
Achieving Parallel Performance in

Scientific Computations

Lyndon J. Clarke

Submitted for the degree of

Doctor of Philosophy

University of Edinburgh

September 1990

Declaration

This thesis has been composed entirely by myself.

The work reported in Section 2.4 (Deadlock Avoidance) was performed in collab-

oration with Michael G. Norman and with some assistance from Dominic M.N.

Prior. All other work reported herein is my own, except where otherwise, stated..

Lyndon J. Clarke

1

Acknowledgements

I should like to express my gratitude to Professor D. J. Wallace, Professor R. A.

Cowley, Doctor R. D. Kenway and Doctor Alastair D. Bruce for academic and

practical guidance given during my postgraduate study. Thanks are also due to

all of my colleagues, past and present, in the University for helpful discussions,

assistance in the. use of various computer systems and advice freely given in the

preparation of this thesis.

I should like to acknowledge the award of a Science and Engineering Research Coun-

cil grant and the financial support of the Edinburgh Parallel Computing Centre,

formerly the Edinburgh Concurrent Supercomputer Project.

Finally I am indebted to my parents and grandmother for financial assistance, and

to Rachael for patience and moral support.

9

Abstract

The exploitation of high performance computing will be a major factor in the future

advancement of science as computational methods are increasingly becoming a third

discipline alongside theory and experiment. Despite advances which are being made

in VLSI technology, enabling the C c-ckO of faster uniprocessor machines, it

is now, widely recognised that the future of high performance computing will be

dominated by parallel architectures. It is of prime importance that the scientific

community is able to effectively program such machines.

In the case of distributed memory MIMD architectures support is required for ar-

bitrary communications between processing entities located at different processors,

and operating on data stored in different memory units. If a message routing facil-

ity is not available in hardware it is necessary to provide a software implementation.

Where this facility is available in hardware then a layer of software is required which

presents the programmer with an interface to this hardware.

This thesis discusses a number of issues which arise in the implementation of mes-

sage routing systems and the application interface. We have constructed such a

system for use on arrays of INMos transputers, called TINY, and the methods used

in the impleme(1ttion of this software are described. The system shares proces-

sor time with the application and we demonstrate that the processor bandwidth

required by TINY is very small.

We have selected a concrete, but simple, application which utilises the services

provided by this system. The implementation of this application was considerably

simplified by the use of TINY and we show that the overheads induced by this

software layer are insignificant. The application selected performs rendering of

space filling molecular models, reflecting the growing importance of visualisation in

science.

3

Contents

1 Prologue 	 11

2 Design 	 14

2.1 	Introduction14

2.2 	System Overview16

	

2.2.1 	Communication Models 17

	

2.2.2 	Transport Interface18

	

2.2.3 	Network Interface28

2.3 	Transport Layer30

	

2.3.1 	Asynchronous Models31

	

2.3.2 	Synchronous Models32

2.4 	Network Layer34

	

2.4.1 	Switching Techniques34

	

2.4.2 	Routing Functions 40

2.4.3 Deadlock Avoidance 	 . 44

2.4.4 	Acyclic Routing49

2.5 	Summary 65

3 Implementation

3.1 Introduction 67

3.2 Overview 68

3.3 Topology Exploration 74

3.4 Routing 	Function 81

3.4.1 	Cyclic Routing 83

3.4.2 	Acyclic Routing 84

3.4.3 	Simulations 87

3.5 Message 	Passing 90

3.5.1 	Simple Prototype 90

3.5.2 	Improved Prototype 100

3.5.3 	Performance 112

3.6 Summary 118

4 Application 	 120

4.1 	Introduction120

5

4.2 Sequential Algorithm 	 . 122

4.3 	Parallel Adaption126

4.4 	Summary 137

5 Epilogue 	 140

List of Figures

2.1 	A three layer model16

2.2 	Routing in a binary tree 	45

2.3 	Routing in a 2 dimensional grid . 	46

2.4 	Routing in a Ring 	47

2.5 Processors, Links and Connects51

2.6 Valid Colouring of the Tetrahedron56

2.7 Satisfied Connects of the Tetrahedron 58

2.8 Algorithm for Trivial Solution of Colouring60

2.9 Non-trivial Colouring of a Grid60

2.10 Trivial Colouring of a Grid62

2.11 Evaluation of Trivial Colouring of Rings63

2.12 Evaluation of Trivial Colouring of Tori64

2.13 Evaluation of Trivial colouring of Random Graphs65

7

3.1 A Simple Transport Layer Interface73

3.2 	Worm Algorithm75

3.3 	Probee Algorithm .. 	76

3.4 	Prober Algorithm77

3.5 	Buffer Process79

3.6 	Control Process80

3.7 Flood Termination Condition81

3.8 	Tree Labelling Algorithm85

3.9 	Simple Router: Output process92

3.10 Simple Router: Sink process93

3.11 Simple Router: Input process'94

3.12 Simple Router: Source process95

3.13 Simple Router: Directed routing 96

3.14 Simple Router: Broadcast routing97

3.15 Improved Router: Data Structures102

3.16 Improved Router: Output Process106

3.17 Improved Router: Sink Process107

3.18 Improved Router: Input Process108

3.19 Improved Router: Source Process109

8

3.20 Improved Router: Queue Handling110

- 	 3.21 Improved Router: Directed 111

3.22 Improved Router: Broadcast...................... 112

3.23 Improved Router: Exceptional Routing113

3.24 Quiet Network Message Latency115

	

4.1 	Calculation of Impingement125

	

4.2 	Schema of Algorithm127

4.3 Regular Domain Decomposition 130

4.4 Schema of Parallel Algorithm136

4.5 Execution Time of Parallel Program137

4.6 Scaling Behaviour of Execution Time138

01

List of Tables

2.1 Feature Identification in Connectionless Switching39

3.1 Evaluation of Acyclic Routing in Double Rings89

3.2 Evaluation of Acyclic Routing in Square Tori89

3.3 Evaluation of Acyclic Routing in Random Hamiltonian Graphs . . . 90

3.4 Quiet Network Latency in TINY115

3.5 Quiet Network Latency in the iPSC/2116

3.6 Comparision of Neighbour Message Latencies117

3.7 Parameters of Through Routing CPU Impact118

4.1 Characterisation of Sequential Components128

4.2 Performance of Modifed Sequential Program133

10

Chapter 1

Prologue

Parallel computers have now been in use by the scientific computing community in

Edinburgh University for approximately a decade. During the past five years I have

personally undertaken a number of applications in both SIMD (represented by the

ICL-DAP) and distributed memory MIMD (represented by the MEIKO Computing

Surface) architectures. The motivation for use of such machines is, of course, the

possibility of solving physical problems which were previously intractable due to ex-

cessive execution times on conventional sequential machines, by exploiting parallel

performance.

Calculations performed using the ICL-DAP have mainly featured the investigation

of phase transition behaviour in simple spin models. In two specific calculations

non-universal critical behaviour over a line of continuous transitions in the spin-

Ising model [LBS5] with first and second neighbour interactions, and tricritical

behaviour in the spin-1 model with a quadratic spin self energy term [LS86], were

studied extensively. The object of these studies was to utilise calculations of the

free energy surface in coupling space in order to extract information about the

relevant and marginal scaling fields. The computational core of these calculations

is the Monte Carlo update of spin values for which the DAP is exceptionally well

suited due to the large array of bit serial processors. In each case it proved very

difficult to obtain data of sufficient statistical quality for the analysis proposed.

The MEIKO Computing Surface was used to investigate the behaviour of the two di-

11

mension Hubbard model which was thought to be relevant to the existence of high

temperature superconductivity in ceramic oxides. The simulation technique em-

ployed was the Hybrid Monte Carlo algorithm [DKPR87]. The computational core

of this method is the inversion of a large sparse matrix which we choose to perform

using the conjugate gradients method; a suitable preconditioning matrix for this

calculation is known. It was found to be very difficult to develop a program which

executed rapidly enough to be of use in production calculations. Each conjugate

gradient iteration requires (at least) two global summations to be performed and the

associated matrix vector multiplication requires a relatively straightforward nearest

neighbour exchange of edge data in the regular domain decomposition. The perfor-

mance barrier was the fact that the communication overheads and corresponding

performance degradation associated with these operations, particularly the global

summation, precluded the use of large processor arrays.

It is uniformly observed that the effective programming of parallel computers has

been considerably more difficult than conventional sequential programming. This

has been especially true in the MIMD case where there is far greater freedom in

machine architecture and programming methodology, and generally poorer support

for the application programmer.

These machines have almost exclusively been programmed in the so-called "explicit

message passing" paradigm, in which the programmer is responsible for coding data

transfer between concurrently executing processing entities. The implementation of

communication has often been the most difficult problem experienced by scientific

programmers faced with an algorithm and such a computer.

Where the communication structure of the algorithm requires communication be-

tween entities which cannot be located on the same or neighbouring processors then

it has been necessary to write message routing code for each application. Such soft-

ware is notoriously difficult to code correctly, worse to debug, and was often very

inefficient. This is unfortunate since the communication overheads associated with

the parallel adaption of algorithms play a large part in controlling the parallel

performance which may be achieved [Fox89].

I was convinced that this scenario was unnecessary since general purpose message

12

routing software could be written. Such an approach has the added advantage that

time can be taken to ensure that the general purpose software is both correct and

efficient. The bulk of this thesis describes work I have performed in expediting this

approach.

In Chapter 2 issues arising in the design of a general purpose communication system

are discussed. The chapter divides the problem into two major components; the

application interface and message through routing. The division is facilitated by

decomposing the system into two logical layers by analogy with the treatment of

communication systems in computer networks.

This work has lead to the construction of a communication system for multipro-

cessors composed of INMOS T800 transputers. The implementation of this system,

which uses ideas discussed in the previous chapter, is described in Chapter 3. This

system shares cpu with the application program and it is therefore of particu-

lar importance that the processing bandwidth consumed should be minimal. The

techniques developed to meet this requirement are discussed in detail.

The communication system has been incorporated into a large number of applica-

tions. In Chapter 4 one of these applications, implemented by myself, in the field

of molecular graphics is described. The effect of communication overheads on the

parallel adaption of the algorithm are analysed, and based on data obtained in

the previous chapter they are found to be negligible. The system also provides a

platform on which software presenting the programmer with a higher level model

of parallel programming can be implemented. Examples of such models are LINDA

[Gel85] and FORTNET [AH89].

13

Chapter 2

Design

2.1 Introduction

The construction of computer networks has generated .a great deal of expertise in

communication systems {Tan89] which the multicomputer community could well

hope to benefit from. Indeed there is superficially a close similarity between the

requirements of the communication system in a computer network and a multicom-

puter; each must provide end-to-end connections between several users on many

machines in a fashion independent of the hardware in use. There is, however, a

fundamental difference between computer networks and multicomputers; in a com-

puter network the users are human beings who typically run independent programs

and communicate with one another rather infrequently whereas in a multicomputer

the "users" are elements of a single program which probably communicate with one

another very frequently.

This difference between a computer network and a multicomputer has a number of

consequences for the behaviour and requirements of the users, and for the hardware

involved, for example:

• The users of a computer network require access to mail facilities, text editors,

sophisticated document preparation systems; the users of a multicomputer

require access to a high performance processor.

14

• The users of a computer network will tolerate failure in parts of the network,

they go for lunch; the users of a multicomputer cannot tolerate failure in parts

of the computer, the program fails.

• The number, and location, of users in a computer network changes frequently;

the placement of application processes in a multicomputer is, almost invari-

ably, static.

• The hardware of a computer network can be found in different buildings,

cities and even countries; the hardware of a computer is usually found in

small number of boxes, often just one, in the same room.

• The topology of a computer network is variable; multicomputers often have

fixed topology, and where the machine is reconfigurable this-is (almost) never

performed during program execution.

• The interprocessor communication links of a computer network are inherently

noisy; the links inside a multicomputer are generally error free.

These observations naturally lead to different requirements for the properties and

interfaces to th.e two types of communication systems. We would in

'

 rinciple like

the multicomputer to be able to access facilities of the network, and sers of the

network should have access to the facilities of the multicomputer. It is clear that

there should be a well-defined boundary and interface between the two systems.

The following assumptions about the requirements of the user and the underlying

hardware are usually made:

Application processes generally require the illusion of complete connectivity.

The mapping of application processes onto processors is arbitrary but static.

The intercommunication links are completely error free and allow bidirectional

traffic.

The interconnection topology of the processor array is arbitrary but static.

15

Applicaxion

Tran3pc.t

i;:"" r --- 	Jz -----

Figure 2.1: A three layer model.

It is convenient to divide a communication system into a number of layers each

of which address separate issues arising in the design and implementation of these

systems. For example the problem of efficient and correct routing of messages

between processors is distinct from the problem of providing a suitable interface to

the programmer.

In Section 2.2 we present an overview of the system decomposition we consider

and the interfaces between the component layers. Sections 2.3 and 2.4 discuss the

design of system components in detail.

2.2 System Overview

We consider a conceptual three layer structure as depicted in Fig 2.1. The compo-

nents, network, transport and application, are named after layers of the osi model
[DZ83]; they perform approximately similar functions.

Application This layer contains all user processes. Application entities enjoy the

illusion of reliable communications between all pairs. This layer approxi-

mately corresponds to layer 7 of the OSI model. Each application entity uses

the services of a single transport entity.

Transport This layer is the interface between application and network. Transport

is responsible for maintaining the security of communications between appli-

cation entities. This layer approximately corresponds to layers 4 to 6 of the

16

OSI model. Each transport entity provides services to a single application

entity and uses the services of a single network entity.

Network This layer is the actual message carrier. Network is responsible for pass-

ing message data between transport entities. It should avoid internal deadlock

states without discarding messages. This layer approximately corresponds to

layers 1 to 3 of the OSI model. Each network entity provides services to one

or more transport identities.

The boundary between transport and application is very real. This is also the

boundary between the communication system and the user and as such defines the

user model of communication. This interface is discussed at length. The boundary

between network and transport may be somewhat artificial and the interface is

dealt with rather briefly.

2.2.1 Communication Models

The manner in which messages are communicated, the communication model, plays

an important role in the implementation of all programs. We consider two models

of communication that could be implemented and used, and indeed have been,

asynchronous and synchronous communication.

In the asynchronous models messages appear to be sent from one process to another

via an intervening medium which has a bounded capacity to store messages and is

shared by all processes. The source process can send a message, for some destina-

tion, only when the medium is able to accept a message and may not wait for the

destination to receive the message. The destination process can receive a message

only when the medium contains a message for it, which the medium is able to de-

liver. The medium may be unable to deliver messages accepted from some sources

because some destinations have not accepted messages which are deliverable. The

medium may or may not uorantee that when a destination D receives a message

from a source S there are no earlier messages for D from S within the medium. If

such a guarantee is made then the medium is ordered, we say it preserves message

17

sequentiality, else it is unordered. Since the medium has a bounded storage capac-

ity the communication of arbitrarily large messages must be effectively synchronous

and therefore also sequential whether or not the medium is ordered.

In the synchronous model messages appear to be sent directly from one process to

another without being stored by an intervening medium. The source process can

send a message, for some destination, only when the destination waits to receive

the message; there is always a point at which the two processes are both waiting for

transfer of the message to terminate although they may not resume simultaneously

as measured in an external frame of reference. Message sequentiality is implicit.

The synchronous model is implemented within an underlying asynchronous model

by the use of a synchronisation protocol.

The question of which model to provide is not trivial. The asynchronous model

necessarily offers more communication bandwidth and lower message latency than

the synchronous model since no protocol messages are.xecp..iied. The synchronous

model offers a precise definition of communication and its implementation can en-

sure that messages will always be delivered.

2.2.2 Transport Interface

The transport interface defines the services provided to application. It should be

intuitive enough for general purpose users and at the same time powerful ehough for

sophisticated utility packages to be written. \Ve discuss the issues of process iden-

tification, message addressing and selection, communication models, and present

an example procedural interface.

Process Identification

In order to use a multicomputer there must be a partition of the processing and

data of a program into a number of processes, which have distinct address spaces

and exchange information by communication of messages, and a placement of pro-

18

cesses onto physical processors, in which at least one process is mapped onto each

processor. The partitioning problem is determined mostly by details of the program

whereas the placement problem is determined mostly by details of the multicom-

puter. In order that the partition can be defined without reference to the, perhaps

as yet undetermined, placement we require that the identification of these internal

processes should be defined by the partition. It is intuitive to identify such pro-

cesses by a sequence of natural numbers, for example when there are N internal

processes one might label them by integers in the interval (0. NJ.

Every program must have a means of collecting input and reporting output, typ-

ically via the utilities of an interactive terminal, file system, graphical device

Whether a device exists internally within the multicomputer or externally within

the computer network there must be a process within the multicomputer which

interfaces between the user and the device providing a defined utility. Such inter-

face processes are not considered to he part of the program but rather part of the

environment within which the program executes and they are properly accessed

by a procedural interface provided by the environment; the identification of these

external processes should be defined by the environment. It is intuitive to identify

such utilities by a textual string, for example one might label the terminal by the

name "tty". The environment can provide a mapping of such names into integers,

outwith (0, N], which identify the external process. Were all utilities localised, in

the sense that they are provided by a single process, as the examples given above

tend to be, then this method would be quite adequate. However we cannot discount

the possibility of utilities which are distributed, in the sense that they are provided

by many (communicating) processes, examples of which could be concurrent file

systems, linear algebra packages, graphical rendering packages

There is a sense in which each utility, whether distributed or localised, is a program

which co-operates with the user program and as such the partition of each program

defines a set of labels for the processes it contains. The case of such a collection

of programs can be homogeneously handled by introducing the concept of a group,

a set of processes performing some named function. One such group is the user

program, others are the utilities which the environment of the user program pro-

vides. In this method each group is identified by a textual string, its name, and the

environment provides a mapping of group names into unique integer group labels.

The processes internal to a group are defined by the group and can be labelled by a

set of natural numbers as we previously labelled the processes internal to the user

program; the system wide unique identifier of a process becomes a (group, process)

label pair. The group mechanism need only be visible to programmers implement-

ing utilities on the part of whom we can assume some sophistication; of course this

does not prevent the mechanism being available to general purpose users.

We have frequently referred to the idea of a process as a processing entity with

a private address space. In general we would like to avoid the constraint that

such entities are purely sequential and allow them to be composed of a number of

concurrent threads which share a common address space. This allows programmers

to write programs which overlap communication with calculation within a process,

which may in turn lead to . a more effective overlap of calculation with calculation

over a set of processes, and thereby enhance the performance of the program running

on the multicomputer; as physical scientists we do, after all, have only one reason

for using such a machine.

Addressing, Selection and Models

Processes exchange information by communication of messages. It seems then that

a fundamental property of a message, aside from the data it may contain, is the pair

f identifiers defining the source and destination processes; it is natural to think

that processes send and receive messages. When the source wishes to send a mes-

sage it specifies the identifier of the destination process, or perhaps the identifiers

of permissible destination processes; an act of addressing. When the destination

wishes to receive a message it specifies the identifier of the source process, or per-

haps the identifiers of permissible source processes; an act of selection. Another

property we could assign to a message is a type which in some way represents the

meaning of the message; either or both of addressing and selection can be expressed

in terms of, or in combination with, types. It is convenient to specify a type label as

an integer-1-h' the interval (0, T} where T is a statically bounded number of message

types.

20

Selection Above we hinted at the possibility of conditional output, in addressing,

and conditional input, in selection. It is not necessary to provide both of these,

however it is necessary to provide one and a system which offers conditional input

as opposed to conditional output will be more intuitive to use. Another reason for

choosing to provide conditional input lies in the fact that we can completely and

sensibly define a conditional input without reference to the commmil ion model

whereas this is not true of conditional output. The question of how conditional

input is presented is important. It is generally sufficient to allow a process to

specify a number of (group, process) labels as alternatives however the time taken to

determine which alternatives can be satisfied and which should be chosen necessarily

increases as the number of alternatives specified; this is a real performance problem.

