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ABSTRACT

The thesis presented in this dissertation appears in two sequential parts that arose from an 
exploration of the use of Behaviour Based Artificial Intelligence (BBAI) techniques in a domain 
outside that of robotics, where BBAI is most frequently used. The work details a real-world 
physical implementation of the control and interactions of an industrial product inspection system 
from a BBAI perspective. It concentrates particularly on the control of a number of active laser 
scanning sensor systems (each a subsystem of a larger main inspection system), using a 
subsumption architecture. This industrial implementation is in itself a new direction for BBAI 
control and an important aspect of this thesis. However, the work has also led on to the 
development of a number of key ideas which contribute to the field of BBAI in general. The 
second part of the thesis concerns the nature of physical and temporal constraints on a distributed 
control system and the desirability of utilising mechanisms to provide continuous, low-level 
learning and adaptation of domain knowledge on a sub-behavioural basis. Techniques used 
include artificial neural networks and hill-climbing state-space search algorithms. Discussion is 
supported with examples from experiments with the laser scanning inspection system. 
Encouraging results suggest that concerted design effort at this low level of activity will benefit 
the whole system in terms of behavioural robustness and reliability. Relevant aspects of the 
design process that should be of value in similar real-world projects are identified and 
emphasised. These issues are particularly important in providing a firm foundation for artificial 
intelligence based control systems.
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1. Introduction

This thesis presents a series of experiments and discusses the issues, relating to the application of 

a rapidly expanding, but still young, paradigm in the domain of Artificial Intelligence (AI) and 

autonomous systems control. Popularly known amongst its practitioners as Behaviour Based 

Artificial Intelhgence (BBAI), it is the result of an increasing acceptance that traditional AI 

techniques have proved largely unsuccessful when applied to the control of real world situated 

systems and robotic systems in particular.

In 1986 Rodney Brooks of the Massachusetts Institute of Technology published a paper 

entitled "A robust layered control system for a mobile robot." [Brooks86] in which a significantly 

different approach to the constmction of mobile robot control structures was presented in the 

form of the Subsumption Architecture and its associated bottoni-up development methodology. 

This definitive work laid the ground for the subsequent opening of a new direction for research 

into the practice and nature of intelhgent control. Since that time many variations of the 

subsumption architecture have been proposed as well as many alternatives that foUow the same 

basic premises. The work has matured and there are many impressive demonstrations of control 

techniques - for example [Brooks89], [Ferrell93], [Horswill93], [Arkin87] [Mahadevan & 

Connell 92] [Pfeifer & Verschure 91] and [Gat et al 94]. However, there is little evidence of use 

outside of the robotics domain. This thesis addresses the techniques and philosophies behind 

BBAI and looks at the potential usage in areas other than that of mobile robotics. In particular, 

an industrial product inspection application is used for illustration. The nature of BBAI system 

design and functionality is characterised, and a direction of further development is suggested, 

with particular emphasis on the need for increased automation of control structure generation 

with concentration on issues of scaleability. In response to this, potential solutions to some of 

these problems in the form of learning and adaptive mechanisms are presented as an extension to 

a basic subsumption-like control architecture. Experiments demonstrating the successful use of 

the extended subsumption architecture in a real-world situated and distributed test-bed are 

reported.

The work presented in this dissertation deals with many aspects of system development. For 

example, the systems discussed are distributed, or at least decentralised, in that there is no single 

and dominant centre of computation or control. The systems involve parallel architectures and 

use a number of techniques as and where appropriate, for example artificial neural networks and 

heuristic search strategies. This work also covers aspects of asynchronous system interactions, as 

well as bringing in discussion on learning and adaptivity using models from psychology and
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ethology such as reinforcement learning [Kaebhng93] and classical conditioning [Pfeifer & 

Verschure 91]. Finally, in keeping with the practices of BBAI other aspects of real-world 

biological systems are used for both illustration and inspiration, for example the neuroscience 

work of [Robinson90].

The rest of this chapter introduces aspects of an industrial domain with an emphasis on 

research into the nature of systems control. The main points of the thesis are then presented along 

with a guide to the contents.

1.1. An Industrial Viewpoint: The Real-World?
There is a significant difference between pure research and actual application-oriented 

engineering development. Research is a scientific exploration of a phenomenon that uses both 

empirical and theoretical techniques. It is often quite a polarised endeavour with researchers 

fighting to promote their ideas, work and results. When an idea, mechanism or other result of 

research is adapted for commercial use, the basis of development changes from one concerning 

the furthering of knowledge to a concerted effort to build a practical system that is (amongst other 

factors) reliable, robust and easily maintained. The result is a merging of ideas by applications 

engineers who are not inhibited by the philosophical flavours or principles of a particular 

paradigm. Their task is to provide solutions to a justifiably conservative and sceptical industry. 

The constraints on a system that has to operate in the real-world (of the manufacturing industry, 

for example) are dictated by issues of cost and competitiveness.

Until recently by far the most used, developed, and accepted method of control has been that 

of classical control theory (an introduction to which can be found in references such as [Dorf92] 

and [Bissell94]). Mechanisation and mass-production have incorporated control systems and 

stimulated control research in parallel since the Victorian industrial revolution. Smithers and 

Brooks discuss the effect of history on the development of both control theory and AI (in 

[Smithers94] and [Brooks91]) and highlight a continuing requirement for increasingly 

sophisticated automatic systems that are able to function in increasingly diverse domains with a 

decreasing degree of supervision. The techniques of classical control are proving to be limited, 

especially in non-linear and extended real-world systems which require greater variety in system 

behaviour, for examples and discussion see [Jones et al 91], [Harris94] and [Franklin & 

Selfridge 90]. As a result the techniques of Al-based control are being used to augment the 

classical controllers. Perhaps the best example of this is in the development of "expert 

controllers" or "adaptive controllers". These are a combination of Al-developed expert systems 

and the fundamental building block of the classical control domain: the Proportional Integrating 

Differential (PID) controller. These hybrid systems typically utilise a database of rules 

(predefined by an expert) to update the critical parameters of a feedback control system to match 

changing circumstances in the controlled process [Rodd & Verbmggen 92]. Despite this
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development there are still many problems facing the control community as systems requirements 

become more complex. One example is the increasing use of distributed computing and localised 

embedded control in large (particularly industrial) systems. These issues are discussed in [Rodd 

& Deravi 89] and [Musliner et al 94].

This thesis deals with the real-world application of a new methodology in AI control: that of 

Behaviour Based AI. To date most BBAI work has dealt with the control of relatively simple 

mobile robots. Although this is in keeping with one of BBAI's fundamental principles concerning 

the necessity of testing systems and experimenting with them in their intended domain (which in 

the case of mobile robots is the real-world) much evidence is still needed to demonstrate that the 

ideas are sound in a broader range of control applications. One of the major contributions of the 

work reported in this dissertation is that the focus has been on the implementation of a BBAI 

control architecture for an industrially situated system. Consequently, whilst the issues addressed 

are generally relevant to BBAI, they are also of interest and relevance to potential industrial 

users.

The requirements of an industrial system are similar in general to the requirements of the 

mobile robots used in BBAI:

Reliable and robust behaviour: This is particularly important in an industrial setting since 

the systems must be able to run for extensive time periods (if not continuously) with little 

or no operator interaction. The industrial environment is typically noisy, dirty and 

unforgiving of mistakes. Each of these factors is a typical target for BBAI researchers in 

the design and construction of their robots.

Cost effectiveness: An overly expensive solution to a problem both in terms of material 

resources and operator time will be ignored by industry which necessarily operates on a 

commercial footing. In a similar way BBAI research is typically conducted under the 

constraints of limited funding which, when materials and components are needed for 

construction of real-world test-beds, provides a similar setting to that of industry.

Ease of operation: Industry requires that machinery be maximally self-sufficient, but when 

operator interaction is required this should be straightforward and easily achieved. The 

direction of BBAI research towards autonomy and self-sufficiency complements this. 

However, ease of use is an issue that is implementation-specific and is not necessarily best 

demonstrated on one-off prototype systems.

Ease of maintenance: A system that requires extensive maintenance is not attractive to a 

commercial concern. Although BBAI systems have not yet been developed for an industrial 

situation, it would seem that the behaviour based modular construction that is inherent in 

the BBAI methodology is extremely relevant in this respect.
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Flexible integration with other systems: A piece of equipment is more desirable if it can be 

incorporated easily into existing sets of machinery and at the same time have a potential 

for simple and straightforward expansion or upgrading. The modular approach of BBAI in 

conjunction with issues of multi-agent interactions are important in this respect.

