
An Object-Oriented

Programming Environment

for

Parallel Genetic Algorithms

José Luiz Ribeiro Filho

a thesis submitted fo r the degree o f

Doctor of Philosophy in Computer Science

University of London

Department of Computer Science
University College London

1995

ProQuest Number: 10106524

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest.

ProQuest 10106524

Published by ProQuest LLC(2016). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code.

Microform Edition © ProQuest LLC.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

Abstract

This thesis investigates an object-oriented programming environment for building parallel
applications based on genetic algorithms (GAs). It describes the design of the Genetic Algorithms
Manipulation Environment (GAME), which focuses on three major software development
requirements: flexibility, expandability and portability. Rexibilitv is provided by GAME through
a set of libraries containing pre-defmed and parameterised components such as genetic operators
and algorithm s. Expandabilitv is offered by G AM E’S object-oriented design. It allows
applications, algorithms and genetic operators to be easily modified and adapted to satisfy diverse
problem’s requirements. Lastly, portabilitv is achieved through the use of the standard C++
language, and by isolating machine and operating system dependencies into low-level modules,
which are hidden from the application developer by GAM E’S application programming
interfaces.

The development of GAME is central to the Programming Environment for Applications
o f PArallel GENetic Algorithms project (PAPAGENA). This is the principal European
Community (ESPRIT III) funded parallel genetic algorithms project. It has two main goals: to
provide a general-purpose tool kit, supporting the development and analysis of large-scale
parallel genetic algorithms (PGAs) applications, and to demonstrate the potential of applying
evolutionary computing in diverse problem domains.

The research reported in this thesis is divided in two parts: i) the analysis of GA models
and the study of existing GA programming environments from an application developer
perspective; ii) the description of a general-purpose programming environment designed to help
with the development of GA and PGA-based computer programs. The studies carried out in the
first part provide the necessary understanding of GAs’ structure and operation to outline the
requirements for the development of complex computer programs. The second part presents
GAME as the result of combining development requirements, relevant features of existing
environments and innovative ideas, into a powerful programming environment. The system is
described in terms of its abstract data structures and sub-systems that allow the representation of
problems independently of any particular GA model. GAME’S programming model is also
presented as general-purpose object-oriented framework for programming coarse-grained parallel
applications.

GAME has a modular architecture comprising five modules: the Virtual Machine, the
Parallel Execution Module, the Genetic Libraries, the Monitoring Control Module, and the
Graphic User Interface. GAME’S genetic-oriented abstract data structures, and the Virtual
Machine, isolates genetic operators and algorithms from low-level operations such as memory
management, exception handling, etc. The Parallel Execution Module supports GAME’S object-
oriented parallel programming model. It defines an application programming interface and a
runtime library that allow the same parallel application, created within the environment, to run on
different hardware and operating system platforms. The Genetic Libraries outline a hierarchy of
components implemented as parameterised versions of standard and custom genetic operators,
algorithms and applications. The Monitoring Control Module supports dynamic control and
monitoring of simulations, whereas the Graphic User Interface defines a basic framework and
graphic ‘widgets’ for displaying and entering data.

This thesis describes the design philosophy and rationale behind these modules, covering
in more detail the Virtual Machine, the Parallel Execution Module and the Genetic Libraries. The
assessment discusses the system’s ability to satisfy the main requirements of GA and PGA
software development, as well as the features that distinguish GAME from other programming
environments.

cm c/ jéna^

Acknowledgements

A Ph.D. thesis is, in my opinion, the result of a combination of efforts focused on one
person, the student. W ithout the supervisor’s advice, institutional sponsorship, friends’
encouragement and, most of all, family support, it would be extremely hard, perhaps impossible,
for a post-graduate student to successfully conclude such an enterprise. Therefore, it is very
difficult for me to express, in these few paragraphs, my gratitude to everyone whose behind-the-
scenes work contributed to the completion of this thesis.

In first place, I would like to express my greatest indebtedness to Professor Philip
Treleaven, my supervisor. His continuous support, encouragement and concern were extremely
important to the conclusion of this thesis. I also thank Professor Treleaven for the unique
opportunity he granted me to take part on a European research project. The PAPAGENA project
exposed my research to a wide audience and gave me the chance to leam from the feedback it
provided. The understanding and experience I have gained in the project go far beyond the
frontiers of the pure scientific knowledge I acquired in this thesis.

In the institutional area, I am very grateful to the Brazilian government for the
sponsorship of this thesis, through the Coordenaçâo de Aperfeiçoamento de Pessoal de Ensino
Superior (CAPES). I am also obliged to my employer, Universidade Federal do Rio de Janeiro,
which supported me in this enterprise, and the Department of Computer Science at University
College London, which provided the means for me to pursue this thesis’ research.

I am also thankful to Dr. Peter Rounce and my friend Antonio Braga for their invaluable
comments and suggestions, while reading the first draft of this thesis.

Very special thanks must go to colleagues and friends who worked in the PAPAGENA
project: Cesare Alippi, who first introduced me to the Genetic Algorithms, Jason Kingdon and
Laura Dekker. Laura, in special, for her immense patience and tireless disposition to hear and
discuss design and implementation details throughout this research. Her constructive criticisms on
this thesis’ draft were also very much appreciated. I am much thankful, as well, to all
PAPAGENA partners and the reviewers of the ESPRIT programme for their invaluable input and
recommendations, which led to several improvements in GAME’S design.

I must also express my appreciation for the friendship of Celina Motta, Felipe, Priscila,
Paulo Rocha, Marco Pacheco and Meyer Nigri, in particular, who gave me exceptional support
throughout these years.

Finally, I cannot forget to mention my gratitude for the support I have received firom my
parents and brothers. In particular Tadeu, who has been hearing my complaints and sorting out
our problems in Brazil since we left. However, I feel extremely difficult to put down in words the
immense gratefulness I have to my wife Maria Teresa and my daughter Ana Carolina. The love,
endless care, concern, support, and encouragement that Teresa gave me during all these years
were the true driving forces of this thesis. Ana, with her innocent love, gave me the inspiration
and motivation to carry on during the difficult moments of this thesis. Her little smiles were an
infinite source of reassuring that renewed my determination to complete the work.

Table of Contents

A b st r a c t 3

A c k n o w l e d g e m e n t s 7

L ist o f Fig u r e s 13

L ist o f T a b l e s 15

Ch a p t e r 1 - In t r o d u c t io n 17

1.1. Motivations and Research Goals.. 18
1.2. Research Contributions..21

1.3. Thesis Overview...22

Ch a p t e r 2 - G e n e t ic Al g o r it h m s R e v isit e d 25

2.1. Introduction.. 25
2.2. Evolutionary Computing... 25

2.2.1. Classes of Search Techniques...26

2.3. Genetic Algorithms.. 28
2.3.1. Representation and Coding... 30
2.3.2. Genetic Operators... 33
2.3.3. Fimess Evaluation..38

2.4. Parallel Genetic Algorithms..39
2.5. Summary..43

Ch a p t e r 3 - Pr o g r a m m in g E n v ir o n m e n t s f o r

G e n e t ic A l g o r it h m s 45

3.1. Overview...45
3.2. Taxonomy of GA Progranuning Environments...46

3.3. Application-oriented Systems..47

3.4. Algorithm-oriented Systems..49
3.4.1. Algorithm-specific Systems.. 49
3.4.2. Algorithm Libraries.. 53

3.5. Tool Kits...55
3.5.1. Educational Systems... 55
3.5.2. General-purpose Programming Systems...57

3.6. Summary..61

C h a pt e r 4 - T h e G A M E Sy stem 63

4.1. Introduction...63

4.2. GAME Architecture... 64
4.2.1. Genetic Representation..65
4.2.2. Programming Model.. 66

4.3. GAME Modules.. 67
4.3.1. Virtual Machine...68
4.3.2. Parallel Execution Module.. 69
4.3.3. Genetic Libraries..69
4.3.4. Monitoring Control Module.. 70
4.3.5. Graphical User Interface..70

4.4. PAPAGENA Applications... 70
4.5. Summary... 72

C h a pt e r 5 - T h e G e n e t ic -O r ie n t ed Re pr e se n t a t io n and

THE V ir t u a l M a ch in e 73

5.1. Overview... 73
5.2. Representing Genetic Data Structures in GAME... 74

5.2.1. GAME’S Genetic-Oriented Data Types..76
5.2.2. The Genetic type class hierarchy...81
5.2.3. The DnaCoUection..82
5.2.4. The DnaNode... 85
5.2.5. The Individual.. 86
5.2.6. Commands to DnaCoUection objects.. 88
5.2.7. The DnaNodeMsg class...89

5.3. The Virtual Machine.. 90
5.3.1. Virtual Machine Commands... 92

5.4. The Population Manager... 94
5.4.1. Population Manager Commands...94

5.5. The Fitness Evaluator... 95
5.5.1. Fitness Evaluator Commands.. 96

5.6. The ParaUel Support Module...97

5.7.TheVM-AP I ... 98

5.8. Summary... 98

C h a p t e r 6 - G A M E ’S P r o g r a m m in g M o d e l and

THE P a r a l l e l E x ec u tio n M o d u le 101

6.1. Introduction...101
6.2. Parallel Progranuning Software Strategies... 102

6.2.1. Language Based Mechanisms... 104
6.2.2. Operating System Based Mechanisms.. 106
6.2.3. Language and Operating System Independent..109

6.3. g a m e ’s ParaUel Programming Model...112
6.3.1. The Messaging Sub-System..113

10

6.4. The Parallel Execution Module.. 117
6.4.1. PEM Implementation..120

6.5. PEM Application Program Interface... 127

6.6. Summary..127

C h a p t e r 7 - T h e GAME L i b r a r i e s 129

7.1. Introduction.. 129

7.2. Parameterising GA Applications.. 131

7.3. The Genetic Libraries..132

7.4. The Service Libraries..137

7.5. Summary..142

C h a p t e r 8 - A sse s sm e n t 145

8.1. Review of Objectives... 145
8.2. Assessment of GAME’S Modules..146

8.2.1. Virtual Machine...146
8.2.2. Parallel Execution Module...148
8.2.3. GAME Libraries..149

8.3. Assessment of the Integral GAME...150
8.3.1. Suitability for Applications’ Requirements.. 150
8.3.2. Design and Implementation..151
8.3.3. Performance.. 151

C h a p t e r 9 - C o n c lu s io n s a n d F u t u r e W o r k 167

9.1. Thesis Summary...167
9.2. Research Contributions..168
9.3. Future Work... 169

9.4. Final Remarks..170

R e f e r e n c e s 173

B ib l io g r a p h y 181

A p p en d ix A - P u b l is h e d W o r k 185

A p p en d ix B - VM-API 187

A p p en d ix C - PEM-API 205

A p p en d ix D - C la s s H i e r a r c h y 215

11

12

List of Figures

Figure 2.1 - Classes of search techniques.. 27
Figure 2.2 - The GA cycle... 29

Figure 2.3 - Crossover..29

Figure 2.4 - Mutation...29

Figure 2.5 - The Schema Theorem..32

Figure 2.6 - The GA hierarchy.. 34
Figure 2.7 - Sequential and parallel genetic algorithm models..41

Figure 4.1 - A genetic-oriented representation..65
Figure 4.2 - Sequential and parallel GAME apphcations...67

Figure 4.3 - GAME’S modular architecture.. 68
Figure 5.1 - A one-dimensional string representation..74
Figure 5.2 - Concatenating strings on multi-dimensional problems... 74
Figure 5.3 - A bi-dimensional genetic representation...75

Figure 5.4 - A GP tree mutation.. 76
Figure 5.5 - The DataUnit base class... 77
Figure 5.6 - A GAME data class (ga_int).. 78
Figure 5.7 - Simple and complex genetic representations in GAME....................................... 79
Figure 5.8 - The NodePath class... 81
Figure 5.9 - Class hierarchy of GAME’S genetic-oriented objects..82

Figure 5.10 - The DnaCoUection class...83
Figure 5.11 - A DnaCoUection object... 84

Figure 5.12 - The DnaNode class..85
Figure 5.13 - The Individual class...87

Figure 5.14 - The DnaNodeMsg class.. 89
Figure 5.15 - The Virtual Machine and its modules..91

Figure 5.16 - The VirtualMachine class...92

Figure 5.17 - The VmMsg package class..93

Figure 5.18 - The PopulationManager class..94
Figure 5.19 - The FitnessEvaluator class..96

Figure 6.1 - The GameStreamObject base class...115

Figure 6.2 - GameStreamObject example...115

Figure 6.3 - Message package class hierarchy...116

Figure 6.4 - Event driven-processing.. 118
Figure 6.5 - Component’s interactions and PEM..119

Figure 6.6 - PEM layers and low level support systems... 120

13

Figure 6.7 - A PEM “external component”... 121
Figure 6.8 - Application components and their communication objects..................................123

Figure 6.9 - GAME components class hierarchy... 124

Figure 6.10 - A GAME configuration file example.. 126
Figure 6.11 - The component data base entry...127

Figure 7.1 - Application and libraries..130

Figure 7.2 - The Game component class... 133

Figure 7.3 - The Application component class..134

Figure 7.4 - The Algorithm component class..134
Figure 7.5 - The Operator component class..135

Figure 8.1 - Relative execution times for 44 generations... 155

Figure 8.2 - Relative execution times for 1000 generations...156
Figure 8.3 - Relative execution times for a 5-bit representation.. 158

Figure 8.4 - Relative execution times for a 30-bit representation..158
Figure 8.5 - Total x Evaluation tim e...160

Figure D.l GAME Class Hierarchy..215

Figure D.2 PEM Class Hirarchy... 216

14

List of Tables

Table 2.1 - PGA Models... 42

Table 3.1 - Classes of GA programming environments... 46

Table 5.1 - GAME data types.. 77

Table. 5.2a - DnaCoUection node commands..88
Table. 5.3b - DnaCoUection data commands..88

Table 5.4 - VM commands...94

Table 5.5 - Population Manager commands.. 95
Table 5.6 - Fimess Evaluator commands.. 97
Table 6.1 - PEM Interface functions... 121

Table 6.2 - IPC interface functions...122
Table 7.1 - Standard components of the Operators library.. 135
Table 7.2 - GAs and PGAs modules.. 137
Table 7.3 - Functions of the PEM A PI..138
Table 7.4 - VM-API - Pool manipulation functions... 139
Table 7.5 - VM-API - Individual manipulation functions.. 140

Table 7.6 - VM-API - DnaNode manipulation functions... 140

Table 7.7 - VM-API - Fimess evaluation and related functions.. 141
Table 7.8 - VM-API - Error functions... 141
Table 7.9 - VM-API - DataUnit manipulation functions... 142
Table 8.1 - Total execution times(sec) x Number of generations..154

Table 8.2 - Total and partial times (sec) for 44 generations.. 154
Table 8.3 - Total and partial times (sec) for 74 generations.. 154
Table 8.4 - Total and partial times (sec) for 550 generations.. 154

Table 8.5 - Total and partial times (sec) for 1000 generations...................................... 155

Table 8.6 - Total and partial times (sec) for a population of 50 individuals................156

Table 8.7 - Total and partial times (sec) for a population of 200 individuals............. 157

Table 8.8 - Total and partial times (sec) for a 5 bit representation............................... 157

Table 8.9 - Total and partial times (sec.) for a 30 bit representation...................................... 157

Table 8.10 - Total and partial times (sec.) for a simple (fast) evaluation function................ 159

Table 8.11 - Total and partial times (sec.) for a complex (slow) evaluation function............159

Table 8.12 - Minimum evaluation time for 5 and 30-bit representations (millisecs.).............163

15

16

Chapter 1

Introduction

The work presented in this thesis represents an attempt to provide software developers

with a powerful programming environment for building applications based on genetic algorithms

(GAs). This research is based on an analysis of the characteristics of sequential and parallel

genetic algorithm (PGA) models, and on a detailed study of several classes of software systems

for programming GA applications. The analysis of different GA models revealed a number of

important characteristics and requirements. These, added to a selection of features exhibited by

existing programming environments, provided the starting point for the definition of a general-

purpose programming environment. Three key requirements to support GA and PGA application

development emerged from these studies:

• flexibility is imperative for the construction of a wide range of GA and PGA-based

applications. Software modules such as genetic algorithms and operators, already

built for an application (or algorithm) should be made available to be re-used in the

constmction of new algorithms and applications;

• expandability is important to allow any software module to be effortlessly enhanced

or adapted to accommodate characteristics and requirements of new GAs or problems;

• portability is essential to provide seamless development and execution of applications

on a variety of sequential, parallel and distributed computer architectures.

The Genetic Algorithms Manipulation Environment (GAME), presented in this thesis, is

the result of the combination of GAs’ programming requirements with the principal features of

existing programming environments. Moreover, to deliver the required degree of flexibility,

expandability and portability, GAME’S design is based on modem object-oriented concepts that

permits applications built with the system to be executed in a heterogeneous distributed

computing environment.

From a strictly practical perspective, GAME has been helping with the dissemination of

the genetic algorithm technique through the facilities it offers for rapid configuration of

applications and implementation of complex GAs and PGAs. The system is central to the

Programm ing Environm ent for A pplications o f PA rallel G E N etic Algorithms project

(PAPAGENA). This is the principal European Community (ESPRIT III) funded parallel genetic

17

18_________________________________ Introduction___________________________Chapter 1

algorithms project. PAPAGENA has two main goals: to provide a general-purpose tool kit,

supporting the development and analysis of large-scale parallel genetic algorithms (PGAs)

applications, and to demonstrate the potential of applying evolutionary computing in diverse

problem domains. The system is being developed by University College London, which has the

following PAPAGENA partners: CAP Volmac (Holland) and KiQ (England), developing a

decision support system for financial organisations; Brainware GmbH (Germany) working on the

prediction of stable protein structures and, in conjunction with IfP (Germany), building an

economic modelling application to support governmental planning and decisions. Other partners

are GMD (Germany), investigating parallel GAs theory and TELMAT Informatique (France),

responsible for porting GAME to parallel machines.

1.1. Motivations and Research Goais

Evolutionary computing in general, and genetic algorithms in particular, provide a

powerful mechanism to solve problems previously regarded as “intractable”. However, due to the

stochastic nature of these techniques, the execution of a number of simulations is required before

a final solution is obtained. Moreover, the user is often presented with a number of GA-related

parameters to configure, before running a simulation. The correct setup for GA parameters,

among other factors, has proven to be essential in obtaining fast and accurate results.

Nevertheless, parameter tuning is still an empirical operation. The common method to fine tune a

GA is based on the execution of the same algorithm, with small variations on the parameter set,

in order to identify their influence in the overall performance. This particular situation suggests

the use of several versions of the same GA, with different parameter sets, possibly running in

parallel.

Parallelism may also be applied to speedup the execution of GAs by simultaneously

evolving multiple sub-populations. An increasing number of parallel models for genetic

algorithms has appeared in the literature in recent years. Suitable support for developing and

running parallel genetic algorithms is therefore one of the most important requirements for a

comprehensive tool kit.

An interesting aspect of the GA model relates to its structure. A genetic algorithm

comprises a set of genetic operators, which are combined and “activated” in a particular way. A

genetic operator can be described as a self-contained program module embodying specific

knowledge about the actions it has to perform over genetic data structures. Genetic operators are,

therefore, independent from any particular GA model, being able to be used in different models.

In fact, what characterises a genetic algorithm is the number, type and activation sequence of its

genetic operators. This implies that different GAs can be created by simply replacing one or more

genetic operators in a standard GA-template. A subtle consequence of this characteristic is the

Chapter 1_____________________________Introduction___________________________________ 19

possibility to parameterise a G A in terms of its genetic operators. This approach is very attractive

for experimenting with variations of a basic genetic operator, or quickly adapting a GA for

different problems. The same consideration can be extended to applications, permitting them to be

parameterised in terms of GAs.

Monitoring a GA simulation is important to identify and control anomalies in the GA

execution such as early convergence. It is even more important when a number of parallel GAs

are working in conjunction to solve a large problem. Performance bottlenecks and runtime

problems can be quickly identified by monitoring communication between co-operating processes

as well as hardware and operating system signals. The actual amount of information to monitor

depends on the size of the problem and is, in many cases, very large. In such applications, text-

based displays may complicate even more the analysis of the algorithm’s progress. Therefore, a

monitoring system combined with a graphical interface to display intermediate results and control

the execution, is an essential tool to supervise the GA dynamics.

The above discussion highlights the importance of an in-depth understanding of the GA

structure and operation before any attempt to design any software system for helping with the

creation of GA-based applications. It also provides the basis for outlining the requirements for

such software systems, which would include:

• the ability to execute multiple instances of the same algorithm in parallel,

• facilities for selective reconfiguration of GAs through the substitution of its modules

(e.g. genetic operators, string encoding and decoding functions and problem-dependent

objective function),

• the ability to implement classes of genetic algorithms and operators independently of

problem representation,

• facilities to dynamically monitor and control the GA execution.

Some desirable features to be added are:

• diverse parameterised algorithms and genetic operators grouped into libraries to

accelerate the creation of new apphcations;

• efficiency in executing algorithms, independent of machine and operating system

particularities - the same application should be able to run on either scalar or parallel

machines. Distributed systems consisting of heterogeneous computing elements, inter­

connected by one or more networks, should also be supported.

A growing number of software systems ranging from specialised environments, targeted

at particular problem domains, to general-purpose programming environments [73] have been

attempting to address these issues. The leading general-purpose GA programming environments

20___________________________________ Introduction____________________________ Chapter 1

are GENESIS from Grefenstette [40], and GOG A from Davis [24], which were created to

demonstrate the use of GAs. Other programming systems have already reached a mature stage

and are becoming commercial products. Evolver from Axcelis and MicroGA from Emergent

Behavior are successful examples. Their common aim is to provide an efficient tool to help in

applying GAs to complex real-world problems. However, most of the currently available

programming environments provide rather simple facilities and little support for programming

complex apphcations. Problem representation is often dependent on specific GA models, as well

as the genetic operators used to manipulate their genetic data. In general, it is very difficult to

adapt these systems to use algorithms and operators designed for different problem domains. Few

systems can be regarded as truly general-purpose tool kits. An example is Splicer (from NASA)

[65], which provides some facilities to describe data structures, create new operators and

algorithms, and monitor the execution of applications. However, Splicer does not address

parallelism. Other general-purpose systems such as PeGAsuS [38] and GAUCSD [85] provide

facilities for parallel execution, but applications created with them are not portable across

different hardware or operating system platforms.

The lack of a programming environment that could satisfy all the requirements previously

listed, and yet serve as a framework for developing real-world applications, experimenting with

new GAs, and comparing already existing ones, motivated this research. The main objectives

pursued being:

• to provide a flexible programming environment, allowing the user to rapidly configure

and run a broad range of GA and PGA-based applications, as well as compare and

experiment with new genetic algorithms and operators;

• to define an expandable set of libraries containing parameterised genetic algorithms

and operators that could be combined into applications and algorithms, respectively.

Furthermore, application developers should be able to easily build new modules or

modify existing ones, and incorporate their new implementations into these Ubraries;

• to permit the development of portable applications by offering hardware and operating

system independence. The same application should be able to execute in diverse

sequential, parallel or distributed computing environments.

1.2. Research Contributions

The contributions of the research reported in this thesis can be listed along several lines.

Firstly, it organises the various types of GA programming environments under a common

taxonomy. This effort has been acknowledged by the GA community and is part of a

comprehensive survey of GA programming environments published by the IEEE COMPUTER

Chapter 1____________________________ Introduction___________________________________ 21

magazine [73]. The major contribution though, is the design and implementation of GAME itself,

which can be summarised in the following points:

• the design and implementation of a general-purpose tool kit supporting the essential

requirements of GAs and PGAs. GAME combines the most important features of

existing programming environments, with enhancements and new concepts, aimed at

helping with the creation of complex sequential and parallel apphcations.

• the definition of genetic-oriented abstractions that enable the representation of

complex problems’ data structures, independently of any sequential or paraUel genetic

algorithm model.

• the development of a manipulation engine that operates over the genetic representation

- the Virtual Machine. GAME’S Virtual Machine isolates the application developer

from low-level operations such as memory management, via a high-level Application

Program Interface (API).

• the definition of an object-oriented parallel programming model, as well as the design

of its portable communication and process control support - the Parallel Execution

Module.

• the introduction of an extra level of parameterisation for genetic algorithms and

applications that facilitates their construction through the combination of stand-alone

executable components and dynamically linked library (DLL) components.

GAME is also the core of the major European Community funded ESPRIT III project,

PAPAGENA. As such, the system has been widely distributed to the industry and academia

(directly from UCL or electronically through the Internet) since its early versions.

In addition, this research has produced papers published in the proceedings of the IEEE

World Congress on Evolutionary Computing [75], the International Conference on Massively

Parallel Applications [74], the IMACS World Congress [95], the lEE Workshop on Apphcations

of Parallel Genetic Algorithms [76] and the World Transputer Congress ’94 [94]. It also

produced 4 research notes that have been published in two books [29,72,77,48]. Finally, a paper

on the exploitation of massively parallel genetic algorithms using GAME is due to appear in the

journal entitled Simulation Practice and Theory.

1.3. Thesis Overview

This thesis is divided in two main parts. The first part presents an overview of genetic

algorithms, emphasising the most important characteristics presented by a variety of GAs, from

an application developer point of view. A brief introduction of the GA theory is followed by a

22__________________________________ Introduction____________________________Chapter 1

description of Holland’s “traditional” GA computing model. Variations of this model are also

presented, highlighting their common characteristics. Special attention is given to parallel genetic

algorithms, where different levels of parallelism are identified. The first part also includes an

extensive survey of existing programming environments for programming GAs and PGAs. A

taxonomy is introduced, classifying the systems in three major categories:

• Application-oriented systems,

• Algorithms-oriented systems and

• Tool Kits

The second part presents GAME as a powerful environment for programming GA-based

applications. The system attempts to cover a broad spectrum of software development needs,

ranging from research to industrial applications. GAME can be used to create software

applications to solve many real-world problems commonly found in industry, or to perform

research experiments with new models for genetic algorithms and operators. It can also be

applied as a tool for evaluating and comparing different GAs and PGAs.

The description of the system starts with an overview of its modular architecture. The

importance of its object-oriented design is stressed as an effective means for simplifying the

creation of complex and sophisticated applications, where a minimum degree of intervention from

the user is desired. Special attention is dedicated to the presentation of the genetic-oriented

abstractions defined in GAME. They provide the means for representing complex problems and

GA independent manipulation of genetic data structures.

The Virtual Machine’s description emphasises the necessity to provide the application

developer with a general-purpose, genetic-oriented, manipulation engine. The Virtual Machine

operation is controlled via a standard application programming interface that isolates the user

from low-level tasks such as memory management and certain types of exception handling.

Another important element of GAME’S architecture is the Parallel Execution Module. It supports

the implementation of GAs and PGAs in terms of parameterised components (algorithms and

operators). Genetic operators, for instance, can be combined in a variety of ways to configure a

number of different GAs. This approach is also the basis for parallelising GAs under GAME,

since it permits each component to execute as an independent process. Furthermore, GAME’S

parallel programming model was designed to be insensitive to any particularity of the GA model,

permitting it to be applied as a general-purpose method for programming other types of object-

oriented parallel applications. All this flexibility could be achieved thanks to the employment of a

distributed object-oriented computing philosophy.

The implementation of the whole system is described in terms of its two main sets of

C++ class libraries: the Genetic and the Service libraries. The Genetic libraries maintain

Chapter 1_____________________________Introduction___________________________________ 23

hierarchically organised groups of parameterised applications, genetic algorithms and operators.

The Service libraries, on the other hand, bring together the various modules of GAME that

implement the runtime support for the GA execution (the Virtual Machine), control of parallehsm

and communications (the Parallel Execution Module), as well as the graphic user interface and

monitoring modules.

The assessment of GAME’S design and implementation was conducted bearing in mind

the three main objectives of this research: flexibility, expandability and portability. Various tests

have also been carried out to evaluate the system’s performance.

Finally, it is important to stress that this research demonstrates not only the feasibility of

designing and implementing a sophisticated programming environment, but also the ability to

galvanise research groups and industry into promising new technologies such as evolutionary

computing.

1.4. Thesis Organisation

The remainder of this thesis is organised in eight chapters, ranging from a review of GAs

and PGAs to a detailed description of GAME’S architecture, design and implementation.

Chapter 2 begins with a brief overview of search techniques to introduce genetic

algorithms, in the random search class. It then presents a short review of the GA theory, stressing

the important characteristics and requirements from end-user and software developers’ point of

view. Special attention is dedicated to the discussion of parallel GA models presented in the

hterature.

Chapter 3 examines existing genetic algorithms programming environments. It introduces

a taxonomy that classifies the various types of GA programming environments, based on their

common features.

Chapter 4 brings together the requirements derived from Chapter 2 and the most

important features described in Chapter 3 into the design of a general-purpose programming

environment for the construction of GA and PGA-based applications. GAME’S architecture is

introduced, w ith a short description of its genetic-orien ted abstractions for problem

representation, programming model and main modules.

Chapter 5 describes GAME’S genetic-oriented abstractions for problem representation

and the Virtual Machine (VM) module. The VM design is presented as a problem and GA

independent engine, responsible for the manipulation of GAME’s genetic data structures. Each of

VM’s specialised modules, the Population Manager and the Fitness Evaluator, is described

24___________________________________Introduction____________________________ Chapter 1

along with its additional ability to parallelise command execution. Finally the Virtual Machine’s

Applications Program Interface is presented.

Chapter 6 starts with an analysis of three software strategies used to support inter­

process communication and control of parallelism. It proceeds with the description of GAME’S

object-oriented parallel programming model, the design of the Parallel Execution Module (PEM)

and its apphcation programming interface.

Chapter 7 discusses the parameterisation of applications and genetic algorithms in the

Genetic libraries and the design and composition of the Service hbraries.

Chapter 8 assesses the research carried out in this thesis. The main elements are

discussed, investigating their strengths and weaknesses. It includes a judgement of the system’s

ability to fulfil the main requirements for GA programming. GAME’S ability to support the

creation of GA and PGA models are discussed along with the facilities it provides for expanding

its various libraries. The portability of the applications created with GAME and its own

portability are also assessed. Finally, various tests are conducted to assess the performance of

programs created with GAME, in comparison with other environments (GENESIS) and stand­

alone versions.

The final chapter summarises the main results achieved during this thesis investigation. It

presents some of the conclusions drawn from the work, and discusses possible future research.

Chapter 2

Genetic Algorithms Revisited

This chapter reviews the genetic algorithms search and optimisation technique. It
focuses on the computational models o f sequential and parallel G As to outline
relevant characteristics and requirements fo r the design o f a general-purpose
programming environment.

2.1. Introduction

A new class of search and optimisation techniques has been increasingly attracting the

attention of researchers from many diverse domains. These Evolutionary Techniques are based on

simple concepts that are easy to implement - essentially natural evolution mechanisms.

Nevertheless, these techniques are very robust and efficient, having outperformed traditional

search techniques in many complex problems. Evolutionary Techniques are particularly strong on

multi-modal and noisy problems, which are not well suited to traditional numeric techniques.

They comprise Genetic Algorithms (GA), Evolutionsstrategie (ES) and Genetic Programming

(GP), with the first one being the most well known.

This chapter briefly introduces these techniques, discussing genetic algorithms in more

detail. The discussion presented in this thesis approaches the computing models of these

techniques from the application developer point of view. It is therefore, not concerned with

theoretical aspects or suitability of these techniques to any particular domain or problem. The

theory behind these techniques has been evolving since the creation of the Genetic Algorithms and

Evolutionsstrategie, in the seventies. Several studies reported in the major conferences of the field

[106,107,108,109,110] discuss classes of problems these techniques may be apphed to, as well as

ways to find suitable representations for different problems.

2.2. Evolutionary Computing

Biologists have been intrigued with the mechanics of evolution, since the evolutionary

theory of biological change gained acceptance [24]. Many people are astonished that life at the

25

26___________________________ Genetic Algorithms Revisited____________________ Chapter 2

level of complexity we observe could have evolved in a relatively short time, as suggested by the

fossil record.

Natural evolution has also intrigued many scientists not directly involved in biological

research. Most of them are interested in understanding the mechanisms used by nature to solve

highly complex problems - such as those involving life and environment - and apply them in a

variety of human knowledge domains. These ideas inspired people like Holland [47], Rechenberg

[71], Schwefel [82] and Koza [51,52,53] among others, in creating search and optimisation

techniques that can be grouped under the term Evolutionary Techniques. The materialisation of

these techniques into computer programs is then known as Evolutionary Computing.

Each one of these techniques presents their own particularities, but they all have in

common the following characteristics:

• The search for the best solution to a given problem is carried out by testing a number

of potential solutions (the population) through a mechanism (evaluation function)

which returns a measure of their relative performance.

• The population evolves towards the best solution by means of modifications on

selected population members. The way modifications are employed mimics nature’s

asexual and sexual reproduction mechanisms.

• They are all stochastic techniques and their best results are only valid within a user-

defined interval of confidence.

Genetic algorithms are the most prominent of these techniques and have been employed

to solve a variety of complex problems [15,21,43,91]. The following sections present an overview

of the genetic algorithms technique. Starting with a brief description of classes of search

techniques, this chapter proceeds with the description of the traditional G A model, highlighting

important issues such as problem representation, algorithm structure and its parallehsation.

2.2.1. Classes of Search Techniques

Search techniques, in general, can be grouped into three broad classes [36] (as illustrated

in Figure 2.1): Calculus-based, Enumerative and Guided Random search.

Calculus-based techniques use a set of necessary and sufficient conditions to be satisfied by the

optimal solutions of an optimisation problem. These techniques sub-divide into indirect and direct

methods. Indirect methods look for local extrema by solving the usually non-linear set of

equations resulting from setting the gradient of the objective function equal to zero. The search

for possible solutions (function peaks) starts by restricting the search to points with zero slope in

all directions. Examples of Direct methods include Newton and Fibonacci. The latter, for

Chapter 2 Genetic Algorithms Revisited 27

instance, seeks extrema by “hopping” around the search space and assessing the gradient of the

new point, which guides the direction of the search. This is simply the notion of Hill-Climbing,

which finds the best local point by “climbing” the steepest permissible gradient. However, these

techniques can only be employed on a restricted set of “well behaved” problems.

Figure 2.1 - Classes o f search techniques

SEARCH TECHNIQUES

CALCULUS
BASED

GUIDED RANDOM ENUMERATIVE

DIRECT

Fibonacci Newton

INDIRECT Simulated
Annealing EVOLUTIONARY

TECHNIQUES

Dynamic
Programming

GENETIC
ALGORITHMSEVOLUnONSSTRATEGIES

PARALLEL SEQUENTIAL

GENETIC
PROGRAMMING

(Koza)

E.S. E.S. E.S. ^ ^ _______
& ASPARAGOS Distributed SGA GENITOR GENESIS

(Gorges- GA (Goldt>erg) (Whitley) (Grefenstette)
Schefeuter) (Tanese)

Enumerative techniques search every point related to an objective function's domain space (finite

or discrete), one point at a time. They are very simple to implement but may require significant

computation. The domain space of many applications is too large to search using these

techniques. Dynamic programming is a good example of an enumerative technique.

Guided Random search techniques are based on enumerative techniques, but use additional

information to guide the search. They are quite general on their scope, being able to solve very

com plex problems. Two major sub-classes are: Simulated Annealing and Evolutionary

T echniques, although both are evolutionary processes. S im ulated annealing uses a

thermodynamic evolution process to search minimum energy states. Evolutionary techniques, on

the other hand, are based on natural selection principles. This form of search evolves throughout

generations, improving the features of potential solutions by means of biologically inspired

operations. These techniques sub-divide, in turn, into Evolutionsstrategie, Genetic Algorithms and

Genetic Programming. Evolutionsstrategie was proposed by Rechenberg [71] and Schwefel [82]

in the seventies. They present the ability to adapt the process of “artificial evolution” to the

requirements of the local response surface. This means that ESs are able to adapt their major

strategy parameters according to the local topology of the objective function [46] - this is very

different from traditional G As. Genetic programming, invented by John Koza, is based on the

genetic algorithms model but evolves more complex structures: computer programs. It is the

youngest member of the evolutionary techniques family (Koza’s landmark book [53] was

28___________________________ Genetic Algorithms Revisited____________________ Chapter 2

published in 1992) and has already attracted a vast number of interested researchers, due to the

ability of the technique to represent and manipulate complex abstract data structures.

2.3. Genetic Algorithms

A genetic algorithm emulates biological evolutionary theories to solve optimisation

problems. A genetic algorithm comprises a set of data elements - the population - and a set of

biologically inspired operators defined over the population itself. According to evolutionary

theories, only the most suited elements in a population are likely to survive and produce offspring,

thus transmitting their biological heredity to new generations.

In computing terms, a genetic algorithm maps a problem onto a set of (binary) strings,

each string representing a potential solution. The GA then manipulates the most promising strings

searching for improved solutions. A GA operates typically through a simple cycle of four stages:

i) creation of a “population” of strings,
ii) evaluation of each string,
iii) selection of “best” strings, and
iv) genetic manipulation, to create the new population of strings.

Figure 2.2 shows these four stages using the biologically inspired GA terminology. In

each cycle a new generation of possible solutions for a given problem is produced. At the first

stage, an initial population of potential solutions is created as a starting point for the search

process. Each element of the population is encoded^ into a string (the chromosome), to be

manipulated by the genetic operators. In the next stage, the performance {or fitnesi) of each

individual of the population is evaluated, with respect to the constraints imposed by the problem.

Based on the fitness of each population member, a selection mechanism chooses “mates” for the

genetic manipulation process. The selection policy is ultimately responsible for assuring survival

of the best fitted individuals. The combined evaluation/selection process is called reproduction.

The manipulation process employs genetic operators to produce a new population of

individuals (offspring) by manipulating the “genetic information”, referred to as genes, possessed

by members (parents) of the current population. It comprises two operations, namely crossover

and mutation. Crossover is responsible for recombining the genetic material of a population. The

selection process associated with recombination assures that genetic structures, called “building

blocks”, are retained for future generations. The building blocks then represent the most fitted

genetic structures in a population. Nevertheless, the recombination process alone cannot avoid the

loss of promising building blocks in the presence of other genetic structures, which could lead to

 ̂The encoded form of a problem’s candidate solution is called genotype and its original (decoded) form called phenotype.

Chapter 2 Genetic Algorithms Revisited 29

local minima. Also, it is not capable to explore search space sections not represented in the

population’s genetic structures. The mutation operator then comes into action. It introduces new

genetic structures into the population by randomly modifying some of its building blocks. It helps

the search algorithm to escape from local minima’s traps. Since the modification introduced by

the mutation operator is not related to any previous genetic structure of the population, it allows

the creation of different structures representing other sections of the search space.

Figure 2.2 - The GA cycle

POPULATION
(chromosomes)

Decoded
strinosNew

Generation
Parents

GENETIC
OPERA TORS

EVALUATION
(fitness)

Manipulation Reproduction

N/lotes SELECTION
(mating pool)

The crossover operator takes two chromosomes and swaps part of their genetic

information to produce new chromosomes. This operation is analogous to sexual reproduction in

nature. After the crossover point has been randomly chosen, the portions of the parent strings PI

and P2 are swapped to produce the new offspring strings 01 and 02 . Figure 2.3 shows the

crossover operator being applied to the fifth and sixth elements of the string.

Figure 2.3 - Crossover
PI P2

CÎ G^CDGI)|CXXD Parents

crossover point crossover point

OrrspHng

01 02

Mutation is implemented by occasionally altering a random bit in a string. Figure 2.4

presents the mutation operator being applied to the fourth element of the string.

Figure 2.4 - Mutation

O O O C D O O
i

OCDCDO€KD

30___________________________ Genetic Algorithms Revisited____________________ Chapter 2

A number of different genetic operators have been introduced since this basic model was

proposed by Holland. They are, in general, versions of the recombination and genetic alteration

processes adapted to the requirements of particular problems. Examples of other genetic

operators are: inversion, dominance, genetic edge recombination, etc.

The offspring produced by the genetic manipulation process constitute the next

population to be evaluated. Genetic algorithm s can either replace a whole population

(generational approach) or only the less-fit members (steady-state approach). The creation-

evaluation-selection-manipulation cycle is repeated until an ending criterion is reached. A typical

GA may include one or a combination of the following ending criteria: maximum number of

generations, maximum elapsed simulation time and convergence rate.

Following Holland’s traditional GA, many variations of the basic algorithm have been

introduced. However, an important and distinctive feature of all G As is the population handling

technique[36]. The traditional GA adopted a generational replacement policy where the whole

population is replaced in each generation. Conversely, the steady-state policy used by many

subsequent G As employ a selective replacement for the population. It is possible, for example, to

keep one or more individuals within the population for several generations, while they sustain a

better fimess than the rest of the population.

This description of the GA computational model reviews the steps needed to design a

genetic algorithm. Real implementations however, have to consider a number of problem-

dependent characteristics. Problem representation, for instance, is one of the most important

factors that determines the success or failure of applying genetic algorithms. A well-defined

evaluation function is equally important, since the decision process that selects the population

members that will survive is entirely based on the results provided by this function. Other aspects

of significance relate to various mechanisms employed to avoid premature convergence and to

assess the overall performance of an algorithm. The following sections briefly discuss some of

these factors, starting with the various representation and coding methods currently used in many

genetic algorithms.

2.3.1. Representation and Coding

Problem representation is one of the key factors for the success of a genetic algorithm. A

great deal of study has been conducted in this area, but the issue is still a matter of controversy in

the GA community. There are two main groups: those who defend Holland’s original binary

representation and those who argue that a GA should use the most appropriate representation

according to the problem’s characteristics and requirements. The latter approach accommodates

binary and non-binary (e.g. real value) representations, and are becoming more popular with the

Chapter 2____________________ Genetic Algorithms Revisited___________________________ 31̂

use of G As to tackle increasingly complex problems. This section presents both approaches to

stress the importance of supporting them in a general-purpose programming environment.

Binary representation, as originally proposed by Holland, uses the lowest possible

cardinality. Holland demonstrated, through the Schema theorem (see Figure 2.5), that fixed-

length strings of low cardinality alphabets provide an effective means to search a solution space.

Since genetic algorithms work essentially by promoting recombinations of genetic material, the

binary representation provides the largest possible number of building blocks, or schemata (per

population member), to be recombined. The most common encoding method maps the original

representation of a problem variable - say an integer - into its binary value. This encoding

method, however, is very sensitive to the mutation operator since the effects of this operator are

very distinct, depending on the position of the bit being modified. An alteration in a high-order bit

produces large variations on the original value, whereas modifications in low-order bits produce

only slight variations. This tends to be a problem in the later stages of a simulation, when the

population of solutions is closer to the best value. Many researchers adopted Gray encoding

methods to overcome this problem. Gray encoding has the property that the binary coding of

adjacent values, in the original representation, differs in only one bit. For instance the Gray

representation for 7 is 0100 while 8 is coded as 1100. Some researchers [85] adopted this method

as standard in their G As, after performance improvements on the five De Jong [25] test suites

were reported in the literature. Goldberg, however, states that Gray encoding may reduce the

degree of implicit parallelism as demonstrated by the Schema theorem for the standard binary

encoding. Other forms of encoding have also been proposed including adaptive techniques, such

as dynamic parameter encoding (DPE) by Schraudolph and Belew [84], which addresses the

problem of representing floating-point numbers in a fixed length string, without loosing precision.

Binary strings have been shown to be capable of usefully encoding a wide variety of

information. The properties of binary representations for genetic algorithms have been extensively

studied, and a good deal is known about the genetic operators and parameters that work well with

them [23].

Real Value representation, on the other hand, emerged from the increasingly complex

problem s being addressed by GAs. It is also the standard rep resen ta tio n used by

Evolutionsstrategie-based algorithms, and is the only means to effectively represent genetic

programming problems. GAs are extremely sensitive to different mappings, which added to the

overhead imposed by the string encoding and decoding process, may prevent their use on a large

number of real-world optimisation problems. Many industrial problems, for instance, already

using traditional techniques, have a well-defined representation and evaluation function. In most

cases, these functions would impose constraints on other representations, severely compromising

the performance of any GA.

32___________________________ Genetic Algorithms Revisited____________________ Chapter 2

Figure 2.5 - The Schema Theorem

Holland introduced the notion of a schema as a collection of genomes that share certain
gene values, or alleles. For instance, the schema 1**0* represents the set of chromosomes with a
1 at the first locus and a 0 at the fourth locus. A schema group, or schemata, provides a way of
describing underlying similarities between successful strings. Since each schema is likely to be
represented by many strings in the population, it is possible to work out an average score for
each. Such explicit calculation is, nevertheless, unnecessary as the process is automatically
handled by the selection of whole strings. The net result of the selection process is the increase of
the number of strings containing good schemata in the population. Therefore, the number of
copies of a schema in the next generation N g (̂ g + \) can be expressed in terms of its current

number of copies its fitness the average fitness of the whole population / , and the

probability that the schema survives the genetic operators p { S) . It is given by the following

expression:

Ns<g + l) > N s (g) ^ p { S)

Before expanding p (S) into terms that express the influence of the mutation and

crossover operators, it is necessary to define the order () of a schema and its defining length

(d ^). The order of a schema is given by the number of bits that are not represented by the ‘*’
symbol. The defining length gives the distance between two extreme bits that define the schema -
note that ‘*’ is not allowed at the extremes. Therefore, the schema 0**01 *1 has =4 and d^ =6.

A schema with defining length d^ would be destroyed by the crossover operator
(assuming uniform distribution for choosing any point along the string length I) if the crossover
point falls between the two extremes of the schema. Hence, the probability to survive crossover is
given by:

P
‘ 0-0

Where:
p^ = probabihty of applying the crossover operator
d^ = schema defining length
(/ — l) = possible positions for a crossover site

If p^ is the probability of applying the mutation operator, then the probability that a

schema of order survives mutation (for the typical low values of p^) is:

The Schema Theorem can then be finally re-written as follows:

fs
f

Chapter 2____________________ Genetic Algorithms Revisited___________________________ 33

Other problems, specially those using genetic programming, cannot be easily represented

with flat, fixed-length, strings. In general, more complex representations are required involving

mixed types of data (integers, floating-point, and even binary). Representations used in GP

problems, for instance, invariably assume a tree configuration, which has its width and depth

modified during simulation, expanding and shrinking many times. Therefore, Radcliffe [69] and

others consider that “if there is no benefit to be gained from changing to a special genetic

representation, it would seem perverse to do so”.

From the theoretical point of view, Antonisse [2], Radcliffe [68] and V ose [97],

dem onstrated that extensions o f the Schema theorem can also be applied to real value

representation. Their arguments are based on the fact that GAs’ search is guided by the quality of

the information it collects about the space (through observed schema fitness averages in the

population). They have contributed to the demolition of strong beliefs that only low cardinality

(binary) representations offer intrinsic parallelism.

One of the major disadvantages of real value representations is the necessity to define

representation dependent genetic operators. This, however, does not seem to be considered a

problem by most of the people using this method, since the majority of problems already require

genetic operators specially designed to cope with their complexities.

The conclusion of the above discussion is that a general-purpose programm ing

environment must support, at least, binary and some real value representations to satisfy the

requirements of diverse problems, using any of the three major evolutionary techniques. It would

be even more interesting, however, if the genetic manipulations could take place over a

representation-independent data structure. This would allow the user to choose freely the most

suitable representation for a problem, and implement problem-independent genetic algorithms and

operators.

2.3.2. Genetic Operators

A genetic algorithm has a hierarchical structure where the algorithm (the control level)

determines the order and the sequence in which genetic operators are activated. It is also at the

algorithm level that the decision to terminate the GA loop is taken. Parallel genetic algorithms add

one extra level above the algorithm control level, which is responsible for starting several GAs

and collecting intermediate and final results. Figure 2.6 shows a block diagram of the traditional

GA. The algorithm level maintains global data - the population pool, population size, etc. - and

local data such as ending criteria (max. number of generations, convergence rate and maximum

simulation time), current number of generations and elapsed time.

34 Genetic Algorithms Revisited Chapter 2

Figure 2.6 - The GA hierarchy

GENETIC
ALGORITHM

ALGORITHM
CONTROL

Reproduction Crossover Mutation

One level below, genetic operators maintain only the (local) information necessary to

perform their tasks (e.g. mutation and crossover rates). The traditional GA comprises three

genetic operators: reproduction, crossover and mutation, activated in this order.

Reproduction - this operator performs two tasks: firstly it evaluates each member of the

population and then, based on the average performance of the whole population, it selects those

members that will survive to the next generation. Evaluation is highly dependent on the problem

being solved. Some techniques, as explained in section 2.3.3, can be applied to minimise

undesirable effects on the simulation performance, due to noisy and time-consuming evaluation

functions.

Two important aspects have to be considered in the selection process: the composition of

the new population, based on the proportional contribution of each string in the current

population, and the number of copies from each selected string that will be present in the new

population. The first aspect, known as selective pressure, has to be carefully balanced to avoid

premature convergence - due to high pressure - or to stagnate the search - due to low pressure.

The simplest method of allocating strings to the new population is in proportion to the ratio of

their evaluated fitness to the average of the whole population. Therefore, if a particular string has

twice the average fitness, it would be expected to be chosen twice as frequently. This method has

been applied in most GAs, but it is not suitable for certain types of problems exhibiting large

areas of poor performance with localised good spots. In such cases, the fitness of a good string

will be far above the average, making it dominate the composition of a next generation. The

immediate consequence is loss of diversity in the population, leading to premature convergence of

the algorithm. Conversely, “well behaved’’ problems tend to have most of the population highly

rated towards the end of the simulation. Those strings that are slightly better than the average get

little selective advantage, and the search stagnates.

Chapter 2____________________ Genetic Algorithms Revisited___________________________ 35

Several methods have been reported in the literature that help to avoid both situations

[8,24,36]; the most common being “fitness scaling”. This method ensures a constant fitness ratio,

typically about 2, between the best and the worst strings, thus preventing exceptionally good

strings from dominating the next generations. Adaptive methods have also been reported to

improve the quahty of the results. By dynamically changing the behavior of the selection process

according to the best, worst and average fitness, the algorithm adapts itself to different situations

presented by the search space.

The second aspect of reproduction entails determining the number of copies of selected

strings to be present in the new population. For a GA with fixed population size N, the

reproduction operator dictates that future generations must contain the same number of strings,

produced by copying (one or more times) selected members of a previous generation. The

simplest method, the “roulette-wheel”, samples the population N times, with the probability of

any member being chosen equal to its relative fitness (whether scaled or not). Therefore, the

higher the relative fitness of a string, the bigger the probability of having more copies in the next

generation.

It is important to note that the reproduction operator works essentially on the phenotype

level, that is, it is not affected by the genetic representation of the problem. Other operators, such

as crossover and mutation, act only on the genotype level. This may lead to a premature

conclusion that these two operators are representation dependent. The objective of this discussion

is to assess the possibihty of defining a suitable abstraction for representing a variety of problems

(using either binary or real value) that could permit representation-independent implementations

of genetic operators.

Crossover - is considered the most important GA operator. In fact, crossover is unique to GAs

(Evolutionsstrategie evolves populations only by the means of mutation). Crossover is responsible

for promoting useful recombinations of the genetic information that accelerate the search process.

It mimics sexual reproduction in which segments of two different strings (the parents) are

recombined to form two other strings (the offspring). The standard one-point crossover, as

defined by Holland, chooses a random point (based on a normal distribution) between the two

extremes of the string. Several variations of this operator have been introduced, the most common

used being the two or n-point crossover, generally applied over a circular string [32].

In general, problems using real value representations are very complex, exhibiting

several parameters to be simultaneously optimised. The crossover operators used in these

problems work by swapping one or more parameters between two “strings” - the term individual,

as a reference to a member of the population, seems more appropriate for real value

representation and will be used interchangeably with the term string in this thesis.

36___________________________ Genetic Algorithms Revisited____________________ Chapter 2

A careful observation of the ways the crossover operator acts over binary and real

value representations, suggests a common mechanism for its implementation, independently of the

problem representation. Instead of storing the data in the data structure that represents a

population member (or string), one can store only references (or pointers) to the actual data.

Crossover can then be implemented as a simple swap of pointers; irrespective of the contents of

the inform ation being swapped. This is an im portant step towards the definition of a

representation-independent abstraction for programming GAs, ESs and GPs.

Mutation - introduces “unexpected” variations in the population in order to increase its diversity.

Without mutation a GA would be constrained to explore only regions of the search space present

in the schemata of the first (or initial) generation. If, by chance, the schema of the best solution is

not present in the initial population, it would not be possible to find that solution without

mutation.

The standard mutation operator works by simply flipping the value of a bit in the binary

string. Unlike crossover, which is generally applied at high rates (0.6 to 0.8) to maximise

recombination, mutation rates are typically very low (0.005 or less). High mutation rates can be

very detrimental, preventing algorithm convergence. This is especially important in the final

stages of a simulation, when the population is converging towards the best solution and large

genotype variations are undesirable. Some GAs employ adaptive mutation with relatively high

rates in the early stages of the simulation, and very low rates towards the end. This approach

increases the chance of exploring different areas of the search space in the beginning, when the

population needs diversity, without compromising algorithm’s convergence.

Mutation operators used in problems with real value representation assume the most

varied implementations. Some implementations employ “creeping” techniques, introducing small

variations around the current value of the parameter being mutated. Others may produce large

variations by replacing the current value by an entirely new one, randomly chosen (generally

within certain constraints). Depending on the problem complexity, mutation may even be

implemented over a data base of possible values that each parameter is allowed to assume.

The conclusion then is that the choice of mutation operator is extremely dependent on a

problem’s representation, characteristics and requirements. Nevertheless, since it acts over the

genotype, it seems possible to embed the modification information (e.g. mutation rules and

parameters) into the representation data structure. This approach is also consistent with

Holland’s discussion about the mutation operator [47], permitting each member of the population

to carry its own (possibly different) mutation information.

Chapter 2____________________ Genetic Algorithms Revisited___________________________ 37

A number of other, more sophisticated, operators have been described in the literature

and, every year, new variations addressing particular domains and problems appear at GA

conferences. A list of traditional, less used, operators includes:

Inversion - chooses a segment of the string and changes the order of its bits, but keeps their

original relative position, or loci, information. The results of the fitness evaluations are, therefore,

the same for the original and modified strings. The objective of this operator is to increase the

possibility of exploring different schema configurations. In this sense, although the two strings

present the same phenotype, their different genotype will certainly produce different offspring

(with different phenotypes) after crossover. The implementation mechanisms for this operator are

similar to those used for the crossover operator, i.e., pointer manipulations.

Dominance and Diploidy - These operators work on pairs of strings, which essentially encode

the same information but, with slight variations on a bit basis that affect the phenotype value.