A less formal method, which can be implemented reasonably efficiently and which

experience suggests will nevertheless be very powerful, is to allow selection to be

specified as a (group, process, type) label triplet, in which either process or group

is allowed to be a.wildcard indicating all, from which the goal is determined by the

following scheme.

if 	group label is wildcard

any message with given type

else if process label is wildcard

any message from given group with given type

else

any message from given (group, process) with given type

Addressing We have discussed only point-to-point messages, in which there is ex-

actly one source and one destination, thus far. In practice it is frequently necessary

to send the same message to a significant number, i.e. close to N, of destinations.

Of course this can always be achieved by sending the message to each in turn but

it is often possible for the communication subsytem to perform the operation more

efficiently when it provides for broadcast message routing. We take advantage of

the structure implicit in the group mechanism to define a broadcast as a message

sent to all members of a group and a global broadcast as a message sent to all mem-

bers of all groups, both subject to the exception that the message is not delivered

21

to its source. We could allow addressing to be specified as a (group, process, type)

label pair triplet, similar to the specification of selection, from which the action is

determined by the following scheme.

if 	group label is wildcard

global broadcast with given type

else if process label is wildcard

broadcast to given group with given type

else

send to given (group, process) with given type

Models We would like transport to provide for both synchronous and asyn-

chronous models of communication. A message is labelled by a (source, destination,

type) triple, where source and destination are process identifiers; it makes no sense

for messages with the same label to be communicated within different models at

different times. The communication model of each message should be statically

determined by its label. It is convenient to allow this to be determined by the

source process group label alone. We anticipate that a group will statically spec-

ify the types and associated models for internal communication, and will similarly

specify the types and models of external messages which will be used to provide

the services offered by the group. The user group does not provide services, it

only uses those of other groups, and need only specify the types and models for

its internal communication since any external communication is determined by the

specifications given by other groups. .

Procedural Interface

Just as utilities provided by the environment are properly accessed by a procedural

interface the services offered by the communication subsystem should also be ac-

cessed by a procedural interface. This readily allows such services to be accessible

from any number of languages and on any number of multicomputers provided that

the necessary procedures can be written.

92

We give an example functional interface, in ANSI C, which exploits the ideas dis-

cussed above. Groups, processes and types will be labelled by integers. Message

selection and addressing will be performed with a (group, process, type) label triplet

as discussed and provision for hiding the group mechanism from general purpose

users is explicitly made.

Symbolic Constants The following symbolic constants are declared:

WildLabel The wildcard label.

BadGroup Indicates a bad group parameter.

BadProcess Indicates a bad process parameter.

BadType Indicates a bad type parameter.

They have distinct negative values.

Names, Labels and Sizes Functions are provided for mapping a group name

into a group label, and vice versa, determining the size of a group with a given label

and determining the process label and enclosing group label of the calling process.

mt groupLabeiFromName (char *groupName)

Determine a mapping of group name to group label.

Return the label of the group with name groupNaxne, else BadGroup if there is no

group with the given name.

23

char *groupNameFromLabel (mt groupLabel)

Determine a mapping of group label to group name.

Return a reference to the name of the group with label groupLabel, else a null

reference if there is no group with the given label.

mt groupS izeFromLabel (mt groupLabel)

Determine the size of a group.

Return the size of the group with label groupLabel, else BadGroup if there is no

group with the given label.

mt getGroupLabel 0

Return the label of the group containing the calling process.

mt getGroupSize0.

Return the size of the group containing the calling process.

24

mt getProcessLabel()

Return the process label of the calling process.

Group Internal Messages Two functions provide for sending and receiving

messages between processes within the same group and do not require a group

label parameter.

mt isend(int *process, mt type, void *data, mt size)

Send the message in the buffer referenced by data of length size bytes and of type

given by type. The message is a broadcast to the group if the integer referenced

by process has the value WildLabel, else a single send to the given process.

Return a non-negative integer, whose value is undefined, if the send was successful,

else return one of:

BadProcess The process label was invalid,

BadType The type label was invalid.

Note:

1. The function blocks until the message can be sent.

25

mt irecv(int *process,. mt type, void *data, mt size)

Receive a message into the buffer referenced by data of length size bytes and of

type given by type. The message will be received from any process in the group

if the integer referenced by process has the value WildLabel, else from the given

process.

Return a non-negative integer, whose value is the message size, if the receive was

successful, else return one of:

BadProcess The process label was invalid,

BadType The type label was invalid.

Note:

If the message was longer than size then only the first size bytes are received

and the remainder are lost. This is strictly an error and may be detected

because the return value is greater than size.

The process label from which the message was received is stored in the in-

teger referenced by process; this only affects that value if it was previously

Wi 1 dLab e 1.

The function blocks until a suitable message can be received.

Group External Messages Two functions provide for sending and receiving

messages between processes in different, or the same, groups and take a group label

parameter.

26

mt esend(int *group, *process, mt type, void *data, mt size)

Send the message in the buffer referenced by data of length size bytes and of

type given by type. The message is a global broadcast if the integer referenced by

group has the value WildLabel, else a broadcast to the given group if the integer

referenced by process has the value WildLabel, else a single send to the given

process in the given group.

Return a non-negative integer,vhose value is undefined, if the send was successful,

else return one of:

BadGroup The group label was invalid,

BadProcess The process label was invalid,

BadType The type label was invalid.

Note:

1. The function blocks until the message can be sent.

mt erecv(int *group, *process, mt type, void *data, mt size)

Receive a message into the buffer referenced by data of length size bytes and of

type given by type. The message will be received from any process in any group

if the integer referenced by group has the value WildLabel, else any process in

the given group if the integer referenced by process has the value WildLabel, else

from the given process in the given group.

Return a non-negative integer, whose value is the message size, if the receive was

successful, else return one of:

27

BadGroup The group label was invalid,

BadProcess The process label was invalid,

BadType The type label was invalid.

Note:

If the message was longer than size then only the first size bytes are received

and the remainder are lost. This is strictly an error and may be detected

because the return value is greater than size.

The group label from which the message was received is stored in the in-

teger referenced by group; this only affects that value if it was previously

WildLabel.

The process label from which the message was received is stored in the in-

teger referenced by process; this only affects that value if it was previously

WildLabel.

Thelunction blocks until a suitable message can be received.

2.2.3 Network Interface

The network interface defines the services provided to transport. If transport im-

plements synchronous communication between application entities then there is

little point in network providing a synchronous model between transport entities.

It makes most sense for network to provide an asynchronous model leaving flow

control and synchronisation to the higher layers.

Each network entity has a number of conceptual ports, one connected to each trans-

port entity, over which the network and transport entities communicate. Transport

28

entities are addressed by a (processor, port) number pair, which can be packed into

an integer; the abstraction from such placement details enjoyed by application can

be provided entirely by transport which maps application process indentifiers into

transport addresses.

We could conceive of the service being provided by a set of functions, which provide

for directed asynchronous messages which are either ordered, in the sense that an

ordered message will not arrive at its destination before an earlier ordered message,

or unordered, and for asynchronous broadcast messages.

void unordered(int transport, void *data, mt size)

Send an unordered message of length size bytes buffer referenced by data to the

transport entity identified by transport.

void ordered(int transport, void *data, mt size)

Send an ordered message of length size bytes buffer referenced by data to the

transport entity identified by transport.

void broadcast(void *data, mt size)

Broadcast message of length size bytes in the buffer referenced by data to all other

transport entities.

29

void receive(void *data, mt *size)

Receive a message into the buffer referenced by data returning the size in size.

Of course, in practice transport would like to avoid taking a copy of data which

must later be copied again to application, if this is possible, and these functions

may not be realistic. In fact such a set of functions - will probably not even exist;

when network and transport share the same CPU and memory then the boundary

between them should be artificial and when network comprises specialised routing

hardware then the interface would probably be interrupt driven.

2.3 Transport Layer

In this section we discuss issues' involved in the design of the transport layer. This

layer provides service to the application layer using the service provided to it by

network.

Our major requirements of transport are:

Transport supports the illusion of full connectivity and abstraction from pro-

cess placement.

Transport fairly and efficiently implements the addressing and selection meth-

ods of the user model.

Transport maintains the reliability of communications between application

entities, provided that no application entity indefinitely refuses to accept any

deliverable asynchronous message.

Requirements 1 and 2 are self explanatory. The last point implies that in the syn-

chronous model transport maintains the reliability of all communications whereas

30

in an asychronous, or mixed, model application is responsible for implementing flow

control in asynchronous messages.

2.3.1 Asynchronous Models

Experience in using the asynchronous model has shown that it is often possible for

relatively inexperienced users to write programs with very simple communication

patterns, and that sophisticated users can succesfully create programs with rather

complicated communication patterns.

The absence of imposed flow control affords greater performance but can lead to

a deadlock situation where cyclical dependencies in the communication of user

processes fatally interact with the uncontrolled sharing of network storage resources,

a problem for which we have borrowed the term hangup since the network itself is

not in a deadlock state. Some simple examples of hangup are:

• .A number of application entities attempt to send messages to one another and

will only attempt to receive messages after completion of sending. The storage

capacity of the system is used up and it cannot accept further messages

until application accepts messages from it; application waits forever to send

messages to it. Although this is a simple problem to solve it may be difficult

for the less sophisticated programmer to diagnose.

• An application entity is waiting for a message of a particular type which

it never receives despite the fact that it has been accepted by the system.

The storage capacity of the system which would be required to deliver the

message is taken up by messages for this entity but of a different type and

thus the entity must accept some of these before the system can deliver the

required message; application waits forever to receive a particular message.

This problem may be more difficult to solve and diagnose.

Hangup may be avoided when the amount of message data which can be outstanding

for any destination which might indefinitely refuse to receive said data, because

31

it is waiting to receive other data or to send data, can be bounded either due

to the structure of communications natural to the application or by explicit flow

control. If this bound is not zero then the destination is assuming it may use

the storage capacity of network; the destination must reverse this assumption by

installing sufficient buffering threads to reduce the bound to zero. The fact that a

large number of programs have now been written within the asynchronous model

is testimony to the fact that these bounds are often readily calculable.

2.3.2 Synchronous Models

In order to implement the synchronous model a protocol is required between trans-

port ent es; this protocol determines when the source and destination application

processes can be resumed, and when message data is transferred. The implemen-

tation need not suffer from the hangup problem since transport can trivially be

arranged to behave as a sink.

Consider a very simple protocol, which requires a constant amount of memory

at each transport. When a process wishes to source a message it sends the data

immediately and waits for an acknowledge; when a process wishes to sink a message

it waits to receive the message and then sends an acknowledge to the source. This

achieves synchronisation between the source and sink but fails to avoid hangup,

because messages are being stored in network. This problem can be removed by

defining a retry message which transport sends back to the source whenever a

message arrived but was discarded because the destination user process was not

ready to receive the message; the source sends the message again whenever the

retry message is received rather than the acknowledge. This busy wait technique

is clearly capable of consuming enormous amounts of communication bandwidth.

We describe three further protocols, each of which require memory proportional

to the number of processes, which use the communications bandwidth rather more

efficiently.

32

Request-Transfer (RT) The source waits for a request for transfer message be-

fore sending the data transfer message. The destination sends the request message

and waits for the transfer message. Transport requires a bit, or more realistically

a word, at every source for every destination which may wish to receive from that

source, with which to record the arrival of requests. This protocol has the disad-

vantage that it forces the destination to specify which source it wishes to receive

from; conditional input is not possible.

Transfer-Acknowledge (TA) The source sends the data transfer message and

waits for an acknowledgement of transfer message. The destination receives the

data transfer then sends the acknowledgement. Transport requires a buffer at every

destination for every source which may wish to send to that destination, with which

to store the arriving data transfers. This protocol has the disadvantage that unless

message buffers are very small an inordinate amount of memory may be required;

it has the advantage of offering functionality well aligned to the requirements of

applications.

Request-Acknowledge-Transfer (RAT) The source sends a request to trans-

fer message and waits for an acknowledgement message before sending the transfer

message. The destination chooses any request, sends the acknowledgement and

waits for the transfer. Transport requires a bit, or more realistically a word, at

every destination for every source which may wish to send to that destination,

with which to record the arrival of requests. This protocol has the advantages

of providing the right functionality and requiring relatively little memory; it has

the disadvantage of being more expensive in communication of protocol. The time

ordering of the request and acknowledge can be relaxed when the destination is per-

forming an unconditional input if message sources also record the arrival of these

"acknowledgement" messages.

33

2.4 Network Layer

In this section we discuss issues involved in design of the network layer. This layer

provides services to the transport layer using the communication hardware of the

multicomputer.

Our requirements of network are:

Network is capable of passing a message from any transport entity to any

other transport entity, and from any transport entity to all other transport

entities.

Network will not corrupt or discard messages, and any deliverable message

which waits to be received by a transport entity will hold network resources

indefinitely if required.

Network will not indefinitely fail to accept a message from any transport

entity or indefinitely fail to deliver any accepted message, provided that no

transport entity indefinitely fails to accept any deliverable message.

We demand 1 so that transport can always support the illusion of full connectiv-

ity and the abstraction from placement to application, and efficiently implement

broadcast messages. In order for transport to securely implement synchronous mes-

sages 2 is essential. Deadlock and starvation in network are eliminated by 3 which

we must ask in order to implement any reliable communications.

2.4.1 Switching Techniques

Two important, and very different, switching techniques used in communication

systems are circuit and packet switching. Two more recent techniques are virtual

cut-through and wormhole switching.

34

Circuit Switching

The circuit switching technique is easily understood by analogy with the telephone

system. When one subscriber dials the number of another the telephone system

attempts to find a line between the two; a line is a sequence of available wires

from the caller to the receiver. If the receiver is engaged or a line could not be

found then the call fails and any wires used are retrieved. If, on the other hand,

the receiver was available then the line is held until the two parties have finished

their conversations and replaced their handsets, or until the caller becomes bored

of waiting for the receiver to pick up the phone! Key features of circuit switching

are:

ó The initial establishment of the end-to-end connection.

• The use of a dedicated set of wires during the connection.

These features have a number of immediate consequences for the point-to-point

and aggregate bandwidth of the system.

After call connection the point-to-point bandwidth is very high since there is a

private set of wires; there is no need to store the message at an intermediate node

while it waits for the outgoing wire to become available. The transfer time depends

only on the message length.

The time taken to establish 'a connection can be very large, as our experiences with

the telephone system will confirm. The number of wires waited for increases as the

path length. The probability of a wire being free decreases as the network loading

increases. The waiting time increases with the length of message waited for. A

cross over occurs from a set up time depending only on the path length to one

depending on both the path length and average message length.

Since a connection which is waiting for a free wire is itself holding wires the achieved

aggregate bandwidth falls off heavily with loading and is rather smaller than the

maximum available.

35

Circuit switching has been applied to multicomputers, in hardware, in the Direct

Connect Module of the Intel iPSC/2 [Nug88].

Packet Switching

If circuit switching is compared to the telephone system then packet switching

should be compared to the postal system. When one correspondent wishes to

communicate with another they write down the contents of the message, package

them up in an envelope, put the address of the recipient on the envelope, post it and

never hear of it again unless the recipient chooses to reply explicitly. The mail will

only handle letters below a certain weight; assume there is no parcel post service,

so a really large message will have to be sent as several separately addressed letters.

During transit each letter shares resources with a number of other letters; there are

no dedicated lines. Key features of packet switching are:

• Messages may be fragmented into one or more separate packets, each of which

is separately addressed.

• Packets do not reserve private lines, each packet is completely received before

being forwarded.

The performance properties of a packet switched system are quite the inverse of a

circuit switched system.

When a message packet arrives at an intermediate node the output link it will

require may, in general, be busy. Whether or not this is the case the packet is

completely received into a buffer before any of it is forwarded; these are commonly

known as store-and-forward systems. It follows that the transfer time depends on

both the path length and message length. This is unimportant for sufficiently small

messages but the latency will probably be unacceptable for large messages.

It is easy to see that, as in the analysis of circuit switching, one finds that the effect

of network loading is to add a term dependent on both the path length and average

message length.

36

The achievable aggregate bandwidth of packet switched systems is generally better

than that of circuit switched systems since, given some number of buffers at each

communication link, a message waiting to propagate to the next node does not

prevent use of the link which is used to arrive at the current node.

Packet switching has been applied to multicomputers, in software, in the Cosmic

Cube [Sei85}, the Intel iPSC/1 [Int86], and a number of routing systems for trans-

puter arrays.

Virtual Cut-through

The virtual cut-through technique is a direct hybridisation of the circuit switching

and packet switching methods and is based on the observation that in a packet

switching system it is not necessary to store the whole message at an intermediate

node if the outgoing link is not busy. This requires hardware which allows direct

link to link and link to memory copies.

Key features of virtual cut-through are:

• Messages may be fragmented into one or more separate packets, each of which

is separately addressed.

• Packets are stored in intermediate nodes only when the chosen output link is

busy.

The performance properties of virtual cut-through systems are similar to circuit

switched systems, without the requirement of initial path set up, in very lightly

loaded networks; they are optimal for point-to-point bandwidth. In heavily loaded

networks the probability of the next link being free is very small and there is a

cross over to the properties of packet switched system.

Virtual cut-through has been applied to an experimental transputer communication

system [Mcn] but is not used in any commercially available systems for multicom-

puters.

37

Wormhole

This technique splits a message into a number of, typically rather small, units

known as flits of which only the first few contain addressing. An intermediate

node accepting the message completely receives the first flit, and maybe a small

number of following flits, before forwarding these flits in a manner similar to store-

and-forward systems. Remaining flits are not received until the first flit has been

forwarded and are always forwarded in the same way, if the message must wait for

a blocked output channel then all channels behind the head are also temporarily

blocked. Key features of wormhole switching are:

Messages are fragmented into a number of small flits, only the first few of

which contain addressing.

. All flits of a message follow the same path and only a small number are

received before forwarding the message.

The performance properties of wormhole switching are also optimal for point-to-

point bandwidth in lightly loaded networks. The ac6iab1e aggregate bandwidth

suffers in a similar manner to circuit switched systems.

Wormhole switching has been applied to multicomputers, in hardware, in [DS88]

and in the C104 routing chip [Pou90].

Connectionless Switching

We define a switching model, connectionless switching, which embraces the store-

and-forward, virtual cut-through and wormhole techniques. The name is intended

to imply that there is no dedicated connection set up before message transfer takes

place, unlike circuit switching which can be described as connection-oriented.

The network consists of network elements, or simply elements, which are network

processes controlling the use of some network resource. A message consists of a

0.1

Feature Store-and-forward Virtual Cut-through Wormhole

Element Buffer set Buffer set Channel

Unit Buffer Buffer Flit

u =0 >0 =0

V >0 >0 >0

W(M) =0 <U >0

Table 2.1: Feature Identification in Connectionless Switching

finite number of message units, or simply units. A unit is the largest piece of '

message data that may be forwarded to or by message elements. Elements have a

finite capacity for storage of units. The first unit, or first few units, alone carry

addressing information for the complete message.

An element Q accepts the first v units of a message m, from an element or

transport P, which establishes the portion of the message path leaving P.

The v units accepted by Q contain all addressing information and the routing

function is applied to this information.. These units may be modified to

produce a set of v' < v units which allows for removal of redundant addressing

etc.

The v' resulting units are forwarded to an element or transport R which

establishes the portion of the message path leaving Q.

There may be a finite number, 'w(m) ~! 0, of remaining units which Q accepts

from P and forwards to R.

Q has the capacity to store at most u > 0 of the remaining units and uses this

storage capability to concurrently accept units whilst waitingto establish R
in 3 or for which R is not ready in 4.

This model is a description of the three switching techniques when the feature

identifications of Table 2.1 are made.

2.4.2 Routing Functions

Routing functions deal with the business of moving messages between processors

which are not directly connected. We consider functions which perform directed

routing, from one processor to another, and broadcast routing, from one processor

to all others. These kinds of functions can be further divided into static functions

which always use the same routes and adaptive functions which vary the routes, in

an attempt to alleviate the effects of localised congestion. We .consider static and

adaptive directed functions, and static broadcast functions.