1.2. The Thesis

The results presented in this thesis are arranged in two sequential parts that have arisen from an 

exploration of the use of Behaviour Based Artificial Intelligence (BBAI) techniques in a domain 

outside that of robotics (where BBAI has been used most frequently). The work details a real- 

world physical implementation of the control and interactions of an industrial product inspection 

system from a BBAI perspective. It concentrates particularly on the control of a number of active 

laser scanning sensor systems (each a subsystem of a larger main inspection system), using the 

Subsumption Architecture [Brooks86]. This industrial implementation is in itself a new direction 

for BBAI control and an important aspect of the thesis. However, the work has also led on to the 

development of a number of key ideas which contribute to the field of BBAI in general.

1. Synthetic autonomous systems (of which the mobile robots of BBAI research are a small 

subset) have been constructed and developed successfully on a bottom-up basis using the 

methodologies of BBAI. However, there has in general been little further breakdown or 

recognition of low-level behavioural phenomena that are particularly evident in truly 

distributed control systems. This first point of the thesis has been to build a case for 

recognising a lower bottom level of interaction in autonomous systems development than 

has been customary so far. In other words, a sub-behavioural layer of activity is 

highlighted that consists of its own agent-like processes interacting at a subsystem or 

component level, each with its own local set of physical and temporal constraints, below 

those of the main physical agent. Additionally the work reported here suggests that truly 

distributed behaviour based systems may be viewed more extensively as a hierarchy of 

levels of communities of semi-autonomous and autonomous agent entities, the granularity 

of which depends on the level of abstraction used by the observer of the system. It is 

claimed that viewing distributed systems in this way provides a useful framework for 

design. This outlook adds to the more usual approach of BBAI control that, whether by 

design or side-effect, tends to treat an agent as a singular physical entity situated in an 

environment that is controlled by some singular architecture of parallel-behaviour- 

achieving processes.

2. Existing control architectures from BBAI are successful due to the incorporation of 

designer's specialised domain knowledge into all levels of the target agent's control 

structure. As systems become more complex, the provision of this domain specific 

knowledge is becoming more difficult. The number of variables and process configurations
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that have to be pre-specified is increasing and the design process inevitably takes place 

with incomplete information about future system interactions. One solution to this problem 

is to provide systems with an ability to acquire the missing knowledge for themselves. This 

is currently being implemented by researchers in the field using techniques of adaptation 

and learning, with the level of study and application being generally at that of the physical 

agent system's behaviour. The second part of this thesis builds on the first part by 

addressing the problem of acquisition of domain knowledge at the lowest levels of a 

behaviour based system, below those of the physical agent's behaviour. It suggests that 

agent entities at each abstraction of system level (identified in part 1 above) must be given 

their own means to learn and to adapt to ongoing changes in their situation on a continuous 

basis.

M----

®̂̂ “̂̂ nvironment

Figure 1.1, An agent as a hierarchy of lower-level agent processes.

The first part of the thesis addresses the increasingly relevant question of distributed and local 

control of component parts of a system. For example, many mobile robots typically utilise more 

than one programmable microcomputer within their systems. Often there is a central processor, 

responsible for supporting the primary algorithmic control structure, which has access to one or 

more "slave" processors which, in turn, deal with specific aspects of sensor and actuator 

functionality. It is suggested that, rather than viewing their association as a master-slave 

relationship, it will become increasingly useful to regard each of these systems as independent and 

interacting components of a system, or in other words as a group of asynchronous interacting 

agents at a lower level than that of the physical real-world agent. The world for this level of 

agents consists of sensory and internal signal transfers and possibly a lower level of interacting
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processes. Figure 1.1 shows the idea of a hierarchy of agency levels. At each level agents interact 

and influence their local and global situation.

The second part of the thesis examines the problem of providing component subsystems of a 

real-world agent with an ability to tune or adapt automatically to changing situations. This 

direction was taken as a result of observing that much of the global performance of a system is 

highly dependent on low-level mechanisms. Higher-level behaviour cannot compensate for 

unrehable and poorly-performing processes at the sub-behavioural, subsystem level. In 

[Brooks86] and the later work [Brooks & Stein 93], it is emphasised that the subsuming higher 

layers of a subsumption architecture add levels of overall competence above thoroughly tested 

and debuged levels. They do not and cannot correct for bad design or defective lower control 

mechanism and can only influence its behaviour. In response to this, a building-block approach to 

embedding learning and adaptation mechanisms into behaviour based control programs is 

presented. The idea here is that complex input-output mappings associated with basic behaviour 

rule specifications are learned on a localised basis and that critical parameters are tuned 

continuously. This building-block approach leads on to and reinforces the view of a system as 

being constructed from a hierarchy of interacting agent processes. This view means that learning 

and adaptivity may be usefully built into a system at each level of agency with the dynamics that 

control such activity being controlled by component parts at whatever level is being addressed.

At the end of the day this thesis is about providing systems with a suitable set of interaction 

dynamics that allows them to perform their required tasks in a maximally reliable and robust 

way. Ultimately this is an engineering task. Many parts are required to function together and 

many "off the shelF' components and techniques are available for use. It would be foolish not to 

make use of these wherever possible in the design and constmction of an autonomous agent 

system. However, many of these techniques have not been used together previously so 

experimentation is required to find and characterise the nature of the new combinations. In doing 

this it is probable that new aspects and factors will be encountered that require new solutions and 

techniques in order to make the system behave in the right way. The former exercise is the 

engineering aspect of this work while the latter is the scientific contribution. The thesis reports on 

work that covers both these aspects: Engineering and Science. The engineering has been in the 

application of BBAI in a new domain: that of an industrial situation. The science has arisen out 

of perceived needs and requirements of the BBAI techniques used.

1.3. Contents of the Thesis
The work of this thesis deals to a large extent with the low-level control of a sensory subsystem 

using techniques and methodologies from BBAI. At this level it may be claimed that there is 

considerable overlap with techniques of classical control theory, although it may also be argued 

conversely that there are significant differences. Consequently the next two chapters are of an
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introductory nature and present further detail on this debate. Chapter 2 discusses issues of 

general relevance to AI based control and in particular brings in aspects of control theory in order 

to add some perspective to the connections, similarities and overlaps between the fields. It is 

intended that chapter 2 serves to introduce some of the background behind the relatively young 

field of behaviour based AI which is presented in more detail in chapter 3.

Chapter 3 provides an overview and case study of aspects of BBAI, an already much- 

referenced topic but one that has, until this point, received less attention than it deserves. This 

then leads into three chapters that present the first part of the thesis. Chapter 4 covers the 

implementation of an industrial laser inspection test-bed that is used throughout this dissertation 

to illustrate the points raised. This experimental test-bed is also used as a source of empirical 

results, the first of which are presented in chapter 5. Chapter 6 discusses the nature of behaviour 

based control in the light of the work of chapter 5 and details ideas for a distributed and multi­

agent approach to system constmction. The first part of the thesis is concluded in chapter 6 with 

emphasis on the existence of a sub-behavioural level of agent activity that is evident in distributed 

control systems at the low levels of sensor and actuator subsystem interaction. Chapter 6 ends by 

suggesting that the way forward for complex systems development requires the automation of 

many of the design and development processes that are currently hand-specified and constmcted 

(or programmed).

The second part of this thesis is introduced by chapter 7 which outlines a perceived need for 

mechanisms of low-level adaptivity and learning in BBAI control systems. Several novel 

solutions to the problem of tuning critical parameters automatically and associating complex 

input state representations with basic mle declarations are presented. Ideas for this work are 

taken from the requirements generated as a result of the first part of the thesis and from the 

perceived current state of BBAI. These solutions are then the subject of experimentation in the 

laser scanning test-bed and are reported in chapter 8. The work there builds on the behaviour 

based control stmctures implemented in chapter 5 and uses the performance as a basis for 

comparison of the new enhanced and adaptive systems. Chapter 9 discusses the results and finally 

chapter 10 concludes the thesis by bringing the two parts together.
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2. Background Issues

This chapter covers the following:

Issues concerning intelligence and control.

Issues concerning the nature of autonom y and self-sufficiency. 

Different approaches to control system s.

The focus of this thesis, in both the first and second parts, is on the distributed control of 

autonomous systems. Illustration and experiments are provided in later chapters on an industrial 

laser scanning inspection system test-bed. As such, they have an emphasis on relatively low levels 

of control (in comparison to the task planning activities that are often regarded as being typical of 

artificial intelligence) which may be seen by some as the domain of classical control theory. This, 

however, is not necessarily the case, as will be shown throughout the course of this dissertation. 

In order to introduce the notion of artificial intelligence based control and how it relates to some 

of the characteristics of classical control, this chapter deals with a number of issues that are 

popularly regarded by either or both the AI and classical control communities as being definitive 

aspects of their fields and that at the same time have led to significant overlap between the two.