This means, for instance, that if in a particular locus both strings present different bit values, then

one of the strings (the dominant) is chosen to be decoded back to its phenotype. Conversely, if

they have the same bit values, any of them could be decoded. The objective of this operator is to

provide a “memory” of possibly good schema that, otherwise, would be lost due to temporary

variations in the genetic material of the population - possibly influenced by a local minimum.

Future recombinations of two strings, with recessive genes in the same position, could bring back

to the population individuals with good combinations of dominant and recessive genes (in

different string positions), displaying even better phenotypes. This discussion can be extended to

polyploid representations. The implementation support to this operator can be achieved by

allowing the data structures representing the problem to store more than one copy of a given

allele (or value), and to embed the dominance criteria.

Sexual determination and differentiation - consist of allowing mating only between strings that

carry certain chromosomic characteristics. This allows specialisation of the genetic material to be

distributed over different sub-populations, which may result in global better performance. This

operator is mostly indicated for multi-modal problems, requiring semi-independent optimisation

for each parameter. A more sophisticated version of this operator is called Niche and Spéciation.

Delong [25] did extensive work in this area, introducing the concept of crowding factor as a

method for identifying groups of individuals in the population with common characteristics, and

selectively replacing them. An individual of one group could only mate in its own group and

would be replaced by an offspring with similar characteristics (even from a different group).

Again, both operators rely on extra information embedded in each individual’s data

structure to perform their actions. Other even less used operators present the same type of

requirements for genetic data manipulation. Thus, two characteristics seem to be necessary and

38___________________________ Genetic Algorithms Revisited____________________ Chapter 2

sufficient to define a data structure capable of problem-independent representation and

manipulation:

• the data structure should maintain a list of references to each piece of genetically

relevant information (whether binary or real value); and

• provide the means to embed extra information to be used by genetic operators.

To conclude this section, it is important to stress the self-contained nature of the genetic

operators. This is characterised by the lack of information exchange between operators or

between an operator and the algorithm that contains it. The algorithm control level (Figure 2.6)

can be seen as a template where different operators may be attached, depending on the

requirements of the problem to be solved. A subtle consequence of this characteristic is the ability

to parameterise genetic algorithms.

2.3.3. Fitness Evaluation

The evaluation function is, perhaps, the most important part of a GA. It has the potential

to severely affect the overall performance of the algorithm in terms of quality of results and

simulation time.

The evolution process that guides a GA is entirely based on the results provided by the

evaluation function. Therefore, an evaluation function that does not accurately represent

characteristics and requirements of a problem, will certainly misguide the algorithm’s search.

Conversely, a very accurate evaluation function, containing too many constraints, will lead to

good results, but such a function may prove to be unattainable. Since a GA requires a certain

number of members in the population to perform its recombination task, costly evaluation

functions are simply impractical. Complex functions produce a strong impact in the total

computing time required to evaluate the entire population - possible solutions to this problem

may involve parallel computation of the evaluation function.

A compromise solution tries to reduce the complexity of the evaluation function, but

without sacrificing the quality of its results. Some techniques are based on the construction of

genetic operators that embed the problem’s constraints. They try to avoid the creation of

“unsuitable” individuals in the population that, otherwise, would expend evaluation time. Another

common mechanism is to temporarily store, separately, each individual’s evaluation result

(preferably into the individual itself). A typical GA requires each member of the population to be

evaluated at least twice per generation. Firstly the evaluation function is called to compute the

total and average fitness of the population, and then to obtain each member’s result, during the

selection stage. By storing each evaluation result, when computing the total fitness, the overall

Chapter 2____________________ Genetic Algorithms Revisited___________________________ 39

time taken by the evaluation stage can be divided by two. This simple mechanism operates as a

“cache” for the fimess result. However, a cache entry needs to be invalidated every time a genetic

operator modifies the genetic information it represents. The same mechanism can be applied to

store the phenotype of each encoded parameter, and avoid multiple calls to the decode function. It

is important to note, however, that the caching mechanism may also be affected by some classes

of problems that present non-static evaluation functions. A common case being time-dependent

fimess functions.

Other aspects related to evaluation such as averaging, noise immunity, scaling and

penalty, have been extensively discussed in the literature [61] and will not be addressed in this

thesis, since they are not relevant to the analysis of problem representation and algorithm

structure.

2.4. Parallel Genetic Algorithms

Parallel processing systems are characterised by the existence of multiple agents that co­

operate in the execution of a task [9]. Depending on the level of abstraction at which a parallel

processing system is described, the notion of an agent may embody several different entities, and

therefore imply various patterns of behaviour and characteristics. In a parallel machine, for

instance, an agent is naturally identified with one of the processors in that machine. At a higher

level of abstraction, however, the system might be a set of processes that constitute a parallel

program, and in this case an agent would be identified with one of the processes. From a strictly

conceptual point of view, it is irrelevant whether the parallelism is present at the hardware level

or at the topmost software system level. In fact, parallel processing agents can be easily identified

in as seemingly disparate settings as operating systems and computer networks, for example.

According to this concept, a parallel genetic algorithm is considered as a multi-agent model,

possibly exhibiting various degrees of interaction among its agents. The analysis of PGA models

found in the literature [38,106,107,108,109] reveals three important characteristics for the

implementation of agents and their interactions:

• granularity,

• synchronisation and

• type of parallelism.

The concept of granularity relates to the average size of the actions performed by agents

(measured in number of executed instructions and used memory) and their degree of interaction

(measured in terms of the rate between the time spent for execution and communication). Three

granularity levels can be identified in parallel genetic algorithm models:

40___________________________ Genetic Algorithms Revisited____________________ Chapter 2

• Coarse-grained VGAs have their agents (whole algorithm s) executing almost

independently. The interaction among them is very occasional.

• Medium-grained PGAs exhibit frequent communication among their agents (genetic

operators in this case), however the interval between two consecutive interactions is

far longer than the time spent during communication.

• Fine-grained PGAs present highly interactive agents (here, individuals from sub­

populations). The execution interval between consecutive interactions is short, and

may be comparable to the time spent for communication.

The traditional genetic algorithm is inherently synchronous due to its centralised selection

stage. Many parallel models however, overcome this problem by adopting basically two different

strategies. In coarse-grained PGAs, selection occurs over sub-populations local to each genetic

algorithm instance. Conversely, fine-grained PGAs use distributed selection where a local

individual may only be replaced by a migrant if this presents better fitness. In the first case each

separate GA still has the synchronous selection stage, but the whole parallel GA is not

synchronous. The second strategy is completely asynchronous.

The third important characteristic of parallel genetic algorithms programs relates to the

type of parallelism they exhibit. There are two types of parallelism; control parallelism and data

parallelism. A program is said to have control parallelism if it could be divided into a number of

agents operating independently on different processors (or processes). Problems presented by this

type of parallel programs relate to the difficulty in identifying the agents and synchronising their

actions. Programs presenting data parallelism take advantage of large amounts of data elements

that are independent, or unrelated, and assign processors (or processes) to operate over sub-sets

or individual data elements. Both types of parallelism coexist in most parallel genetic algorithm

models. Data parallelism in PGAs is always associated with the population structure, and control

parallelism is associated with algorithms and genetic operators working as independent agents.

Figure 2.7 shows three models of genetic algorithms with different degrees of interaction.

The fu*st model (Figure 2.7a) is a pure sequential GA, like Goldberg’s Simple Genetic Algorithm

[36]. It has a central control (Algorithm Control), which maintains the global population, the

generation counter, the termination criteria and the genetic operators (Op.A ... Op.n). The genetic

operators are activated in sequence to evolve the global population, represented by a large set of

unrelated data elements. The second model (Figure 2.7b) is a parallel implementation of the same

GA, where each genetic operator works as an independent agent, co-ordinated by the algorithm

agent. Genetic operators in this model work in a pipeline that is synchronised by, and starts with,

the selection operator. As soon as a pair of individuals is selected, the crossover operator is

activated to produce modified offspring. These are then passed on to the mutation operator. While

crossover is acting on a pair, selection may be choosing a new pair, and mutation modifying

Chapter 2 Genetic Algorithms Revisited 41

another one. This model presents medium granularity, since interactions among genetic operator

agents are quite frequent {[3 x N x g] -i- 2, where N is the population size and g is the number of

generations), but the interval between two consecutive interactions is expected to be longer than

the time spent during communication.

The third model (Figure 2.7c) represents a coarse-grained implementation of the same

algorithm. A number of similar genetic algorithm agents (sequential or pipelined) execute

independently, evolving their own sub-populations. From time to time, these GAs may exchange

members of their populations.

Figure 2.7 - Sequential and parallel genetic algorithm models.

ALGORITHM
CONTROL

O p .A O p .B Op. N

(a)

ALGORITHM
CONTROL

O p .A Op. N

ALGORITHM
CONTROL

Op. A O p.B Op. N

ALGORITHM
CONTROL

O p.B .

(c)

Current PGA implementations [33,37,62] can be grouped into three major categories: the

panmitic, the island, and the massively parallel GA models. Massively parallel GA models are

also called cellular GAs or fine-grain GAs (Table 2.1 lists examples for each category).

Panmitic PGAs are essentially parallel versions of ordinary sequential GAs. They operate

over a global population, are normally synchronous and present coarse to medium granularity.

Panmitic PGAs are best suited to parallel architectures with shared memory. A parallel

implementation of Goldberg’s Simple GA, for instance, allocates n/2 processors (where n is the

42___________________________ Genetic Algorithms Revisited____________________ Chapter 2

population size) to operate over two members of the population at each generation. Other

examples of panmitic PGAs include Whitley’s Genitor [101] and Eshelman’s CHC [35].

Table 2.1 - PGA Models

Panmitic isiand Massiveiy Paraiiei
SGA I-SGA Fine-Grained PGA

GAUCSD Asparagos
pCHC PGA Ceiluiar GA

Distributed GA DBGA
Genitor Punctuated Fine-Grained PGA

Equilibria for Distributed Systems

Island and massively parallel models derive from population genetic theories stating that

diversification occurs more naturally in populations with spatial structures. Selection and mating

in these PGAs are restricted to neighbourhoods called demes. In the island model, the population

is subdivided into a number of randomly distributed demes. The sub-populations are processed by

independent instances of the same genetic algorithm, which, from time to time may exchange

individuals with other algorithms in the same deme. Island PGAs implementations are

asynchronous, coarse-grained and have been mostly mapped onto transputer-based MIMD

architectures. In its simplest form, pure sequential GAs are replicated and distributed over a

number of processors. Since the execution of each algorithm is completely independent, their final

results may differ only due to the stochastic nature of GAs and possibly different initial

populations. The I-SGA, for example contains in each island a copy of the sequential SGA,

operating only over its own sub-population. Most of the island model implementations include a

migration operator, which is responsible for “exporting” a single copy of a selected member of

the local population to an adjacent population. Another member of the local population is also

selected to be replaced by an incoming migrant. These PGAs are based on a ring topology and do

not have central selection. GAUCSD [85] can be considered one of the first implementations of

an island parallel GA. It is a distributed version of GENESIS, and does not use migration

operators. Other implementations are the Punctuated Equilibria PGA from Cohoon [20], Pettey

and Leuze’s Parallel Genetic Algorithm [66] and Tanese’s Distributed GA [92].

Massively parallel models are usually targeted at fme-grained parallel machines. They

assign one individual per processing agent (processors in this case), and limit mating to a deme

near the individual. In general, demes consist of four individuals, one in each direction in the

plane that contains them. Edge elements wrap around, and the whole topology forms a torus.

Each individual is processed in parallel at each generation and the offspring replaces the parent, if

it has a better fitness. Again, there is no central selection. These PGAs are asynchronous and

considered to exhibit fine-grain parallelism, since interactions among neighbour processors are

Chapter 2____________________ Genetic Algorithms Revisited___________________________ ^

quite high and the ratio between execution and communication can be very small. The preferred

parallel architectures are SIMD machines, array processors and connection machines [33] (but

some have also proven to be very effective on transputer-based implementations). Examples in

this class are the Fine-Grained PGA from Manderick and Spiessens [58], Asparagos from

Gorges-schleuter [39], Whitley’s Cellular GAs [102], the Distributed Breeder GA [63] from

Mühlenbein and the Fine-Grained PGA for Distributed Systems from Maruyama et al. [59].

Parallel genetic algorithms present diverse characteristics ranging from synchronous

coarse and medium-grained models, such as panmitic and island, to asynchronous fine-grained

models like the massively parallel GA. They also exploit control and data parallelism in various

degrees. Most im plem entations are platform dependent, therefore not easily portable.

C onsequently , any program m ing environm ent intending to cover the broad range o f

characteristics presented by PGAs and achieve the required level of portability, needs to define a

programming model, and a communication and parallel control mechanisms capable of being

mapped onto diverse parallel platforms.

2.5. Summary

This chapter has briefly reviewed sequential and parallel genetic algorithms. The

emphasis on the topics presented has aimed at better understanding of evolutionary computing,

from an application developer’s perspective. Special attention was given to the identification of

mechanisms that could make possible the definition of genetic-oriented abstractions as well as to

parameterise genetic algorithms and operators.

The discussion about problem independent representation, and their relationship with

genetic operators, led to the identification of three important characteristics:

• There are two principal types of representation: binary and real value. The binary

representation may use various encoding methods whereas real value may comprise

different data types. Both alternatives may appear alone or mixed.

• Although traditional GAs present fixed-size representations, recent algorithms and

problems based on genetic programming, require more flexible data structures. This

implies representation structures capable of dynamically adjusting their size (e.g.

width and depth) to support sophisticated recombination operators.

• Some problems require variations in the way genetic manipulations take place over

their representation. This characteristic is particularly im portant to heavily

constrained problems, which try to limit the number of unsuitable solutions produced

by the genetic operators.

44___________________________ Genetic Algorithms Revisited____________________ Chapter 2

Based on these characteristics, it is possible to derive requirements for the definition of

an abstraction that should permit the genetic representation of a wide range of problems. This

abstraction should also allow the parameterisation of genetic operators, making them able to

adapt their tasks according to particularities of each problem, by means of the extra information

embedded into the genetic data structure. The definition of such an abstraction should fulfil the

following requirements:

• allow maximum flexibility for the representation of G A, ES and GP problems. This

means that mixed binary, real value and any possible variation, as well as non-fixed

size representations should be supported.

• separate data contents from data organisation. This translates into being able to

modify the organisation of the data without being concerned with their actual contents.

• provide the means to embed problem-dependent information that may affect the

behaviour of the algorithm or its operators. Such a property should permit the data

structure to store its phenotype value and fimess results, as discussed in section 2.3.3.

Section 2.3.2, discussing the hierarchical structure of GAs, highlighted significant

aspects of their implementations. It was possible to identify the self-contained nature of genetic

algorithms and genetic operators, based on the following factors:

• the extremely low communication rates between these modules;

• the master-slave structure of algorithms; and

• the asynchronous nature of the whole process.

These observations, added to other characteristics of parallel genetic algorithm models

presented in section 2.4, provide the basis for the definition of the programming model, and its

communication and task control support, described in Chapter 6.

Chapter 3

Programming Environments for

Genetic Aigorithms

This chapter reviews program m ing environm ents fo r genetic algorithm s. I t
introduces a simple taxonomy that classifies existing programming environments into
three major categories: application-oriented, algorithm-oriented and tool kits.

3.1. Overview

During the last decade genetic algorithms have been used increasingly for solving

complex optimisation problems. Their simplicity, robustness and outstanding results have

contributed to augmenting the demand for better application development support. A number of

research groups and companies in the US and Europe have already produced software tool kits to

help with the development of GA-based applications. Some of these systems have even reached

mature stage, and are now commercial products, already being used by industry.

The computational model of a genetic algorithm has an enormous potential for the

exploitation of control and data parallelism. Nevertheless, the majority of currently available

programming environments fail to address this aspect. This chapter reviews existing software

systems for programming genetic algorithms applications. This review is part of a comprehensive

survey on GA programming environments that was published in the IEEE COMPUTER

magazine [73], in an issue dedicated to genetic algorithms^. It forms, together with the analysis of

GAs and PGAs presented in the previous chapter, the basis for the design of the general-purpose

programming environment described in the next chapters.

The review starts by introducing a taxonomy that classifies GA systems into three major

categories: application-oriented, algorithm-oriented and tool kits. For each category the design

and main features of some of the most important systems are presented and, as a case study, one

specific system is examined in more detail.

A copy of the article can be found at the end of this thesis.

45

46 Genetic Algorithms Programming Environments Chapter 3

3.2. Taxonomy of GA Programming Environments

Genetic algorithms programming environments can be classified according to a taxonomy

with three major classes: Application-oriented systems, Algorithm-oriented systems and Tool

Kits.

• Application-oriented systems are essentially “black boxes” that hide the GA

implementation details. Targeted at business professionals, some of these systems

support a range of applications; others focus on specific domains, such as finance or

scheduling.

• Algorithm-oriented systems are programming systems that support specific genetic

algorithms. They sub-divide into:

=> Algorithm-specific systems - which contain a single genetic algorithm; and

=> Algorithm Libraries - which group together a variety of genetic algorithms and

operators.

Algorithm-oriented systems are often supplied in source code and can be incorporated easily into

user applications.

• T ool K its are programming systems that provide many programming utilities,

algorithms and genetic operators that can be used in a wide range of application

domains. These programming systems sub-divide into:

=> Educational systems - to help novice users to obtain a hands-on introduction

on GA concepts. Typically these systems support a small set of options for

configuring an algorithm.

General-purpose systems - to provide a com prehensive set of tools for

programming any GA application.

Table 3.1 illustrates the taxonomy, listing some of the GA programming environments

reviewed in this chapter.

Table 3.1 - Classes o f G A programming environments

Application
Oriented

Aigorithm Oriented Tooi Kits
Aigorithm-

Specifio
Aigorithm-
Libraries

Educationai Generai-
Purpose

EVOLVER ESCAPaDE
EM GA

Workbench

EnGENEer

OMEGA GAGA GAME
PC/BEAGLE GAUCSD MicrcGA

XpertRule
GenAsys

GENESIS OOGA PeGAsuS
GENITOR Splicer

Chapter 3_______________Genetic Algorithms Programming Environments________________ ^

3.3. Application-oriented Systems

Application-oriented systems are designed for use by business professionals who wish to

utilise genetic algorithms in specific applications domains, without having to acquire detailed

knowledge of the workings of genetic algorithms.

As seen with expert systems and neural networks, many potential users of a novel

computing technique, such as genetic algorithms, are only interested in the applications, rather

than the details of the technique. For example, a manager in a trading company may wish to

optimise its delivery scheduling. By using an application-oriented programming environment, it is

possible, for instance, to configure a particular application for schedule optimisation, without

knowing the encoding technique or the genetic operators involved.

Overview

A typical application-oriented environment is analogous to a spreadsheet or word-

processing utility. It comprises a menu-driven interface (tailored to business users) giving access

to a suite of parameterised modules (targeted at specific domains). Their user interfaces provide

menus to configure, monitor and, in certain cases, even assist in programming apphcations. These

systems generally provide good help facihties as well.

Survey

Application-oriented systems follow many innovative strategies. Systems, such as

PC/BEAGLE and XpertRule GenAsys, are expert systems using GAs to generate new rules to

expand their knowledge base of the appUcation domain. EVOLVER, for instance, is a companion

utility for Spreadsheets; and systems like OMEGA, are especially targeted at financial

apphcations.

EVOLVER — is an add-on utihty that works within the Excel, WingZ and Resolve spreadsheets

on Apple Macintosh and IBM-PC compatible computers. It is being marketed by Axcélis Inc.,

who describes it as “an optimisation program that extends mechanisms of natural evolution to the

world of business and science applications”. The user starts with a model of his system in the

spreadsheet and calls EVOLVER from a menu. After filling a dialogue box with the information

required (e.g. cell to minimise or maximise) the program starts working, evaluating thousands of

scenarios automatically, until it finds an optimal answer. The program runs in background,

freeing the user to work in the foreground. When the best result is found, the user is notified and

the values are placed into the spreadsheet for analysis. This is an excellent design strategy given

the importance of interfacing with spreadsheet in business. In an attempt to improve the system

and expand its market, Axcélis introduced Evolver 2.0 that is being shipped with many tool-kit-

48_________________ Genetic Algorithms Programming Environments______________Chapter 3

like features. The new version is capable of integrating with other applications, besides

spreadsheets. Also it offers more flexibility by accessing the “Evolver Engine” from any MS-

Windows application capable of calling a Dynamic Link Library (DLL).

OMEGA — the OMEGA Predictive Modelling System, marketed by KiQ Limited, is a powerful

approach to developing predictive models. It exploits advanced genetic algorithms’ techniques to

create a tool that is “flexible, powerful, informative and straightforward to use”, according to

KiQ. OMEGA is geared to the financial domain and can be applied in the following sectors:

Direct Marketing, Insurance Risk (case scoring) and Credit Management. The environment offers

facilities for automatic handling of data; business, statistical or custom measures of performance;

simple and complex profit modelling; validating sample tests; advanced confidence tests; real­

time graphics, and optional control over the internal genetic algorithm.

PC/BEAGLE — produced by Pathway Research Ltd, is a rule-finder program that applies

machine-learning techniques to create a set of decision rules for classifying examples previously

extracted from a database. It has a module that generates rules by natural selection. Further

details are given in the case study section.

XpertRule GenAsys — is an expert system shell with embedded genetic algorithms, marketed by

Attar Software. This GA expert system is targeted to solve scheduling and design problems. The

system combines the power of genetic algorithms in evolving solutions with the power of rule-

base programming in analysing the effectiveness of solutions. Rule-base programming can also

be used to generate the initial solutions for the genetic algorithm and for post optimisation

planning. Some examples of design and scheduling problems that can be solved by this system

are: optimisation of design parameters in electronic and avionics industries, route optimisation in

the distribution sector, production scheduling in manufacturing.

Case Study - PC/BEAGLE

PC/Beagle is a rule finder program that examines a database of examples and uses

machine learning techniques to create decision mles for classifying those examples, turning data

into knowledge. The software analyses an expression via a historical database and develops a

series of rules to explain when the target expression is false or true. The system comprises six

main modules that are generally run in sequence:

• SEED (Selectively Extracts Example Data) puts external data into a suitable format,

and may append leading or lagging data-fields as well.

• ROOT (Rule Oriented Optimisation Tester) tests an initial batch of user-suggested

rules.

Chapter 3_______________Genetic Algorithms Programming Environments________________ ^

• HERB (Heuristic Evolutionary Rule Breeder) generates decision rules by Naturalistic

Selection, using GA philosophy (ranking mechanisms are also supported).

• STEM (Signature Table Evaluation Module) makes a signature table from the rules

produced by HERB.

• LEAF (Logical Evaluator and Forecaster) uses STEM output to do forecasting or

classification.

• PLUM (Procedural Language Utility Maker) can be used to convert a BEAGLE rule-

file into a language such as Pascal or FORTRAN; in this form the knowledge gained

may be used by other software.

PC/BEAGLE accepts data in ASCII format, with items delimited either by commas,

spaces or tabs. Rules are produced as logical expressions. The system is a highly versatile

package covering a wide range of applications. Insurance, weather forecasting, finance and

forensic science are some examples. PC/Beagle requires an IBM-PC-compatible computer with at

least 256 Kbytes of RAM and an MS-DOS or PC-DOS operating system, version 2.1 or later.

3.4. Algorithm-oriented Systems

This taxonomy divides algorithm-oriented systems into algorithm-specific systems that

contain a single algorithm and algorithm libraries, which group together a variety of genetic

algorithms and operators.

3.4.1. Algorithm-specific Systems

Algorithm-specific environments embody a single powerful genetic algorithm. These

systems typically have two groups of users: system developers requiring a general-purpose GA

for their applications, and researchers interested in the development and testing of a specific

algorithm and genetic operators.

Overview

In general, algorithm-specific systems come in source code form and allow the expert

user to make alterations for specific requirements. They present a modular structure providing a

high degree of modifiability. Their user interfaces are usually rudimentary, and often command-

line driven. Typically, these systems have been developed in universities and research centres and

their source code is available free over world-wide computer research networks.

50_________________ Genetic Algorithms Programming Environments_____________ Chapter 3

Survey

The most well known programming system in this category is the pioneering GENESIS

[40], which has been used to implement and test a variety of new genetic operators. In Europe,

probably the earhest algorithm-specific system was GAGA. For scheduling problems, GENITOR

[100] is another influential system that has been successfully used. GAucsd allows parallel

execution by distributing several copies of a GENESIS-based GA into UNIX machines in a

network. Finally, ESCAp/^DE [46] employs a somewhat different approach - being based on an

Evolutionsstrategie - as discussed below.

ESCAp^DE — Evolution Strategies capable of adaptive evolution — this software package

provides a sophisticated environment for building applications using Evolutionsstrategie.

ESCApy^DE is based upon KORR, Schwefel's implementation of a (jl Evolutionsstrategie.

The system provides an elaborate set of monitoring tools to gather data from an optimisation run

of KORR. According to the system’s author, it should be possible to incorporate a different

implementation of an ES or even a GA into the system using its runtime support. The program

structure is separated into several independent components that support the various tasks during a

simulation run. The main modules are: Parameter Setup, Runtime Control, KORR, Generic Data

Monitors, Customised Data Monitors, and Monitoring Support.

During an optimisation run the monitoring modules are invoked by the main algorithm

(KORR or some other ES or GA implementation) to realise the logging of internal quantities. The

system is not equipped with any kind of graphics interface. All parameters for a particular

simulation are passed over as command line options. The output is produced by each data

monitor writing their data into separate log files.

GAGA — Genetic Algorithms for General Application — was originally programmed by

Hillary Adams, University of York, in Pascal. It is a task-independent genetic algorithm. The user

must supply the target function to be optimised (minimised or maximised) and some technical GA

parameters, and wait for the output. It is suitable for the minimisation of many “difficult” cost

functions.

G A ucsd — This software package was developed by Nicol Schraudolph at the University of

California, San Diego [85]. The system is based on GENESIS 4.5 and runs on UNIX, MS-DOS,

CrayOs and VMS platforms; but presumes a UNIX environment. It comes with an awk script

called “wrapper”, which provides a higher level of abstraction for defining the evaluation

function. By supplying the code for decoding and printing the evaluation function parameters

automatically, it allows the direct use of most C functions as evaluation functions, with few

restrictions. The software also includes a Dynamic Parameter Encoding (DPE) technique

Chapter 3_______________ Genetic Algorithms Programming Environments________________ ^

developed by Schraudolph, which he claims radically reduces the gene length, while keeping the

desired level of precision for the results. Applications created with GAUCSD can be run in

background, at low priority, using the go command. This command can also be used to execute

G Aucsd in remote hosts. The results are then copied back to the user’s local directory and a

report is produced, if appropriate. If the host is not binary compatible, GAUCSD compiles the

whole application in the remote host. Experiments can be queued in files, distributed to several

hosts and executed in parallel. The ex command will notify the user via write or mail when all

experiments are completed. The experiments are distributed according to a specified loading

factor (how many programs will be sent to each host) along with the remote execution arguments

to the go command. GAUCSD is a very powerful system for parallel simulations.

GENESIS — GENEtic Search Implementation System — was written by John Grefenstette to

promote the study of genetic algorithms for function optimisation. It has been under development

since 1981, and has been widely distributed to the research community since 1985. The software

package is a set of routines written in the C language. To build their own genetic algorithm, the

user has only to provide a routine with the fimess function and link it with the rest of the system.

It is also possible to modify or add new modules (e.g. genetic operators, data monitors) and create

a different version o f GENESIS. In fact, GENESIS has been used as a base for test and

evaluation of a variety of genetic algorithms and operators. It was primarily developed to work in

a scientific environment offering a suitable software tool for research. It provides a high degree of

modifiability and a variety of statistical information on outputs.

GENITOR — GENetic ImplemenTOR — is a modular GA package containing examples for

floating-point, integer and binary representations. Its features include many sequencing operators

as well as sub-population modelling. This software package is, in fact, the implementation of the

GENITOR algorithm developed by Darrel Whitley [100]. The algorithm presents two major

differences from standard genetic algorithms. The first one is the explicit use of ranking.

Reproductive trials are allocated according to the rank of the individual in the population rather

than using fitness proportionate reproduction. The second difference is that GENITOR abandons

the generational^ approach and reproduces new genotypes on an individual basis. It does so in

such a way that parents and offspring can typically coexist. The newly created offspring replaces

the lowest ranking individual in the population rather than a parent. This replacement method is

called Steady State. GENITOR only produces one new genotype at a time, so inserting a single

new individual is relatively simple. Furthermore, the insertion automatically ranks the individual

with relation to the existing population — no further measure of the relative fitness is needed.

Case Study- GENESIS

The whole population is replaced in each generation.

52_________________ Genetic Algorithms Programming Environments_____________ Chapter 3

GENESIS is the most well known software package for genetic algorithm development

and simulation. It is now on version 5.0, which is available from The Software Partnership

company. GENESIS runs on most machines with a C compiler. The present version runs

successfully on both Sun workstations and IBM-PC compatible computers. According to the

system’s author, the code has been designed to be portable, but minor changes may be necessary

for other systems. The system provides the fundamental procedures for genetic selection,

crossover and mutation. Since GAs are task-independent optimisers, the user must provide only

an evaluation function that returns a value when given a particular point in the search space.

GENESIS has three levels of representation for the data structures it evolves. The lowest

level, or packed representation, is used to m axim ise both space and time efficiency in

manipulating data structures. In general, this level of representation is transparent to the user. In

the next level, called string representation, data structures are represented as null-terminated

arrays of chars. This structure is made available for users who wish to provide an arbitrary

interpretation of the genetic structures, for example, non-numeric concepts. The third level, or

yZoaring-pomtrepresentation, is the appropriate level for many numeric optimisation problems.

At this level, the user can think of genetic structures as vectors or real numbers. For each

parameter, or gene, the user specifies its range, its number of values, and its output format. The

system then automatically lays out the string representation, and translates between the user-level

genes and lower representation levels. The system contains five major modules:

• Initialisation - the initiahsation procedure sets up the initial population. It is possible

to “seed” the initial population with heuristically chosen structures. The rest of the

population is filled with random structures. It is also possible to initialise the

population with real numbers.

• Generation - this is responsible for the execution of the selection, crossover,

mutation, and evaluation procedures. It also collects data that are used later to

produce several reports.

• Selection - this is the process of choosing structures for the next generation from the

structures in the current generation. The default selection procedure is a stochastic

procedure, which guarantees that the number of offspring of any structure is bounded

by the floor and the ceiling of the (real-valued) expected number of offspring. The

procedure is based on the roulette wheel algorithm. It is also possible to perform

selection based on a ranking algorithm. Ranking helps prevent premature convergence

by impeding super individuals from taking over the population within a few

generations.

• Mutation - after the new population is selected, mutation is applied to each genetic

structure in the new population. Each position is given a chance (mutation rate) of

Chapter 3_______________ Genetic Algorithms Programming Environments________________ 53

undergoing mutation. If mutation does occur, a random value is chosen from {0,1} for

that position. If the mutated structure differs from the original one, it is marked for

evaluation.

• Crossover - exchanges alleles among adjacent pairs of the first n structures in the

new population. The result of the crossover rate applied to the population size gives

the number of structures to operate on. Crossover can be implemented in a variety of

ways. If, after crossover, the offspring are different from the parents, then the

offspring replace the parents, and are marked for evaluation.

These basic modules are added to the evaluation function supplied by the user to create

the customised version of the system. The evaluation procedure takes one structure as input and

returns a double precision value.

To execute GENESIS three programs are necessary: setup, report and ga. The setup

program prompts for a number of input parameters. All the information is stored in files for

future use. It is possible to set the type of representation, the number of genes, number of

experiments, trials per experiment, population size, length of the structures in bits, crossover and

mutation rates, generation gap, scaling window and many other parameters. Each parameter has

a default value.

The report program runs the ga and produces a description of the algorithm performance.

It summarises the mean, variance and range of several measurements, including on-line, off-line

and average performance of the current population, as well as the current best value.

3.4.2. Algorithm Libraries

Algorithm Libraries provide a powerful collection of parameterised genetic algorithms

and operators generally coded in a common language, and so are easily incorporated into user

applications.

Overview

These systems are modular, allowing the user to select a variety of algorithms, operators

and parameters to solve a particular problem. Their parameterised libraries provide the ability to

use different models (algorithms, operators and parameter settings) to compare the results for the

same problem. New algorithms coded in high-level languages, like C o r Lisp, can be easily

incorporated into the libraries. The user interface is designed to facilitate the configuration and

manipulation of the models, and to present the results in different shapes (tables, graphics, etc.).

54_________________ Genetic Algorithms Programming Environments_____________ Chapter 3

Survey

The two leading algorithm-libraries are EM and OOGA. Both systems provide a

comprehensive library for genetic algorithms, but EM also supports simulations using

Evolutionsstrategie. OOGA, on the other hand, can be easily tailored for specific problems. It

runs in Common Lisp and CLOS (Common Lisp Object System), an object-oriented extension of

the Common Lisp language.

E M — Evolution Machine — has been developed by Hans-Michael Voigt, Joachim Bom and

Jens Treptow [98] at the Institute for Informatics and Computing Techniques in Germany. The

EM simulates natural evolution principles to obtain efficient optimisation procedures for

computer models. The evolutionary methods included in EM were chosen to provide algorithms

with different numerical characteristics. The programming environment supports the following

algorithms:

• Evolutionsstrategie by Rechenberg [71],

• Evolutionsstrategie by Rechenberg & Schwefel [81],

• Evolutionsstrategie by Bom [14],

• Simple Genetic Algorithm by Goldberg [36], and

• Genetic Algorithm by Voigt and Bom [98].

To run a simulation session the user provides the fitness function coded in the C

programming language. The system calls the compiler and the linker to produce an executable file

containing the selected algorithm and the user-supphed fitness function.

EM uses extensive menus with default parameter settings, data processing for repeated

runs and graphical presentation of results (on-line presentation of the evolution progress, one,

two, and three-dimensional graphs). The system runs on IBM-PC compatible computers with

MS-DOS operating system and uses the Turbo C (or Turbo C++) compiler to generate the

executable files.

OOGA — Object Oriented Genetic Algorithm — is a simplified version of the Lisp-based

software that has been developed since 1980 by Lawrence Davis. It was mainly created as a

support for Davis’ book [24] but can also be used to develop and test customised or new genetic

algorithms and genetic operators.

Case Study - OOGA

OOGA is a system designed so that each of the techniques employed by a GA is an

object that can be modified, displayed or replaced in an object-oriented fashion. The highly

Chapter 3_______________ Genetic Algorithms Programming Environments________________ 55

modular OOGA architecture makes it easy for the user to define and use a variety of genetic

algorithm techniques, by incrementally writing and modifying components in Common Lisp. The

files in the OOGA system contain implementations of several techniques used by genetic

algorithm researchers, but they are not exhaustive. OOGA contains three major modules:

• Evaluation Module which has the evaluation (or fitness) function that measures the

worth of any chromosome in the problem to be solved;

• Population Module contains a population of chromosomes and the techniques for

creating and manipulating that population. There are a number of techniques for

population representation (e.g. binary, real number, etc.), initialisation (e.g. random

binary, random real, normal distribution, etc.) and deletion (e.g. delete all, delete last,

etc.);

• Reproduction Module has a set of genetic operators responsible for selecting and

creating new chromosomes during the reproduction process. This module allows

genetic algorithm configurations with more than one genetic operator as well as its

parameters’ settings. The system creates a list with the user-selected operators and

executes them in sequence. There are a number of genetic operators for selection (e.g.

roulette wheel), crossover (e.g. one and two-point crossover, mutate-and-crossover)

and mutation. All the parameters, such as bit mutation rate and crossover rate, can be

set by the user.

The last two modules are, in fact, a hbrary of several different techniques that enables the

user to configure a particular genetic algorithm. When the genetic algorithm is run, the

Evaluation, Population and Reproduction modules work together to effect the evolution of a

population of chromosomes towards the best solution.

3.5. Tool Kits

Tool kits comprise educational systems for novice users and general-purpose systems

with a comprehensive set of tools.

3.5.1. Educational Systems

Educational programming systems are designed for the novice user to obtain hands-on

introduction to genetic algorithms’ concepts. They typically provide a graphical interface and a

simple configuration menu.

56_________________ Genetic Algorithms Programming Environments_____________ Chapter 3

Overview

Educational systems are typically implemented on IBM-PC computers for portability and

low cost reasons. For ease of use, they have an accessible graphical interface and are fully menu-

driven. GA Workbench is one of the best examples of this class of programming environments.

Case Study - GA Workbench

GA Workbench has been developed by Mark Hughes, from Cambridge Consultants Ltd.

It is a mouse-driven interactive GA program that runs on MS-DOS/PC-DOS microcomputers.

The system is aimed at people wishing to understand and get hands-on GA practice. Evaluation

functions are drawn on screen, using the mouse. The system produces run-time plots of GA

population distribution, peak and average fitness. Many useful population statistics are also

displayed. It is possible to change a range of parameters including the settings of the genetic

operators, the population size, breeder selection, etc.

Its graphical interface requires a VGA or EGA graphic adapter and it divides the screen

into seven fields:

• A Command Menu - this is a menu-bar that has general commands to start or stop a GA

execution, as well as let the user enter the target function

• Target Function Graph - after selecting the “Enter Targ” command from the command menu,

the user inputs the target function by drawing it on a graph using the mouse cursor.

• Algorithm Control C hapter- this field is called “chapter” because it can contain several

pages, but only one page is visible at a time. It initially displays a page called “Simple Genetic

Algorithm”. Pages can be flipped through, forwards or backwards, by clicking the left mouse

button on the arrows in the top high hand corner of the chapter. Following is a brief

description of the available pages:

=> Simple Genetic Algorithm Page - this page shows a number of input variables used

to control the operation of the algorithm. The variable values can be numeric or text

strings, and the user can alter any of these values by chcking the left mouse button on

the up or down arrows, to the left of each value.

General Program Control Variables Page - this page contains variables related to

general program operation rather than a specific algorithm. Here the user can select

the source of data for plotting on the output plot graph, set the scale for the X or Y

axis, determine the frequency with which the population distribution histogram is

updated or seeds the random number generator.

Chapter 3_______________ Genetic Algorithms Programming Environments________________ 57

• Output Variables Box - this contains the current values of a number of variables relating to

the current algorithm. For the Simple Genetic Algorithm, a counter of generations is presented

as the optimum fitness value, the current best fitness, the average fitness, the optimum %,

current best x, and the average x.

• Population Distribution Histogram - this graph shows the genetic algorithm's distribution of

organisms by value of x. The histogram is updated according to the frequency set in the

general control variables page.

• Output Graph - this field is used to display plots of several output variables against time.

• Axis Value Box - this box is used in combination with the mouse cursor to read values from

any of the graphs described above. When the mouse is moved over the plot area of any graph,

it changes to a cross hair and causes the Axis Value box to display the co-ordinate values of

the corresponding graph at the point indicated by the cursor.

By drawing the Target Function^ varying several numeric control parameters, and

selecting different types of algorithms and genetic operators, the novice user can practise and

have a good idea of how quickly the algorithm is able to find the peak value, or indeed if it

succeeds at all.

3.5.2. General-purpose Programming Systems

General-purpose systems are the ultimate in flexible GA programming systems. Not only

do they allow users to develop their own GA applications and algorithms, but also provide users

with the opportunity to customise the system to suit their own purposes.

Overview

These programming systems provide a comprehensive tool kit, including;

• a sophisticated graphic interface;

• a parameterised algorithm library;

• a high-level language for programming GAs; and

• an open architecture.

Access to the system components is, in general, via a menu-driven graphic interface, and

a graphic display/monitor. The algorithm library is normally “open”, allowing the user to modify

or enhance any module. A high-level language - often object-oriented - may be provided which

supports the programming of GA applications, algorithms and operators through specialised data

structures and functions. Lastly, due to the growing importance of parallel GAs, some systems

58_________________ Genetic Algorithms Programming Environments_____________ Chapter 3

provide translators to parallel machines and distributed systems, such as networks of

workstations.

Survey

The number of general-purpose systems is increasing, stimulated by growing interest in

the application of GAs in many domains. Examples of systems in this category include

EnGENEer from Logica Cambridge, MicrcGA, an “easy-to-use” object-oriented environment for

IBM-PCs and Apple Macintoshes, PeGAsuS, a parallel environment, and Splicer, which presents

interchangeable libraries for developing applications.

EnGENEer — Logica Cambridge Ltd. developed EnGENEer [78] as an in-house genetic

algorithm environment to assist the development of GA applications in a wide range of domains.

The software was written in C and runs on UNIX systems as part of a consultancy and systems

package. It supports both interactive (X-Windows) and batch (command-line) modes of

operation. Also a certain degree of parallelism is supported for the execution of application-

dependent evaluation functions.

EnGENEer provides a number of flexible mechanisms allowing the developer to rapidly

bring the power of GAs to bear on new problem domains. Starting with the Genetic Description

Language, the developer can describe, at high-level, the structure of the “genetic material” used.

The language supports discrete genes with user-defined cardinality and includes features such as

multiple models of chromosomes, multiple species models and non-evolvable parsing symbols,

which can be used for decoding complex genetic material.

A descriptive high-level language, the Evolutionary Model Language, is also available to

the user. It allows the description of the GA in terms of configurable options including:

population size, population structure and source, selection method, crossover type and

probability, mutation type and probabihty, inversion, dispersal method, and number of offspring

per generation.

Both the Genetic Description Language and the Evolutionary Model Language are fully

supported within the interactive interface (including on-line help system) and can be defined either

“on the fly” or loaded from audit files, which are automatically created during a GA run.

Monitoring of GA progress is provided via both graphical tools and automatic storage of

results (at user-defined intervals). This allows the user to restart EnGENEer from any point in a

run, by loading both the population at that time and the evolutionary model that was being used.

Connecting EnGENEer to different problem domains is achieved by specifying the name

of the program used to evaluate the problem-specific fitness function and constructing a simple

parsing routine to interpret the genetic material. A library of standard interpretation routines is

Chapter 3_______________ Genetic Algorithms Programming Environments________________ ^

also provided for commonly used representation schemes such as Gray-coding, permutations, etc.

The fitness evaluation can then be run as either a slave process to the GA or via standard

handshaking routines. Better still, it can be run on either the machine hosting the EnGENEer or

on any, sequential or parallel, hardware capable of connecting to a UNIX machine.

MicroGA — marketed by Emergent Behavior, is designed to be used on a wide range of complex

problems, while at the same time being small and easy to use. The environment is also designed to

be expandable. The system is a framework of C++ objects and, as such, it is designed so that

several pieces are used in conjunction with each other to give the user some default behaviour.

Therefore, it goes far from the library concept where a set of functions (or classes) is offered to

be incorporated into the user application. The framework is almost a ready-to-use application,

needing only a few user-defined parameters to start running. The package comprises a compiled

library of C++ objects, three sample programs, a sample program with an Object Windows

Library user interface (from Borland) and the Galapagos code generation system. MicrcGA runs

on IBM-PC compatible systems with Microsoft Windows 3.x, using Turbo/Borland C++. It also

runs on Apple Macintosh computers.

The application developer can configure his application either using Galapagos or

manually. Galapagos is a Windows-based code generator that produces, from a set of custom

templates and a little information provided by the user, a complete standalone MicrcGA

application. It helps with the creation of a subclass derived from its “TIndividual” class, required

by the environment to create the genetic data structure to be manipulated. The number of genes

for the prototype individual, as well as the range of possible values they can assume is requested

by Galapagos. The evaluation function can be specified, but the notation used does not allow

complex, or non-mathematical fitness functions to be entered via Galapagos. As a result,

Galapagos creates a class, derived from TIndividual, which contains specific member functions

according to user’s requirements.

Applications requiring complex genetic data structures and fitness functions can be

defined manually, by inheriting from the TIndividual class and writing the code for its member

functions. After creating the application-dependent genetic data structure and fitness function,

MicrcGA compiles and links everything using the Borland C++ or Turbo C++ compiler, and

produces an MS-Windows executable file.

MicrcGA is very easy to use and allows fast creation of genetic algorithms’ applications.

However, for real applications the user has to understand basic concepts of object-oriented

programming and Windows interfacing.

60_________________ Genetic Algorithms Programming Environments_____________ Chapter 3

PeGAsuS — is a Programming environment for parallel Genetic Algorithms developed at the

German National Research Centre for Computer Science. In fact, it is a tool kit that can be used

for programming a wide range of genetic algorithms, as well as for educational purposes.

The environment is written in ANSI-C and is available for many different UNIX-based

machines. It runs on MIMD parallel machines, such as transputers, and distributed systems with

workstations. PeGAsuS is structured in four hierarchical levels:

• the User Interface,

• the PeGAsuS Kernel and Library,

• compilers for several UNIX-based machines, and

• the sequential/distributed or parallel hardware

The User Interface consists of three parts: the PeGAsuS script language, a graphical

interface and a user library. The user library has the same functionality as the PeGAsuS GA

library. It allows the user to define application-specific functions that are not provided by the

system library. The script language is used to define application-dependent data structures,

“attach” the genetic operators to algorithms and specify the input/output interface.

The Kernel includes the base and the fram e functions. A base function controls the

execution order of the genetic operators, manages communication between different processes and

provides input/output facilities. This set of functions builds general frames for simulating GAs,

and can be considered as autonomous processes. They interpret the PeGAsuS script, create

appropriate data structures, and describe the order of the frame functions. Frame functions

control the execution of a single genetic operator, and are invoked by base functions. They

prepare the data representing the genetic material, and apply the genetic operators to it, according

to the script specification. The Library maintains genetic operators, a collection of fitness

functions, and input/output and control procedures. It provides the user with a number of

validated modules for constructing applications.

Currently, PeGAsuS can be compiled with the GNU C, RS/6000 C, ACE-C, and

Alliant's FX/2800 C compilers. It runs on SUNs and RS/6000 workstations, as well as on the

Alhant FX/28 MIMD architecture.

Splicer — This software environment was created by the Software Technology Branch of the

Information Systems Directorate at NASA/Johnson Space Center, with support from the MITRE

Corporation [65]. It is one of the most comprehensive environment currently available, and forms

the case study below.

Chapter 3_______________ Genetic Algorithms Programming Environments________________ ^

Case Study - Splicer

Splicer presents a modular architecture that includes: a genetic algorithm kernel,

interchangeable representation libraries, fitness modules, and user interface libraries. It was

originally developed in C on an Apple Macintosh and has been subsequently ported to UNIX

workstations (SUN3 and 4, IBM RS/6000) using X-Windows. The genetic algorithm kernel,

representation libraries, and fitness modules are completely portable. The following is a brief

description of the major modules:

• Genetic Algorithm Kernel - the GA kernel comprises all functions necessary for the

m anipulation o f popula tions. It operates independently from the problem

representation (encoding), fitness function and user interface. Some of its supported

functions are: creation of populations and members, fitness scaling, parent selection

and sampling, and generation of population statistics.

• Representation Libraries - interchangeable representation hbraries are able to store a

variety of pre-defined problem-encoding schemes and functions. This allows the GA

kernel to be used for any representation scheme. There are representation libraries for

binary strings and for permutations. These libraries contain functions for the

definition, creation and decoding of genetic strings as well as multiple crossover and

mutation operators. Furthermore, the Splicer tool defines the appropriate interfaces to

allow the user to create new representation hbraries.

• Fitness Modules - these are interchangeable modules where fitness functions are

defined and stored. It is possible to create a fitness (scoring) function, set the initial

values for various Splicer control parameters (e.g. population size), create a function

that graphically displays the best solutions as they are found, and provide descriptive

information about the problem.

• User Interface Libraries - there are two user interface libraries: an Apple Macintosh

and an X-Window System user interface. They are event-driven interfaces and provide

a graphic output in windows.

Splicer provides basic facilities to build applications using pre-defined genetic operators

from its libraries. However, to create a Splicer application for a particular problem, a Fitness

Module must be built using the C language.

3.6. Summary

This chapter has presented a review of software environments for programming genetic

algorithms’ applications. A taxonomy has been introduced based on systems’ features, types of

62_________________ Genetic Algorithms Programming Environments_____________ Chapter 3

applications they help to create and their target users. Three major classes of programming

environments have been identified: application-oriented, algorithm-oriented and tool kits.

Application-oriented systems are targeted at specific domains and therefore do not offer much

flexibility. Algorithm-oriented systems help with the creation of new application by providing a

set of pre-defined algorithms. However these systems are not concerned with the portability of

their code nor the expandability of their functionality. In general, they are provided as bare

libraries that an application developer will use to build applications. Any adaptation that a

problem may require has to be done in the libraries’ source code level, which sometimes is not

available. Finally, tool kits provide the ideal environment for developing a wide range of

apphcations.

Most of the reviewed systems offer a comprehensive set of tools to assist with the

development and execution of applications. Libraries of algorithms and genetic operators are

normally provided, as well as script or configuration languages for setting up applications. The

execution may be monitored via graphical interfaces, which can be customised for different

applications. These tool kits, although powerful, are not complete. Most of them are not portable

and do not offer the required flexibility to represent different problems w ithout major

programming effort. Parallel implementations are even more constrained; with the majority of

them being restricted to specific platforms. The characteristics, features, strengths and

weaknesses observed in all these systems provided the insights for the design of a GA

programming environment, which is the main subject of this thesis.

Chapter 4

The GAME System

This chapter presents an overview o f the Genetic A lgorithm s M anipulation
Environment. It briefly introduces the system's genetic-oriented abstractions, the
programming model, and main modules. I t also gives a short description o f the
PAPAGENA project, which has GAME as its principal development tool.

4.1. Introduction

The characteristics and requirements of GAs and PGAs outlined in Chapter 2, and the

various common features of existing programming environments presented in the previous

chapter, provided the grounds for the creation of the GA programming environment described in

this chapter. The Genetic Algorithms Manipulation Environment (GAME) is also the result of a

joint European research project, which brought together university and industry for the

development of complex PGA apphcations.

This chapter presents an overview of the whole programming environment and briefly

describes its main modules. Being a complex and sophisticated programming environment, the

design and implementation of the various modules of GAME was carried out by a team of three

researchers at UCL. This thesis focus on the parts of the system which were the responsibility of

the author of this dissertation and comprised:

• the definition of the modular architecture of the system;

• the definition and im plem entation o f GAME’S genetic-oriented and problem

independent data structures;

• the design and implementation of GAME’S genetic manipulation engine: the Virtual

Machine;

• the specification of a programming model that enables GAME applications to be

dynamically configured;

63

64______________________________ The GAME System__________________________Chapter 4

• the design and implementation of the communication and parallel control module that

allows the development of portable sequential and parallel apphcations;

• and the specification of a hierarchically organised set of libraries to maintain

parameterised versions of genetic algorithms and operators.

The next section starts with an overview of GAME’S object-oriented architecture. It is

followed by the introduction of its representation abstractions and programming model. Then, a

summary description of each main module is presented. The chapter ends with a brief overview of

the PAPAGENA project, stressing the importance of GAME for the development of real-world

apphcations.

4.2. GAME Architecture

The Genetic Algorithms Manipulation Environment provides a unified framework that

makes the development of complex and sophisticated sequential and paraUel genetic algorithms

apphcations extremely easy. The design of GAME was mainly driven by the requirements and

characteristics observed in a large number of GAs and PGAs. It is also the result of a

combination of common features encountered in the majority of general-purpose programming

environments. In addition, GAM E’S innovative object-oriented approach and platform-

independent paraUel programming model makes the system unique in its class.

GAME addresses all the basic requirements involved in the design cycle of a GA

application. It offers problem-independent genetic-oriented data structures, comprehensive

programming interfaces and a set of hbraries with parameterised versions of a broad range of

GAs and PGAs. Its underlying infrastructure provides mechanisms for the manipulation of

genetic data structures, simulation monitoring and application execution on a virtual computing

environment supporting multiple parallel computation models. GAME is highly customisable and

its hbraries can be easily expanded with the inclusion of new parameterised modules.

Users can interact with GAME at three distinct levels: application prototyping, module

configuration/creation and system customisation. At the prototyping level, novice and non-expert

users can rapidly configure and execute an apphcation by simply setting up a few parameters in a

configuration file. At the module configuration/creation level, programmers can combine pre­

defined modules from the algorithm and genetic operator hbraries to create new apphcations.

Moreover, entirely new modules written from scratch or by modification of source code

examples, can be easily integrated into the environment. FinaUy, the system customisation level

aUows programmers to modify internal modules of the environment, such as the Virtual Machine

or the graphic user interface. The interaction at this level is particularly important for porting

GAME to hardware or operating system platforms not supported in its original distribution. It is

Chapter 4 The GAME System 65

also at the system customisation level that GAME’S functionality can be adapted or expanded to

suit diverse application requirements. GAME’S standard modules, such as the Virtual Machine,

can be replaced easily by customised versions thereby providing extra functionality.

4.2.1. Genetic Representation

One of the key features of a GA general-purpose programming environment is the ability

to support the representation of a variety of problems. The traditional GA requires a problem to

be represented as a single string (normally using the binary alphabet). Although effective and

easy to manipulate, this representation model restricts the construction of genetic algorithms and

operators in many ways, and generally results in problem-dependent implementations.

GAME provides problem-independent representation through a set of abstractions that

help with the description of a broad range of genetic data structures. It is possible to represent

genetic data structures as simple as ordinary binary strings, or as complex as parse trees of any

depth or width (depicted in Figure 4.1), as required in genetic programming applications.

GAME’S principal genetic-oriented abstraction, the DVA, is a tree node, which has the ability to

store information. It is the result of the combination of two primary objects defined by the system;

• DataUnits and

• DnaNodes

The DataUnit is defined as a class of objects that is capable of storing “genetic

information’’ - the problem’s data. Currently, GAME provides DataUnit objects to store most of

the native C++ data types (char, int, long and double) and a special type that stores binary

encoded strings. DataUnit types are fully integrated with native data types (internal conversion

operators and assignment operator overloading provide transparent conversions between types).

Figure 4.1 - A genetic-oriented representation

Individual

DnaNode

DataUnit DataUnit

DnaNode

DnaNode 1 DnaNode I DataUnit

The DnaNode object has the ability to “connect” several DnaNode objects. It can also

opera te as a container for one or more DataUnit objects, transform ing this particular

66______________________________ The GAME System__________________________Chapter 4

configuration into a DNA object. A DnaNode may connect only to one “parent” node, which in

turn, may contain an arbitrary number of other DnaNode objects, configuring a tree data

structure. A special class derived from the DnaNode, the Individual, sits on the root of the tree

structure and represents a single candidate solution to a given problem. Therefore, any genetic

representation in GAME must be formed by an Individual object connected to one or more

DnaNode objects (depending on the number of variables, or chromosomes, defined by the

problem); the latter containing at least one DataUnit object (a gene). The DnaNode class provides

a set of member functions related to node-level operations such as attachNode, detachNod&,

copyNode and deleteNode. It also provides operations over the DataUnit objects it stores such as

readData, writeData, modifyData, copyData a n d deleteData. The com bination o f the

functionality provided by the DnaNode and DataUnit objects gives an enormous flexibility for

describing complex genetic structures containing mixed data types at any level of the tree

structure.