Directed Functions

When a message at some processor must be delivered to some other processor there

are generally a number of routes it could take; we need some criteria of goodness

to determine which route to use. A simple and often used criteria is the shortest

path, i.e. one that crosses the minimum number of links. A slightly more general

criteria associates a cost with transfer over each link and we choose a route which

minimises this cost; the shortest path approach associates equal cost with all links.

Whenever the processor graph contains cycles we are liable to find that a number

of routes have equal cost and the static routing function chooses a single one of

these possibilities for all directed messages. We will also, and more frequently, refer

to this routing function as sequential.

In order to effectively utilise network bandwidth under heavy load it is necessary

to attempt to avoid highly localised areas of congestion by either routing messages

around these areas or preventing the occurence of such areas. The problem is to

decide which communication link should be used to forward a given message so that

it will reach its destination in the minimum time. Of course this problem cannot

be solved without quite considerable knowledge of the network current and future

states; a good guess is the best that can realistically be hoped for and congestion

control algorithms are concerned with making these guesses.

When the network shares CPU with the application we require that it be purely

reactive which implies that a local, or isolated [Tan89], algorithm is employed;

each node makes a routing decision based on information it has gleaned about

the network without specific exchange of information between nodes. A simple

example of such an algorithm is the hot potato method; each node simply forwards

the message on whichever link it thinks will first becomes ready without regard as

to whether the chosen link actually takes the message any closer to its destination.

Another is the diffusive method in which each node forwards the message on any

randomly chosen link.

These approaches can be combined with a static knowledge of which links are on

minimal cost paths and the decision is then which of these links to use. A number

of possible methods for choosing the next link in the route are now described. In

the absence of realistic and well understood models of a network under heavy load

it is not possible to compare quan 4ively the performance of these methods; a

qualitative discussion is given.

Least Used: The message is queued to the link which has been used the least.

This method requires a counter for each link which is updated whenever the

link is used. It is not .able to adapt to local congestion and simply tries to

use the links as evenly as possible.

Random Link: The message is queued to a randomly chosen link. This method

is easy to implement, requiring only the added complexity of using a random

number generator. It is not able to adapt to local congestion; the hope is that

by partially randomising message paths the probability of localised areas of

congestion is decreased.

Quiet Link: The message is queued to the link which has not been queued to for

the longest period of time. This method requires the time of the last queueing

event for each link to be recorded and the time for each suitable link to be

inspected. The decision is based on the history of events which may not be a

good guide to future events.

Short Queue: The message is queued to the link which has the shortest queue of

pending messages. This method requires the queue of waiting messages for

41

each suitable link to be inspected. The decision is based on the current state

of the node which is a good guide to future events if areas of congestion are

sparse.

First Ready: The message is queued to the link which will first become ready.

This method directly addresses the question of future events, and is certainly

the best of the algorithms we describe here. It can be implemented, for exam-

ple, by placing the message in all suitable queues; the first queue to become

ready removes the message from other queues so that it is forwarded only once

as required. Unfortunately this requires twice as many queueing events as, for

example, the short queue method and more complicated queueing structures

which will consume additional cpu.

• Notice that the last of these methods differs fundamentally from the others in that

the message is not committed to being forwarded by an unready link if another

possible link is ready. The method can be useful in designing deadlock free routing

functions, as we shall later see; where the set of output links are not necessarily

on a minimal cost path. Whether this is the case or not we shall use the term

quasiadaptive to describe all of these methods since they contain a definite static

component.

The quasiadaptive and static functions are easy to implement in general topologies

when we introduce a routing table at each processor which typically maps the

destination processor, and perhaps the arrival link, into a set of possible output

links. In this way every message contains the number of the destination node and

a table look-up determines the set of output links; the static function uses the first

of the alternatives. whereas the quasiadpative function chooses between them. In

geometrically regular topologies the routing table can often be dispensed with since

a simple rule determines the set of output links.

Broadcast Functions

We could always effect a broadcast routing function by generating a directed copy

of the message to every other processor, and we could do this in such a way that

42

every copy followed a minimal cost path. Observe that the same message, although

a different copy, will pass over certain links a large number of times; clearly we can

broadcast a message much more efficiently by avoiding this. We would ideally like

a broadcast function to have the property that every broadcast message arrives at

each processor, excluding the source, exactly once and preferably along minimal

cost paths.

We can readily construct a static broadcast function which has these properties but

we know of no adaptive broadcast functions which have both of these properties.

We therefore limit ourselves to considering static broadcast functions.

When a minimal cost path from A to C passes through B then the portion of this

path from B to C is necessarily a minimal cost path from B to C. We can exploit

this trivial fact to build a directed tree with A at its root which contains every node

and in which the path from A to any node is one of minimal cost. Consider the

simple case where unit cost is associated with every link, shortest path routing. All

processors neighbouring A become the children of A and A becomes their parent.

These procesors then, in turn, examine their neighbours and only when a neighbour

has no parent they take that neighbour as a child. This process is repeated until all

processors have parents or equivalently it is not possible for any processor to take

a child. Because our multicomputer is conjoint and its links are undirected we can

perform this calculation for every processor.

The (static) broadcast function is also easy to implement in general topologies when

we introduce a routing table at every processor which maps the source processor

into a set of output links. Every broadcast message contains the number of the

source processor and a table look-up determines the set of output links; the mes-

sage is replicated (it need not be copied) and forwarded by each of these links,

simultaneously if they are ready. In geometrically regular topologies it is again

often possible to replace the table with a simple rule.

43

2.4.3 Deadlock Avoidance

Deadlock arises within network when there exists a set of network elements each

waiting to transfer a message unit to another element within the set, such that none

can proceed before any other. Deadlock can also occur involving transport elements,

in which the resources of network are overloaded and it is the responsibility of

transport to avoid overloading network.

Elegant solutions to the network deadlock problem in a small number of topologies

are known and it is useful to introduce these methods before discussing the general

problem. We then present a method for avoidance of deadlock in arbitrary toplogies

based on these ideas.

Trees

It has long been known how deadlock may he avoided in a network with a tree

shaped topology [MSSO]; a message originating in processor s destined to processor

d is simply forwarded along the unique shortest path through the tree, exploiting

the fact that the tree is an undirected acyclic graph.

One associates a single network element with each directed link. Each network

element will accept units from any adjacent element or a source. The routing

function may forward a message to an element at any adjacent link, or a sink.

The dependency of network elements resolves into a directed acyclic graph, as

depicted in Figure 2.2, and it is therefore not possible for a cycle of waiting network

elements to exist.

Grids

The e-cube routing algorithm {DS88} solvè the deadlock problem for multidii en-

sional grids in such a way that all messages are delivered along shortest paths; in

44

Figure 2.2: Routing in a binary tree.

45

Figure 2.3: Routing in a 2 dimensional grid.

hypercubic grids the number of messages using any link is the same for all links.

This algorithm exploits the fact that there are many shortest paths between nodes

in these graphs and restricts the paths actually taken such that the graph of ele-

ment, or link, dependencies is acyclic, as in the case of the tree graph.

One associates a single network element with each directed link. In a d dimensional

grid one numbers the dimensions by natural numbers in. (O,dJ and labels each link

by the number of its dimension. Each network element will accept units from any

sink and any adjacent element. The routing function may forward a message to an

element with an equal or larger label, or a sink.

The graph of element dependencies again resolves into a directed acyclic graph, as

depicted in Figure 2.3, and there is a path from every node to every other node.

We shall refer to this technique as acyclic routing.

46

Figure 2.4: Routing in a Ring.

Rings

It is not possible to construct a routing function which leads to an acyclic depen-

dency of network elements, as in the grid above, and preserves shortest message

paths for all node pairs in rings of order greater than four.

The deadlock problem can be solved by use of acyclic routing when multilinks,- an

undirected link which is arranged to appear as a number of independent links, are

introduced. A network element is associated with each directed component of the

link. In the case of a ring we create two virtual links at each physical link, it is

then possible to thread a chain through the graph which utilises all of the virtual

links. Messages can be routed through this graph, shown in Figure 2.4, in a manner

similar to the tree graphs above.

This is the loop free buffer graph technique of [MS80] (w(o) 	u), and the virtual

channel technique of [DS88] (w(a) > u).

In the regime w(a) 	u, there is another class of solutions in which one avoids

47

deadlock by ensuring that there is always a free buffer in each directed ring [Ros87].

This can be achieved in practice in a number of ways; for example a network element

could simply not accept a packet from a transport element unless one of the buffer

set associated with the network element is free. We shall refer to these methods as

circuit routing.

General

We have discussed two routing techniques for avoidance of deadlock in network

applied to specific topologies; we now describe how these methods can be applied

to general topologies.

Acyclic Routing The method can be generalised to arbitrary topologies when

one solves the problem of constructing an acyclic element dependency graph which

nevertheless affords routes between all pairs of nodes.

One could trivially achieve this by exploiting the fact that any conjoint undirected

graph contains a spanning tree; this would be a poor solution since very few of the

links are utilised. We present below a method for calculation of link dependency

which permits utilisation of all links. It is not generally possible to utilise shortest

paths for all messages in this approach, consider for a moment the ring topology,

however the method yields shortest paths in the tree and grid geometries as we

should expect.

In the case of a multilink approach we can either analyse the multigraph directly

or alternatively analyse the underlying physical graph and impose a linear ordering

on components of multilinks. We take the latter approach in applying the results of

our link dependency calculation to multigraphs for sake of simplicity in the algebra

of the dependency calculation.

In the regime w(a) <u, it is always possible for a message to utilise any outgoing

link which is ready since this cannot cause a cycle of waiting elements. This has

48

been exploited in the resource ordering approach of [GunSlJ and is included in our

directed routing function.

Circuit Routing The circuit routing technique described above for a ring can

be utilised in arbitrary topologies when one observes that because the links are

bidirectional we can construct a single directed ring that utilises all of the directed

links, and route around this ring [Ros87]. Alternatively one can exploit the fact

that in even valency graphs one can construct an Eulerian cycle [NLW88] and route

this cycle as the ring.

These approaches lead to message path lengths which increase linearly with order

of the graph. We do not pursue this approach.

Again it is possible to route a message to any ready output link and this has

been exploited in [Sur9O]. This is capable of yielding short routes in lightly loaded

networks since necessary short cuts will almost always be free. The probability of

the short cut being free decreases with increasing network loading; message path

lengths are extended which in turn exacerbates loading.

2.4.4 Acyclic Routing

Definitions

The description of the interconnection network will frequently refer to properties

of graphs; it is useful to define the terms used at this early point. In this context

a graph is a directed graph, i.e. there is a direction associated with edge, and

we treat undirected graphs by constructing two opposing directed edges from each

undirected edge.

A graph (V, E) is strictly undirccted if for every edge Eij there is an opposing

edge E2 , i.e.

Eij =#- E,, Vi,j.

A graph (V, B) is strictly directed if for every edge Eij there is no opposing

edge E 1 , i.e.

Eij = -'E1 Vi,j.

A path within a graph (V, B) is subset of B leading continuously from one of

V to another. The predicate (EV) is true if there is a path in E from V to

%<, i.e.
7,(V,E) 	,;, 	i; 	A 7,(V,E)

i-3 	13 V tJ_ItJc '' 'k-+j

A graph (V, B) is conjoint if there is path in E from every vertex to every

other vertex, i.e.

Vi AVjAi

A graph (V E) is acyclic if it contains no paths from any vertex back to

itself,

A graph (V, B) is loosely acyclic if every strictly directed subgraph (V', E')

of (V, B) is acyclic.

Components

Familiar features of the interconnection network are the processors and commu-

nication links. We denote the set of processors by P and refer to an individual

processor with label i as P1. We denote the directed communication links by L,

each element of L is a processor pair ij, i j, indicating that processor P2 is

physically connected to processors P3 .

We demand that the physical links are bidirectional so that the graph (F, L) is

strictly undirected; each physical link is a pair of directed communication links L1,
L 3 1. We also demand that self links, i.e. a physical link which connects a processor

to itself, be absent. Multiplet links, i.e. a set of more than one physical links

connecting the same pair of processors, are formally merged into a single physical

link.

50

Processor

	

\I 	/
\ \,

\h

Link 	I 	Connect
(Bidirectional) 	I 	(Unidirectional)

Figure 2.5: Processors, Links and Connects.

We express communication link dependency by the connect matrix, denoted by C.

Each element of C is a processor triple Cijk , i j k, which determines the way

in which Lij may, or may not, forward data to Lk. Note that the graph (L, C), in

which C1k is shorthand for Cijjk , is strictly directed. The relationship of processors,

links and connects is depicted in Figure 2.5. We represent an interconnection

network by (F, L, C), the combination of these three elements.

We define some useful quantities with which to describe an interconnection network.

A route within an interconnection network (P, L, C) is a subgraph of (L, C)

which leads continuously from one processor to another. The predicate

is true if there is a route in (L, C) fronr P to P, i.e.

	

L 1, V -(-'(L A PJ 	A Lkj) Vj, k).

An interconnection network (F, L, C) is fully connected if there is a route

from every processor to every other processor, i.e.

P A P A i j
= 	(1 L,C) Vi,j.t~j

An interconnection network (F, L, C) is cycle free if (L, C) acyclic, i.e.

L ij = Vi,j.

51

rr.

Simple Graphs

Routing We associate a network element with each link L3 k. Each element will

accept the first unit of a message from an element at any adjacent link L ij and any

source at 13 by performing a conditional input from all such elements and sources.

An element at link L ij will establish the next link for a message a, destined for a

sink at processor d(a) j, by performing a conditional output of the first unit of

a to all links Lk satisfying

((p(LC)
jk-.k'd(a) V k') A (Cjk V w(cr) <u).

A source at processor 13 will similarly establish the first step of a message by

conditional output to-all elements Lk satisfying

(L,C) V k')

Note that these rules. do not prevent messages w(a) :!~ u from looping; i.e. re-

peatedly following the same path. It is therefore necessary to restrict the links

which may be used in through routing in order to avoid this phenomenon and any

restriction which contains at least one of the links for which Ck is true will be

permissible.

Multigraphs

We extend the notation for an interconnection network to explicitly handle multi-

links. An extended network is constrc ted from an underlying cycle free and fully

connected physical network, without multilinks, by imposing a linear order on the

components of multilinks.

Extended Interconnection Network Let each communication link Lij be com-

posed of M13 multilinks. Denote components of the multilink byL ~nj ~ n E (0, M1 3]

with unique labels n.

52

Denote connects between multilink elements by C:mjnk, mE (0, Me,], fl E (0, Mjk].

Construct the connect matrix by applying:

C; jn L mj A 	Ai ~ jAjkAkiA ((n > m) V (n = mA

Cycle Free There aie no n-cycles for n = 1,2 by virtue of

Ct'mjnk ~' 	j Aj kA IC

Expanding an n-cycle, n > 2, in (L', C') one readily obtains

(L 01 A . . . L 0) A
((LC)

mo i l 	 V (m o <m1 A ... Mn <mo)) o—iomoil \. 	to t

 cannot be true because (L, C) is acyclic.

Fully Connected The construction of Cimink yields

Ck 	CjrnjnkVi,j,k,m,n

It follows that theris a route from every processor to every other using links with

constant component index and the network is fully connected. Notice that where

the natural path between a pair of processors contains 1 < M points at which Ck

is false then there is a route covering that path.

Routing We associate a network element with each component Li nk. Each el-

ement will accept the first unit of a message from an element at any adjacent

component Lj mj and any source at P, by performing a conditional input from all

such elements and sources.

The rule for determining the set of elements waited for by Limj in determining

the next step of the directed routing function for a message a becomes all Link

satisfying

(
,(L,C)

-'(-'1-'.
' ' 	nk—k'n'd(Q) V k', J 	 n') A (Cjmjnk V w(a) :5 u).

A source at processor P will similarly establish the first step of a message by

waiting for all elements Lj m k satisfying

(Kjnk_,kl nld(a)V k', n')

53

As in the case of simple graphs the through routing rule permits messages for

which w(c) < u to loop. A restriction may be applied containing at least one

communication link for which C,m jnk is true.

Dependency Analysis

Colour the graph (F, L) such that each communication link has a single colour and

each processor is allowed to have as many colours as there are links at 1ihed to it.

We refer to a graph comprising all links and processors having the same colour as

a colour graph and denote the rnth colour graph by (Pm , Lm) .

We say that colour graph rn is below colour graph nif (Ftm, Lm) and (Pn, L) satisfy

the predicate B,,n defined by:

—(—(Pim A Pin A rn <n) Vi) V -(P A Pil Am < 1 A B1) Vi,l)

This means that iii < n, and either colour graph in and colour graph n share a

processor or there is a way from colour graph in to colour graph n, via at least

one intermediate colour graph 1 such that rn < 1 < n, using a common processor

whenever moving from one colour graph to a higher numbered colour graph.

Colouring Colour (P, L) to generate colour graphs (Pm 'Lm), in E (0, M] such

that the set of colour graphs satisifies Gi, G2.;

Axiom Gi: {(Pm, Lm)} is complete in the space of links, i.e. the union of all colour

graphs contains all links:

Lij = -(-L Vm) Vi,j. . . complete

{(Pm, Lm)} is orthyonal in the space of links, i.e. each link has only one

colour:

LT = (-iL V m = n Vm,n) Vi,j. . .orthogonaltj

54

Axiom G2: {(Pm , Lm)} is complete in the space of processors, i.e. the union of all

colour graphs contains all processors:

P, = 	-i Pi' Vm) Vi.. . complete

{
(pm, L)} is overlapped in the space of processors, i.e. for every ordered

processor pair i,j Which do not have a common colour i has a colour m and

J has a colour n and colour graph in is below colour graph n:

(PP A -F71) Vin 	-'(-(P11 A B1 	A P) Vl,m)

and each subgraph satisfies G3, G4;

Axiom G3: (Pm,Lm) is conjoint.

Axiom G4: .(Pm, Lm) is loosely acyclic.

Satisfaction If we construct C by allowing connects only between links in the

same subgraph then by virtue of G4 (L, C) is acyclic. We can allow connects

between different colour graphs by applying partial linear ordering ideas; in this

case we also allow a connect to a link in any higher numbered subgraph. We

therefore construct the connect matrix according to Cl:

Cl:

Cycle Free We can easily reason that (L, C) is acyclic; each colour (Pm , Ltm)

is acyclic and the linear ordering of colours e..(s.&tts that there are no cycles in the

transitions between colours. A more formal, and tedious, treatment is now given.

(L, C) contains no n-cycles, n = 1, 2, on account of

Cijk = i j A 	kA k i

55

Figure 2.6: Valid Colouring of the Tetrahedron

56

Expanding the path for an n-cycle, ii > 2 then using Cl, GI then G3 one obtains

2(L,C) 	((L110 A Cj0 1 1 A L 1011 A...
InlO ZnlO

A Ljn_ i jn A 	A L110)

Vi 1 ,. ..

A L° A m 	in0) Vm,mo)A
into 	loll

i 	ioAio 	ii Ai

A -'(--(Lm' A L 	A rnn _ 	in,) Vinn_ i , nin)A \ 	jjj 	 1n1Q

j_ i 	in A i 	io A i0 	i_1)

j0 A L
ln10

A j0 	ji A L 11 A ji 	in A...

A in-1 	mA A in 	
1n10 In i n

j0 A L 	A j0

Vi 1 , . . . 	in)
p(L C)

jn jOjn 0

Fully Connected By definition there is a route from every processor to each of

its neighbours.

Cl has the property that every connect between links of the same colour is asserted;

since every colour subgraph was chosen to be conjoint by G3 then there is a route

from every processor to every processor having the same colour.

Cl has the property that every connect between a link in subgraph in and a link

in n > in is asserted. The overlap condition was chosen such that if P1 and P

are not in the same colour graph then there is a paththrough common processors

of ascending colour labels from P1 to P. Since there is always a route between

processors having the same colour, and connects to higher colour labels are asserted

by Cl, there is a route to every, processor not having the same colour.