This chapter is presented in three main sections. The first discusses the respective views of 

each community, AI and classical control, on aspects of "intelligence". It is not intended to be 

definitive but just to acquaint the reader with the wide range of continuous and ongoing debate on 

the subject. Section 2 then continues to discuss an only slightly less contentious topic: the nature 

of automatic, autonomous and self-sufficient systems. This is relevant in the light of the first part 

of the thesis as described in the previous chapter, concerning an agent based view of distributed 

control systems. Finally section 3 details some aspects of classical control and AI control that are 

in need of characterising prior to chapter 3 and the introduction to the field of behaviour based 

artificial intelligence. This chapter aims at providing discussion of an introductory and general 

nature as background for the main body of the thesis.

2.1. Intelligence and Intelligent Control

This thesis is primarily a text describing work from an AI perspective and consequently, it is 

necessary to set out briefly what is meant or, perhaps more to the point, not meant by 

"intelligence" as used in the context of this dissertation. Depending on the research community in
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question intelligence has different connotations. For example, in the control engineering field 

"intelligent control" is often taken to refer to any form of control technique that is not of the basic 

feedback servo type control mechanism or its derivatives. These are most often the result of 

applying AI research in the control domain ([Bissell94] and [Dorf92]). The name "Intelhgent 

Control" is perhaps useful in itself as a label of a class of control techniques but it does not 

satisfy any considered or philosophical view of the nature of intelhgence (such as discussed in 

[Brooks90], [Brooks91], [Beer90] and the introduction of [Luger & Stubblefield 89], for 

example). "Intelhgence" is the central theme of AI research, so here it is perhaps surprising to 

find that there are probably as many definitions as there are researchers ([Smithers91] lists a 

selection of definitions from the AI community). Other fields too, including cognitive science and 

psychology, profess to study or deal with aspects of intelhgent behaviour, but again there is very 

little evidence of any single underlying phenomenon that is being studied that can be specifically 

labelled as intehigence.

There is an ever-continuing requirement for increasingly complex and sophisticated control 

solutions to an increasingly wide range of task and application domains. As systems become more 

complex, so too does the control problem. Applications such as, for example, the automatic 

control of aircraft, trains and automobiles are becoming more common as weU as the use of 

extensive automation in the area of industrial manufacturing. These systems are required to be 

both maximally reliable and maximally robust for as wide a range of situations as possible; 

indeed, in many applications this is the first priority. This advance in complexity has occurred 

hand in hand with technologies such as electronics, computers and software, where the range of 

potential solutions is now also feeding back to generate new ideas for applications. In recent years 

the notion of autonomous systems (as opposed to automatic) has come to the fore as enabling 

technologies have matured and made possible what at one time were only ideas in science fiction. 

One active area of research is in the development of free-swimming underwater exploration 

vehicles that are being designed to work unaided for several days at a time performing tasks such 

as mapping ocean beds and inspecting pipelines at depths far beyond the reach of any human or 

human-containing vessel (for example, see [Zorpette94]).

As systems become more complex and capable of wider-ranging task competence, it will 

become more difficult for them to be seen as simple automatic machines. They will manifest 

many types of task oriented behaviour and be able to respond to many different situations and 

problems. It will become difficult to avoid the conclusion that, although these systems are built 

from known sets of components and programs, they might be intelhgent in some way simply 

because of the observed nature of their abilities and interactions with the world around them. It is 

not the place of this thesis to dwell on the philosophical issues of intelhgence, but the point that a 

system may "appear" to be inteUigent rather than explicitly built or programmed to be is 

considered to be of central importance. The idea that intelhgence is in the eye of the beholder is
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certainly advocated. After all, in the final analysis we are interested in systems that can perform 

some useful task in a reliable and robust way, so that using this as a measure of success rather 

than some abstract notion of intelligence would appear to be more useful. The idea of intelligence, 

resulting from an observer's interpretation of a system's behaviour is discussed and illustrated 

beautifully in [Braitenberg84]. Moreover, the idea that intelligence is not built in but rather 

emerges from the interactions of a system and its domain is a standard viewpoint of BBAI. Other 

references to this can be found in [Moravek88], [Dreyfus93] and [Brooks86]. In order to avoid 

confusion, this thesis will not utilise "intelligence" as a defining property of a system.

2.2. Agents: Automata, Autonomy and Self-Sufficiency

"Agent" is a term used with great variety of meaning in the AI, computer science and engineering 

literature. In the last few years "agent" has been increasingly and popularly used in connection 

with software processes and in particular with mobile software processes that are intended to 

navigate and perform tasks on a system of networked computers. [Riecken et al 94] provides an 

extensive discussion and series of papers on a number of aspects of agenthood. In general it 

seems that an agent is taken to be some discrete entity that has some specific task and some 

specific domain in which it attempts to realise that task. For example, an estate agent is a person 

given the task of buying and selling property, where the domain is the world of mortgages, house- 

buying, surveyors and contract solicitors. An electronic mail handling agent might be a 

continuously-running software process that is able to sort and prioritise a user's daily messages, 

the domain being that of the Internet and electronic mail and the user's preferences in types of 

messages.

The Distributed Artificial Intelligence (DAI) community tends to use "agent" in reference to a 

specific process within a system. This is particularly so in [Minsky85] in which an AI system is 

seen to consist of a number of agencies each made up of a number of agents that contribute to the 

global behaviour of the system. Although Minsky's work here is not really in the same vein as 

that of more recent DAI, it does suggest some of the main features of such systems. One of these 

is the notion that agents might enter into communication and interact in some abstract way in 

order to achieve a task. Another popular vision of an agent based system is that of the blackboard 

architecture [Hayes-Roth88]. In this scheme a number of concurrently-executing agent processes 

interact via a global repository of information called a blackboard. Messages consisting of tasks, 

data and results are written and removed as the overall task of the system progresses.

In BBAI an agent is most often taken to be a physical individual that interacts with the 

physical world in some organised and stmctured way, with "interact" being the key aspect of the 

description. Smithers in [Smithers92] suggests that a useful categorisation is that of "...a coherent 

system of processes that reliably and robustly effects specific changes on its environment while
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receiving any effects from its environment which may be (direct or indirect) consequences of its 

actions or may simply be the effects of [other] unrelated events...". This provides a notion that 

both agent and its world are of fundamental significance and that the processes of an agent (or 

more specifically a synthetic agent) are not only those that exist in its programming. The size and 

traction of a robot's wheels have as much effect on the robot's behaviour as any software control 

strategy: a robot with small wheels wiU be more susceptible to changes in direction due to small 

bumps, a robot with larger wheels may not be able to navigate through a gap between two close 

objects, a robot with one wheel smaller than the other will have a tendency to steer continuously 

to one side, and so on. It can be seen that these physical aspects of a synthetic agent have an 

important influence on its interaction with its world. In BBAI natural agents are also recognised 

as being more than a collection of controlling processes. As a final illustration of the nature of an 

agent as seen by the BBAI community it is interesting to refer to the work of [Beer94], [Cliff & 

Miller 95], [Cliff et al 93] and [Yamauchi and Beer 94] as well as that reported in [Smithers94]. 

These take a dynamical systems view of both the agent and its environment.

After these illustrations of some component characteristics of an agent, questions concerning 

the nature of its behaviour, or environment interaction, must be addressed. There is much 

discussion in the literature and increasingly in the press of "intelligent agents". For the purposes 

of this dissertation and for the reasons outlined above in section 1.1 I shall not be using this as a 

descriptive term or label. However, this leads to a potential problem which is interesting in 

passing but probably does not have any major significance in this thesis. A commonly-used 

characterisation of an agent is to further label it as an autonomous agent, with autonomy being 

used to mark the agent as being self-governing (to use the Chambers dictionary definition 

[Schwarz93]) in some way. In fact Smithers' characterisation of an agent given above usefully 

encompasses an autonomous agent. This typifies an assumption that the systems being studied in 

AI are different in some way from ordinary machines or automata (for example, a production line 

robot arm that repeats a set of motions continuously and blindly, often regardless of the fact that 

there may be a problem). An autonomous agent is taken to have some internal task achieving 

potential and an ability to work towards the completion of that task allowing for external 

influences that may either be beneficial or detrimental.