4.2.2. Programming Model

A GAME apphcation is a computer program that co-ordinates the operation of execution

units, or active objects, defined as GAME Components. Any GAME Component object must be

derived from the GameComponent class. This class provides the basic functionality for

concurrent execution and inter-process communication. It allows GAME Component objects to

execute as independent processes, or active objects, similar to the ACTOR [1] model. GAME’S

programming model presents the following features:

• GAME applications consist of a collection of GAME Components - typically the

application front-end (with the graphic user interface), one or more algorithms (with

its operators) and the Virtual Machine - executing sequentially, concurrently or in

parallel.

• Components may share the same memory space, the same processor or execute on a

different processor or machine. These three options can coexist in the same

application (see Figure 4.2), and the actual distribution is dynamically controlled by

the components themselves.

• GAME Components communicate asynchronously or synchronously via message

passing. Components have the abihty to buffer messages in their mailboxes. Messages

are queued and collected from a mailbox sequentially, in a first-in-first-out order.

• Messages are objects derived from the MessagePackage class and contain specific

commands and parameters for GAME Components. Messages may also be replied

with status and other information resulting from the command, on its completion.

Chapter 4 The GAME System 67

• M essagePackage objects can only carry GAME objects derived from the

GameStreamObject class. Objects derived from this class have the ability to be

represented as a data stream that contains the relevant information to produce exact

copies, or clones, of the original object.

• A GAME application must have, at least, an ApplicationComponent object, which

generally implements the user interface. Application components create one or more

AlgorithmComponent objects that, in turn, create OperatorComponent objects.

Figure 4.2 - Sequential and parallel GAME applications

Graphical User
Interface

Genetic Algoritm

Genetic
Operator

Genetic
Operator

Virtual Machine

Fitness Evaluator

Population Manager

Graphical User
Interface

P.E.M. (Communication System)

Genetic
Algorithm

Operators

Vi
Ma

rtual
chine

Pop
Man

Fitness
Evaluatoi J

Application components may also create a MonitorComponent object, whereas algorithm

components typically create a VirtualMachine object (also a GAME component) to execute

genetic manipulation commands generated by the algorithm itself and its operators.

4.3. GAME Modules

The GAME system is a collection of libraries organised in two major groups: the Service

Libraries and the Genetic Libraries. The Service Libraries contain the modules that form the

core of the environment: the Virtual Machine, the Parallel Execution Module, the Monitoring

Control Module and the Graphic User Interface. They also contain a collection of classes that

implement the genetic-oriented data structures, exception handling, etc. Figure 4.3 presents an

overview of GAME’S architecture with its main modules.

68 The GAME System Chapter 4

Figure 4.3 - GAME’s modular architecture

Monitoring
Control
Module

Parallel
Execution

Module

Parallel Support Module

Fitness
Evaluator

Population
M anager

The modules in white (Monitoring Control Module, Parallel Execution Module, VM

Parallel Support, Population Manager and Fitness Evaluator) represent the parts of the

environment runtime libraries that are common to all applications. These modules are not “seem”

by the user, being embedded into all applications through various GAME Component classes.

Conversely, the Genetic Libraries and the Graphical User Interface (in gray) are modules that

contain components which the user may modify, via the application configuration file. These

modules are then said to be customisable. The other module represented in gray is the Virtual

Machine, which besides being a customisable module (the user can configure the number of PMs

and FEs, for instance) also represents an abstraction comprising hidden and more specialised

GAME Components, such as the Population Manager and the Fitness Evaluator.

The connections demonstrate the dependence relationship between modules. It can be

seen that the two most important modules are the MCM and the PEM, the latter being also used

by the former. Being the core of the system, PEM is used for the most basic activity in the

application which is communication between its components.

The modular structure adopted for GAME is based on the design of other programming

environments, such as the Pygmalion and the Galatea Neural Networks programming

environments, also developed at UCL. However, various new concepts and ideas have been

introduced and modified to adapt their original design to an object-oriented approach.

4.3.1. Virtual Machine

The Virtual Machine (VM) is the module responsible for maintaining the genetic data

structures and providing facilities for their manipulation and evaluation. It isolates the genetic

Chapter 4________________________The GAME System________________________________ ^

operators and algorithms from dealing directly with the data structures through a set of

commands, implemented as a collection of functions, the VM Application Program Interface

(VM-API). The Virtual Machine is also capable of providing a certain degree of parallelism, in

which several commands can be executed simultaneously, providing parallelism is supported by

the host platform. The VM comprises three sub-modules: the Population Manager, the Fitness

Evaluator and the Parallel Support Module. The Population Manager maintains the genetic-

oriented data structures organised in population pools, and executes genetic manipulation

commands over them. The Fitness Evaluator performs the actual evaluation of the genetic data

structures and related calculations such as totaU average, highest and lowest fitness. Finally, the

parallel support module distributes commands received by the Virtual Machine among (possibly)

several copies of the Population Manager and Fitness Evaluator modules.

The VM-API includes commands for creation, elimination, duphcation, partial swapping,

inversion and modification of genetic data structures. Fitness-related commands permit the

computation of each individual’s fitness as well as the determination of populations’ total and

average fitness. The highest and lowest fitness values of a population can also be requested via

the API.

4.3.2. Parallel Execution Module

The Parallel Execution Module (PEM) implements a hardware/operating system

independent interface that supports multiple parallel computation models. It also provides an API

with functions for process initiation, termination, synchronisation and communication. It is

responsible for integrating all the GAME Component objects that form an application, with even

sequential com ponents relying upon PEM to transport their messages to other GAME

components. PEM comprises two layers: (i) the upper-layer defines the standard interface

functions used by all GAME components of an application; (ii) the lower-layer implements the

functions that map upper-layer requests into specific platform-dependent support for process

control and communication. The design of PEM facilitates its porting to a variety of platforms

(with scalar or parallel architectures), by simply replacing its lower layer. Applications created

with GAME are then automatically portable across all platforms containing an implementation of

PEM.

4.3.3. Genetic Libraries

The Genetic Libraries comprise a collection of modules containing pre-defined and

parameterised applications, genetic algorithms and genetic operators. These libraries are

hierarchically organised, that is, modules of the Apphcation Library are constructed with modules

of the Genetic Algorithm Library that, in turn, are built from modules of the Genetic Operators

70___________________________ The GAME System__________________ Chapter 4

Library. New applications and algorithms can be created by simply listing the required modules

and their parameters in a configuration file.

4.3.4. Monitoring Control Module

The Monitoring Control Module (MCM) collects and displays - through a graphic user

interface - events that happen during a simulation session. GAME Components may be requested

to notify the MCM about received or transmitted messages, as well as any modification of

DataUnit objects they possess [30]. The level of monitoring can be selected by the user for each

GAME Component object in an application. The MCM also has the ability to inform other

components of the occurrence of particular events, by keeping internal “lists of interests”.

4.3.5. Graphical User Interface

The Graphical User Interface module contains simple graphic widgets that can be used to

compose an application front-end. It enables applications to input and output data in a variety of

formats. This module includes standard widgets for displaying texts, graphics, dialogue boxes,

buttons and charts. It allows different widgets to be associated with various events reported by

the monitoring module. The modular design of the graphical user interface permits the integration

of the system’s basic library with commercial cross-platform or “home-grown” graphic hbraries.

4.4. PAPAGENA Applications

The Genetic Algorithms Manipulation Environment was conceived as the central part of

the principal parallel GA project funded by the European Commission. The ESPRIT III

Programming Environment for Applications of PArallel GENetic Algorithms (PAPAGENA)

aimed at disseminating the use of parallel genetic algorithms in complex optimisation and

modelling problems. The PAPAGENA project involved many partners including private

companies, universities and research centres from Germany, England, Holland and France. Three

applications have been developed in the project in different domains namely: finance, bio­

informatics and economic modelling.

The financial application, developed by CAP Volmac and KIQ, provides predictive

systems to assist financial organisations to optimise their decisions in fields such as credit

scoring, insurance risk, or marketing expenditure[42]. Genetic programming is used to construct

an algebraic formula that can regenerate, and hopefully predict, a series of training values.

Populations of candidate formulas created by the GP are scored on the basis of how well they fit

the training set and their ability to predict a validation set. This type of problem evolves highly

Chapter 4________________________The GAME System________________________________ 7̂

complex genetic structures represented as parse trees using GAM E’s genetic-oriented

abstractions. In this context, the algorithm must be able to manipulate operators as well as a large

number of possible variables. The operators relate to the functions used to construct the algebraic

formulae, whereas the variables relate to the possible data fields (e.g., number of credit cards,

house price, etc.). Biological-like operators are then defined to directly manipulate the two

possible data types (operators and variables). For example, the crossover operator swaps sub­

trees at nodes of equivalent data types. Similarly, two distinct forms of mutation are defined to be

applied over variables and algebraic operators. Anticipating the system’s usage as a financial

modelling tool, research concentrates on inducing algebraic formulae from sets of noisy, possibly

incomplete, and even contradictory real-world data.

In the bio-informatics domain, an application has been developed at Brainware GmbH to

predict stable protein conformations. This problem has the potential to open up a vast new world

of drug design and medical treatments. Parallel GAs are being applied to search energetically and

structurally favourable protein conformations. Parallelism is fundamental to this apphcation due

to the amount of data to be processed for each GA generation. It is exploited in three principal

modules, namely: transformation, evaluation and recombination [74]. The transformation module

converts proteins’ descriptions between polar and Cartesian co-ordinates. Cartesian co-ordinates

are commonly used to describe the spatial organisation of protein molecules. However, genetic

manipulations are easier to implement using polar co-ordinates. The transformation module was

then introduced in the application to acconunodate both requirements. Each protein in the GA

population is described using polar co-ordinates, which are then converted to Cartesian co­

ordinates before undergoing fitness evaluation. The evaluation module contains the objective

function that computes the stability of protein conformations. Protein evaluations are extremely

time consuming, requiring the use of a large data base of molecules. The data base provides the

important characteristics of molecules that are used by the objective function to work out stabihty

of a particular protein conformation. Finally, the recombination module implements the genetic

algorithm, which creates new protein conformations by recombining and modifying molecules and

spatial organisations of existing proteins. The degree of parallehsm required in this application is

achieved with the implementation of these modules as GAME Components, and distributing

many instances of them among several processors.

The economic modelling application, also developed by Brainware in collaboration with

IfP, is targeted at simulating a variety of possible scenarios associated with the current economic

changes within Eastern Europe [89]. In this case, GAs are used to mimic the behaviour of

complex multi-agent systems, subject to a variety of economical and physical constraints. In

essence, an artificial economy is created within the computer, modelled in terms of traditional

economic theory, evolution, and principle-based engineering [88]. The application uses three GA

components running in parallel to evolve three separate “models” of economic agents: the

72______________________________ The GAME System__________________________Chapter 4

Labour-Market, the Enterprise and the Locational models. Each model is represented by distinct

genetic structures using GAME’s genetic-oriented abstractions. The results of each module’s

generation are analysed by the Global Economic module that tries to find the best combination of

requirements and features of model.

This application is expected to help national and local governments by providing a

knowledge basis to assist in the formulation and implementation of effective strategies in many

sectors, e.g., investment, industrial location, logistics, etc. It has already been adopted by the

Brandenburg State in Germany, as a means for modelling and understanding local labour

movements, which have risen considerably since the German unification.

Other PAPAGENA partners were TELMAT Informatique from France and the German

National Research Center for Computer Science (GMD). TELMAT was responsible for porting

GAME onto their transputer-based parallel machines, whereas GMD provided the theoretical

foundations and research support for the development of parallel genetic algorithms’ applications.

4.5. Summary

This chapter presented an overview of the GAME programming environment. It

introduced the system’s genetic-oriented abstractions for the representation of diverse problems

and a programming model that helps with the creation of portable sequential and parallel

applications. GAME’s modular architecture was described, followed by a brief presentation of

the system’s five main modules. The design and implementation of three of GAME’s modules -

the Virtual Machine, the Parallel Execution Module and the Service and Genetic libraries - that

constitute the main subject of the research reported in this thesis, are described in more detail in

the next chapters. Finally, a short description of the PAPAGENA project was presented to

highlight the importance of the GAME system in the context of a European project, aimed at

solving real-world problems.

Chapter 5

The Genetic-Oriented Representation

and the Virtual Machine

This chapter reports on the design and implementation o f GAME'S Virtual Machine
module. It starts by introducing the abstractions and objects that grants GAME the
ability to '‘genetically" represent a broad range o f problems. The Virtual Machine,
its modules - the Population Manager, the Fitness Evaluator and the Parallel
Support - and the VM Application Program Interface are then described.

5.1. Overview

The description of GAME’s genetic-oriented abstractions for problem representation and

the Virtual Machine module presented in this chapter focuses more on their design than on their

implementation aspects. The objective is to give sufficient information about their design to allow

other implementations, possibly using even a different programming language. Nevertheless,

C++ class declarations are provided, along with the description of their most important member

functions and data.

This chapter starts by explaining the importance of a problem’s representation and how

GAME facihtates their manipulation via its genetic-oriented abstractions. The following sections

show how data of different types are stored, and how the representation structure is organised.

One of the sections discusses the problem of addressing large and deep storage units in the

representation and presents the solution adopted.

The modular design of the Virtual Machine is then presented. The VM comprises three

modules: the Population Manager, the Fitness Evaluator and the Parallel Support. The Population

Manager (PM) is responsible for the execution of genetic manipulation commands; the Fimess

Evaluator (FE) embeds the problem -dependent objective function and performs related

computation (total, average, etc.); and the Parallel Support module controls the execution of

many PM and FE instances on parallel platforms. The VM Application Program Interface, its

commands and communication objects - VmMsg - that transport them are also described.

73

74_________ The Genetic-Oriented Representation and the Virtual Machine________ Chapter 5

5.2. Representing Genetic Data Structures In GAME

One of the most important characteristics of a genetic algorithm is the genetic data

structure it manipulates. In its simplest form, a GA operates over an encoded string representing

a single problem variable (x), as shown in Figure 5.1. However, a single variable search is clearly

restrictive in terms of the number of problems that can be expressed in this manner. Complex

real-world problems generally require optimisation on multi-dimensional spaces. A

straightforward way to support these problems would be to simply extend the one-dimensional

case by extending the string definition.

Figure 5.1 - A one-dimensional string representation

D»aii!

Figure 5.2 depicts the traditional genetic representation for a two-dimensional search,

with the variables x and y encoded in the same alphabet (binary) and concatenated into a single

string. Any manipulation of this structure would be an exploration of possible two-dimensional

solutions to a given problem.

Figure 5.2 - Concatenating strings on multi-dimensional problems

This two-dimensional representation can clearly be extended to an arbitrary number of

dimensions simply by increasing the number of bits in the string. However, in most problem

instances, certain practical considerations have to be taken into account. These considerations

must include, for instance, the way strings (for all co-ordinates) are interpreted, and the possible

restrictions to the range each variable can take. For example, the x value could range over the

usual binary decoding of 0 to 63, whereas the y variable could take values between 97.5 and

99.0. This means that the genetic operators would have to take into account constraints, or

restrictions, placed on the interpretations of these chromosomes to prevent invalid strings

appearing in the population. A more intuitive approach would be to separate the variables onto

different chromosomes. This allows genetic operators to handle constraints more easily. However,

it also means that an extra level of abstraction is introduced in the genetic structure in that an

individual (as a population element) now consists of a set of chromosomes. The full hierarchy is

Chapter 5________ The Genetic-Oriented Representation and the Virtual Machine_________ 7̂

then: a group of genes forms a chromosome; a group of chromosomes forms an individual; a

group of individuals forms a population. The individual exists only as an abstraction to facilitate

the manipulation of the sets of variables representing a single potential solution to a problem. The

new data structure is shown in Figure 5.3.

Figure 5.3 - A bi-dimensional genetic representation

Individual

Once the genetic structure has been extended in this way it becomes possible to

manipulate it at multiple levels. For instance, the crossover operator can exchange genetic

information at the gene level, i.e., sub-strings of the genetic representation of the x parameter. At

the chromosome level, crossover could swap an entire parameter (x) while keeping the other (y)

fixed. This means that chromosomes can be treated and defined in fundamentally different ways.

For example, one chromosome may take a binary representation whereas the other might take real

values, or some other discrete encoding. This clearly broadens the scope of the possible GA

designs. Another immediate possibility is an overall increase in the number of levels that may be

defined for a genetic structure. This allows the representation of even more complex genetic data

structures, such as those defined in genetic programming problems.

Genetic programming evolves genetic structures that are themselves computer programs.

The objective, besides minimising the number of language primitives and operators applied to

implement a task, is to automate program construction. By knowing the possible inputs for a

program and the expected outputs, a genetic programming application can produce the required

program. The genetic structure manipulated in such cases is a parse tree (usually created by

compilers). The tree model is then an extension to the individual/chromosome/gene model, but

with an arbitrary number of levels. The genetic operators should be able to manipulate the genetic

structure at different levels, not only exchanging sub-trees but aggregating or separating them as

well. An example of a simple GP genetic data structure is shown in Figure 5.4, which represents

the mutation of the expression (a*b)+c which becomes (a+c)*b after swapping the branch +c

with the branch *b of the parse tree.

This form of genetic representation provides a much more flexible alternative to the

traditional single string model. It allows the coexistence of different data types in the same genetic

structure and permits genetic manipulations at various levels (chromosomes, genes, etc.).

76_________ The Genetic-Oriented Representation and the Virtual Machine_________Chapter 5

Furtherm ore, it sim plifies the construction of genetic operators by transferring to the

representation structure any possible problem constraint.

Figure 5Â - A GP tree mutation

5.2.1. GAME’S Genetic-Oriented Data Types

The GAME tool kit defines the genetic structures representing a problem in terms of

genetic oriented abstractions that conform with the representation model outlined above. The

genetic oriented abstractions provided by GAME allow the representation of a variety of ES, GA

and GP problems. GAME supports the use of binary (or any other alphabet) and real value

representations with an arbitrary number of levels, in a tree-like data structure. The

implementation of the genetic-oriented data structures is based on a set of internally defined data

types, g a m e ’s data types have the same functionality as the native data types defined by the

C++ language, with some added features that enable data objects to be sent across GAME

Component objects. Another feature of GAME data types is the ability to enforce upper and

lower limits for the actual values they can store. If no limit is specified for a GAME data type, it

assumes the range of possible values of its native language counterpart. For example, the GAME

data type used to represent integers, defined as g a jn t, is able to store the same range of values of

a C++ i n t type. However, if a g a jn t object is created, as in the example bellow, it allows only

values between -2 0 and +2 0 to be stored. Any other value falling out of that range is

automatically “mapped” into a value in the specified range.

Example:
ga_int x(-20,20); // x only stores values between -20 and 20

All GAME data types belong to the DataUnit class. This class defines an abstract type

that contains the properties of a GameStreamObject"^ and the basic arithmetic and relational

operators supported by the C++ language. The derived classes contain the variables holding the

actual value, as well as the maximum and minimum limits it may assume. For each native

language type a corresponding GAME data type is defined. The use of internal conversion

operators provides interchangeability between native data type values and GAME data type

values. The current set of data types may also be easily expanded to support user-defined data

^ GameStreamObjects provide the functionality to transfer objects like DataUnits across GAME Components.

Chapter 5 The Genetic-Oriented Representation and the Virtual Machine 77

types. Complex data structures may be encapsulated by classes derived from DataUnit, extending

the data types supported by GAME for a particular application. Figure 5.5 lists the declaration of

the DataUnit class, and Figure 5.6 shows an example of a GAME data type - the g a j n t class.

Figure 5.5 - The DataUnit base class

class DataUnit t public GameStreamObject
{
public I

/ /// Member functions defined by GameStreamObjects
/ /
virtual OLT getObj ectLength (void) ” 0;
virtual hOS describeObject (hOS) ” 0;
virtual hOS assembleObject (hOS) ” 0;
virtual DataUnit* duplicate (void)” 0;
virtual DataUnits operator- (const DataUnits) 0;

//
// Aritmetic operators
//
virtual DataUnits operator+“ (const DataUnits) = 0
virtual DataUnits operator-- (const DataUnits) ” 0
virtual DataUnits operator*- (const DataUnits) ” 0
virtual DataUnits operator/” (const DataUnits) ” 0
virtual DataUnits operator%- (const DataUnits) ” 0

//// Relational operators
//virtual BOOL operator-” (const DataUnits) - 0
virtual BOOL operator ! - (const DataUnits) ” 0
virtual BOOL operator>- (const DataUnits) ” 0
virtual BOOL operator<- (const DataUnits) ” 0
virtual BOOL operator) (const DataUnits) ” 0;
virtual

}?
BOOL operator< (const DataUnits) 0;

Besides the native C++ equivalent data types, GAME defines two extra data types;

ga_word and gajbinary. The g a jv o r d type is intended to act as a universal type, being able to

hold any value that can be stored by any native language data type. It gives an enormous

flexibility to the application programmer. But, because it can accommodate virtually any value,

its instances may occupy a significant amount of memory. The other data type, gajbinary, stores

only binary values. It saves memory since all values are stored in a single array containing only

the sufficient number of bytes to store the required number of bits. Table 5.1 lists GAME’S data

types and their native C+ + counterparts.

Table 5.1 - GAME data types

Native C++ Data Types GAME Data Types
unsigned char ga_uchar
unsigned short ga_ushort
unsigned int ga_uint
unsigned long ga_ulong
char ga_char
short ga_short
int ga_int
long ga_long
double ga_double
float ga_float

k,. " Iga_word
ga_binary

78 The Genetic-Oriented Representation and the Virtual Machine Chapter 5

Figure 5.6 -A GAME data class (ga jn t)

class ga_lnt t public DataUnit
t
public

ga_int (void)
ga_int (const ints, int=0.
ga_int (const ga_ints);

virtual ~ga_int (void);
virtual OLT getObj ectLength (void)
virtual hOS describeObject (hOS);
virtual hOS assembleObject (hOS);
virtual DataUnitfi operator- (const DataUnits);
virtual hDUT duplicate (void) !

virtual void setSange (int, int);
virtual int getMaxValue (void)
virtual int getMinValue (void)

virtual DataUnits operator+- (const DataUnits);
virtual DataUnits operator-- (const DataUnits);
virtual DataUnits operator*- (const DataUnits);
virtual DataUnits operator/- (const DataUnits);
virtual DataUnits operator%- (const DataUnits);
virtual DataUnits operator+- (const ints);
virtual DataUnits operator-- (const ints);
virtual DataUnits operator*- (const ints);
virtual DataUnits operator/- (const ints);
virtual DataUnits operator%- (const ints);
virtual BOOL operator> (const DataUnits);
virtual BOOL operator< (const DataUnits);
virtual BOOL operator— (const DataUnits);
virtual BOOL operator1- (const DataUnits);
virtual BOOL operator>- (const DataUnits);
virtual BOOL operator<- (const DataUnits);
virtual ga_ints operator- (const ints);
virtual ga_int operator+ (const ga_ints);
virtual ga_int operator- (const ga_ints);
virtual ga_int operator* (const ga_ints);
virtual ga_int operator/ (const ga_ints);
virtual ga_int operator^ (const ga_ints);

/ /// Conversion operator
/ /
virtual

/ /// Member Data
/ /
privatei

int
int
int

unsigned int
};

operator

_current_value;
_min_value;
_max_value;
_mask;

int();

GAME defines two abstractions that are used to describe the genetic structures to be

manipulated by the Virtual Machine. They are implemented by the Individual and the DnaNode

classes. GAME implements genetic representations as tree structures containing an Individual

object in its root, and an arbitrary number of layered branches (or nodes). Each layer under the

root is formed by a number of DnaNode objects acting as “connectors” between two layers (see

Figure 5.7). A DnaNode object can be connected to an Individual object or another DnaNode

Chapter 5 The Genetic-oriented Representation and the Virtual Machine 79

object. In fact, both Individual and DnaNode objects are members of a common base class, the

DnaCollection, which defines their basic properties.

Besides acting as “connectors” between nodes, a DnaNode (or Individual) object may

also hold DataUnit objects. In general, DataUnit objects are present in the “leaves” of the tree

structure, but they can also be attached to any DnaNode object, at any level.

Figure 5.7 - Simple and complex genetic representations in GAME

Layer 0

Layer 1

Layer 2

Layer 3

Individual

DnaNode

A Simple two layer
genetic structure

individual

DnaNode DnaNode

DataUnitDnaNode DnaNode

DataUnitDataUnit

A complex four layer, multi-data genetic structure

Figure 5.7 shows two examples of GAME’S genetic structures. The first genetic structure

is the simplest possible in GAME, and is represented by an Individual object that has a single

DnaNode object containing a single DataUnit object. This structure corresponds to a problem

with only one variable (jc).

The second example shows a complex genetic structure that can be described using the

genetic-oriented abstractions. The two nodes under the root (Individual) represent two

independent variables {x, y) of a problem. It is worth to noting that x and y may use different

encoding methods.

Addressing a DnaNode

Nodes in the genetic structure are identified by their addresses. The address of the

Individual object (0 in this example) corresponds to its index in the population pool. Sub-node

addresses result from the composition of previous nodes’ addresses, appended with the index

value relative to the node they are connected to. Each node of any Individual object in a

population pool is uniquely identified by its nodepath address. Thus in the example of Figure 5.7,

the X variable (represented by node 0.0) is a chromosome “carrying” two genes (0.0.0 and 0.0.1)

whereas the variable y (node 0.1) is represented by a single gene.

Genetic manipulations can occur at any node, meaning that complete flexibility is offered

by g a m e ’s genetic structure for operating on genetic types. DnaNodes and DataUnits may be

attached and detached^ duplicated^ moved and deleted at any node, in any layer. Operations like

8 0 _________The Genetic-Oriented Representation and the Virtual Machine________ Chapter 5

gene swaps and chromosome swaps (the whole gene string is swapped at once between two

Individuals) are as simple as detaching and re-attaching nodes in the appropriate layers of the

genetic structure.

Specifying a particular node in the genetic structure to be swapped with another node, for

instance, can be a very complicated operation. Since the genetic structure can be as complex as a

problem may require, it could involve a number of nodes and an even greater number of layers

for a single genetic structure describing an individual. A nodepath is defined as the sequence of

indexing items that uniquely specifies the address of a node in a genetic structure. Its first

indexing item is the pool handler (hPO O L) which indicates the population pool that a particular

genetic structure belongs to. It is followed by the individual index in that pool and a sequence of

indexing items that identifies the targeted node.

Example:

Starting from the end, the sequence 20.5.0,1.2 gives the address of the third node on

the fourth layer, connected to the second node of the third layer, which is connected to the

first node of the second layer of the 5th individual from the pool (20 is the pool handler

which is only an identifier for the pool itself, not implying the existence of twenty pools).

The sequence necessary to address a particular node can become quite long as the

number of nodes in a genetic structure increases. Also, an addressing sequence may not have a

fixed length since GAME permits its genetic structures to be dynamically re sized. These

characteristics make the use of C + +’s ordinary function call syntax at least uncomfortable. The

solution to this problem came with the creation of an “addressing object”, the NodePath.

The NodePath class

A NodePath operates as a/i/b(first-in-first-out) that stores the sequence of addressing

items necessary to address a particular node in the genetic structure. The maximum length of the

path that can be stored may be specified when a NodePath object is declared. The NodePath class

inherits the functionality of the GenericFifo and GenericSet classes, which defines a family of

container classes in GAME. It is also a member of the GameStreamObject class (as any member

of the GenericSet class) and, therefore, can be carried by message package objects across GAME

Components.

A NodePath object is included in any message package delivered to a DnaCollection

mailbox. Its contents are then used to “navigate” the message package on the genetic structure

until it is finally delivered to the last node specified in the addressing sequence. As the message

package navigates throughout the genetic structure, addressing items are extracted from the

NodePath object in the same sequence they were inserted. By extracting an address item from the

Chapter 5 The Genetic-Oriented Representation and the Virtual Machine 81

NodePath object, a node can route the message package to the mailbox of the next node in the

addressing sequence. This operation is repeated until no more addressing items are found in the

NodePath object, implying that the contents of the message package (a command) must be

executed.

The NodePath class shown in Figure 5.8 allows a sequence of bytes, representing nodes’

indexes, to be stored into its internal array. The sequence of numbers is inserted using the “=” and

“+=” operators. Addressing values are extracted in the same sequence they had been inserted, via

the getNextAddress member function. The isLastAddress member function indicates when

no more addressing items are available.

The NodePath class is derived from the abstract type GenericFifo, which defines the

functionality of a GAME fifo object.

Figure 5.8 - The NodePath class

class NodePath > public GenericFifo
I
public »

NodePath (void);
NodePath (WORD); // specify the array size
NodePath (const NodePath&);

virtual -NodePath (void);

virtual OLT getObj ectLength (void);
virtual hOS des cribeObj ect (bOS);
virtual hOS assembleObject (hOS);
virtual GenericFifofi operator- (const GenericFifofi);

virtual void clearPath (void);
virtual BYTE getNextAddress (void);
virtual BOOL isLastAddress (void);
virtual BYTE getMaxPathLength (void);

virtual void operator- (BYTE);
virtual void operatorf- (BYTE);
virtual operator BYTE();

5.2.2. The Genetic type class hierarchy

The genetic-oriented abstractions used to describe the data structures that represent a

particular problem are rooted by the DnaCollection class. As shown in Figure 5.9, a

DnaCollection is the base class for the DnaNode and the Individual classes, the latter being a

specialised version of the DnaNode class.

Figure 5.9 - Class hierarchy o f GAME’S genetic-oriented objects

DnaCollection DnaNode Individual

82_________ The Genetic-Oriented Representation and the Virtual Machine_________Chapter 5

5.2.3. The DnaCollection

The DnaCollection class shown in Figure 5.10, provides the basic functionality for the

manipulation of GAME’S genetic-oriented data structures. Amongst its most important features is

the ability to maintain connections to an unlimited number of other DnaCollection (and derived)

objects, and hold many DataUnit objects simultaneously. The DnaCollection class contains the

following member data:

WORD _num_nodes
BYTE _num_variables

These are counters holding the current number of DnaCollection type objects connected

to this object, as well as the number of DataUnit type objects.

WORD _max_nodes
WORD _max_varlables

These two member data are used to store the maximum number of DnaCollection and

DataUnit objects that can be connected to this object. These values may be provided when a

DnaNode (or Individual) object is declared, via the constructor.

Example:

DnaNode n(10,l); // creates a DnaNode object "n" which can
// receive up to 10 connections of
// other DnaCollection type objects and
// 1 connection of a DataUnit type object,

If one (or both) of values in the example are not provided when the object is created, five

connections of DnaCollection and one connection of a DataUnit type are assumed by default. The

defau lt values may be m odified by defin ing the constan ts NODE_ARRAY_SIZE and

DATA_ARRAY_SIZE in the gameconf.h file.

DNA_NODE_STATUS _status

This member data stores the status word of a DnaCollection object. Only two possible

status words can be assumed: ATTACHED or DETACHED. They refer to the actual condition of the

object, that is, if the object is connected to any other DnaCollection object, its status is

ATTACHED otherwise DETACHED. It is used as a mechanism to prevent DnaCollection objects

from being connected to more than one genetic structure at the same time.

Chapter 5 The Genetic-Oriented Representation and the Virtual Machine 83

Figure 5.10 - The DnaCollection class

class DnaCollection > public GameStreamObject
{
publicI

virtual
virtual OLT
virtual hOS
virtual hOS

DnaCollection
DnaCollection
-DnaCollection
getObj ectLength
describeObj ect
assembleObject

virtual DnaCollections operator-
/ /
// Auxiliary Functions
/ /virtual hDCT duplicate
virtual MsgPackage& mailBoz

/ /
// Status Functions
/ /
virtual DNA^NODE_STATUS getNodeStatus
virtual void setNodeStatus
virtual BOOL getDataStatus
virtual MSG_STATUS setDataStatus

/ /
// Manipulation Functions
/ /
virtual MSG_STATUS
virtual hDCT
virtual MSG_STATUS
virtual hDCT
virtual MSG_STATUS
virtual MSG_STATUS

/ /// Access Functions
/ /
virtual hDUT
virtual MSG_STATUS
virtual hDUT
virtual MSG_STATUS
virtual WORD
virtual WORD
virtual BYTE
virtual BYTE

attachNode
detachNode
makeNode
duplicateNode
deleteNode
invertNodes

readData
writeData
duplicateData
deleteData
getNumNodes
getMazNodes
getNumVariables
getMazVariables

protected:
void

/ /// Member Data:
/ /

resetFlags

WORD
WORD
BYTE
BYTE
LWORD
DNA_NODE_STATUS
DnaCollection* *
DataUnit**

_num_nodes;
_maz_nodes;
_num_variables;
_maz_variables;
_valid_data;
_status;
_node_aray_ptr;
_data_array_ptr;

(WORD, WORD);
(const DnaCollection*);
(void);
(void) - 0;
(hOS) - 0/
(hOS) - 0;
(const DnaCollection*);

(void) - 0 ;
(MsgPackagefi);

(void);
(DNA_NODE_STATUS);
(BYTE-0);
(BOOL, BYTE-0);

(WORD, hDCT);
(WORD);
(WORD, WORD, BYTE) - 0;
(WORD);
(WORD);
(WORD, WORD-0);

(BYTE-0);
(hDUT, BYTE-0);
(BYTE-0);
(BYTE-0);
(BYTE-ONE_LEVEL);
(void);
(void);
(void);

(LWORD*);

};

DnaCollection** _node_array_ptr
DataUnit** _data_array_ptr

The list of DnaCollection objects connected to a particular DnaNode or Individual is

maintained by an array of handlers (hDCT) created when the object is declared. Since the array is

dynamically created (with the specified or default size) only its pointer - _node_array_ptr- is

declared in the DnaCollection class. The same strategy applies for DataUnit objects connected to

a DnaCollection object. The ability to hold more than one DataUnit object offered by the

DnaCollection permits, for instance, the definition of polyploid genetic structures. The maximum

84_________ The Genetic-Oriented Representation and the Virtual Machine_________Chapter 5

number of DataUnit objects connected to a DnaCollection object is limited by the number of bits

that the _valid_data member can contain.

LONG _valid_data

The purpose o f _valid_data is to indicate which of the DataUnits connected to the

DnaCollection object is “valid”. The meaning of the term “valid” can vary depending on the

derived class. For the DnaNode class, for instance, it can be interpreted as the dominant allele in

a diploid genetic structure. However, it assumes a different meaning in the Individual class

(which is explained in another section in this chapter). Each valid (‘1 ’) bit in this member data

corresponds to a connected DataUnit object. Therefore, the maximum number of DataUnits

connections is limited by its number of bits.

Figure 5.11 - A DnaCollection object

_num_nodes _node_status
_max_nodes valid data
,num_variables i i i - i i—i
max_vanables I N I _ _ U

nodC.an'ây:;d [iq::d
data_array

The DnaCollection class defines a set of member functions that can be grouped into four

categories: status, access, manipulation and auxiliary member functions.

Status member functions are invoked to get or set the status of a node, and also to

enquire the validity of its DataUnits. Access member functions are called to read the values of the

object’s member data such as _num_nodes, _num_variableSy etc. The manipulation group

comprises member functions for inserting, removing or copying other DnaCollection objects

maintained in a node. It includes member functions like attachNode, detachNode, makeNode,
duplicateNode, deleteNode and invertNodes. The auxiliary group defines member functions

providing the ability to duplicate a DnaCollection object (duplicate). However, the most

important member function of the auxiliary group is the mail Box. It provides the only means for

“accessing” all other member functions of DnaCollection objects connected at any level of the

genetic structure.

Any public member function of a DnaCollection object may be directly called using the

ordinary C++ syntax. However, the expression necessary to call member functions of objects

connected to other objects gets very comphcated with the number of levels that a genetic structure

may present. A mechanism centralised on a mailbox abstraction was therefore devised to simplify

the access to any object connected at any layer of the genetic structure.

Chapter 5 The Genetic-Oriented Representation and the Virtual Machine 85

The argument of the mailBox member function is a message package object^ that carries

a command, arguments (if necessary) and a NodePath object specifying the address of the

DnaCollection object in the genetic structure to which the message is to be delivered. The

commands defined for a DnaCollection object, and their related arguments, are listed in section

5.2.6, which describes the DnaNodeMsg class. For the moment it is sufficient to know that a

mailbox handles message package objects.

On receiving a message package the mailbox checks if it is addressed to itself. If so, the

message package is opened and its command executed by calling the required member function.

The same message package is then used to take the status and result of the requested action back

to its sender. If the message package is addressed to any of its connected DnaCollection objects,

an index is obtained from the NodePath object and the message package passed on to its mailBox.

If no further DnaCollection object is found, according to the index specified, the message package

is returned with the UNDELIVERED status.

5.2.4. The DnaNode

The DnaNode class is the basic unit for describing a GAME genetic representation. It is

derived from the DnaCollection class and simply implements its pure virtual functions.

Figure 5.12 - The DnaNode class
class DnaNode i public DnaCollection
(
public t

DnaNode
DnaNode
DnaNode

virtual -DnaNode
virtual OLT
virtual h O S
virtual hOS
virtual hDCT
virtual MSG_STATUS

getObj ectLength
describeObj ect
assembleObject
duplicate
makeNode

(void);
(WORD, BYTE-_DATA_AERAY_S Z)
(const DnaNode&);
(void);
(void);
(hOS);
(hOS);
(void);
(WORD, WORD-_NODE_ARRAY_SZ,
BYTE-_DATA_ARRAY_SZ);

The default values for the node array and the data array created by the DnaNode class

are specified by the constants NODE_ARRAY_SIZE and DATA_ARRAY_SZ. These constants may be

redefined in the gameconf.h file.

* A detailed description of GAME’S messaging system, which includes the MessagePackage class, is presented in Chapter 6.

86_________ The Genetic-oriented Representation and the Virtual Machine_________Chapter 5

5.2.5. The Individual

The class Individual (Figure 5.13) further speciahses the DnaNode class to operate as the

root of the genetic structure. As such, it does not maintain DataUnits in the same sense as a

DnaNode. In general, the genetic structure of a GA represents an encoded form of a candidate

solution to a problem. The encoded genetic structure is referred to as the genotype and the

original, or decoded form, is referred to as its biological-like phenotype. Since Individual objects

have the ability to store DataUnit objects, they can use this functionality to store instances of

these objects containing the phenotypes. The status flags associated with the DataUnit objects

connected to an Individual’s data array are used to indicate whether the data being held are valid

or not. Any operation executed over an Individual object, which results in any modification of its

genetic structure, sets the status flag associated with the DataUnit holding its phenotype as

NOT_VALID. When the Virtual Machine receives a command message requesting an individual’s

phenotype, its status flag is inspected. If a VALID status is returned, a copy of the actual DataUnit

object containing the phenotype is produced and given to the requester. Status flags are

automatically updated, i.e. set to VALID, when the problem-dependent decode function is called.

By keeping an updated copy of the phenotype with its “owner” the overhead resulting from

decoding an unchanged genetic structure is avoided.

A similar mechanism is used by the Individual objects to maintain updated copies of their

fitness values. Once an individual has been evaluated by the fitness function, the result is stored

in a DataUnit object in the individual’s fitness_array. The next time its fitness value is requested

by the application, the stored value is returned, avoiding new fitness evaluations. A fitness

evaluation is therefore only required if the genetic structure is modified between two fitness

requests.

To provide this extra functionality, new data and function members have been added to

the Individual class. Also, the mailBox member function and some of the public member

functions that can modify the genetic structure (without using the mailbox interface) such as

attachNode, detachNode and deleteNode have been redefined.

Chapter 5 The Genetic-Oriented Representation and the Virtual Machine 87

Figure 5.13 - The Individual class

class Individual i public DnaNode
t
public t

virtual

Individual
Individual
Individual
-Individual

(void);
(WORD, BYTE-_DATA_AREAY_SZ
BYTE-_FITNESS_AREAY_SZ);
(const Individualfi);
(void);

virtual OLT getObj ectLength (void);
virtual hOS describeObj ect (hOS);
virtual hOS assembleObject (hOS);
virtual MsgPackagefi mailBox (MsgPackagefi);
virtual MSG_STATUS attachNode (WORD, hDCT);
virtual DnaCollection* detachNode (WORD);
virtual MSG_STATUS makeNode (WORD, WORD-_NODE_ARRAY_SZ

virtual MSG_STATUS deleteNode
BYTE-_DATA_ARRAY_SZ,
FITNESS_ARRAY_SZ);
(WORD);

virtual BOOL getFitnessStatus (BYTE-GLOBAL);
virtual BYTE getNumVarFitness (void);
virtual hDUT readFitness (BYTE-0);
virtual MSG_STATUS writeFitness (hDUT, BYTE-0);

privatei
BYTE
BYTE
LWOSD
DataUnit**

_nunL.var_f itness ;
_max_var_fitness;
_valid_fitness;
_f itnes s_array_ptr;

};

The four member data added to the Individual class are:

BYTE _num_var_fitness

This is a counter for the current number of DataUnit objects holding fitness data,

connected to the fitness array.

WORD _max_var_fitness

This member data holds the maximum number of DataUnit objects that can be connected

to the fitness array. This value can be specified when an Individual object is declared, via its

constructor. The default values provided for these member data may be modified by defining the

constants NODE_ARRAY_SIZE, DATA_ARRAY_SIZE, a n d FITNESS_ARRAY_SIZE in th e

gameconf.h file.

Finally, it is interesting to note that an Individual’s fitness array can maintain more than

one DataUnit object, supporting apphcations requiring multi-fitness evaluations. In such cases, if

any of the fitness values kept by an individual is set to NOT_VALID, the getFitnessStatus member

function will return FALSE, until all status flags are updated by the Fitness Evaluator module.

88 The Genetic-Oriented Representation and the Virtual Machine Chapter 5

5.2.6. Commands to DnaCollection objects

Several commands have been defined for requesting actions to DnaCollection and derived

objects. Each command specifies one or more arguments that are gathered in a single message

package object. Table. 5.2a and b lists these commands, their arguments, and returned data.

Table. 5.2a - DnaCollection node commands

Message Title Arguments Returns
DN_ATTACH_NODE hN P - N o d eP a th h an d le

hDCT - D naC o llec tio n han d le
MSG_STATUS - StatUS

DN_DETACH_N0DE hN P - N o d eP a th hand le MSG_STATUS - StatUS
hDCT - D n aN o d e h an d le

DN_MAKE_N0DE hNP - N o d eP a th hand le
WORD - in d ex to a ttach new node

MSG_STATUS - StatUS

DN_DUPLICATE_NODE hNP - N o d eP a th hand le MSG_STATUS - StatUS
DN_DELETE_NODE hNP - N o d eP a th hand le MSG_STATUS - StatUS
DN_INVERT_NODE_SEQ hNP - N o d eP a th hand le

[WORD] - n u m nodes to invert
MSG_STATUS - StatUS

DN_GET_NUM_NODES hNP - N o d eP a th hand le
[B Y T E]- ONE_LEVEL/ALL_LEVELS

MSG_STATUS - Status
WORD - in teg er v a lu e

DN_GET_MAX_NODES hNP - N o d eP a th hand le MSG_STATUS - StatUS
WORD - in teg e r v a lu e

DN_GET_NUM_VAR_DATA hNP - N o d eP a th hand le MSG_STATUS - StatUS
BYTE - in teg e r v a lu e

DN_GET_MAX_VAR_DATA hNP - N o d eP a th hand le MSG_STATUS - Status
BYTE - in teg er v a lu e

Table. 5.2b - DnaCollection data commands

Message Title Arguments Returns
DN_READ_DATA hNP - NodePath handle

[BYTE] - index of the DataUnit
MSG_STATUS - Status
hDUT - DataUnit handle

DN_WRITE_DATA hNP - NodePath handle
hDUT - DataUnit handle
[BYTE] - index of the DataUnit

MSG_STATUS - StatUS

DN_DUPLICATE_DATA hNP - NodePath handle
[BYTE] - index of the DataUnit

MSG_STATUS - StatUS
hDUT - DataUnit handle

DN_DELETE_DATA hNP - NodePath handle
[BYTE] - index of the DataUnit

MSG_STATUS - StatUS

DN_GET_DATA_STATUS hNP - NodePath handle
[BYTE] - GLOBAL/index

MSG_STATUS - StatUS
BOOL - data status

DN_SET_DATA_STATUS hNP - NodePath handle
BOOL - data status
[BYTE] - index of the DataUnit

MSG_STATUS - StatUS

i_get_fitness_status hNP - NodePath handle
[BYTE] - GLOBAL/index

MSG_STATUS - StatUS
BOOL - data status

i_get_num_var_fitness hNP - NodePath handle
[BYTE] - index of the DataUnit

MSG_STATUS - StatUS
BYTE - integer value

Chapter 5 The Genetic-Oriented Representation and the Virtual Machine 89

5.2.7. The DnaNodeMsg class

The DnaNodeMsg class, shown in Figure 5.14, defines the messaging object that

navigates throughout the genetic structure, delivering commands and their arguments, and

bringing back to its sender the execution status and returned data. This class is derived from the

MsgPackage class, and inherits all its properties.

Figure 5.14 - The DnaNodeMsg class

class DnaNodeMsg i public MsgPackage
public i

virtual
DnaNodeMsg
DnaNodeMsg
-DnaNodeMsg

virtual MsgPackagefi operator-

virtual OLT getObj ectLength
virtual hOS des cribeObj ect
virtual hOS assembleObject

void storeMessage
void storeMessage
void storeMessage
void storeMessage
void storeStatus
void storeStatus
void storeStatus
void storeStatus
void storeStatus

virtual WORD getNextAddress
virtual BOOL isLastAddress
virtual hDCT recallNodeHandle
virtual hDUT recallDataHandle
virtual WORD recallMazNodes
virtual WORD recallNumNodes
virtual BOOL recallDataStatus
virtual BYTE recallMaxVar
virtual BYTE recallNumVar

protected t
NodePath _path;
hDCT _node_handle;
hDUT
BOOL

_data_handle;
_data_status;

(void);
(const DnaNodeMsg5);
(void);
(const MsgPackage5);
(void);
(hOS);
(hOS);
(DNA_NODE_MSG);
(DNA_NODE_MSG, hNP, hDCT);
(DNA_NODE_MSG, hNP, WOKD-0);
(DNA_NODE_MSG, hNP, hDUT, BYTE-0);
(MSG_STATUS);
(MSG_STATUS, WORD);
(MSG_STATUS, BOOL);
(MSG_STATUS, hDCT);
(MSG_STATUS, hDUT);
(void);
(void);
(void);
(void);
(void);
(void);
(void);
(void);
(void);

);

Some member data have been added to the original set of the MsgPackage class. They

enable the DnaNodeMsg class to store specific arguments associated with commands defined for

DnaCollection objects. The new member data of this class are:

NodePath _path

A NodePath object that carries the sequence of addressing items identifying the node that

the DnaNodeMsg object is addressed to. The DnaNodeMsg class provides member functions for

reading address items from _j)ath.

90_________ The Genetic-Oriented Representation and the Virtual Machine________ Chapter 5

hDCT _node_handle

The _node_handle memhQT data stores a handle to a DnaCollection (hDCT) object.

Therefore, when a DN_ATTACH_NODE command code is issued, the DnaNode that receives it gets

the node handle to be attached from this member data, calling the recallNodeHandle member

function. It can also bring a node handle when a DN_GET_NODE command code is issued, for

instance.

hDUT _data_handle

The __data_hand/e stores a handle to a DataUnit (hDUT) object. Therefore, when a

DN_WRITE_DATA command code is sent, the DnaNode that receives it gets the data handle to be

written from this variable, calling the recallDataHandle member function. It can also bring a data

handle when a DN_READ_DATA command code is sent.

BOOL _data_status

This member data is only used to bring the status (VALID, NOT_VALID) associated with a

particular DataUnit stored in a DnaNode or Individual object.

Member functions have also been added to provide access to the member data described

above. In general, they allow for storing a message command code (the message itself) and its

arguments, all in a single call (e.g. storeMessage). Member functions for reading addressing

items stored by the jpa th member data have been included as well.

Having described the abstractions and objects defined in GAME that support the genetic

representation of problems, the next section explains how these data structures are manipulated

by the Virtual Machine module.

5.3. The Virtual Machine

The Virtual Machine (VM) is the module responsible for maintaining the data structures

that represent genetic information. It also provides facilities for their genetic manipulation and

evaluation. The VM isolates genetic operators and algorithms from dealing directly with the data

structures, via a set of commands implemented as a collection of functions — the VM

Application Program Interface (VM-API). Furthermore, it offers a certain degree of parallehsm,

being able to execute commands simultaneously.

GAME’S Virtual Machine comprises three modules (see Figure 5.15): the Population

Manager, the Fitness Evaluator and the Parallel Support. The Population Manager executes

genetic manipulation commands over the data structures kept in its pools. The Fimess Evaluator

performs the evaluation of the genetic structures and related computations such as total, average,

highest and lowest fitness. Finally, the parallel support module is able to distribute commands

Chapter 5 The Genetic-Oriented Representation and the Virtual Machine 91

received by the VM over one or more instances of the Population Manager and Fitness Evaluator

modules.

F igure 5 .15 - The V irtual M achine an d its m odules

G enetic R ep resen ta tion

" f T '

The introduction of a separate module for executing genetic manipulations via high-level

commands, besides being innovative in this context, facilitates the definition and implementation

of representation-independent genetic algorithms and operators. A great deal of flexibility and

portability is achieved by preventing these components from directly dealing with data structures,

memory management and exception handling.

The design of GAME’S Virtual Machine also contemplates other aspects such as

modularity and parallelism. By separating manipulations over the data structures from objective

function evaluations in two specialised modules, it is possible to modify, adapt or expand any one

of these modules with virtually no impact on the other module, or the Virtual Machine itself.

Moreover, these modules being defined as GAME Components, can be replicated and executed as

independent processes, possibly running on separate processors. This fact alone grants

tremendous power and flexibility to the Virtual Machine in parallelising genetic manipulations

and fitness evaluations of ordinary sequential applications.

The implementation of the Virtual Machine is straightforward, as shown in Figure 5.16.

The various messages, implemented by the VM-API, are received by the Virtual Machine and

routed to the appropriate module. Handles of the Population Manager and Fitness Evaluator

object instances are kept in the _pm_arraymd _fitness_arraymember data.

92_________ The Genetic-Oriented Representation and the Virtual Machine________ Chapter 5

Figure 5.16 - The VirtualMachine class
class VirtualMachine < public GameCoinponent
{
public »

VirtualMachine (void);
virtual -VirtualMachine (void);

protected:
void processMall (VmMsg&);

/ /
// Member Data
/ /

hGC _pm_array [MAX_PM] ; // array of PM handlers
hGC _fltness_array[MAX_FITNESS]; // array of Fitness

// Components' handlers
1;

5.3.1. Virtual Machine Commands

The Virtual Machine accepts three groups of messages; messages to the VM itself,

messages to Population Managers and messages to Fitness Evaluators. The messages are defined

as numeric codes allocated in specific ranges. Messages to the Population Manager, for instance,

have been allocated in the 0x100 to 0x1 FF range. Fitness Evaluator messages occupy the range

between 0x200 and 0x2FF, and messages to the VM itself in the range 0x300 to OxSFF. Any of

these groups may be expanded with the definition of new messages, provided the C++ classes

(VirtualMachine, PopulationManager and FitnessEvaluator) that implement their execution are

also expanded to process them.

As with any other GAME component, the Virtual Machine interacts with genetic

operator and algorithm components by the means of specialised message package objects. Figure

5.17 shows the VmMsg class, which carries to the Virtual Machine all the messages generated by

the VM-API.

A VmMsg object is capable of carrying the arguments, status and returned data resulting

from a command issued by the VM-API. It provides the required member data to store addressing

sequences for up to two genetic structures (as required by swap, copy and move commands),

DataUnit indexes, execution status, and other information returned by the VM. A typical VM

message would contain a command code, an addressing sequence for a genetic data structure

(stored in the _paf/7data member) and, possibly, a DataUnit index. On its return, a VmMsg

object will bring the execution status (SUCCESS/FAILURE) and, if necessary, the data resulting

from the command execution.

Chapter 5 The Genetic-Oriented Representation and the Virtual Machine 93

Figure 5.17 - The VmMsg package class

class VmMsg i public MsgPackage
t
public t

virtual
virtual MsgPackagefi
virtual OLT
virtual hOS
virtual hOS
virtual void
virtual void
virtual void
virtual void
virtual void
virtual void
virtual void
virtual void

VmMsg
VmMsg
-VknMsg
operator-

(void);
(const VmMsgfi);
(void);
(const MsgPackagefi);

virtual
virtual
virtual
virtual
virtual
virtual
virtual
virtual

hDCT
hDUT
BOOL
WORD
BOOL
WORD
hNP
void
void
void
void
void
hGC
hGC
BYTE
BYTE

// Member Data
protected1

NodePath
WORD
hDCT
hDUT
BOOL
hGC
hGC
BYTE
BYTE

getObjectLength(void);
describeObject (hOS);
assembleObject (hOS);
storeMessage (GAME_MSG);
storeMessage (GAME_MSGy hNP, BOOL, WORD-0);
storeMessage (GAME_MSG, hNP, WORD-0, DOUBLE-0);
storeStatus
storeStatus
storeStatus
storeStatus
storeStatus

(MSG_STATUS);
(MSG_STATUS, WORD);
(MSG_STATUS, hDCT);
(MSG_STATUS, hDUT);
(MSG_STATUS, BOOL);

reca U N odeHandle
recallDataHandle
recallDataStatus
getNextAddress
isLastAddress
recalllndez
recallNodePath
insertAddress

(void); // the node/individual handle
(void); // the data handle
(void); // single/global data status
(ADDRESS_TYPE-N0DE1);
(ADDRESS_TYPE-N0DE1);
(void); // the data index
(ADDRESS_TYPE-N0DE1);
(WORD, ADDRESS_TYPE-N0DE1);

storePmHandle (hGC);
storeFitnessHandle (hGC);
storePmId
storeFitnessId

(BYTE);
(BYTE);

recallPmnandle (void);
recallFitnessHandle (void);
recallPmld
recallFitnessId

(void);
(void);

__path[2] ; // hold the source (and dest) path(s)
_index; // hold the index of a Data Unit
_node_handle; // hold the node/individual handle
_data_handle; // hold the data handle
_data_status; // hold the single/global data status
_pop_man_handle; // hold the PM Component handle
_fitness_handle; // hold the Fitness Con^onent handle
_pop_man_id;
_fitness_id;

// hold the PM index in the VM array
// hold the Fitness index in the VM array

);

Only two commands are currently defined for the Virtual Machine itself, as shown in

Table 5.3 below.

