16 INMOS T805 30MHz Transputers and one INMOS T805 20 MHz Transputer.

The 20 MHz processor was supplied with 16 MB of fast RAM and was used as the root

processor in the Transputer network. Fifteen of the 30 MHz processors were supplied with

1 MB of fast RAM whilst the other 30 MHz processor was equipped with 4 MB of RAM.

All of the Transputers were mounted on two INMOS BOOS compatible motherboards and

hosted by an IBM PC AT clone. Each motherboard could accommodate up to 10 Trans

puters and was equipped with an electronic crosspoint switch which allowed the Transputer

interconnection network to be reconfigured from software. An overview of the machine used

for the experiments described in this thesis is shown in Figure A.3.

223

n
LU

Figure A.3: Overview of the experimental Transputer-based parallel machine

224

Appendix B

Derivation Of The Models of

Power System Elements

B . l The Generator Model

Consider a non-salient two pole machine which has the rotor field winding supplied by a

constant current source. If magnetic saturation is ignored and the rotor spins at a constant

velocity balanced three phase sinusoidal voltages will be induced in the stator windings.

These voltages are independent of the stator currents as the rotor field current is constant

- hence they can be modelled as ideal voltage sources. The stator windings, separated

spatially by 120 °, are inductively coupled with equal mutual impedances, Z^- The self-

impedances, Zs, of the stator windings are also equal. Under these conditions the generator

can be modelled as an equivalent circuit consisting of an ideal voltage source driving an

impedance, one for each phase. Figure B. l shows the equivalent circuit model of the gen

erator, consisting of the three ideal voltage sources connected through the self impedances,

Zs and coupled by the mutual impedances, Zm-

Assuming balanced three phase steady state conditions, only positive sequence networks

[104] are involved. This allows circuit resistance and other machine losses to be ignored for

the sake of clarity and the system can now be modelled by the equivalent circuit of Figure

B.2.

Resorting to Kirchoff's Laws

E^jXj-i-V (B.l)

225

E a Zs la

Zm

Zm Zs lb

Zm

Zs
i 1

Vb

Vc

Figure B . l : Equivalent circuit model of the synchronous generator

Va

Generator — > < — System

Figure B.2: Positive sequence equivalent circuit model of the synchronous generator

226

where

V = V/.0°= - generator terminal voltage

E = EIS — - stator voltage

6 = power angle

Xd = direct axis synchronous reactance - this is reactive

component of stator self-impedance [1]

The complex power for the system is given by

s = vr (B.2)

Substituting from (B . l)

Simplifying yields

S = V
E - V

VE V"^ VE

jXd Xd Ad

The real power, P, is the real part of (B.4)

Xd Xd

(B.3)

(B.4)

VE
P = SR[5] = - 1 ^ sin ^

Xd
(B.5)

and reactive power, Q, is the imaginary part of (B.4)

VE V'^

Ad Ad
(B.6)

Taken together (B . l) to (B.6) provide a mathematical description of the synchronous

generator which allows the determination of real and reactive power dehvered and the

voltages and currents which can be measured both within the machine and at its terminals.

B.2 The Transmission Line Model

Three different equivalent circuit models of a transmission line may be derived depending

upon the length of the line. This section discusses these models in detail. In discussing

transmission lines i t should be noted that parameters such as resistance and impedance are

227

Z=R+jwL

Z l

Figure B.3: Single phase equivalent circuit model of a short transmission line

distributed throughout the length of the line. The models can be derived by considering

these parameters to be uniformly distributed along the hue although it is more usual to

make use of lumped parameter models [104]. These models concentrate the resistance and

inductance of the line into single parameters in the equivalent circuit model.

B.2 .1 Short L ines

Lines which are less than 80 km in length are considered to be short hues. For a line of this

length the shunt capacitance between the line and the neutral return is neghgible. Only

the series resistance, R, and the series inductance, L, of the line need to be considered and

a lumped parameter model can be devised. The single phase equivalent circuit is shown in

Figure B.3. The current is the same at the sending and receiving ends of the Una and thus

IS = IR Vs =
VR

(B.7)

B.2 .2 M e d i u m Length Lines

Lines which are over 80 km in length and less than 240 km are defined as medium length

lines. I t is possible to represent a medium length line with a lumped parameter model

using line series resistance and line series inductance. However the shunt admittance can

now longer be neglected and it is included as a lumped parameter Y. The shunt admittance

228

Z=R+j L

w v ^ — ^

Figure B.4: Single phase equivalent circuit model of a medium length transmission line

is usually purely capacitive and it is customary to place half of the admittance at each end

of the line. The equivalent circuit, shown in Figure B.4, is referred to as the nominal-TT

equivalent circuit model.

From simple circuit theory
Y

Icr = Vn-

The current flowing in the series arm of the circuit is IR + VRJ and thus

(B.8)

Vs ={yR^ + ^ + ^ f l = (— + 1 j + ZIR (B.9)

Looking at the sending end gives

Ics = Vs- (B.IO)

and the current flowing in the series arm is

Y Y
Is = Vs- + V R - + IR (B . l l)

Substituting (B.9) into (B . l l) yields

/ ZY \ 1 y y / 7Y \ (7Y \

229

/ + A /

I
V+AV

Figure B.5: Single phase representation of a long transmission line

B.2 .3 L o n g L i n e s

Long lines are defined as those lines whose length exceeds 240 km. The mathematical de

scription of a long line must account for the fact that the series resistance, series inductance

and shunt admittance are distributed throughout the line rather than being lumped to

gether. A long line may be represented by a single phase circuit of the form of Figure B.5.