Assigning a label of autonomy to an agent presents a familiar problem. It is always possible to 

argue pedantically that a machine like a factory robot does indeed have its own task achieving 

potential, the task being to wave its arm around in a particular way, and that it is just a matter of 

scale as to the degree of autonomy such a system exhibits. Issues along these lines are discussed 

in [Rosen87], [McFarland94] and [McFarland95] (and in many other more philosophical works) 

from an ethological viewpoint. In McFarland's work an autonomous agent is differentiated from 

an automaton by the fact that we may be able to analyse the latter and consequently identify its 

component and functional parts. It is claimed that for a truly autonomous agent this is not
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possible. However, this is a subjective view and does not make any gesture towards the 

possibility that at some time in the future we may have the techniques to analyse all manner of 

agents (natural or synthetic) in the same way that we now analyse automata. The issue regarding 

the contribution of the history of the agent's behaviour to its current state is interesting but does 

not change the fundamental conclusion: that autonomy is also (as well as intelligence) a 

characteristic dependent on the views of the observer. For the purposes of this dissertation it is 

perhaps useful to consider the characteristics of autonomy of an agent as falling in a space 

bounded by axes of complexity of agent system, agent task and agent environment (see figure 

2.1). Within this space a complete automaton (for example, a clockwork mechanoid) may exist in 

the domain of near-zero complexity in all 3 dimensions while a car assembly robot may score 

highly on system complexity but low on task and environment complexity. The various areas of 

artificial intelligence (classical and BBAI) and control systems are shown in boxes in order to 

provoke some thought as to the nature of the systems dealt with in the respective fields.

System Complexity 
A

Task Complexity

Classical
Control '̂ic 

Systems* p
i BBAI
t #  Systems

Reactive 
S y s te m s .

Environmental Complexity 

►

Figure 2.1. A three-dimensional space presenting a characterisation of different degrees of autonomy.

The final characteristic of being an agent that I wish to discuss here is that of self-sufficiency. 

At first glance this may appear to be similar (if not the same) to autonomy but, as discussed again 

by McFarland, self-sufficiency is generally taken to have energy or power supply connotations. A 

self-sufficient agent has an ability to care for itself, either through the process of metabolism as 

happens in natural agents or an ability to recharge batteries as might be found in the behaviour of 

a mobile robot such as those reported in [Steels94]. The significance of self-sufficiency to the
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control of many complex synthetic systems is perhaps small. A system of software processes 

(software agents) does not necessarily encompass a need for- aspects of self-sufficiency and so 

here again we are reduced to a subjective assessment of the state of play by the observer, 

especially when it could be claimed that a cow is not self-sufficient but dependent on the activities 

of the grass in the meadow for its survival (as well as the bacteria in its intestine).

For the purposes of this thesis then, an agent is seen as a specific collection of processes that 

are closely linked and that interact with a broader set of loosely-linked processes that constitute 

the agent's environment. Although in BBAI an agent is commonly seen as being physically 

embodied rather than simply another term for a concurrent software process, it will be argued in 

the course of this dissertation that an "agent" view of systems with complex interactions can be 

useful on a number of different levels. As the task and domain requirements for systems become 

more complex, and I refer here particularly to systems that interact with the real-world such as 

robots, the component parts of those systems also become more complicated. It is already the 

case that even the simple laboratory examples of mobile robots have multiple centres of 

computation, some specialised and some as a parallel means of increasing computational power 

([Brooks89], [Smithers94], [Steels94] and [Vertommen95]). The view that a system might be 

constructed from numbers of specialised component parts that are capable of some form of self­

regulation and self-adaptation is becoming fact. Issues surrounding the integration of these parts 

and of achieving system requirements through their interactions therefore make up a widening and 

very open research topic. It is possible that these systems will be viewed best as a community of 

heterogeneous asynchronously-interacting autonomous or semi-autonomous agents. This is taken 

further in chapters 5 and 6.

2.3. Different Approaches to Control

The work reported in this thesis necessitates some discussion on the nature of control, and in 

particular some of the assumptions of both classical control and classical AI methodologies. The 

perceived need for this has come about largely as a result of the increasing use of AI based 

techniques in systems control. Although these ideas are not a novel part of this thesis in 

themselves (much of the work in the AI community addresses control problems in very different 

ways from those of classical control engineers), it is an important aspect of the reported work, 

and an awareness of the state of play will set the scene for the rest of this document and the 

discussion on BBAI.

As a brief aside from this part of the introduction it is interesting to note that there is an 

increasing tendency within BBAI to move towards the use of an alternative methodology in the 

design of autonomous agent systems. Empirical results reported in many instances suggest that 

the whole notion of control in terms of both a separate controlling agent and an information based
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design paradigm are too limited in their ability to provide a sufficient means of analysing, 

understanding and designing complex autonomous systems. Here again I refer to the work in 

[Beer94], [Cliff & Miller 95], [Cliff et al 93] and [Yamauchi and Beer 94] and the use of the 

techniques of dynamical systems theory. These recent ideas offer an approach to examining 

systems not in terms of information flow between component parts of a system but in terms of 

interactions between processes of a system. While at first this may seem to be saying the same 

thing in a different way, it is the case that the latter view allows a more complete picture of a 

system and its interactions with its environment to be built up. For example the factors affecting 

the behaviour of a mobile robot are not limited only to the signals emanating from sensors and the 

commands being sent to actuators. Other factors - for example, high-friction floors slowing down 

motors, hard walls causing colliding robots to bounce off violently in (for all intents and 

purposes) random directions, as well as more subtle effects such as the partial saturation of light- 

sensitive sensors by sunlight - can all make significant contributions to a robot's behaviour and 

are difficult, if not impossible, to classify in terms of specific and quantifiable information.

I continue with some standard views and definitions of control techniques.

Controllers

Open Loop Closed Loop

FeedforwardFeedback

Self-Tuning Adaptive

Figure 2.2. Categories of controller

A controller may be seen as a device that takes a number of inputs and generates an action 

output based on some form of internal model. These controllers fall into two main categories: i) 

Open-loop controllers and ii) Closed-loop controllers [Bissell94]. Open-loop controllers (figure 

2.3a) are basically a single-shot command affair with the controller output being based on at least 

one input command or signal. It is generally the case that such controllers are unable to allow for 

varying environmental effects in the generation of their output. Such controllers are also referred 

to as reactive controllers. An example of such a reactive control action can be seen in the reflex 

of a person who unknowingly picks up a hot pan from a stove, expecting it to be cool enough to
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hold (a robot controller for this behaviour is described in [El-Gamal et al 92]). The reflex motion 

of dropping the pan in response to the burning pain can be seen as an open-loop or reactive form 

of control activity. Closed-loop control on the other hand differs in that the action output is 

generated from a combination of current system state and a command or demand input signal.

Closed-loop controllers can be categorised further into two groups: i) feedback controllers and 

ii) feedforward controllers. Feedback control (Figure 2.3b) is the mainstay of the classical control 

community and is in fact the only type of control dealt with in any detail in typical texts such as 

[Dorf92] and [Bissell94]. In feedback control the system attempts to maintain a status-quo of 

input and output values by measuring directly and trying to minimise a difference between the 

desired and actual outputs. It is true to say that the feedback controller is currently the most 

widely used category of controller, being found in an almost endless list of applications from 

amplifiers to servo motors to chemical process controllers.

A: Open Loop Control

A ctionsRequirements Outcome

Feedback SignalB: Feedback Control

Actions
#  ► OutcomeRequirements

+ = Positive feedback

Action
Selection

Environment

Action
Selection

Environment

- = Negative feedback

Measured Environmental Disturbances

C: Feedforward Control

ActionsRequirements OutcomeAction
Selection Environment

Figure 2.3. Block Diagrams of the three main categories of classical control systems.

Feedforward control (figure 2.3c) can perhaps be associated more readily with the control 

systems developed within the AI communities. In fact [Dorf92] hardly touches the subject and 

seems to suggest that feedforward control is httle more than a form of open-loop control with 

output being generated without direct reference to the current situation. However, feedforward 

control (even in AI terms) can be seen to be closed-loop with the output of such controllers being 

based on a desired action signal and a number of other inputs that reflect the state of the system 

in some known way. In fact this form of control is often confusingly referred to within the AI
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community as feedback due to the fact that the effect of the agent's actions can be fed back 

through the environment to sensory inputs which are in turn used to form the basis of the next 

action. However, this is not the same as the direct measurement of error used in classical 

feedback control [Smithers94b] and [Smithers95]. The differences between classical control and 

AI based control can perhaps be seen as little more than a difference in level of abstraction (in 

terms of the form and route of the closed-loop information flow). This is explored further in the 

following sections.

2.3.1. Models and Symbols

Models are used and regarded in different ways [Pebody93]. The term "model" may be applied to 

the mathematical function that is used to provide a classical control based system with its ability 

to generate output values from its inputs. "Model" may also be applied in a similar way in 

reference to the logic based functions of AI control systems, again utilised for the generation of 

output values from a number of input variables. The models in these instances may be applied to 

all types of control system mentioned above: open-loop, feedforward and feedback. The model is 

the transformation function used in the "black box" of the control system and is named as such 

due to the fact that it accommodates an input-output mapping that is able to match certain factors 

of the system's external world. It is usually the result of much design and development effort. The 

relevant general idea is that the controller is provided with an ability to predict the course of 

events in the world, thereby enabling a suitable output to be generated. This type of modelling is 

also used in the Psychology and Ethology communities to recreate and experiment with human 

and other animal behaviours (for example see [Rutkowska94] and [DeSchutter & Nuyts 93] for 

the respective fields).