94 The Genetic-Oriented Representation and the Virtual Machine Chapter 5

Table 5.3 - VM commands

Message Title Arguments Returns
VM_GET_POP_MAN_HANDLE [BYTE] - Id o f th e popu la tion

m an ag e r co m p o n en t
MSG_STATUS - StatUS
hGCT - c o m p o n en t h an d le

VM_GET_FITNESS_HANDLE [BYTE] - Id o f th e fim ess ev a lu a to r
co m p o n en t

MSG_STATUS - StatUS
hGCT - co m p o n en t h an d le

5.4. The Population Manager

The Population Manager is the VM module responsible for maintaining population pools.

Like the VM, it is a GAME component. As such, it interacts with the Virtual Machine by

exchanging message package objects. Once the VM receives a message package object, it

determines, by looking at the command code, the modules to which the message is being

addressed and passes it to the module’s mailbox.

Figure 5.18- The PopulationManager class
class PopulationManager
(
public <
virtual

1 public GameCon^onent

PopulationManager
-PopulationManager

(BYTE);
(void);

protected1

void
BOOL

processMail
checkPoolIndex

(PopManMsgfi);
(WORD);

// Member Data
BYTE
Pool*

};

_pop_man_id;
_pool_array[MAX_POOLl; // array of pointers to pool

// objects

As the Virtual Machine may contain several instances of the Population Manager

component, it assigns to each one a unique identifier, or Id. These Ids are stored in the VM

_p/77_arrayand also passed to the associated PM instance. A Population Manager, besides its Id,

also keeps a list of population pools in its _poo/_arraymember data (see Figure 5.18).

5.4.1. Population Manager Commands

Each command of the Population Manager module specifies one or more arguments that

are sent within a VmMsg object. Table 5.4 below lists the Population Manager commands, their

arguments, and returned data.

Chapter 5 The Genetic-Oriented Representation and the Virtual Machine 95

Table 5.4 - Population Manager commands

Message Title Arguments Returns
PM_CREATE_P00L hNP - NodePath handle

hDCT - DnaCollection handle
MSG_STATUS - StatUS

PM _DELETE_P00L hNP - NodePath handle MSG_STATUS - StatUS
hDCT - DnaNode handle

PM _C0PY _P00L hNP - NodePath handle
WORD - index to attach new node

MSG_STATUS - StatUS

PM _GET_POOL_SIZE hNP - NodePath handle MSG_STATUS - StatUS
PM_GET_POPULATION hNP - NodePath handle MSG_STATUS - StatUS
PM_GET_NODE hNP - NodePath handle

[WORD] - num nodes to invert
MSG_STATUS - StatUS

PM_PUT_NODE hNP - NodePath handle
[B Y T E]- ONE_LEVEL/ALL_LEVELS

MSG_STATUS - StatUS
WORD - integer value

PM_COPY_NODE hNP - NodePath handle MSG_STATUS - StatUS
WORD - integer value

PM_MOVE_NODE hNP - NodePath handle MSG_STATUS - StatUS
BYTE - integer value

PM_DELETE_NODE hNP - NodePath handle MSG_STATUS - StatUS
BYTE - integer value

PM_INVERT_NODE_SEQ hNP - NodePath handle
[BYTE] - index of the DataUnit

MSG_STATUS - StatUS
hDUT - DataUnit handle

PM_SWAP_NODES hNP - NodePath handle
hDUT - DataUnit handle
[BYTE] - index of the DataUnit

MSG_STATUS - StatUS

PM_GET_NUM_NODES hNP - NodePath handle
[BYTE] - index of the DataUnit

MSG_STATUS - StatUS
hDUT - DataUnit handle

PM_GET_MAX_NODES hNP - NodePath handle
[BYTE] - index of the DataUnit

MSG_STATUS - StatUS

PM_READ_DATA hNP - NodePath handle MSG_STATUS - StatUS
BOOL - data status

PM_WRITE_DATA hNP - NodePath handle
[BYTE] - index of the DataUnit

MSG_STATUS - StatUS
BOOL - data status

PM_COPY_DATA hNP - NodePath handle
BOOL - data status
[BYTE] - index of the DataUnit

MSG_STATUS - StatUS

PM_DELETE_DATA hNP - NodePath handle
[BYTE] - index of the DataUnit

MSG_STATUS - StatUS
BOOL - data status

PM_SWAP_DATA hNP - NodePath handle
BOOL - data status
[BYTE] - index of the DataUnit

MSG_STATUS - StatUS

5.5. The Fitness Evaluator

The Fitness Evaluator module, being part of the Virtual Machine, is not directly

accessible from the genetic algorithm or operator levels. It is imperative for the Fitness Evaluator

to be part of the Virtual Machine, since this represents the most effective way to directly access

the genetic data structures. This design requirement is consistent with the desire to keep the

implementation of genetic operators and algorithms as independent as possible from problems’

96 The Genetic-Oriented Representation and the Virtual Machine Chapter 5

characteristics and particularities. However, a Fitness Evaluator must embody the problem

dependent objective function. This would normally require direct intervention of the application

programmer for its definition and implementation. The Fitness Evaluator is designed to be an

“internal class”, that is, a module that should not be directly “touched” by the application

developer, or user. To accommodate both requirements, a compromise solution allows the

“insertion” of a problem-dependent evaluation function, without having to modify the actual

implementation of the FitnessEvaluator class (Figure 5.19). The implementation of this solution

came via a member function defined in the FitnessEvaluator class - the getPitness function - that

calls an external, problem-dependent, FitnessEvaluation function. This strategy implies that the

Fitness Evaluator module needs only to be statically linked with the user-defined objective

function, before having an instance created by the Virtual Machine. This implementation grants

maximum flexibility in defining and implementing problem-dependent objective functions,

without directly interfering with the Fitness Evaluator implementation.

Figure 5.19 - The FitnessEvaluator class

class FitnessEvaluator
t
public 1
virtual

t public GameCoinponent

FitnessComponent
-FitnessComponent

(BYTE);
(void);

protectedt
void processMail (FitnessMsgs);

hDUT
hDUT
void
void

sumFitness
avgFitness
highestFitnes s
lowestFitness

(FitnessMsgs);
(FitnessMsgs);
(FitnessMsg&);
(FitnessMsg&);

//
//
//
//

total fitness
average fitness
the highest
and the lowest

hDUT
hDUT
WORD

getFitness
getFitness
getPmPopulation

(FitnessMsg&);
(FitnessMsg, WORD);
(FitnessMsg&);

// Member data
BYTE

};
_fitness_id;

The FitnessEvaluator class provides the basic functionality for computing the total,

average and finding the highest and the lowest fitness values in a population of genetic data

structures.

5.5.1. Fitness Evaluator Commands

A Fitness Evaluator can process up to six different commands with, at least, one

argument. Table 5.5 lists these commands, their arguments, and returned data.

Chapter 5 The Genetic-oriented Representation and the Virtual Machine 97

Table 5.5 - Fitness Evaluator commands

Message Title Arguments Returns
FITNESS_GET_VALUE hNP - NodePath handle

hDCT - DnaCollection handle
MSG_STATUS - StatUS

FITNESS_GET_STATUS hNP - NodePath handle MSG_STATUS - StatUS
hDCT - DnaNode handle

FITNESS_GET_SUM hNP - NodePath handle
WORD - index to attach new node

MSG_STATUS - StatUS

F ITNESS_GET_AVERAGE hNP - NodePath handle MSG_STATUS - StatUS
FITN ESS_G ET_H IG HEST hNP - NodePath handle MSG_STATUS - StatUS
FITNESS_GET_LOWEST hNP - NodePath handle

[WORD] - num nodes to invert
MSG_STATUS - StatUS

5.6. The Parallel Support Module

The Virtual Machine has an optional capability to parallelise the execution of the

commands it receives. This is achieved through its parallel support (PS) module. The PS is, in

fact, a resource scheduler that is activated if the VM is programmed to operate with more than

one instance of the Population Manager or the Fitness Evaluator modules. It enables the Virtual

M achine to take full advantage of the data parallelism offered by genetic algorithm s.

Furthermore, the definition of a standard interface (the VM-API) and the design of the VM and

its modules, prompted the exploitation of this form of parallelism.

The design of the parallel support module is based on a farming model, where the Virtual

Machine operates as the master and the Population Managers and Fitness Evaluators as slaves.

The number of slaves and the actual processors that will host them can be specified by the user in

the application configuration file. If activated, VM’s parallel support module will look for “idle”

instances of Population Manager and Fitness Evaluator modules to deliver messages received by

the Virtual Machine. If no idle module is found, the message is queued until a module capable of

handling one of the messages in the queue becomes available.

This additional capacity of GAME’S Virtual Machine allows transparent exploitation of

parallelism in the genetic manipulation and fitness evaluation levels. Moreover, it does so without

requiring any special concern with parallelism in the genetic algorithm or operator levels. Genetic

algorithms and operators can be implemented as straightforward sequential code and yet benefit

from VM’s parallel features.

In general, complex problems present very time-consuming fitness evaluations. By

simply creating many instances of the Fitness Evaluator module, and distributing them among

several processors, a simulation will achieve an enormous execution speedup. GAME’S VM

offers this possibility without requiring any modification in the application, genetic algorithm or

operator’s sequential code.

98_________ The Genetic-Oriented Representation and the Virtual Machine_________Chapter 5

5.7. The VM-API

The Application Program Interface concept provides an easy and simple mechanism to

hide the message-driven architecture of GAME. By invoking straightforward C-like functions, the

user does not have to be concerned with the intricacies involved in creating and passing message

package objects across components. The definition of the Virtual Machine API resulted from

observations about genetic algorithms’ operation, as described in Chapter 2. It provides a

comprehensive set of functions (described in Appendix B) that support the implementation of a

broad range of genetic operators and algorithms.

Each function generates specific commands that are passed on to the Virtual Machine.

The arguments provided by the user on calling VM-API functions are “wrapped” with the

command code requesting the required operation into a VmMsg object, which is then dispatched

to the VM. The VM-API can be easily expanded with user-defined functions, to make it more

suitable for specific applications.

The VM-API is divided into five classes of functions:

• Population Manager functions:

CreatePool, DeletePool, CopyPool, etc.

• Individual & DnaNode functions:

Getlndividual, Putlndividual, Copylndividual, Movelndividual, Killlndividual,
GetNode, PutNode, CopyNode, MoveNode, DeleteNode, SwapNodes, etc.

• DataUnit access:

ReadData, WriteData, CopyData, DeleteData, etc.

• Fimess Evaluation and statistics related functions:

EvaluateFltness, GetFitness, GetTotalFitness, GetAvgFitness,

GetHighestFltness, GetLowestFltness, etc.

• Error handling:

GetErrorStatus, ClearErrorStatus.

The complete set of functions that comprise the VM-API is presented in Appendix B,

which describes all the functions, their arguments and returned data.

5.8. Summary

This chapter discussed the design and some implementation aspects of GAME’S genetic-

oriented representation abstractions and its Virtual Machine module. The genetic-oriented

Chapter 5________ The Genetic-Oriented Representation and the Virtual Machine__________99

abstractions aims at supporting the representation of a wide range of G A, ES and GP problems.

It permits the use of the traditional “flat”, binary-encoded and string-based model, as well as real

value and multi-levelled representations. Suitable data types (binary, int, float, etc.) have been

defined to accommodate mixed representations and facilitate the implementation of problem-

independent genetic operators. These data types, embedded into a tree data structure, promote

easy and efficient manipulations of genetic representations.

The Virtual Machine concept provides an effective mechanism for problem-independent

manipulation of genetic data structures. The separation of problems’ data structures from genetic

algorithms and operators offers the possibility of designing and implementing standard and re­

usable versions of these modules. This approach also provides an enormous flexibility for

combining different genetic operators into algorithms, without any regard to the actual problem

representation kept by the Virtual Machine. This degree of independence is only possible thanks

to the set of access and manipulation functions defined in the Virtual Machine application

programming interface. By simply calling VM-API functions, genetic operators and algorithms

are kept away from low-level issues like memory management, exception handling or platform

dependencies hidden in the Virtual Machine and its internal modules.

Finally, the architecture of the Virtual Machine, comprising distinct modules for genetic

manipulation (Population Manager) and evaluation (Fimess Evaluator), facilitates and promotes

the exploitation of the data parallelism offered by G As. The farming model adopted in the design

of the parallel support module enables the parallélisation of VM commands without any special

requirement in the construction of sequential apphcations, algorithms and genetic operators.

100_______The Genetic-Oriented Representation and the Virtual Machine Chapter 5

Chapter 6

GAME’S Programming Model and

the Parallel Execution Module

This chapter presents a brief review o f three software strategies that support inter­
process communication and control o f parallelism, and introduces GAME'S object-
o r ien ted p a ra lle l p rogram m ing m odel. I t a lso d escrib es the design and
implementation o f the Parallel Execution Module, which supports the programming
model.

6.1. Introduction

Parallélisation of complex problems is, on its own, a very large and complex area of the

Computer Sciences. The tasks involved in breaking a problem into collaborating processes and

co-ordinating their communication and execution require a profound knowledge of the problem at

hand, the execution environment and the programming tools to be applied. The success of parallel

applications relies upon a careful combination of programming model, implementation tools and

parallel architecture. As a consequence of the last statement, one could conclude that parallel

applications are not portable across different parallel architectures. In fact, it is much more

difficult to port parallel applications then sequential ones. However, common characteristics

present in many problems provide the grounds for the definition of “general-purpose” parallel

programming models and programming environments. Although commonly called general-

purpose, these systems are targeted at broad problem domains like thermal analysis, molecular

modelling, fluid dynamics simulations, etc. This domain-based approach gained popularity during

the last couple of decades and favoured the development of programming models and tools

capable of addressing an even broader range of problems. There are today sophisticated

program m ing environm ents that provide a variety of tools to help w ith the design,

implementation, debugging and monitoring of a variety of parallel applications. Examples of such

programming environments include PVM [90], PRISM [86], ADE [28] and many others.

More recently, a new and exciting area involving parallélisation over distributed

heterogeneous platforms is attracting the attention of many researchers and also the industry.

101

102_______ GAME’S Programming Model and the Parallel Execution Module________Chapter 6

This approach offers the possibihty of gathering all available computational resources to work on

a particular problem, regardless of the actual machine architecture, network topology and

operating system breed. This alternative seems even more attractive, considering the

computational power of an increasing number of local-area networks based on cheap and

powerful workstations. So far, these enterprise networks have been mainly used to distribute data.

However, new technologies based on the object-oriented paradigm are promising to bring true

parallelism to ordinary users by distributing and co-ordinating the operation of objects over these

heterogeneous networks.

These technologies are central to the parallel tools offered by GAME. The design of

g a m e ’s programming model reflects the awareness in adhering to distributed object computing

emerging “standards”, whereas its implementation fulfils the three main requirements of the

programming environment: flexibility, expandability and portability.

The next section presents an overview of common software strategies used in supporting

parallelism at different levels and degrees. This brief discussion provides the rationale behind

g a m e ’s parallel programming model and its underlying implementation, the Parallel Execution

Module, presented in the following sections.

6.2. Parallel Programming Software Strategies

A common problem encountered by developers of parallel apphcations is the difficulty of

porting their programs to different parallel architectures. This task normally implies major

changes in the code and sometimes in the program design. In order to overcome some portability

problems, operating systems have been equipped with extensions to support parallelism. They

partially remove the burden of directly controlling parallel resources from the program developer.

In fact, multitasking operating systems offer a natural path to concurrent execution of co­

operating agents (processes in this case). M ultitasking operating systems running on

multiprocessor architectures or on networks of computers (distributed systems), can effectively

exploit parallelism by distributing applications’ processes over a number of processing units.

This type of solution permits applications to be designed independently of the specific parallel

hardware. To run the same apphcation on different architectures, without modifications, it should

be only necessary to have the same operating system and language/compiler available on the

target platform.

The support offered by operating systems, however, is only suitable for certain classes of

problems exhibiting medium to coarse-grain parallelism. An application accesses parallel

programming resources, such as communication channels, barriers and semaphores, through the

operating system. Only the operating system can execute the code that actually controls process

Chapter 6________GAME’S Programming Model and the Parallel Execution Module________1 ^

creation, communication and synchronisation. This generally implies context switching and many

internal administrative operations (scheduling, updating tables and buffers, etc.) being carried out

before the code that controls the parallel resource is executed. Therefore, the overhead introduced

by the operating system prevents fine-grained parallel applications from effectively benefiting

from parallel resources.

Medium and coarse-grained applications present relatively large parallel modules

(procedures, functions, etc.). They execute concurrently and request the operating system to

communicate or synchronise with other co-operating processes only during a fraction of their

entire execution time. In such cases, the overhead introduced by the operating system is diluted.

On the other hand, fine-grained parallel applications, generally represented by loops manipulating

a set of unrelated data elements (e.g. matrix copy or multiplication), execute parallel operations in

very short time periods, if compared with the operating system’s overhead. These types of

applications can only benefit from dedicated hardware that does not require operating system

control to perform communication and synchronisation. The conclusion of this discussion is that

applications exhibiting multiple levels of granularity, or heavily based on fine grain parallelism,

still face portability problems or cannot have their parallel potential fully exploited.

Central to parallel computing are the communication mechanisms and processor support

for language features [120]. Message-passing and shared memory systems are two common

mechanisms used to implement inter-process communication (IPC) and synchronisation on

popular parallel computer architectures. Parallel applications designers might choose among three

basic types of software communication and synchronisation mechanisms:

• Language-based,

• Operating system dependent, and

• Language/Operating system independent

Language-based mechanisms have been im plem ented by extending sequential

programming languages with parallel commands, data structures and runtime libraries. Also,

parallel languages like OCCAM [60] have been specifically created to better exploit features of

some parallel architectures.

Many popular operating systems have received extensions and others were entirely

designed to support parallelism. Both alternatives offer a number of “services” to supervise

communication and control the allocation of parallel resources. Most parallel operating systems

provide standard application progranuning interfaces based on the UNIX specification. This

allows a number of applications to be easily ported on to a variety of parallel architectures.

In both cases, an application must be specifically designed to benefit fi:om a particular

parallel language, or to exploit the operating system’s support for concurrent or parallel

104_______ GAME’S Programming Model and the Parallel Execution Module_______ Chapter 6

execution. Portability problems across different operating systems (or even non-standard

implementations of the same operating system) and an increasing demand for higher level

programming interfaces, led to the development of language and operating system independent

mechanisms to support parallelism. Systems like the Parallel Virtual Machine (PVM), for

instance, comprise a library of high-level communication and synchronisation functions, and a

runtime module, which supervises and controls interactions among co-operating processes of an

application.

The next sections present these three strategies by briefly reviewing examples of software

systems that implement them.

6.2.1. Language Based Mechanisms

There are two types of language-based parallel mechanisms: extensions to sequential

languages and parallel languages. Libraries and prim itives supporting parallelism and

communication have been included as extensions to sequential languages such as FORTRANdind

C. In many cases, compilers were specially re-designed to identify and “extract” parallel

structures from source code programs, transparently to the programmer. A number of large and

complex applications (mainly written in sequential FORTRAN) benefited from this approach.

They could then be executed on many parallel architectures after recompilation. Conversely,

parallel programming languages (e.g. OCCAM) offer explicit means for partitioning programs

combined with high-level mechanisms for communication and synchronisation.

Object-oriented programming models suggest a natural method for structuring and

partitioning parallel applications based on the active object concept [103]. Also, the use of

messages for object interaction, maps directly into message-passing mechanisms. Two object-

oriented languages supporting parallelism are reviewed in this section: Parallel C++ and C/C++.

Parallel C++, from 3L, is targeted at transputer-based machines and extends sequential C++

with a number of functions grouped into hbraries. The C/C++ programming language proposes a

machine-independent option for parallel implementations, based on extensions to the standard

C++ language.

3L PARALLEL C+ + — is a parallel version of the C++ language developed by 3L Ltd. that runs

only on transputers [104]. The compiler is based on cfront 2.1 (AT&T’s C++ compiler) and the

current version does not support parameterised types (templates). Parallel C++ generates C code

that is run through a C compiler to produce object files. These are then linked with C and C++

libraries to create executable files. Transputer systems are generally attached to conventional

front-end hosts like Sun workstations and PCs. A special server program, running in the host,

provides the means to load executable code into the transputer system and support I/O operations.

Chapter 6_______ GAMBs Programming Model and the Parallel Execution Module________105

Concurrent processing is provided by a set of additional libraries, rather than through

enhancements to the language. Parallel C++ supports common multitasking and inter-process

communication mechanisms through threads an d p ip es respectively. It also supports the

execution of concurrent processes of the same (or different) programs on multiple processors.

Multitask operations are normally split into I/O tasks, requiring access to the host’s

operating system facihties, and one or more processor tasks. The latter communicate via a special

inter-task communication system known as channels. Channels allow tasks to exchange

information and are attached to their input and output ports - the interconnections are specified in

a separate configuration file. A set of Parallel C ++’s libraries provides functions to access

channels. The language also provides facilities for accessing the host’s local memory, including

special functions for allocating and de-allocating memory, and transferring data between

transputer and host memories. Examples of functions available in the hbraries are:

• Functions for initialising, resetting and transferring data via channels
chanjnit, chan__reset,
chan_in_byte, chanjn_byte_t, chan_out_byte, chan_out_byte_t
chanJn_word, chanJn__word_t, chan_out__word, chan_out__word_t
chan_in_message, chanjn_message_t,
chan_out_message, chan_out_message_t

• Functions that allow processor farm communications
net_broacast, net_send, net_receive

• Functions to create and manipulate semaphores
semajnit,
sema_signal, sema_signal_n
sema_test_wait
sema_wait, sema_wait_n

• Functions to generate new threads within a task

thread_start, thread_create, threadjDriority,
thread__deschedule, thread__restart, thread_stop

One major problem with the runtime libraries of Parallel C+ + is that their functions are

not re-entrant. Access to the functions that control parallel resources must be synchronised using

a global semaphore variable, which imphes that all other threads are locked out of a hbrary, while

it is in use.

To w rite a parallel application, the user should divide it into tasks, each task

corresponding to a separate program. After all the tasks of an application (including the special

server task for I/O) are compiled and linked, a process configuration file must be created,

specifying task allocation and channel interconnections.

Overall, the language offers basic facilities for developing transputer-based parallel

applications in C++. The library approach is an elegant alternative to extend the language,

making it much simpler to port to several parallel architectures. In this case however, no

106_______ GAME’S Programming Model and the Parallel Execution Module_______ Chapter 6

advantage has been taken of C ++’s features to simplify parallelism. In particular, function

overloading is not used to avoid the need for separate channel functions for each data type.

UC++ — is a parallel C++ language under development by UCL’s CoSIDE/COOTS

project. The primary aim of the Concurrent Object-Oriented languages Targeting Parallel

Systems (COOTS) is to develop a version of the C++ language that provides concurrence, using

object-oriented techniques [103]. The resulting language is suitable for use with a range of

MIMD machines. C/C++ is being developed under CoSIDE — an environment supporting

paralle l ob ject-orien ted program m ing for a variety o f languages. The parallel C++

implementation is based on a set of minimal extensions to the sequential C++ language, and

extensions in the form of class libraries.

C/C++ extends the original C++ language by adding the concept of active object. Each

active object is associated with a virtual processor and may (potentially) execute member

functions in parallel with other active objects. Active objects may be created either statically or

dynamically. The computation model adopted for the language design defines an abstract machine

with the following characteristics:

• composed by an array of virtual processors, each supporting an active object,

• a global shared address space, and

• a message-passing sub-system, to support active object member function calls.

Two implementation strategies for the language are being pursued: a version directly

integrated into the CoSIDE environment, to explore areas such as incremental compilation, and a

version implemented using a filter as a front end to an ordinary C++ compiler, to gain the benefits

of using a standard compiler and efficient code generation.

6.2.2. Operating System Based Mechanisms

Many mechanisms created to support multitasking on uniprocessor-based operating

systems have been mapped on to their parallel versions, taking advantage of the parallel resources

offered by the underlying hardware. This approach provides more flexibility to parallel

applications, which can benefit from parallel support through operating systems’ standard

interfaces. The dissemination of popular multitasking operating systems like UNIX, enhanced

with parallel extensions, has fuelled the development of a number of parallel applications. The

immediate consequence is the availability of the same application for different parallel

architectures. Operating system-based parallel support has proven to be particularly suitable for

coarse-grained parallel applications.

Chapter 6________GAME’S Programming Model and the Parallel Execution Module_______ 107

PARIX^nd PAROS [64] are examples of operating systems offering different approaches

to support parallelism. PAROS w&s specifically developed to be a parallel operating system. Its

internal structure was designed to accommodate different architectures. PARIX, on the other

hand, is a UNIX-like operating system including extensions to benefit from a specific parallel

architecture, designed and produced by Parsitec.

PARIX— is the operating environment for the Parsytec GC series. It has a user interface based

on the UNIX operating system philosophy, with parallel extensions to give access to the resources

offered by the Parsitec parallel super-computer. The basic communicating facilities supported by

PA/?/Xare virtual links. A virtual link is a bi-directional, synchronising, non-buffering, point-to-

point communication mechanism between two threads of control. Threads can be located in the

same or different processor, or server, and a set of virtual links may be combined to define a

virtual topology. There are two classic types of communication mechanisms available in PARIX

• Synchronous virtual link-bound communication — This is the transputer’s native

form of communication. Communicating processes are connected via virtual links and

synchronised upon communication.

• Asynchronous virtual link-bound communication — Communication can be carried

out concurrently with computation. It optimises processor usage, as sending and

receiving are performed in the background, while the processor continues executing

the application thread. Intermediate buffering is supported at both the sender and

receiver sides.

Like many UNIX-compatible operating systems available for parallel machines, PARIX

offers parallel extensions, which are specific to support the particularities of the Parsitec

hardware. An apphcation built upon its parallel support would have to suffer major modifications

in order to be ported to parallel machines with different operating system extensions, and possibly

different programming language hbraries.

PAROS— PARallel Operating System architecture is an efficient self-hosted, general-purpose

paraUel operating system for distributed memory paraUel machines, sustaining high performance

for paraUel apphcations. It has been developed at IMAG - University of Grenoble - as part of the

Supem odeJI ESPRIT project. One of the major objectives of PAROS is to offer support for

various grains of paraUehsm and communication in parallel apphcations.

The operating system has been structured as a low-level kernel (PARX) and subsystem

environments built on top of it. The PARX kernel provides a reduced set of simple and well-

defined basic abstractions that can be used by application and subsystem programmers. It is

structured in several layers of Virtual Machines, aUowing various interfaces to achieve user level

108_______ GAME’S Programming Model and the Parallel Execution Module_______ Chapter 6

compatibility with many parallel programming models. It currently supports the X/OPEN,

UBIK/ASI and PCTE standards.

The implementation of PAROS confines hardware dependencies to its lowest level virtual

machine. This approach allows future hardware evolution (or heterogeneous hardware) to be

easily integrated. The execution model, which directly supported by the kernel, is based on non­

shared memory and synchronous message-passing communications. The process model of

PAROS is based upon three levels of abstractions:

• Ptask encapsulates a parallel program in execution with the associated control

support. It consists of a set of tasks together with some synchronisation and

communication protocols.

• Task is a logical address space in which several flows of control can execute. A task

executes on a given logical processor within a Ptask.

• Thread is a sequential flow of control within a task. Threads are controlled as

“lightweight” processes.

The use of several threads in a task is intended to support language parallel constructs, as

well as to easily implement asynchronous communication at upper Virtual Machine levels, on top

of the synchronous native mechanism.

The kernel supports two basic communication objects: ports and channels. Ports can

implement a global and flexible many-to-one, protected, system-oriented communication

mechanism. It can be used to access subsystems and servers. Channels are fast, one-to-one

communication mechanism between threads or tasks within a Ptask. They cannot be used for

communication between different Ptasks.

The current generation of operating systems is based on the microkernel architecture

(similar to PAROS’s lowest level Virtual Machine) that was firstly proposed for the MACH

operating system from Carnegie Mellon University [96]. Microkernel-based architectures

considerably improved the portability and flexibility of recent versions of UNIX-like operating

systems such as OSFl and CHOROUS [67], and is also present in the core of Microsoft’s 32-bit

operating system Windows NT. The coming versions of operating systems from IBM, Apple,

Novell (now owner of UNIX Systems Laboratories) and Unisys are also following this trend.

6.2.3. Language and Operating System Independent

The previous alternatives contemplate aspects involving parallel programming that are

not complementary. It is relatively easy to implement parallel applications based on operating

systems support, but they are not able to efficiently exploit fine-grain parallelism. On the other

Chapter 6________GAME’S Programming Model and the Parallel Execution Module________1 ^

hand, language-based parallel support can effectively give more control to the programmer over

the use of parallel resources. However, portability appears as a major problem since parallel

languages and compilers are generally tailored to specific machines.

The ideal solution would enable applications to be written independently from any

specific parallel support (language or operating system) and, at the same time, efficiently exploit

any degree of granularity. This alternative has been pursued by some software systems through

the definition of abstract modules acting as interfaces between the application and the underlying

parallel support. These modules, sometimes called mappers, generally comprise a library with a

number of basic functions that implement common parallel and communication mechanisms. A

runtime kernel may be present on some implementations to supervise operations that are not

directly mapped into operating system or hardware support.

In this case, the actual library implementation establishes the efficiency of the parallel

application for a given architecture. For instance, a mapper for a transputer-based machine

should provide programming libraries capable of exploiting all the facilities offered by the

transputer architecture. The same application, running on workstations in a distributed system,

should encounter equivalent libraries mapping its requests on to the parallel support of the host

operating system.

Two software systems representing this alternative are MICL and PVM. GMD’s MICL

is a fully machine-independent library used in the FeOAsuS programming environment for PGAs,

whereas PVM focuses on applications exhibiting coarse-grain components and needs a kernel

running on top of the UNIX operating system. PVM ’s library presents an extensive set of

functions that can serve as a model for other parallel support systems in this category.

M ICL— is a Machine Independent Communication Library used by the PeGAsuS programming

environment at GMD. MICL is based on a port concept. Application’s processes are equipped

with several ports, each port owning one or more entries. Each port entry can be connected to

port entries of other processes. The library, written in ANSI C, provides communication

functions that act as an interface between the PeGAsuS kernel and machine-dependent

communication systems. There are MICL versions for various parallel machines (transputers.

Alliant, iPSC) and networks of workstations (SUN, RS6000). MICL provides the following

functions:

110_______ GAME’S Programming Model and the Parallel Execution Module_______ Chapter 6

• WritePort - writes data to a port entry.

• ReadPort - reads data from a port entry.

• InitPortBuffer - creates a buffer for a specified port.

• StopPortBuffer - deletes a buffer of a specified port.

• InitPortASync - makes a port read operation asynchronous.

• StopPortASync - cancels the asynchronous read property on the specified port.

• Synchronise - synchronises all processes possessing ports connected to the specified

port.

MICL does not support dynamic process creation and termination. Also, the topology of

the communicating processes (PGA islands) is fixed during the application’s execution. It is

specified with a special configuration language and setup by a master process, defined by their

PGA computation model.

PVM — The Parallel Virtual Machine is a software system that enables a collection of

heterogeneous computer systems to be used as a coherent and flexible concurrent computation

resource [90]. The individual machines may be: shared or private memory processors, vector

super-computers, or scalar workstations, which may be interconnected by a variety of networks.

The operation of PVM is based on the concept of application components. Usually the

term implies a phase or portion of an application that is embodied in a subroutine. However,

PVM is a coarse-grained environment targeted at applications that are collections of relatively

independent programs. Therefore, a PVM component corresponds not to a phase in the traditional

sense, but rather to a large unit of an application. From the system point of view, a component

corresponds to an object file that is capable of being executed as a user-level process.

The system comprises libraries of C and FORTRANinnciions to perform process

initialisation and termination, communication, and synchronisation via barriers or rendezvous.

The libraries act as an interface between application components and a communication kernel

(the PVM daemon) which actually maps applications requests into the native machine parallel

support. The following functions are available in the PVM library:

• Initialisation:
enrol, initiate, initiateM, whoami.

• Information:
pstatus, status.

Chapter 6________GAME’S Programming Model and the Parallel Execution Module________11J_

• Sending:
initsend, putbytes, putncplx, putndfloat, putnfloat, putnint, putnlong, putnshort,
putstring, snd, vsnd.

• Receiving;
probe, probemulti, rev, rcvmulti, vrcv, vrcvmulti, rcinfo, getbytes,getncplx,
getndfloat, getinit, getnlong, getnshort, getstring.

• Synchronisation:

barrier, ready, waituntil.

• Termination:

terminate, leave.

The user may optionally control the execution location of specific components. PVM

transparently handles message routing and data conversions for incompatible architectures. It has

been ported and tested on SUN3, SUN4, CRAY, Alliant, RS6000, TMC CM2, Intel iPSC &

RX, Sequent, and Stardent systems.

PVM offers enormous portability for parallel applications across diverse architectures.

However, the dependency on its communication kernel (pvmd) imposes a constraint for efficient

porting of applications to specialised parallel architectures, such as transputers, that offer

hardware mechanisms to implement most of the operations.

Systems like PVM have proven to be very effective in helping with programming and

porting parallel applications among a variety of platforms. Nevertheless, a new approach, based

on the object-oriented paradigm, is being adopted by the biggest contenders in the computing

market. A new generation of object-oriented operating systems supporting distributed active

objects is due to appear in the next couple of years. These new operating systems are being re­

designed and re-implemented from the ground upwards, according to modem concepts such as

microkernel and distributed object philosophies. They will bring powerful abstractions for

distributed object-oriented computing, shifting the current program-centred processing concept to

the more flexible concept of compound document processing [99]. There are two main model-

streams for object-oriented compound documents: OpenDoc and OLE. OpenDoc has been defined

by a consortium of large companies including Apple, IBM, Novell (USL), Sun, Xerox, and

others. OLE, on the other hand, is solely Microsoft’s brainchild. These two models are laying

down the foundations for distributed and parallel object-oriented computing. They have already

been drawing powerful market forces towards future de-facto standards.

Two different philosophies have been adopted in the underlying process control and

communication models of Microsoft’s Common Object Model (COM) and IBM’s System Object

Model (SOM). COM and SOM differ in basic aspects such as language dependence (COM is

strongly biased toward C++ whereas SOM is language neutral), and inheritance control (SOM

supports “pure” inheritance and COM adopts an alternative mechanism, similar to C++ virtual

112_______ GAME’S Programming Model and the Parallel Execution Module_______ Chapter 6

tables, called aggregation by Microsoft). Another important feature is their compliance with the

Common Object Request Broker Architecture (CORBA), being designed as an open standard for

distributed object-oriented processing (SOM is fully compliant).

This analysis of software alternatives for supporting parallelism demonstrates that only

the latter offers the degree of portability and flexibility required by GAME applications. The

adoption of a language and operating system independent strategy in GAME, determined the

specification of a programming model and the implementation of a communication and task

control module - the PEM.

6.3. GAME’S Parallel Programming Model

One of g a m e ’s basic principles is to offer facilities to port different G As and PGAs to a

variety of sequential and parallel architectures. In order to support applications exhibiting

different degrees of granularity, GAME has adopted a rather pragmatic solution: an event-driven

programming model based on active objects communicating via message-passing. This model is

supported by a language and operating system independent module — the Parallel Execution

Module. PEM implements an abstraction that supports multiple parallel computation models. It

provides functions for process initiation, termination, synchronisation and communication.

g a m e ’s parallel program m ing model defines a com puter program as a GAME

application. A GAME application co-ordinates the operation of processing agents, or active

objects (from now on referred to as components), which provide the basic functionality for

concurrent/parallel execution and inter-process communication. Applications can be sequential or

parallel. A sequential application consists of a single component embodying all GAME modules

(i.e. the graphic user interface, a genetic algorithm, genetic operators and the Virtual Machine).

Conversely, parallel applications may be formed by a number of different components

communicating via the PEM runtime support. GAME’S programming model is inspired by

concepts and ideas proposed in some distributed systems programming models such as ACTOR

[1,49] and ANSA [93]. It presents the following characteristics:

• GAME applications consist of a collection of components - typically the graphic user

interface, one or more genetic algorithms, genetic operators and the Virtual Machine -

executing sequentially, concurrently or in parallel.

• A component size is determined by the user (the application developer, in this case)

and may be as large as the entire application - sequential application - or as small as

an apphcation function (or procedure).

Chapter 6_______ GAMBs Programming Model and the Parallel Execution Module________TO

• Components may share the same memory space {local components), the same

processor, or execute in a different processor or machine (external components).

Local and external components can typically coexist in parallel applications. The

application and the actual distribution of its components are dynamically controlled

by the components themselves.

• The number of components working in the same application in a given time is not

fixed. Local or external components may be dynamically added or removed from an

application by simply starting or terminating them.

• Com ponents are in terconnected by a non-fixed num ber o f b i-d irec tiona l

communication channels.

• There is no fixed interconnection topology, allowing applications to be configured as

rings, cubes, trees, etc.

• Components communicate asynchronously or synchronously via message-passing.

They have the ability to buffer messages in their mailboxes, queuing them to be

collected and processed later.

• Messages are special objects created by sender components, containing specific

commands and data elements to be processed by receiver components. Messages may

be replied with status and other information resulting from the execution of the

command it carries.

• Messages are treated as events to be processed by a user-defined function, which is

called by PEM whenever a new message is collected from the component’s mailbox.

One may immediately conclude, from the above list of characteristics, that GAME’S

programming model is entirely independent of genetic algorithms’ particularities. In fact, it

defines a general-purpose parallel programming model and supporting system, that could be used

to implement different types of parallel applications.

6.3.1. The Messaging Sub-System

Two techniques for exchanging objects between applications’ components have been

used in object-oriented programs [22,41]: Object Data Base Management Systems (ODBMS)

and object flattening. The most flexible and comprehensive technique is based on the use of

ODBMS [17,18,19,31,50,54,56]. In these systems, shared objects are deposited into object-

oriented data bases as “persistent” objects. Such data bases control access rights to these objects

and provide mechanisms to keep them updated. Objects maintained in an ODBMS are loaded on

demand in the memory space of the requesting component, and any hardware/operating system

114_______ GAME’S Programming Model and the Parallel Execution Module_______ Chapter 6

particularity of the component’s host machine is dealt with by the ODBMS. The application

component only needs to know the “name” of the required object in order to request access to the

data base. The major drawback of this approach is the overhead introduced by the ODBMS

itself. Persistent objects are, in general, kept as files on disk and non-standard protocols or

languages are used to communicate with the data base system.

The second technique is called object flattening [55,57] because objects are “flattened”

into a data stream before they are actually transported to the receiver component. Because only

data elements held by the object are transferred, the type (or name) of the flattened object must be

known by the receiver component, which will then assemble a copy of the original object. The

receiver “feeds” the data stream into a local instance of an object of the same type, making a copy

of the sender’s object. These two techniques could be compared with the methods used for

passing arguments to functions. ODBMS could be seen as “calling by reference”, and the

flattening technique as “calling by value”. In the first case, the same object, maintained by the

data base, is shared by all application components. In the latter, a local copy of the original object

is made by the receiver component. If the second object is modified, the sender must be notified in

order to have its copy updated, if necessary. The major advantage of the flattening technique is its

ability to use any communication system offered by the underlying operating system. Since

objects are flattened into ordinary data streams, any data transfer system could be used to send

and receive data streams between two components. This technique is adopted in GAME since it

imposes no restrictions on the hardware/operating system platform (provided a communication

mechanism is present), and can be easily implemented. Another important aspect is the advantage

in the overall performance this mechanism presents, compared with current implementations of

ODBMS.

GAME’S messaging system defines a class of objects capable of being flattened into a

data stream, or sequence of bytes. This mechanism permits complex objects to be passed (or

copied) across GAME Components using standard inter-process communication support offered

by non-object-oriented operating systems, or hardware communication devices. The

GameStreamObject class, shown in Figure 6.1, defines a virtual destructor and three public

member functions: getObjectLength, describeObject and assembleObject. The getObjectLength

member function returns the length of the object’s data stream expressed in number of bytes. The

returned value represents the sum of the length of all objects held by a GameStreamObject

instance. If a given G am eStream O bject contains other G am eStream O bjects, th e ir

getObjectLength member functions are called in sequence, until the innermost object returns its

data stream length. An object data stream length is used by the programmer to allocate a

continuous array of bytes, and pass its address as the argument to the describeObject member

function. This function “fills” in the array of bytes with the object’s data elements. If other

GameStreamObjects are contained by the first object, their describeObject member functions are

Chapter 6 GAME’S Programming Model and the Parallel Execution Module 115

also called in sequence, until the innermost object returns its data stream. Once the object finishes

filling in the data stream, it returns a pointer to the next available memory position in the byte

array.

F igured .! - The GameStreamObject base class

class GameStreamObject
{
public :
virtual
virtual LONG
virtual BYTE*
virtual BYTE*

1 ;

-GameStreamObj ect
getObj ectLength
describeObject
assembleObject

(void);
(void) - 0
(hOS) = 0
(hOS) = 0

The assembleObject member function performs the inverse task. It receives a pointer to

an already filled data stream, with the address of its first byte. The contents of the data stream are

then copied into the internal objects in the same sequence used to fill in the data stream. At the

end of the assembly operation the object that received the array of bytes is an identical copy of

the object that produced the data stream. This mechanism imposes only one condition in order to

work properly: the receiver GameStreamObject must be of the same type as the sender, and

therefore knows how to assemble the data stream. Figure 6.2 shows an example of a stream

object (m) and its data stream representation. This particular instance of the GameStreamObject

class holds two objects: a long type data element / (with value 0) and an array of ten chars with

the string “STR_OBJECT’. The flattened data stream containing both objects is also presented. It

is headed by a counter that indicates the number of objects it contains. Each object also has an

identifier (Id) prefix, which is only known by the object’s flattener and assembler member

functions. This explains why only stream objects derived from the same abstract type are capable

of rebuilding (or assembling) a copy of the object that produced the data stream.

Figure 6.2 - GameStreamObject example

long 1-0

d a ta s treammu 1mmmm2BQBBBBnBBn
I— ^ Id L
counter

J Id L

GAME Component objects interact by exchanging commands and data transported by a

special class of objects called message package. A message package object is an instance of the

Msg Package class, which inherits its properties of data flattening from the GameStreamObject

116 GAME'S Programming Model and the Parallel Execution Module Chapter 6

class. Message packages are capable of carrying data elements, commands and execution status.

Data elements may be any native C++ data type such as chars, integers or doubles, or any user-

defined object derived from the GameStreamObject class. The standard Msg Package class

provided by GAME can carry a command, a status word (both integers), a char string and two

doubles. One of the doubles can be used as four integers, eight chars or as combinations of

integers and chars up to the length of a double.

The Msg Package class is the base for more specialised classes (see Figure 6.3) such as

the Virtual Machine message package class (VmMsg), that can carry complex data types like

Individuals, DnaNodes and DataUnits.

Figure 6.3 - Message package class hierarchy

FitnessMsg

VmMsg

PopManMsg
DnaNodeMsg

All MsgPackage derived classes include, at least, the following member functions;

• storeMessage - called by the sender to insert a command word into the message

package object.

• recallMessage - called by the receiver to read the command word brought into the

message package.

• storeStatus - called by the receiver to store a status word indicating the result of the

execution of the message package command.

• recallStatus - called by the sender to verify command’s execution status. Since the

command word is always available, the sender does not need to keep a log of the

commands sent (this helps with error recovery mechanisms).

• storeByte, storeWord, storeDouble and storeString - called by the sender to pass

arguments of commands to the receiver, which may also call them to return

information to the sender.

• recall Byte, recallWord, recallDouble and recallString - called by both receiver and

sender to read information contained into the message package object.

Chapter 6________GAME’S Programming Model and the Parallel Execution Module________21Z.

6.4. The Parallel Execution Module

Some basic facilities for inter-object information exchange found in the Parallel

Execution Module design have been inspired by distributed object-oriented systems such as

PRESTO [12] and DoPVM [44], and recent distributed object computing specifications like

IBM’s SOM and Microsoft’s COM.

The Parallel Execution Module comprises two layers, as shown in Figure 6.6: the upper

and the lower layers. The upper layer, or application programming interface layer, defines a set

of standard interface functions for task control and communication. The lower layer, or

communication interface layer, implements the functions that map upper layer requests into

specific hardware/software support mechanisms to carry out the required actions.

PEM ’s program m ing interface layer is modelled on an ordinary postal system

abstraction. It provides functions that allow the user to post, collect, process and reply message

package objects containing commands and data elements to be exchanged among components.

The most important abstraction o f the programming interface is the mailbox. It concentrates

events (represented as message package objects), produced by a variety of sources, into a single

entry point for collection, distribution and processing. Message packages are usually retrieved

from a mailbox in a first-in-first-out order. They may be “stamped” with user defined Id

numbers, and retrieved by the receiver, in any order, based on the Id number.

The operation of PEM is entirely based on the event-driven philosophy. One of the most

import characteristics of event-driven programs is the absence of a main thread of control. The

parts that form a program (functions and procedures) are activated by the occurrence of

asynchronous events. Usually a central routine, or dispatcher, maintains a list of known events

and sub-routines to be called on their occurrence. Therefore, a component may receive events

produced locally and externally. In the first case a component posts message packages to itself,

whereas in the second case, message packages are received via the communication and the user

interfaces. A typical problem with event-driven programs appears when a long piece of code is

executed by a sub-routine. In such cases, the event queue may overrun and event messages could

be lost. A common technique to avoid this type of problem is to split the long code into smaller

parts. To ensure the continuity of the execution by all the parts, messages produced by each part

are inserted into the event queue, indicating the next part to be executed (see Figure 6.4). This

technique may also be used to introduce concurrence in a sequential program.

The managem ent of m ailboxes is, therefore very im portant for efficien t PEM

implementations. Two approaches may be used for mailbox queue monitoring: continuous

monitoring and timed monitoring. The first approach requires the implementation of an infinite

loop that permanently verifies the number of messages in the queue (and calls the central

dispatcher whenever a new message package arrives). This implementation is most appropriate

118 GAME’S Programming Model and the Parallel Execution Module Chapter 6

for pre-emptive multitasking operating systems. The second approach is preferred for non pre­

emptive systems. The queue is inspected at certain times only, in general determined by a timer,

allowing the operating system and other programs to acquire control of the CPU. In this case

however, special mechanisms should ensure that the event queue will be processed at some stage,

for instance when overrun is imminent, or when events requiring urgent treatment arrive.

Figure 6.4 - Event driven-processing

E,(P2)

EVENT QUEUE

E ,(P 3) lE ,(P 4)

PEM defines events in terms of asynchronous and synchronous message packages. A

transmission mode for a message package is specified by calling the PostMail function with one

of the following three options: NOREPLY, REPLY and WAITREPLY. The NOREPLY and

REPLY options are used for asynchronous transmissions. In the first case, a message package is

inserted into the receiver’s queue, and the control returned to the sender. The second form

requires the same message package to be returned to the sender (at some stage later) with status

and/or data resulting from its command execution. The control is resumed to the sender as soon

as the message package is inserted into the receiver’s queue. The WAITREPLY form implements

a synchronous transmission, meaning that the execution in the sender is blocked until the same

message package returns. Its arrival at the receiver determines immediate processing of the

message queue, up to the point where it is inserted.

Typically, when a message package is posted, the sender application’s interface functions

translate it into a data stream and pass it on to a lower-layer function. This will then use whatever

operating system or hardware communication support to send the data stream to the receiver

component. An incoming data stream is translated back into a copy of the original message

package and inserted into the component’s mailbox. Communication between components sharing

the same process memory space (local components) are not translated into data streams, but

immediately delivered to the receiver’s mailbox. From the user’s point of view, both methods are

Chapter 6 GAME’S Programming Model and the Parallel Execution Module 119

transparent, working as if sender and receiver components were interacting directly (see Figure

6.5). Variations on the way messages are posted permit synchronising sender and receiver(s) as

well as broadcasting message packages. Global synchronisation is also supported, based on an

adaptation of the “barrier” model for an event-driven implementation.

Figure 6.5 - C om ponenfs interactions and PEM

Component A

Component B

O bject F lattener/
A ssem b ler M odules

Application
O bject A pparent Virtual

M achinenteraction

M e ssa g e
P ack a g e M essa g e

P ac k a g e

ParaBet Execwon Module API (u t)

Communication IrtorfaoB (LL) ‘
P.E.M.

Process control is supported by a set of functions that enable the user to dynamically

start and terminate components, as well as open and close one or more communication channels.

The complete set of interface functions defined by PEM is presented in the next section and

described in detail in Appendix C.

The communication interface layer also defines a set of standard functions. It is intended

that only the lower layer needs to be rewritten to port PEM (and GAME) to different platforms.

Therefore, upper layer functions should be able to call the same set of lower-layer functions (e.g.

SendSync, SendAsync, etc.) that will have different implementations according to the underlying

operating system or hardware. Figure 6.6 shows how an application comprising several

components is isolated from the host machine’s operating system and hardware, through PEM’s

application programming interface (UL). Various alternatives for the implementation of the

communication interface (LL) are also shown. This may directly rely on operating systems’ low-

level process control and communication support (UNIX sockets, RPC or Microsoft Windows

DDE/OLE), or custom hardware interfaces (such as those implemented in language extensions or

libraries). Another possibility is to implement PEM’s lower layer on top of some more

sophisticated software systems like PVM [8], HANSA-HDE [79], CHIMP [16] or wxWindows’

DDE [87]. This alternative considerably reduces the complexity of PEM’s implementation, but

may introduce few undesirable performance constraints. PEM is currently available for the UNIX

and MS-Windows platforms over wxWindows (which offers cross-platform implementation

support based on the DDE protocol), with HANSA DDE and PVM versions under development.

120 GAME’S Programming Model and the Parallel Execution Module Chapter 6

A transputer-based version has also been implemented by TELMAT, one of the PAPAGENA

project partners.

Figure 6.6 - PEM layers and low level support systems

r
CUSTO M

I H ARDW ARE
I INTERFACE

ÎCHIMP1PVM

1

6.4.1. PEM Implementation

The implementation of the Parallel Execution Module defines a component in terms of

three main objects: the PEM Component object, the Ipc object and an optional Schedule object,

as shown in Figure 6.7.

PEM Component — is the principal processing agent, or component (as it is called in GAME’S

programming model). It implements the application programming interface layer specified in the

PEM design. There are two types of PEM Component objects: external and local components.

An external PEM Component is an independent program (or process), which can be started

automatically by other PEM Components or manually by the user. It maintains an Ipc object and,

in some implementations, a Scheduler object. Conversely, local PEM Components can only be

started by external or other local components. They do not possess private memory nor Ipc or

Scheduler objects. However, from the implementation point of view, external and local PEM

Components perform the same task: they have the same user-defined function to process

incoming message packages. They only differ in the way they are handled by compilers (through

a macro switch), linkers and loaders. Typically one external component (the parent) may start

several local components (child) and share its resources (the Ipc object, the Scheduler and its

Chapter 6 GAME’S Programming Model and the Parallel Execution Module 121

memory). Local components are, in general, implemented as dynamically linked library modules

or local threads. They may also start other local or external components, but are not able to share

resources since they are not resource owners.

Figure 6.7 - A PEM “external component"

e KacKaae aueue

The PEM Component object implements the application programming interface layer

through groups of functions, as presented in Table 6.1. It maintains three main data structures; a

message package queue, a message package pool and a data base of known components.

Incoming message packages are delivered to the component’s mailbox, implemented as a first-in-

first-out queue. The mailbox pre-processes some commands (e.g. QUIT) and passes them on to a

user-defined function (ProcessMail), where system and user commands are processed. The pool

of message packages maintains “free” user-defined message packages. In the component

initialisation, the user must provide a prototype of the particular message package object, to be

replicated into the pool. Message packages are allocated by the Ipc object to assemble incoming

data streams before delivering them to the mailbox. After being processed, message packages are

released back to the pool, and are later re-used to assemble new messages. The number of copies

of message package objects held in the pool is determined by the user. It should be sufficient to

support the maximum number of message packages that a component can accumulate in its queue

before processing. A component might receive only one type of message package object, but may

send several other types according to the different components it is connected to.

Table 6.1 - PEM Interface functions

Control & Execution Communication Synchronisation
StartComponent OpenConnection PostMail
T erminateComponent CloseConnection

PostMail WaitMail
ProcessMail HasMail
ProcessReply CollectMail

ReplyMail

The third data structure, the component data base, maintains detailed information about

child components and connections. Names of components, their communication ports and hosts

are kept together with their types (local or external), connection status (no connection, active or

inactive) and communication channel identifier (required by the Ipc object). New child

122_______ GAME’S Programming Model and the Parallel Execution Module_______ Chapter 6

components are registered with the data base, which returns a unique handle for the component.

This handle is subsequently used to call other functions to obtain information about the

component, or post messages. The first two entries in the data base are reserved for information

about the component itself and its parent (if it is started by another component).

IPC Object — implements the communication interface layer specified by PEM. A standard set

of functions, listed in Table 6.2, is defined to interface with the upper layer. These functions

allow the upper layer to request lower layer services independently of any particular

im plem entation of the Ipc object. To further facilitate portability, the object-oriented

implementation of both the PEM Component and the Ipc objects permits easy substitution of the

latter. Ipc objects are created by PEM Components at run-time. This strategy promotes the

integration of new, and possibly different, im plementations of these objects into PEM

Components. Customised versions of Ipc objects, inherited from its base C++ class, can

immediately replace any other version after re-linking the original application object codes. This

strategy also opens up the possibihty for more than one Ipc object (with diverse implementations)

to be created by a PEM Component, permitting application components to be distributed in

heterogeneous computing environments. Besides providing communication services, Ipc objects

are also responsible for process control activities such as starting, terminating, loading and

unloading external and local components.

Table 6.2 - IPC interface junctions

Control Communication
StartLocalComponent OpenConnection
StartExtComponent CloseConnection
T erminateLocalComponent ConnectionStatus
T erminateExtComponent SendSync
CreatePort SendAsync

Reply

The Ipc object operation is based on three other objects it creates; a client^ a server, and

channel objects (Figure 6.8). The server object is characterised by its communication “port”.

This is an alphanumeric string and is usually registered with the host operating system, enabling

chent components to request connections. The client object is called by the Ipc object to request

connections to other components. The name of the server communication port and the name of the

component (since more than one local component may share an Ipc server) must be provided.

Optionally a host name may be given, if the other component is not located in the same machine.

When a server receives a request for connection, it verifies if the name accompanying the

request is in the list of local components. If not, the connection is refused, otherwise it requests

the Ipc object to create a channel object, and accepts the connection request. On the creation of a

channel object, the operating system (or any underlying communication support) is notified.

Chapter 6 GAME’S Programming Model and the Parallel Execution Module 123

When the client that requested the connection receives the positive reply, it also asks its Ipc object

to create a channel. The implementation of channel objects will then ensure that a bi-directional

link between both channels is established.

Figure 6.8 - Application components and their communication objects

COMPONENT A

COMPONENT C COMPONENT B

There is no limit for the number of connections maintained by an Ipc object.