Series resistance, series inductance and shunt admittance are assumed to be uniformly dis

tributed along the length of the line. Consider the voltage and current differences between

the ends of the line element of length Ax, where x is the distance of the element from the

receiving end. The end of the element nearest the receiving end of the line is referred to as

the receiving end of the element whilst the end closest to the sending end of the line is the

sending end of the element. The series impedance and shunt admittance of the element are

zAx and yAx respectively, where

z = series impedance of per unit length

y — shunt admittance to neutral per unit length

I f V is the voltage of the element at the receiving end then the voltage at the sending end

is F - f A y as the voltage increases by AV over the length of the element. I f / is the current

flowing at the receiving end of the element then

AV
Ax

Iz (B.13)

As Aa; 0

— = Iz
dx

(B.14)

230

The current entering the sending end of the element is / + A / , where A / — VyAx. Hence

as 3; —> 0. Resorting to calculus, i t is possible to prove [104] that

y ^ V R ± ^ ^ , ^ ^ VR-IRZ^^_^^ ^g^g^

I = ^ -6^"= - ^ (B.17)
2 2 ^ ^

where

Zc = ^^=characteristic impedance of the line

7 = \/p'=propagation constant of the line

Recalling that

sinh e = ^ ^ (B.18)

coshg= \ (B.19)

it is possible to rewrite (B.16) and (B.17) in hyperbolic form as

V = VR cosh 7a; + IRZC sinh 7a; (B.20)

VR
/ = / r cosh7a; + — sinh 7a; (B.21)

Zc.

Setting a; = /, where / is the length of the line gives

Vs = V r cosh 7/ + IRZC sinh 7/ (B.22)
V r

Is = IR cosh 7/ + ^ sinh 7/ (B .23)
Zc

A lumped parameter equivalent circuit can be obtained for the long line. Consider the

TT equivalent circuit of Figure B.6. Substituting the lumped parameters into (B.9) yields

(Z Y \
^ — + l j V f l - f Z 7 R (B.24)

To make the equivalent circuit model the transmission line accurately the coefficient of

VR and IR in (B.22) must equal the coefficients of VR and IR in (B.24). Equating the

231

-o WW
1>

Figure B.6: Single phase 7r-equivalent circuit of a long transmission line

coefficients of IR yields

Z' = Zcsmh-fl = - sinh 7/ = zl^^^^^
y y/zyl

(B.25)

The total series impedance of the line, Z, is given by Z = ^/ and thus

Z
, _ Z sinh 7/

(B.26)

Equating the coefficients of Vn yields-

Z'Y'
+ 1 = cosh 7/ (B.27)

Substituting from (B.25)
y' .Z,sinh7/

-|- 1 = cosh 7/ (B.28)

Hence
l_ cosh7/- 1

~2 ~ Zc' sinh7/
(B.29)

Using the identity
, e c o s h ^ - l

tanh - = — . . „—
2 smh e (B.30)

232

Flux paths --,

o
I'l A/, § o o

r 1

yields

Figure B.7: Two winding transformer and schematic

r _ y t anh (^)
Y ~ 2" 2

(B.31)

where y = ?// is the total shunt admittance of the line.

B.3 The Transformer Model

A transformer consists of two or more coils placed such that they are hnked by the same

flux. The coils are usually wound on to an iron core in order to confine the flux to the coils.

The coil which is connected to the load is known as the secondary winding and the other

coil is known as the primary winding.

Consider the two winding transformer and its schematic shown in Figure B.7. Assuming

the transformer to be ideal (i.e. the permeabifity of the iron core is infinite and the resistance

of the windings is zero) the terminal voltages are related by

V2 N2
(B.32)

Similarly the terminal currents are related by

h (B.33)

The ful l derivation of these relationships relies on the use of Faraday's Law and Ampere's

Law and is given in [104].

Due to the principle of conservation of energy, the power input to the primary winding

233

Xi

j m

V,

I ,
^ 1 .

G N

Ideal

Figure B.8: Modified equivalent circuit of an ideal single phase transformer

must be equal to the power output from the secondary winding.

S = Vi/i* = V2/2*

I f an impedance, Z2 is connected to the secondary winding then

(B.34)

Z2 = ^
V, (^)Vr

(B.35)

The effective impedance seen at the terminals of the primary winding is

Z2 1
N2

(B.36)

Practical transformers have finite core permeability, winding resistance, losses in the

core due to eddy currents and hysteresis and imperfect flux linkage to the coils. These

factors must be accounted for in the equivalent circuit of the practical transformer, shown

in Figure B.8. This equivalent circuit is derived by adding extra components to account for

these effects at the primary and secondary windings of the ideal transformer. Applying a

sinusoidal voltage to the primary winding when the secondary winding is open circuit causes

a small current to flow in the primary winding. This is the magnetizing current, J^;, and

is accounted for in the equivalent circuit model by the inductive susceptance in parallel

with a conductance G. The inductive leakage reactance x\ accounts for flux leakage in the

primary winding and X2 accounts for flux leakage in the secondary winding, r i and r2 are

the series resistances of the primary and secondary windings respectively. By referring all

quantities to the primary side of the transformer the ideal transformer can be removed from

234

R X

jm
V

Figure B.9: Equivalent circuit of a practical single phase transformer

Primary Secondary Load

Figure B.IO: y — A connected three phase transformer equivalent circuit

the equivalent circuit. As magnetizing current is small compared to the load current is i t

often neglected and the equivalent circuit model of a practical single phase transformer is

shown in Figure B.9. I f there are A'̂ i turns on the primary and turns on the secondary

i t is possible to define a = The parameters of the model are thus

Ri = ri + a^r2

Xi = xi + a?X2

(B.37)

(B.38)

A three phase transformer may be created by connecting a bank of single phase trans

formers such that the three primary (secondary) windings are A connected and the three

secondary (primary) windings are Y connected (Figure B.IO). The result is the y - A three

phase transformer. Practical three phase transformers are often constructed by winding

the three phases onto the same iron core. The equivalent circuit model is constructed from

235

^ o n d O pu

Figure B . l l : P-V and Q-V characteristic for a typical synchronous motor

three single phase equivalent circuit models of a practical transformer, connected together

in the appropriate manner.