In the AI field the term "model" is also (perhaps confusingly) used in a different way in order 

to refer to abstract knowledge held by a system. Traditional AI techniques often utilise a symbolic 

information structure referred to as a "symbolic world-model". In this case the model is a 

collection of tokens or symbols with an abstract meaning and is accessed by symbolic planning 

and reasoning systems which in turn generate a system-level output. This classical AI view of a 

model has been advocated since the earliest days of AI research and was firmly built into the 

methodologies of AI by Newell and Simon in the paper [Newell & Simon 76] that presented the 

physical symbol system hypothesis as an explanation and methodology of intelligent systems.

Here I have briefly identified a number of views on the nature of models. This discussion is 

taken further in chapter 3 where Behaviour Based AI is introduced. Issues concerning models and 

knowledge representation are revisited in chapter 7 during discussion on learning and adaptivity.
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2.3.2. Continuous Time, Discrete Time and Linearity

Another important factor that differentiates the classical control approach and that of AI is the 

way in which the respective methodologies deal with time. The techniques of classical control 

utilise quantitative mathematical models and as such generally operate in a continuous time 

domain. In other words, these systems are able to provide a control response at all instants. 

Conversely AI, with its mle based models, treats time in discrete steps. At each time step a 

logical decision-making process is executed that takes into account the current state of the system 

and any other available information. Such systems have a strong relationship to the 

computational nature of digital computers which are inherently discrete in terms of time. This is 

in contrast to the older techniques of classical control which originated in systems that utilised 

analogue electronics (although now more complex control solutions are implemented on digital 

systems, bringing in some element of discrete timing).

The real-world is the everyday physical world in which people exist and interact along with all 

manner of other agents both natural and synthetic. Time in the real-world is continuous and the 

nature of the interactions within the world is often unpredictable and chaotic. These interactions 

are generally referred to as being non-linear [Bissell94]. A system is linear (and hence a suitable 

domain for classical control techniques) if and only if all the control coefficients for the system 

are constant values. The linearity of a system is defined in terms of the system excitation x(t) and 

response y(t). When a linear system at rest is subjected to an excitation Xi ( t ) ,  it provides a 

response yi(t). Further, when the system is subjected to an excitation X2 (t), it must provide a 

corresponding response y2 (t). For a linear system it is necessary that the excitation X}(t)+X2 (t) 

result in a response yi(t)+y2 (t). Additionally it is necessary that the magnitude scale factor is 

preserved in a linear system. For example, a system with an input x  which results in an output y 

must have the relationship such that the response to a constant multiple factor K  of the input x  

results in an output equal to Ky.

There is only a small subset of events and activities that are in any way linearly organised. 

This has a significant effect on the extent to which the continuous-time techniques of classical 

control theory can be used directly. For complex systems in the real-world the task of creating an 

accurate model that is able to provide a suitable output at all instants of time taking all factors 

into account is obviously impossible. Hence it is general practice to make so-called linear 

approximations when developing classical control models [Dorf92]. These approximations 

exploit generalities in system behaviour in order to reduce the number of variables required for a 

mathematical description. Thus classical control is also referred to as linear control, the main 

characterisation here being that the output response is linearly related to the input.

The set of logical rules that make up an AI based control system act in discrete time steps, as 

already mentioned above. Each rule is compared with the current system state and if a match is
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found then the rule is used. This is a powerful way of dealing with non-linearity (and it can also 

deal with linearity). Rather than utilising a continuous-time model that has to provide an output 

for an infinite number of connected time divisions, the discretely accessed rules of an AI system 

can each be distinct and matched to different world situations. In this way the output of the 

controller can follow non-linearity in the world because it does not have to match world activities 

on a continuous-time basis. However, there are problems here as well. The discrete nature of the 

AI system leads to potential problems in resolution of the controller. The number of rules 

required to deal with any real-world situation is potentially infinite and so again approximations 

or compromises have to be made during the design of the mle based control model,

2.3.3. The Real-World, Real-Time and Event Synchronisation

Finally in this chapter on control I wish to dwell briefly on the issues relating to the real-world 

response time of an agent. In general we may say that a more successful agent is one that can 

respond more quickly (in an appropriate way) to changing situations in its world, so long as the 

response is a suitable one. However this is an abstract AI view which has its roots in behavioural 

psychology (discussed in [Boden94] for example). It is a different notion from that of response 

time used in classical control and which is also applicable and relevant to AI control. It is not the 

place of this introduction to provide extensive detail on the basics of classical control theory; for 

this, the reader is referred to any modem control theory text book, of which the aforementioned 

[Dorf92] and [Bissell94] are two of many. However the following provides an outline of some 

relevant factors.

As we have seen, a classical control system utilises a feedback loop in which the actual output 

of the controller is fed back to the input and compared with the desired output. This comparison 

is used to generate an error signal which in turn provides the input for the controller and so on ad 

infinitum. However there is a time delay involved in this process that is present in all systems. 

This time delay is the time interval between the start of an event at one point in a system and its 

resulting action at another point in the system. It may result from, among other sources, friction 

in any mechanical parts and propagation delays in electronic circuits. This delay can lead to 

problems with the stability of the system. If the delay is too long then the response of the 

controller will always arrive too late and a succession of increasing errors can lead to instability 

of the system. If the response of the target system is at the right speed, then the system will 

function properly, and in order to achieve this a damping factor is often applied to the system in 

order to slow it down.

Damping the response speed of a system so that the controller has time to react is achieved 

using various methods. For example, a physical device to provide friction to a moving mechanism 

may be used, such as the butterfly spinner that slows down the movement of a clockwork
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mechanism. Alternatively a part of the controller's mathematical model may include a term to add 

damping artificially to the system. If this damping factor is set correctly the system will settle to 

its new state in an optimum and stable way. This is known as critical damping (figure 2.4a). If, 

however, the damping is too severe, then the system’s response will be slowed (perhaps due to 

excess friction) resulting in at best a delayed settling time and at worst a complete failure for the 

desired output to be achieved. Imagine a lift full of people. In a normally-loaded situation it 

transports its passengers efficiently from floor to floor. However, should too many people get on 

board (assuming that the space in the lift is large enough for the extreme number of people), the 

electric motors in the roof will become overloaded and perhaps be unable to raise the lift, or only 

raise it slowly. This is an extreme example of an over-damped system (figure 2.4b) and the 

associated problem of undershoot.

The other extreme to an over-damped system is an under-damped one. In this case the output 

of the controller moves quickly and overshoots the desired target before the controller is able to 

make corrections. The eventual correction from the controller results in reversal of the original 

output wlucli agàiii moves quickly, oveibliooliiig Liic tuigci, out pciliupb to u lesser degree. Tlie 

system may eventually settle, but only if no other disturbances influence the output, (figure 2.4c). 

A system that never settles suffers from what is known as the hunting problem. The effect of this 

on a lift full of people can be left to the reader's imagination (guided by figure 2.4).

A: Critically Damped B: Over-Damped C: Under-Damped

T

Set-Point

Time

Set-Point

Time

i L
Set-Point

Time

Figure2.4. Examples of a: a critically damped response, b: an over-damped response, and c) an under­
damped response.

The problems associated with the timing of classical control systems are also found in AI 

control systems although not in quite the same way. Because AI controllers are working in
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discrete time steps and at each step the output is not necessarily a linear response to the current 

world state, the nature of oscillation is different. In general the timing of AI based real-world 

agents is loosely determined by external events, for example a mobile robot travelling in a straight 

line detecting an obstacle and steering to avoid it. It is the event of encountering the obstacle that 

triggers the avoidance behaviour. As long as the robot is not travelling too fast, it has time to 

avoid the object. If it is too fast, or computationally too slow, then the chances are that it will 

collide before selecting an appropriate action. These timing issues are often referred to in the AI 

community as real-time issues and as such are not directly related to factors concerning internal 

computer clocks or other time sources internal to the robot. They concern world events that are 

outside the control of the agent but to which the agent must be able to respond within some 

critical time constraint. Thus the agent's timing is dictated largely by external events, and it may 

be said that its controller must be able to synchronise its activities with those events. In computer 

science and electronic engineering the notion of "real-time" is similar but most often the critical 

event is generated artificially for system synchronisation purposes. Nevertheless, such systems 

still have to complete the relevant computation prior to the event in question.