Communication channels are identified by handles kept in a list of connections. The handles are

also returned to the upper layer function that requested the creation of a connection. It is stored in

the component data base entry that describes the other components, and passed back to the Ipc

object when other services are requested (e.g. send message) for that particular connection.

When a channel object is created, it is informed about the PEM Component that “owns”

it. This allows the channel to directly deliver an incoming message package to its owner mailbox.

In fact, the channel has to request a free message package from its owner’s message package

pool, before assembling it with the received data stream and inserting it into the message package

queue.

Connections between components in the same process (i.e. sharing the same Ipc object)

are treated in the same way, but the flattening/assembling stages are skipped since no operating

system (or hardware) intervention is needed.

Scheduler — is an optional object mostly used when local components are implemented as

dynamic link libraries - thread-based implementations are usually controlled by operating

systems. It controls the concurrent execution of components sharing resources in the same

process, i.e., one external component (the parent) and all its the local components. Its simplest

implementation is based on a round-robin, non pre-emptive task allocation policy. The scheduler

124 GAME’S Programming Model and the Parallel Execution Module Chapter 6

maintains a list of local components and continuously invokes their mailboxes in sequence,

granting them an opportunity to process their message queues.

Non pre-emptive multitasking operating systems like Windows 3.x, may require a timer

to give the operating system opportunity to acquire control of the CPU. In such implementations,

after all components have had a chance to process their message queues, the timer is started and

the scheduler passes the control to the operating system. When the timer goes off, the scheduler

receives the CPU control and executes one round of mailboxes calls, before restarting the timer.

This approach is also suitable for developing and debugging parallel apphcations on uniprocessor

platforms. Since there are no differences between external and local components, from the

application developer’s point of view, a parallel application could be fully tested (including

message passing) in a uniprocessor platform with the help of the Scheduler and local components.

In the final (parallel) version, the former local components could be simply re-compiled as

external components, and distributed among the processors of the target parallel machine (or

distributed system).

The C+-f implementation of GAME’S Parallel Execution Module defines a class

framework (see Figure 6.9) that has the pemComponent class in its base. The pemComponent

class provides the functionality specified by PEM’s upper layer programming interface. It is

inherited by the GameComponent class that further specialises some of its functions, and includes

some others to support integration with the graphical user interface and the monitoring control

system. Base classes of customised implementations for applications, algorithms and genetic

operators are also defined for both local and external types of components. These classes are

intended to be used as templates, to be inherited or directly modified by the application developer

as explained in see Chapter 7.

Figure 6.9 - GAME components class hierarchy

AppComp

VM - API AlgComp

OperatorComp

GameComponentpemComponent

Virtual Machine

Population
Manager

Fitness
Evaluator

Chapter 6________GAME’S Programming Model and the Parallel Execution Module________125

g a m e ’s programming model and PEM’s design allow maximum flexibility for diverse

application requirements and cross-platform implementations. Different topologies combining

local and external components can be easily set up through a configuration file or alternatively

via the user interface. The configuration file example shown in Figure 6.10 is divided in four

configuration sections: application, graphic monitor, algorithms and genetic operators. Other

sections may include genetic data structures and Virtual Machine configurations. Every section is

sub-divided in two parts: component’s configuration parameters and component’s connections.

Configuration parameter entries are specific for each section type. Algorithm parameters, for

instance, may include the number of generations and size of their local populations, whereas

operator parameters are specific for each particular genetic operator (e.g. mutation and crossover

rates).Common to all components are their type (local or external), file name (and path). External

components also require a port name (an alphanumeric string). A component wishing to connect

to another component in the same application needs only to obtain its port name from the

configuration file. The connection configuration sub-sections specify the initial topology of the

application, which may be dynamically modified at run-time. The StartComponent and the

ConnectToComponent entries specify names of other sections that fully describe a component to

be started or connected (as indicated by the dashed hnes).

126 GAME’S Programming Model and the Parallel Execution Module Chapter 6

Figure 6.10 - A GAME configuration file example

GAME Application - Configuration File
Application configuration

[Application]
Con^onentPort-4045
TimerInterval-10 0 0

The next two entries specify section names describing
algorithms to be started or connected

StartComponentl-Algorlthml --- — i
StartComponent2-Algorlthm2 --- — U
; * '
} * Graphic Monitor configuration I

[Graphic Monitor]
ComponentType-
ConponentName-Ci\GA_App
ComponentPort-4045
ComponentHost-
;*
f* Algorithms Configuration
; *
[Algorlthml] ^
; *
; * Configuration parameters
;*
ConponentType-local
ConponentName-C t\Gen_Alg
ConponentPort-
ConponentHost-
MaxG eneratlons-50
PopulatlonSlz e-10
ConvergenceRate-0.005
TlmeOut-
; *
;* Connection configuration
; *
StartConponentl-Selectlon
StartComponent2-Cros sover
StartConponent3-Mutation

1

[Algorlthm2] —
TlmerInterval-100
ComponentPort-1234
ComponentType-External
ComponentName-Ci\Gen_Alg
ConponentHost-
MaxGeneratlons-50
PopulatlonSlz e-10
ConvergenceRate-0.005
TlmeOut-
StartConponentl-Selectlon —
StartComponent2-Cros s over
StartConponent3-Mutation —
ConnectToConponent-Algorlthml

Operators Configuration
[Selection] <-- —
ComponentType-Local
ComponentName-C:\TruncSel
TruncatlonRate-0.7
[Crossover] <--- ---- --
ComponentType-Local
ConponentName-Ci\Oneptcros
CrossoverRate-0.6
[Mutation] <--- ---
ConponentType-Local
ConponentName-Ci\XntMut
MutatlonRate-0.05

Chapter 6________GAME’S Programming Model and the Parallel Execution Module________)27_

6.5. PEM Application Program interface

The Parallel Execution Module defines two application programming interfaces. The first

API contains functions of PEM’s upper layer - the user interface layer, whereas the second API

contains the interface functions of the lower layer. The functions of the latter are not directly

accessible to the application developer, but they are important for porting GAME to other

operating systems or custom hardware communication support.

Most of the functions of PEM ’s upper layer API take a handle to an entry in the

component data base as one of their arguments. A data base entry is created when a new child

component is started or a new connection is opened to an already running component. In both

cases the ComponentDescriptor structure is required (see Figure 6.11). This structure contains

information used by PEM to start a component or establish a connection to a component. The

user fills in five fields: component_name, port_name, connection_type, connection_host smd

ipc_buf_sz. The last two are optional and assume the local host and a buffer of 1 Kbytes, by

default.

Figure 6.11 - The component data base entry

struct ComponentDescriptor
{

char* component_name ; /* path and file name of the con^onent */
char* port_name; /* Server port name */
char* connection_host; /* Host where the server is running */
PCTYPE connection_type; /* Type of connection (LOCAL/EXTEHNAL) */
HANDLE hIpcComp; /* Handle provided by the IPG object */
HANDLE hIpcConn; /* Handle to the IPG channel object */
WORD ipc_buf_sz; /* Size of the communication buffer */
ComponentDescriptor (void);
ComponentDescriptor (const ComponentDescriptor FARfi);

virtual -ComponentDescriptor(void);
virtual Con^onentDescriptor& operator- (const Con^onentDescriptor FAR&);
};

6.6. Summary

The first section of this chapter reviewed three common software strategies used to

support parallel programming, namely: language-based, operating system-dependent and

language/operating system independent parallel support. The discussion of each one of these

strategies was based on currently available programming languages and software systems, and

permitted to assess their strengths and weaknesses. This study led to the definition of GAME’S

parallel programming model and its implementation support - the Parallel Execution Mcxlule.

g a m e ’s programming model was then introduced, and its message-passing architecture

described. The programming model defined for the system is highly flexible, supporting the

implementation of complex parallel applications, based on a language/operating system

128_______ GAME'S Programming Model and the Parallel Execution Module_______ Chapter 6

independent strategy. This alternative was elected since it offers the required degree of portability

for applications created with GAME.

The explanation of the messaging sub-system, and its implementation, was followed by

the description of the Parallel Execution Module. The design of PEM’s internal structure, which

comprises two independent implementation layers (the upper and the lower layers), clearly

demonstrated the concern with application and system portability. The definition of an apphcation

programming interface for the upper layer ensures platform independence for applications. In the

same way, an API between the upper and lower layer facilitates the porting of GAME, without

affecting apphcations’ design and implementation.

Finally, it is important to stress that GAME’S programming model and its underlying

support are, together, a powerful tool for the creation of parallel applications. They have been

designed to cater for a much broader range of parallel applications and therefore, are not limited

to supporting genetic algorithms.

Chapter 7

The GAME Libraries

The GAME Libraries comprise two principal groups o f C++ class libraries. This
chapter describes the organisation and implementation o f the Genetic and Service
libraries.

7.1. Introduction

Development environments are complex software systems designed to provide as much

flexibility and reliability as possible for application developers. Among the standard set of tools

generally available in a programming environment, a collection of runtime libraries constitutes

one of the most important assets for software developers. Runtime libraries are normally supplied

with a variety of general-purpose functions that help to reduce the time required to implement

applications, freeing the programmer to concentrate on the details of the application design.

Operations such as formatted input and output, floating-point and complex arithmetic, graphic

display, and interactions with the operating system’s services are now commonly available in any

programming environment. More recently, a new generation of “class libraries” has appeared,

based on the object-oriented paradigm. Such libraries offer even more flexibility for the

programmer, by allowing the customisation of one or all its member functions and member data,

via inheritance and overloading mechanisms.

Programming environments for applications based on genetic algorithms must also offer

a comprehensive collection of libraries, possibly containing parameterised versions of standard

sequential and parallel G As and genetic operators. According to the general model of a GA-based

application, it is possible to define a set of parameterised GA libraries. Typically, an application

is organised in three hierarchical levels:

• the Application Domain level, comprising domain-specific applications (e.g. finance,

telecommunications, etc.);

• the Algorithm Class level, with a variety of algorithms grouped into categories

(scheduling, routing, etc.) to be used in applications; and

129

130 The GAME Libraries Chapter 7

• the G en etic O perator le v e l , en co m p a ssin g a num ber o f g e n e t ic op erators to be

incorporated into different algorithms.

A s e c o n d g ro u p o f lib r a r ie s c o n ta in in g a u x ilia r y fu n c t io n s to b e u sed in th e

im plem entation o f G A s and their g en etic operators m ay a lso be con sid ered . T his “au xiliary”

group o f libraries might include m odules for encoding and decoding genetic structures (em ploying

several techniques and alphabets) as w ell as platform-dependent m odules such as random number

generators, inter-process com m unication support, etc.

The G A M E program m ing environm ent com prises tw o main library groups, nam ely the

G en etic L ibraries and the S erv ice L ibraries. T h ese tw o library grou p s h ave b een d efin e d

according to the structure outlined above. The G enetic Libraries provide param eterised versions

o f applications, genetic algorithm s and operators for a variety o f dom ains. The Service Libraries

group, on the other hand, is the repository for the rest o f the environm ent’s m odules. It com prises

the graphic user interface library, the com m unication and parallel control library, the m onitoring

library and the system library. T he latter contains the Virtual M achine, the gen etic -or ien ted

representation and various ancillary functions including string encoding and decoding, m em ory

m anagem ent, etc. Figure 7.1 sh ow s the relationship b etw een the m odu les o f a typ ical G A M E

application and the various libraries o f the environment.

T h e G A M E L ibraries h ave b een d e s ig n ed to p ro v id e the m axim u m f le x ib il ity in

com b in in g their m odu les in to a lgorithm s and ap plications. Furtherm ore, they can be e a s ily

expanded with the inclusion o f new m odules.

Figure 7.1 - Application and libraries

Application
Library

Algorithms
Library

Operators
Library

(iv V M i: A p p ll t s i tb i i

Gen^ AJgâHthi»
y/j Selection

ji Crossover J Mutation 1

ParalQel Support Module

Population Fitness
Manager Evaluator

Graphics
Library

Monitoring
Library

ConuDS&
Parallel Control

System
Library

There is , h ow ever , a fundam ental d ifferen ce b etw een th ese tw o groups o f libraries

relating to the w ay their m odules are constructed. The G enetic Libraries contain on ly G A M E

C om p onents, i.e ., m odu les that can be either stand -alone execu tab les or d yn am ica lly linked

(D L L s) w ith other D LL s or execu tab les. C onversely , the S ervice Libraries are a co llec tio n o f

Chapter 7___________________________ The GAME Libraries___________________________ 131

modules designed to be statically linked into executables or DLLs like GAME Components. This

distinction stems from GAME’S programming model, which requires GAME Components to be

dynamically interconnected by apphcations.

Modules from the Genetic Libraries, although including stand-alone executable

programs, still fit in the traditional concept of a library module since they cannot provide any

useful functionality unless “connected” to other modules (DLLs or other executables). A genetic

algorithm component (as an executable module), for instance, needs at least some genetic

operators (either as DLLs or stand-alone executables) and the Virtual Machine to perform any

useful computation. The major advantage of this library approach is the ability to construct

entirely new applications and genetic algorithms without needing to re-compile or re-link any

piece of object code. A simple configuration file, as shown in Chapter 6 (Figure 6.10), provides

the necessary information to put together parameterised genetic operators, algorithms (= Virtual

Machine + genetic operators + parameters) and applications (= algorithms + user interface +

parameters).

The next sections discuss in more detail the parameterisation of genetic algorithms and

describe some modules of GAME’S Genetic and Service Libraries.

7.2. Parameterising GA Applications

A genetic algorithms-based application is generally parameterised in terms of its GA

setup. A typical GA setup includes parameters like population size, maximum number of

generations, convergence rate, crossover and mutation rates, to cite only the most common. Let us

consider two parallel applications, one comprising several instances of the same algorithm (here

meaning that each algorithm contains the same set of genetic operators), but with different setups;

the other apphcation comprising several instances of different algorithms (defined as containing

distinct sets of genetic operators), with possibly different setups^. This example suggests another

level of parameterisation for GA applications, based on their composition. This means that a

parallel application might take genetic algorithms as one of its parameters, and each genetic

algorithm might, in turn, take as parameters a list of genetic operators. It is interesting to note

that algorithm parameterisation is also applicable to sequential GAs.

However, some genetic algorithms designed to solve certain classes of problems may not

“accept” all possible genetic operators. For example, the Genetic Edge Recombination (GER)

operator [100] is a special type of crossover used in routing problems such as the travelling

® The actual advantages and disadvantages of both alternatives have been briefly discussed in Chapter 2 and the discussion of this
subject is beyond the scope of this thesis.

132______________________________The GAME Libraries________________________ Chapter 7

salesperson problem (TSP). It cannot be applied to other classes of problems. Conversely, any

GA designed for solving problems of the TSP class may seamlessly use a GER operator.

The param eterisation of an application in terms of its composition is immensely

facilitated by GAME’S programming model. By defining genetic algorithms and their operators

as GAME Components, it becomes extremely easy to combine genetic operators into new

algorithms and use them in applications. The restriction imposed by the possible combinations of

genetic operators, classes of algorithms and application domains is controlled through the

introduction of two different types of parameters, as discussed in the next section.

7.3. The Genetic Libraries

Modules of the Genetic Libraries can accept two types of parameters: configuration

parameters and runtime parameters. A configuration parameter is defined before the compilation

of the library module. Therefore, valid configuration parameters for an application domain will

admit only certain classes of algorithms, which in turn, will take only certain types of genetic

operators. This mechanism may look restrictive for configuring new applications since it relies on

pre-defined classes of genetic algorithms and operators. However, it protects the user from

combining components that are not compatible or are unsuitable for solving a problem. If a

genetic operator component is not a member of the class of components accepted by an algorithm,

its connections will be refused by the latter. This parameterisation mechanism also introduces the

concept of component templates, which defines applications as place holders for genetic

algorithms, and these as place holders for genetic operators. Hence, the larger the number of pre­

defined classes of genetic algorithms and operators “configured” in a particular component, the

greater will be the potential for creating new applications and algorithms via permutation.

Runtime parameters, on the other hand, are meant to be passed on to already compiled

GAME components, either before or during their execution. Initialisation runtime parameters are

generally passed to a component before its execution - normally as command-line arguments or

in a configuration file. For instance, the network of connections that forms a GAME application,

as specified in the application configuration file, is considered as a set of runtime parameters.

Other runtime parameters that can be modified during the execution of a component include:

number and type of display charts, crossover and mutation rates, etc.

The Genetic Libraries group comprises three libraries: the Applications Library, the

Algorithms library and the Operators library. This organisation mirrors the application structure

and is supported by a framework of four C++ classes. The GameComponent class (shown in

Figure 7.2) is the base class of the framework and provides the basic functionality to initialise a

com ponent and access the services of the Parallel Execution M odule. Every tim e a

Chapter 7 The GAME Libraries 133

GameComponent-derived class is created, the base class constructor executes an initialisation

sequence which includes reading the application configuration file to obtain its runtime

parameters. This operation may determine the creation of other components such as genetic

algorithms and operators. By encapsulating this type of operation in the GameComponent class,

the framework ensures an automated and consistent initialisation behaviour for GAME

Components. At the same time, it relieves the user from dealing with this type of ordinary

operation. Nevertheless, the user may call, at any time, functions such as GetEntryToken, to read

a user defined configuration file entry, or StartComponent, to create a new genetic operator.

Figure 7.2 - The Game component class

class GameComponent i public pemCon^onent
{
public t

virtual
protected!
// Member data

char
char
WORD
int

GameComponent
GameComponent
-GameComponent

(void)()
(char FAR*, char FAR*, pemlpc FAR* -0);
(void);

cfg_£ile[256];
cfg_section[80];
hGraphMon;
gc_handle[MAX_COMPONENTS];

/* configuration file name */
/* configuration file section */
/* Graphic Monitor handle */
/* Array of handles */

// Member functions
virtual void InitConponent
virtual HANDLE Sta rtComponent
virtual void
virtual WORD

ParseCmdLine
GetEntryToken

virtual HANDLE AllocHandle
virtual void FreeHandle
virtual void Quit
);

(void);
(ComponentDescriptor FAR&, char* -0);
(void);
(char*, char*, WORD);
(void);
(HANDLE);
(void);

The AppComponent class, shown in Figure 7.3, further speciahses the GameComponent

class to offer the ability to incorporate (and initialise) a graphic user interface via the

OnMakeUserlnterface member function. It also overrides the GetEntryToken member function to

look for application-specific entries in the configuration file. Although the AppComponent class

is completely functional, the user may want to derive a new class from it and include a set of

member functions to handle events generated by the graphic user interface.

134 The GAME Libraries Chapter 7

Figure 7.3 - The Application component class
class AppComponent: i public GameComponent
{
public(

AppCon^onent (int, char**);
virtual -AppComponent (void);
protectedi
// Member functions
virtual void InitComponent
virtual void OnMakeUserlnterface
virtual HANDLE StartComponent
virtual WORD
virtual BOOL
1 ;

GetEntryToken
OnReceiveMail

(void);
(void);
(PCTYPE);
(char*, char*, WORD);
(MsgPackage FAR&);

The third C++ class provided by the framework is the AlgComponent class (see Figure

7.4) which provides a basic template for standard genetic algorithms. It includes member data to

store the ordinary param eters o f a GA (PopuiationSize, MaxGenerations, TimeOut and

Convergence Rate) and a handle (hVM) associated with the Virtual Machine component created

by this algorithm. It also offers member functions to invoke genetic operator components to

which it is connected. Since genetic algorithms and genetic operator components are not supposed

to interact directly with the user, these classes offer no provision for a graphical user interface, as

seen in the AppComponent class. All interactions with the user should occur via the interface

provided by the application component (or the graphic monitor module).

Figure 7.4 - The Algorithm component class
class AlgCon^onent > public GameCon^onent
{
public >
virtual
protected»
// Member data
WORD
WORD
WORD
LONG
DOUBLE
HANDLE

AlgComponent
-AlgComponent

PopuiationSize;
MaxGenerations;
GenerationCounter;
TimeOut;
ConvergenceRate;
hVM;

/ / Member functions
virtual MsgPackagefi ProcessMail
virtual void InitComponent
virtual BOOL OnReceiveMail
virtual WORD GetEntryToken
// GA specific member functions
virtual void
virtual void
virtual void
virtual void
virtual void
virtual void
};

Initialize
MainLoop
Select
Reproduce
Migrate
Statistics

(char FAR*, char FAR*, pemlpc FAR*);
(void);

/* number of individuals in a pop. */
/* max. number of simulation cycles*/
/* current simulation cycle */
/* simulation time limit - ms */
/* simulation max. tolerance error */
/* Virtual Machine handle

(MsgPackage&);
(void);
(MsgPackage FAR&);
(char*, char*, WORD);

(void);
(WORD);
(void);
(void);
(void);
(void);

V

Chapter 7 The GAME Libraries 135

Finally, Figure 7.5 shows the OperComponent class, which provides the functionahty to

im plem ent genetic operato r com ponents. Its m em ber data include a sto rage space

{ActivationProb) for the parameter that determines the activation of the operator, such as the

mutation rate for mutation operators. It also contains a component handle that uniquely identifies

the instance of the Virtual Machine component created by the algorithm that started this operator.

Figure 7.5 - The Operator component class

class OperComponentI public GameComponent
{
public i

OperComponent
virtual -OperComponent
protectedi
// Member data
DOUBLE
HANDLE

ActlvatlonProb;
hVM;

// Member functions
virtual void Statistics
virtual MsgPackagefi ProcessMail
virtual void InitComponent
virtual BOOL OnReceiveMail
virtual WORD GetEntryToken
};

(char FAR*, char FAR*, pemlpc FAR*);
(void);

/* prob. for activating the operator */
/* Virtual Machine handle */

(void);
(MsgPackagefi);
(void);
(MsgPackage FARfi);
(char*, char*, WORD);

The OperComponent class can be specialised to create a set of standard operators for the

Operators library as listed in Table 7.1 below.

Table 7.1 - Standard components o f the Operators library

Initialisation Selection Crossover Mutation
Random Roulette Wheel Holland Crossover Bit Flip
Super-Uniform Truncated Roulette Two-point Creeping
Read From File Deterministic Sampling

Ranking
Reminder Stochastic
Tournament

Uniform

The three initialisation operators create the starting values for the population of genetic

structures. The first operator initialises the population with random values, possibly chosen from

a user-defined range. The Super-Uniform method is applied in binary string initialisation and it

tosses a biased coin for each bit of each string of the population. Pre-defined values may be

provided by the user through the Read From File operator.

The category of selection operators includes the traditional Roulette Wheel, which

assigns to each member of the population a percentage of the population’s total fitness that is

136______________________________The GAME Libraries________________________ Chapter 7

proportional to the individual's own fitness. The Truncated Roulette is a variation of the roulette

wheel that restricts the selectable population to some fraction of the best individuals in the current

generation. The Deterministic Sampling method will always favour members of the population

according to some pre-defined and constant rules. Such an operator may, for instance, take the

best 70% of individuals and complete the population with copies of these individuals, again

chosen according to certain fixed criteria (even randomness could be one such criterion). Ranking

operators will select individuals after ordering the population. These operators generally apply

some form of fitness normalisation before sorting the population. The Reminder Stochastic

method copies individuals to the next generation according to their integer expectation, or

apportionment, in relation to the total fitness of the population. This often leads to some empty

places in the new generation, which are filled in by applying the traditional roulette wheel on the

fractional parts of the same individuals. Finally, Tournament Selection randomly chooses some

number of individuals (often a pair) and select the best from this group. The operation is repeated

until the population of the new generation is completed.

The most ordinary crossover operator, the one-point or Holland crossover, divides a

genetic string in two parts by randomly choosing a cutting point. It then swaps one of its parts

with its counterpart taken from another string. The two-point crossover performs the same

swapping operation, but with a section of the strings taken after choosing two different cutting

points. The one-point crossover is, in fact, a particular case of the two-point crossover where one

of the cutting points falls at one of the ends of the string. An entirely different approach is taken

by the Uniform crossover operator. It essentially goes through a pair of strings and determines, on

a bit-by-bit basis (by tossing a biased coin) whether or not to swap them.

The mutation operators, apart from the traditional Bit Flip, are in general problem

dependent. The Bit Flip operator performs mutation by simply flipping (from 0 to 1, or vice-

versa) a randomly chosen bit in the binary string representation. The methods used for real value

representations are very diverse, but one usual implementation is the Creeping Mutation. It

operates by slightly modifying the original value, adding or subtracting a constant taken from a

list, or range, of possible values. A more drastic approach will simply replace the original value

with an entirely new one.

A library of genetic algorithms, catering for sequential and parallel implementations of

applications, would normally include some of the common GAs and PGAs found in the literature

(see Table 7.2). The panmitic models are basically sequential GAs that can also be used in

parallel apphcations, running as completely independent and isolated algorithms. The examples of

the island and massively parallel models have been previously described in Chapter 2.

Chapter 7 The GAME Libraries 137

Table 72 - GAs and PGAs modules

Panmitic isiand Massiveiy Paraiiei
SGA l-SGA Fine-Grained PGA

GAUCSD Asparagos
pCHC PGA Cellular GA

Distributed GA DBGA
Genitor Punctuated

Equilibria
Fine-Grained PGA
for Distributed Systems

7.4. The Service Libraries

The C++ classes provided by the Genetic Libraries to help with the creation of

application, genetic algorithm and genetic operator components are only the front-end that hide

the functionality implemented by the Service Libraries. Furthermore, this set of libraries makes

available to the user various modules for programming graphical interfaces, monitoring execution

and supporting genetic manipulations via the Virtual Machine and its API. The Service Libraries

comprise a group of separate libraries, organised according to their functionahty:

• Communication and Parallel Control library

• Graphic library

• Monitoring library

• System Ubrary

The communication and parallel control library implements the two layers of GAME’S

Parallel Execution Module as well as the messaging classes (see Chapter 6) and the basic

framework of C++ classes used to create applications, genetic algorithms and operators, as

discussed in the previous section. It also contains the functions offered by the PEM-API. These

functions, which are listed in Table 7.3, facilitate component creation, termination and inter­

connection at runtime. They also provide support for sending and receiving synchronous and

asynchronous messages, “wrapped” into GAM E’S M essagePackage objects. A detailed

description of each function of the PEM-API can be found in Appendix C.

138 The GAME Libraries Chapter 7

Table 7.3 - Functions o f the PEM API

Function Arguments Returns
S ta r tC o m p o n e n t d c o i t ç - C o m ponen t descrip to r

c h a r * - C o m m an d lin e args

HANDLE - C o m ponen t h an d le

T e r m in a te C o m p o n e n t h co m p - C o m p o n en t han d le
O p e n C o n n e c t io n dco m p - C o m p o n en t desc rip to r HANDLE - C o m ponen t h an d le
C l o s e C o n n e c t i o n h co m p - C o m p o n en t han d le
P o s t M a i l M s g P a c k a g e f i - m essage

hCom p - C o m p o n en t h an d le
rwORDl - NOREPLY/W AITREPLY/
REPLY/BROADCAST
[WORD] - m essage id (=0)

[WORD] - n u m b er o f m essages
successfu ly sent

H a s M a i l [WORD] - m essage id (=0) [WORD] - n u m b er o f m essages
in th e m ailbox .

C o l l e c t M a i l [WORD] - m essage id (=0) M s g P a c k a g e * - m essage
R e p ly M a i l M s g P a c k a g e f i - m essage BOOL - sta tus
W a i t M a i l WORD - m essage id

M s g P a c k a g e * - adv ise m sg

[WORD] - num . m sg . (=1)
[DWORD] - tim e-out. (=0)

P r o c e s s M a i l M s g P a c k a g e f i - m essage M s g P a c k a g e f i - m essage
P r o c e s s R e p l y M s g P a c k a g e f i - m essage
S t a r t L o c a l C o m p o n e n t c h a r * - L oca l C o m p o n en t nam e

c h a r * - C o m m an d lin e args
HANDLE - C o m ponen t h an d le

S t a r tE x tC o m p o n e n t c h a r * - E x t. C o m p o n en t n am e
c h a r * - C o m m an d lin e args
[c h a r *] - h o s t n am e (=0)

HANDLE - C o m ponen t h an d le

TerminateLocalComponent dComp - C o m p o n en t d esc rip to r
TerminateEztComponent dcomp - C o m p o n en t d esc rip to r
CreatePort char* - p o rt nam e
OpenConnection dcomp - C o m p o n en t descrip to r BOOL - sta tus
CloseConnection HANDLE - C o n n ec tio n h an d le BOOL - sta tu s
ConnectionStatus HANDLE - C o n n ec tio n h an d le CONSTAT - conn , sta tus
SendSync MsgPackagefi - m essage

HANDLE - C o n n ec tio n h an d le

MsgPackagefi - message

SendAsync MsgPackagefi - m essage

HANDLE - C o n n ec tio n h an d le

BOOL - sta tus

Reply MsgPackagefi - m essage BOOL - sta tu s

The graphic library groups a number of classes that help with the creation of windows,

dialogue boxes, buttons, menu bars, and various 2D and 3D charts (line, bar, etc.). There are

currently in the market a number of C++ class libraries that provide all these objects for cross­

platform implementations. The majority of these products can be easily incorporated into this

GAME module. Currently, the graphic library is based on the wxWindows [87] classes, which

support the MS-Windows and UNDC (OpenLook and Motif) platforms.

Chapter 7 The GAME Libraries 139

The m onitoring library is designed to support real-tim e supervision of GAME

components’ execution. It works in connection with the graphic library to provide data input and

output. Sources of information can be redirected to graphic widgets, files or other devices,

through the functions provided by this module.

Finally, the system Ubrary groups a variety of modules and functions that include:

• the Virtual Machine and its modules: the Population Manager, the Fitness Evaluator

and the parallel support classes;

• the genetic-oriented representation: DnaNode, DataUnit, and related classes;

• the Virtual Machine application programming interface (VM-API); and

• many ancillary functions including: fitness normalisation, string encoding and

decoding, memory management and C++ exception handling.

Most of these modules have been presented in Chapter 5. The following tables list

various functions of the VM-API. They are divided according to the different groups of

operations offered by the VM. Each table presents the function name, their arguments and the

result they return, if any. These functions are described in more detail in Appendix B.

Table 7.4 lists the functions of the VM-API that provide operations over population

pools. Most pool operations require a pool handle (hPool) that identifies the pool to the

Population Manager. A pool handle is returned by the CreatePool and CopyPool functions.

Table 7.4 - VM-API - Pool manipulation functions

Function Arguments Returns
CreatePool WORD - pool size

[Individual&] - prototype
hPool - Pool handle

DeletePool [hPool] - Pool handle (=0)
CopyPool hPool - Dest. pool handle

[hPool] - Src. pool handle hPool - Pool handle
GetPoolSlze hPool - Pool handle WORD - max. size
GetPopulatlon hPool - Pool handle WORD - cur. size

Table 7.5 presents the functions that can be used for manipulations in genetic structures

as a unit. Therefore, these functions operate only at the Individual object level. The Getlndividual

and GetlndividualValue, for instance, allow the caller to request a copy of an Individual’s

genotype and phenotype respectively. However, an Individual can only be inserted or replaced in

a pool in its genotype form. An individual’s phenotype is usually the result of “transformation”

over its chromosome data structures.

140 The GAME Libraries Chapter 7

Table 7.5 - VM-API - Individual manipulation functions

Function Arguments Returns
Getlndividual NodePaths - index Individual - the individual
GetlndividualValue NodePathfi - index

[WORD] - DataUnit index (=0)
DOUBLE - phenotype

Putlndividual NodePathfi - index
Individual & - the individual

Copylndividual NodePath& - Dest, index
NodePathfi - Src. index
[WORD] - num. copies (=1)

MoveIndividual NodePathfi - Dest. index
NodePathfi - Src. index

KillIndividual NodePathfi - index

The functions defined by the VM-API relating to operations over DnaNodes are hsted in

Table 7.6. Functions such as SwapNodes and InvertNodes are used to implement genetic

operators like mutation and inversion, respectively.

Table 7.6 - VM-API - DnaNode manipulation functions

Function Arguments Returns
GetNode NodePathfi - index DnaNode - the node
PutNode NodePathfi - index

DnaNode fi - the node
CopyNode NodePathfi - Dest. index

NodePathfi - Src. index
[WORD] - num. copies (=1)

MoveNode NodePathfi - Dest. index
NodePathfi - Src. index

DeleteNode NodePathfi - index
SwapNodes NodePathfi - Dest. index

NodePathfi - Src. index
InvertNodes NodePathfi - index

[WORD] - num. nodes (=ALL)
GetNumNodes NodePathfi - index

rwoRDl - ONE LEVEL/ALL LEVELS
WORD - num. nodes

GetMazNodes NodePathfi - index WORD - max. nodes

The operations of the Fitness Evaluator module are requested via the VM-API functions

listed in Table 7.7. The GetFitness function returns the fitness value of an Individual. It will

firstly look at the Individual’s fitness cache, if this is invalid, then the user defined fitness

function is invoked. The fitness of the entire pool can be computed by calling GetFitness for

every member of the pool in a loop construct. However, since this function is implemented in the

VM-API as a synchronous message, it prevents VM from taking advantage of parallelism on

Chapter 7 The GAME Libraries 141

fitness evaluations. The best program structure to evaluate and read fitness values should use two

loop constructs. The first loop calls the EvaluateFitness, whereas the second calls the GetFitness
fimction. Since EvaluateFitness does not return any result, it is implemented in the VM-API as

an asynchronous message. This implies that the control is returned to the caller, in the main

program, as soon as the message is delivered to the VM. This allows parallel execution of fitness

evaluations, providing the VM contains more than one instance of the Fimess Evaluator module.

Table 7.7 - VM-API - Fitness evaluation and related functions

Function Arguments Returns
EvaluateFitness [NodeFath&] - in d iv id u a l in d ex

(=ALL)
GetFitness NodePathfi - ind . in d ex

[WORD] - M u lti-f itn ess in d ex (=0)

DOUBLE - fitn ess v a lu e

GetTotalFitnes s hPocl - p o o l h an d le

[WORD] - f irs t m em b er (=0)
[WORD] - la s t m em b er (=0)

DOUBLE - fitn ess v a lu e

GetAverageFitnes s hPool - p o o l h an d le
[WORD] - f irs t m em b er (=0)

[WORD] - la s t m em b er (=0)

DOUBLE - fitn ess v a lu e

GetHighestFitness hPool - p o o l h an d le
[WORD] - f irs t m em b er (=0)
[WORD] - la s t m em b er (=0)

Bestlndivldual - Struct
w ith in d iv id u a l’s d a ta

GetLowestFitness hPool - p o o l h an d le
[WORD] - f irs t m em b er (=0)

[WORD] - la s t m em b er (=0)

Bestlndivldual - struct
w ith in d iv id u a l’s d a ta

The two functions listed in Table 7.8 implement a simple error report mechanism in the

VM-API. Every call to any of the other VM-API functions produces an error status that is kept

by a global variable. Functions implemented as synchronous messages update the global variable

with the MessagePackage status returned. Conversely, functions implemented as asynchronous

messages update the API global variable after the message is dehvered (or not) to the VM.

Table 7.8- VM-API - Error functions

Function Arguments Returns
GetErrorStatus MSGSTATUS - error code
ClearErrorStatus

The VM-API functions listed in Table 7.9 are used to operate over DataUnit objects. The

type of DataUnit object that stores a particular value is defined by the genetic structure. Then,

since only DOUBLES are used by the API functions, the actual values read or written from or to

a DataUnit object are converted to its local type via C++ conversion operators. This approach

also facilitates transparent operations (assignments, etc.) between DataUnit types and C++ types

since any DataUnit type is firstly converted to a DOUBLE before any operation takes place.

142 The GAME Libraries Chapter 7

Table 7.9 - VM-API - DataUnit manipulation functions

Function Arguments Returns
ReadData NodePathfi - index

[WORD] - DataUnit index (=0)
DOUBLE - value

WrlteData NodePathfi - index
DOUBLE - value
[WORD] - DataUnit index (=0)

CopyData NodePathfi - Dest. index
NodePathfi - Src. index
[WORD] - DataUnit index (=0)

DeleteData NodePathfi - index
[WORD] - DataUnit index (=0)

SwapData NodePathfi - Dest. index
NodePathfi - Src. index
[WORD] - DataUnit index (=0)

GetNumUnlts NodePathfi - index WORD - num. units
GetDataStatus NodePathfi - index

[WORD] - index (=GLOBAL)
BOOL - status

SetDataStatus NodePathfi - index
BOOL - status
[WORD] - DataUnit index

7.5. Summary

This chapter presented the organisation of the GAME programming environment in terms

of its runtime libraries. It started by showing how the traditional parameterisation of genetic

algorithms, based on their setups (population size, ending criteria, crossover and mutation rates,

etc.), could be expanded. The newly introduced level of parameterisation allows applications and

genetic algorithms to be further parameterised in terms of algorithm components and genetic

operator components, respectively. This innovative approach led to the creation of an equally

innovative library concept comprising stand-alone executables and modules that can be

dynamically linked to other modules. Applications and genetic algorithms may then be easily built

by simply specifying the required GAME Components from the Genetic Libraries in a

configuration file.

The construction of the Genetic Libraries’ modules is supported by a framework of C++

classes that encapsulate the required functionality for dynamic connection and inter-component

communication. The AppComponent, AlgComponent and OperComponent classes provide

specialised support for the implementation of applications, genetic algorithms and operators.

GAME Components created from these classes are grouped into three libraries - the Applications

library, the Algorithms library and the Operators library - which are jointly called the Genetic

Libraries.

Chapter 7___________________________ The GAME Libraries___________________________ 143

The second main group of libraries of GAME is called the Service Libraries. The

modules of these libraries (always statically linked) are used to build GAME Components. It

comprises the Communication and Parallel Control library, the Graphic library, the Monitoring

library and the System library. A brief description of each one of these hbraries was given, which

was followed by a list of GAME’S application programming interface functions (PEM-API and

VM-API).

144________________________ The GAME Libraries Chapter 7

Chapter 8

Assessment

This chapter assesses the work developed in this thesis in each o f its principal
investigation topics, which focuses in GAM E's ability to provide a flex ib le ,
expandable and portable environment for the development o f G A applications. Each
major GAME module described in previous chapters is individually assessed, as well
as the integral system. The assessment also includes performance evaluations and
comparisons with test programs built with other systems.

8.1. Review of Objectives

The research reported in this thesis comprised the design and implementation of an

object-oriented programming environment aimed at facilitating the development of genetic

algorithms applications. The combination of the flexibility offered by a modular design with

facilities to expand and modify modules provided by an object-oriented implementation, plus

platform-independent parallelism, resulted in a unique software tool. The diverse characteristics

and requirements presented by real-world applications, as seen in the PAPAGENA project, and

the desire to assist with the creation of a broader spectrum of applications, were the main drivers

for the comprehensive set of features presented by GAME.

The assessment of the system focuses on three main requirements for a general-purpose

programming environment, as explained in Chapter 2:

• flexib ility- to create and configure new applications. A modular design, combined

with parameterised libraries and a simple configuration language should provide the

users with the required flexibiUty.

• expandability - to accommodate an ever increasing number of different problems.

The object-oriented design and implementation of GAME’S modules should facilitate

their customisation to provide any extra functionahty that could be required.

• portability- to allow applications and library modules to be ported on to several

hardw are and softw are platform s. To accom plish this objective, G A M E’S

implementation rehed entirely on what has been widely acknowledged as a “standard”

definition for the C++ language. Special language constructs and compiler-dependent

145

146________________________________ Assessment_____________________________ Chapter 8

class libraries have been avoided in favour of portable classes, implemented with

basic C++ language primitives. Moreover, the commitment to a higher degree of

portability determined the creation of a specific module to control parallelism and

communication, the Parallel Execution Module. This module conferred on GAME the

desired degree of portabihty, making it independent of any particular implementation

of parallel C++ compilers.

The three items listed above resulted from an extensive research on genetic algorithms

applications’ characteristics and requirements, as described in Chapter 2. They are also derived

from features observed in many genetic algorithms programming environments presented in

C hapter 3. As a consequence of these considerations and PAPAGENA app lications’

requirements, GAME’S design represents one of the most flexible and modularised programming

environment for GAs and PGAs.

8.2. Assessment of GAME’S Modules

This section assesses each of the main GAME modules reported in this thesis. The

Virtual Machine, the Parallel Execution Module and the GAME libraries are firstly assessed

separately. The last section gives an in-depth assessment of the integral environment, which

includes performance comparisons based on applications built with GENESIS, GAME and by

stand-alone, C-based, test programs.

8.2.1. Virtual Machine

The design of the Virtual M achine, and the genetic-oriented data structures it

manipulates, were motivated by the necessity to provide GAME with a module that could

perform a standard set of operations over the genetic representation of diverse problems. The

Virtual Machine should allow manipulations of the problem’s genetic data structures, without

being concerned with their contents. To achieve the required degree of problem representation

independence and, at the same time, be capable of performing meaningful operations over the

data structures, two classes of objects for problems’ genetic representations have been created:

the DnaNode and the DataUnit. The DnaNode class of objects, combined with the DataUnit

derived classes, provide GAME with simple, but effective, abstractions that permit a broad range

of genetic representations. They offer enough flexibility to represent a range of problems using

simple flat and fixed binary strings or complex tree structures, comprising several layers of mixed

data types; the latter being normally encountered in genetic programming representations.

The object-oriented design and implementation of these two class families permit easy

expansion of their functionality, without affecting the Virtual Machine or any of its internal

Chapter 8____________________________ Assessment__________________________________

modules. The definition, by the user, of the problem’s genetic representation is done through a

simple alphanumeric string. The representation string specifies the DnaNode connections as well

as the number and type of DataUnits each node should contain. As an additional feature of these

classes, and to comply with GAME’S communication protocol, any object derived from these

classes can be made persistent. This means that a simulation could be interrupted at any time,

with its data structures saved to disk, and re-started later, from the point it was stopped. This

degree of flexibility, expandability and ease of use is not found in any currently available GA

programming environment.

The modular design of the Virtual Machine isolates genetic manipulations from the

algorithm and operator’s implementations. This design approach permits algorithms and

operators to be implemented with high-level manipulation commands, independent of the actual

problem representation. The concept of the Virtual Machine as a module that centralises all the

genetic operations is central to the design of a fully parameterised genetic library.

The set of commands defined in the Virtual Machine application programming interface

(VM-API) resulted from a comprehensive study of the most commonly used genetic operators.

The various types of genetic operators can be grouped in two main classes: operators that act

over the data structure organisation (like crossover) and operators that modify the contents of the

data structure (like mutation). These characteristics determined the design of GAME’S genetic-

oriented representation data structures and the definition of the VM-API commands. The Virtual

Machine commands perform operations over the problem’s population of genetic data structures

on several levels. There are commands that operate over entire pools (create, copy, delete),

individuals (create, copy, move, delete) and their sub-parts (swap, invert, modify, read, write,

delete, move). The comprehensive command set of the Virtual Machine should cover the

implementation of the majority of the evolutionary operators. Furthermore, they can be easily

expanded and adapted due to GAME’S object-oriented design.

The Virtual Machine’s specialised internal modules grant GAME another unique feature,

which allows applications originally designed for sequential execution to benefit from parallelism.

VM’s ability to replicate the Population Manager and the Fitness Evaluator modules, under the

control of its parallel support module, ensures parallel operations over the population pools.

Finally, the use of GAME’S genetic-oriented data structures in conjunction with the

Virtual Machine concept and its application programming interface, represents effective

mechanisms to implement a variety of parameterised genetic operators and algorithms.

148________________________________ Assessment_____________________________ Chapter 8

8.2.2. Parallel Execution Module

The creation of the Parallel Execution Module largely resulted from a complete lack of

standard and compatible implementations of the C++ language for parallel platforms. As seen in

Chapter 6, the PEM is best suited for supporting medium and coarse-grain parallelism, without

compromising portability. The module supports GAME’S programming model, which was

designed to provide the high degree of portability required for building parallel applications. PEM

implements a communication and task control library that can be ported onto different operating

systems and hardware platforms with minor programming effort. The main objectives of the

Parallel Execution Module are:

• to support the implementation of a variety of parallel applications (including those not

related to GAs);

• to provide a smooth path for the development and debugging of parallel applications

on sequential machines, before porting them to the target parallel platform; and

to enable applications and algorithm s to be built or reconfigured, w ithout

recompilation.

The PEM offers high-level communication and process control commands, implemented

as an application programming interface and embedded into a set of C++ classes. Some of these

classes have been specialised to provide a standard framework for the development of sequential

and parallel applications, algorithms and genetic operators. The user only needs to derive his own

application-dependent classes and include the code for some pre-defined member functions. All

the task and communication management have been implemented and are controlled according to

PEM’s layered design specifications.

The programming model defines application modules in terms of local and external

components, providing flexibility to configure applications according to their requirements and

available resources (pre-built algorithms, genetic operators, graphical interface, etc.). Local and

external application components can be combined to better exploit the execution environment. It

is possible, for instance, to have the application component (which would typically contain the

user interface) running on a graphic workstation, and the algorithm (as an external component)

and genetic operators (as local components to algorithms) running on a different host. In addition,

the Fimess Evaluator module could be running on a fast parallel machine. The actual benefit of

spreading algorithms, genetic operators and other GAME modules among different processes and

processors depends, essentially, on the communication overhead introduced by the chosen

topology. This particular feature of GAME grants the user the ability to define the best

configuration for the application dynamically, according to the hardware resources at hand.

Chapter 8____________________________ Assessment__________________________________149

The communication system and its object-oriented implementation offer a high-level

abstraction for inter-component communication and provide the required functionality for

multiple task execution and control. It supports synchronous and asynchronous bi-directional

communication as well as process synchronisation. Its layered design ensures application

portability since only the lower-layer, not seen by the components, needs to be ported across

different platforms. Current and on-going implementations of PEM include Microsoft Windows

3.1, Sun OS 4.01 and a custom version for transputers implemented by TELMAT Informatique.

8.2.3. GAME Libraries

The Genetic Algorithms Manipulation Environment comprises two principal sets of

libraries: the Genetic Libraries and the Service Libraries. The design and organisation of these

libraries aim at facilitating the configuration of existing applications and assisting with the

creation of new application components. They cater for novice and experienced users through

three levels of interaction with the programming environment. At the first level, novice users

should be able to configure and execute an application by simply combining components from the

genetic libraries, and setting up their parameters in a simple configuration file. The second level

allows experienced users and progranuners to create new components by either modifying or

expanding the functionality of existing components. The inheritance mechanism of GAME’S

object-oriented design and C++ implementation is paramount to users in this level. Lastly, the

third level enables experienced programmers to expand, adapt or port the entire programming

environment to support new features and execute applications on different platforms.

The library structure provided by GAME has been designed to support an ever increasing

number of genetic operators and algorithms. The organisation of Genetic Libraries, in particular,

makes the management of algorithms and genetic operator components extremely easy.

Components can be added to or removed from the libraries by simply copying or deleting them in

the appropriate directory, therefore dispensing with the use of a librarian utility. Moreover, a new

component becomes immediately available to any algorithm or application, with no need for re­

compilation or re-linking. This singular flexibility derives from GAME’S programming model,

which defines application components in terms of stand-alone executables (external components)

or dynamically linked modules (local components).

The portability of applications, algorithms and genetic operators is guaranteed by the

Parallel Execution Module with its machine-independent communication and task control

support.

150________________________________ Assessment_____________________________ Chapter 8

8.3. Assessment of the Integral GAME

This section assesses the interaction of GAME’S modules in applications built with the

programming environment. The overall assessment of the programming environment is based on

the following criteria:

• suitability of the programming environment for the creation of diverse and complex

apphcations,

• design and implementation, and

• performance

The first criterion judges the facilities provided by GAME to assist with the construction

of various types of genetic algorithms’ applications. Essentially, it tries to assess how general-

purpose the tool kit is. The second criterion looks at the system’s architecture and design in

connection with techniques and technologies currently employed in software development.

Finally, the third criterion assesses the performance in terms of execution times of applications

built with GAME, in relation to other GA systems.

8.3.1. Suitability for Applications’ Requirements

GAME’S genetic-oriented data structures allow the representation of a broad range of

problems such as those encountered in the PAPAGENA project. The possible representations

include fixed and non-fixed binary, real value (with mixed data types) and combinations of both.

Real value representations, for instance, are used by PAPAGENA’s protein folding and economic

modelling applications. The financial modelling application, on the other hand, employs a non­

fixed and irregular data structure usually associated with genetic programming.

The system’s object-oriented design permits coarse and medium-grain parallélisation of

genetic algorithms through the replication of its internal components. Several instances of genetic

algorithms, genetic operators and Virtual Machine components can be created to execute in

parallel.

The extensive use of application programming interfaces (e.g. VM-API and PEM-API)

provides application developers with an effective set of functions suited for the various

requirements presented by different applications. The VM-API, for instance, supports the

implementation of genetic manipulations required by the majority of genetic operators, via a

comprehensive set of specialised commands and functions. Furthermore, the GA-independent

definition of GAME’S programming model, the Parallel Execution Module and its API, permit

the use of this module in an even broader range of parallel applications.

Chapter 8____________________________ Assessment__________________________________151

Therefore, the comprehensive set of tools and features presented by GAME provide the

system with the required attributes to assist with the development and execution of complex

apphcations.

8.3.2. Design and Implementation

The design and implementation of all GAME modules reflect the concern with the three

most important concepts of object-oriented design and programming: data encapsulation,

inheritance and polymorphism. The set of classes designed for representing problems’ data

structures (DnaNode and DataUnit) provide a suitable abstraction, based on the genetic

algorithms terminology. These abstractions offer the required functionality for problem-

independent genetic manipulations. They aUow genetic operators to work over different levels of

abstract structures, which include: individuals, as whole sets of problem s’ parameters to be

optimised, and chromosomes, genes and dna objects as sub-sets of those parameters, with

different degrees of aggregation. The classes designed for representing a problem’s genetic data

structures in GAME have been implemented strictly according to object-oriented programming

principles and C++ language specifications. Therefore, they permit functional extensions and

modifications via inheritance mechanisms. Also, any member function defined in these classes

can be activated via a common base class.

The same discussion applies to the design of the modules responsible for the

manipulation and evaluation of the genetic-oriented data structures: the Virtual Machine, the

Population Manager and the Fitness Evaluator modules. These modules provide the adequate

abstractions for parallélisation of genetic m anipulations (via m odularisation and task

specialisation), and can be easily extended or modified via standard object-oriented procedures.

Finally, it is important to stress the compliance of GAM E’S design with leading

technologies. The programming model im plem ented by PEM, with its m essage-driven

communication system, conforms with the most recent concepts for distributed object computing.

Both have been largely inspired and influenced by object-oriented computing models such as

COREA, COM and SOM.

8.3.3. Performance

A compromise between performance and generaUty is normally very difficult to achieve,

in particular, for complex and sophisticated programming environments. Dedicated, stand-alone

applications most often outperform applications created with flexible and general-purpose

objectives. However, a programmer should be able to balance a number of requirements, usually

including performance, flexibility, generality, expandability and portability, when choosing a

152________________________________ Assessment_____________________________ Chapter 8

programming environment. Furthermore, the programmer should identify the best compromise

according to the particular characteristics and requirements of each problem.

This section assesses the performance (in terms of execution times) of applications

created with GAME. Comparative results are presented for test programs built with GAME,

GENESIS and stand-alone versions written directly in the C language. The programs, assessment

methodology and simulation environment have been chosen to provide meaningful comparisons of

the results. This restricted the range of applications that could be created with GAME to those

also supported by GENESIS, and easily implemented in a stand-alone program. Nevertheless, the

results collected permitted the elaboration of a simple analytical model for classifying general-

purpose GA programming environments, based on the time spent by an application’s evaluation

function.

Methodology

GAME’S performance assessment involved the execution of the same set of programs

created in three different ways. The first set was created with GENESIS. This programming

environment was chosen because of its popularity and availability. The second group of test

programs was created with GAME, and the third, by directly coding them as stand-alone C

programs. Although stand-alone C program s cannot be com pared w ith program m ing

environments in terms of development facilities, they usually represent the best alternative in

terms of performance. The total execution times and individual module’s execution times were

measured and compared.

The main interest is to compare the programming environments by means of their

applications’ performances (as opposed to assessing a genetic algorithm’s performance).

Therefore, the tests tried to use as much as possible the same algorithm and parameter setup.

Some internal aspects of GENESIS, for instance, are not directly under the application

programmer’s control, and introduced small differences in the way some operators have been

implemented and executed (e.g. selection). The actual function being optimised was also not

considered important, but its computational time, as a measure of its influence on the total

simulation time. Furthermore, all possible input and output routines were disabled (including

displays), in order to eliminate any possible interference caused by different implementations of

these normally time-consuming tasks.

The same group of programs was executed many times, with different setups, in order to

identify the influence of the following parameters in the total and partial execution times:

• Number of Generations - because we were not interested in measuring how fast an

algorithm finds the best result, but on how long each module executes, the programs

Chapter 8____________________________ Assessment__________________________________153

were left to run for a fixed number of generations. The tests included 44,74,550 and

1000 generations to cover for small, medium and large simulations.

• Population size - a standard GA usually has a population of 50 individuals. The

programs also used 200 individuals to compare the overhead caused by copying,

moving and modifying standard and large populations.

• Representation - simulation results were measured for binary representations only.

These should be considered the worst case, compared with real value representations,

since they require an extra encoding and decoding steps. Another reason for this

option is that GENESIS only supports binary and “flat” representations. The tests

used 5 and 30 bit representations.

• Evaluation - the judgement of the evaluation time impact over the total execution time

is extremely important since most of the complexity of a problem being solved by a

GA is embedded in the evaluation function. Simple problems were represented by fast

evaluation functions like jĉ . Real-world problems, however, usually present very

complex and time-consuming evaluation functions. Since for these types of problems

we are mainly interested in their evaluation time (and not the actual complexity of

their implementation), the fitness function was simulated by introducing a delay of one

second in the evaluation time.

In all test cases the crossover rate was 0.6 and the mutation rate 0.001, which are the

most commonly used values. The total execution time and each major GA module execution time

(including initiahsation, main loop, selection, evaluation, crossover and mutation) were measured

in absolute and relative times for every set of parameters.

Simulation Environment

The tests were conducted on an IBM-PC machine with a 66 MHz i486 cpu. All

applications were compiled with Borland C++ 3.1 and executed with its profiler tool under MS-

DOS 5.0. This provided a standard platform the measurement of absolute cpu execution times.

Results

The next tables and figures show the results, measured as the mean of ten simulations for

each one of the four parameters (number of generations, population size, problem representation

and evaluation time). Table 8.1 shows the total execution times, in seconds, for the SGA program

running with four different numbers of generations.

154________________________________ Assessment_____________________________ Chapter 8

Table 8.1 - Total execution times(sec) x Number o f generations
Generations Genesis SGA (C) SGA (GAME)

44 0.0661 0.1014 193.181
74 0.0913 0.1533 330.0096

550 0.5779 1.2526 2412.3599
1000 1.0446 2.0861 4368.0932

The following tables exhibit the results for a population of 50 individuals running for 44,

74,550 and 1000 generations. Each individual was represented as 5-bit binary string.