B.4 The Load Model

The simulation of a power system requires the loads connected to that system to be ac

curately modelled. This requires a consideration of how the power and reactive power

flows of the load vary with voltage. The individual loads at a bus are usually lumped to

gether to give a composite load for the bus and composite loads typically consist of [105]

Induction motors

Synchronous motors

Heating and lighting

Transmission losses

50%-70%

10%

20%-25%

10%-12%

Heating and lighting loads have well deflned characteristics. Lighting consumes no

reactive power and the power consumption varies with (voltageY'^. Heating loads also

consume no reactive power and maintain a constant resistance as voltage varies and the

power consumption varies with {voltage^.

The power consumed by synchronous motors remains approximately constant. As the

voltage drops the reactive power consumption increases. Figure B . l l shows the variation

of real and reactive power with voltage for a typical synchronous machine.

Induction motors account for the largest proportion of the composite load and the

236

I — -

m

Xi is the stator leakage reactance
X2 is the rotor leakage reactance
Xm is the magnetizing reactance
r2 is the rotor resistance
5 is the rotor slip

Figure B.12: Equivalent circuit of an induction motor

variation of real and reactive power flow with voltage can be found by considering a suit

able equivalent circuit. Figure B.12 shows the equivalent circuit for an induction motor.

Assuming that the mechanical loading on the rotor shaft is constant, the electrical power

delivered to the rotor is

(B.39)
I^r2

P = 3 = constant

Reactive power consumption is given by

3X/2
Q = ^ + M\Xr+X2)

Am
(B.40)

Real power consumption is given by

,Pr2 3F2
P = 3-

r2 SV'^r2S

(^)2 + (X i - f X2)2-5 Rl + {sXy
(B.41)

where X = Xi + X2- Figure B.13 shows the variation of real and reactive power flow with

voltage under different mechanical loadings.

From the point of view of a simulation i t is the characteristics of the composite load

which are of interest rather than the characteristics of its constituents. I f the P-V,Q-V

characteristics have been measured for each substation then these may be used to model

the loads. Unfortunately these characteristics are not readily available. Many analyses

237

Figure B.13: P-V and Q-V characteristics of an induction motor

represent loads by constant impedances [105] and consequently P oc V^ and Q oc V^. H the

power consumed by the load is S = P + jQ i t is easy to show that the current in the load

is given by

T* — —
~ V

P-jQ
V

(B.42)

(B.43)

From Ohm's Law we have V = IZ and the impedance, Z, used to represent the load is

V V2
Z =

I P-jQ
(B.44)

When the network is extensively simplified then the constant impedance model is used

although the load that this represents seldom occurs in practice. Other methods of load

modelling represent the load with a constant current sink and this is found to give a good

approximation to real loads [105].

238

Appendix C

Deriving the Bus Admittance

Matrix

I t is necessary to derive the bus admittance matrix for a given system before attempting to

calculate the currents and voltages in that system. The bus admittance matrix is determined

by performing nodal analysis on the system. Consider the example system of Figure C . l .

The nodal admittance analysis method is based simply on Kirchoff's Current law. The

consequence of this is that each node, k, in the system obeys the relationship

(C. l)

2 = 1

where n is the number of branches from this node, yki is the admittance of the branch

connecting node k and node i. As this is true for each node in the system we can write the

matrix equation of (2.7) where

[Y] =

2/1,1 2/1,2

2/2,1 2/2,2

2/n-l,l yn-l,2

2/l,n-l

2/2,n-l

2 /n - l,7ii

(C.2)

The diagonal term yk,k is the sum of all the admittances connected to node k whilst yk,i is

the sum of aU the admittances between node k and node i. For the example of Figure C. l

239

-j5 /m
-o

O \2

-o

Figure C . l : Example circuit for admittance analysis

the matrix [Y] is

' ' l - i 5 i 5 - 1

[Y]= j5 4 - j 5 - 4 (C.3)

- 1 - 4 l - f 4 - | - j 2

Note that node 4 does not appear in [Y] as one node in the system has to be chosen

as a reference node to prevent the creation of a set of dependent equations. Eliminating

the equations relating to one node ensures that the remaining set of equations is linearly

independent.

When considering power systems and the power flow problem, the bus admittance ma

trix, [Y], is simply the nodal admittance matrix of the transmission network and can be

derived in the same way using nodal admittance analysis. I t is usual to select the system

slack bus as the reference node.

Consider the simple four bus system shown in Figure C.2.

Each line in the system is a transmission line which has a series impedance of z and

a shunt admittance of | connected to each end of the line. Considering the fine between

buses 1 and 2 :- The series impedance and shunt admittance make contributions to the yu

and y22 terms of the admittance matrix, according to

1 y 1 y
2/22 = 2/22 + 3 + 2 (C.4)

240

Figure C.2: Simple four bus example system

The off-diagonal terms account only for the series impedance between buses 1 and 2 and

hence
1 1

(C.5)
1 1

2/12 = 2/12 - - 2/21 = 2/21 z z

Using the same technique and considering each fine in the system in turn, i t is possible

to derive the complete bus admittance matrix for the system. AU that is required is a

knowledge of the values of z and y for each line.

241

Appendix D

Network Partitioning and

Diakoptics

I n order to solve the network equations in parallel i t is necessary to par t i t ion the system

network into several smaller, independent subnetworks. The large network is divided by

' tearing ' i t apart using Kron's method of diakoptics [48]. Each subnetwork is solved in

dependently and the independent solutions are appropriately modified to give the correct

solution.

T w o methods exist for tearing the network into subnetworks - branch cut t ing and node

tearing. The branch cut t ing method operates by cut t ing some of the branches which in

terconnect the nodes, thereby separating the network into independent subnetworks. The

node tearing approach operates by tearing some of the nodes in half to separate the network

in to a number of subnetworks. The cut branches or the torn nodes give rise to coordination

variables i n the diakoptic solution. Once the subnetworks have been solved i t is these coor

dinat ion variables which are used to modi fy the individual subnetwork solutions to give the

overall solution. The two methods differ not only in the way that they par t i t ion network

but also in the way the coordination variables are chosen. The coordination variables used

by the branch cut t ing method are the currents f lowing in the branches that are cut. The

node tearing method selects the voltages at the torn nodes as the coordination variables.