2.3.4. Adaptive and Non-Linear Control

The techniques of classical control theory, although based predominantly on that of the 

abovementioned feedback control, may be found in many more advanced forms. In parallel with 

the development of digital computers, advanced digital control techniques have been developed to 

deal with non-linearities in system behaviour. Both [Dorf92] and [Bissell94] deal with these 

aspects in their respective concluding chapters.

In its simplest form a digital controller converts continuous-valued sensor inputs to digital 

format through analogue to digital converter devices. Classical feedback loops implemented in 

software then generate a digital response that is converted to analogue form via digital to 

analogue converters. If the time interval between successive digital signals is small compared to 

the time constants of the plant or actuator, then the whole control system essentially acts as a 

continuous system. More advanced examples of digital controllers demonstrate a form of 

adaptive control. In order to deal with the problems of non-linearity in the real world, software 

has been developed to tune the parameters of the feedback control system. In this way the 

controller may adapt to different environmental situations. An example is presented in [Bissell94] 

in the from of the adaptive control of an aircraft. Here the control parameters are changed in real­

time as the aircraft changes height, thereby adapting to the dynamics of flying at different 

altitudes. Similarly self-tuning process controllers are designed to adjust their own settings in 

response to changing plant conditions. This is commonly done by the self-tuning process injecting 

a small change into the system and monitoring the response. [Berghuis et al 93] presents an 

example of these techniques in the form of an adaptive robot controller while [Chen & Ni 93] use
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dynamic calibration in a laser radar scanning system. These ideas are discussed further in part 2 

of this thesis.

2.4. Summary

This chapter started by discussing aspects of intelligence and how it is virtually impossible to 

provide a suitable all-encompassing definition. The conclusion here was that it was generally not 

an important issue in any case since the real heart of the matter boils down to the measured 

performance of a system in its designated domain. The next background topic in section 2 dealt 

with aspects of autonomy and self-sufficiency. Again ideas were aired, but it was concluded that 

the assignment of such attributes to a system were largely conjectural and generally of little 

practical use. These topics were discussed in order to introduce these concepts for the BBAI 

introduction in the next chapter.

Section 3 of this chapter presented a number of aspects of classical control and contrasted 

them wimin the conceptuality of AI control. Differences between the basic assumptions of AI 

control and classical control were highlighted in order to prepare the reader for the general theme 

of this thesis: the low-level use of AI control techniques from a behaviour based perspective. 

Chapter 3 now proceeds to introduce the main characteristics and working assumptions of 

behaviour based artificial intelligence.
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3.Behaviour Based Artificial Intelligence

This chapter covers the following:

BBAI terminology.

Illustrations of BBAI control architectures.

Designing and building system s that interact with the real-world.

In the last chapter some fundamental characteristics differentiating between classical control and 

AI control were identified and discussed. The potential power of AI based control techniques in 

dealing with non-linear problem domains has stimulated extensive research in many areas of 

system development and in many applications. However, the task of building a system of rules in 

the manner of classical AI systems has not furnished demonstrable success in the provision of 

control structures for real-world autonomous agents ([Brooks91], [Simmons94] and [Miller93]). 

As a response to this a body of work has emerged that focuses on a different approach to building 

and researching AI systems. This chapter introduces the relevant paradigm: Behaviour Based 

Control, a methodology resulting from the field of Behaviour Based Artificial Intelligence 

(BBAI).

Behaviour Based Artificial Intelhgence is not a specific or well defined field of research. 

Rather it is more of a collection of diverse topics loosely focused on an interest in autonomous 

and self-sufficient systems that are embedded in a particular environment. While the name 

"BBAI" is gaining strength and recognition for a field, it is the case that the community shows a 

considerable diversity of interests ranging from the modelling and synthesis of real biological 

systems to more engineering-oriented robotic work. A common aspect of the work is in the use of 

one or more synthetic agents as a basic tool for experimentation. This approach has come to the 

fore recently in a number of international conferences such as the those of Artificial Life (both 

Artificial Life in North America and the European Conference on Artificial Life) and the 

"Animals to Animats: Simulation of Adaptive Behaviour" conference series. The work is also 

becoming of import in a number of other conferences such as the IEEE International Conference 

on InteUigent Robots and Systems. On another front, psychologists and ethologists are interested 

in demonstrating and verifying models of natural behaviour in synthetic systems, and 

neuroscientists have likewise used the medium to experiment with models of nervous systems. For 

example, the work reported in [Arreguit & Vittoz 94] deals with the constraction of an artificial 

retina and [Osorio et al 94] look at a combination of sensory mechanisms in terms of their
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neurological function. Robotics engineers and AI researchers are also interested in using the 

methodology to experiment with new ideas and techniques.

The first part of this chapter introduces the reader to some general terminology that is 

popularly used within the general community of BBAI. This is followed by a number of examples 

of behaviour based control frameworks that have been developed. Finally the chapter discusses 

the issues surrounding the "real system" versus "simulated domain" debate which is of particular 

significance to the BBAI field in general and on the work presented later in this thesis.

3.1. Some Working Terminology

This section overviews some of the common terminology found in the BBAI literature. It 

discusses the issues in preparation for the rest of the thesis: behaviour based, bottom-up 

development, distributed architectures, non-symbolic activation patterns, interaction dynamics, 

situatedness, embodiment, groundedness and emergence.

3.1.1. Behaviour Based - as opposed to function based

A fundamental aspect of BBAI is the behavioural decomposition of a system. This can be 

wimessed in both the research inspired by natural systems, for example [Mataric91J, 

[McFarland94b], [Cmse91], [Webb95] and [Arkin90], and in the design and development of 

synthetic systems of which [Gat et al 94], [Ferrell93] and [Arkin90b] are examples. [Webb & 

Smithers 91] discusses the connection between the two. Other similar work is evidenced in 

[Edelman et al 92]. Whilst a behavioural decomposition of animal behaviour may seem to be an 

obvious way of analysing a natural phenomenon, it has not been evident in the case of 

autonomous systems design. The past history of AI, with complete fields dedicated to the isolated 

research of different functional aspects such as vision [Marr82], speech [Chomsky65] and 

actuation [Critchlow85] all in isolation, illustrates the point.

The approach of BBAI systems design is to break development down to the implementation of 

task achieving behavioural modules, for example a homing behaviour of a mobile robot towards a 

source of light. These behavioural modules are built to include all necessary mechanisms, in 

terms of both physical hardware and algorithmic computation, that are required to realise the 

particular task in hand. The result is a fast and dedicated process (or collection of processes) 

capable of complete control of the agent in a particular behavioural situation. Problems of design 

turn on the provision of a mechanism that can provide for the selection of the right behaviour at 

the right time, or in other words identify a particular agent-environment situation that can trigger 

a change in behavioural pattern. This problem, known as action selection, has been dealt with in a 

variety of ways. Examples are the explicit but embedded action-selection dynamics in the 

spreading activation networks reported in [Maes89] and [Pebody91] and the more implicit and 

implementation-specific techniques reported in, amongst others, [Steels93] and [Arkin87]. The
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issue of implicit or explicit action-selection mechanisms is an ongoing topic or research and 

debate in the BBAI community.

3.1.2. Bottom-Up '

Figure 3.1 compares a classical AI system decomposition with that of a behaviour based system. 

It is taken from the Brooks 1986 paper. The behavioural modules can be seen to be assembled in 

a bottom-up fashion in contrast to the classical AI structure which is typically the result of a top- 

down development. A behaviour based system results from a requirement to implement low-level 

tasks in order to provide a framework for higher modules that necessarily build on lower-level 

capabilities. Each layer is implemented and tested independently of any higher level of control. 

Although higher layers may interact and overrule the activities of lower levels, in the manner of 

the overriding of reflexes, the lower levels are completely self-sufficient within their own 

behavioural domain. This introduces a powerful redundancy into these systems in the form of a 

low-level reflex that may continue to function despite the absence of higher-level commands or 

instructions.
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Figure 3.1. Comparing a classical AI control structure (right) with one that is behaviour based (left).
Taken from [Brooks 86].

3.1.3. Distributed - Decentralised

It should be apparent by now, given both the bottom-up development and behavioural module 

oriented construction of behaviour based systems, that these systems have an inherently 

distributed structure. The development of classical AI systems has necessarily led to the pipeline 

architecture that is shown in figure 3.1a which separates the sensory and classification 

functionality of the input stages and the planning and reasoning "higher-level" functions of the 

central modules. The actuation and output control functions are then dependent on all that has 

gone before. Each of these modules with its general-purpose functionality requires central storage 

of information. In contrast the behaviour based system localises all aspects relevant to a 

particular behaviour, sensing and acting, into collections of simple, fast, tightly-running parallel- 

control loop processes. These concurrent (or more often pseudoconcurrent) processes operate 

independently, responding to local conditions which may or may not include sensory information
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from other parts of the system. The result is a network of interacting control processes that 

simply act on a given set of inputs which may be sourced either from physical sensors or from 

other internal processes.