Finally, since the union of colour graphs comprises all processors there is a route

from every processor to every other processor.

Improvement \Ve'can improve the quality of (P, L, C) by noticing that there

may be a number of C2k which are false as a result of Cl but if asserted would not

57

Figure 2.7: Satisfied Connects of the Tetrahedron

58

generate a cycle in (L, C). This occurs, for example, when there is a point at which

we have the opportunity to descend the set of colour graphs and do not thereafter

have the opportunity to ascend the set. We improve each C by applying C2.

C2: Cjjk 	 1
-+13 	23

Correctness: It is trivially true that the interconnection network remains cycle

free and fully connected.

By definition C2 cannot generate a cycle in (L, C), therefore (L, C) remains acyclic.

Because (L, C) is acyclic it is not possible for C2 to retract any C1k and the network

must remain fully connected. In practice we can exploit this fact by only testing

those connects which are false after Cl.

Existence We have not yet shown thatpossib]e to find a colouring satisfying

Gi through to G4; in fact there is always a set of solutions for a conjoint undirected

graph. We shall call these the trivial solutions since the set of colour graphs satisfy

the colouring in a trivial sense.

We can choose all colour graphs to be undirected trees.

This satisfies both Wand G4.

We can construct a spanning tree in any conjoint undirected graph.

This satisfies G2. -

We can repeatedly construct trees with unused links, until all links are used

by some tree.

This satisfies Gi.

The algorithm for generating a trivial solution, shown in Figure 2.8, is very simple.

'This predicate is schematic in that it is not meaningful to simultaneously apply it to all of

C1k; it should therefore be understood that we test and conditionally assert each of CIJk in a
sequential manner.

59

Set all link labels to NoLabel

Set TreeNumber to 0

Choose Root as an arbitrary processor

WHILE Root is found

Label with TreeNuinber the links of the largest tree having processor

Root at its root and containing only unlabelled links

Increment TreeNumber

Find Root with at least one link labelled NoLabel

Figure 2.8: Algorithm for Trivial Solution of Colouring

Figure 2.: Non-trivial Colouring of a Grid

Of course we can expect to find non-trivial solutions to the colouring problem.

Indeed the grid routing function discussed above is obtained by considering the

non-trivial colouring shown in Figura 2.9..

NO

Evaluation Routing along shortest, natural, paths is incompatible with acyclic

routing in general topologies if a multilink approach is not used. We have therefore

evaluated the trivial solutions of the colouring problem in a number of, no more

than four valent, topologies including those discussed above.

In these calculations we have determined the maximum message path length D

and average y for messages a having w(a) > u and compared these with the same

quantities in the natural paths. We denote the acyclic routes without improvement

by a single prime and those with improvement with a double prime.

Trees: The question of evaluating the trivial solution algorithm within tree graphs

is null since the spanning tree will be the complete graph and natural message paths

are always used.

Grids: The grid routing function discussed above allows one to route messages

between any pair of processors by choosing one of the shortest natural paths. We

should hope that the method is capable of reproducing this result and we find

that trivial solutions have this property. This result is expected since we can

easily envisage a trivial colouring which permits natural routes in this topology;

see Figure 2.10.

Rings: We should expect the ring topology to appear as the worst case for these

• quantities. In Figure 2.11 we see that in each case the trivial solution yields ap-

proximately twice the natural value. The improvement calculation cannot make

any difference to these routes since the only connects "broken" are the two which

remove the cycles running in each direction around the ring. Utilisation of the

multilink, approach with two communication links mapped onto each physical link,

according to the routing rules above yields the natural values of D and 1a as we

should expect.

61

Figure 2.10: Trivial CMouring of a Grid

62

•0
A/h'

200
0
a-

0
V

C
0

100 	 200
	

300

Number of Processors

Figure 2,11: Evaluation of Trivial Colouring of Rings

General: The'torus, a grid with wrap around links, 'is an interesting topology

for many scientific problems where a natural cubic symmetry exists. There is no

shortest route solution for general four valent tori; an exception is the familiar d = 4

hypercube which maps onto a 4 x 4 torus. It is therefore interesting to investigate

the trivial solutions in these graphs and we present the results of these calculations

in Figure 2.12. -

The trivial colouring yields shortest message paths directly for the 4 x 4 torus.

This is not surprising given that shortest paths are obtained for grids. In the larger

tori the average message path length is extended by approximately 10-15% and is

decreased very little by application of improvement. The increase in diameter is

similar to that observed in the simple rings and improvement had no effect on this

metric. The multilink approach, as in the simple rings, yields the natural of values

of D and p for all tori.

Where there is no locality which can be exploited in a problem then a useful criterion

V
V
E
0

I

63

30

. 20
0
0

C
0
V

•0
C
0

V
V

E
0

0 	 I 	 I

0 	 100 	 200 	 300

Number of Processors

Figure 2.1-2: Evaluation of Trivial Colouring of Tor.;

for choosing a topology is that each processor should be as close to every other

processor as possible. In [PNRC90] it was shown that irregular, even random,

graphs approach optimality in this respect. We have chosen to perform calculations

for random hamiltonian graphs, i.e. a ring with the remaining pair of links at each

processor connected together randomly, which we generated with the constraints

that there be no self or multiplet links.

We should anticipate that the effect on D and jnti be larger in dense graphs than

in the tori. This arises because there are fewer instances'of shortest routes between

processor pairs, due to the larger girth of the graph, and thus a larger number of

routes must be extended in order to eliminate cycles. These observations are borne

out by the calculations shown in Figure 2.13. The increase in Jz for a graph of

P = 256 is approximately 25% which we consider to be acceptable considering the

observation that in order to obtain the natural values of D and u in a multilink

approach it was necessary to increase the number of multilinks as P increased.

64

14

'0
12 	

-

-----. 0 	 -

••• I.) 	 ..--

--

0
C
o8
a

C
0

26
a,
E
0

4

2

0

0
	

100 	 200
	

300

Number of Processors

Piiire 2 1 	Fv1iitrn rf Tr'cr1 	lr11rrin -f Piiit-L-m (Tra,shc

2.5 Summary

In this chapter we have discussed a number of issues pertaining to the design of

communication systems for reconfigurable multiprocessor machines. The division

of such systems into two logical layers, network and transport, has allowed us to

describe the largely separate problems of message through routing and the provision

of an application interface.

The application interface, provided by the transport layer, was discussed at some

length and a concrete example provided. The guiding principles in arriving at this

example were that the facilities offered should satisfy the following criteria.

The procedural interface should be intuitive enough for the interested sci-

entific programmer to write parallel programs with a minimum of specialist

training.

6.5

• The facilities offered should be sufficiently powerful for the systems program-

mer to write sophisticated utilities which provide some level of abstraction

from the message passing architecture.

• It should be possible to efficiently implement the interface on a large variety o5-
processors without building special purpose hardware

Issues involved in the network layer were described extensively. The variety of

message switching models was discussed and a number of these were expressed as

Covu ectionless. The problem of deadlock avoidance within this model of switching

was considered and the application of acyclic routing to this model brought together

supposedly separate peices of work by other groups. We went on to give a specific

methodology for construction of an acyclic interconnection network expressed as a

graph colouring problem. The direct utilisation of acyclic routing is not compatible

with shortest path routing in general graphs and we evaluated the results of a very

simple instance of the method described.

In Chapter 3 we go on to describe the implementation of a communication system

for networks of INMos transputers which exploits the ideas of this chapter. This

system uses a simplification of the application interface applicable to the assumed

configuration environment. A restriction of the connectionless switching model

is employed, the simple packet switching regime, and an adaption of the acyclic

deadlock avoidance technique is implemented.

Chapter 3

Implementation

3.1 Introduction

In this chapter we describe the algorithms and techniques used in a software imple-

mentation of a communication system for transputer based machines called TINY.

The development environment was the MEiKO Computing Surface although the

system has now been used on a number of other transputer machines. The design

of the system exploits ideas discussed in the previous chapter, with restrictions and

pecialisations applicable to the target hardware and configuration environment,

It would not be appropriate to present here a complete and accurate description

of the implementation of TINY. We choose a simplified subset of the functionality

which captures the key algorithms and techniques developed in the system.

The fact that the target machine is reconfigurable, and in principle can be config-

ured arbitrarily, indicates that we require a system which correctly routes messages

in any topology. Where the topology chosen by the user is rather irregular, as has

been shown to be of general utility [PNRC90], and moreover where the topology

obtained is not identical to that requested, due to shortcomings in the configuration

software or hardware of the machine, it is most convenient if the communication

system determines the topology of the machine within which it is expected to

route. The system implemented performs such a calculation which is described in

Section 3.3.

[yj

Given a description of the interconnection network topology we must address the

problem of how to formulate a routing functioiA for that topology, which should be

free from deadlock. Since the topology is arbitrary we store the routing function in

a set of routing tables; the calculation of these tables for sequential, quasiadaptive

and broadcast routing functions is described. The methods for deadlock avoidance

are an example of those discussed in the previous chapter. The calculation of the

routing tables is described in Section 3.4.

The system shares CPU and memory with the user; the target machine typically

consists of T800 processors• with upwards of 1 Mbyte of memory. The system

should therefore use as little CPU as possible and should not require excessive

amounts of memory. In order to minimise the CPU consumption compromises

between functionality and performance must be made. A guiding principle was

the observation that the granularity, and therefore parallel speedup, which can be

obtained in applications is bounded by the notional zero length message latency.

The methods used in implementing the message passing kernel are described in

Section 3.5.

3.2 Overview

In this section we present an overview of the implementation of TINY and restric-

tions we shall make in order to simplify discussion in the following sections.

It was anticipated that applications would be written in ôccam, C or FORTRAN

within an occam harness using the Transputer Development System, or one of its

proprietary reincarnations'. In this system the programmer explicitly specifies all

details of the execution environment and must insert code into the harness which

instantiates the the message routing system.

The message routing system, as opposed to the application procedural interface, is

'This system has subsequently been ported to the 3L Parallel Languages configuration environ-

ment where it would arguably be preferable it utilise the worm algorithm

68

referred to as the kernel. The kernel is partitioned into three components; configu-

ration exploration, routing generation and message passing.

Configuration Exploration

The main purpose of configuration exploration is to determine a correct description

of the topology within which the system is running in order that a routing func-

tion can be calculated. Other services such as distributing information about the

configuration of application processes are also performed within this component.

In a system with P processors we label these processors by natural numbers in

(0, P}. We must determine, for every link on every processor, the label of the

processor connected by that link, and this is performed by sending and receiving

trial messages over links. This information can be collated at every processor or at

a single processor.

The labelling of processors can either be specified within the' configuration en-

vironment or determined by the topology exploration algorithm itself. We have

considered a worm method in which exploration begins at- a single processor and

controls the allocation of labels to processors, and a flood algorithm in1ration

begins at all processors and processor labelling is performed within the configura-

tion environment.

In practice we used the flood algorithm. The occam configuration code requires

that the user statically declare the number of processors in use and assign unique

numeric labels to each processor; given P processors it is not inconvenient both to

choose labels in (0, P1 and to pass this information through to the routing system as

formal parameters. It is unfortunate that the algorithm simply will not terminate

if the processor labelling is in error; however it is not difficult for the programmer

to ensure that this does not occur.

It is possible for the programmer to perform arbitrary computations at each pro-

cessor before invoking the routing system; it follows that there can be arbitrary

time differences between the commencement of the algorithm on one processor and

another. The same considerations apply when the programmer terminates the rout-

ing system and later invokes it again, possibly to reconfigure the machine. Under

these conditions it is not possible to specify a time out as required by the worm

algorithm without a knowledge of these delays, which may well be undetermined.

The flood algorithm requires more memory at each processor than the worm algo-

rithm. Given attainable transputer arrays of up to 256 processors, each with > 1

Mbyte of memory, this was not seen to be a serious consideration.

Routing Generation

The programmer is allowed to configure the routing function generator to calculate

straighforward shortest routes, the cyclic routing functions, or a deadlock free set of

routes, the acyclic routing functions. The topology exploration component deposits

a copy of the configuration description at every processor and it is convenient to

allow each procesor to calculate the portion of the routing function it requires.

The routing function data at each processor is stored in a set of routing tables

which are carried through to the message passing component of the kernel.

The cyclic routing function is provided because there are a large number of problems

where the possibility of deadlock within the network layer simply does not arise, due

to the communication patterns of the application (of course this depends also on

the configuration) or simply because there is sufficient buffering within the network

to "accidentally" avoid deadlock. The programmer is also allowed to configure the

number, and size, of through routing buffers available to each instance of the kernel.

In Chapter 3 we shall see an example of a program having a simple communication

pattern which can safely use the cycle routing function.

The methods used to obtain the acyclic routing functions are a concrete application

of those discussed in the previous chapter. The deadlock system utilises a single

message plane; this was chosen for a number of reasons:

FLI

• The system was originally implemented without solving the network deadlock

problem and network deadlock was infrequently observed despite substantial

use of the sytem. Choosing a single message plane allowed the message routing

processes to be used with a simple change of routing tables.

• The management of a multiple plane approach requires considerably more

CPU than the single plane approach. Minimisation of the CPU impact in

through routing events, and demonstration that this could be achieved in sub

40s timescales, was a primary objective of the development exercise.

• We demand that the number of message buffers at each processor required

to implement the deadlock free routing function be independent of the size

of the processor array. By restricting ourselves to a solutions with a single

message buffer at each link we meet that demand.

Message Passing

Within the anticipated configuration environment the message routing system and

system services are viewed as part of the application program as opposed to distinct

entities. This fact renders the group mechanism described in the previous chapter,

which was largely designed to shield the programmer from details of the execu-

tion environment, less relevant. Only the process labelling, in abstraction from

placement, and message type labelling features are provided. The programmer is

required to allocate a unique numeric process identifier within the interval (0, N]

to each of the N application processes.

A brief inspection of transputer applications using a communication system with a

related interface [NWSS] revealed that programmers had generally used only a small

number of message types. We can exploit this observation by explicitly assigning

lightweight processes to the maintenance of separate message queues for each type.

The configuration environment provides a channel between each of these transport

processes and the application. A typed message send is implemented by indexing

into an array of channels to transport source processes and communicating with

71

the selected process. Similarly a typed message receive is implemented by indexing

into an array of channels to transport sink processes and communicating with the

selected output process.

Message receive with an unspecified type would require either a search through

message queues or a two dimensional queueing system within transport. This has

not been implemented and such a message receive is not provided. Selection on the

identifier of the source application task would also require more sophisticated, and

costly, queueing techniques and neither was this provided.

TINY allows the programmer to configure these transport processes to provide asyn-

chronous or synchronous messages, by passing an array of message type descriptions

to the kernel. It is also possible to create static broadcast groups by declaring that

messages of a particular type are required only by application processes within the

broadcast group.

These features are not included in the transport layer of the simplified system we

describe; they add little to the discussion of techniques employed but complicate the

description of the implementation considerably. A simple FORTRAN transport layer

interface for the primitive system we describe in this section is given in Figure 3.1.

The network layer uses a1 simple packet switching technique and upper bounds

the size of messages which can be delivered, although the programmer is allowed

to configure this bound. This decision was made as the system was intended to

optimise small messages and minimize CPU usage, during routing. The ability of

the transputer to perform input and output on all of its links concurrently with

execution of the main processor is an important feature of the design. We allocate

a pair of processes to each transputer link, one of which handles message input and

the other performing message output.

The passage of each data block through an intermediate processor consumes the

CPU required to initialise two link communications and to synchronise a pair of input

and output processes. Experience suggests that if these processes have workspaces

in external memory, with a cycle time of approximately 200ns, then this will amount

to around 10 ps of CPU usage. The byte transfer time on the development hardware

72

FUNCTION SEND(TYPE, DESTINATION, DATA, LENGTH)

INTEGER TYPE, DESTINATION, DATA(*), LENGTH

This function sends a directed message held in DATA of LENGTH bytes to the task

with identifier DESTINATION, or a broadcast message if DESTINATION has the value

NONE, of the type TYPE. The length of the message sent, or NONE if DESTINATION

was invalid, is returned. The message sent will be smaller than the LENGTH when

LENGTH is larger than a network buffer.

FUNCTION SSEq(TYPE, DESTINATION, DATA, LENGTH)

INTEGER TYPE, DESTINATION, DATA(*), LENGTH

This function sends a quasiadaptive directed message held in DATA of LENGTH bytes

to the task with identifier DESTINATION, or a broadcast message if DESTINATION

has the value NONE, of the type TYPE. The length of the message sent, or NONE if

DESTINATION was invalid, is returned. The message sent will be smaller than the

LENGTH when LENGTH is larger than a network buffer.

FUNCTION RECV(TYPE, SOURCE, DATA, LENGTH)

INTEGER TYPE, SOURCE; DATA(*), LENGTH

This function receives a message into DATA, of the type TYPE, storing identifier of the

source task in SOURCE. The length of the me5s.ge received, in bytes, is returned.

When the message sent was larger than LENGTH then the first LENGTH bytes are

received and the remainder discarded; this can be detected from the return value.

Figure 3.1: A Simple Transport Layer Interface

73

running links at 20Mbits 1 is approximately 0.7s indicating that when all links

are being used a block size of less than approximately 50 bytes will saturate the

CPU.

3.3 Topology Exploration

In this section we describe the topology exploration algorithms which we have con-

sidered, the flood and worm. We are able to assume that the machine is connected

since the routing system and application codes will have been succesfully booted

in which case a boot path, a tree, exists.

Once cannot discount the possibility that there will be certain links which are

required for other uses; a familiar example is the link from the first processor to

the host machine which often runs a terminal servedfile system protocol. The

topology exploration algorithm must therefore accept as input an indication of

which transputer links may be used by the communication system and which have

been reserved.

One cannot either discount the possibility that certain links are not connected to

any other transputer; this can occur due to machine configuration failure or simply

because the configuration does not utilise all links. This must be detected; any trial

messages on such a link will fail and the implementation must be able to recover

from this.

The configuration environment distinguishes a single processor, which we shall call

the root from all other processors, which we shall call the nodes. It does not specify

the number of nodes or a labelling scheme for the nodes.

The idea behind this algorithm is that the root can allocate a processor label to

itself, say 0, and probe its own links allocating labels to any processors discovered.

74

If this is not the root

Execute Probee Algorithm

ELSE

Set own identifier to 0, number of processors to 1

Execute Prober Algorithm

IF this is not the root

Output number of processors to parent

Figure 3.2: Worm Algorithm

Of course the nodes being probed must be 'running a complementary part of the

algorithm which responds to the probing messages issued by root. When a processor

is discovered we call the discovered processor the child of the discoverer and likewise

the discoverer is the parent of the discovered; these parent-child relationships will

form a tree.

After a processor, either root or a node, has probed each of its free links and

labelled its children it arranges for each child, in turn, to probe its link and label its

children. The processor passes to each child, in turn, the number of processors thus

far discovered and waits for the child to return this number, possibly updated. The

number of processors is finally returned to the parent,, excepting at the root where

the completion of the last child terminates the worm. When the worm terminates

we would like each processor to have recorded which link leads to its parent, which

links lead to its children, and the labels of its neighbouring processors. We will

additionally need to know the number of the link at the neighbouring processor on

which it is connected to ourself. The worm algorithm is in Figure 3.2.

After this information has been generated we gather it at the root processor for

analysis and possible distribution to the nodes. This is easy to achieve since we have

already defined a tree within the graph. Each node forwards its own information

to its parent then, in turn, receives information from its children, again forwarding

75

WHILE number of processors not recorded

Wait for a free link to become ready

Input a number from ready link

IF this is first number input

Record number as own identifier

Record link as parent link

ELSE IF link was parent link

Record number as number of processors

IF number of processors not recorded

Input and record neighbour identifier and link number from link

Output own processor identifier and link number to link

Figure 3.3: Prohee Algorithm

to the parent, until some NoMorelnformation token is received; finally it forwads

NoMorelnformation to the parent. The root simply receives information on each

link until NoMorelnformation has been received on all links. If we wish to send

some information from the root to the nodes then we simply pass the information

down this tree, sending a replica to each child.