Node tearing usually introduces fewer coordination variables than branch cut t ing [77] thus

making i t more computationally efficient. The branch cut t ing method can be useful when

in fo rma t ion about the currents flowing in the circuit branches is required. The following sec

tions present the branch cut t ing and node tearing methods in more detail. The informat ion

242

presented here is based on that given by Boming et al.[77].

D . l Node Tearing

Given a network represented by the set of equations Y V = I , i t is possible to tear the

network into a number of independent subnetworks by choosing appropriate tearing nodes.

I f these nodes are given larger node numbers {i.e. ordered last) then the system of equations

wiU have B B D F f o r m , as below

Y „ ' V i • " I I "

Ykc

—
h

Y , i • Y

(D . l)

The voltages, V ^ , at the tearing nodes are the coordination variables for this approach

and may be solved for by

k k

! = 1 i = l

The solution for the individual subnetworks is given by

(D.2)

(D.3)

Figure D . l provides a conceptualization of the node tearing method. The approach can

be thought of as tearing nodes apart in to pieces. A piece of each node is then connected to

the subnetwork to which that node was attached. The voltages, V j , are the node voltages

associated w i t h the tearing nodes but they may be thought of as voltage sources connected

w i t h the tearing nodes. In the same way that a part of the tearing node is attached to the

subnetwork, a voltage source of the same magnitude as the tearing node voltage is connected

to each subnetwork to which that tearing node was attached. As Figure D . l shows, once

the voltage sources {i.e. tearing node voltages) are known then the individual subnetworks

may be solved independently and in parallel.

243

o o o
a)

Figure D . l : A conceptual view of node tearing, f r o m Homing et al . a) applying equivalent
voltage sources b) tearing the node apart

D.2 Branch Cutting

Given an electrical network consisting of nodes connected by branches, Figure D.2(a) , i t is

possible to replace a number of these branches, L , by current sources. These current sources

have the same magnitude as the currents originally flowing in the branches and the network

w i t h current sources is electrically equivalent to the original network. The branches which

have been replaced by current sources as known as cut branches. Figure D.2(b) and Figure

D.2(c) show how the equivalent current sources may be exploited to par t i t ion the network

in to independent subnetworks. Let Y be the admittance mat r ix of the network and Y a be

the admittance network for the network when the cut t ing branches have been removed. Let

iL be the currents flowing in the cut branches. Removing the cut branches partitions the

network in to pieces and the admittance mat r ix Y a becomes block diagonal. Now

Y = Y , + Y , (D.4)

where Y c is a a ma t r i x corresponding to the cut branches

Y e = P y P ^ (D.5)

where

• P is a ma t r i x consisting of columns of the incidence ma t r ix of the original admittance

m a t r i x which correspond to the cut branches. The elements of each column of this

m a t r i x are zero except at the terminal nodes of each branch where the values are ± 1 .

244

• y is an X X X diagonal mat r ix . The elements of this ma t r ix are the admittances of

the cut branches.

Subst i tu t ing (D.4) and (D.5) into Y V = I yields

{Ya + P y P ^) V = I (D.6)

As Y c represents the admittances of the cut branches and 'IL are the currents flowing in

them, (D.6) may be rewri t ten as

Y „ V + P I l = I (D.7)

by setting = y P - ^ V . (D.6) and (D.7) can thus be expressed in mat r ix notat ion as

Ya P V I

0
(D.8)

The coefficient ma t r i x of (D.8) again exhibits B B D F and parallel processing is possible. One

addi t ional complication of the branch cut t ing method is that the admittance submatrices

are overdetermined and singular. This problem has to be overcome by defining a reference

node in each subnetwork and the effect of this is to remove the overdeterminism f r o m the

equations, preventing Y a f r o m being singular.

245

® ® ® ©/

Figure D.2: A conceptual view of branch cut t ing, f r o m Boming et al. a) original network
b) applying equivalent current sources c) cut t ing the branches

246

Appendix E

Proof of Liu's Tree Theorems

I n Section 4.3.1 two theorems relating to the properties of eUmination trees were quoted.

These theorems are taken f r o m L iu [52] and the proofs of these theorems are presented

below. The proofs are also taken f r o m L i u .

E . l Notation

The fol lowing nota t ion is used in the proofs

• G ' (A) is the graph of the mat r ix A

• r [A] is the ef imination tree of the mat r ix A

• T[xj] denotes the subtree of the efimination tree rooted at node Xj

• Adj{v) denotes the set of nodes adjacent to v in the graph

• £ij denotes the length of the path connecting nodes Xi and Xj

E.2 Other Theorems Required

Before proving the theorems of Section 4.3.1 i t is necessary to state a number of other

theorems. The proofs of these theorems are not given but may be found in [52].

T h e o r e m 3 Let i > j . Then £{j ^ 0 if and only if there exists a path

in the graph G{A) such that {xp^, •"' > ^ P I } ^ ^ ' [^ ^ j] -

247

T h e o r e m 4 Let i > j . If £ij ^ 0, then the node a;,- is an ancestor of xj in the elimination

tree.

T h e o r e m 5 Let i > j . Then iij 0 if and only if there exists a path

• ^ t) •^pi) • • •) 3;p,, Xj

in the graph G{A) such that all subscripts in {pi, • • - ^pt} are less than j .

E.3 Proof of the Tree Theorems

The first theorem used by L iu states that

T h e o r e m 1 For each node xj in G{A), the subgraph of G{A) (or G{F)) which consists of

nodes in the tree T[xj] is connected, where T[xj] is the subtree rooted at node Xj.

The proof of this theorem is derived by induction on the number of nodes t in T[xj]. I f

there is only one node in T[xj] then the theorem is obviously true. To prove the general case,

assume that the result is true for all subtrees of size less than t, and t > 1. Let , • • •, Xg^

be the child nodes of Xj. Following f r o m the inductive assumption, each subgraph consisting

of nodes in Tlxg,.], ior 1 < k < m has fewer nodes than t and is connected in the graph

G{A). For each k, { x j , X s ^ } is an edge in the filled graph 6 ' (F) . By Theorem (3) there

exists a pa th f r o m to Xj through nodes in r[a;sj,] . This proves that the subsetr[a;j] is

a connected subgraph in G ' (A) . Since G (F) is a supergraph of G (A) , T[xj] must also be a

connected subgraph in G{F).