This approach to distribution of control is typified in the subsumption control work reported 

in [Ferrell93] (or [Ferrell94]) and the control work of [Pfeifer & Verschure 91], and extends to 

physical distribution of systems in the form of cooperating robot groups, for example as in 

[Parker93], [Mein91], [Steels94], [Beckers et al 94] and [Mataric95]. This is markedly different 

from the work of, for example [Hayes-Roth88] and [Yiita & Premvuti 92] and the industrial 

views of distribution reported in [Jones et al 91]. Work of a distributed nature in an industrial 

environment is reported in [Freund & Buxbaum 93] and [Oliveira et al9V\.

3.1.4. Non-Symbolic - Activation Patterns

Classical AI based systems rely on the formal manipulation of symbols for the realisation of their 

actions. As such they follow a set sense-think-act cycle using some framework of formal logic. 

This is a result of the extensive AT research following, amongst others, the hypothesis of the 

Physical Symbol system of Newell and Simon in [Newell & Simon 76]. In these systems the 

nature and form of a symbol are clear. It is an abstract token that is used to represent some aspect 

of the agent's world, and the relationship and interactions of a symbol to other symbols is 

supposed to match the relationship of the real-world artefacts that the symbols represent. An 

example of this kind of symbolic relationship can be found in [Eastmanbl], in which the simple 

relationships are expressed in terms of basic natural-language statements. Issues of symbol 

acquisition are discussed in [Hamad90] and [Malcolm et al 89].

In contrast to the hard use of symbols in classical AI, BBAI does not use any direct form of 

symbolic manipulation in its agent control mechanisms. A behaviour based system is assembled 

using a multitude of techniques most often organised around the distributed execution of simple 

algorithmic processes that interact so as to provide the required behaviour. [Mataric92] details an 

example of a distributed and non-symbolic map acquisition in a mobile robot. In any eventuality, 

the processes of a behaviour based agent are non-symbolic in their operation. While it may be 

claimed that the patterns of activation that trigger particular behaviours might be interpreted as 

some form of symbolic representation [VanGelder94], it is the case that these are artefacts after 

the event, a result of an observer's interpretation of one instance of a complex and dynamically 

changing system. Further discussion along these lines is likely to become deeply philosophical 

and it is not the place of the present thesis to dwell on this topic. Further (and inconclusive) 

discussion can be found in [Smithers94c] while [Steels90] and [Steels95] report on a continuing 

refinement of a behaviour based approach.
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3.1.5. Dynamics of Interaction - No World Models

The distributed, non-symbolic characteristic of a behaviour based system has already been 

outlined above. However, there is another factor that differentiates between aspects of internal 

state and representation: the issue of world models. This requires separate attention. The issues 

concerning different uses of the term "model" were dealt with in the previous chapter. In this 

instance, "model" is taken in its AI sense as an abstract assemblage of knowledge. Such 

knowledgebases as found in systems reported in, for example [Simmons94] and [Knick & 

Schlegel 94], have been used to provide a central world model for an autonomous agent in the 

form shown on the right-hand side of figure 3.1. Such knowledge structures are used as the bases 

for supplying planning and reasoning mechanisms with symbolic information for calculating the 

next action of an agent. In classical AI the timing of such processes is not important. For 

example, in a chess-playing system the timing of any output result is not an important 

performance factor. However, a mobile robot that trundles over a chff because it is still searching 

its world model for a suitable next action is in serious trouble.

Behaviour based systems however, due to their inherent parallel and distributed architecture 

and non-symbolic nature, do not require and can not realistically support such a centralised 

structure as a world model. The maintenance of such a body of internally stored states is both 

time-consuming and costly in terms of the computational resources required, resources that have 

been demonstrated to be utilised better in speeding up the response times of behaviour based 

modules [Gat93], [Miller94]. Thus another characteristic of behaviour based systems is that they 

do not employ any formal internal world model and in fact are designed to exploit a minimum of 

explicit internal domain knowledge, basing their actions instead on the wealth of information 

directly available from sensing and acting in the real-world [Brooks90], [Brooks91]. Examples 

that have addressed these issues and provided demonstrations of control in real-world robots 

include [Mataric92b] and [Nehmzow & Smithers 90].

3.1.6. Situatedness

The target of traditional AI has generally been to research and develop systems that demonstrate 

intelligence independently of their environment. This is typified by the classical test for 

intelligence suggested in [TuringSO] in which all a system has to do to establish its intelligence is 

to respond to a person's questions in a similar way to another person. I say "all a system has to 

do" because in terms of BBAI such a successful system would not even begin to meet conditions 

such as the reliable and robust achievement of tasks in the real physical world. Other examples of 

the independence of traditional AI systems from their environments can be found in the many 

examples of abstract problem solving such as the Blocks World programs of Winograd reported 

in [Critchlow85], [Winston??] and [Luger & Stubblefield 89]. In contrast discussion of these 

views from a BBAI perspective can be found in [Brooks86b], [Prem95] and [Webb93].
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BBAI studies and implements situated agents. In other words, the agents have behavioural 

characteristics that are highly dependent on their environments. In fact it is the case that the agent 

and environment of BBAI systems are so tightly coupled that it is difficult to examine one aspect 

individually. This follows closely the observations of researchers in aspects of biology, in 

particular ethology, that animals (or in other words natural agents) have evolved to function 

within particular environmental niches. For example, a spider has evolved to function in its niche 

which perhaps consists of a hedgerow. This spider is able to spin a web to catch food, reproduce 

(with the help of a friend) and generally survive in all manner of diverse conditions, wind, rain, 

snow, frost etc. This is certainly an impressive range of behaviour even if we are not willing to 

subscribe to it as being intelligent. However, if the spider is moved through some unfortunate 

circumstance into a bathtub, it becomes completely lost. A typical response is for it to keep 

walking forwards and upwards in an effort to escape, but with the inevitable consequence of 

falling back down the slippery sides to the bottom - this behaviour does not seem so impressive. 

The difference is in the spider's situation (figure 3.2); it was not "designed" for the bathtub 

environment [Smithers91].

In BBAI a synthetic agent is also viewed in this way, with all aspects of its behaviour and 

activities including its environmental situation taken into account. Recognition of the phenomenon 

of situated behaviour can contribute in the design of specific solutions to many control problems. 

Aspects of an agent's environment can be used to advantage in developing more efficient and 

cost-effective synthetic systems with the problems of finding general-purpose solutions being 

conveniently sidestepped [Horswill93]. Consequently aspects of maintenance and search of 

symbolic world model structures are irrelevant since the agent is specifically designed to function 

as a result of its environmental situation. This is in contrast to the techniques used in, for 

example, [Pikes & Nilsson 71] and [Simmons94] where aspects such as motion are planned from 

a database-like structure of the vehicle’s perception of its world. In the words of Brooks in 

[Brooks90], "the world is its own best model".

Figure 3.2. Left: A spider situated in a hedge. Right: A spider situated in a bath.
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3.1.7. Embodiment

A behaviour based agent is situated in its environment. In general the environment of interest is 

that of the real-world. Thus an agent must be physically embodied in some way. Most behaviour 

based systems focus on the implementation of experiments with mobile robots. However, other 

agent-environment situations exist that are otherwise physically embodied, and the work reported 

in this thesis deals with one such.

The physical embodiment of an agent is realised in its morphology and has as significant an 

effect on its behaviour as any internal control stmcture. In the case of mobile robots the physical 

embodiment is obviously in the form of the shape, size, materials and construction of the vehicle. 

Factors such as wheel size and type characteristics can have a fundamental effect on agent 

performance. For example, a big robot over (say) 1.5m in width will not be able to negotiate most 

normal office doorways while a small robot may become entangled in ground clutter such as 

wires and cables. Alternatively a robot with small wheels that require less power to turn wiU 

become stuck more often on bumps and ridges in contrast to larger wheels. As an extreme 

example a vehicle with one drive wheel smaller than the other will have an inherent tendency to 

turn constantly in one direction unless the motors are driven at different speeds. There are 

countless other more subtle characteristics of agent morphology that are equally significant. For 

example, how does the vehicle respond to colliding with obstacles (which as any mobile robot 

designer knows will inevitably happen); is it massive and hence relatively unaffected or is it hght 

with a tendency to bounce back? If it is heavy then the motors may stall causing a severe drain on 

the batteries, while if it is light the recoils will mean that any form of proprioception though wheel 

movement is ineffective. The use of various sensor types is also equally influential on agent 

ability. This is described in [Smithers95] as the details of "getting the interaction dynamics right".