The probing of links is central to this method and merits further consideration. It

will be simplest to introduce the probee in the first instance; note that root is never

a probee. The probee is described in Figure 3.3. The prober sends messages to the

probee and has to recover from the possibility that the first message will-fail due

to a disconnected link; the first message is output with some associated timeout.

The prober is described in Figure 3.4.

We point out here that the above implementation of the worm algorithm is slightly

flawed. The problem arises when an output is aborted due to timeout while com-

munication is in progress; the process on the neighbouring processor can never

complete its communication and the algorithm does not terminate.

76

FOR all links

IF link is free and not probed by self or neighbour

Output number of processors to link with timeout

IF output succeeded

Output own processor identifier and link number to link

Input and record neighbour identifier and link number from link

IF neighbour identifier equals number of processors

Record that link is a child link

Increment number of processors

ELSE

Record link as disconnected

FOR all links

IF child which has not executed prober

Output number of processors to child

Input updated number of processors

Figure 3.4: Prober Algorithm

77

We can arrange for the algorithm to terminate and produce a consistent, although

incomplete, description of the topology by replacing Input number from chosen

link in the probee algorithm by an input with timeout; we can sensibly upper

bound the time it will take to transfer the number across a link which is already

waiting to transfer. Tithe input failed due to timeout then we know that the prober

must have aborted the output; we can simply record the link as not connected which

is consistent with the prober. This fine detail was not shown for sake of clarity.

Flood

The configuration environment specifies at each processor the total number of pro-

cessors P and a unique label in (1, F]. The algorithm fails if P is not the same at

every processor or there are duplicate, or missing, processor labels.

The idea behind this algorithm is that if each processor outputs its own identifier

on each free link and listens for identifiers of other processors on all free links,

recording the arrival and forwarding on all free links if this was the first arrival

of the identifier, then each processor must receive, and send, the identifier of each

processor, including itself, exactly once on each connected link.

In order to implement this algorithm one requires a buffer process to handle output

at each link whilst a control process handles input on all links, deals with arriving

identifiers and passes identifiers to the buffers for forwarding when requested. The

exchange of link numbers can be achieved by arranging for the buffers to output

initially the number of the link which they are using; the buffer process is shown

in Figure 3.5. The control process manages a record of up to P pending outputs

for each buffer process as shown in Figure 3.6.

This algorithm terminates when for each free link communications have either com-

pleted, P identifiers plus one link number have been output by the buffer process

and P identifiers plus one link number have been input by the control process, or

are not yet commenced, the link number has not been output by the buffer process

or a link number has not been received by the control process.

78

Output buffer link number

Output token on buffer request channel

Input data item on buffer data channel

WHILE data item is not null item

Output token on buffer link

Output token on buffer request channel

Input data item on buffer data channel

Figure 3.5: Buffer Process

This evaluation is not quite correct since it is possible for a buffer process to have

completed an output while the condition has evaluated to false. In order to handle

this situation we attempt to abort the link number output of the buffer processes

which have not yet made a request to their queue of pending messages. If that

output had succeeded then we continue flooding since the link has commenced

activity; if on the other hand the output was. aborted then we restart and terminate

the process immediately. This termination condition. is shown in Figure 3.7.

At this stage each processor knows only the processor identifiers and link numbers of

its immediate neighbours and it is necessary for this information to be distributed

amongst all processors. It is not difficult to see that the above algorithm, with

slight modification, can be used to achieve this.

In this case the connected links are used as opposed to the free links, some of

which may not be connected, and the initial exchange of a link number is omitted.

Each communication of a processor identifier is accompanied by the neighbour

processor identifiers and link numbers 'of the identified processor. The control

process records these data items in some suitable data structure as they arrive on

the first occasion and discards them thereafter. Of course any other information

can also be distributed among the processors in this way.

Termination is considerably simpler in this case since),is known that none of the

communications can fail. The algorithm completes when exactly one message from

every processor has been output and input on every connected link.

79

Initialise empty buffer pending queues

Record no messages from any processor

Enqueue own identifier to buffer queues

Record message arrived from self

Set Finished to False

WHILE NOT Finisled

Wait for-any free input link which has not completed communications

or any buffer request where queue not empty to become ready

IF link became ready

IF first time this link became ready

Input and record neighbour link number from link

Input identifier from link

Record identifier as neighbour identifier

ELSE

Input identifier from link

IF first time this identifier received

Enqueue identifier to buffer queues

Record this identifier received

ELSE

Input token from buffer request channel

Dequeue identifier from buffer queue

Output identifier to buffer data channel

Set running False if ready to t.rminate

Terminate buffer processes

Figure 3.6: Control Process

6111

IF there is any link or buffer which has received some processor

identifiers but not all processor identifiers

Set Finished False

ELSE

Set Finished True

IF Finished is True

FOR all link

IF link is free and buffer process has received

no processor identifiers

Reset buffer link

IF buffer process was waiting on link

Restart and Terminate buffer process

ELSE

Set Finished false

Figure 3.7: Flood Termination Condition

We again take the opportunity to point out that the implementation of the algo-

rithm is flawed, in the same way as the implementation given of the worm algorithm.

The solution is similar; the input of the link number within the control process,

the first message on a link, might be aborted at the other end and should be input

with an appropriate timeout. In the case of the input failing to complete within

the period then the control process can recover from this and record the link as not

connected, as has the control process which aborted the matching buffer process

output. Again this was not shown for sake of clarity.

3.4 Routing Function

Routing table data indicates which way a message should be forwarded, whether

this should be to another transputer link or to a transport if this is the destination

processor. The two possibilities are handled homogeneously by introducing the

concept of a pseudolink, which can be either a transputer link or a transport. If

81

a particular processor has 1 links and n local users tasks then there are n + 1

pseudolinks at the processor; we might choose, for convenience, to allocate the first

n pseudolink indices to the actual links and the remainder to transports.

The routing tables can be held in a processor indexed form or a task indexed form.

If held in a processor indexed form then it is also necessary to maintain a task

indexed table holding the processor and pseudolink number of each task in order;

the accumulated size of these tables is nevertheless smaller than the task indexed

routing table. At the time of development the largest transputer array attainable

was of order 256 processor with each processor having upwards of 1 Mbyte of

memory; we decided to use task indexed routing tables for convenience.

In either the cyclic or acyclic case the routing table is stored in the same manner.

The header of the routing table segment contains L + 1 base indices, one for each

network and one shared by all transports. Each of these indices points to the base

of an index table within the routing segment. The directed entry for task i within

an index table is held at word offset 21 from the index table base and the broadcast

entry is held at offset 21 ± 1. The reason for interleaving the two tables will become

apparent when the message passing kernel is described.

Each entry in the index table is a further index into the routing segment pointing

to a row of pseudolink numbers, terminated by the null index —1. The entries in a

directed table are the pseudolinks which may be used to forward the given message;

the quasiadaptive function can use any of these links and the sequential function

will always use the first of them. Where the pseudolink points to a transport then

there will be a single entry. The entries in a broadcast table are the pso links

which must be used to forward the given message in order for it to arrive at every

transport. The extra level of indirection is used in order to handle the variation

in routing entry lengths. The consequent table look-up is expensive where array

indexing is used, however we anticipate transformation of the tables to an efficient

pointer based form in the message passing component.

In the cyclic routing 	function each base index is identical; in order that

transformations on the index table and its entries can be correctly performed by

the message routing kernel a status word is held at offset —1 from the index table

82

base, indicating the condition of the table.

In the acyclic routing function the L + 1 base indices are distinct. The directed

table is a P x P x L i- {L} function however there are some mappings which

produce an empty set, i.e. there is no route from A to B if the message arrived at

A on link 1; in these cases the index is null. The broadcast table is a P x P '-f {L}

function and for each source task there is a null index in all but one of the index

tables.

3.4.1 Cyclic Routing

These tables are calculated by demanding that the directed table contains all short-

est routes for each destination and the broadcast table contains a minimal spanning

tree for each source. In order to perform these calculations we require an algorithm

which generates the distances between pairs of processors; we exploit the fact that

if X is the shortest path from A to cxr

44&. jv

Distances

The interprocessor distances are calculated using a simple graph traversal algo-

rithm. This method has much in common with the worm algorithm described in

the topology exploration preamble except that in this case We use a breadth first

search to ensure that shortest distances are obtained.

Directed

In order to determine the directed routing to processor d from processor s, d s,

we calculate the distances from s to all processors. We exploit the fact that in an

undirected graph if X is a shortest path from A to B then -x is a shortest path

from B to A.

83

The minimum of these distances, over all neighbours of .s, is evaluated and all

links connecting to neighbours which are at this distance may be used. This is

guaranteed to deliver messages correctly to d since at each step a message becomes

closer to d than at the previous step.

The routing information is expanded over tasks located on d with possible reorder-

ing of the pseudolink numbers in different task entries.

Broadcast

In order to determine the broadcast routing for a source s through a processor d,

.s d, we calculate the distances from .s to all processors. This has already been

performed in the calculation of the directed routing function.

The minimum distance from s of the neighbours to d is evaluated and.an arbitrary

decision is made that the broadcast message will be received by d on one of the

links whose neighbour is at that distance. Each processor then swops the result

of its decision with its neighbours and routes broadcast messages to all neighbours

which elected to receive broadcast messages from it. This correctly routes messages

from .s to all other processors since the routing tables describe a spanning tree of

the graph with .s as its root.

The routing information is expanded over tasks located on s and the pseudolink

numbers of tasks placed on d are appended to each entry.

3.4.2 Acyclic Routing

In order to calculate the acyclic routing functions we exploit the method given in

the previous chapter, introducing a concrete implementation. The computational

techniques used are closely related to the graph traversal performed in the distance

calculation of the cyclic routing function.

84

/* initialise */

Create an empty queue of processor numbers

Add Root processor number to tail of queue

Set Parent of each processor to NONE

Set Parent of Root processor to Root

/* traverse *1

WHILE queue not empty

Remove processor number from head of queue

LOOP over all links of processor

IF link is unlabelled

IF Parent of neighbour is not processor

Label both directions of link with TreeNumber

Set Parent of neighbour to processor

Add neighbour processor number to tail of queue

Figure 3.8: Tree Labelling Algorithm

Connects

Colouring We shall use a trivial solution of the colouring problem given in the

previous chapter. The algorithm to label a tree, required in Figure 2.8, is adapted

to correctly handle multigraphs, as shown in Figure 3.8.

Satisfaction The graph colouring is performed and we now construct a connect

matrix which satisfies Cl. The rule for the connect from link ito link m at processor

p is quite simple.

If the neighbour at link rn is the same as the neighbour at link l then the connect is

marked BAD; this handles multiplet links correctly when they have not been merged.

Otherwise, if the label of link l is not less than the label of link m the connect is

marked GOOD; Cl tells us that this connect cannot be in a cycle. If the connect

has not already been marked then mark it UGLY; improvement will later mark this

connect either GOOD or BAD.

85

Improvement We can apply improvement to the connects, restricting ourselves

to the connects marked as UGLY, provided we have an algorithm for determining

whether a particular connect is in a cycle containing itself and GOOD connects.

One method for doing this consists of determining a maximal tree in the (L, C)

graph whose root is L,k; if this tree does not include the link L 3 then the connect

Ck is not in a cycle; this technique tests all the i simultaneously. The algorithm

for determining distances used in the directed routing function performs this cal-

culation.

Directed

We calculate the directed routing tables using the same ideas as those applied in

calculating the cyclic directed table; in this case we simply calculate distances in

the acyclic (L, C) graph.

The minimum distance to any link arriving at d from any link leaving s is then

evaluated.. In the case of messages originating at s we allow the message to be

routed on any liik which has the minimum distance. In the case of a message

arriving at some link l'we allow the message to be routed through any link m for

which the connect from 1 to in is GOOD and in has the minimum distance. It can

happen that there is no link on which such a message can be forwarded, consider

the leaves of a tree; in this case the routing table entry is null and no messages for

that destination will arrive on the link in question. This function correctly routes

messages for the same reason as the cyclic routing function.

Again the routing obtained is expanded over the tasks located on processor d.

Broadcast

In the acyclic routes the broadcast function is still a mapping of P x P -+ L. We

have to search the graph again to determine the broadcast function for sources on a

processor p since it is no longer the case that the route from B to A is the reverse of

86

the route from A to B. We can find a broadcast function because of the algorithm

we have chosen for determining the graph colouring.

The search required for this function is very similar to the search performed in

the simple procedure distances. The only modifications are that when the search

finds a processor then the link on which that processor is found, the parent link,

is recorded and in order for the search to propagate through that processor to a

potential child the connect from the parent link to the potential child link must

be GOOD. When a child is found then this fact is also recorded; the set of parent-

child relations then defines the tree we require for the routing decision. The only

network index table containing an entry which is not null is that corresponding to

the parent. The transport index table entry is null except where the transport is

local.

The broadcast routing thus obtained is similarly replicated over the tasks placed

on the source processor and the pseudolink numbers of tasks placed on the local

processor are appended to each entry.

3.4.3 Simulations

The program written to compare the cyclic and acyclic routing functions simulates

a problem in which each processor sends a single message, of fixed length, to every

other processor. We are interested in measuring from this the average message

distance i, the maximum message distance, D, the maximum number of messages

passing through any link, or worst link load, L 1 , and the maximum number of

messages passing through any processor, or worst processor load, L. Since the

T800 transputer has four links we limit our discussion to the results of simulations

in fully connected four valent topologies.

The simulation program assumes that there is an essentially unlimited buffering

capacity at each node; in actual fact the amout of buffering required in order to

avoid deadlock in the case of cyclic routing functions. No account is taken of the

time spent calculating the routing function or queueing messages to links etc; we

RVI

assume that any such time is small compared to the time taken to transfer the

message data.

In the first instance the program queues a message send from each processor to every

other processor in a random order; we assume that all messages are of the same

length. Thereafter the program executes a number of time steps which advance

messages toward their destinations until all messages are delivered or a deadlo r. .k

is detected. A single time step consists of visiting each output in random order

to determine whether a link transfer is ready to take place, and if so transferring

the message to the relevant input, followed by visiting each input in random order

to determine if a link transfer has taken place, and if so routing and queueing the

message to the relevant output.

Rings The tree labelling algorithm for the trivial colouring algorithm given above

is intended to handle multigraphs and we have evaluated the performance of the

acyclic routing function in doubly linked rings. The results of these simulations are

shown in Table 3.1.

We observe, as anticipated, that the values of D and p are identical for both

functions since the algorithm finds an acyclic routing function closely related to

that shown in Figure 2.4. The worst link load is, in the limit of very large processor

arrays, doubled by the acyclic routing function due to the fact that a small number

of links are not used for through routing which forces message paths onto the

corresponding parallel links.

General We have again performed calculations for square tori and random hamil-

tonian graphs; the results of these simulations are shown in Table 3.2 and Table 3.3.

We observe in these results that whereas the average distance and diameter are

extended by less than a factor of two the worst link loading and worst processor

loading become very much larger as the number of processors is increased; hot spots

are generated. This arises due to the possibility of free message travel within the

undirected tree colour graphs which ultimately places an unfair load on the links

88

P y D L

16 4 8 52.0 + 0.4 18.0

64 16 32 965 + 2 260 ± 1

256 28 64 16138 ± 1 4100 ± 1

P D' Ll 14
16 4 8 53.8 ± 0.2 31.0

64 16 32 979 ± 2 507+5

256 28 64 16197 ± 2 8166 ± 2

Table 3.1: Evaluation of Acyclic Routing in Double Rings

P y L

16 2 4 18.5 ± 0.2 10.8 ± 0.2

64 4 8 200.5 ± 0.8 71.0 ± 0.6

256 8 16 1806 ± 1 523 ± 1

P I D' LI 14

16 2 4 33.3 ± 0.5 18.3 ± 0.5

64 4.44 13 783 ± 2 330 ± 2

256 1 9.27 29 1 13636 ± 3 1 	6684 ± 2

Table 3.2: Evaluation of Acyclic Routing in Square Tori

near the root of the tree.

This appears alarming, however many applications will be able to avoid placing

heavy load on such hotspots by simple configuration changes. The performance of

algorithms whose key communication structures are similar to those simulated will

always be impeded; one such algorithm is the distributed multi-dimensional fast

fourier transform which utilises the "all-to-all" data exchange when reordering the

transform set.

89

P 11 D L P L1

16 1.85 ± 0.01 3.25 ± 0.05 19.5 ± 1.2 12.5 ± 0.7

64 3.13 ± 0.02 5.75 ± 0.25 194 ± 7 83 ± 5

256 4.38 ± 0.01 7.0 ± 0.13 1110 ± 20 1 	393 ± 4

P D'

16 1.97 ± 0.02 4.3 ± 0.3 34 ± 2 19 ± 1

64 3.73 ± 0.03 8.3 ± 0.3 660 ± 40 240 ± 10

256 1 5.71±0.01 1 11.0±0.3 11700±200 13640±100

Table 3.3: Evaluation of Acyclic Routing in Random Hamiltonian Graphs

3.5 Message Passing

In this section we describe the techniques used in the implementation of the message

passing kernel. We begin with with a very clear, and clean, occam prototype

implementation which demonstrates the basics of the system. There are a number

of performance problems associated with this prototype which we consider and

for which we briefly explain a solution. These solutions are implemented in an

improved prototype, written on this occasion in ANSI C on account of the necessary

pointer handling and reliance on rich data structures.

The message passing kernel of TINY performs better than either of the protétypes

described since it is implemented in highly optimised transputer assembly code;

we did not think it appropriate tohese optimisations here. We conclude the

section with a discussion of the performance analysis of these systems and present

a cha.c44rrisation of the performance of TINY.

3.5.1 Simple Prototype

A very simple router can be written in clean occam providing a subset of the

overall functionality; in particular the quasiadaptive routing function is omitted.

OLI

This system contains two network processes, which we shall call input and output,

and two transport processes, which we shall call source and sink.

These processes are assigned to external (connecting with a neighbour processor or

a local application process) channels thus:

input The input channel mapped onto a transputer link.

output The output channel mapped onto a transputer link.

source A channel used for message send by a local application process.

sink A channel used for message receive by a local application process.

A channel is provided from each input to each output and each sink. A channel

is also provided from each source to each output and each sink of the same type

index.

Each message wiii consist of a header accompanied by the message data. The

header contains the message length, destination task identifier, source task identifx

and the message type. A broadcast message will be indicated by the destination

task identifier having the value NONE. The application will supply transport with

the message destination, length and data at a source; transport will supply the

message source, length and data to application at a destination.

Processes

Output and Sink The output and sink processes are the simplest since they

are essentially just simple message multiplexors. These are shown in Figure 3.9 and

Figure 3.10.

The alternation over inputs is the counterpart of the CI state in the previous chap-

ter. Unfortunately the occam ALT construct does not satisfy the fairness assump-

tions made regarding conditional input. It should perhaps be replaced by a "round

robin" alternation.

91

PROC output(CHAN OF ANY out, []BYTE buffer

DCHAN OF ANY from.input,

[][JCHAN OF ANY from.source)

WHILE TRUE

INT length, source, destination, type

SEQ

ALT

ALT 1 = 0 FOR SIZE from.input

from.input[i] ? destination; source; type;

length :: buffer

ALT i = 0 FOR SIZE from.source

ALT j = 0 FOR SIZE from.source[i]

from.source[i[j] ? destination; source; type;

length :: buffer

out ! destination; source; type ; length :: buffer

Figure 3.9: Simple Router: Output process

92

PROC sink(CHAN OF ANY out, []BYTE buffer

OCHAN OF ANY from.input,

[]CHAN OF ANY from.source,

VAL INT taskld, typeld)

WHILE TRUE

INT length, source, destination, type

SEQ

ALT

ALT i = 0 FOR SIZE from.input

from.input[iJ ? destination; source; type;

length :: buffer

ALT i = 0 FOR SIZE from.source

from.sourceEi] ? destination; source; type;

length : : buffer

out ! source; length :: buffer

Figure 3.10: Simple Router: Sink process

93

PROC input(CHAN OF ANY in, DBYTE buffer,

DCHAN OF ANY to.output,,

U DCHAN OF ANY to.sink,

VAL DINT routing, VAL INT routing.base)

WHILE TRUE

INT length, source, destination, type

SEQ

in ? destination; source; type; length :: buffer

IF

destination <> NONE

route directed message

TRUE

route broadcast message

Figure 3.11: Simple Router: Input process

Input and Source The input and source processes are more complicated since

they implement the directed and broadcast routing functions. These are shown in

Figure 3.11 and Figure 3.12.