C o r o l l a r y 1 For each node Xj, the set of nodes in T[xj] forms a connected component in

the subgraph of G{A) { G (F) } consisting of all nodes except those in Adj{T[xj]).

implies tha t par t i t ioning the tree into disjoint subtrees is the same as par t i t ioning the

network(graph) in to subnetworks(subgraphs). A second corollary to this theorem is

C o r o l l a r y 2 For each node Xj, the set of nodes in T[xj] forms a connected component in

the subgraph of G{A) { G (F) } consisting of all nodes except proper ancestors of Xj.

The second proof derived and used by L iu refers to mat r ix reorderings. I f A is a given

symmetric ma t r ix , the two orderings P and Q are said to be equivalent i f the structures of the

fiUed graphs PAP-^ and Q A Q ^ are isomorphic. P is referred to as an equivalent reordering

of the m a t r i x A i f the filled graph of A and the filled graph of P A P ^ are isomorphic. Given

248

an in i t i a l ordering of the ma t r ix A and its corresponding efimination tree T (A) , let P be

a permuta t ion ma t r i x for A that corresponds to a topological reordering^ of the nodes in

r (A) .

T h e o r e m 2 Given the matrix, A, and an equivalent reordering, P , the filled graphs of

G{A) and G (P A P ^) are isomorphic if they are treated as unlabeled structures.

The proof of this theorem is derived by let t ing F by the filled mat r ix of A . Set

A = P A P - ^ and let F be the corresponding fiUed mat r ix of A . To prove the theorem

i t must be shown tha t G'(F) and G (F) are structurally identical. Let xi,X2, • • •,a;„ be the

sequence of node efiminations for the mat r ix A and let Xi,X2, • • •,Xn be the sequence of

node efiminations for the ma t r ix A . I t is sufficient to show that {xi,Xj} is an edge in the

fiUed graph G{F) i f and only i f { X f , X s } is and edge in ^ (F) .

Assume the { x i , X j } is an edge in G (F) and i > j . By Theorem (4), Xi is a proper

ancestor of Xj i n the efimination tree r [A] . As P is a topological ordering, the node Xf

is labeled after Xg so that f > s. By Theorem (3), there exists a path in the graph G (A)

Xf = Xi,Xp^, - • • ,Xp^,Xj = Xs such that {xp^, - • • ,Xp^] C T[xj]. Due to the property of

the topological ordering P , these nodes Xp^, • • • ,Xp^ are labeled before Xg in the mat r ix A .

Therefore, by Theorem (5), X f , X s is also an edge in the fiUed graph (3(F) .

Conversely, let {a;^, Xg} be an edge in G'(F). For the sake of definiteness, let f > s. Note

tha t Xi does not belong to the subtree T[xj] otherwise i t contradicts the topological ordering

property of P . By Theorem (5), there exists a path in G' (A) X f , X p ^ , • • • , X p , , X j , X s such

tha t aU subscripts P i , • • • , p j are less than s. By the property of the topological reordering

of P , the nodes in { 5 p j , • • •, ipj cannot be ancestors of xj. A l l the nodes on the path

X f , x p ^ , - ••,Xp^,Xj,Xs belong to the connected component containing the node xj i n the

subgraph of G'(A) excluding the set of proper ancestors of Xj i n the tree. By CoroUary (2)

these nodes all belong to the subtree T[xj]. Thus there exists a pa th in G' (A) f r o m Xs = xj to

Xf = Xi through nodes i n the subtree T[xj] and Xi is outside of r[a;j]. Again by CoroUary (2),

this means tha t Xi is a proper ancestor of Xj so that i > j . Therefore, using Theorem (3),

{ x i , X j } is also an edge in the fiUed graph G{F).

Theorem 2 impfies that every topological reordering of A is an equivalent reordering of

the m a t r i x A . The coroUary to this theorem is that the tree T[PAP"^] is isomorphic to

^ A topological ordering of a rooted tree is one that numbers the child nodes before their parent nodes.
i.e.the leaves are numbered first and the root is numbered last.

249

T [A] i f they are treated as unlabeled structures.

250

Appendix F

Reducing the Length of Intertask

Messages

Consider the communication of update values resulting f r o m factorisation f r o m a sending

worker task, T^, to a receiving worker task, Tr. Before the communication occurs Ts must

generate the message i t wishes to send as an array of bytes. The Transputer communication

primit ives send a specified number of bytes, start ing at a given address, to the receiving task

[103]. Hence the data which makes up the message must lie contiguously in memory. Ts

holds the data i t wishes to send in the f o r m of sparse mat r ix finked lists and i t must convert

this in to an array representation before transmission as the list elements are fikely to be scat

tered anywhere in the task's memory space. Recall f r o m Chapter 2 that there is a separate

linked list for each row in the mat r ix . Knowledge of which Ust is being used is sufficient to

uniquely ident i fy the corresponding row in the coefficient mat r ix . Each list element has three

parameters corresponding to column index, real part and imaginary part of the complex

value respectively. Knowing the column index and which list is being consulted gives enough

in fo rmat ion to uniquely ident i fy a single element i n the coefficient mat r ix . These four param

eters of each element to be updated by Tr need to be inserted into the message transmitted

by Ts. The simplest a lgori thm for correctly establishing the message array is shown overleaf.