Table 8.2 - Total and partial times (sec) for 44 generations
Moduie Genesis SGA (C) SGA (GAME)
Initialisation. 0.0017 0.0009 0.1341
Main Loop 0.0219 0.017 0.0028
Selection 0.0273 0.0647 173.88
Evaluation 0.0051 0.0019 14.726
Crossover 0.0092 0.0065 3.2432
Mutation 0.0009 0.0104 1.1949
Total 0.0661 0.1014 193.181

Table 8.3 - Total and partial times (sec) for 74 generations
Moduie Genesis SGA (C) SGA (GAME)
Initialisation. 0.0017 0.0009 0.134
Main Loop 0.0227 0.0186 0.0028
Selection 0.0449 0.1074 297.38
Evaluation 0.0058 0.003 24.726
Crossover 0.0149 0.0061 5.7568
Mutation 0.0013 0.0173 2.01
Total 0.0913 0.1533 330.0096

Table 8.4 - Total and partial times (sec) for 550 generations
Moduie Genesis SGA (C) SGA (GAME)
Initialisation. 0.0017 0.0009 0.1341
Main Loop 0.1047 0.2042 0.0028
Selection 0.3333 0.8222 2172.1
Evaluation 0.0196 0.0235 182.79
Crossover 0.1087 0.0692 42.411
Mutation 0.0099 0.1326 14.922
Total 0.5779 1.2526 2412.3599

Chapter 8 Assessment 155

Table 8.5 - Total and partial times (sec) fo r 1000 generations

Module Genesis SGA (C) SGA (GAME)
Initialisation. 0.0017 0.0009 0.0134
Main Loop 0.1838 0.2829 0.0028
Selection 0.6103 1.4349 3931.32
Evaluation 0.0323 0.0429 332.28
Crossover 0.1991 0.0848 77.361
Mutation 0.0174 0.2397 27.116
Total 1.0446 2.0861 4368.0932

The above figures dem onstrate that m ost o f the results obtained w ith G A M E are tw o to

three orders o f m agnitude h igher than th ose obtained w ith G E N E SIS and the stand -a lone C

program. H owever, looking at the partial results it is possible to draw the fo llow in g conclusions:

• A lthough m ost o f G A M E ’S partial results are higher than those found in the other

system s, the main loop always took less time.

• g a m e ’s operators p resen ted co n sis te n tly h igher ex e cu tio n tim es than the other

system s. H ow ever, when com pared with the main loop results, they indicate that m ost

o f the overhead w as introduced by the com m un ication p rotocol b etw een the m ain

m odule and the Virtual M achine.

• The se lec tio n operator alw ays presented the h ighest result in all the system s. T his

dem onstrates the overhead introduced by this operator w hen cop yin g data structures

from the parent’s pool to the offsp ring’s pool. These results seem particularly critical

for g a m e ’s selection operator due to the com plex objects provided by the system to

support a broad range o f problem representations.

Figure 8.1 ~ Relative execution times fo r 44 generations

y-

.....

D$OA{OAME

SvaiuftSon C*» bww IW aW
P<^.Sz.«SO

■ .r ,É*w ■ M I n 11

156 Assessment Chapter 8

Figure 8.2 - Relative execution times fo r 1000 generations

Ï f

• The ratio between each operator and the total execution time (as seen in the Figure 8.1

and Figure 8.2) is nearly constant, indicating that the execution time increases linearly

w ith the num ber o f generations. This a lso indicates that the num ber o f generations

does not affect any operator in particular.

T he n ext tab les p resent the resu lts ob ta in ed w hen the num ber o f in d iv id u als in the

populations varied and the number o f generations was kept constant (= 44). The sim ulations used

50 and 200 individuals, represented as 5-bit strings.

Table 8.6 - Total and partial times (sec) fo r a population o f 50 individuals

Module Genesis SGA (C) SGA (GAME)
Initialisation. 0.0017 0.0009 0.1341
Main Loop 0.0219 0.017 0.0028
Selection 0.0273 0.0647 173.88
Evaluation 0.0051 0.0019 14.726
Crossover 0.0092 0.0065 3.2432
Mutation 0.0009 0.0104 1.1949
Total 0.0661 0.1014 193.181

Chapter 8____________________________ Assessment__________________________________ 157

Table 8.7 - Total and partial times (sec) for a population o f200 individuals
Module Genesis SGA (C) SGA (GAME)
Initialisation. 0.0056 0.0025 0.2659
Main Loop 0.0385 0.0495 0.0029
Selection 0.1077 1.1044 681.44
Evaluation 0.0184 0.0073 20.505
Crossover 0.0375 0.0159 6.6783
Mutation 0.0027 0.0427 2.356
Total 0.2104 1.2223 711.2481

The conclusions for these tests are the same as those shown previously. They

demonstrate that variations in the number of generations and in the population size do not modify

the timing relation between the genetic algorithm and its genetic operators. The same tests were

conducted for 74 generations and presented similar relative figures.

Table 8.8 and Table 8.9 show the total and partial execution times for a simulation of 74

generations, with a population of 50 individuals represented as 5 and 30 bits.

Table 8.8- Total and partial times (sec) for a 5 bit representation
Module Genesis SGA (C) SGA (GAME)
Initialisation. 0.0017 0.0009 0.134
Main Loop 0.0227 0.0186 0.0028
Selection 0.0449 0.1074 297.38
Evaluation 0.0058 0.003 24.726
Crossover 0.0149 0.0061 5.7568
Mutation 0.0013 0.0173 2.01
Total 0.0913 0.1533 330.0096

Table 8.9 - Total and partial times (sec.) for a 30 bit representation
Module Genesis SGA (C) SGA (GAME)
Initialisation. 0.0293 0.0059 0.1889
Main Loop 0.061 0.3693 0.0029
Selection 0.2244 1.9667 376.92
Evaluation 0.3833 0.0127 35.81
Crossover 0.0802 0.3106 11.59
Mutation 0.0319 0.0727 2.0121
Total 0.8101 2.7379 426.5239

These results highlight the influence of the a problem’s representation on a GA. The total

execution time figures show that GENESIS became 9 times slower, and the C program became

18 times slower, when the representation changed from 5 to 30 bits. However, the change of

representation had a much smaller impact on GAME. The total execution time was reduced by a

factor of only 1.3. This can be explained by the facilities provided the genetic-oriented data

158 Assessment Chapter 8

structures and the Virtual M achine for m anipulating com p lex representations. Figure 8.3 and

Figure 8 .4 present the results o f the sam e tests, but in relative figures.

Figure 8.3 - Relative execution times fo r a 5 -bit representation

— -------

%
0

' W n Loop

SSSiëiü
,«SGA{C)

SQA<0AM6>

Figure 8.4 - Relative execution times fo r a 30-bit representation
...................................

y .. 'j................

m m
.Selecmn Evaluis^n Crosaovar M

The next tests were designed to assess the im pact o f the problem -dependent evaluation

function on the overall sim ulation perform ance. The important aspect o f these tests is the tim e

spent by the evaluation function, and not the particular type o f function being used. T ab le 8 .10

and Table 8.11 present the results for the test programs running with a fast fitness evaluation (x^)

Chapter 8____________________________ Assessment__________________________________

and a slow fitness evaluation, which spends one second. The GA had 50 individuals in the

population, represented as 30-bit binary strings, and was left to run for 44 generations.

Table 8.10 - Total and partial times (sec.) for a simple (fast) evaluation function
Module Genesis SGA (C) SGA (GAME)
Initialisation. 0.0077 0.0022 0.1893
Main Loop 0.0008 0.1898 0.0028
Selection 0.3264 0.0684 223.99
Evaluation 0.0377 0.0018 21.456
Crossover 0.0124 0.0448 6.6249
Mutation 0.0251 0.0587 1.1982
Total 0.4101 0.3657 253.4612

le 8.11 - Total and partial times (sec.) for a complex (slow) evaluation fui
Module Genesis SGA (C) SGA (GAME)
Initialisation. 0.0085 0.0018 0.1901
Main Loop 0.4533 0.60 0.0029
Selection 0.0591 0.0682 224.42
Evaluation 1286.7 2149.3 1235.1
Crossover 0.0392 0.0425 6.7297
Mutation 0.0306 0.0103 1.2002
Total 1287.291 2150.023 1467.643

The above figures demonstrate that, for a certain class of problems, even sequential

applications built with GAME can offer the same performance as less sophisticated programming

environments. Figure 8.5 gives a better picture of the data presented in these tables. It compares

the test programs’ total execution time with theirs (total) evaluation time. The figure shows that

GAME applications present poor performance for “fast” evaluation functions, but similar

performance for “slow” evaluation functions. This is a remarkable result, considering the

overhead introduced by GAME’S underlying infra-structure for communication, task control and

for the implementation of its genetic-oriented data structures. This same overhead explains the

system’s poor performance for fast evaluation functions. However, as soon as the evaluation time

exceeds the overhead threshold GAME apphcations perform similarly to the others.

It is clear from these and previous tables that the selection stage dominates the GA

execution on apphcations created with GAME. The GA selection involves mainly copying genetic

structures from the parents’ pool to the mating pool. This corresponds to replicating a hierarchy

of DnaCollection and DataUnit objects in GAME. Therefore, the duplicate member functions of

Individual, DnaNode and DataUnit objects are invoked for every selected member in the

population.

The duplication of a population member is essentially the duplication of a list structure

organised as a tree. Therefore, the use of special architectures, such as the Kernel System of the

160 Assessment Chapter 8

SPA N project [80], w hich im plem ents a co-processor [27] dedicated to list m anipulations, have

the potential to dramatically improve G A M E ’S performance.

Figure 8.5 - Total x Evaluation time

Total Exec. Tima (sac.)
100000

Analytical Model

From the num erical results presented in this section , it is p ossib le to d erive a sim ple

an alytical m odel for an ap plication sim u lation tim e. T his m odel should perm it one to easily

determ ine the class o f problem s that a particular program m ing environm ent can su ccessfu lly

address, as a function o f the problem s’ evaluation time. With this m odel it should also be possible

to calculate the overhead introduced by all three system s and explain G A M E ’S results.

The total sim ulation tim e (St) o f a gen etic algorithm can be expressed as a sum o f the

separate execution times o f its operators, plus the main algorithm loop execution time.

Sj . — ij. + Uj.

Where:

St = total simulation time

It = initialisation time

a j = total algorithm time, w hich corresponds to the total time spent in the main loop

The initialisation tim e It is a function o f tw o parameters: the number o f individuals in

the p op u la tion P and the p rob lem representation /?, w h ich m ay require en co d in g or other

operations.

Chapter 8____________________________ Assessment__________________________________161

The time spent in the GA main loop, ar. is a function of the number of generations G and

the total time spent by the algorithm’s operators ot.

Expanding oj in terms of each operator’s total simulation time:

with Vj. =ej. + Sj representing the total time spent by the reproduction operator, which is equal

to the sum of the total evaluation and selection times. Then, the time spent by the algorithm’s

operations in one generation (o,) is given by:

o, = [(p x g ,) + f, +(p^ x c ,) + (p„ x m ,)] x P

Where:

e, = f f (P , p) , 1 > p > 0 , representing the time saved by techniques like fitness caching,

s , = f ^ (P) , giving the total time for selection,

c, = fc iPc > » giving the total time spent by crossover (pc = crossover probability)

giving the total time spent by mutation (pm * mutation probability)

Then, the final expression for the total simulation time is given by:

= 0 ’, x P) + (/, xG) + { [(px^,) + j, +(p^ x c ,) + (p^ x m ,)] x G x P >

with i, corresponding to the time required to initialise one individual. It representing the time of a

single pass in the main algorithm loop, G the number of generations and P the population size.

The time spent by any genetic operator on a single computation (C5,) can also be

expressed in terms of the operator’s intrinsic execution time (P,), the time taken to manipulate the

data structure (Mt) and the communication time, i.e., time spent to “activate” the operator (C,).

Ü5̂ = P ^ + (a x M ,) + (p x C ,) with a > 0 and P > 1

In most simple programming environments, like GENESIS, M , ,C ^ ,a —> 0 and P is usually 1.

Thus the previous expression can be approximated by:

CO, =E,

162________________________________ Assessment_____________________________ Chapter 8

Complex parallel applications, however, must consider the other two components since

the time taken for manipulating large genetic structures, and “activating” an operator in another

process or machine cannot be disregarded.

Considering again the total simulation time; once a set of operators and the problem’s

representation are chosen, and the major parameters of the GA (pc.Pm>P,G) are fixed, the total

simulation time will then depend only on the time spent by the evaluation function (e,), and what

may now be called the algorithm intrinsic time (x). This represents the initialisation time for a

single population member added to the time spent by the algorithm to perform one generation

cycle (excluding the evaluation time). Thus, the total simulation time can be rewritten as:

S t = [(P Xg, xG) + x]x P
with

X = / , +[/ , + 5 , + (p , X c ,) + (p^Xm,)]xG

or, in terms o f the total evaluation (ex) and the total algorithm intrinsic time (T):

Sj, = Cj, + T

The above expression permits the separation of the algorithm’s intrinsic simulation time

from a problem-dependent evaluation function time. Moreover, it allows us to assess the impact

of the algorithm’s overhead in the simulation time and, therefore, establish the minimum

evaluation time that can be successfully supported by a programming environment.

An ideal simulation program would have T —> 0 or » T in order to minimise the

algorithm’s simulation overhead. Since, for practical reasons, the first assumption is not feasible,

we will assume that » T » Cj, = (10x T) . Thus, by knowing an algorithm’s intrinsic

simulation time it is now possible to estimate the minimum time that an evaluation function could

spend to have the total simulation time practically unaffected by the algorithm’s overhead. Then,

the minimum evaluation time c, is given by;

_ 10x{/, +[/, +5, +(/? ̂xc,) + (p ̂xw,)]>
r m in

with 1 > p > 0.

It is important to remember at this point that the algorithm’s intrinsic simulation time is

also a function of the problem representation, which appears as an additive component (a X Af,)

in the expression for the simulation time of genetic operators. From these equations and the data

Chapter 8____________________________ Assessment__________________________________163

collected for the simulations performed with GENESIS, GAME and the C version of the SGA, it

is possible to tabulate the minimum evaluation time required in order to “eliminate” the overhead

introduced by each one of the systems considered. Table 8.12 presents emin for 5 and 30-bit

representations, with 50 individuals in the population and 74 generations.

Table 8.12 - Minimum evaluation time for 5 and 30-bit representations (millisecs.)
Representation Genesis SGA (C) SGA (GAME)
5-bit 0.2 0.4 810
30-bit 1.1 7.3 1055

To use GENESIS, for instance, a fitness function only needs to spend 1.1 milliseconds

(for a 30-bit representation), whereas the GAME application requires a fitness function spending,

at least, 1.05 seconds.

From Figure 8.5 and Table 8.12 it is possible to conclude that applications created with

GAME are able to compete with GENESIS, or even stand-alone C code, in a category that

comprises complex real-world problems, which commonly exhibit time-consuming fitness

functions. These costly evaluation functions easily exceed the minimum evaluation time required

by GAME. The above figures, for instance, position GAME for a class of applications that

would normally require a minimum of four hours of simulation, running on a 486/66 machine.

At this point, it is important to note that parallel tests, although important for the

assessment of GAME, could not be performed. The main reasons were:

• The current implementation of the PEM runs on MS-Windows platforms and

therefore allows only sequential and concurrent execution of GAME Components.

One of the tasks of TELMAT, in the PAPAGENA project, was to port GAME onto a

parallel architecture based on the T9000 transputer. However, the task was not

completed since the T9000 was not commercially available by the end of the project.

It was expected that the transputer-based version of GAME would provide

performance data to assess at least one parallel implementation.

• The option of running test programs on a distributed environment (e.g. a network of

Sun workstations) was also considered. This option, however, would require the

creation of special tools for gathering information. In addition, several issues

including network bandwidth and interference, usually found in multi-user distributed

systems, would have to be taken into account in the performance analysis. These

tasks, alone, would demand programming effort and time beyond what is feasible for

this thesis.

164________________________________ Assessment_____________________________ Chapter 8

Furthermore, comparing results with other GA parallel systems is very difficult for the

following reasons:

• Parallel programming environments for GAs are, in general, not easily available, and

most of them are dedicated to particular parallel platforms,

• The current hterature reporting on parallel genetic algorithm does not provide enough

information about applications’ performance related to different programming

environments. The reports normally compare the results of genetic algorithms,

focusing on their ability to “find” a solution (i.e. their convergence rate) faster than

the others. They do not provide execution times figures for each GA stage, nor the

total execution time on a per generation basis. There seems to be no concern, at the

moment, with the influence of a particular programming environment, language or

implementation technique over the applications’ performance in terms of execution

speed.

Nevertheless, the results presented include part of the overhead introduced by GAME’S

communication and task control module. Since all application components (algorithms, operators.

Virtual Machine, etc.) rely on GAME’S Parallel Execution Module for communication, the

compulsory presence of PEM’s upper-layer imposes the same communication costs on parallel

and sequential applications. This design feature, however, immensely facilitates the porting of

sequential applications created with GAME onto parallel platforms. Only the communication

overhead introduced by the underlying operating system and parallel hardware was not

considered in these tests.

Another important item in the assessment of programming environments relates to the

application’s development time. This is one of the strongest points of GAME, due to the modular

structure of its apphcations. Building new applications and algorithms, using components of the

Genetic Libraries, is extremely easy. It typically requires only the creation of a configuration file.

It is also not difficult to customise parts of an application (e.g. user interface). In general, few

components of an apphcation need to be modified. Even writing a whole apphcation from ground

up is facilitated by GAME’S application program interfaces, and source code examples. As a

measure of GAME’S application development time, it took a student less than two moths to

develop a medium-sized prototype apphcation. After this period, the student was able understand

and use most of the facihties provided by GAME.

FinaUy, the results obtained from the series of performance tests presented in this chapter

demonstrate that GAME is well suited to very complex apphcations. GAME’S object-oriented

design and implementation, added to sophisticated data structures, provide enormous flexibility

for programmers to build and configure complex real-world apphcations. Moreover, the system

Chapter 8____________________________ Assessment__________________________________165

further extends the concept of portability by allowing parallel applications to be developed and

debugged on sequential platforms.

166__________________________ Assessment Chapter 8

Chapter 9

Conclusions and Future Work

This final chapter presents a summary o f this thesis and draws some conclusions
about the research and its results. It also gives some directions for future work.

9.1. Thesis Summary

The primary goal of this thesis was to present the design and implementation of a

general-purpose programming environment to help with the construction of genetic algorithms

applications. In pursuing this objective, the Genetic Algorithms Manipulation Environment was

designed and implemented based on investigations of GAs’ and PGAs’ main characteristics and

requirements (Chapter 2). GAME’S design also resulted from a comprehensive study of currently

available GA programming environments (Chapter 3), and requirements from applications

developed within the PAPAGENA project. The conclusions drawn from these investigations

pointed to three principal requirements for a GA tool kit:

• flexib ility- to allow the construction of applications with parameterised versions of

GAs and PGAs. The programming environment should make possible the combination

of existing software modules, like genetic operators and algorithms, to compose new

applications and algorithms.

• expandability - to facilitate adaptations and enhancements of any software module in

order to provide GAs with new characteristics and diverse problems’ requirements.

• portability- to provide the ability to execute seamlessly the same application (and its

parameterised modules) on a variety of heterogeneous sequential, parallel and

distributed computer architectures.

The realisation of these requirements, which turned into the main objective of this

research, was made possible due to the adoption of an object-oriented design and a modular

architecture for GAME (Chapter 4). Issues like problem-independent manipulation and genetic

representation were solved with the definition of genetic-oriented abstractions and the creation of

167

168__________________________Conclusions and Future Work____________________ Chapter 9

a self-contained module - the Virtual Machine. The VM isolates data manipulation from the

actual GA implementation, via a comprehensive application programming interface (Chapter 5).

The definition of a programming model based on distributed object computing,

implemented using a language/operating system independent parallel support strategy, was

fundamental to maximise flexibihty and portabihty of applications built with GAME (Chapter 6).

The concept of autonomous components, as defined by GAME’S programming model, introduced

a new parameterisation level for applications and genetic algorithms. Applications can be

parameterised in terms of algorithm components, and these in terms of genetic operator

components. This also determined the creation of a new type of runtime library that, unlike

traditional libraries, consists of stand-alone executables and dynamically linkable modules.

Parameterised versions of genetic algorithms and operators from the Genetic Libraries can be

quickly combined into applications and algorithms, respectively (Chapter 7). A simple

configuration file specifies the inter-connections between these components as well as other

ordinary parameters these components may require.

Finally, G AM E’S assessm ent (Chapter 8) exposed the system ’s strengths and

weaknesses. It showed that GAME’S design and implementation fulfil the three main objectives of

this thesis. Moreover, the performance results demonstrated that the system is able to compete

successfully with less sophisticated programming environments (therefore capable of creating

faster applications), in the class of highly complex applications. The results obtained for

sequential simulations also highhghted GAME’S potential for efficient exploitation of parallehsm.

Another important aspect of a programming environment relates to the ability to speedup

application’s development. In this area, GAME’S object-oriented design, and its framework of

specialised C++ classes, provide the user with a powerful set of tools aimed at fast and efficient

apphcation construction.

9.2. Research Contributions

The major contribution of this research is the design and construction of the GAME

programming environment itself. However, various issues and problems that surfaced during its

design and implementation required the adoption, combination and creation of solutions, which

also turned out to be significant contributions of this research. A list of the most important

contributions must include:

• Classification o f existing G A programming environments according to a taxonomy

comprising three principal categories: application-oriented systems, algorithm-

oriented systems and tool kits. Algorithm-oriented systems further sub-divide into

Chapter 9_______________________ Conclusions and Future Work_______________________ 169

algorithm -specific and algorithm libraries, whereas tool kits sub-divide into

educational and general-purpose systems.

• D efinition o f a set o f genetic-orien ted abstractions that enable the genetic

representation of a broad range of problems.

• Creation o f a problem-independent genetic manipulation engine that relieves

application developers from being concerned with low-level issues such as memory

management, exception handling, etc.

• Definition o f a parallel programming model based on modem technologies that can

exploit parallelism via distributed object-oriented systems, possibly executing on

heterogeneous computing environments.

• Introduction o f an extra level o f parameterisation fo r genetic algorithms and

applications, which facilitates the construction of these modules through the

combination of DLL-based and stand-alone executable con^onents.

Finally, it is important to stress that GAME’S wide distribution, its role in the major EC

funded G A project, and the articles published in many conferences, largely contributed to the

dissemination of the genetic algorithms technique.

9.3. Future Work

The current implementation of GAME can be used for the development of complex real-

world GA and PGA applications. Although, being a prototype system, GAME still needs

enhancements in some of its modules as well as better implementations for a few others. Future

work also include some research topics. Therefore, the work to be carried out on GAME can be

divided into three areas: system enhancements, implementation improvements and research. The

latter aimed at broadening the scope of the environment.

Enhancements tasks include:

• Expansion of the Genetic Libraries to increase the number of parameterised versions

of GAs, PGAs and genetic operators.

• Implementation of the communication and parallel control library on top of the PVM

system. The current library is based on a C++ implementation of the MS-Windows

DDE protocol, which has also been made available for UNIX platforms (on top of the

sockets interface). The PVM version will allow GAME applications to run on a wide

range of parallel environments, including networks of workstations, vector machines

and massively parallel architectures.

170_________________________ Conclusions and Future Work____________________ Chapter 9

• Integration with various commercial graphical user interface builders to facilitate the

adoption of the system in conjunction with other programming environments.

Improvements currently required by the system are:

• Simplification of the Individual and DnaNode classes. The current implementation

supports features such as unlimited number of node connections, which impact the

overall performance of genetic manipulations. This is particularly apparent in the

selection stage of the GA, when these objects are replicated.

• The implementation of the Population Manager module needs to be modified to make

DnaNode addressing more efficient. The current PM addresses inner DnaNodes in its

population pool via recursive calls to DnaNode’s maibox member function. A more

efficient method should enable PM to locate the pointer for the required DnaNode

object directly.

• Another possibility for improving PM ’s performance is to create two types of

Population Manager. One type would only be able to manipulate genetic structures

with fixed size (width and depth). The other type would support problems requiring

variable or re-sizeable genetic structures (as in the current implementation). Since a

large portion of GAs use fixed-size representations, a PM dedicated to this class of

algorithms would offer much better performance.

In the research arena, the parallelism provided by GAME’S programming model, and

PEM implementation, needs to be compared on various parallel platforms. It is also important to

gauge how scaleable parallel applications created with the system are. The assessment of these

two topics will provide a better picture of the range of applications that can benefit from

GAME’S parallel features.

Other extensions of this work would include the incorporation of different types of

Virtual Machines. The self-contained nature of GAME’S Virtual Machine and the use of a

dedicated application programming interface facilitates this task. Virtual machines implementing

Neural Network algorithms. Fuzzy Logic engines and Simulated Annealing processing are some

of the possibilities to turn GAME into a hybrid parallel programming environment.

9.4. Final Remarks

In these last words, it seems appropriate to stress one point of this research that, for

various reasons, could not be made more explicit in the body of a thesis report, but deserves some

Chapter 9_______________________ Conclusions and Future Work_______________________ ITÎ

more consideration. It relates to the actual connection of this research with a major European

funded project.

The development of a comprehensive programming environment like GAME, in the

context of a project such as PAPAGENA, demanded a number of tasks, with some of them not

normally found on a typical Ph.D. research. For instance, planning and co-ordination are key

elements in the success of this type of project, which is generally run to a tight timetable.

Pragmatic solutions and compromises are often preferred over speculative investigations, in order

to increase efficiency and not jeopardise the work being carried out by project partners. Also,

perm anent in teraction with partners, either in the specification stages or during the

implementation, is essential to collaborative research. It provides, for both parties, the type of

feedback that would never be available on an independent research. Finally, periodic assessment

of the work ensures the maintenance of high quality standards for the research. Typically, the

development of a project like PAPAGENA is assessed every six months by a panel of

independent specialists nominated by the ESPRIT programme. The project review exercise,

besides monitoring the accomplishment of tasks, provides an invaluable input for the project by

means of the recommendations and suggestions delivered by the reviewers. Moreover, it validates,

on a six-monthly basis, the work being carried out by everyone.

172 Conclusions and Future Work Chapter 9

References

[1] Agha, G. “ACTORS: A Model of Concurrent Computation in Distributed Systems”, MIT
Press, Cambridge, Massachusetts — 1986.

[2] Antonisse, J. “ A New Interpretation of the Schema Notation that Overturns the Binary
Coding Constraint” in Proc. o f the Third International Conf. on Genetic Algorithms,
pp.86-91, J. David Schaffer Ed., Morgan Kaufmann Pub., (San Mateo), CA — 1989.

[3] Back, T. “Optimal Mutation Rates in Genetic Search” in Proceedings o f the 1986
International Conference on Parallel Processing, pp. 2-9,. Stephanie Forrest — 1986.

[4] Back, T. & Hoffmeister, F. “Adaptive Search by Evolutionary Algorithms”.in Model o f
Selforganization in Complex Systems (MOSES), v. 64, pp.156-163, Wemer Ebeling, M.
Peschel, and W. Weidlich Ed., Akademie-Verlag, Berlin — 1991.

[5] Back, T. & Hoffmeister, F. “Extended Selection Mechanisms in Genetic Algorithms” in
Proc. o f the Fourth International Conf on Genetic Algorithms, pp. 92-99, Richard K.
Belew and Lashon B. Booker Ed., Morgan Kaufmann Pub., San Diego, CA — 1991.

[6] Back, T., Hoffmeister, F. & Schwefel, H.P. “A survey of Evolutionsstrategies” in Proc. o f
the Fourth International Conf on Genetic Algorithms, pp. 2-9, Richard K. Belew and
Lashon B. Booker Ed., Morgan Kaufmann Pub., San Diego, CA — 1991.

[7] Back, T., Rudolph, G. & Schwefel, H.P. “Evolutionary Programming and
Evolutionsstrategies: Similarities and Differences” in Proceedings o f the 2nd Annual
Conf on Evolutionary Programming, pp. 11-22, David B. Fogel and W. Atmar Ed.,
Evolutionary Programming Society, La Jolla, San Diego, CA — 1993.

[8] Baker, J.E. “Reducing Bias and Inefficiency in the Selection Algorithm” in Proc. o f the
Second International Conf. on Genetic Algorithms and Their Applications, pp. 14-21,
John J. Grefenstette Ed., MIT, Cambridge, MA — 1987.

[9] Barbosa, V.C., Massively Parallel Models o f Computation, Ellis Horwood Pub.,
Chichester— 1993.

[10] Bastani, F., Hilal, W. & Ivengar, S.S.“Efficient Abstract Data Type Components for
Distributed and Parallel Systems” in COMPUTER, IEEE Computer Society Press, Los
Alamitos, v. 20, n. 10, pp. 33-44 — 1987.

[11] Beguelin, A. et al. “A Users’ Guide to PVM Parallel Virtual Machine” in ORNL/TM-
11826, Oak Ridge National Laboratory, Mathematical Sciences Section — 1991.

[12] Bershad, B. N., Lazowska, D. & Levy, H. M. “PRESTO: A System for Object-Oriented
Parallel Programming” in Software-Practice and Experience, v. 18, n. 8, pp. 713-732,
John Wiley, Chichester — 1988.

[13] Bertoni, A. & Dorigo, M. “Implicit Parallehsm in Genetic Algorithms” in Genetic
Algorithm (Research Note) Artificial Intehgence 61, pp. 307-314, Elsevier Science
Publishers B.V. — 1993.

[14] Bom, J. & Bellman, K. “Numerical Adaptation of Parameters in Simulation Models by
Using Evolution Strategies” in Molecular Genetic Information Systems: Modelling and
Simulation, pp. 291-320, K. Bellmann Editor, Academie-Verlag, Berlin— 1983.

173

174 References

[15] Bamlette, M.F. & Bouchard, E.E. “ Genetic Algorithms in Parametric Design of Aircraft”
in Handbook of Genetic Algorithms, pp. 109-123, Lawrence Davis Ed., Van Nostrand
Reinhold Pub., NY — 1991.

[16] Bruce, A. et a l “CHIMP and PUL: Support for Portable Parallel Computing”, in EPCC-
TR93-07, Edinburg Parallel Computing Centre, The University of Edinburg — 1993.

[17] Butterworth, P., Otis A. & Stein J. “The GEMStone Objetc Database Management
System” in Communications o f the ACM, v. 34, n. 10, pp. 64-77, ACM Press, New York
— 1991.

[18] Cheng, W. K. “Distributed Database Management Systems” in Journal o f Object-
Oriented Programming, V. 6, n. 1, pp. 69-74, SIGS Publications, New York— 1993.

[19] Churin, J. & Forgey, S. “ Growing Your Own Distributed OODB” in Object Magazine, v.
2, n. 5, pp. 67-70, SIGS Publications, New York — 1993.

[20] Cohoon, J.P., Hedge, S.U., Martin, W.N. and Richards, D. “Punctuated Equihbria: a
Parallel Genetic Algorithm” in Proc. o f the Fourth Int. Conf. on Genetic Algorithms, pp.
148-154, Richard K. Belew Ed., Morgan-Kauffman, San Mateo, California— 1987.

[21] Cox Jr., L.A., Davis, L. & Qiu, Y. “Dynamic Anticipatory Routing in Circuit-Switched
Telecommunications Networks”in Handbook of Genetic Algorithms, pp. 124-143,
Lawrence Davis Ed., Van Nostrand Reinhold Pub., NY — 1991.

[22] Daniels, J. & Cook, S. “ Strategies for Sharing Objects in Distributed Systems” in Journal
o f Object-Oriented Programming, v. 5, n. 8, pp. 27-36, SIGS Publications, New York —
1993.

[23] Davis, L. & Steenstrup, M. “Genetic Algorithms and Simulated Annealing” in Research
Notes in Artificial Intelligence, Morgan-Kauffman, San Mateo, California— 1987.

[24] Davis, L., Handbook o f Genetic Algorithms, Lawrence Davis Ed., Van Nostrand Reinhold
Pub., NY — 1991.

[25] DeJong, K. “An Analysis of the Behavior of a Class of Genetic Adaptive Systems”,
doctoral dissertation, Univ. Michigan, Ann Arbor, Mich. — 1975.

[26] DeJong, K. “Adaptive System Design: A Genetic Approach”, in IEEE Transactions on
Systems, Man and Cybernetics, v. 10, n. 9, pp. 566-574 — 1980.

[27] Dzikowski, J. “Improving the Performance of Architectures Containing Random Access
List Structured Memory”, in Ph.D. Thesis, submitted to the Department of Computer
Science, University College London — 1995.

[28] Dekker, K. & Rehmann, R. “ADE - An Apphcation Development Environment for
Transparent Use of Scalable Parallel Architectures” in Programming Environments for
Parallel Computing, pp. 77-86, AFIP Transactions A ll , N. Topham, R. Ibbett & T.
Bemmerl Ed., North-Holland Pub., Amsterdam — 1992.

[29] Dekker, L. & Ribeiro Filho, J.L. “The GAME Virtual Machine Architecture” in Parallel
Genetic Algorithms: Theory and Applications, pp. 93-110, J. Stender Ed., lOS Press,
Amsterdam— 1993.

[30] Dekker, L. & Ribeiro Filho, J.L. “GAME Graphic Monitoring System Specification” in
ESPRIT project 6857 - PAPAGENA, WP4.3-TRI93II0, Department of Computer Science,
University College London — 1993.

[31] Deux, O. et a l “The 0 2 System” in Communications o f the ACM, v. 34, n. 10, pp. 34-48,
ACM Press, New York — 1991.

References 175

[32] Dorigo, Genetic Algorithms: the State of the Art and Some Research Proposal”, in report
n. 89-058, Dipartimento di Elettronica, Politecnico di Milano — 1989.

[33] Dorigo, M., Maniezzo, V. “ Parallel Genetic Algorithms: Introduction and Overview of
Current Research”, Dipartimento di Elettronica, Politecnico di Milano — 1991.

[34] East, I. R. & Macfarlane, D. “Implementation in OCCAM of Parallel Genetic Algorithms
on Transputer Networks” in Parallel Genetic Algorithms: Theory and Applications^ pp.
43-63, J. Stender Ed., lOS Press, Amsterdam — 1993.

[35] Eshelman, L. “The CHC Adaptive Search Algorithm: How to Have a Safe Search When
Engaging in Nontraditional Genetic Recombination” in Foundations o f Genetic
Algorithms and Classifier Systems, pp. 265-283, Gregory J. Hawlins Ed., Morgan-
Kauffman, San Mateo, California— 1991.

[36] Goldberg, D.E.“Genetic Algorithms in Search, Optimisation & Machine Learning ”,
Addison-Wesley, Massachusetts — 1989.

[37] Gordon, S. & Whitley, D. “Serial and Parallel Genetic Algorithms as Function
Optimizers” in Proc. o f the Fifth Int. Conf on Genetic Algorithms, pp. 177-183, S.
Forrest Ed., Morgan-Kauffman, San Mateo, California — 1993.

[38] Gorges-Schleuter, M. “Genetic Algorithms and Population Structures - A Massively
Parallel Algorithm”, Ph.D. Thesis, Computer Science Department, University of
Dortmund— 1990.

[39] Gorges-Schleuter, M. “ASPARAGOS: An Asynchronous Parallel Genetic Optimisation
Strategy” in Proc. o f the Third Int. Conf. on Genetic Algorithms, pp. 422-427, J. David
Schaffer Ed., Morgan-Kauffman, San Mateo, California — 1989.

[40] Grefenstette, J.J. “GENESIS: A System for Using Genetic Search Procedures” in Proc. o f
the 1984 Conference on Intelligent Systems and Machines, pp. 161-165 - 1984.

[41] Guttman, M., King, J. A. & Matthews, J. “ A Methodology for Developing Distributed
Applications” in Object Magazine, v. 2, n. 5, pp. 55-59, SIGS Publications, New York —
1993.

[42] Haasdjik, E., Walker, R., Barrow, D. & Gerrets, M. “Genetic Algorithms in Business” in
Genetic Algorithms in Optimisation, Simulation aW Modelling, pp. 157-184, J.Stender,
E.Hilebrand & J.Kingon Ed., lOS Press, Amsterdam — 1994.

[43] Harp, S.A. & Smad, T. “Genetic Synthesis of Neural Network Architecture” in Handbook
o f Genetic Algorithms, pp. 202-221, Lawrence Davis Ed., Van Nostrand Reinhold Pub.,
NY— 1991.

[44] Hartley, C. & Sunderan V. S. “Concurrent Programming with Shared Objects in
Networked Environments”, Department of Mathematics and Computer Science, Emory
University, Atlanta — 1992.

[45] Hockney, R.W. & Jesshope, C.R. Parallel Computers - Architecture, Programming and
Algorithms, Adam Hilger Ltd, Bristol Publisher— 1981.

[46] Hoffmeister, F., The User’s Guide to Escapade 1.2: A Runtime Environment for
Evolution Strategies, Dept, of Computer Science, Univ. of Dortmund, Germany — 1991.

[47] Holland, J. H., Adaptation in Natural and Artificial Systems, Ann Arbor: The University
of Michigan Press — 1975.

[48] Kingdon, J., Ribeiro Filho, J. & Treleaven, P. “The GAME Programming Environment
Architecture” in Para/Ze/ Genetic Algorithms: Theory and Applications, pp. 85-92, J.
Stender Ed., lOS Press, Amsterdam — 1993.

176 References

[49] Kafiira, D., Mukherji, M. & Lavender, G. “ACT++ A Class Library for Concurrent
Programming in C++ Using Actors” in Journal o f Object-Oriented Programming, v. 6, n.
6, pp. 47-55, SIGS Publications, New York— 1993.

[50] Kim, W. “Architectural Issues in Object-Oriented Databases” in Journal o f Object-
Oriented Programming, v. 6, n. 2, pp. 29-38, SIGS Publications, New York — 1993.

[51] Koza, J.R. “Hierarchical Genetic Algorithms Operating on Populations of Computer
Programs” in Eleventh International Joint Conf on Artificial Intelligence (IJCAI-89), pp.
768-774, N. S.Sridharan Ed., Morgan Kaufinann Pubhshers, Detroit, MI — 1989.

[52] Koza, J.R “Genetically Breeding Populations of Computer Programs to Solve Problems in
Artificial Intelligence” in Proceedings o f the 1990 IEEE International Conference on
Tools with Artificial Intelligence (TAI'90), IEEE Computer Society Press, Herndon,
VA,— 1990.

[53] Koza, J.R., Genetic Programming: On Programming Computers by Means o f Natural
Selection and Genetics, The MIT Press, Cambridge, MA — 1992.

[54] Lamb, Charles et al. “The Objects tore Database System” in Communications o f the
ACM, V. 34, n. 10, pp. 50-63, ACM Press, New York — 1991.

[55] Laurent, P. & Silverio N. “Persistence in C++” in Journal o f Object-Oriented
Programming, v. 6, n. 6, pp. 41-46, SIGS Publications, New York — 1993.

[56] Loomis, M. S. “Distributed Object Databases” in Journal o f Object-Oriented
Programming, v. 6, n. 1, pp. 20-23, SIGS Publications, New York — 1993.

[57] Loomis, M. S. “Making Objects Persistent” in Journal o f Object-Oriented Programming,
V. 6, n.6, pp. 25-28, SIGS Pubhcations, New York— 1993.

[58] Manderick, B. Spiessens, P. “A Massively Parallel Genetic Algorithm: Implementation and
First Results” in Proc. o f the Fourth Int. Conf. on Genetic Algorithms, pp. 279-286,
Richard K. Belew Ed., Morgan-Kauffman, San Mateo, California — 1991.

[59] Maruyama, T., Hirose, T. and Konagaya, A. “A Fine-Grained Parallel Genetic Algorithm
for Distributed Parallel Systems” in Proc. o f the Fifth Int. Conf. on Genetic Algorithms,
pp. 184-190, S. Forrest Ed., Morgan-Kauffman, San Mateo, California — 1993.

[60] May, D. & Taylor, R., “OCCAM - An Overview” in Microprocessors and Microsystems,
V. 8, n. 2, pp. 73-79, Butterworth & Co Pub. — 1984.

[61] Mitchell, M., Forrest, S. & Holland, J.H. “The Royal Road for Genetic Algorithms:
Fitness Landscapes and GA Performance” in Toward a Practice o f Autonomous System:
Proc. o f the First European Conf. on Artificial Life, pp. 245-254, F. J. Varela and P.
Bourgine, Ed., MIT Press, (Cambridge), MA— 1991.

[62] Mühlenbein, H. “Evolution in Time and Space - The Parallel Genetic Algorithm” in
Foundations o f Genetic Algorithms and Classifier Systems, pp. 316-337, Gregory J.
Hawlins Ed., Morgan-Kauffman, San Mateo, California— 1991.

[63] Mühlenbein, H. & Schilerkamp-Voosen, D. “Optimal Interaction of Mutation and
Crossover in the Breeder Genetic Algorithm” in Proc. o f the Fifth Int. Conf. on Genetic
Algorithms, pp. 648, S. Forrest Ed., Morgan-Kauffman, San Mateo, Cahfomia — 1993.

[64] Muntean, T., Gonzales, N., Langue, Y. “A Parallel Operating System Architecture -
PARX kernel approach for the Supemode_H project (P2528)”, University of Grenoble,
IMAG-Laboratoire de Genie Informatique — 1991.

[65] NASA - Johnson Space Center. “Splicer - A Genetic Tool for Search and Optimization”,
in Genetic Algorithm Digest, v. 5, n. 17 — 1991.

References 177

[66] Pettey, C.B., Leuze, M.R., and Grefenstette, J J . “A Parallel Genetic Algorithm”, in Proc.
o f the Third Int. Conf. on Genetic Algorithms ̂ pp. 398-405, J. David Schaffer Ed.,
Morgan-Kauffman Pub., (San Mateo), CA — 1989.

[67] Pountain, D. “The Chorous Microkernel” in Byte, v. 19, n. 1, pp. 131-136, McGrawHill
Pub., Peterborough — 1994.

[68] Radchffe, N.J. “Forma Analysis and random respectiful recombination” in Proc. o f the
Fourth Int. Conf. on Genetic Algorithms, pp. 222-229, Richard K. Belew Ed., Morgan-
Kauffman Pub., (San Mateo), CA — 1991.

[69] Radchffe, N.J. “Non-linear Genetic Representations” in Parallel Problem Solving from
Nature 2, pp. 259-268, R. Manner and B. Manderick Ed., Elsevier Science Pub.,
(Amsterdam) — 1992.

[70] Radchffe, N.J. & Surry, P.D. “The Reproductive Plan Language RPL2: Motivation,
Architecture and Apphcations” in Genetic Algorithms in Optimisation, Simulation and
Modelling, pp. 65-94, J.Stender, E.Hilebrand & J.Kingon Ed., IQS Press, Amsterdam —
1994.

[71] Rechenberg, I. “Evolutionsstratégie: Optimierung technisher Système nach Prinzipien
der biologischen Evolution'' [Evolutionary strategy: Optimisation of Technical Systems
According to the Principles of Biological Evolution], Fronunann-Holzboog Verlag,
Stuttgard, Germany — 1973.

[72] Ribeiro Filho, J.L. “GAME’S Library Structure” in Parallel Genetic Algorithms: Theory
and Applications, pp. 111-116, J. Stender Ed., IQS Press, Amsterdam — 1993.

[73] Ribeiro Filho & Treleaven, P. “Genetic-Algorithms Programming Environments” in IEEE
COMPUTER, V. 27, n.6, pp. 28-43, IEEE Computer Society, Los Alamitos, CA — 1994.

[74] Ribeiro Filho, J.L., K. Tout & U. Tiedemann “GAME: A Tool Kit for Exploiting
Massively Parallel Genetic Algorithms” in International Conference Massively Parallel
Processing, Applications and Development, Elsevier Science, Delft, The Netherlands —
1994.

[75] Ribeiro Filho, J.L. & Treleaven, P. “GAME: A Framework for Programming Genetic
Algorithms Apphcations” in Proceedings o f the First IEEE Conference on Evolutionary
Computing - IEEE Congress on Computational Intelligence, pp. 840-845, IEEE Service
Center, Piscataway, NJ — 1994.

[76] Ribeiro Filho, J.L “The GAME System” in lEE Coloquium on Applications o f Genetic
Algorithms, London — 1994.

[77] Ribeiro Filho, J.L. & Treleaven, P. “GAME'S ParaUel Programming Model” in Genetic
Algorithms in Optimisation, Simulation and Modelling, pp. 111-154, J. Stender, E.
Hillbrand & J. Kingdon Ed., IQS Press, Amsterdam — 1994.

[78] Robbins, G. “EnGENEer - The Evolution of Solutions” in Proceedings o f the 5th Annual
Seminar on Neural Networks and Genetic Algorithms, London — 1992.

[79] Rocha, P., Khebbal, S. & Treleaven, P. “A Framework for Hybrid Intelhgent Systems” in
Proc. o f the First New Zealand International Two-Stream Conf. on Artifical Neural
Networks and Expert Systems, pp. 206-209, IEEE Computer Society Press, Los Alamitos
— 1993.

[80] Rounce, P. & Delgado, J. “SPRINT and DICE: Architectures within the ESPRIT SPAN
Project” in IEEE MICRO, v.lO, n.6, pp. 24-27 & 88-97 — 1990.

178 References

[81] Schw efel, H.P. “Num erische O ptim ierung von Com puter-M odellen m ittels der
Evolutionsstrategie” in Interdisciplinary Systems Research, v. 26, Birkauser, Basel —
1977.

[82] Schwefel, H.P., Numerical Optimization o f Computer Models, John Wiley, Chischester —
1981.

[83] Sharp, O. “Dynamic Linking under Berkeley UNIX”, in Dr.Dobb’s Journal, v. 18, n. 5,
pp. 40-44, Pittsfield, Massachusetts — 1993.

[84] Schraudolph, N.N. & Belew, R.K. “Dynamic Parameter Encoding for Genetic
Algorithms”in CSE Technical Report #CS90-175, Computer Science & Engineering
Department, University of California, San Diego— 1990.

[85] Schraudolph, N.N. & Grefenstette, J.J., A User’s Guide to GAUCSD 1.2, Computer
Science & Engineering Department, University of Cahfomia, San Diego— 1990.

[86] Sistare, S. et al. “Data Visualisation and Performance Analysis in the PRISM
Programming Environment” in Programming Environments for Parallel Computing, pp.
37-51, AFIP Transactions A ll , N. Topham, R. Ibbett & T. Bemmerl Ed., North-HoUand
Pub., Amsterdam— 1992.

[87] Smart, J., Reference Manual for wxWindows 1.50: A Portable C++ GUI toolkit.
Artificial Intelligence Apphcations Institute, University of Edinburgh — 1993.

[88] Stender, J., Addis, T. & Spenceley, E. “Principle-based Engineering and Economic
Modelling” in Para/Ze/ Genetic Algorithms: Theory and Applications, pp. 117-128, J.
Stender Ed., lOS Press, Amsterdam — 1993.

[89] Stender, J. “Standort 200: Local Modelling of the Brandenburg Area Using Genetic
Algorithms” in Genetic Algorithms in Optimisation, Simulation and Modelling, pp. 219-
259, J.Stender, E.Hilebrand & J.Kingon Ed., IQS Press, Amsterdam— 1994.

[90] Sunderam, V.S. “PVM: A Framework for Parallel Distributed Computing”, Department of
Math and Computer Science, Emory University, Atlanta— 1989.

[91] Syswerda, G. “Schedule Optimization Using Genetic Algorithms” in Handbook o f Genetic
Algorithms, pp. 332-349, Lawrence Davis Ed., Van Nostrand Reinhold Pub., NY —
1991.

[92] Tanese, R. “Distributed Genetic Algorithms” in Proc. o f the Third Int. Conf. on Genetic
Algorithms, pp. 434-440, J. David Schaffer Ed., Morgan-Kauffman, San Mateo,
Cahfomia — 1989.

[93] Tonks, H. “Improving Traditional Object Models” in Objects in Europe, v. 1, n. 1, pp. 13-
17, Supplent to SIGS pubhcations, T. Durham Editor, SIGS pubhcations, London —
1994.

[94] Tout, K., Ribeiro Filho, J. L., Mignot, B. & Idlebi, N. “A Cross-platform Genetic
Algorithms Environment” in Proceedings o f the World Transputer Congress ’94, pp. 79-
90, De Gloria A., Jane M.R., Marini D. Ed., lOS Press, Amsterdam — 1994.

[95] Treleaven, P., Nigri, M. & Ribeiro Filho, J.L. “Programming Environments for Neural
Networks and Genetic Algorithms” in Proceedings o f the IMACS World Congress,
Atlanta, USA — 1994.

[96] Varhol, P.D. “Small Kemels Hit It Big” in Byte, v. 19, n. 1, pp. 119-128, McGrawHill,
Peterborough— 1994.

[97] Vose, M.D. “Generalising the Notion of Schema in Genetic Algorithms” in Artificial
Intelligence— 1991.

References 179

[98] Voigt, H. M., B om , J. & Treptow, J., The Evolution Machine Manual -V 2.1, Institute
for Informatics and Computing Techniques, Berlin — 1991.

[99] Wayner, P. “Objects on the March” in Byte, v. 19, n. 1, pp. 139-150, McGrawHill,
Peterborough— 1994.

[100] Whitley, D. & Kauth, J. “GENITGR: A Different Genetic Algorithm" in Proc. o f the
Rocky Mountain Conference on Artificial Intelligence, pp. 118-130, Denver, CO — 1988.

[101] Whitley, D. “The Genetic Algorithm and Selective Pressure: Why Rank-Based Allocation
of Reproductive Trials is Best” in Proc. o f the Third Int. Conf. on Genetic Algorithms, pp.
116-121, J. David Schaffer Ed., Morgan-Kauffman, San Mateo, California — 1989.

[102] Whitley, D. “Cellular Genetic Algorithms” in Proc. o f the Fifth Int. Conf. on Genetic
Algorithms, pp. 658, S. Forrest Ed., Morgan-Kauffman, San Mateo, California — 1993.

[103] Roberts, G.A, Winder, R. & Wei, M. “COOTS - UC++: Concurrent Object-Oriented
C++” in RN190168 - Department of Computer Science, University College London—
1990.

[104] Parallel C++ User’s Guide, 3L Limited, Livingston, Scotland— 1991.

[105] Programming Enviroments for Parallel Computing, Topham, N., Ibbett, R. & Bemmerl,
T. Editors, IFIP Transactions, North-Holland— 1992.

[106] Proceedings o f the International Conference on Genetic Algorithms, Morgan-Kauffman,
San Mateo, California — 1985.

[107] Proceedings o f the Second International Conference on Genetic Algorithms, Morgan-
Kauffman, San Mateo, California — 1987.

[108] Proceedings o f the Third International Conference on Genetic Algorithms, J. David
Schaffer Ed., Morgan-Kauffman, San Mateo, Cahfomia — 1989.

[109] Proceedings o f the Fourth International Conference on Genetic Algorithms, Richard K.
Belew Ed., Morgan-Kauffman, San Mateo, Cahfomia— 1991.

[110] Proceedings o f the Fifth International Conference on Genetic Algorithms, S Forrest Ed.,
Morgan-Kauffman, San Mateo, Cahfomia — 1993.

References
1 8 0 __

Bibliography

Genetic Algorithms

1 . Davis, L. & Steenstrup, M., Research Notes in Artificial Intelligence, Morgan-Kauffman,
San Mateo, California— 1987.

2 . Davis, L., Handbook o f Genetic Algorithms, Lawrence Davis Ed., Van Nostrand Reinhold
Pub. — 1991.

3 . Goldberg, D.E.“Genetic Algorithms in Search, Optimisation & Machine Learning ”,
Addison-Wesley, Massachusetts — 1989.

4 . Holland, J. H., Adaptation in natural and artificial systems, Ann Arbor: The University of
Michigan Press — 1975.

5 . Koza, J.R., Genetic Programming: On Programming Computers by Means o f Natural
Selection and Genetics, The MIT Press — 1992.

6 . Parallel Genetic Algorithms: Theory and Applications, J. Stender Editor., IQS Press —
1993.

7 . Genetic Algorithms in Optimisation, Simulation and Modelling, J.Stender, E.Hilebrand &
J.Kingon Editors., IQS Press — 1994.

8 . Rich, E. & Knight, K., Artificial Intelligence, McGraw-Hill — 1991.

9 . Computational Intelligence Imitating Life, Zurada, J., Marks, R. & Robinson, C. Editors,
IEEE Press — 1994.

10. Foundations o f Genetic Algorithms and Classifier Systems, Gregory J. Hawlins Ed.,
Morgan-Kauffman— 1991.

11. Parallel Problem Solving from Nature 2, R. Manner and B. Manderick Editors, Elsevier
Science Pub. — 1992.

12. IEEE COMPUTER, v. 27, n.6, IEEE Computer Society — 1994.

13. Proceedings o f the International Conference on Genetic Algorithms, Morgan-Kauffman,
San Mateo, California — 1985.

14. Proceedings o f the Second International Conference on Genetic Algorithms, Morgan-
Kauffman, San Mateo, Cahfomia — 1987.

15. Proceedings o f the Third International Conference on Genetic Algorithms, J. David
Schaffer Ed., Morgan-Kauffman, San Mateo, California — 1989.

16. Proceedings o f the Fourth International Conference on Genetic Algorithms, Richard K.
Belew Ed., Morgan-Kauffman, San Mateo, Cahfomia — 1991.

17. Proceedings o f the Fifth International Conference on Genetic Algorithms, S Forrest Ed.,
Morgan-Kauffman, San Mateo, Cahfomia— 1993.

18. Proceedings o f the First IEEE Conference on Evolutionary Computing - IEEE Congress
on Computational Intelligence, pp. 840-845, IEEE Service Center — 1994.

181

182__ Bibliography

Object-Oriented Design and Programming

1 . Booch, G., Object Oriented Design with Applications^ Benjamin Cummings — 1991.

2 , Bronnenberg, W. et al. “DOOM: A Decentralized Object-Oriented Machine” 'mIEEE
MICRO, IEEE Computer Society Press, Los Alamitos pp. 52-67 — 1987.

3 . Coad.,P. & Yourdon, E., Object-Oriented Design, Yourdon Press, Prentice Hall Publisher
— 1991.

4 . Gorlen, K., Orlow, S. & Plexico, P., Data Abstraction and Object-Oriented Programming,
John Wiley— 1990.

5 . Meyer, B., Reusable Software - The Base Object-Oriented Component Libraries, Prentice
H all— 1994.

6 . “Object-Oriented Programming”, Dr. Dobb’s Journal, vol. 17, issue 10 — 1992.