Since these processes will not implement the quasiadaptive routing function the

routing of a directed message is simply the sequential function which uses the first

element in the directed routing table entry for the task destination.

Routing a broadcast message involves forwarding the message to all pse.Jolinks

contained in the broadcast routing table entry for the source task. This('simply

involves a different routing table lookup and a loop around the code to forward the

message.

94

PROC source(CHAN OF ANY in, []BYTE buffer,

OCHAN OF ANY to.output,

OCHAN OF ANY to.sink,

VAL DINT routing, VAL INT routing.base,

VAL INT taskld, typeld)

WHILE TRUE

INT length, source, destination, type

SEQ

in.? destination; length :: buffer

type 	:= typeld

source := taskld

IF 	-

destination <> NONE

route directed message

TRUE

route broadcast message

Figure 3.12: Simple Router: Source process

95

{{{ route directed message

VAL routing.entry IS routing[routing.base + (2 * destination)]

VAL pso.link 	IS routing[routing.entry]

IF

pSMO.link < (SIZE to. output)

VAL index IS p.o.link

to.output[index] ! destination; source; type;

length :: buffer

TRUE

VAL index IS ps$o..link - (SIZE to.output)

-- input uses next line

to.sink [index] [type] ! destination; source; type;

- 	 length :: buffer

-- source uses next line

-- to.sink[index] ' destination; source; type;

-- 	 length :: buffer

Figure 3.13: Simple Router: Directed routing

{{{ route broadcast message

VAL routing.entry IS routing[routing.base + ((2 * source) + 1)]

INTi:

SEQ

i := routing.entry

WHILE routing[i] <> NONE

SEQ

VALpsdo.link IS routing[i]

IF

psQ.J.o.link < (SIZE to.output)

VAL index IS p'Se4o.link

to.output[index] ! destination; source; type;

length :: buffer

	

TRUE 	 -

VAL index IS p4o.1ink - (SIZE to.output)

-- input uses next line

to.sink[index][typeJ ! destination; source; type;

length :: buffer

-- source uses next line

-- to.sink[index] ! destination; source; type;

	

-- 	 length :: buffer

i := i + 1

Figure 3.14: Simple Router: Broadcast routing

97

Performance Considerations

There are a number of reasons why this appealingly simple prototype will perform

badly. These are discussed and some solutions briefly described.

Message Header Format The components of the message are communicated as

separate entities. Each communication event must first synchronize the communi-

cating processes and then move the message data as a block; there is a substantial

overhead involved in this synchronisation compared with the transfer of a short

message.

The header data should be packed into a short vector; the message data must still

be transferred separately since it is of variable length. The header fields should be

packed as bit fields where appropriate to minimise header length.

Internal Copies The header and message data are copied between input and

output processes. The input and output -processes all run within the same processor

and communication across an internal channel is implemented by a block move;

unlike external communication the processor is not free for computations during

the block move, which take a time proportional to the amount of data moved.

Since these processes necessarily share the same processor and memory it is sen-

sible for them to share a common pool of buffers and associated headers. The

communication of messages internally is replaced by swopping buffer indices. In

this way there are the same number of synchronisation events but smaller block

moves. Some care will have to be taken with the broadcst function since the

input process cannot swop indices with more than one output process for a single

message.

Conditional Input The execution of an alternation takes a time proportional to

the number of guards. In order to perform an alternation the alternating process

must enable each guard in turn then suspend itself. The process is resumed when

a guard becomes ready and then disables each guard in turn. In a replicated

98

alternation there is the additional overhead of looping while enabling and disabling

the guards.

The alternation and corresponding unconditional outputs look suspiciously like a

queue. The alternation of output should be replaced by a dequeueing procedure

operating on a queue of input process waiting for synchronisation with this output;

the dequeue operation can swop buffer pointers and reschedule the dequeued input

process, or deschedule if there is no queued process. The unconditional output of

- the input process should be replaced with an enqueue procedure; the enqueue

operation deschedules if the output process is unready else it swops buffer pointers

and reschedules the output process. Given such a queueing system it should be

easy to implement the short queue quasiadaptive routing function.

Network Buffering An input process blocks while waiting to synchronise with

the chosen output process; if the input process is handling a link then the link is

unused which will cause the output process on the neighbour processor to block

waiting for the link to become ready. The output process may be waiting for a link

transfer to complete which can take a considerable time. This effect substantially

degrades aggregate network bandwidth, as is discussed in [H1u88].

The process, queues should be replaced by buffer queues and more buffers should

be associated with each link. It is possible to allocate an arbitrary positive number

of buffers to each input process, and none to any output process, provided the

input processes are also allocated queues, or stacks, of free buffers. Before message

input an input process dequeues a free buffer, performs input and chooses an

output process; the buffer is placed in the queue of the chosen output process.

The output process dequeues a buffer from its queue and performs output; the

freed buffer. is returned to the queue of the input process which previously queued

it to the output process.

External Copies Message data is always copied between the source application

and its source process, and between a destination application and its sink process;

i.e. each message is copied twice. We can always avoid the copy at the source,

and we can avoid the copy at the destination whenever the application is already

waiting to receive the message (although in the case of a broadcast message it will

usually be convenient to enforce the copy at the destination). We can achieve this

within the above system at the expense of further distinguishing the inpiit and

output processes of network and transport. The method for achieving this will also

obviate the need to allocate message buffers to transport processes which could

prove costly in terms of memory usage.

Transport input processes should not input message data directly from application

into a buffer. They can input the address of the application message buffer and

arrange for network to output this directly on the transputer link. After this output

has completed the application can be acknowledged and may reuse the message

buffer:

Transport output processes should not output message data directly to application

from a buffer. They also can input the address of the application message buffer and

arrange for a network process later inputting a message destined for this transport

output to detect that the transport output is ready and input the message to

application space rather than the usual message buffer; alternatively one could

arrange for the transport process to perform this input.

3.5.2 Improved Prototype

Implementation of the improvements to the simple occam prototype above will

require a certain amount of pointer handling and it is therefore advantageous to

move to a language which explicitly contains pointers; we shall use ANSI C for this

implementation. The quasiadaptive routing function is introduced.

The process structure of this prototype is identical to the above; the major changes

arise in the exchange of information between the input and output processes. In

this case channels are replaced by pointers to shared structures; the implementa-

tion requires critical sections. These conditions can be met provided the group of

processes all run at the same transputer priority level; in practice routing processes

100

should always be run at high priority for performance purposes and all computa-

tions performed by high priority transputer processes are an implicit critical region.

Data Structures

The prototype requires shared access to two structures; message buffers with the

associated headers and buffer queues. It is as well to use structured data types for

these, and other, purposes and we introduce the associated structures at this point.

The ANSI C specifications are given in Figure 3.15.

Header : The Header structure contains the message header data.

destination For a directed message this is the task identifier of the destination

task shifted left one place. For a broadcast message the source task identifer

shifted left one place and the least significant bit set. The masking and testing

of the lowest four bits are cheap operations on the transputer. The routing

tables were interleaved so that the same indexing applies to both tables.

source The most significant byte holds the message type. The remaining bits hold

the message source identifier shifted left one place. The least significant bit is

set to indicate quasiadaptive routing. We will access the most significant byte

with a large shift operation (although this can be more efficiently performed

by loading the byte alone from store).

length The length of the message in bytes. This is assumed to be positive or zero

by network processes.

Buffer : The Buffer structure contains the message header and a pointer to the

actual memory area used to store the message data along with some book-keeping

items.

hdr The message header as described above.

101

struct Header {

mt destination;

mt source;

mt length;

struct Buffer-{

struct Header hdr;

char 	 *data;

struct Queue *owner;

mt special;

struct Buffer *link[];

struct Client {

union {

mt destination;

mt *source;

} task;

mt length;

char *data;

truct Queue {

struct Buffer *head;

struct Buffer *tail;

mt 	 count;

void 	 *pid;

mt 	 ps4o;
CHAN 	 *channel;

struct Queue *indirect[];

Figure 3.15: Improved Router: Data Structures

102

data A pointer to the message data. If the buffer belor_T to a transport process

then this will be a pointer into application space.

owner A pointer to the queue of the process which "owns" the buffer. The buffer

will be returned to this queue after the message has been output.

special The normal action of an output process is to output the message held in

data and queue the buffer back to owner. This field is used to indicate that

some special action should be taken; see later.

link A number of links for queue lists. Note that there is a queue for each

ps dolink; the reason for this is that during broadcast a message buffer

can be queued to more than one,and distinct links are needed, however there

can only be one queue reference for each pse.adolink.

Client : The Client structure will be used for communication between a trans-

port process and its client, an application process.

data A pointer to the application message buffer.

length The length of data to send or the length of the largest message which can

be received.

task The type of this field depends on whether the request is for a message send

or receive.

destination The destination task iden4r during message send. This takes

the value NONE for broadcast. In the case of a directed message it is a

valid identc shifted left one place; the least significant bit set indicates

a quasiadaptive message.

source A pointer to a place for return of the source task identifier during

message receive. A copy of the source field of the message header will

be written to the address given.

All bit manipulation of the destination ident4' required before message send

and cleaning up of the source identifier after message receive is expected to

be performed by the procedural interface.

103

Queue : The Queue structure holds a queue of buffers and information about the

queue process.

head Front of buffer queue list; pointer to first buffer in queue.

tail Back of buffer queue list; pointer to last buffer in queue.

count The length of the buffer queue.

pid The process identifier of the queue process.

peLo The ps'olink number of the queue process.

channel The channel used by the queue process.

indirect The routing tables are assumed to be transformed to a pointer form in

which a routing entry element is a pointer to a queue rather than a 1sJolink

number. Where the ps.*d.olink is typed, i.e. transport, a level of indirection

is required which is provided by this field. Where the p.olink is untyped,
:-. MITT I

1.. I1I. bVJLL. 	UIi1 	IL1tJ. 1 	L JL...L...

Macro Definitions

We assume a few macros which handle transputer operations such as communication

and process control. 	-

Move(source, destination, length) : length bytes are moved from the €ceess

source to the address destination. This is a null operation if length is zero.

Input (channel, destination, length) : length bytes are input to the address

destination from channel. This is a null operation if length is zero.

Output (channel, source, length) : length bytes are output to channel from

the address source. This is a null operation if length is zero.

Stop(pid) : the process is stopped, without being queued for later execution,

storing the process identifier in pid.

104

Run(pid) : the process with identifier pid is restarted, i.e. it is queued for later

execution.

Using these macros and the above data structures we construct a number of macros

used by the network and transport processes.

Enqueue (queue, buffer) the message buffer referenced by buffer is appended

to the buffer queue referenced by queue. If the queue was empty and a process

waiting on the queue then that process is restarted. Used by all processes.

Dequeue(queue,buffer) : a reference to a message buffer is removed into buffer

from the buffer queue referenced by queue. If the queue was empty then the

executing process stops and waits on the queue. Used by all processes.

Rout eDirect ed(buffer, entry) the message buffer referenced by buffer is routed

as a directed message with the routing table entry referenced by entry. Used

by input processes.

Rout eBroadcast (buffer, entry) : the message buffer referenced by buffer is

routed as a broadcast message with the routing table entry referenced by

entry. Used by input processes.

Rout eExceptional(buffer,queue) the message buffer referenced by buffer is

routed as an exceptional directed message before data input, to the queue

referenced by queue. If the queue belongs to a ready transport process then

message data is not input, else message data is input and queued normally.

Used only by network input.

Processes

Output and Sink The output processes are simpler than the input processes

since they do not have to deal with the routing function. The output process is

effectively a message multiplexor; see Figure 3.16.

105

void output(struct Queue *me) {

struct Buffer *buffer;

for

Dequeue(me,buffer);

Output(me->channel, &buffer->hdr, sizeof(struct Header));

Dutput(me->channel, buffer->data, buff er->hdr. length);

if (buffer->special != 0) buffer->special--;

else 	 Enqueue(buffer, buff er->owner);

ii
II

Figure 3.16: Improved Router: Output Process

The sink process is slightly more complicated than output since it has to handle

the application and the possibility of special input from a network channel into user

space. It is also responsible for avoiding overflow of the user buffer; in Figure 3.17

this has been omitted for clarity.

Input and Source The two input processes, which handle the routing functions,

are rather more complicated. The input process handles special routing where the

routing table entry contains a single element; see Figure 3.18.

The source input process does not perform special routing but is responsible for

constructing a valid message header from the application send request; in Fig -

ure 3.17 we have omitted error checking for clarity.

106

void sink(struct Queue *me) {

struct Client user;

struct Buffer *buffer;

for (;;) {

Input(me->channel, &user, sizeof(struct Client));

Dequeue(me,buffer);

*user . task. source = buff er->hdr. source;

user.length 	= buff er->hdr.length;

if (buffer->special == -1) {

buffer->special = 0; /* reset special and input to user */

Input(buffer->owner->channel, user.data, user.length);

Enqueue(buffer, buff er->ownr); 	 -

Run(buffer->owner->pid); /* restart net input process */

}

else {

Move(buffer->data, user.data, user.length);

if (buffer->special != 0) buffer->special--;

else 	 Enqueue(buffer, buff er->owner);

}

Output(me->channel, &user.length, sizeof(int)); 1* ack user *1
Ii

ii

Figure 3.17: Improved Router: Sink Process

107

void input(struct Queue *me, struct Queue **routing[]) {

struct Buffer *buffer;

struct Queue **entry;

for (;;) {

Dequeue(me ,buffer);

Input(me->chan.nel, &buffer->hdr, sizeof(struct Header));

entry = routing[buffer->hdr.destination];

if (entry[l] 1 = (struct Queue *)NULL) {

- 	Input(me->channel, buffer->data, buff er->hdr.length);.

if (buffer->destination & 1) RouteBroadcast(buffer, entry);

else 	 RouteDirected(buffer, entry);

}

else 	 RouteExceptional(buffer, entry [0]);

}

ii

Figure 3.18: Improved Router: Input Process

void source(struct Queue *me, struct Queue **routing[],

mt taskld, typeld) {

struct Client user;

struct Buffer *buffer;

taskld = taskld << 1; 	 /* realign taskld and */

typeld = (typeld << 24) I •taskld; /* typeld in advance */

Dequeue(me ,buffer);

for (;;) {

Input(ine->channel, &user, sizeof(struct Client));

buff er->hdr.length = user.length;

buff er->hdr.data = user.data;

if (user.task.destinatjon == NONE) {

buffer->hdr.destination = taskld I 1;

buff er->hdr.source 	= typeld;

RouteBroadcast(buffer, routing[buffer->hdr.destination]);

}

else {

buffer->hdr.destination = user.task.destjnatjon & (-2);

buffer->hdr.source 	= (user.destination & 1) I typeld;

RouteDirected(buffer, routing[buffer->hdr.destination]);

}

Dequeue(ine ,buffer);

Output(me->chanriel, &user.length, sizeof(int));

}

ii
II

Figure 3.19: Improved Router: Source Process

109

Enqueue (queue ,buffer) {

queue->count++;

if (queue->count == 0) {

Run(queue->pid);

queue->head = buffer;

}

else {

queue- >tai1->1 ink [queue->pEc a] = buffer;

}

queue->tail = buffer;

}

Dequeue(queue,buffer) { 	 -

queue->count--;

if (queue->count

Stop (queue->pid);

}

buffer = queue->head;

queue->head = buffer - ->linkCqueue->pseMj,o1;

}

Figure 3.20: Improved Router: Queue Handling

Derived Macros

Queue Handling In Figure 3.20 we show the queue handling primitives Enqueue

and Dequeue. These maintain queues as simple singly linked lists with a count of

the queue length. A negative queue length, —1, is used to signify that a process is

waiting on an empty queue; this has the advantage that we can distinguish between

an empty queue and an empty queue with a waiting process.

Directed Routing We show directed routing in Figure 3.21. A branch is made

on the least significant bit of the destination to determine whether the sequential

or quasiadaptive strategy is to be used. Note that the quasiaJoF,tive strategy will

110

RouteDirected(buffer, entry) {

struct Queue *out;

mt lain;

if (buffer->source & 1) {

min = INFINITY;

while (*entry) {

if ((*entry)->count < mm) {

out = *entry;

min = out->count;

entry++;

}

}

else{

out = *entry;

}

if (out->indirect) out = out->indirect[buffer->hdr.source >> 24];

Enqueue(out,buffer);

}

Figure 3.21: Improved Router: Directed

always choose an empty queue with a waiting output process in preference to an

empty queue without a waiting process due to the use of the count described above.

Broadcast Routing Figure 3.22 shows broadcast routing. In this case the

special field of the buffer is set to one*less than the number of output processes

queued to in order that they can correctly free the buffer once all have completed

message output.

Exceptional Routing The exceptional routing of a directed message which oc-

curs in networklnput before message data has been input is shown in Figure 3.23.

If the target queue belongs to a waiting transport process, determined by the re-

quirement for indirection and a queue count of —1, then the special field is set to

111

RouteBroadcast (buffer, entry) {

struct Queue *out;

mt count;

count = -1;

while (*entry) {

out = *entry++;

if (out->indirect) out = out->indirect[buffer->hdr.source >> 24];

Enqueue(out ,buffer);

count++;

}

buffer->special = count; 	 /* set special count */

}

Figure 3.22: Improved Router: Broadcast Rouitng

—1 and the input process stands off its channel. If on the other hand the transport

was unready or the target was a network process then the message is input and

queue as above.

3.5.3 Performance

Message Latency We can characterise the performance of the systems described

above under conditions of light network loading where conflict for link usage does

not arise. We consider the operations involved in passing a single directed asyn-

chronous message of 1 bytes along a path comprising h links.

Message Send Events are initiated by application making a message send request

to transport. The time taken for the application and transport processes to

synchronize and exchange message data is expressed as a1 +,31 1 where)31 will

be zero if message data is not copied between transport and application.

Source Routing The transport process servicing the send request performs a

routing decision and enqueues the message output to a network process. This

112

RouteExceptional(buffer,out) {

if (out->indirect &&

(out = out->indirect[buffer->hdr.source >> 24])->count == -1) {

/* ready transport */

buffer->special = -1; 1* set special */
Enqueue(out ,buffer);

Stop(queue); 	 /* stand off channel */

}

else {

/* network or unready transport */

Input(in, buffer->data, buff er->hdr.length);

Enqueue(out ,buffer);

Figure 3.23: Improved Router: Exceptional Routing

takes a characteristic time a 2 + 1321 where /32 is zero if message data is not

copied between transport and network.

Link Transfer The network process dequeues the message and initialises the trans-

fer of the message header, followed by the message data. The time taken for

these operations is written as a 3 + 03 1 where 03 is the hardware bandwidth

of the transputer link.

Through Routing. A network process which received the message from the trans-

puter link performs a routing decision which enqueues message output to an- -

other network process. We characterise the time taken for through routing

as a4 + 04 1 where 34 is zero if message data is not copied between network

processes.

Destination Routing A network process which received the, message from the

transputer link performs a routing decision which enqueiies message output

to another network process. We characterise the time taken for through

routing as a5 + /3l where /3 is zero if message data is not copied between

}

}

113

transport and network.

Message Receive The message passing events complete when the (waiting) des-

tination application process receives the message from the final transport

output process and is scheduled for execution. The time taken for the ap-

plication and transport processes to synchronize and exchange message data

is expressed as a6 + /361 where 96 will be zero if message data is not copied

between transport and application.