251

s e t pointer message_ptr to point at s t a r t of message

loop i over range of rows which reference subnetwork data held by Tr

loop j from 1 to length of row i

i f an update i n Tr r e s u l t s from element i , j

Place {i,jj^i,jyjbi,j} into message at p o s i t i o n indicated by message_ptr

Increment message_ptr by four

end loop j

end loop i

message length = message_ptr - address of s t a r t of message

Algorithm for generating intertask messages

Ts sends the message by instruct ing the Transputer to send messageJength bytes of data

located at address start-of.message to Tr. Tr receives the message and stores i t in an array

located at address head.of.message. I f must then decode the message and add the values

contained in the message to the finked fist representation of its submatrix. The foUowing

a lgor i thm performs the decoding and updating funct ion

loop posn from head-of.message to head-of.message*messageJength i n steps of 4

ex t r a c t { row, column, a, jb } from the l o c a t i o n posn i n the message

l o c a t e l i n k e d l i s t f o r given row

search f o r element corresponding to column

i f t h i s element i s found

Add a +jb to the value of t h i s element

e l s e

i n s e r t a new l i s t element with column index = column, value = a + jb

end posn loop

Algorithm for decoding intertask messages

This method of message generation and decoding has the advantage that i t is easy to

implement . However i t is a rather inefficient method as i t unnecessarily repficates informa

t ion about row addresses w i t h i n the messages. Consider a row in the coefficient ma t r ix of

Ts which has entries i n columns k, I, m. Updates wiU be required to elements {i, k), {i, I) and

(i , m) . Suppose that these elements fie in Tr's submatrix. A message must be sent f r o m Ts

252

i k aik jbik i I an jbil i m aim jbim

Figure F . l : The example three element message

to Tr which contains the values associated w i t h these updates and the message has the con

tents shown in Figure F . l . Notice that the row address i appears in the message three times

and unnecessarily increases the length of the message. Suppose that the location of the first

value referencing row i is known (START), as is the location of the last value referencing

row i (END). Suppose also that aU values referencing row i fie contiguously between these

two locations. I t is then no longer necessary to store the row parameter for each element

and the message can be reduced to three quarters of its original length. The location of

START a,nd END for each row can be stored in the message header as a par t i t ioning table

which shows how to par t i t ion the message into its constituent row informat ion. Note that

the END of row i is immediately adjacent to the START of row i + 1. Hence the values

for i must be located in the range of entries START(i) to START(i+l)-l. Consequently

the par t i t ion ing table only needs to store the value of START for each row. Provided that

the range of rows to be updated is known, the receiving task Tr can update its coefficient

m a t r i x using the fol lowing algori thm

loop i over range of rows to be updated

loop j from START(i) to START(i+l)-l

e x t r a c t { column, a, jb } from p o s i t i o n j i n the message

l o c a t e l i n k e d l i s t f o r row i

search f o r element corresponding to column

i f t h i s element i s found

Add a +jb to the value of t h i s element

e l s e

i n s e r t a new l i s t element with column index = column, value = a + jb

end j loop

end i loop

Modified algorithm for decoding intertask messages

The fo rma t of the modified message is shown in Figure F.2(a) whilst Figure F.2(b)

shows the contents of the message f r o m the simple three element example introduced in

253

Update Data

(a|

12 13 14 15 16 17 18

Figure F.2: Modif ied message structure (a) and three element example message (b)

Figure F . l .

The modified message format does yield significant savings in message length for the

lengthy update messages of real systems. The reduction in communication t ime resulting

f r o m this reduction in message length is negfigible but the reduction in the amount of

t ime taken to generate and decode messages is quite considerable. A significant increase

i n performance was observed when the modified message format was implemented in the

Transputer-based RP solution. For example, when spfit in to four ma jo r and three minor

subnetworks, the C E G B 734 node system was processed in 95ms using the modified message

fo rma t as opposed to 175ms for the unmodified case.

254

Appendix G

Monitoring the Performance of

the Parallel Solution

One of the simplest methods for accurately determining the execution t ime of a program

is to use some external t imer hardware that has the desired t iming resolution and can be

triggered by instructions in the program to be monitored. This sort of external hardware is

not sufficiently flexible to allow the computer to poU i t for values, making i t diff icult for the

moni tored program to associate an accurate timestamp w i t h each event i n the program's

execution. Fortunately many high level languages provide software implemented t iming

facifities and these can be used to monitor execution time and provide timestamps. In DOS

and Un ix environments these timers are usually defined to have a resolution of 1ms, as

the languages define a constant 1000 clock ticks per second. Unfortunately this does not

por t ray the true resolution of the t imer as timers implemented in software are interrupt

driven and the t imer value is only incremented every 50ms or so. In practice this means

tha t any action which is performed in less t ime than the update interval is recorded as

tak ing zero t ime. For very fast programs this degree of accuracy is insufficient, hence the

need to use external t iming hardware.

The Transputer programmer is lucky in that two timers are implemented in the hardware

of each Transputer and these timers may be poUed f r o m software. As they are free running

hardware timers they are highly accurate and the slowest of the two timers has a resolution

of l/is [22], making i t useful i n almost aU appfications. A program running on a Transputer

may moni tor its execution t ime by poUing the timer at the first and last instruction of

the program and taking the difference between the two times. A specific action or event

255

CPU CPU
time 1 2

10

30

Task
2

Task
3

Task
1

Task
4

Task
5

31

36

Figure G . l : A Gant t chart used to visualise program operation

w i t h i n the program may be timestamped by poUing the t imer immediately prior to that

event occurring. The I N M O S C language provides numerous functions for performing such

temporal manipulat ion and comparison.

Timestamping the actions of a program can provide informat ion about the efficiency

of the components of the program. When parallel programs are considered, t iming the

execution of each task and timestamping actions wi th in tasks provides comprehensive in

fo rma t ion i l lus t ra t ing how tasks interact and how the processing resources are used during

the execution of the program. Of particular interest is the identification of iirefficient idle

states. Poring over the numeric results is one way of ident i fying what is happening wi th in

the program but the whole process becomes much more intui t ive i f some f o r m of visuali

sation technique is used. The Gantt chart [19, 106] is a useful tool for visuafising parallel

programs. The chart consists of a fist of all the processors in the parallel machine. A

fist of tasks is allocated to each processor and these tasks are ordered by their start and

finish times. Figure G . l shows a typical Gantt chart. Whi t e areas in the chart represent

times when the processors are busy performing useful work, grey areas represent times when

they are idle. I n implementing the Transputer-based RP program the need for a method

256

of moni tor ing and visuaUsing program performance was identified. The lack of a suitable

development environment made i t hard to accurately time the execution of the program

and quant i fy the effect of program modifications. A performance monitor ing method was

developed out of necessity and its main features are now discussed.