C/C++ & Windows Programming

1 . Clark, Windows Programming Guide to OLE!DDE, Sams Publishing— 1992.

2 . Coplien, J., Advanced C++, Programming Styles and Idioms, Addsion Wesley — 1992.

3 . Eckel, B., C+ + Inside & Out, Osborne McGraw-Hill— 1993.

4 . Ellis, M. & Stroustrup, B., The Annotated C++ Reference Manual, Addison Wesley —
1991.

5 . Hansen, T., The C++ Answer Book, Addison Wesley— 1990.

6 . Heller, M., Advanced Windows Programming, John Wiley — 1992.

7 . Meyers, S., Effective C++, Addison Wesley— 1992.

8 . Plauger, P., The Standard C+ + Library, Prentice Hall — 1994.

9 . Porter, A., C++ Programming for Windows, Osborne McGraw-Hill— 1993.

10. Porter, A., The Best C/C++ Tips Ever, Osborne McGraw-Hill— 1993.

11. Shapiro, J., A C++ Toolkit, Prentice Hall— 1991.

12. Teale, S., C++ lOStreams Handbook, Addison Wesley— 1993.

13. Vilot, M., C++ Programming Power Pack, Sams Pubhshing — 1993.

14. Watson, M., Portable GUI Development with C++, McGraw-Hill— 1992.

15. Proceedings o f the C plus C++ International Conference, Boston University Conference
Office, London— 1992.

16. Borland C++ 3.0 - Tools & Utilities Guide, Borland International Inc. — 1991.

17. Borland C++ 3.0 - Libraries Reference, Borland International Inc. — 1991.

18. Borland C++ 3.0 - Programmers Guide, Borland International Inc. — 1991.

19. Borland C++ 3.0 - User's Guide, Borland International Inc. — 1991.

20. Turbo Debugger 3.0 - User’s Guide, Borland International Inc. — 1991.

21. Microsoft Windows User’s Guide V 3.1, Microsoft Corp. — 1992.

Bibliography___183

22. Maguire, S., Writing Solid Code^ Microsoft Press. — 1993.

23. McConnel, S., Code Complete - A Practical Handbook o f Software Construction,
Microsoft Press — 1993.

24. Stitt, M., Debugging - Creative Techniques and Tools for Software Repair, John Wiley —
1992.

25. C/C++ Programming”, Dr. Dobb’s Journal, vol. 18, issue 8 — 1993.

26. “Software Design and Testing”, Dr. Dobb’s Journal, vol. 19, issue 2 — 1994.

27. “Cross-Platform Development”, Dr. Dobb’s Journal, vol. 19, issue 3 — 1994.

Parallel & Distributed Systems

1 . Barbosa, V.C., Massively Parallel Models o f Computation, Ellis Horwood Pub., Chichester
— 1993.

2 . Parallel C++ User’s Guide, 3L Limited, Livingston, Scotland— 1991.

3 . Stevens, W.R., UNIX Network Programming, Prentice Hall — 1990.

4 . “Operating Environments”, Dr. Dobb’s Journal, vol. 18, issue 5 — 1993.

5 . “Microkernels and Operating Systems”, Dr. Dobb’s Journal, vol. 19, issue 5 — 1994.

184___ Bibliography

Appendix A

Published Work

1 . Ribeiro Filho & Treleaven, P. “Genetic-Algorithms Programming Environments” in IEEE
COMPUTER^ V. 27, n.6, pp. 28-43, IEEE Computer Society, Los Alamitos, CA — 1994.

2 . Ribeiro Filho, J.L., K. Tout & U. Tiedemann “GAME: A Tool Kit for Exploiting Massively
Parallel Genetic Algorithms” in International Conference Massively Parallel Processing,
Applications and Development, Elsevier Science, Delft, The Netherlands — 1994.

3 . Ribeiro Filho, J.L. & Treleaven, P. “GAME: A Framework for Programming Genetic
Algorithms Applications” in Proceedings o f the First IEEE Conference on Evolutionary
Computing - IEEE Congress on Computational Intelligence, pp. 840-845, IEEE Service
Center, Piscataway, NJ — 1994.

4 . Ribeiro Filho, J.L “The GAME System” in lEE Coloquium on Applications o f Genetic
Algorithms, London — 1994.

5 . Ribeiro Filho, J.L. & Treleaven, P. “GAME'S ParaUel Programming Model” in Genetic
Algorithms in Optimisation, Simulation and Modelling, pp. 111-154, J. Stender, E.
HiUbrand & J. Kingdon Ed., lOS Press, Amsterdam — 1994.

6 . Tout, K., Ribeiro Filho, J. L., Mignot, B. & Idlebi, N. “A Cross-platform Genetic
Algorithms Environment” in Proceedings o f the World Transputer Congress *94, pp. 79-
90, De Gloria A., Jane M.R., Marini D. Ed., IQS Press, Amsterdam — 1994.

7 . Treleaven, P., Nigri, M. & Ribeiro Filho, J.L. “Programming Environments for Neural
Networks and Genetic Algorithms” in Proceedings o f the IMACS World Congress, Atlanta,
U SA— 1994.

8 . Ribeiro FiUio, J.L. “GAME’S Library Structure” in Parallel Genetic Algorithms: Theory
and Applications, pp. 111-116, J. Stender Ed., IQS Press, Amsterdam — 1993.

9 . Dekker, L. & Ribeiro FiUio, J.L. “The GAME Virtual Machine Architecture” in Parallel
Genetic Algorithms, pp. 93-110, J. Stender Ed., lOS Press, Amsterdam— 1993.

10. Kingdon, J., Ribeiro Filho, J. & Treleaven, P. “The GAME Programming Environment
Architecture” in Parallel Genetic Algorithms, pp. 85-92, J. Stender Ed., lOS Press,
Amsterdam— 1993.

185

186___ Bibliography

Appendix B

VM-API

This appendix lists and describes the functions o f GAME*s Virtual M achine
Application Program Interface. Each function is identified by a heading showing its
name, which is followed by a summary description o f its task. The declaration o f
each function as well as the description o f their arguments and returned data are
also provided.

Pool Manipulation Functions:

CreatePool

Function Make a new population pool.

Syntax hPOOL CreatePool(WORD pool_sz, [Individuals prototype = 0]);

pool_sz

prototype

The population initial size.

A handle to a prototype, or model, of the genetic
structure that will be used to initialise the
population pool.

Remarks CreatePool is used to create an empty population pool on the virtual machine’s
population manager module. Its first argument specifies the number of genetic
structures the pool should accommodate. The second argument is optional, and is a
prototype genetic structure that should be used to initialise the pool.

Note that the prototype genetic structure should not contain any DataUnit object,
unless the population is meant to be initialised with the very same copy of the genetic
structure, including its DataUnit objects. This option is intended for those
applications having fixed genetic structures. In such cases, the pool can be created
with many "empty" copies of the genetic structure, and later the initialisation operator
has only to "send" the DataUnit objects to be connected to each genetic structure in
the pool.

Return Value If no errors occurs, CreatePool returns a handler which uniquely identifies the newly
created pool. This handler must be used to identify this particular pool on any other
function that may involve pool or genetic structure manipulations. Otherwise NULL is
returned.

187

188 VM-API Appendix B

DeletePool

Function Delete a population pool.

Syntax word DeletePool([hPOOL pool_handle=0]);

pooljiandle A handle which uniquely identifies a VM pool
(optional).

Remarks DeletePool is normally used at the end of a "generation processing" on a generational
GA. This type of genetic algorithms dictate that the best genetic structures should
survive to reproduce. They can be copied to a new pool to reproduce and suffer
genetic modifications. In such cases, the old pool containing the parents of the new
generation may no longer be needed. The single, optional, argument for this function
is a pool handle. If not given, all pools of a virtual machine are deleted.

Return Value If no errors occurs, the number of pools deleted is returned, otherwise it returns
N U L L .

CopyPool

Function Make a copy of a population pool, including its contents.

Syntax hPOOL CopyPool(hPOOL src_handle, [hPOOL dest_handle = 0]);

src_handle

dest handle

The population pool handle which identifies the
pool that will be copied.

The optional population pool handle, if already
created, identifying the pool into which the contents
of the source pool will be copied.

Remarks CopyPool is used to make copies of population pools, including all its genetic
structures and their DataUnit objects. The first argument is a pool handler which
specifies the source pool. The second argument is optional and if not given, indicates
that a new pool must be created before the copy is done; otherwise the Individuals of
the source pool are copied into the specified destination pool.

Return Value If no errors occurs, CopyPool returns a handler which uniquely identifies the newly
created pool. This handler must be used to identify this particular pool on any other
function that may involve pool or genetic structure manipulations. Otherwise N U L L is
returned.

GetPoolSize

Function Request the maximum number of genetic structures that a population pool can
accommodate.

Syntax word GetPoolSize(hPOOL pool_handle);

pooljiandle A handle which uniquely identifies a VM pool.

Appendix B VM-API 189

Remarks GetPoolSize is used to obtain the maximum number of genetic structures
(Individuals) that a particular population pool can accommodate. This value is the
argument of the CreatePool function.

Return Value If no error occurs, this function returns the maximum number of genetic structures
that a population pool can maintain, otherwise NULL is returned.

GetPopuiatlon

Function Request the current number of genetic structures maintained by a virtual machine.

Syntax word GetPopuiatlon([hPOOL pool_handle=0])f

pooljiandle A handle which uniquely identifies a VM pool.

Remarks GetPopulation requests the current number of genetic structures (Individuals)
maintained by a virtual machine pool. If its optional argument is given, it returns only
the current number of individuals in the pool specified. In general, the size
(population) of a pool does not vary during a GA simulation.

Return Value If no error occurs, this function returns the current number of genetic structures in a
population pool, otherwise NULL is returned.

Individual Manipulation Functions:

Get! ndi vidua!

Function Get a copy of an Individual object from a pool.

Syntax individual GetIndividual(NodePath& node_path);

DOUBLE GetlndividualValue(NodePath& node_path,
[WORD data_unit_index=0]);

node_path The NodePath object. This object should contain the
individual’s pool handle and its index in that pool,
in this order.

dataunitindex An optional argument which specifies the DataUnit
index for the phenotype value associated to one of
the Individual’s chromosomes

Remarks Getlndividual is used to get a copy of a genetic structure (an Individual's genotype)
maintained by a population manager pool, or its phenotype value (the second
format). Its first argument is a NodePath object which should contain two addressing
items: the pool handle and the Individual’s index in the pool. The second argument is
optional and specifies the index of the phenotype value stored by the Individual.

190 VM-API Appendix B

Return Value If no error occurs, this function returns a copy of the Individual object or, in the
second format, the value of its phenotype.

Putindividuai

Function Insert a copy of an Individual object into a pool.

Syntax void Putindividuai(NodePatha node_path,
Individual& genotype);

node_path The NodePath object. This object should contain the
individual’s pool handle and its index in that pool,
in this order.

genotype The Individual object that will be copied into the
specified pool, in the specified position.

Remarks Putindividuai is used to insert (or overwrite) an Individual object into a pool
maintained by a population manager. The first argument is a NodePath object which
should contain two addressing items: the pool handle and the Individual’s index. The
second argument the Individual object to be copied into the pool.

Return Value No value is returned by this function.

Copylndividual

Function Copy Individual objects.

Syntax void Copylndividual(NodePatha src_node_path,
NodePath& dest_node_path)}

src_node_path The NodePath object that contains the addressing
sequence to the source Individual object. This object
should contain the individual's pool handle and its
index in that pool, in this order.

dst_node_path The NodePath object that contains the addressing
sequence to the destination Individual object. This
object should contain the Individual's pool handle
and its index in that pool, in this order.

Remarks Copylndividual is used to make copies of genetic structures (Individual objects)
which may be located in any of the population manager's pools. Individuals can be
copied into the same pool or between different pools. The first argument is a
NodePath object handler which specifies the source Individual, the second argument
specifies the "address" of the destination Individual. In general, this function is used
to make copies of the best Individuals (parents) from a population to the next
generation pool - the reproduction phase of a GA. The copied Individuals then
undergo genetic modifications leading to the new population (offspring).

Return Value No value is returned by this function.

Appendix B VM-API 191

Killlndividual

Function Remove an Individual object from a pool.

Syntax void Killlndividual(NodePath& node_path);

node_path The NodePath object. This object should contain the
individual’s pool handle and its index in that pool,
in this order.

Remarks Killlndividual is used to remove an Individual from a population manager’s pool. A
Steady State GA, for instance, replaces only one individual in a population (or a sub­
set) and then re-evaluates the whole population. This function is mostly indicated for
this type of GAs.

Return Value No value is returned by this function.

Movelndividual

Function Move an Individual object in the same or between pools.

Syntax void Movelndividual(NodePath& org_node_path,
NodePath& dest_node_path);

org_node_path The NodePath object that contains the origin path
of the Individual object. This object should contain
the individual’s pool handle and its index in that
pool, in this order.

dst_node_path The NodePath object that contains the addressing
sequence to the destination Individual object. This
object should contain the Individual’s pool handle
and its index in that pool, in this order.

Remarks Movelndividual is used to move genetic structures (Individual objects) in any of the
population manager’s pools. Individual objects can be moved between two different
pools or in the same pool, by modifying its index identifier in the population. The first
argument is a NodePath object handler which specifies the original addressing
sequence of the Individual object to be moved, the second argument specifies its
destination path. This function can be used to implement migration operators in a
multi-pool GA.

Return Value No value is returned by this function.

192 VM-API Appendix B

DnaNode Manipulation Functions:

GetNode

Function Get a copy of a DnaNode object from a pool.

Syntax DnaNode GetNode(NodePath& node_path);

node_path The NodePath object. This object should contain a
pool handle, and all the necessary addressing items
that uniquely identify the particular DnaNode
object.

Remarks GetNode is used to get a copy of any genetic structure from a population manager
pool. Its single argument is a reference (handle) to a NodePath object which should
contain the full addressing sequence that uniquely identifies a DnaNode object.

Return Value If no errors occurs, this function returns a handler to a copy if the DnaNode object
requested, otherwise NULL is returned.

PutNode

Function Insert a DnaNode object into a genetic structure maintained by a pool.

Syntax void PutNode(NodePath& node_path, DnaNode& dna_node)}

node_path

dnanode

The NodePath object. This object should contain a
pool handle, and all the necessary addressing items
that uniquely identify the particular DnaNode
object.

The DnaNode object that will be copied into the
genetic structure of the pool and Individual object,
as specified in the first argument.

Remarks PutNode is used to "write" a copy of a DnaNode object into any population manager’s
genetic structure. Its first argument is a NodePath object that should contain the full
addressing sequence that identifies the place where the DnaNode object is to be
connected. If another DnaNode object is already connected to the specified location, it
is deleted and replaced by the new one.

Return Value No value is returned by this function.

CopyNode

Function Copy DnaNode objects between two genetic structures.

Syntax void CopyNode(NodePath& src_node_path,
NodePath& dest_node_path)-,

Appendix B VM-API 193

src_node_path The NodePath object that contains the addressing
sequence to the source DnaNode object.

dst_node_path The NodePath object that contains the addressing
sequence to the destination DnaNode object.

Remarks CopyNode is used to make copies of genetic structures (DnaNode objects) which may
be in any of the population manager's pools. DnaNode objects can be copied in the
same genetic structure, or between two genetic structures, which can be located in the
same, or different pools. The first argument is a NodePath object which specifies the
source DnaNode object, the second argument specifies the addressing sequence of the
destination DnaNode object.

Return Value No value is returned by this function.

MoveNode

Function Move DnaNode objects between two genetic structures.

Syntax void MoveNode(NodePaths org_node_path,
NodePaths dest_node_path);

org_node_path The NodePath object that contains the addressing
sequence of the DnaNode object’s original location.

dst_node_path The NodePath object that contains the addressing
sequence specifying the destination location for the
DnaNode object.

Remarks MoveNode is used to move genetic structures (DnaNode objects) from/to any other
genetic structure on any of the population manager’s pools. DnaNode objects can be
moved between nodes of the same, or different, genetic structures. These can be
located in the same or different pools as well. The first argument is a NodePath object
which specifies the original addressing sequence of the DnaNode object to be moved,
the second argument specifies its destination path.

Return Value No value is returned by this function.

DeleteNode

Function Remove a DnaNode object from a genetic structure.

Syntax void DeleteNode(NodePath& node_path);

node_path The NodePath object. This object should contain a
pool handle, and all the necessary addressing items
that identify the particular DnaNode object.

194 VM-API Appendix B

Remarks DeleteNode is used to remove DnaNode objects from any genetic structure
maintained by the VM.

Return Value No value is returned by this function.

SwapNodes

Swap two DnaNodes.

void SwapNodes(NodePath& node_pathl, NodePath& node_path2)i

node_pathl The NodePath object. This object should contain a
pool handle, and all the necessary addressing items
that identify the first DnaNode object to be
swapped.

node_path2 The NodePath object. This object should contain a
pool handle, and all the necessary addressing items
that identify the second DnaNode object to be
swapped.

Remarks SwapNodes is used to exchange two DnaNode objects between two genetic structures.
The genetic structures can be part of the same Individual object, for instance, or
DnaNodes of different Individual objects. This function can be used to implement
crossover operators by selecting and exchanging DnaNodes of two Individual objects
in a pool.

Return Value No value is returned by this function.

InvertNode

Function Invert the sequence of DnaNode objects connected to a node of the genetic structure.

Syntax void InvertNode(NodePath& node_path, [WORD num_nodes=hLL]);

node_path

numnodes

The NodePath object. This object should contain a
pool handle, and all the necessary addressing items
that identify the particular DnaNode object.

The optional number of nodes, from the first node
that will have their sequence inverted. If this
argument is not given, the whole sequence is
inverted into the node.

Appendix B VM-API 195

Remarks InvertNode is used to modify a genetic structure by inverting part or the whole
sequence of DnaNode objects directly connected to another DnaNode object. The
inversions always start at the first position of the node array. An optional argument
can be given to specify the number of connections to invert, only if part of the
sequence is to be inverted. This option is particularly useful for inverting a set of
connections that does not start at the first position of the node array. In this case
more, than one call to this function is necessary. This function can be used to
implement inversion operators.

Return Value No value is returned by this function.

GetNumNodes

Function Request the partial or total number of DnaNode objects connected to another
DnaNode object in the specified genetic structure.

Syntax word GetNumNodes(NodePatha node_path,
[WORD Iev'el=ONE_LEVEL]) ;

node_path

level

The NodePath object. This object should contain a
pool handle, and all the necessary addressing items
that identify the particular DnaNode object.

Specifies whether only the number of DnaNode
objects connected directly to the addressed node is
to be counted, or all nodes of its branch, form its
position downwards is to be counted.

Remarks GetNumNodes is used to obtain the current number of connections to DnaNode
objects held by a particular DnaNode object in the genetic structure. The function’s
first argument specifies the addressing sequence of the inquired DnaNode object. The
second, optional, argument is used to specify whether only the number of DnaNodes
directly connected to the addressed node are to be counted (O N E _ L E V E L - the default),
or all the connections in the genetic structure, from the addressed node downwards
are to be counted (A L L _ L E V E L S) .

Return Value An integer value is returned with the current number of connections to the specified
DnaNode object, according to the level argument.

GetMaxNodes

Function Request the maximum number of connections supported by a DnaNode object.

Syntax word GetMaxNodes(NodePath& node_path)}

node_path The NodePath object. This object should contain a
pool handle, and aU the necessary addressing items
that identify the particular DnaNode object.

Remarks GetMaxNodes is requests the maximum number of connections that a particular
DnaNode object in the genetic structure can support.

196 VM-API Appendix B

Return Value The maximum number of connections that the specified DnaNode object supports is
returned in a integer value.

DataUnit Manipulation Functions:

ReadData

Function Get a copy of a DataUnit object.

Syntax double ReadData(NodePath& node_path, [WORD index=0]);

node_path

index

The NodePath object. This object should contain a
pool handle, and all the necessary addressing items
that identify the particular DnaNode object.

An optional argument which specifies the position
of the DataUnit object in the DnaNode’s data array.
If no value is given, the first position is assumed.

Remarks ReadData is used to get a copy of a DataUnit object from any genetic structure of a
population manager’s pool. Its first argument is a NodePath object that should contain
the full addressing sequence that uniquely identifies the DnaNode object containing
the required DataUnit object. The second argument, if given, specifies the position for
the DataUnit object in the DnaNode’s data array. This is an optional argument which,
if omitted, indicates that the first DataUnit object is to be addressed. This function can
be used to implement mutation operators. By requesting DataUnit objects from a
genetic structure, the mutation operator can change their values and put them back to
their original place in the genetic structure.

Return Value If no errors occurs, this function returns the value of the DataUnit object requested,
otherwise NULL is returned.

WriteData

Function

Syntax

Connect a DataUnit object to a genetic structure.

void WriteData(NodePathfi node_path, DOUBLE value,
[WORD index=0]);

node_path The NodePath object. This object should contain a
pool handle, and all the necessary addressing items
that identify the particular DnaNode object.

value The value to be written to the DataUnit of the
addressed DnaNode object.

Appendix B VM-API 197

index An optional argument which specifies the position
of the DataUnit object in the DnaNode’s data array.
If no value is given, the first position is assumed.

Remarks WriteData is used to "write" a copy of a DataUnit object into any genetic structure of
a population manager’s pool. Its first argument is a NodePath object which should
contain the full addressing sequence that identifies the DnaNode object that contains
the DataUnit object. The third argument, if given, specifies the position for the
DataUnit object in the DnaNode’s data array. This is an optional argument which, if
omitted, indicates that the first DataUnit object is to be addressed.

Return Value No value is returned by this function.

CopyPata

Function Copy DataUnit objects between two DnaNode objects.

Syntax void CopyData(NodePath& src_node_path,
NodePath& dest_node_pathf [\iO'KD index=0]);

src_node_path The NodePath object that contains the addressing
sequence to the DnaNode object holding the source
DataUnit.

dest_node_path

index

The NodePath object that contains the addressing
sequence to the DnaNode object into which a copy
of the source DataUnit will be placed.

An optional argument which specifies the position
of the DataUnit object in both DnaNode’s data
arrays. If no value is given, the first position is
assumed.

Remarks CopyData is used to make copies of DataUnit objects. They can be copied between
DnaNode objects of the same genetic structure (Individual object), or between two
different genetic structures; which can be located in the same or different pools. The
first argument specifies the "address" of the DnaNode object which contains the
DataUnit object to be copied. The second argument the "address" of the DataUnit
object which will receive the new DataUnit object. If a DataUnit object is already
connected at the destination DnaNode object, it is deleted to be replaced by the new
one. The third argument specifies which of the DataUnit objects connected to the
source DnaNode object is to be copied. The new object is connected to the same in the
destination DnaNode. This is an optional argument, and if not specified, the first
position of the data array is assumed.

Return Value No value is returned by this function.

198 VM-API Appendix B

DeietePata_____________________________________

Function Remove a DataUnit object from a genetic structure.

Syntax void DeleteData(NodePath& node^path, [WORD index=0])}

node_path

index

The NodePath object. This object should contain a
pool handle, and all the necessary addressing items
that identify the particular DnaNode object.

An optional argument which specifies the position
of the DataUnit object in the DnaNode’s data array.
If no value is given, the first position is assumed.

Remarks DeleteData is used to remove a DataUnit object from any genetic structure. Its first
argument is a NodePath object that should contain the full addressing sequence that
identifies the DnaNode object containing the required DataUnit object. The second
argument, if given, specifies the position for the DataUnit object in the DnaNode’s
data array. This is an optional argument which, if omitted, indicates that the first
DataUnit object is to be addressed.

Return Value No value is returned by this function.

SwapData

Function Swap two DataUnit objects between two DnaNode objects.

Syntax void SwapData(NodePath node_pathl, NodePatha node_path2,
[WORD index=0]);

node_pathl The NodePath object. This object should contain a
pool handle, and all the necessary addressing items
that identify the first DnaNode object to have one of
its DataUnit objects swapped.

node_path2

index

The handle to an NodePath object. This object
should contain a pool handle, and all the necessary
addressing items that identify the second DnaNode
object to have one of its DataUnit objects swapped.

An optional argument which specifies the position
of the DataUnit object in both DnaNode’s data
arrays. If no value is given, the first position is
assumed.

Remarks SwapData is used to exchange two DataUnit objects between two DnaNode objects.
They can be part of the same genetic structure (in the same or different pool), or
DnaNodes from two different Individual objects. The first argument specifies the
"address" of the DnaNode object which contains the first DataUnit object to swap.
The second argument specifies the "address" of the second DataUnit object. The third
argument specifies which of the DataUnit objects from the data array are to be
swapped. This is an optional argument, and if not specified, the first position of the
data array is assumed.

Appendix B VM-API 199

Return Value No value is returned by this function.

GetNumUnits

Function Get the current number of DataUnit objects connected to a DnaNode object.

Syntax word GetNumUnits(NodePath& node_path);

node_path The NodePath object. This object should contain a
pool handle, and all the necessary addressing items
that uniquely identify the particular DnaNode
object.

Remarks GetNumUnits requests the current number of DataUnit objects connected to a
DnaNode object. The "address" of the DnaNode object is given by a NodePath object
in its single argument.

Return Value An integer value with the current number of connections to DataUnit objects is
returned.

GetDataStatus

Function Get the validity status associated to a DataUnit object connected to a DnaNode object.

Syntax bool GetDataStatus(NodePatha node_path, [WORD lndex=GLOBAL]);

node_path

index

The NodePath object. This object should contain a
pool handle, and all the necessary addressing items
that identify the particular DnaNode object.

An optional argument which specifies the position
of the DataUnit object in the DnaNode’s data array.

Remarks GetDataStatus is used to check the validity status of a DataUnit object connected to a
DnaNode object. Its first argument indicates the address of the DnaNode object. The
second is optional and indicates the position of the DataUnit object’s status flag in the
_valid_data variable. If not given, the first DataUnit of the data array is assumed.
This function can be used in conjunction with the SetDataStatus to implement
polyploid genetic structures. I such cases, a number of DataUnit objects is stored into
a DnaNode, but only one has its status flag set as valid - the dominant allele. All other
DataUnit objects are then recessive alleles. The manipulation of the status flags is
responsibility of the genetic operator that uses this feature.

Return Value A Boolean value is returned by this function indicating TRUE if the status flag
associated to the DataUnit is set; otherwise FALSE is returned.

200 VM-API Appendix B

SetDataStatus

Function Get the validity status associated to a DataUnit object connected to a DnaNode object.

Syntax void SetDataStatus(NodePath& node_path, BOOL flag,
[WORD index=0]) ;

node_path

flag

index

The NodePath object. This object should contain a
pool handle, and all the necessary addressing items
that identify the particular DnaNode object.

The condition to set the status flag associated to the
DataUnit object.

An optional argument which specifies the position
of the DataUnit object in the DnaNode’s data array.

Remarks SetDataStatus is used to modify the validity status of a DataUnit object connected to
a DnaNode object. Its first argument indicates the address of the DnaNode object. The
second the new condition: TRUE or FALSE. And the third, which is optional, indicates
the position of the DataUnit object’s status flag in the _valid_data variable. If not
given, the first DataUnit of the data array is assumed. This function can be used in
conjunction with the GetDataStatus to implement polyploid genetic structures. In
such cases, a number of DataUnit objects is stored into a DnaNode, but only one has
its status flag set as valid - the dominant allele. All other DataUnit objects are then
recessive alleles. The manipulation of the status flags is responsibility of the genetic
operator that uses this feature.

Return Value No value is returned by this function.

Fitness Evaluator functions:

EvaluateFitness

Function Evaluate genetic structures according to the application-dependent objective function.

Syntax void EvaluateFitness([NodePath& node_path =ALL]);

node_path The NodePath object. This is an optional argument
that should contain an Individual’s pool handle and
its index in that pool, in this order.

Remarks EvaluateFitness evaluates the fitness of the whole population or the fitness of a single
Individual, as specified by the optional argument. Calling this function prior to
GetFitness allows the virtual machine to better exploit parallelism of fitness
evaluations via its parallel support module.

Return Value No value is returned by this function..

Appendix B VM-API 201

GetFitness______________________________________

Function Request the fitness value of a genetic structure.

Syntax double GetFitness(NodePath& node_path, [WORD index=0]);

node_path

index

The NodePath object. This object should contain an
Individual’s pool handle and its index in that pool,
in this order.

An optional argument which specifies which of
fitness values (in multi-fitness applications) stored
by an Individual object is required.

Remarks GetFitness requests fitness values to the virtual machine. The first argument specifies
the "address" of the Individual object to be evaluated by the fitness evaluator. The
second argument is optional, and can be used to implement multi-fitness applications.
It specifies which of the DataUnit objects connected to an Individual data array,
contains the requested fitness value. A mechanism that monitors any change in the
genetic structure of Individual objects is used in conjunction with their ability to store
DataUnit objects, to operate as a "cache memory" for fitness values. When an
Individual object is evaluated by an application dependent fitness function, the value
returned is stored into a DataUnit object, and connected to the Individual’s data array
in the position specified by index (if this is not given, the first position of data array is
assumed by default). Hence, if no change occurs to its genetic structure before this
function is called for a second time, the value stored in the DataUnit is returned. This
mechanism is used to avoid re-evaluations when no change is made in the Individual’s
genetic structure.

Return Value This function returns the fitness value requested.

G etlota i Fitness

Function Sum the fitness of a population.

Syntax double GetTotalFltness([hPOOL pool_handle=0],
[WORD lndex=0]);

pooljiandle

index

A handle which identifies a VM pool (optional).

An optional argument which specifies which of
fitness values (in multi-fitness applications) stored
by an Individual object is required is to be
considered.

Remarks GetTotalFitness is called to compute a value which represents the sum of the fitness
values of all Individuals in the population maintained by a virtual machine. Its first
argument is optional and specifies a particular pool (if the VM contains more than
one), and the second can be used by multi-fitness applications to specify the particular
fitness values to be computed.

Return Value This function returns the total fitness value of population pools

202 VM-API Appendix B

GetAvgFltness

Computes the average fitness of a population.

DOUBLE GetAvgFltness([hPOOL pool_handle=0],[^ORD index=0])}

pooljiandle

index

A handle which uniquely identifies a VM pool
(optional).

An optional argument which specifies which of
fitness values (in multi-fitness applications) stored
by an Individual object is required is to be
considered.

Remarks GetAvgFltness is called to compute the average (total fitness / population) of the
fitness values of all Individuals in the population maintained by a virtual machine. Its
first argument is optional and specifies a particular pool (if the VM contains more
than one), and the second can be used by multi-fitness applications to specify the
particular fitness values to be considered.

Return Value This function returns the average fitness value of a population.

GetHighestFitness

Function Gets a population’s highest fitness value and its "owner".

Syntax Bestlndividual* GetHighestFitness([hPOOL pool_handle=0],
[WORD index=0]);

pooljiandle

index

A handle which uniquely identifies a VM pool
(optional).

An optional argument which specifies which of
fitness values (in multi-fitness applications) stored
by an Individual object is required is to be
considered.

Remarks GetHighestFitness is called to request a value which represents the highest of the
fitness values among the Individuals in the population maintained by a virtual
machine. Its first argument is optional and specifies a particular pool (if the VM
contains more than one), and the second can be used by multi-fitness applications to
specify the particular fitness values to be considered.

Return Value If no errors occurs, this function returns a pointer to the Bestlndividual structure
described below, otherwise N U L L is returned.

struc Bestlndividual
{

DOUBLE best_value;
NodePath individual_address;

};

Appendix B VM-API 203

best_value

individual value

The highest fitness value of the population.

A NodePath object containing the fiill addressing
sequence that identities the Individual of the
population with the highest fitness value.

GetLowestFltness

Function Request a population’s lowest fitness value and its "owner".

Syntax Bestlndividual* GetLowestFitness([hPOOL pool_handle=0],
[WORD index=0]);

pooljiandle

index

A handle which uniquely identifies a VM pool
(optional).

An optional argument which specifies which of
fitness values (in multi-fitness applications) stored
by an Individual object is required is to be
considered.

Remarks GetLowestFltness is used to obtain a value which represents the lowest of the fitness
values among the Individuals in the population maintained by a virtual machine. Its
first argument is optional and specifies a particular pool (if the VM contains more
than one), and the second can be used by multi-fitness applications to specify the
particular fitness values to be considered.

Return Value If no errors occurs, this function returns a pointer to the Bestlndividual structure
described below, otherwise NULL is returned.

struc Bestlndividual
{

DOUBLE best_value;
NodePath individual_address;

};

best_yalue

individual value

The lowest fitness value of the population.

A NodePath object containing the fiill addressing
sequence that uniquely identifies the Individual of
the population with the lowest fitness value.

204 VM-API Appendix B

Error Functions:

GetErrorStatus

Function Get the status condition of the most recent VM-API function call.

Syntax MSGSTATUS GetErrorStatus(v o id);

Remarks GetErrorStatus is called to obtain the execution status of the latest call to VM-API
functions. Every call to a VM-API function resets the internal status word. After an
API command is executed by the virtual machine, it may return a message package to
its sender with a command completion status. If the command execution is successful
the virtual machine (by default) will not return the message package, to avoid
undesirable overheads. However, on error conditions the message package will always
be returned with the error status.

Return Value The current value stored in the VM-API internal status word.

ClearErrorStatus

Function Resets VM-API internal status word to a NO_STATUS condition.

Syntax void ClearErrorStatus(v o id);

Remarks ClearErrorStatus - the API internal status word keeps the condition of the latest
function call until either a function is called or the status is cleared by the user,
calling this function.

Return Value This function does not return any value..

Appendix C

PEM-API

The functions o f the PEM-API, listed below, are identified by a heading with their
names. For each function a short description o f its task, declaration syntax,
arguments taken and returned result are provided.

Upper-Layer Functions:

StartComponent

Function Start a local or external components.

Syntax handle StartComponent (dComp component_descrip tor)}

component_descriptor

component_name

A structure that contains the following:

Specifies whether the component to be started is
LOCAL or EXTERNAL.

component_name

port_name

host name

Specifies the name (including the path) of the
component to be started.

specifies the name to be given to the component
communication port. This argument is not
necessary for a LOCAL component.

Optional. Specifies the name of the host where the
component will be started.

Remarks StartComponent is called to load and start a component. The information required to
start either a LOCAL or an EXTERNAL components are provided by the caller in the
component_descriptor. If of the port_name field is not provided, it defaults to the
component name used in MS-Windows. The UNIX implementations, however,
require a numeric string representing a socket port number.

Return Value This function returns a handle that identifies an entry in the component data base.
This handle is used by other PEM functions such as OpenConnection to get and
update information related to this component in the data base. ERROR is returned if
the component could not be started.

205

206 PEM-API Appendix C

T erminateComponent

Function Terminate the execution of a local or external component.

Syntax void TerminateComponent (HANDLE component_handle);

component_handle Identifies the entry in the component data base that
contains the relevant information about this
component.

Remarks TerminateComponent may not terminate an external component, if it has other
external components connected. In this case, only the connection (if there is any one
active) is closed. Local components are always terminated. They force disconnection
to all other components that are connected to them.

Return Value This function does not return any value.

OpenConnection

Function Create a bi-directional connection between two components.

Syntax handle OpenConnection (dComp& component_descriptor)}
HANDLE OpenConnection (HANDLE component_handle)

component_descriptor A structure that describes the PEM component to be
connected.

component_handle Identifies an entry in the component data base
which has the description of the component to be
connected.

Remarks OpenConnection, in its first format, is used when a component is already loaded and
is not be known by the local data base. In this case a new entry is created with the
information provided by the ComponentDescriptor structure and a connection is
opened. The second format is used when a component has been already registered
with the data base.

Return Value This function returns a handle that identifies an entry in the component data base.
ERROR is returned if the connection could not be created or, in the second format,
the handle is invalid.

CloseConnection

Function Terminate a connection between two components. This function may also be called to
terminate all the connections maintained by a component.

Syntax word CloseConnectlon (HANDLE component_handle) •,

Appendix C PEM-API 207

component_handle Identifies the entry in the component data base that
contains the relevant information about this
component.

Remarks CloseConnection updates, the with an INACTIVE connection status, the entries for
both components in their respective component data bases, after disconnection. If
later, a new connection to the same component is required, the entry can still be
identified by its component handle.

Return Value This function returns the number of active connections of this component. ERROR is
returned if the handle is invalid.

PostMail

Function Send message packages to other components.

Syntax bool PostMail (MsgPackages msg_package,
HANDLE hComp,
WORD [mode = NOREPLY],
WORD [msg_id = 0]);

msg_package The message package object that contains the
message to be sent.

he amp Identifies the entry in the component data base that
contains information about the connection channels
and status.

mode Transmission mode. There are three modes:
NOREPLY, REPLY and WAITREPLY. The first
two specify asynchronous transmission and the
third is synchronous. This argument defaults to
NOREPLY.

msg_id Optional. Stamps the message with an identifier
specified by the user.

Remarks PostMail sends a message package object via the communication channel associated
with the component specified by hComp. If hcomp - ' ALL ' , the message package is
broadcasted to all components. The delivery mode is specified in the third argument
and defaults to NOREPLY, representing an asynchronous delivery, without reply. If
REPLY is specified, an asynchronous message is sent but a reply is expected after the
command is executed. WAITREPLY specifies a synchronous delivery mode.
PostMail then waits for the other component to return the same message package. It is
also possible to specify an identification tag for a message package by setting the
msg_id argument.

Return Value This function returns TRUE if the message was successfully delivered, FALSE
otherwise.

208 PEM-API Appendix C

HasMail

Function

Syntax

Indicates the presence of message packages in the mailbox.

WORD HasMail (WORD [jnsg_id=0]) ;

msg_id This optional argument specifies a particular
identifier for the message to be checked in the
queue. It defaults to ’0’ which means any message.

Remarks HasMail checks if there are messages in the local message queue. The argument of
this function may be used to specify a particular message package.

Return Value This function returns the number of message packages to be processed found in the
queue.

CollectMail

Function Retrieves a message package from the mailbox message queue.

Syntax MessagePackage* CollectMail (WORD [msg_id=0]) •,

msg_id This optional argument specifies a particular
identifier for the message to be checked in the
queue. It defaults to ’0’ which means any message.

Remarks CollectMail takes a message package off the local message queue. The argument may
be used to identify a particular message in the queue.

Return Value This function returns a pointer to the message package retrieved. If there is no
message package in the queue it then returns 0;

ReplyMail

Function Return a message package to its sender.

Syntax bool ReplyMail (MsgPackage& msg_package);

msg_package The message package object that contains the
message to be posted back to the sender.

Remarks ReplyMail sends a message package object back to its sender. Only the messages sent
with the REPLY mode specifier are sent back. This is a asynchronous transmission
mode. A message package is normally replied with data and status resulting from a
command execution.

Return Value It returns TRUE if the message was successfully delivered, FALSE otherwise.

Appendix C PEM-API 209

WaitMail______________________________

Function This function is used for synchronisation. It implements a barrier mechanism adapted
for event-driven processing

Syntax void WaitMail (WORD msg_id,
MsgPackage* notify_msg,
WORD [num_msg = 1]);

msg_id Specifies a particular identifier for the message to
be checked in the queue.

notify_msg The user defined message package object to be set
to component (itself) when WaitMail exits.

num_msg Specifies the number of messages to wait for.

Remarks WaitMail waits until the message package(s) specified by ’msg_id’ arrives. A user
defined message package object (notify_msg) must be provided. This message
package is inserted into the local message queue this component has received the
number of messages specified by num_msg.

Note: the user provided message package should have a command, defined by the
user, to enable his application to proceed after all the messages containing the
required msg_id arrives. This function implements a non-blocking synchronisation
mechanism.

ProcessMail

Function This is a user defined function. It is called by the mailbox to have a message package
processed.

Syntax MsgPackage& ProcessMail (MsgPackages msg);

ms g The message package to be processed.

Remarks ProcessMail processes all message packages retrieved from the local queue by the
mailBox. This function is defined by the application developer. The implementation
of this function must update the status of the message package received in its
argument, before returning.

Return Value It returns the same message package. The programmer of this function should always
update the status of the message package after is command is executed.

ProcessReply

Function This is a user defined function. It is called by the mailbox when a message package of
type REPLY arrives.

Syntax void ProcessReply (MsgPackage& msg);

210 PEM-API Appendix C

msg The message package to be processed.

Remarks ProcessReply processes all message packages sent by a component in REPLY mode,
replied by other components. This function is defined by the application developer to
handle asynchronous replies. Normally the status of the message would be examined
in this function.

Return Value This function does not return any value.

Lower-Layer Functions:

StartLocalComponent

Function Start local components.

Syntax handle StartLocalComponent (char* comp_name, char* cmdline);

comp_name

cmdline

Name and path of the component’s executable file
to be loaded.

Command line argument to be passed on to the
component being loaded/started.

Remarks StartLocalComponent, in general, uses dynamic linking mechanisms to load the
required component (the child) into the caller (parent) address space (some
implementations may create local threads instead). This function returns a unique
handle identifying the newly loaded component.

Return Value

StartExtComponent

Function Start external components.

Syntax handle StartExtComponent (char* comp_name,
char* cmdline,
char* [comp_host =0]);

comp_name

cmdline

comp_host

Name and path of the component’s executable file
to be started.

Command line argument to be passed on to the
started component.

Name of the host machine that will mn the
component (optional).

Appendix C PEM-API 211

Remarks StartExtComponent starts a new independent process in the local or user specified
host.

Return Value This function returns a unique handle identifying the newly started component

T ermlnateLocaiComponent

Function Unloads a local component.

Syntax bool TerminateLocalConç)onent (dComp& component_descriptor)}

component_descriptor The entry in the component data base describing
the component to be unloaded.

Remarks TerminateLocalComponent. removes a local component from its parent addressing
space. If the local component has other connections, besides its parent connection, it
notifies that is being terminated.

Return Value This function returns TRUE if the component is successfully terminated, otherwise it
returns FALSE.

TerminateExtComponent

Function Terminates an external component.

Syntax bool TerminateExtComponent (dComp& component_descriptor)}

component_de scrip tor The entry in the component data base describing
the component to be terminated.

Remarks TerminateExtComponent requests the operating system to ‘k ill’ an external
component process. If the external component has other connections, besides its
parent connection, it does not terminate. In this case, it will terminate itself only after
all the other components disconnect.

Return Value This function returns TRUE if the component is successfully terminated, otherwise it
returns FALSE.

Create Port

Function Assign an identifier (name) to the server object’s communication port.

Syntax bool CreatPort (char* port_name)}

port_name The alphanumeric string pointer for the string with
the name of the component’s communication port.

212 PEM-API Appendix C

Remarks CreatePort is used to inform the low-level communication system of the identifier
(or name) that other components will use to request connections to this component.

Return Value This function returns TRUE if the port is successfully created, otherwise it returns
FALSE.

OpenConnection

Function Create a bi-directional conununication channel between two components

Syntax bool OpenConnection (dComp& component_descriptor)}

component_descrip tor The entry in the component data base describing
the component to be connected.

Remarks OpenConnection takes an entry in the local data base as its argument. It updates the
hIpcConn field after opening the conununication channel.

Return Value This function returns TRUE on success, otherwise FALSE is returned

CloseConnection

Function Terminates a bi-directional connection between two components.

Syntax void CloseConnection (HANDLE hConn)-,

hConn The handle that uniquely identifies the connection
to be closed.

Remarks CloseConnection notices the other component and disconnects.

Return Vaiue This function does not return any value.

ConnectionStatus

Function

Syntax

Set or return the status of a connection between two components

void ConnectionStatus (HANDLE hIpcConn,
CONSTAT conn_status);

CONSTAT ConnectionStatus (HANDLE hIpcConn);

hIpcConn
conn status

The handle that uniquely identifies a connection.

The new status for the connection.

Appendix C PEM-API 213

Remarks GetConnectionStatus - a connection may be in three different states: INACTIVE,
ACTIVATING or ACTIVE. The first form is called to set the connection state and
the second to get its current state.

Return Value This function returns the current state of the connection associated to the specified
component. INACTIVE is returned if no connection is found.

SendSync

Function Transmits a message package in synchronous mode.

Syntax MsgPackages SendSync (MsgPackage& message, HANDLE hIpcConn);

message The message package to be sent.

hIpcConn The handle that uniquely identifies the connection
between sender and receiver.

Remarks SendSync uses the low-level communication system to send a message package
object to another component, according to the communication channel obtained from
the hipcConn argument. This is a blocking function that returns control to the caller
only after the command taken by the message package object is executed, and the
message package returned.

Return Value The updated message package is returned.

SendAsync

Function Transmits a message package in asynchronous mode.

Syntax bool SendAsync (MsgPackage& msg, HANDLE hipcConn);

message msg

hipcConn

The message package to be sent.

The handle that uniquely identifies the connection
between sender and receiver.

Remarks SendSync uses the low-level communication system to send a message package
object to another component, according to the communication channel obtained from
the hipcConn argument. This is a non-blocking function that returns control to the
caller as soon as the message package is dispatched.

Return Value This function returns TRUE if a message package could be dispatched to the low-level
communication system, otherwise FALSE is returned.

214 PEM-API Appendix C

Reply

Function

Syntax

Return a message package of type REPLY to its sender.

BOOL Reply (MsgPackage& message)',

message msg The message package replied.

Remarks Reply uses the low-level communication system to return a message package object
back to its original sender. This function performs is by definition an asynchronous
communication. The handle identifying the sender connection is kept by the message
package object.

Return Value This function returns TRUE if the message package could be dispatched to the low-
level communication system, otherwise FALSE is returned.

Appendix D

Class Hierarchy

This appendix shows the diagrams o f GAME’s class hierarchies. The first diagram
depicts all the classes rooted in the GameStreamObject class. The second shows the
main classes derived from the pemComponent class, which is the basis fo r the GAME
Component concept.

GameStreamObjects

The class hierarchy rooted in the GameStreamObject class comprise four principal

branches. The GenericSet branch contains some general-purpose classes like GenericFifo, which

are used for the implementation of more specialised classes such as NodePath. The second

branch, headed by the MsgPackage class, contains the basic classes used in GAME’S messaging

system. The user should derive new classes from MsgPackage to support application-dependent

commands to be exchanged between specific implementations of GAME Components.

The third and fourth branches contains the classes used to implement GAME’S genetic-

oriented representation abstractions. The user may derive new data types from the DataUnit class

according to apphcation’s requirements.

Figure D .l GAME Class Hierarchy

GenericStack

GenericSet NodePathGenericFifo

Pool

PopManMsg
VmMsg

DnaNodeMsg
FitnessMsgMsgPackage

IndividualDnaNodeDnaCollection

ga_char

gajnt
DataUnit

215

216 Class Hierarchy Appendix D

Objects instantiated from any class in this hierarchy are able to be serialised and passed

across GAME Component objets.

GameComponents

The picture below shows the main class hierarchy that implements GAME Components

and some auxiliary classes. The hierarchy rooted in the pemComponent class contains the

GameComponent class, which is the basis for further specialisation leading to components such

as the virtual machine and its modules. It is also the root of the framework that supports the

implementation of user defined applications (from the AppComponent class), genetic algorithms

(from the AlgComponent class) and genetic operators (from the OperComponent class). The last

two classes use multiple inheritance to benefit from the VM-API class, which implements the

functions of the Virtual Machine Application Program Interface. The AppComponent class may

also use multiple inheritance to support platform-dependent graphic user interfaces.

The other four independent classes: pemlpc, ipcServer, ipcClient and ipcChannel are

used in the implementation of PEM’s lower-layer. They should be adapted by the user to port

GAME to a variety of platforms.

Figure D.2 PEM Class Hirarchy

AppComponent

VM-API

pemComponent | ----- 1 GameComponen
iiiiyiüüüyiüyyumiüüiüüiiiiiiiiiiiiii i i i iii i ‘

pemlpc 1 ipcServer

ipcChannel | ipcClient k

A lgCom p^^

OperComponent ||

VirtualMachine

P opu la^^

FitnessEvaiuator

%ap

l Ê - a l f f o n t n m r ^
; ;'. - : k.?:*%3 ">«

inm ents in to u

I g o n t h m ? ^

inenteatsystem s, and-

presents d eta iled c a s e ,
:̂ ,̂.^«.««ies pmeaoing;^^^

Genetic-Algorithm
Programming
Environments
José L. R ibe iro F ilho a n d P h ilip C. T releaven , U n iv ers ity

College L ondon

C esare A lip p i, P o litecn ico d i M ilano

volution is a rem arkable problem-solving machine. First proposed by John
Holland in 1975.' genetic algorithm s are an attractive class of com puta­
tional models that mimic natural evolution to solve problems in a wide va­

riety of domains. Holland also developed the concept of classifier systems, a machine
learning technique using induction systems with a genetic com ponent.- H olland 's
goal was twofold: to explain the adaptive process of natural systems and to design com­
puting systems embodying their im portant mechanisms. Pioneering work by H ol­
land,' Goldberg,^ D eJong.' Grefenslette,^ Davis.' Miihlenbein.^ and others is fueling
the spectacular growth of G As.

G As are particularly suitable for solving complex optimization problems and hence
for applications that require adaptive problem-solving strategies. In addition. G As are
inherently parallel, since their search for the best solution is perform ed over genetic
structures (building blocks) that can represent a num ber of possible solutions. Fur­
therm ore, G A s' com putational models can be easily parallelized’ ’̂ to exploit the
capabilities of massively parallel com puters and distributed systems.

Classes of search techniques
Figure 1 groups search techniques into three broad classes.’ Calculus-based tech­

niques use a set o f necessan, and sufficient conditions to be satisfied by the solutions
of an optimization problem. These techniques subdivide into indirect and direct meth­
ods. Indirect methods look for local extrem a by solving the usually nonlinear set ol
equations resulting from setting the gradient of the objective function equal to zero
The search for possible solutions (function peaks) starts by restricting itself to points
with zero slope in all directions. Direct m ethods, such as those of Newton and Fi
bonacci, seek extrem a by "hopping" around the search space and assessing the gradi
ent of the new point, which guides the search. This is simply the notion o f “hill-climb
ing,” which finds the best local point by climbing the steepest permissible gradient
These techniques can be used only on a restricted set of “well-behaved" problems.

Enumerative techniques search ever}' point related to an objective function's domair
space (finite or discretized), one point at a time. They are very simple to im plem en
but may require significant com putation. The domain space of many applications i:
too large to search using these techniques. Dynamic programming is a good examplt
of an enum erative technique.

miix iw 1EEÜ C O M PU T E l

Guided random search lechniques arc
based on enumerative techniques but use
additional inform ation to guide the
search. They are quite general in scope
and can solve very com plex problem s.
Two major subclasses are simulated an ­
nealing and evolutionary algorithm s.
Both are evolutionar>' processes, but sim­
ulated annealing uses a therm odynam ic
evolution process to search minimum en­
ergy states. Evolutionary algorithms, on
the o ther hand, are based on nalural-
selection principles. This form of search
evolves throughout generations, improv­
ing the features o f potential solutions by
means of biologically inspired operations.
These techniques subdivide, in turn, into
evolutionary strategies and genetic algo­
rithms. Evolutionary strategies were pro­
posed by Rechenberg'® and Schw efel"
in the early 1970s. They can adapt the
process of “artificial evolution” to the re­
quirem ents o f the local response su r­
face.'^ This means that unlike traditional
G As evolutionary strategies can adapt
their major strategy param eters accord­
ing to the local topology of the objective
function.*^

Following H olland’s original genetic-
algorithm proposal, m any variations of
the basic algorithm have been introduced.
H owever, an im portant and distinctive
feature of all G As is the population-han­
dling technique. The original G A adopted
a generational replacement policy,^ ac­
cording to which the whole population is
replaced in each generation. Conversely,
the steady-state policy^ used by many sub­
sequent G As selectively replaces the pop­
ulation. It is possible, for example, to keep
one or more population members for sev­
eral generations, while those individuals
sustain a better fitness than the rest of the
population.

A fter we introduce G A models and
their programming, we present a survey
o f G A program m ing environments. We
have grouped them into three m ajor
classes according to their objectives: A p­
plication-oriented systems hide the details
o f G As and help users develop applica­
tions for specific dom ains, algorithm-
oriented systems are based on specific GA
models, and toolkits are flexible environ­
m ents for programming a range o f G As
and applications. We revfew the available
environments and describe their common
features and requirem ents. As case stud­
ies, we select some specific systems for
m ore detailed examination. To conclude,
we discuss likely future developments in
G A programming environments.

;GuldédIratKldfri
techhlqCi^

Enumerative
itecbhlgûes

. . .
eCheKtie

StWèîê

Figure 1. Classes o f search techniques.

Population
(chromosomes)

neratio

Evaluation
(fitness)

Manipulation^

Selection
(mating pool)

Figure 2. The GA i^cie.

Genetic algorithms
A genetic algorithm em ulates biologi­

cal evolutionary theories to solve op ti­
mization problem s. A G A comprises a
set of individual elem ents (the popula­
tion) and a set of biologically inspired op­
erators defined over the population it­
self. According to evolutionary theories,
only the most suited elem ents in a popu­
lation are likely to survive and generate
offspring, thus transm itting their biolog­
ical heredity to new generations. In com­
puting term s, a genetic algorithm maps a
problem onto a set of (typically binary)
strings, each string representing a poten­
tial solution. The G A then manipulates
the most promising strings in its search

for im proved solutions. A G A operates
through a simple cycle o f stages:

(1) creation of a “population” of strings,
(2) evaluation of each string,
(3) selection of "bes t” strings, and
(4) genetic m anipulation to create the

new population o f strings.

Figure 2 shows these four stages using
the biologically inspired G A term ino l­
ogy. Each cycle produces a new genera­
tion o f possible so lu tions for a given
problem. A t the first stage, an initial pop­
ulation o f potential solutions is created
as a starting point for the search. Each el­
em ent o f the population is encoded into
a string (the chrom osom e) to be manip-

June 1994 29

i-; LI-Y 4:*̂ ;
^ .Y (% w # C ro sso v e f point

O O O j O . O . O

< D (i> < x > ç ^ ^ m©► ^□► OjCDCD

Figure 3. Crossover.

ulated by the genetic operators. In the
next stage, the performance (or fitness)
of each individual is evaluated with re­
spect to the constraints imposed by the
problem. Based on each individual’s fit­
ness, a selection mechanism chooses

Figure 4. Mutation.

NGTH

Figure 5. Global constants and variable declarations in C.

jpopulatidn

EULATIO

Figure 6. Initializa­
tion routine.

select(sum_fitness) ‘‘. T ‘ ^

parsum = 0; - - r . ~
m d = rand() % sum_fitness;
.'. -0— . ^/ - - ÿ.1./ .

for(i=0;i<PdPULATION_SIZE,, ________,
' parsum"+=^p6ol[i].fitne^;^^ I’ckiklfo^^^

return (-i); ;; ‘ , % h ' i.i- %/* rettim s à i^lecteid ^ r in g */ '

Figure 7. Selection function.