If the path contains h> 0 links then there are h - 1 through routing events and h

link transfer events, thus the message latency T1,h is expressed as

Tl,h = a+bh+cl+dlh

a = a1+a2—a4+a5+a6

b = a3+a4

C = 01+02 -84+05•+06

d=/33+/34

We can estimate the constants in this expression by employing use of a simple echo

technique in which we exploit the fact that the time taken to send a message from

X to Y and immediately back to X from Y is very nearly twice the time for the

message send from X to Y provided that the path from Y to X is the opposite of

the path from X to Y. We can arrange for this to be true quite easily by using a

simple linear chain configuration. In Figure 3.24 we present a few measurements of

Tl,h for TINY which demonstrate that the bilinear form is observed.

From similar data we obtain the results shown in Table 3.4 using INMOS T800

transputers, running at 20MHz, with 200ns external memory. In these experiments

we arranged for the routing threads and critical shared data structures to be located

in the fast, 50ns, internal memory.

We have performed a similar calculation on the Intel iPSC/2 hypercube multicom-

puter and obtain the results shown in Table 3.5. The figures for message length

of less than 100 bytes and larger are due to the communication protocol between

NX/2 node operating systems which sends messages of < 100 bytes asynchroos\j

114

1800

1 600

1400

1200

1000

600 -

400 -.

200 -

0
0

800
Oq

2000

I 	2 	4 	6 	8 	10 	12
	

14 	16 	18 	20

Number of Hops

Figure 3.24: Quiet Network Message Latency

20Mbits 1 Links 1OMbits 1 Links

a 30.5uis 30.5uis

b 24.3is 30.0ts

c O. 00 is O.0Ois

d 0.71us 1.25ps

Table 3.4: Quiet Network Latency in TINY

115

- 1 < 100 bytes 1> lOObytes

a 367,us 670.60s

b 10.2ps 30.0s

C 0.05ps 0.09iis

d O.00ps 0.00s

Table 3.5: Quiet Network Latency in the 1PSC/2

but synchronises transfer for messages of > 100 bytes; it is then only reasonable

to compare performance for messages of less than 100 bytes. These figures are in

general agreement with those reported in [BR89].

There are two important differences between the figures obtained for these two

systems. The d term for the iPSC/2 is identically zero due to the use of circuit

switching whereas this term for TINY is equal to the asymptotic link bandwidth

(where the links are switched by the MEIKQ. ES2 switching chips) due to the use

of packt switching. The a term for TINY aty an rr f mis approximel odeoagnitude

less than that obsered in the iPSC/2 which is crucially important in determining

the notional zero length message latency.

It is of some interest to compare the message latency for neighbour communications

alone, since such figures are directly comparable between these two systems. This

time can be represented as T0 + lf where T0 is the set up time, T0 = a + b, and
R is the asymptotic bandwidth, R = c + d. In [BR89] such figures were quoted

for the iPSC/1, iPSC/2 and Ncube hypercubes, in Table 3.6 we have compared

these figures (for messages of less than 100 bytes) with TINY.

CPU Impact In order to understand the impact of message events on an inter-

mediate processor we have to consider the operations involved in message routing.

Some of these have been dealt with above. However the events required to prepare

for message input and recover from message output have not been discussed.

116

T0 (us) R 	(ps)

Ncube 446 2.5

iPSC/1 1000 1.0

iPSC/2 350 0.05

TINY 54.8 0.71

Table 3.6: Comparision of Neighbour Message Latencies

Message Input The. network process prepares for input by allocating a buffer

and initialising input of the message header; this preparation is not observed

above. During header input the process is suspended and resumes only when

the input has completed. After determining that the destination is not located

on this processor the process initialises the input of message data. Again

the process is suspended and resumes when input has completed. The DMA

engine utilises memory cycles during message input which induces wait states

in the processor. Process resumption involves interrupting an executing low

priority process. We characterise this component of the through routing CPU

requirement as c 7 + 07 1.

Through Routing The analysis of through routing above is entirely applicable to

the discussion of CPU impact and we characterize this component as a4+ ,641
in the same way.

Message Output The network process prepares for output by dequeueing a buffer

and initialising output of the message header. During header output the pro-

cess is suspended and resumes only when the output has completed. Message

data is then output 'in the same way. The process recovers from output

by enqueueing the buffer to the original input process and suspending itself

pending a further output. Again the DMA engine utilises memory cycles and

process resumption involves an interrupt. We characterise this component of

the through routing CPU requirement as a s + /91.

117

20Mbits 1 Links 1OMbits 1 Links

a' 32.4is

0.1us 0.1ts

Table 3.7: Parameters of Through Routing CPU Impact

The CPU requirement of through routing, Tf, for a message of length 1 is given by

the above analysis as

T1T = a'+b'l

a = a7+a4+a8

b = /37+134+198.

We can estimate the quantities a' and b' by extending the above echo experiment so

that all intermediate, through routing, processors are running a simple low priority

work and comparing the time taken to execute the work in the presence of message

passing events with the time taken in the absence of such events. The work loop

chosen contained a mixture of floating point and n hi iTe results

shown in Table 3.7 were obtained for TINY.

The difference in a' between the two link speeds is within the resolution capability

of the experiment for this quantity. The value of b' implies that in these experiments

100% of the DMA external memory requests caused the processor to wait.

3.6 Summary

In this chapter we have described the methods used in the implementation of a com-

munication system for INMOS transputer arrays, called TINY. This system exploited

many of the ideas in Chapter 2 and indeed experience with the implementation and

utilisation of TINY has been a major stimulation for these ideas.

Since the configuration hardware and/or software of the. development machine are

occasionally found to be unreliable the system initially performs a topology explo-

118

ration. Two candidate algorithms for this calculation were described and a rationale

given for preferring one of these in the development environment.

The methods used for construction of routing tables were discussed and the acyclic

routing function was evaluated for a small number of topologies. We observed

that the trivial colouring algorithm generates hot links which will impede perfor-

mance in a number of applications bound by aggregate bandwidth e.g. distributed

multidimensional fast fourier transforms. The search for a deterministic algorithm

producing non trivial colouring solutions which perform better on worst loading

metrics is an Ongoing topic.

The techniques used in the development of the message passing processes were

described in some detail. A simple occam prototype clearly displayed the basic

process structure however could not perform well for a number of reasons. These

issues were discussed and an improved prototype was presented. The performance

of these systems was analysed and the characteristic parameters of TINY were ob-

tained. Similar queueing techniques were independently arrived at by Mike Surridge

[Sur] in the implementation of message routing software and similar performance

characteristics were reported [Sur9O].

The communication services offered by TINY, through four stages of evolution, have

been available for public use in Edinburgh for approximately 18 months and have

been incorporated into a large number of application programs. In Chapter 4 we

describe a simple application of TINY in the field of molecular graphics which we

have implemented on the Edinburgh Concurrent Supercomputer [BKW88].

119

Chapter 4

Application

4.1 Introduction

Molecules are generally three dimensional objects; the human mind requires some

assistance in the visualiation of such objects. This has become iIcreasingiy im-

portant in the study of biochemical procèsses where the shapes of molecules play

a large part in the reactions which they undergo. There are two traditional ap-

proaches to the construction of molecular modets; the so called "ball and stick"

and "solid sphere" representations.

Where the molecule is small, containing no more than a few tens of atoms, it is

reasonable to construct models with commercially available components; indeed

I recall using a kit of such components when studying organic chemistry as an

undergraduate. This approach fails when the modern - biochemist is required to

visualise the structure of molecules comprising several thousands of atoms, in such

a regime the computer generation of three dimensional images is beneficial.

The solid sphere models are of particular interest when considering biochemical

problems such as the reactions between enzymes and substrates where the shape

of the substrate, particularly in the vicinity of the active site, and the shape of

the enzyme may be of crucial importance; ball and stick models do not encode the

relevant visual signals.

120

A typical solid sphere model contains a large number of spheres of varying radii,

representing the covalent radii of the corresponding atoms, at different positions
to according to the atomic and molecular configuratione visualised. The atoms are

colour coded which conveys meaningful information about the type of atom and its

position with respect to functional groups etc, usually according to one of a number

of well established colour schemes.

This description naturally suggests the utilisation of the ray tracing technique for

rendering the two dimensional image. There are two reasons for which different

techniques have been sought after:

• The computational cost of rendering a scene containing several thousands of

atoms by ray tracing is very large. On conventional modern workstations and

even moderate supercomputers this is prohibitive.

• The quality of image produced by ray tracing is actually rather better than

is required by the biochemist. In practice a photo-realistic image is less im-

portant than one which merely conveys the necessary information.

An algorithm which generates images of adequate quality and is computationally

less demanding than ray tracing is reported in [BA88]. In Section 4.2 we describe

this method. A sequential FORTRAN implementation was made available by the

authors; we also characterise the performance of this code.

The execution time to render a scene consisting of a few thousands of atoms is too

large for "interactive" use on current uniprocessor computers, in which cases the

biochemist wishes to view one or more molecules from varying positions in order

to compare structural features. In Section 4.3 we describe a simple approach to

exploiting the parallelism inherent in the method and characterise the performance

of the resulting parallel algorithm.

121

4.2 Sequential Algorithm

In this section we describe the sequential algorithm and characterise the perfor-

mance of its components. This introduces the methods used and allows us to

discuss later how the parallel algorithm is obtained from the sequential algorithm.

The lighting model contains two light sources. The primary light source is located

at an arbitrary position (Ps , Ps,, Ps), and the secondary source located at a position

on the z-axis (0, 0, Se). A uniform background, or ambient light, is also used. The

eye point is coincident with the secondary light source.

The algorithm takes account of three features which provide depth cueing:

• Perspective; distant lengths appear smaller than close lengths. A one-point

perspective projection is used; the projection centre is the eye point and the

projection plane is z = 0.

• Shading; when a light is shone upon an object having a reflective surface

a highlight is caused by specular reflection, whereas light reflected by the

remainder of the surface is caused by diffuse reflection. The shading model

developed by Phong [FvD82] is utilised.

• Shadows; a point visible from the eyepoint may be in shadow from the primary

light source; if it were in shadow from the secondary source then it would

not be visible. An explicit shadow test is, optionally, applied to determine

whether the primary light source contributes to the colour of each pixel.

The quality of the image produced by these processes is actually rather good. One

deficit is an aliasing effect where the edges of spheres appear jagged due to the

limitations of the pixel resolution. This effect is decreased by overcalculation and

averaging, i.e. one calculates pixels on a finer mesh than the display and obtains

each display pixel by averaging over a number of calculated pixels.

122

Basic Method

The description of the positions and sizes of the atoms will typically be given in

some, fairly arbitrary, user coordinate system. In order to begin the rendering

process these must be transformed into a suitable object coordinate system which

also implements any rotations, translations or scaling operations requested by the

user. This is achieved by representing the composed sequence of operations as

a geometric transformation matrix in the 4 x 4 homogeneous coordinate system

[FvD82]. The preprocessing transformation then requires, in principle, for each

sphere the multiplication of a 4 x 4 matrix by a 4 vector. In practice this is

implemented using fewer operations. The perspective transformation is also applied

at this point.

The method for determining which portions of the image are in shadow is actually

the same as the method for determining which portions of the image are visible,

except of course that in the former case the eye is considered to be at the primary

light source. A copy of the object space is therefore transformed into the shadow
space; a rotation and scaling which maps the point (Ps , P, P) to the point (0, 0, S).

is applied.

If there are N3 spheres in the model then the preprocessing stage requires a time

directly proportional to N3 . This transpires to be a small fraction of the total

imaging time.

Each calculated pixel is represented as a point (XP, y, S) in the eye plane. For

every line (x v , y,,) we must determine whether it intersects with the surface of a

sphere in object space; if the line intersects no spheres then the pixel is assigned

some background colour. The line is determined to intersect the surface of a sphere

with centre at (x i , y,;) and radius r, straightforwardly by the test

2
r _(x p Y p)_(xi,y i))> 0.

When one or more spheres are intersected we must determine the intersection point

(xv , y, z) which is closest to (XP, y, S) and whether this intersection point is in

shadow. The point is determined to be in shadow by rotating the point into shadow

123

space to (x 3 , y3 , z 3) and determining whether the line (x 3 , y.) intersects the surface

of a sphere in shadow space. If so then the intersection closest to the eye plane is

again calculated and the point determined to be in shadow if this point lies between

(x 3 , y., z 3) and the eye plane.

The RGB components of the pixel colour are obtained from the colour of the object

sphere intersected which is illuminated by the ambient light, the secondary source

and the primary source if not in shadow.

After all pixels have been computed the averaging process which implements anti-

aliasing is applied to produce the final image pixels which are sent to the display

device.

Enhancements

The direct implementation of this method would be computationally inefficient

since the search through space for intersections requires one to perform the inter-

section calculation for each pixel - sphere pair. If there'are N calculated pixels

then this search would require a time proportional to N3 x N; This is reduced by

two methods, depth sorting and tile listing.

Depth Sorting The spheres are sorted according to the distance of the closest

point to the eye plane; this is performed in both object and shadow space. Depth

sorting has the advantage that when performing the search through, say, object

space for the closest intersection to the eye plane it will often be unnecessary to

search the complete list of spheres. Rather one searches, beginning at the near end

of the list, until an intersection is found. The point of intersection is recorded but

the search continues until no remaining sphere can reach the point of intersection,

i.e. its near point is behind the point of intersection. The sort can be performed in

O(N3 log N3) time.

124

Figure 4.1: Calculation of Impingement

Tile Listing The mesh of calculated pixels is divided up by a regular decompo-

sition into a mesh of rectangular tiles. For each tile a shortlist of spheres which

impinge on the tile is calculated; a sphere centered at (x 1 , y, z) and of radius ri is

determined to impinge on a tile if the region in the xy plane bounded by the lines

x=x2+'r1 x=x—r

y = y + ri y = y - r i

intersects with the region covered by the tile, as depicted in Figure 4.1 where each

tile intersecting the shaded region is deemed to be impirv.ed upon by the sphere.

This calculation is implemented by determining the square enclosing the projection

of the each sphere onto the eye plane as above, clipping this square to the visible area

of the plane, and adding a pointer to the sphere to the list for each tile intersected.

The tile listing method has the advantage that we have reduced the extent of space

which must be searched when determining the intersection of a line from the eye

plane; there is trivially a large pay-off when there are no spheres impingeing on a

125

tile. If there are a total of N impingements then the preparation of the tile lists

takes a time which increases linearly with N, and N. Note that where there are

Nt tiles then N, <N, N, x N. The tile size is chosen to trade-off the time spent

calculating the tile lists against the time saved searching space for intersections.

As an aside, the sequential implementation of the algorithm provided does not

implement anti-alias averaging across tile boundaries.

Characterisation

The algorithm with depth sorting and tile listing enhancements is shown schemat-

ically in Figure 4.2. In order to determine a suitable strategy for parallelisation

we have timed the computations in each stage for a variety of N,, using a single
INMOS T800 with a clock speed of 20 MHz and external memory cycle time of 200

ns. There was no actual display in the Tile Painting stage and anti-alias averaging

was not performed. The molecules chosen were fragments of the penicillin peptide

substrate. The target display device will provide a 768 x 512 pixel screen and a tile

size of 16 x 16 pixels was used.

The results of these calculations are shown in Table 4.1. The first table shows the

execution time of the preprocessing, sorting listing and painting stages. The second

table shows a breakdown of the tile listing stage into the time spent projecting

spheres onto the eye plane and adding spheres to the tile lists; Ni is also shown for
reference.

4.3 Parallel Adaption

In this section we describe how the parallel version of the molecular imaging al-

gorithm above is obtained. We shall use the properties of the algorithms involved

and the performance characterisation of the sequential algorithm.

Display is effected using a MEIKO MKO15 graphics board containing an INMOS T800

126

/* preprocessing */

LOOP over all spheres

Transform sphere to object space

Transform object sphere to shadow space

/* depth sorting */

Heap sort object space spheres according to near point depth

Heap sort shadow space spheres according to near point depth

/* tile listing */

LOOP over all spheres

Project object sphere onto eye plane and clip projection

LOOP over all impinged object tiles

Add sphere to object tile list

Project shadow sphere onto eye plane anc clip projection

LOOP over all impinged shadow tiles

Add sphere to shadow tile list

/* tile painting */

LOOP over all tiles

IF object tile list not empty

LOOP over all pixels in tile

Determine nearest sphere intersection point to eye plane

IF intersection found

IF intersection in shadow

Paint pixel without primary lighting

ELSE

Paint pixel with primary lighting

ELSE

Paint background colour pixel

Perform anti-aliasing average

ELSE

Paint tile of background colour pixels

Figure 4.2: Schema of Algorithm

127

N3 Processing Sorting Listing Painting

500 0.08s 0:14s 0.19s 33.4s

1000 0.15s 0.31s 0.36s 42.Os

1500 0.22s 0.48s 0.54s 61.9s

2000 0.29s 0.67s 0.71s 79.2s

N3 Ni Sphere Projection List Addition

500 8125 60ms 127ms

1000 16565 105ms 258ms

1500 24680 152ms 284ms

2000 33194 199ms 514ms

Table 4.1: Characterisation of Sequential Components

transputer and dedicated graphics hardware. This is used in 24-bit pixel mode on

a 768 x 512 screen. A simple graphics task was written to run on this processor

which provides two primitives

Fill Colours each pixel within a rectangular area of the screen to the same specified

RGB colour. This is used to paint . a tile consisting entirely of background

pixels.

Draw Colours each pixel within a rectangular area of the screen to different spec-

ified RGB •colours. This is used to paint a tile containing one or more non-

background pixels

It is useful to consider the extent to which bandwidth into the graphics processor

will determine the performance of the parallel algorithm. In order to render a single

frame approximately 0.85 Mbytes of data have to be fed to the graphics processor,

assuming that one quarter of the tiles are background and each tile consists of 16 x 16

pixels. With four transputer links operating at 20 Mbit/s, switched through the

MEIKO ES2 switching chips, this cannot be achieved in less than approximately

0.16s. In practice we anticipate that memory contention between the DMA engines,

the processor and the graphics hardware will increase this quantity to roughly 0.25s.

128

The transputer links operate concurrently with the processor and we attempt to

exploit this fact by forwarding primitives to the graphics processor while calculating

further primitives. It follows that we require a message routing process on each

transputer. Despite the fact that the communication patterns of this problem

transpire to be rather simple it is useful to exploit the availability of general purpose

routing software provided that the overheads in using such tools are acceptable.

The TINY routing system wsQso 12 byte header for each message which increases the

data which must be fed into the graphics processor by 2%; this is quite insignificant.

The processors neighbouring the graphics processor will route the largest number of

messages since every graphics primitive must be routed via one of these processors.

Under the same assumptions as above each neighbour to the graphics board routes

approximately 380 messages. Using the through-routing CPU impact parameters

given in Chapter 3 this corresponds to 0.036 seconds which represents about 14%

of the estimated lower bound execution time obtained above.

User interaction and file system access are provided by a single control task which

can be located in the host machine. We do not discuss the implementation of

the graphics codes and restrict our discussion of the control code to those parts

directly involved in the parallel algorithm. There are one or more render tasks,
each of which runs on an INMOS T800 processor with 4 Mbytes of external memory.

Each of the P render tasks is identified by a unique integer p in (0, F]. The render

tasks execut, the major part of the parallel algorithm.

Tile Painting

It is clear from T\o, 4.1 that we must primarily seek parallelism in the Tile

Painting operation. Fortunately this will be easy to obtain since the tiles are

entirely independent of one another. The only issue to be addressed in exploiting

this parallelism is that of load balancing.

In order to paint a given object tile it will be necessary for a task to have available

the list of object space spheres impingeing on the tile so that intersections of rays

129

4...' SJSS.LttSSS A...' '..JLLS fl..FOZ U.LJL1

cast from the eye plane with these spheres can be calculated. It will also be neces-

sary for the shadow tile lists of shadow space spheres which may render the pixels

in shadow to be available. There is some advantage in having a copy of all object

and shadow tile lists stored in every render task.