The aim of modi fy ing a program is to refine its operation and alter those parts which

wiU yield the max imum improvement in performance. Identification of the inefficient com

ponents is needed and this is where the timestamp informat ion comes in useful [107]. I f two

actions, A and B occur sequentiaUy wi th in a program, where A commences at t ime t^ and

B commences at t ime t's, the execution t ime of A is clearly

teA = t B - t A (G . l)

I f the commencement of each major program action is timestamped then the difference

between adjacent entries in the fist of ordered timestamps gives a fist of execution times

for each of the ma jo r program events. Once again-it is more intui t ive i f the informat ion is

displayed in a pictor ia l manner. Adopt ing the Gantt chart gives a suitable diagrammatic

representation. The chart is comprises a fist of aU the tasks in the program. Each task is

allocated a fist of all the ma jo r actions in that task and these are ordered by their start and

finish times. Suitable positioning of t imestamping wi th in each task aUows the idle states

to be identif ied. Idle states are shown as white regions in the columns of the chart, shaded

regions correspond to busy (useful) states. Different shadings correspond to different actions

which occur in each task. Figure G.2 shows the chart for a fifteen task implementation of

the Recursively Parallel method.

Generating the t iming informat ion needed to derive the execution profile charts is not

altogether s t ra ightforward. The hardware timers on each Transputer are not synchronized

and the lack of a global clock makes i t diff icul t to locate actions in absolute t ime. The

solution is to use one task as a t ime reference and to synchronise the other tasks to this

reference. The supervisor task residing on the root processor is the most logical choice of

reference task. The simplest method of synchronizing worker task execution w i t h that of

the supervisor is to make the first instruction of the worker one which blocks and waits

on a start signal f r o m the supervisor task. Polling the hardware timer to record a start

t ime is the second instruct ion executed by a worker. As Figure G.3 shows there is an

inherent problem in this approach. Due to the lack of message broadcasting facifities on

257

T1 1/R5

I • Idle
Ractorlse I Forward Sutistltuts

Figure G.2: Visualisation of the RP program execution profile

the Transputer, each worker is started in turn. This causes the starting of the worker tasks

to be staggered in time with respect to the absolute time reference and this gives rise to

inaccurate timing results. Furthermore the supervisor cannot 'start' until the last worker

has been activated. Although the supervisor does no useful processing it can be used to

take a stopwatch timing of the solution to validate other timing information. The staggered

starting causes the stopwatch timer to be started too late and incorrect results are returned.

This problem has been surmounted by using the block-and-wait strategy in conjunction

with variable delay methods. At some point, to, the reference task obtains the time from

its local hardware timer. It then picks a start time, t^, where

ts = h + <5« (G.2)

where St is of the order of 2 seconds. Before to all the worker tasks have blocked and are

awaiting communication with the reference (supervisor) task. This task considers all the

workers in turn and before communicating with the i*^ task the reference task polls its local

258

t
i

m
e

/ , Reference
start time

supervisor ^̂ ^̂ ^̂ ^̂

<j execution time
incorrect

V

Figure G.3: The staggering effect of block-and-wait synchronisation

timer to read the time / i , where

io < ii < ts (G.3)

A delay, St-, is calculated for the i^^ task

h =ts- U (G.4)

and this value is communicated to task i. Upon receipt of this delay value task i polls its

local timer to obtain the time t\. The delay is added to this time to give the start time

tsi = t[+ ^ i , (G.5)

and processing cannot commence until after this time. Task i then suspends itself until

the local timer value exceeds tsi. The approach is shown diagrammatically in Figure G.4.

Whilst i t does not guarantee that each task will commence execution at exactly the same

instant, t^, in global time it does guarantee that every task will commence within a few

processor clock cycles of this time and this is sufficiently accurate.

A staggering in time can still occur due to the delay introduced in sending the value St^

259

t1

t2

t3

t4

t5

dit

Cfat

cbt

d4t

dst

Figure G.4: Synchronisation through variable delays

across the network to the i " ' task. This can be circumvented by modifying (G.4) such that

=ts- ti - C{ref ^ i) (G.6)

where C(ref <— i) is the average time taken to transfer a message of the same size as ^j , -

between the reference (supervisor) task and task i. Values of C{ref <— i) can be calculated

for z = by sending 1000 fixed length messages to each task and monitoring the

total transfer time from the sending end. Dividing this by 1000 gives the mean transfer

time C{ref <— i). This analysis of the communication network characteristics is performed

before and before the worker tasks block-and-wait on the reference task. The algorithms

below show the implementation of the timing mechanism in the supervisor and worker tasks.

260

f o r i=l to n

f o r j = l t o 1000

send f i x e d length message to task i

store t r a n s f e r time

end j

C{ref ^ i)

end i

total transfer time
1000

to = r e s u l t of t imer p o l l

St = 2seconds

= 0̂ + h

f o r I = 1 to n

ti = r e s u l t of t imer p o l l

St, = t s - t i - C{ref <- i)

send St- t o task i

end i

f o r j=i to 1000

receive f i x e d length message

end j

receive St^ from supervisor

t'- = r e s u l t of t imer p o l l

tsi = t'i + St,

suspend u n t i l tgi

commence RP s o l u t i o n

suspend u n t i l t^

(a) (b)

T iming mechanism in the supervisor (a) and worker (b) tasks

The impact of these visualisation and performance monitoring techniques on the op

timization of the Transputer-based RP solution cannot be stressed enough. Most of the

improvements to the program code arose as direct results of observations on charts of the

form of Figure G.2. Accurate calculations of speed-up were only possible after the imple

mentation of the timing and synchronous starting techniques.