“m ates" for the genetic m anipulation
process. The selection policy is ultimately
responsible for assuring .survival o f the
best fitted indi\iduals. The com bined
evaluation and selection process is called
reproduction.

The manipulation process uses genetic
operators to produce a new population
of individuals (offspring) by manipulating
the “genetic information,” referred to as
genes, possessed by members (parents)
o f the current population. It com prises
two operations: crossover and m utation.
Crossover recombines a population’s ge­
netic material. The selection process as­
sociated with recombination assures that
special genetic structures, called building
blocks, are retained for future g en era ­
tions. The building blocks then represent
the most fitted genetic structures in a
population.

The recombination process alone can ­
not avoid the loss of promising building
blocks in the presence of o ther genetic
structures, which could lead to local m in­
ima. Also, it cannot explore search space
sections not represented in the popu la­
tion 's genetic structures. Here mutation
comes into action. The mutation operator
introduces new genetic structures in the
population by randomly modifying some
of its building blocks, helping the search
algorithm escape from local m in im a’s
traps. Since the modification is not re ­
lated to any pre\ious genetic structure of
the population, it creates different struc­
tures representing o ther sections of the
search space.

The crossover operator takes two chro­
mosomes and swaps part of their genetic
inform ation to produce new ch rom o­
somes. This operation is analogous to sex­
ual reproduction in nature. As Figure 3
shows, after the crossover point has been
random ly chosen, portions of the parent
strings PI and P2 are swapped to produce
the new offspring strings O l and 0 2 . In
Figure 3 the crossover operator is applied
to the fifth and sixth elem ents o f the
string. Mutation is implemented by occa­
sionally altering a random bit in a string.
Figure 4 shows the mutation operator ap ­
plied to the fourth elem ent of the string.

A number of different genetic o p e ra ­
tors have been introduced since H olland
proposed this basic model. They are, in
general, versions of the recom bination
and genetic alteration processes adapted
to the requirem ents of particular p ro b ­
lems. Examples of o ther genetic o p e ra ­
to rs are inversion, dom inance, and ge­
netic edge recombination.

30 C O M PU T E R

The offspring produced by the genetic
m anipulation process are the next popu­
lation to be evaluated . G enetic algo­
rithm s can replace either a whole popu­
lation (generational approach) o r its less
fitted m em bers only (steady-state ap ­
proach). The creation-evaluation-selec-
tion-m anipulation cycle repeats until a
satisfactory solution to the problem is
found or some o th e r term ination crite­
rion is met.

This description of the computational
model reviews the steps needed to design
a genetic algorithm. However, real imple­
mentations lake into account a number of
problem-dep>endent param eters such as
the population size, crossover and muta­
tion rates, and convergence criteria. G As
are very sensitive to these param eters (a
discussion of the methods for setting them
up is beyond the scope of this article).

Sequential G As. To illustrate the im­
plem entation o f a sequential genetic al­
gorithm we use G oldberg’s simple func­
tion optim ization example^ and examine
its program m ing in C. T he first step in
optimizing the function f(x) = over the
interval (param eter set) [0-31] is to en­
code the param eter set x, for example, as
a five-digit binary string (00000-111111.
Ne.xt we generate the initial population of
four potential solutions, shown in Table
I. using a random num ber generator.

To program this G A function op ti­
mization, we declare the population pool
as an array with four elem ents, as shown
in Figure 5, and then initialize the struc­
ture using a random generator, as shown
in Figure 6. O ur next step is reproduc­
tion. R eproduction evaluates and selects
pairs of strings for m ating according to
their relative strengths (see Table 1 and
the associated C code in Figure 7). One
copy of string 01101, two copies of 11000,
and one copy of 10011 are selected by us­
ing a roulette w heel method.^

Next we apply the crossover operator,
as illustrated in Table 2. Crossover oper­
ates in two steps (see Figure 8). First it
determ ines w hether crossover is to occur
on a pair o f strings by using a flip func­
tion: tossing a biased coin (with proba­
bility pcross). If the result is heads
(tru e), the strings are sw apped; the
crossover_poini is determ ined by a ran­
dom num ber generator. If tails (false),
the strings are simply copied. In the ex­
am ple, crossover occurs at the fifth posi­
tion for the first pair and the third posi­
tion for the other.

A fter crossover, the m utation opera­

Tablc 1. Initial strings and fitness values.

Initial f i x) Strength
Population X (fitness) (percent of total)

0 1101 13 169 14.4
1 1000 24 576 49.2
0 1 0 0 0 8 64 5.5
1001 1 19 361 30.9

Sum_Fitness = 1,170 (100.0)

Table 2. Mating pool strings and crossover.

M ating Pool Mates Swapping New Population

01 1 0 1 1 0 110 (1] 0 1 1 0 0
1.1000 2 1 100(0] 11001

1 1000 2 1 1 (0 0 0] 11011
1001 1 4 1 0 (0 1 1] 1 0 0 0 0

onfiF);ikimROM

Figure 8. The crossover routine.

to r is applied to the new population,
which may have a random bit in a given
string modified. The mutation function
in Figure 9 on the next page uses the bi­
ased coin toss (flip) with probability pniui
to determ ine whether to change a bit.

Table 3 shows the new population, to

which the algorithm now applies a term i­
nation test. Term ination criteria may in­
clude the sim ulation time being up, a
specified num ber of generations ex ­
ceeded. or a convergence criterion satis­
fied. In the exam ple, we might set the
num ber of generations to 50 and the con-

June 1994 31

vergence as an average fitness im prove­
ment of less than 5 percent between gen­
erations. For the initial population, the
average is 293, that is, (169 + 576 + 64 +
361) f 4. while for the new population it
has improved to 439, that is, 66 percent,
(see the sidebar on Sequential G A C list­
ing on page 34).

Parallel G As. T he G A paradigm of­
fers intrinsic parallelism in searches for
the best solution in a large search space,
as dem onstra ted by H olland’s schem a
th eo rem .’ Besides the intrinsic pa ra l­
lelism, G A com putational m odels can
also exploit o ther levels of parallelism
because of the natural independence of
the genetic m anipulation operations.

A parallel G A is generally formed by
parallel components, each responsible for
m anipulating subpopulations. A s was
shown in Figure 1, there are two classes of
parallel G As: centralized and distributed.
The first has a centralized selection mech­
anism: A single selection operator works
synchronously on the global population
(of subpopulations) at the selection stage.
In distributed parallel G As, each parallel
com ponent has its own copy o f the selec­

tion operato r, which works asyn-
chronously. In addition, each component
communicates its best strings to a subset
of the other components. This process re ­
quires a migration operator and a m igra­
tion frequency defining the comm unica­
tion interval.

The A sparagos algorithm ’ has a d is­
tributed mechanism. Figure 10 shows a
skeleton C-like program , based on this
algorithm, for the simple function op ti­
mization discussed for sequential algo­
rithm s. In this parallel program the
statem ents for initialization, selection,
crossover, and m utation remain alm ost
the same as in the sequential program .
For the main loop, parallel (PA R) sub­
populations are set up for each com po­
nent, as well as values for the new p a ­
rameters. Each component then executes
sequentially, apart from the parallel m i­
gration operator.

Taxonomy
To review programming environments

for genetic algorithm s, we use a sim ple
taxonomy of three m ajor classes: appli-

»

Figure 9. The
m utation operator
C im plem entation.

Table 3. Second generation and its fitness values.

Initial Population .V
f{x)

(fitness)
Strength

(percent of total)

0 1 1 0 0 12 144 8.2
11001 25 625 35.6
11011 27 729 41.5
10000 16 256 14.7

Sum_Fitness = 1,754 (100.0)

cation-oriented systems, algorithm -
oriented systems, and toolkits.

Application-oriented systems are essen­
tially “black boxes” that hide the GA im­
plementation details. Targeted at business
professionals, some of these systems sup­
port a range of applications; others focus
on a specific domain, such as finance.

Algorithm -oriented systems support
specific genetic algorithms. They subdi­
vide into

• algorithm -specific systems, which
contain a single genetic algorithm ,
and

• algorithm libraries, which group to ­
gether a variety of genetic algorithms
and operators.

These system s are often supplied in
source code and can be easily incorpo­
rated into user applications.

Toolkits provide many program m ing
utilities, algorithms, and genetic opera­
tors for a wide range of application do­
mains. These programming systems sub­
divide into

• educational systems that help novice
users obtain a hands-on introduction
to G A concepts, and

• general-purpose systems that provide
a comprehensive set of tools for pro­
gram ming any G A and application.

Table 4 lists the G A program m ing en­
vironm ents exam ined in the next sec­
tions, according to their categories. For
each category we present a generic sys­
tem overview, then briefly review exam ­
ple systems, and finally examine one sys­
tem in more detail, as a case study. The
parallel environm ents G A U CSD , Pega­
sus, and G A M E are also covered, but no
com m ercial parallel environm ents are
currently available. See the sidebar “D e­
velopers address list” on page 37 for a
comprehensive list of program m ing en ­
vironm ents and their developers.

Application-
oriented systems

Many potential users of a novel com ­
puting technique are interested in appli­
cations rather than the details of the tech­
nique. Application-oriented systems are
designed for business professionals who
want to use genetic algorithms for spe-

32 COMPUTER

«sear

eilic purposes without having to acquire
detailed knowledge about theni. For ex­
ample. a m anager in a trading company
may need to optim ize its delivery sched­
uling. By using an application-oriented
programming environm ent, the manager
can configure an application for sched­

ule optimization based on the traveling-
salesman problem w ithout having to
know the encoding technique or the ge­
netic operators.

Overview. A typical application-ori­
ented environm ent is analogous to a

spreadsheet or word-processing utility.
Its menu-driven interface (tailored to
business users) gives access to param e­
terized modules (targeted at specific do ­
mains). T he user interface provides
menus to configure an application, m on­
itor its execution, and, in certain cases,
program an application. Help facilities
are also provided.

Survey. Application-oriented systems
have many innovative strategies. Systems
such as PC/Beagle and X pertR ule
GenAsys are expert systems that use
G As to generate new rules to expand
their knowledge base of the application
domain. Evolver is a companion utility
for spreadsheets. Omega is targeted at fi­
nancial applications.

Evolver. This add-on utility works
within the Excel, Wingz, and Resolve
spreadsheets on Macintosh and PC com­
puters. Axcelis, its m arketer, describes it
as “an optimization program that extends
mechanisms of natural evolution to the
world o f business and science applica­
tions." A user starts with a model of a sys­
tem in the spreadsheet and calls the
Evolver program from a menu. A fter the
user fills a dialog box with the inform a­
tion requ ired (the cell to minimize or
maximize), the program starts working,
evaluating thousands of scenarios auto-
nfaticallv until it has found an optimal an­
swer. T he program runs in the back­
ground, freeing the user to work in the
foreground.

When Evolver finds the best result, it
notifies the user and places the values
into the spreadsheet for analysis. This is
an excellent design strategy, given the im­
portance o f spreadsheets in business. In
an attem pt to improve the system and ex-

Figure 10. Parallel G A with migration.

Table 4. Program m ing environm ents and their categories.

1 Algorithm -Oriented Systems i Toolkits

A pplication- Algorithm- Algorithm 1 Educational G eneral-
O riented Systems specific systems libraries 1 systems purpose systems

Evolver Escapade EM ! G A Workbench Engeneer
j Omega G A G A 1 G AM E

PC/Beagle G AU CSD MicroGA

I X pertR ule j Genesis O O G A
Pegasus

G enA svs 11 G enitor

June 1994 33

paiui ils m arket, Axcelis introduced
En olver 2.Ü, which lias main toolkit-like
features. The new version can integrate
with o th e r applications in addition to
spreadsheets. It also offers more flexibil-
it\ in accessing the Evolver engine: This
can he done from any Microsoft W in­

dows application that can call a Dynamic
Link Library.

Omega. Î he O n eg a Predictive M od­
elling System, m arketed by KiQ, is a
powerful approach to developing predic­
tive models. It exploits advanced G A

techniques to create a tool that is “ flexi­
ble, powerful, inform ative and straight­
forward to use.” according to its devel­
opers. G eared to the financial dom ain.
Omega can be applied to direct m arket­
ing, insurance, investigations (case scor­
ing), and credit m anagem ent. The cnvi-

intfi Împ
ude <stdlib.h>

ncluddatdi6.1G^
incIude.<mathJi>mï

numflSirahd

ne POPULATION

fhtefinePG R O SS^O .6 ibaTize

m

jx^labon podlfPOPuLy

utmRnëss

avaifiîrv̂ ;î avg3

MORULA

ipTPCRQSS
TK)N%

34 C O M PU T E R

lonm ent offers facilities for autom atic
handling o f data; business, statistical, or
custom measures of performance; simple
and complex profit modeling; validation
sample tests; advanced confidence tests;
real-time graphics; and optional control
over the internal genetic algorithm.

PC/Beaglc. Produced by Pathway Re­
search, this rule-finder program applies
machine learning techniques to create a
set of decision rules for classifying exam­
ples previously extracted from a d a ta ­
base. It has a module that generates rules
by natural selection. Further details are

given in the case study section.

XpertRule GenAsys. X pertR u le G en­
Asys is an expert system shell with em ­
bedded genetic algorithms. M arketed by
A ttar Software, this GA expert system
solves scheduling and design problems.

V - • • IV

■■’{I ' ■ -

' _'.v ' .

■ ? r . ; ; ■

June 1994 35

The system com bines the power o f ge­
netic algorithm s in evolving solutions
with the power of rule-base programming
in analyzing the effectiveness o f so lu­
tions. Rule-base programming can also
be used to generate the initial solutions
for the genetic algorithm and for postop­
tim ization planning. Problems this sys­
tem can solve include optimization of de­
sign param eters in the electronics and
avionics industries, route optimization in
the d istribu tion sector, and production
scheduling in manufacturing.

Case study: PC/Beagle. PC/Beagle is a
ru le-finder program that exam ines a
database of examples and uses machine
learn ing techniques to create decision
rules for classifying those examples, tu rn­
ing d a ta into knowledge. The softw are
analyzes an expression vis a historical
database and develops a series o f rules to
explain when the target expression is
false o r true. T he system contains six
main com ponents generally run in se ­
quence:

• S E E D (selectively extracts example
d a ta) puts external data into a suit­
able form at and may append leading
o r lagging data fields as well.

• R O O T (rule-oriented optim ization
tester) tests an initial batch o f user-
suggested rules.

• H E R B (heuristic evolutionary rule
b reeder) generates decision rules by
natural selection, using G A philoso­
phy and ranking mechanisms.

• STEM (signature table evaluation
m odule) m akes a signature table
from the rules produced by H ER B .

• L E A F (logical evaluator and fo re­
caster) uses STEM output to do fore­
casting or classification.

• PLU M (procedural language utility
m aker) can convert a Beagle rule file
into a language such as Pascal o r For­
tran so o ther softw are can use the
knowledge gained.

PC/Beagle accepts data in ASCII for­
m at. with item s delim ited by com m as,
spaces, o r tabs. Rules are produced as
logical expressions. The system is highly
versatile, covering a wide range o f appli­
cations. Insurance, w eather forecasting,
finance, and forensic science are some ex­
amples. PC/Beagle requires an IBM PC-
com patib le com puter with at least 256
Kbytes o f RAM and an MS-DOS o r PC-
DOS operating system, version 2.1 or
later.

A lg o r ith m -o r ie n te d
s y s t e m s

O ur taxonom y divides algorithm -
oriented systems into algorithm-specific
systems that contain a single algorithm
and algorithm libraries, which group to ­
gether a variety of genetic algorithms and
operators.

Algorithm-specific environments em ­
body a single powerful genetic algorithm.
These systems have typically two groups
o f users: system developers requiring a
general-purpose GA for their applica­
tions and researchers interested in the de­
velopm ent and testing o f a specific algo­
rithm and genetic operators.

A lgorithm -specific
environm ents

em body a
sin g le pow erful

genetic algorithm .

O verview o f algorithm -oriented sys­
tem s. In general, these systems come in
source code so expert users can make a l­
terations for specific requirements. They
have a m odular structure for a high d e ­
gree of modifiability. In addition, user in­
terfaces are frequently rudimentary, o f­
ten comm and-line driven. Typically the
codes have been developed at universi­
ties and research centers, and are avail­
ab le free over worldwide com puter re ­
search networks.

System survey. The most well known
program m ing system in this category is
the pioneering Genesis,^ which has been
used to im plem ent and test a variety o f
new genetic operators. In Europe proba­
bly the earliest algorithm-specific system
was G A G A . For scheduling problem s,
G enitor'^ is ano ther influential and suc­
cessful system. G A U CSD permits paral­
lel execution: It distributes several copies
of a Genesis-based algorithm to Unix ma­
chines in a netw ork. Escapade'^ uses a
som ewhat different approach — an evo­
lutionary strategy.

Escapade. Escapade (Evolutionary
Strategies C apable of Adaptive Evolu­

tion) provides a sophisticated environ­
ment for a particular class of evolutionary
algorithms, called evolutionary strategies.
Escapade is based on Korr. Schw efcl’s
im plem entation o f a (p. +A.)-evolution-
ary strategy, where the p best individu­
als of the X offspring, added to their par­
ents, survive and become the parents of
the new generation. The system provides
an elaborate set o f monitoring tools to
gather data from an optimization run of
Korr. A ccording to Escapade’s author, it
should be possible to incorporate a dif­
ferent im plem entation of an evolution­
ary strategy o r even a GA into the
system using its runtim e support. The
program is separated into several inde­
pendent com ponents that support the
various tasks during a simulation run.
The major modules are param eter setup,
runtime contr ol, Korr, generic data m on­
itors, custom ized data m onitors, and
monitoring support.

During an optimization run, the m on­
itoring modules are invoked by the main
algorithm (K orr o r some o ther evolu­
tionary strategy o r G A im plem entation)
to log internal quantities. The system is
not equipped with any kind of graphical
interface. Users must pass all param eters
for a sim ulation as comm and-line op ­
tions. For ou tpu t, each data m onitor
writes its data into separate log files.

GAG A. T he G enetic Algorithm s for
General Application were originally pro­
gram med in Pascal by Hillary A dam s at
the University of York. The program was
la ter m odified by Ian Poole and trans­
lated into C by Jon Crowcroft at U niver­
sity College London. G A G A is a task-
independent genetic algorithm. The user
must supply the target function to be op­
timized (m inimized o r maximized) and
some technical G A parameters, and wait
for the output. The program is suitable
for the m inim ization of many difficult
cost functions.

GAU CSD. This software was devel­
oped by Nicol Schraudolph at the U ni­
versity o f California, San Diego (hence
UCSD).'^ T he system is based on G ene­
sis 4.5 and runs on Unix, MS-DOS, Cray
operating system, and VMS platform s,
but it presum es a Unix environm ent.
G A U C SD com es with an awk script
called “w rapper,” which provides a
higher level o f abstraction for defining
the evaluation function. By supplying the
code for decoding and printing this func­
tion’s param eters automatically, it allows

36 CO M PU TER

the direct use of most C functions as eval­
uation functions, with few restrictions.
The software also includes a dynamic pa­
ram eter encoding technique developed
by Schraudolph. which radically reduces
the gene length while keeping the desired
level of precision for the results. Users
can run the s\-stem in the background at
low priority using the go command.

The go com m and can also be used to
execute G A U C SD on rem ote hosts. The
results are then copied back to the user’s
local directory-, and a report is produced
if appropriate . If the host is not binary
com patible, G A U C S D compiles the

whole system on the rem ote host. Ex­
perim ents can be queued in files, d is­
tributed to several hosts, and executed in
parallel. The experiments are distributed
according to a specified loading factor
(how many programs will be sent to each
host), along with the rem ote execution
argum ents to the go com m and. The rv
command notifies the user via write or
mail when all experiments are completed.
G A U CSD is clearly a very powerful
system.

Genesis. The G enetic Search Im ple­
mentation System, or Genesis, was w rit­

ten by John Grefenstcttc* to promote the
study of genetic algorithms for function
optimization. It has been underdevelop­
ment since 1981 and widely distributed
to the research com m unity since 1985.
Tlie package is a set of routines written in
C. To build their own genetic algorithms,
users provide only a routine with the fit­
ness function and link it with the o ther
routines. Users can also modify modules
or add new ones (for exam ple, genetic
operators and data monitors) and create
a different version o f G enesis. In fact.
Genesis has been used as a base for test
and evaluation of a variety of genetic al-

mevelopersTaddres

C Darwin
Attar-Software

"Eeigb’Jlafjc^hireTij?

^'.QCbmpuS^^!

'H .M . JJBc
T e c h n jc a l^ ^ y e rs t ty ^ ^ B e r t

volutionBionics
Techn

BioandNOTTOinfonrotics ofnDÜterr-Resear*&qup
Ackefstas^T^6.(A
D-13355 ermariy

,i'bom.@ -bertiru

E s ^
Frank tioBgiWster
Univeisity îDprtii
S y s te tp ^ k j .
D-4422^dortmbnd?t3e
Telephdne$^9^ljS^^I^

George
SystetrilTtneingence't
Logicâ Ĉ %ridge
Be^em ahHouse '
104 Hills Road

Telephon^^MYl
Fax:444^223 322315

&
4668E^Sn#en

Fax: 1 2 0 6 ^ ^ 6 8 1 ^SteveWi
E m e rg e n t^ h a

G A W
M arjçyu^ .
CambndoeJSonsu

olAtto'sC

June 1994

eorilhm s and operators. It was primarily
developed to work in a scientific envi­
ronm ent and is a suitable tool for re ­
search. G enesis is highly modifiable and
provides a variety of statistical informa­
tion on output.

Genitor. The modular GA package
G enitor (G enetic Im plementor) has ex­
amples for floating-point, integer, and bi­
nary representations. Its features include
many sequencing operators, as well as sub­
population modeling. The software pack­
age is an implementation of the Genitor
algorithm developed by Darrel Whitley.'**

G en ito r has two m ajor differences
from standard genetic algorithms. The
first is its explicit use of ranking. Instead
of using fitness-proportionate reproduc­
tion, G enitor allocates reproductive trials
according to the rank of the individual in
the population. The second difference is
that G en ito r abandons the generational
approach (in which the whole population
is replaced with each generation) and re­
produces new genotypes on an individ­
ual basis. U sing the steady-state ap ­
proach, G en ito r lets some parents and
offspring coexist. A newly created off­
spring replaces the lowest ranking indi­
vidual in the population ra ther than a
parent. Because G enitor produces only
one new genotype at a time, inserting a
single new individual is relatively simple.
Furtherm ore, the insertion automatically
ranks the individual in relation to the ex­
isting pool — no further m easure of the
relative fitness is needed.

Case study: Genesis. Genesis^ is the
most well known software package for
GA developm ent and simulation. It runs
on m ost m achines with a C compiler.
Version 5.0, now available from the Soft­
w are P artnersh ip , runs successfully on
both Sun workstations and IBM PC-com­
patible com puters, according to its au ­
thor. The code is designed to be portable,
but m inor changes may be necessary for
o ther systems.

Genesis provides the fundamental pro­
cedures for genetic selection, crossover,
and m utation. The user is only required
to provide the problem -dependent eval­
uation function.

G enesis has three levels o f represen­
tation for the structures it evolves. The
lowest level, packed representation, max­
imizes both space and time efficiency in
manipulating structures. In general, this
level of representation is transparent to
the user. T he next level, the string repre­

sentation, represents structures as null-
term inated arrays of characters, or
“chars.” This structure is for users who
wish to provide an arbitrary in terpre ta­
tion of the genetic structures, for exam ­
ple, nonnum eric concepts. The third
level, the floating-point representation,
is appropriate for many numeric o p ti­
mization problems. At this level the user
views genetic structures as vectors or real
numbers. For each param eter, o r gene,
the user specifies its range, number of val­
ues, and output format. The system then
autom atically lays out the string repre-

A lgorithm libraries
provide a

pow erfu l co llection
o f param eterized

genetic algorithm s
and operators.

sentation and translates between the
user-level genes and lower rep resen ta­
tion levels.

G enesis has five major modules:

• Initialization. The initialization p ro ­
cedure sets up the initial population.
Users can “seed” the initial popula­
tion with heuristically chosen struc­
tures, and the rest of the population
is filled with random structures.
U sers can also initialize the popula­
tion with real numbers.

• Generation. This m odule executes
the selection, crossover, m utation,
and evaluation procedures, and col­
lects some data.

• Selection. The selection m odule
chooses structures for the next gen ­
era tion from the structures in the
current generation. The default se­
lection procedure is stochastic, based
on the roulette wheel algorithm, to
guaran tee that the num ber of o ff­
spring of any structure is bounded by
the floor and ceiling o f the (real-val­
ued) expected num ber of offspring.
G enesis can also perform selection
using a ranking algorithm. Ranking
helps forestall p rem ature conver­
gence by preventing “super" ind i­
viduals from taking over the popula­
tion within a few generations.

• Mutation. A fter Genesis selects the
new population, it applies m utation
to each structure. Each position is
given a chance (according to the mu­
tation rate) of undergoing mutation.
If mutation is to occur. G enesis ran­
domly chooses 0 or 1 for that posi­
tion. If the m utated structure differs
from the original one, it is marked for
evaluation.

• Crossover. The crossover module ex­
changes alleles betw een adjacent
pairs o f the first n structures in the
new population. The result o f the
crossover rate applied to the popula­
tion size gives the number n of struc­
tures to operate on. Crossover can be
im plem ented in a variety o f ways. If,
after crossover, the offspring are dif­
ferent from the parents, then the off­
spring replace the parents and are
m arked for evaluation.

These basic modules are added to the
evaluation function supplied by the user
to create the customized version o f the
system. The evaluation procedure takes
one structure as input and returns a dou­
ble-precision value.

To execute Genesis, three program s
are necessary: set-up, report, and ga. The
setup program prom pts for a num ber of
input param eters. All the inform ation is
stored in files for future use. U sers can
set the type o f representation, num ber of
genes, num ber of experiments, trials per
experiment, population size, length of the
structures in bits, crossover and mutation
rates, generation gap, scaling window,
and many o ther param eters. Each pa­
ram eter has a default value.

The report program runs the genetic
algorithm and produces a description of
its performance. It summarizes the mean,
variance, and range of several m easure­
m ents, including on-line perform ance,
off-line perform ance, average p e rfo r­
mance of the current population, and cur­
rent best value.

Overview of algorithm libraries. A lgo­
rithm libraries provide a pow erful col­
lection o f param eterized genetic a lgo­
rithm s and operators, generally coded in
a common language, so users can easily
incorporate them in applications. These
libraries are modular, letting users select
a variety of algorithm s, operators, and
param eters to solve particular problems.
They allow parameterization so users can
try different models and compare the re ­
sults for the sam e problem . N ew algo­

38 C O M PU T E R

r i t h m s coded in high-level languages like
C o r Lisp can be easily incorporated into
the libraries. The user interface facilitates
m odel configuration and m anipulation,
and presen ts the results in different
shapes (tables, graphics, and so on).

Library survey. The two leading algo­
rithm libraries are EM and O O G A . Both
provide a comprehensive selection of ge­
netic algorithms, and EM also supports
evolutionary strategy simulation. O O G A
can be easily tailored for specific prob­
lems. It runs in Common Lisp and CLOS
(C om m on Lisp O bject System), an o b ­
ject-oriented extension of Comm on Lisp.

EM. D eveloped by H ans-M ichael
Voigt, Joachim Bom, and Jens Treptow*^
at the Institute for Informatics and Com­
puting T echniques in G erm any, EM
(E volution M achine) sim ulates natural
evolution principles to obtain efficient
optim ization procedures fo r com puter
models. The authors chose different evo­
lutionary m ethods to provide algorithms
with different numerical characteristics.
The programming environm ent supports
the following algorithms:

• R echenberg’s evolutionary s tra t­
egy,'"

• R echenberg and Schw efel’s evo lu­
tionary strategy,*®**

• B om ’s evolutionary strategy,
• G o ldberg ’s simple genetic a lgo­

rithm,^ and
• Voigt and B om ’s genetic algorithm.*®

To run a simulation, the user provides
the fitness function coded in C. The sys­
tem calls the compiler and linker, which
produce an executable file containing the
selected algorithm and the user-supplied
fitness function.

EM has extensive m enus and default
p a ram ete r settings. The program p ro ­
cesses data for repeated runs, and its
graphical presentation of result^ includes
• -n-line displays of evolution progress and
one-, two-, and three-dimensional graphs.
The system runs on an IBM PC-com pat­
ible com puter with the M S-DOS opera t­
ing system and uses the T urbo C (o r
T urbo C-M-) compiler to generate the ex­
ecutable files.

O O G A. The O bject-O riented G enetic
\lg o rith m is a simplified version o f the
L:sf>-based software developed in 1980 by
Lawrence Davis. He created it mainly to
support his book,^ but it can also be used

June 1994

to develop and test customized or new ge­
netic algorithms and genetic operators.

Case study: OOGA. This algorithm is
designed so each technique used by a G A
is an object that can be modified, d is­
played, or replaced in an object-oriented
fashion. It provides a highly modular a r­
chitecture in which users incrementally
write and modify com ponents in Com ­
mon Lisp to define and use a variety of
G A techniques. The files in the O O G A
system contain descriptions of several
techniques used by G A researchers, but

Toolkits contain
educational system s

for novice users
and general-purpose

system s w ith a
com prehensive

set o f tools.

they are not exhaustive. O O G A contains
three major modules:

• The evaluation module has the eval­
uation (or fitness) function that mea­
sures the worth of any chromosome
for the problem to be solved.

• The population module contains a
population of chromosomes and the
techniques for creating and manipu­
lating that population. T here are a
num ber of techniques for population
encoding (binary, real number, and
so on), initialization (random binary,
random real, and norm al d istribu­
tion) and deletion (delete all and
delete last).

• The reproduction module has a set of
genetic operators for selecting and
creating new chrom osomes. This
m odule allows G A configurations
with more than one genetic operator.
The system creates a list with user-
selected operators and executes their
param eter settings, before executing
them in sequence. O O G A provides a
number of genetic operators for se­
lection (for example, roulette wheel),
crossover (one- and two-point
crossover, m utate-and-crossover),
and mutation. The user car. set all pa­

ram eters, such as the bit-m utation
and crossover rates, •

The last two m odules are, in fact, li­
braries of different techniques enabling
the user to configure a particular genetic
algorithm. When the genetic algorithm is
run, the evaluation, population, and re­
production modules work together to
evolve a population o f chromosomes to­
ward the best solution. The system also
supports some normalization (for exam ­
ple, linear norm alization) and param e­
terization techniques for altering the ge­
netic opera to rs’ relative perform ance
over the course of the run.

Toolkits
T oolkits subdivide into educational

systems for novice users and general-pur­
pose systems that provide a com prehen­
sive set o f programming tools.

Educational systems overview. Educa­
tional progr amming systems help novices
gain a hands-on introduction to G A con­
cepts. They typically provide a rudim en­
tary graphical interface and a simple con­
figuration menu. Educational systerte are
typically im plem ented on PCs for porta­
bility and low cost. For ease of use, they
have a fully menu-driven graphical inter­
face. G A Workbench*^ is one of the best
exam ples o f this class of program m ing
environment.

Case study: G A W orkbench. This en ­
vironm ent was developed by M ark
Hughes of Cambridge Consultants to run
on M S-DOS/PC-DOS microcomputers.
With this mouse-driven interactive p ro ­
gram, users draw evaluation functions on
the screen. The system produces runtim e
plots o f G A population distribution, and
peak and average fitness. It also displays
many useful population statistics. Users
can change a range of param eters, in ­
cluding the settings of the genetic opera­
tors, population size, and breeder selec­
tion.

G A W orkbench’s graphical interface
uses a VGA or E G A adapter and divides
the screen into seven fields consisting of
m enus or graphs. T he command menu is
a m enu bar that lets the user en te r the
target function and make general com ­
mands to start or stop a G A execution.
A fte r selecting “ E n ter T arg” from the
com m and menu, the user inputs the ta r­
get function by drawing it on the target

39

funciioii ^Ktph using the mouse cursor.
The ali’orilli/n control chapter can con­

tain two pages (hence "chap ter”), but
onlv one page is visible at a time. Clicking
with the mouse on screen arrows lets the
user flip pages forward o r backward. The
initial page, the "simple genetic algorithm
page." shows a number of input varfables
used to control the algorithm's operation.
The variable values can be num eric or
text strings, and the user can alter any of
these values by clicking the left mouse
button on the up or down arrows to the
left of each value. The “general program
control variables page” contains variables
related to general program operation
rather than a specific algorithm. Here the
user can select the source of data for plot­
ting on the output plot graph, set the scale
for the X or y axis, seed the random num ­
ber g en e ra te d / or determ ine the fre­
quency with which the population distri­
bution histogram is updated.

The output variables box contains the
current values of variables relating to the
current algorithm. For the simple genetic
algorithm , a coun ter o f generations is
presented as well as the optimum fitness
value, curren t best fitness, average fit­
ness. optim um x, current best x, and av­
erage .V. T he population distribution his­
togram shows the genetic algorithm ’s
distribution of organisms by value of .c.
The histogram is updated according to
the frequency set in the general program
control variables page. The output graph
plots several outpu t variables against
time.

From any graph, the user can read the
coordinate values o f the point indicated
by the m ouse cursor. W hen the user
moves the cursor over the plot area of a
graph, it changes to a cross hair and the
axis value box displays the coordinate
values.

By drawing the target function, vary­
ing several numeric control param eters,
and selecting different types of algo­
rithms and genetic operators, the novice
user can practice and see how quickly the
algorithm can find the peak value, o r in­
deed if it succeeds at all.

G eneral-purpose program m ing sys­
tems overviw. G eneral-purpose systems
are the ultim ate in flexible G A program ­
ming. Not only do they let users develop
their own G A applications and algo­
rithms; they also let users customize the
system.

These programming systems provide a
com prehensive toolkit, including

• a sophisticated graphical interface.
• a param eterized algorithm library,
• a high-level language for program ­

ming G As, and
• a n open architecture.

Users access system components via a
menu-driven graphical interface. The al­
gorithm library is normally "open.” let­
ting users modify or enhance any m od­
ule. A high-level language — often
object-oriented — may be provided for

G eneral-purpose
system s let

program m ers develop
app lication s and
algorithm s and

custom ize the system .

program m ing GA applications, a lgo­
rithms, and operators through specialized
data structures and functions. And be­
cause parallel G As are becoming im por­
tant, systems provide translators to par­
allel machines and distributed systems,
such as networks of workstations.

General-purpose survey. The num ber
of general-purpose systems is increasing,
stimulated by growing interest in G A ap>-
plications in many domains. Systems in
this category include Splicer, which pre­
sents interchangeable libraries for devel­
oping applications; MicroG A, which is an
easy-to-use object-oriented environment
for PCs and Macintoshes; and the parallel
environm ents E ngeneer. G A M E , and
Pegasus.

Engeneer. Logica Cam bridge devel­
oped Engeneer'* as an in-house environ­
ment to assist in G A application devel­
opm ent in a wide range of domains. The
C software runs on Unix systems as part
of a consultancy and systems package. It
supports both interactive (X Windows)
and batch (com m and-line) operation .
Also, it supports a certain degree of par­
allelism for the execution o f application-
dependent evaluation functions.

E ngeneer provides flexible m echa­
nisms that let the developer rapidly bring
the power o f G As to bear on new prob­
lem domains. Starting with the G enetic

Description language, the developer can
describe, at a high level, the structure of
the "genetic m ateria l” used. T he lan­
guage supports discrete genes with user-
defined cardinality and includes features
such as multiple models of chromosomes,
multiple species models, and nonevolv-
able parsing symbols, which can be used
for decoding complex genetic m aterial.

A descriptive high-level language, the
Evolutionary M odel Language, lets the
user describe the G A type in term s of
configurable options including popu la­
tion size, population structure and
source, selection m ethod, crossover type
and probability, m utation type and prob­
ability, inversion, dispersal m etbod, and
num ber of offspring per generation.

An interactive interface (with on-line
help) supports both high-level languages.
Descriptions and models can be defined
“on the fly” o r loaded from audit files,
which are autom atically created during a
G A run. Users can monitor GA progress
with graphical tools and by defining in­
tervals for autom atic storage of results.
A utom atic storage lets the user restart
E ngeneer from any point in a run , by
loading both the population at that time
and the evolutionary model.

To connect E ngeneer to different
problem dom ains, a user specifies the
name of the program to evaluate the
problem -specific fitness function and
constructs a simple parsing routine to in­
terp re t the genetic m aterial. E ngeneer
provides a library o f standard in terp re­
tation routines for commonly used rep­
resentation schemes such as gray coding
and perm utations. The fitness evaluation
can then be run as the G A ’s slave p ro ­
cess or via standard handshaking ro u ­
tines. Better still, it can be run on the m a­
chine hosting E ngeneer o r on any
sequential or parallel hardware capable
of connecting to a Unix machine.

GAME. The G enetic A lgorithm M a­
nipulation Environm ent is being devel­
oped as part o f the European C om m u­
nity (E SPR IT III) G A project called
Papagena. It is an object-oriented envi­
ronm ent for program m ing parallel GA
applications and algorithm s, and m ap­
ping them on to parallel machines. The
environm ent has five principal modules.

The virtual machine (VM) is the m od­
ule responsible for m aintaining data
structures that represent genetic infor­
mation and providing facilities for their
manipulation and evaluation. It isolates
genetic opera to rs and algorithm s from

4ri C O M PU TER

dealing directly with data structures
through a set o f low-level com m ands im­
plem ented as a collection o f functions
called the VM A pplication Program In­
terface (V M -A PI). The VM also sup ­
ports fine-grained parallelism and can ex­
ecute several com m ands simultaneously.
It comprises th ree modules: the produc­
tion m anager, the fitness evaluation
m odule, and the parallel support m od­
ule. The first executes genetic m anipula­
tion com m ands over the data structures
residing in the population pools. The
VM -API includes com m ands for swap­
ping, inverting, duplicating, and modify­
ing genetic structures. The fitness evalu­
ation m odule perform s the actual
evaluation of genetic structures and such
related calculations as to tal, average,
highest, and low est fitness values. The
problem -dependent objective function is
only "connected" to the fitness evalua­
tion module at link time. Finally, the par­
allel suppo rt m odule schedules com ­
m ands received by the VM am ong
several copies of the population manager
and fitness evaluation modules.

The parallel execution module (PEM)
im plem ents a hardw are/opera ting sys­
tem -independent interface that supports
multiple, parallel com putational models.
It provides straightforw ard API-contain-
ing functions for process initiation, te r­
mination, synchronization, and com m u­
nication. It is responsible for integrating
application com ponents (algorithms, op ­
erators. user interface, and virtual m a­
chine) defined as G A M E com ponents.
The PEM is im plem ented in two layers.
The upper layer defines the standard in­
terface functions used by all G A M E com­
ponents o f an application . T he lower
layer im plem ents the functions that map
the upper layer requests into the particu­
lar enW ronment. P E M ’s design perm its
porting G A M E applications to diverse
sequential and parallel machines by sim­
ply linking with the PEM library imple­
mented for the requ ired m achine/oper-
aüng system.

A graphical user interface m odule con­
taining simple graphic widgets for MS-
Windows and X W indows environm ents
is also provided. It enables applications to
input and ou tpu t data in a variety o f for­
mats. G A M E'S G U I contains standard
dialog boxes, buttons, and charting win­
dow s that can be associated by the user
o th events reported by the m onitoring

Control module.
The m onitoring control m odule

(.MCM) collects and displays (through

the G U I) events that occur during a sim­
u lation session. E ach G A M E com po­
nent notifies the MCM about messages
received o r any modification of the data
e lem ents it maintains. Users can select
the level of m onitoring for each com po­
nent. T he MCM can also inform other
G A M E com ponents about particular
even ts th rough its “ lists of interests"
mechanism .

T he genetic algorithm libraries com ­
prise a collection o f hierarchically orga-

N e w app lications
and algorithm s
can be created
by com bining

com p onents from
lib raries and setting

tbeir param eters.

nized modules containing predefined, pa­
ram eterized applications; genetic algo­
rithm s; and genetic operators. New ap ­
plications and algorithms can be created
by simply combining the required com­
ponen ts from the libraries and setting
their param eters in a configuration file.

T he environm ent is program m ed in
C-H-K and is available in source code for
full user modification.

M icroGA. M arketed by Emergent Be­
havior, M icroG A is designed for a wide
range o f complex problem s. It is small
and easy to use, but expandable. Because
the system is a framework of C++ objects,
several pieces working together give the
user som e default behavior. In this, Mi­
croG A is far from the library concept, in
which a set of functions (or classes) is of­
fered for incorporation in user applica­
tions. The framework is almost a ready-
to-use application. M icroGA needs only
a few user-defined param eters to start
running. The package comprises a com­
piled library of C++ objects, three sample
program s, a sample program with an O b­
ject W indows Library user interface
(from Borland), and the Galapagos code­
genera tion system. M icroGA runs on
IBM PC -com patible systems with Mi­
crosoft W indows 3.0 (or later), using
T urbo o r Borland C++. It also runs on

Macintosh computers.
The application developer can config­

ure an application manually or by using
G alapagos. This Windows-based code
generator produces, from a set of custom
tem plates and a little user-pro\ided in­
form ation, a complete stand-alone M i­
croG A application. It helps with the cre­
ation of a subclass derived from its
“T lndividual” class, required by the en ­
vironm ent to create the genetic data
structure to be manipulated. Galapagos
requests the number of genes for the pro­
totype individual, as well as the range of
possible values they can assume. The user
can specify the evaluation function, but
the Galapagos notation does not allow
complex o r notim athem aticai fitness
functions. Galapagos creates a class, de­
rived from Tlndividual, which contains
the specific member functions as required
by the user application.

Users can manually define applications
requiring complex genetic data structures
and fitness functions by having them in­
herit from the Tlndividual class and writ­
ing the code for its member functions. Af­
ter creating the application-dependent
genetic data structure and fitness func­
tion, M icroGA compiles and links ev ­
erything using the Borland or Turbo C++
compiler, and produces a file executable
in Microsoft Windows.

M icroGA is very easy to use and lets
users create G A applications quickly.
However, for real applications the user
must understand basic concepts o f o b ­
ject-oriented programming and Windows
interfacing.

Pegasus. The Programming Environ­
ment for Parallel G enetic Algorithms, or
Pegasus, was developed at the Germ an
National Research C enter for Com puter
Science. The toolkit can be used for pro­
gramming a wide range of genetic algo­
rithm s. as well as for educational pu r­
poses. The environm ent is written in
A N Sl-C and is available for many differ­
ent Unix-based machines. It runs on mul­
tiple instruction, m ultiple data parallel
machines, such as transputers, and dis­
tributed systems of workstations. Pega­
sus is structured in four hierarchical
levels:

• the user interface,
• the Pegasus kernel and library,
• compilers for several Unix-based ma­

chines, and
• the sequential and distributed o r par­

allel hardware.

June 1994 41

: •r»r' r* r»

The user interface consists of three
pans; the Pegasus script language, a
graphical interface, and a user library. The
liser library has the same functionality as
the Pegasus G A library. It lets the user
ctellne application-specific functions not
provided by the system librar\', using the
script language to specify the experiment.
The user defines the application-depen­
dent data structures, attaches the genetic
c u ra to r s to them , and specifies the I/O
interface. The script language specifies
the construction of subpopulations con­
nected via the graphical interface.

The kernel includes base and fram e
functions. T he base functions control the
execution order of the genetic opierators,
manage communication among different
processes, and provide I/O facilities.
They build general frames for simulating
G As and can be considered as au ­
tonom ous processes. They interpret the
Pegasus script, create appropriate data
structures, and describe the o rd e r of
frame functions. Invoked by a base func­
tion, a fram e function controls the exe­
cution of a single genetic operator. Frame
functions prepare the data representing
the genetic material and apply the genetic
opera to rs to it, according to the script
specification. The library contains genetic
operators, a collection of fitness func­
tions, and I/O and control procedures.
Hence, it gives the user validated m od­
ules for constructing applications.

C urrently Pegasus can be com piled
u iih the G N U C, RS/6000 C, A CE-C ,
and Alliant FX/2800Ccompilers. It runs
on Sun and IBM RS/6000 workstations,
as well as on the Alliant FX/28 M IM D
architecture.

Splicer. C reated by the Software Tech­
nology Branch of the Inform ation Sys­
tem s D irectorate at N ASA Johnson
Space Flight Center, with support from
the Mitre Corporation.’̂ Splicer is one of
the most com prehensive environm ents
available. We present it in the case study.

Case study: Splicer- The m odular a r­
chitecture includes three principal parts
— the genetic-algorithm kernel, in ter­
changeable representation libraries, and
interchangeable fitness modules — and
user interface libraries. It was originally
developed in C on an Apple Macintosh
and then ported to Unix w orkstations
(Sun 3 and 4, IBM RS/6CXX)) using X Win­
dows. The three modules are completely
portable.

The genetic-algorithm ker/ie/comprises

all functions necessary to m anipulate
populations. It operates independently
from the problem rep resen tation (e n ­
coding), the fitness function, and the user
interface. Some functions it supports are
creation of populations and members, fit­
ness scaling, parent selection and sam ­
pling. and generation of population
statistics.

In terchangeable representation li­
braries store a variety of predefined prob­
lem -encoding schem es and functions,
perm itting the G A kernel to be used for
any rep resen ta tion schem e. T here are

We expect the num ber
and d iversity o f

ap p lication -orien ted
system s to expand
rap id ly in the next

few years.

representation libraries for binary strings
and perm utations. T hese libraries con­
tain functions for the definition, creation,
and decoding o f genetic strings, as well
as m ultiple crossover and m utation o p ­
erators. Furtherm ore, the Splicer tool de­
fines interfaces to let the user create new
representation libraries.

Fitness m odules are in terchangeable
and store fitness functions. They are the
only com ponent o f the env ironm ent
a user must create o r a lter to solve a par­
ticu lar prob lem . U sers can create a
fitness (scoring) function, set the initial
values for various Splicer contro l p a ­
ram eters (for exam ple, population size),
and create a function that graphically dis­
plays the best solutions as they are found.

T here are two user interface libraries:
one for M acintoshes and one for X W in­
dows. They are event-driven and provide
graphical output in windows.

S tand-alone Splicer applications can
be used to solve problem s w ithout any
need for com puter programming. How­
ever, to create a Splicer application for
a particular problem, the user must create
a fitness m odule using C. Splicer. V er­
sion 1,0, is curren tly available free
to NASA and its contractors for use on
governm ent projects. In the future it will
be possible to purchase Splicer for a
nominal fee.

Future
developments

As with any new technology, in the
early stages of developm ent the em pha­
sis for tools is on ease of use. A pplica­
tion-oriented systems have a crucial role
in bringing the technology to a growing
set of dom ains, since they are targeted
and tailored for specific users. Therefore,
we expect the num ber and diversity of
application-oriented systems to expand
rapidly in the next few years. This devel­
opm ent, coupled with the discovery of
new algorithm s and techniques, should
bring an increase in algorithm -specific
systems, possibly leading to general-pur­
pose G As, A lgorithm libraries will p ro ­
vide access to efficient versions of these
algorithms.

In terest in educational systems and
dem onstrators of G As is rapidly grow ­
ing, T he contribu tion o f such systems
comes at the start of a new technology,
but their usage traditionally diminishes
as general-purpose systems mature. Thus
we expect a decline in educational sys­
tem s as sophisticated general-purpose
systems becom e available and easier to
use. G eneral-purpose systems appeared
very recently. With the introduction of
Splicer, we expect comm ercial develop­
m ent system s in the near future. We
should see program m ing environm ents
for an expanding range of sequential and
parallel com puters, and more public-
dom ain open-system programming envi­
ronm ents from universities and research
centers

O ne high-grow th area should be the
association o f genetic algorithm s and
o ther optim ization algorithms in hybrid
systems. Recently there has been consid­
erable interest in creating hybrids of ge­
netic algorithm s and expert systems or
neural netw orks. If a particularly com ­
plex problem requires optimization and
either décision-support or pattem -recog-
nition processes, then using a hybrid sys­
tem m akes sense. For exam ple, neural
netw orks and genetic algorithm s have
been used to train netw orks and have
achieved perform ance levels exceeding
that of the comm only used back-propa
gation model. G As have also been usei
to select the optim al configurations fo
neural netw orks, such as learning rate
and the num ber of hidden units and lay
ers. By the end of the century, hybrid G /
neural netw orks will have made signifi
cant progress with som e currently in

42 CO M PU TE

t r a c t a b le m achine learning problem s.
P r o m i s in g domains include autonom ous
v e h ic le control, signal processing, and in­
t e l l ig e n t process control.

G enetic algorithm s are robust,
adaptive search techniques that
may be im mediately tailored to

real problems. The two m ajor trends in
future environm ents will be the exploita­
tion of parallel G A s and the p rogram ­
ming of hybrid applications linking G As
with neural netw orks, expert system s,
and traditional utilities such as sp read ­
sheets and databases. ■

Acknowledgments
We thank Lawrence Davis, Darrel Whitley,

and Nicol Schraudolph for recommending G A
programming en\iroam enls for us to survey.
We also thank Frank H offm eister, Hans-
Michael Voigt, and Joachim Bom for their ad­
vice. Finally, we acknowledge our colleagues
Jason Kingdon and Suran G oonatilake for
commenting on eariy drafts of this article.

References
1. J.H. Holland. Adaptation in Natural and

Artificial Systems. Univ. of Michigan Press,
Ann Artxjr. .Mich.. 1975.

2. D .E . Goldberg. Genetic A lgorithm s in
Search, Optimization and Machine Learn­
ing. Addison-W eslev, Reading, Mass..
1989.

.V K. A. D eJong .An Analysis o f the Behavior
o f a Class o f G enetic A daptive System s,
doctoral dissertation, Univ. o f Michigan,
Ann Aihor. Mich., 1975.

4. JJ . Grefensiette. “Genesis; A System for
Using Genetic Search Procedures,” Proc.
Conf. Intelligent Systems and Machines,
19S4, pp. 161-165. '

L. Davis. H andbook o f Genetic A lgo ­
rithm s. Van Nostrand Reinhold, New
York. 1991.

6. H. Miihlenbein. “Parallel G enetic A lgo­
rithms, Population Genetics and Combi­
natorial Optimization,” Proc. Third Int'l
Conf. Genetic .Algorithms, Morgan Kauf-
mann. San Mateo. Calif., 1989, pp. 416-421.

M Gorges-Schieuter, “Asparagos: An
Asynchronous Parallel Genetic Optimisa­
tion Strategy." Proc. Third Int'l Conf. G e­
netic Algorithms. Morgan Kaufmann, San
Mateo. Calif„ 1989. pp. 422-427.

8. H. Miihlenbein, “Evolution in Time and
Space — The Parallel Genetic A lgo­
rithm,” in Foundations o f Genetic A lgo­
rithm s, G. Rawlins, ed., Morgan Kauf­
mann, San M ateo, Calif., 1991, pp.
316-337.

9. R. Tanese, “Distributed Genetic Algo­
rithms,” Proc. Third Int'l Conf. Genetic A l­
gorithms, Morgan Kaufmann, San Mateo,
Calif., 1989, pp. 434-440.

10. I. Rechenberg, Evolutionsstrategie: Opti-
mierung technischer Système nach Prinzip-
ien der biologischen Evolution [Evolu­
tionary Strategy: Optimization o f Technical
Systems According to the Principles o f Bi­
ological Evolution], Frommann-Holzbopg
Verlag, Stuttgart, Germany, 1973.

11. H P. Schwefel, “Numerische Optimierung
von Computer-Modellen mittels der Evo­
lutionsstrategie” (Numerical Optimization
of Computer Models by Means of tlie Evo­
lutionary Strategy], Interdisciplinary Sys­
tems Research, Vol. 26, Birkauser, Basel,
Switzerland, 1977.

12. F. Hoffmeister and T. Back, “Genetic Al­
gorithms and Evolution Strategies: Simi­
larities and D ifferences,” Tech. Report
“GrOne Reihe,” No. 365, Dept, of Com­
puter Science, Univ. of Dortmund, Ger­
many, 1990.

13. F. Hoffmeister, “The User’s Guide to Es­
capade 12: A Runtime Environment for
Evolution Strategies,” Dept, of Computer
Science, Univ. o f Dortmund, Germany,
1991.

14. D. Whitley and J. Kauth. “Genitor: A Dif­
ferent Genetic Algorithm,” Proc. Rocky
Mountain Conf. Artificial Intelligence,
1988, pp. 118-130.

15. N.N. Schraudolph and JJ . Grefenstette,
“A User’s Guide to GAUCSD 12,” Com­
puter Science and Eng. Dept., Univ. of
California, San Diego, 1991.

16. H.M. Voigt, J. Bom , and J. Treptow,“The
Evolution Machine Manual — V 2.1.” Inst,
for Informatics and Computing Tech­
niques, Berlin, 1991.

17. M. Hughes, “G enetic Algorithm Work­
bench Documentation." Cambridge Con­
sultants, Cambridge, UK, 1989.

18. G. Robbins, “Engeneer — The Evolution
o f Solutions,” Proc. Fifth Ann. Seminar
Neural Networks and Genetic Algorithms,
IBC Technical Services Ltd., London,
1992, pp. 218-232.

19. N A SA Johnson Space Flight Center,
“Splicer — A Genetic Tool for Search and
Optimization,” Genetic Algorithm Digest,
Vol. 5, Issue 17,1991. p. 4.

Jose L Ribciro Filho is a research staff mem­
ber in the Nucleo de Computaçâo Eletrônica
at the Universidade Federal do Rio de Janeiro,
Brazil. His research interests include computer
architectures, parallel processing, communi­
cation systems, and optimization techniques
such as genetic algorithms.

Ribeiro Filho received an MS in computer
science in 1989 from the Federal University of
Rio de Janeiro and is now working on a PhD
at University College London.

Philip C Treleaven is a professor o f computer
science at University College London. His re­
search interests are in neural computing, com­
puting applications in finance, and fifth-gen­
eration computers for artificial intelligence.
He has consulted for IBM, DEC, GEC, Fu­
jitsu, Mitsubishi, Philips, Siemens, and Thom­
son, and acted as adviser to government min­
isters in Japan, Germany, France, Korea, and
other countries. Among the European collab­
orative research projects he is involved with
is the Galatea neural computing project.

Cesare Alippi is working on a PhD in artifi­
cial intelligence at Politecnico di M ilano,
where he is analrang the sensitivity o f neural
networks to neural value quantization. His
other research interests include genetic algo­
rithms and fault tolerance. Previously he was
a researcher in the Department o f Computer
Science at University College London. Alippi
received a BS degree in electronic engineer­
ing from Politecnico di M ilano in 1990.

Readers can contact Ribeiro Filho at the
Department of Computer Science, University
College London, Gower St., London W CIE
6BT, UK; e-mail j.ribeirofilho@cs.ucl.ac.uk.

June 1994 43

mailto:j.ribeirofilho@cs.ucl.ac.uk