We can straightforwardly implement the scheme which these considerations sug-

gest. In the first instance the control task gathers the positions, radii and colours

of atoms from one or more files and broadcasts this data to the collection of render

tasks along with control information such as the position and intensity of the pri-

mary light source. Having received this data each render task proceeds to perform

preprocessing of all spheres followed by the depth sorts and calculation of tile short

lists; no parallelism has yet been obtained from these parts of the calculation. After

the scene has been rendered then transformations of the component molecules or

atoms can be applied without again broadcasting the atomic data.

Load balancing can be achieved by using a scattered domain decomposition of

130

tiles across processors, or dynamic farming of tile numbers. A regular domain

decomposition will not suffice due to the distribution of work across the viewing

plane, as depicted in Figure 4.3. In this diagram the shaded region represents the

pixel area covered by the molecule and it is easy to see that there is a very large

variation in the workload allocated to each of the 25 render tasks. These load

balancing techniques are general purpose methods for handling a space over which

the computational effort is not evenly distributed and the effort associated with

each point is not known in advance. The load balancing problem in which the

effort associated with each point is known, or can be estimated, admits of other

solutions.

Since each render task holds the short lists for each tile it can immediately obtain

an estimate of the computational effort of painting the tile. We choose two ranks

of effort; let E be the number of "easy" tiles upon which no spheres impinge and

H be the number of "hard" tiles upon which one or more spheres impinge. We

attempt to separately distribute tiles from E and from H across render tasks such

that each render paints f easy and hard tiles. The easy tiles all involve an

identical computational effort whereas the variance of the effort painting hard tiles

may be quite large.

Increasing - decreases the sampling variation experienced at each processor, thus

decreasing the probability of load imbalance. On the basis of this observation we

would choose the number of tiles to be larger than, that used in the sequential

algorithm. There is however a competing effect induced by the message passing

architecture; choosing small tiles requires more message send events' to be sched-

uled and a higher message header to message data ratio, effectively reducing the

communication bandwidth into the graphics processor. This is a manifestation of

the general grain size optimisation problem which is a common feature of parallel

applications.

The proposed decomposition of the problem naturally leads to an execution time

which scales as A + + CP, where A is the time taken for preprocessing, depth

sorting and tile listing, B is the time taken for tile painting in the sequential pro-

gram, and CP is the time taken to synchronise each render task with the control

131

task. Note that C is very small compared to A, B. A "law, of diminishing returns"

reduces the effectiveness of increasing the number of processors used; this is a gen-

eral feature of applications in parallel processing. In order to extend the regime

of effective processor array sizes we must minimize the sequential component of a

calculation; in this case we should also address the problem of parallelising the first

three components of the algorithm.

The communication structure of this program is exceptionally simple since the only

communication events which occur are broadcasts from the control process to the

render processes and sends from the render processes to the graphics process. In

order for the control process to determine that the image has been rendered it

will also be necessary for a communication structure in which the graphics process

sends a message to the control process upon frame completion. Each of these three

structures defines an acyclic graph of links and there is no temporal overlap between

the structures, it follows that the cyclic routing function can he used without any

possibility of deadlock.

Depth Sorting

The efficient parallelisation of sort algorithms is an ongoing research topic and

we shall not attempt to solve this problem here. The sequential algorithm sorts

all spheres before calculating tile lists; in this way the tile lists are automatically

ordered as required. We observe that one can equally sort each tile list individually

without performing a global sort beforehand. This has the advantage that each

render then sorts only the lists for tiles which it is about to paint and the workload

of sorting is distributed in the same way as the workload of painting.

We can perform an approximate analysis of the difference between these two ap-

proaches. The average number of spheres in a tile list is , the sorting of which

takes a time proportional to %L log Ni. In a sequential program the total time spent

sorting is therefore approximately Nilog % which is larger than the global sort

taking a time proportional to N3 log N3 . In a parallel program the average time a

render spends sorting is log %L which is always smaller than N3 log N3 provided

132

N3 Process + List Paint + Sort

500 0.22s 33.9s

1000 0.43s 43.2s

1500 0.64s 63.7s

2000 0.85s 81.7s

Table 4.2: Performance of Modifed Sequential Program

We altered the sequential implementation so that depth sorting was handled in this

way and timed execution for the same problems as those analysed in TcObJQ, 4.1.
The results of these timings are shown in Table 4.2.

The time taken to execute the four stages is increased, as we had anticipated,

however the strictly sequential part of the method is smaller. In actual fact the

combined preprocessing and tile listing stages are faster in the above table than

Tce. 4.1 since some optimisation is possible as the transformation and projection

of a sphere can now be performed within the same loop.

Preprocessing

During the preprocessing algorithm each sphere can be transformed independently.

We can trivially parallelise these transformations by assigning NL transformations

to each render task. The tile painting decomposition above requires each render

task to know the object and shadow space positions and radii of each atom; the

communication problem is similar to that found in a systolic loop approach to

molecular dynamics. We define a logical ring through the render tasks, which we

arrange in the configuration to correspond to a physical ring, and distribute the

transformed spheres by passing data around this ring.

If we do not attempt to overlap communication with calculation then each render

task simply transforms its set of spheres and thereafter sends to the next render,

133

and receives from the previous render, P blocks of transformed spheres.

The execution time of this algorithm varies as a + bN3 + cP compared to aN3

in the sequential case. In this equation a is the time taken for a transformation, b

is the time taken to transfer the positions and radii to the next neighbour in the

ring and c is the overhead in scheduling P message send and receive operations.

Examining 4.1 we find that a = 140jis whereas we anticipate b = 22.4a.s
and c < lOOjis, see Chapter 3.

Tile Listing

We can consider parallelising the tile listing calculation by allowing each render

to calculate lists forthe atoms which it has also transformed. This approach

Would require us to use a scheme similar to the above in order to to distribute these

partial lists among all renders. The quantity of data communicated in this case

is at least N + Ni; given the results of k 4.1 this far outweighs the effect of

distributing the initial tile intersection calculations.

It is also possible to consider distributing this calculation on the basis that in-

dividual tile lists can be calculated concurrently when the sphere projections are

repeated at every render. An examination of the second table of 4.1 indicates

that this might be a preferable scheme provided that each render task performs the

projection calculation only once. The amount of data to be communicated is again

at least N + Ni which prohibits use of this method.

In both the above schemes the gains of distributing the computation were out-

weighed by the requirement to distribute the results among the render tasks. It

would appear that we can avoid the need to distribute these results provided that

we adopt a static assignment of tiles to renders in which case each render calculates

lists and paints such tiles; this would suggest that we use a static load balancing

technique as opposed to the dynamic method described. A further breakdown of

the tile listing algorithm reveals that it will only be efficient to distribute in this

way if the assignment of tiles is a regular domain decomposition of the tile mesh so

134

that each render task clips to its own rectangular area of the eye plane.

In view of these considerations we do not find a satisfactory method for distribut-

ing this component of the algorithm. We can exploit the concurrent operation of

the transputer links and processor by arranging for this calculation to overlap the

communication of transformed atomic data in the preprocessing calculation; the

tile listing calculations take rather longer than the communication of data.

Performance Characterisation

We have implemented the parallelisation strategies discussed for the tile painting

and depth sorting stages of the algorithm. The distribution of preprocessing cal-

culations was not implemented; due to the fact that accor to -To-6 1 4, 4.1 a gain

of no more than 0.3s is anticipated which represents only approximately 15% of

the anticipated execution time in a target configuration of no more than 64 render

tasks. The schema of the parallel implementation is given in Figure 4.4.

We have measured the performance of this adaption, with actual display of the

image, for varying N3 and P using the same molecules as we had studied in charac-

terisation of the sequential algorithm. The results of these calculations are shown

in Figure 4.5. It is immediately clear that a significant increase in performance over

the sequential implementation is obtained as the execution time for the scene of

N = 2000 is approximately 2.14 s on 64 processors compared to about 83 seconds

in the sequential case.

Our model of the program indicates that we anticipate the execution tifrie will scale

as a + where a, b are related to the times reported in Table 4.2. In Figure 4.6

we plot the execution time against which indicates that such a relationship is

obeyed.

We expect the actual parameters to be larger on account of the messages sent to

the graphics processor; a is increased 	o' the maximum message through routing

overhead, and b is increased by b' the accumulated message send overhead. We

135

/* Preprocessing and. Tile Listing */

LOOP over all spheres in ''own'' block

Preprocess sphere

Project Sphere onto eye plane and clip

Append sphere to lists of intersected tiles

/* Tile Painting and Depth Sorting */

Let Easy and Hard be zero

LOOP over all tiles

IF one or more spheres impinge on tile

increment Hard

IF Remainder(Hard,P) equals p

Paint pixels of tile

Use Draw Block to set tile to calculated pixels

ELSE

Increment Easy

IF Remainder(Easy,P) equals p

Use Clear Block to set tile to background colour

control that render has finished

Figure 4.4: Schema of Parallel Algorithm

will

6.0

5.5

5 . 0

4 . 5

oN = 500
• 	 N = 1000

1500
• 	 *-- *N=2000

4.0

3.5
E

3.0

2.5

0

C.,

'C
U.,

1.5

1.0

0.5

0.0
10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70

Number of Renders

Figure 4.5: Execution Time of Parallel Program

have previously estimated a' = 0.6363. The processing overhead of a message

send is taken to be approximately 50 s; this is derived from the data presented

in Chapter 3 coupled with the additional overheads of the FORTRAN procedural

interface. We then obtain, under the same assumptions as those used in estimating

a', b' = 0.077s. These numbers are too small to be accurately resolved from the

inevitable "noise" in execution time data.

4.4 Summary

In this chapter we have described a simple but instructive application of the com-

munication system discussed in Chapter 3. The program concerned implements an

algorithm for rendering molecular images and the sequential execution time was

too long for "interactive" use.

137

6.0

4.0

E

C
0

C.,

'C
Li

2.0

0.0
0.010 0.020 	0.030 	0.040 	0.050 	0.060 	0.070

1/P

Figure 4.6: Scaling Behaviour of Execution Time

The algorithm was found to decompose into four components; processing, depth

sorting, tile listing and painting. The most time consuming of these components,

the painting operation, was effectively parallelised using a simple dynamic domain

decomposition method, based on an estimator of the computational effort associ-

ated with domains provided by a precs cling component. It was also convenient to

modify the sequencing of components in order to exploit parallelism in the depth

sorting operation.

It was not possible to find a satisfactory method for execution of the tile listing op-

eration which is therefore a sequential bottleneck in the parallel adaption. Despite

the fact that the final component, the preprocessing operation, is susceptible to

parallel execution this was not implemente •i iiould provide only small gains
and the FORTRAN programming environment offered poor support for the necessary

concurrent structures.

A significant decrease in execution time was obtained for up to 64 processors. The

138

parallel performance was modelled by a simple equation and the effect of message

passing on the parameters of this equation was examined. The additional overheads

due to the message passing architecture and communication system were found to

be negligible.

139

Chapter 5

Epilogue

In Chapter 2 w have discussed a number of issues pertaining to the design of com-

munication systems for distributed memory MIMD multicomputers. The future of

these machines certainly involves the provision of message through-routing in spe-

cialised hardware. In such cases it is prohibitivexpensive to assign large amounts

of memory to the routing hardware whith indicates that circuit or wormhole switch-

ing will be 'used. This observation also largely precludes the utilisation of a routing

table, which may limit the applicability of the methodology for construction of

acyclic routing functions. The considerations of the application interface are not

affected by the transferral of network into hardware.

We have implemented such a system for processor arrays composed of INMOS T800

transputers. The techniques used in this implementation, which are a specialisation

of those previously discussed, were described in Chapter 3. The message passing

overheads of the system were examined and found to be very small, comparing

favourably with a number of hypercube multicomputers. This software has been

incorporated into a large number of application from diverse fields; neural networks,

genetic algorithms, computer chess, image processing, molecular dynamics, cellular

automata, device simulation

We discussed in Chapter 4 a simple application which uses this system, in the field

of molecular graphics, in which we examined the effect of communication overheads

on the parallel adaption and found them to be negligible. In the absence of an "off

140

the shelf" communication system the development of this application would have

been considerably impeded by the requirement to implement message routing.

In this thesis we have constructed a general purpose communication system. There

is also some justification for the construction of paradigm specific communication

systems provided that said system can certainly support the paradigm more effi-

ciently than the general purpose system. This is the case in the fine grained task

farm paradigm and I have also been involved, in collaboration with Dominic M.

N. Prior, in implementing such a system. This work madea large contribution to

the implementation of the flood algorithm for topology eploration in TINY. Further

work, in collaboration with Dominic M. N. Prior, Michael G. Norman and Nicholas

J. Radcliffe, addressing the issue of topologies for multicomputer machines, is re-

ported in [PNRC90].

The experience gained in the above work has, not surprisingly, also found useful

applications. Since completing this work I have been involved in the adaption of a

molecular dynamics application for the simulation of large bio-polymers developed

in [HGS89}. It is intended to incorporate the rendering capability of the molecular

graphics algorithm described above into this program, allowing the biochemist to

observe atomic evolution in real computational time.

The project initially began as a simple port of an occam program from one trans-

puter based machine to the another. Assessing the performance of this program

on a larger transputer array (64+ processors) than the development machine (16

processors) revealed poor scaling behaviour; the execution time began to increase

at large enough array sizes. This was easily traced to a feature of the communi-

cation structure in which the time taken to distribute the partial forces acting on

the N atoms around the system of P processors increased with NP whereas this

operation can be performed in a time increasing with N alone. During this inves-

tigation a source of deadlock in the communication structure was observed and a

simple solution implemented using ideas discussed in Section 2.4. The resulting

performance was improved by up to a factor of 5 on a machine composed of 80

processors.

The Hubbard model project mentioned in Chapter 1 was revisited with the benefit

141

of knowledge gained in this work. The difficult global summation problem was

reconsidered in the light of our understanding of the transputer and a different

approach taken. In the previous approach the accumulation of partial sums had

been arranged to proceed at all nodes, firstly summing over the columns and then

over the rows, taking care to ensure that the same result will arrive at every pro-

cessor upon termination of the summation. Of course it is also possible to define

a tree through the toro al geoiry and arrange to compute partial sums at the

nodes of this tree, the final summation being completed at the root and thereafter

broadcast back down the tree. Where summations are occuring in rapid progression

then there is some advantage in alternating the root node between opposite poles of

the torus which creates a pipelined effect on tori with edge lengths greater than 4.

When it is possible to find calculations which can overlap the global summation this

transpires to be a better approach. In the Hubbard model calculation there are two

matrices to invert, one for each electron spin, and we can overlap the calculations

of one inversion and the communications of another, with careful programming. It

was also possible to assembler code a number of the critical routines, e.g. sdot and

saipy, to obtain a sequential performance of approximately 1 Mflop. The current

implementation of this application is now able to use the smallest possible domain

size, a single lattice site, and our model indicates that performance will be sus-

tained at approximately 0.8 Mfiops/node on arrays of up to 256transputers - it

has recently become possible to configure the ECS into such an array.

These two examples illustrate that the deeper understanding of general issues in

parallel performance is also directly beneficial in specific cases.

142

Bibliography

[AH89] 	R. J. Allan and E. L. Heck. Fortnet: a parallel Fortran harness for

porting application codes to transputer arrays. In L. M. Delves, editor,

Proc. mt. Conf. on Applications of Transputers, August 1989.

[BA88] 	D.J. Bacon and W.F. Anderson. A fast algorithm for rendering images

of solid objects with shadows, and its application in making pictures of

molecules. Manuscript in Preparation, 1988.

[BKW88] Ken C. Bowler, Richard D. Kenway, and David J. Wallace.. The Edin-

burgh Concurrent Supercomputer: Project and applications. In I.E.E.

Conference on the Design and Application of Parallel Digital Processors,

April 1988.

[BR89] 	Luc Bomans and Dirk Roose. Benchmarking the iPSC/2 hypercube

multiprocessor. 	Concurrency: Practice and Experience, 1(1):3-18,
September 1989.

[DKPR87] Simon Duane, A. D. Kennedy, Brian J. Pendleton, and Duncan Roweth.

Hybrid monte carlo. Physics Letters B, 195(2):216-222, September

1987.

[DS88] 	William J. Daily and Charles L. Seitz. The torus routing chip. Dis-
tributed Computing, 1:187-196, 1988.

[DZ83] 	J. D. Day and H. Zimmerman. The osi reference model, December

1983.

[FoxS9] 	Geoffrey C. Fox. Parallel computing comes of age: supercomputer

level parallel computations at Caltech. Concurrency: Practice and
Experience, 1 (1):63-103, September 1989.

143

[FvD82] J. Foley and A. van Dam. Fundamentals of Interactive Computer

Graphics. Addison Wesley Publishing Company, 1982.

[Ge185] 	D. GekdrAr. Generative communication in Linda. ACM Transactions

on Programming Languages and Systems, 7(1):80-112, 1985.

[Gun8l] 	K. D. Gunther. Prevention of deadlocks in packet switched data trans-

port systems. I.E.E.E. Transactions on Communications, 29(4):512-

524, 1981.

[HGS89] Helmut Heller, Helmut Grubmiiller, and Klaus Schulten. Molecular

dynamics simulation on a parallel computer. Submitted to Molecular

Simulation, 1989.

[H1u88] 	Micheal G. Hluchyj. Queueing systems in high performance packet

switching. I.E.E.E. Journal on Selected Areas of Communications,

6(9):1587-1597, December 1988.

[1nt86] 	Intel iPSC system overview. Intel Scientific Computers, 1986. Order

Number 310310-001.

[LB85] 	D. P. Landau and K. Binder. Phase diagrams and critical behaviour

of Ising square lattices with nearest-, next-nearest-, and third-nearest-

neighbour couplings. Physical Review B, 31(9):5946-5953, May 1985.

[LS86] 	D. P. Landau and R. H. Swendsen. Monte carlo renormalization-group

- 	study of tricritical behavior in two dimensions. Physical Review B,
33(11):7700-7707, 1986.

[Mcn] 	N. McNally, University of Southampton. Private Communication.

[MS80] 	P. Merlin and P. Schweitzer. Deadlock avoidáne in store and forward

networks. I.E.E.E. Transactions on Communications, 28(3), 1980.

[NLW88] D. A. Nicole, E. K. Lloyd, and J. S. Ward. Switching networks for

transputer links. In 8" Occam User Group on Developments using

occam, 1988.

[Nug88] 	S. F. Nugen. The iPSC/2 direct connect communications technology.

Intel Scientific Computers, 1988. Order Number 280115-001.

144

[NW88] 	Michl G. Norman and Sam Wilson. TITCH: Topology Independent

Transputer Communications Harness. Edinburgh Concurrent Super-

computer Project, 1988.

[PNRC90] Dominic M. N. Prior, Michael G. Norman, Nicholas J. Radcliffe, and

Lyndon J. Clarke. What price regularity? Concurrency: Practice and

Experience, 2(1):55-78, March 1990.

[Pou90] 	Dick Pountain. Virtual channels: The next generation of transputer.

BYTE Magazine, April 1990. Appeared in the Europe and World

section.

[Ros87] 	A. W. Roscoe. Routing messages through networks: An exercise in

deadlock avoidance. In T. Muntean, editor, 7th Occarn User Group on

Parallel Programming of Transputer Based Machines, September 1987.

[Sei85] 	Charles L. Seitz. The cosmic cube. Communication of the ACM,

28(1):22-23, January 1985.

[SurJ 	M. W. Surridge, Univerity of Southampton. Private Communication.

[Sur90] 	M. W. Surridge. .ECCL a general communications harness and configu-

ration language. In D. J. Pritchard and C. J. Scott, editors, Proceedings

of the Second International Conference on Applications of Transputers,

pages 341-354, 1990.

[Tan89] 	Andrew S. Tannenbaum. Computer Networks. Prentice-Hall Interna

tional, second edition, 1989.

145