261

Appendix H

Test Systems

The following pages give tree diagrams for the IEEE 118 node network and the reduced

CEGB 629 and CEGB 734 node networks used as test systems for the research work de

scribed in this thesis. Tree diagrams for the 1624 node representation of the Eastern U.S

power system could not be incorporated as they are too large to be printed. However co

efficient matrix sparsity plots are given for aU four systems. The sparsity plots show the

structure of the matrix for a given system after optimal ordering and again after partition

ing into the required number of subnetworks. The RBBDF matrix structure is apparent in

the sparsity plots for the partitioned systems.

262

K44 843 K40

Figure H . l : Weighted elimination tree for MDMLLRU ordered IEEE 118 Node System

263

v-"< ^ '"^'^

4f,'J7 -4ftiXi 4(a7 -461(1

\ . , ^ „ ^ »

= 1! = ! ^ J

Figure H.2: Weighted elimination tree for MDMLLRU ordered CEGB 629 Node System

264

(7M 7J7

2tM^ ~2rAi

^j! =1,11 •= '

< : S i -

_ „

N , — J

Figure H.3: Weighted elimination tree for MDMLLRU ordered CEGB 734 Node System

265

nz = 476

100

Figure H.4: MDMLLRU Ordered IEEE 118 Node System

266

100h

4 0 60 80
nz = 476

Figure H.5: MDMLLRU Ordered IEEE 118 Node System, partitioned into 2 major and 1
minor subnetworks

267

100

60 80
nz = 4 7 6

Figure H.6: MDMLLRU Ordered IEEE 118 Node System, partitioned into 4 major and 3
minor subnetworks

268

100

4 0 60 80
nz = 476

Figure H.7: MDMLLRU Ordered IEEE 118 Node System, partitioned into 8 major and 7
minor subnetworks

269

100

2 0 0

3 0 0

4 0 0

5 0 0

6 0 0

"v. • 1 1 1 ,

• • T V - •

\
; \

\
\

- \

\

• ' -. >\

V : •

\:,
' 'V, \

\
s

' 1 ,
1 1 1

• X
100 200 300 400

nz = 2301
500 600

Figure H.8: MDMLLRU Ordered CEGB 629 Node System

270

100

2 0 0

3 0 0

4 0 0 h

500

6 0 0

100 200 300 400
nz = 2301

500 600

Figure H.9: MDMLLRU Ordered CEGB 629 Node System, partitioned into 2 major and 1
minor subnetworks

271

100

2 0 0

3 0 0

4 0 0

5 0 0

6 0 0

100 2 0 0 300 400
nz = 2301

500 600

Figure H.IO: MDMLLRU Ordered CEGB 629 Node System, partitioned into 4 major and
3 minor subnetworks

272

100

2 0 0

3 0 0

4 0 0

500

6 0 0

• I •

- -

' '' • " -̂ Si-

• ' • • *'
- ' • - X V • •

. *. .•' \ -s*

• ' » - r i ' V

-

• . ••• 1 . 1 ,

) 100 2 0 0 3 0 0 400 500 600
nz = 2301

Figure H . l l : MDMLLRU Ordered CEGB 629 Node System, partitioned into 8 major and
7 minor subnetworks

273

lOOh

200

300

400

500

600

700

0 100 200 300 400 500 600 700
nz = 2696

Figure H.12: MDMLLRU Ordered CEGB 734 Node System

274

100

200 h

300

400

500

600

700

100 200 300 400 500 600 700
nz = 2696

Figure H.13: MDMLLRU Ordered CEGB 734 Node System, partitioned into 2 major and
1 minor subnetworks

275

100

200

300

400

500

600

700 h

0 100 200 300 400 500 600 700
nz = 2696

Figure H.14: MDMLLRU Ordered CEGB 734 Node System, partitioned into 4 major and
3 minor subnetworks

276

100

200

300

400

500

600

700

0 100 200 300 400 500 600 700
nz = 2696

Figure H.15: MDMLLRU Ordered CEGB 734 Node System, partitioned into 8 major and
7 minor subnetworks

277

700h

0 100 200 300 400 500 600 700
nz = 2696

Figure H.16: MDMLLRU Ordered CEGB 734 Node System, partitioned into 16 major and
15 minor subnetworks

278

200

400

600

800

1000

1200

1400

1600

1 1 r T r -

200 400 600 800 1000 1200 1400 1600
nz = 6050

Figure H.17: MDMLLRU Ordered US 1624 Node System

279

200

400

600

800

1000

1200h

1400h

1600

—1 — . — . • — f . ^
l \ _
1 \ •
V \ •

• 1^ r ' 1 1 T

_

\' \ \.

\ ^ • • - "5 •
- ; . 1 •

N . ^ \ •

• f l . . • '

•"•;.•̂ >'C•r'V•.•̂ .•-':
.. - ; ? , \ : -

\ •-

- '̂ v •

\ \ \- ; • • - f • •. 1 ^
_ \ V-S- t

-

/ . . - . ^ i l - . - V/

1 . . 1 . I - . • t •.- •- 1 -

200 400 600 800 1000 1200 1400 1600
nz = 6050

Figure H.18: MDMLLRU Ordered US 1624 Node System, partitioned into 2 major and 1
minor subnetworks

280

200

400

600 h

800

1000

1200h

1400

1600
0 200 400 600 800 1000 1200 1400 1600

nz = 6050

Figure H.19: MDMLLRU Ordered US 1624 Node System, partitioned into 4 major and 3
minor subnetworks

281

200

400

600

800

1000

1200

1400h

1600
200 400 600 800 1000 1200 1400 1600

nz = 6050

Figure H.20: MDMLLRU Ordered US 1624 Node System, partitioned into 8 major and 7
minor subnetworks

282

200

400

600

800

1000

1200

1400

1600

mi .

1 1 T 1 1 r 1 — i;'

{'

it.

V

• .
1-

-

-

-
•.AA\.f,-^*iS

200 400 600 800 1000 1200 1400 1600
nz = 6050

Figure H.21: MDMLLRU Ordered US 1624 Node System, partitioned into 16 major and
15 minor subnetworks

283