3.1.8. Groundedness

One of the major problems faced by the supporters of classical AI is that of grounding an 

abstract symbolic process in the real-world. In other words, the problem is to make the symbols 

used in such systems match the aspects of the real-world that they are supposed to represent. This 

is evident from the massive amounts of work conducted in the centres of research in machine 

vision (typified by [Marr82]) that attempt to process image data to separate, recognise and label 

objects. For example, identifying a physical chair that is actually a chair and not a similar- 

looking object, which may or may not be used for sitting on, and then equating it with a symbol, 

for example "/i", which may be manipulated logically in conjunction with other symbols and have 

the same relationships as the real-world artefact. For example, "h on where is a symbol for 

floor.

The classical problem of symbol grounding [Hamad90] is not an issue in BBAI because: i) 

symbols are not used explicitly in any part of the system, and ii) BBAI systems, being situated in
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a particular environmental niche [McFarland95], are intricately tied to their worlds with actions 

being a result of the real-world situation and not some form of internal world-model.

3.1.9. Emergence '

Finally in this section the issue of emergence is touched upon. In the original work on emergence 

in [Brooks86b] (as well as [Pfeifer93]) it is suggested that ill-defined features such as (in 

particular) "intelligence" but also a host of other folk-psychological notions such as "desires", 

"emotions" and "goals" could not be useful in defining or constmcting an autonomous agent 

control system and would in fact not be directly observable in any localised component part. 

Rather, these phenomena would manifest themselves as a result of the interactions of the agent's 

behavioural modules, the agent's physical body and its environment. Thus, they would emerge as 

the agent went about its activities in its world. This relies totally on the observer of such an 

agent-environment system being able to interpret such notions in the resulting behaviour. 

[Pfiefer88] and [Churchland95] are also relevant here.

Emergence has also attained popularity, perhaps mistakenly, as a term used to describe the 

manifestation of a behaviour as some form of holistic effect resulting from the interactions of the 

many parallel parts of a behaviour based system. In other words: getting something for free. This 

is illustrated by the discussions in [Maes89], [Simmons94] and [Crowley et al 94]. This however 

is a highly dubious attribution. A required behaviour does not usually emerge spontaneously as a 

result of the interaction between parallel processes, but rather it manifests itself after much 

careful design and development [Mataric92], [Brooks89] and [Steels89]. Emergent behaviour 

that is acquired for free more often results in a poorly and even catastrophically performing 

system rather than in one that is "better" than before. It is possible or even likely that, in the 

future, emergent behaviour will become a significant phenomenon in the area of autonomous 

systems, but in the real-world where systems must perform to a predetermined specification it 

would be undesirable to rely on such properties appearing unexpectedly out of the blue. Our 

working definition of emergence, then, is the manifestation of folk-psychological characteristics 

which we may (as observers) attribute to a system and that are not directly designed in.

3.2. Examples of Behaviour Based Control Architectures
Many design frameworks, control strategies, methodologies, architectures and other structures 

that come under many other collective names have been proposed as solutions to the problem of 

controlling an autonomous agent in a real-world environment. In the literature different 

researchers provide different levels and qualities of detail about their pet programming 

frameworks or design paradigms. It may well turn out that the systems are interchangeable and 

that the basic principle of bottom-up design is the most significant aspect of a system's success. It 

is certainly the case that several of these frameworks are interchangeable. For example, the 

Subsumption Architecture and its accompanying Behaviour Language may be used to implement

Behaviour Based Artificial Intelligence 36



a Spreading Activation Network like that of [Maes90] which had previously been programmed in 

LISP ([Brooks90b] and [Maes & Brooks 90]). Other techniques such as neural nets and genetic 

algorithms are also of interest as they may provide useful solutions to some problems, for 

example the interpretation of large arrays of sensory data. The rest of this section outlines in 

greater detail three frameworks that have emerged from the field of BBAI and appear here in 

order to provide a flavour of the methods that are used: (i) Spreading Activation Networks; (ii) 

Process Description Language PDL; (iii) the Subsumption Architecture. Other long-lived and 

successfully-applied control architectures include: the Autonomous Robot Architecture or AuRa 

[Arkin87],[Arkin90] and [Arkin90b], and "A Language For Action: ALFA" [Gat et al 94].

3.2.1. Spreading Activation Networks
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Figure 3.3. Two competence modules with example interconnections and activation energy inputs and
outputs.

There are several examples of agent control frameworks that rely on a mechanism known as a 

spreading activation network. Perhaps the most interesting of these, as far as behaviour based 

control is concerned, is the action-selection mechanism that was developed and documented in 

[Maes89], [Maes89b], [Maes91], [Maes91b], [Maes91c], and implemented in a mobile robot 

[Pebody 91], in a simulated domain [Tyrrell94], and used in [Giszter94] to model the reflex 

behaviours of frogs. The mechanism provides for a dynamic action-selection which is based on 

the current state of the environment, the agent's current actions and its previous activity. Other 

examples of this type of mechanism have been somewhat more specialised. For example, 

[Mataric92] presents a spreading activation mechanism that was used to store landmarks and
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provide for subsequent navigation in a mobile robot, [Parker92] implements a spreading 

activation network in a similar manner to that of Maes to control a number of cooperating agents 

but which has yet to be run on real-world robots. The main part of this section will describe the 

action-selection mechanism as implemented by Maes as a means of demonstrating the technique.

Maes' spreading activation action-selection network is a truly distributed control mechanism 

that allows for a dynamic selection and sequencing of agent actions. The system does not 

specifically plan its activity but an appearance of planned actions emerges from the interaction 

between the component parts. The system consists of a number of prewired/preprogrammed 

interconnected competence modules. The connections are links along which an activation energy 

flows, the quantity of which depends on the dynamical interaction among all modules. Each 

competence module consists of the following elements:

Competence Realisation Mechanism: The mechanism of this element is not prespecified; it 

may be any mechanism that executes the desired competence or completes the required 

task (for example, a piece of hardwired electronics or a simple piece of program code). 

This element is enabled when the competence is activated (see below).

Activation Level: This is a value (or register) that contains the competence module's current 

level of activation energy and indicates the module's applicability to the current situation in 

which the agent finds itself.

Precondition List: This is a list of logical (tme or false) states that may refer to sensors or 

internal states of the agent. A competence module can only become activated if all of its 

precondition states are tme.

Add List: This is a list of conditions that are turned tme should the particular competence 

module succeed in its task execution.

Delete List: This list contains conditions that are falsified should the competence module 

successfully complete its task.

There are three types of interconnections between the competence modules: Predecessor, 

Successor and Conflictor. A quantity called activation energy flows along these connections, 

either increasing or decreasing the likelihood of a competence module becoming activated. A 

number of parameters determine the interaction behaviour of the modules by influencing the 

amount of energy transferred along the connections. These are:

Activation Threshold: This value provides the initial threshold activation level that must be 

surpassed by executable competence modules. It is decreased by 10% every time a 

competence module is not selected and reset to its original value once one is.

Environment Activation: This value effects the activation energy injected due to the state of 

the agent’s environment.
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Goal Activation: Activation injected due to the agent’s goals is controlled by this value.

Protected Goal Depletion: This value affects the removal of activation energy from modules 

that undo completed goals. ........

There is a sequence of operations that each module executes in synchronisation with all other 

modules:

i) The module accumulates the amount of activation that it receives from the interconnections

within the network.

ii) The module calculates the amount of activation that it outputs on its links for the next 

cycle.

ill) If all the module's preconditions are met and its activation level is greater than a global 

threshold and greater than all other module's activation levels, then its action realisation 

mechanism is enabled.

iv) A global decay value is applied to all module's activation levels.

The above has very briefly outlined the mechanism of Maes' spreading activation network, 

many aspects of which originated from the STRIPS planner reported in [Fikes & Nilsson 71]. 

The important point to note is the fact that the mechanism has no central control; each module 

assesses its own suitability to function within the current state of the world. The resulting 

behaviour is an ordered sequence of activities that give the agent an emergent behaviour, which is 

one that cannot be found by examining any individual competence module (although if one 

examined the complete network it might be a different case, seemingly less emergent).

Although Maes, [Pebody91] and [Giszter94] all report successful implementations of the 

spreading activation algorithm it should be noted that the extensive work reported in [Tyrrell94] 

suggests that there may be some problems. These particularly focus around the nature of 

selecting the values of the various configuration parameters (which control the inter-module flow 

of activation energy) and the stability of the interactions between the network’s competence 

modules. However, in addition to this it is worth noting that several extensions to the algorithm 

have been developed so that network interconnections and parameter values can be learned 

dynamically and thus adapt continuously to changes in circumstances (e.g. a competence module 

failure) [Maes & Brooks 90], [Maes91] and [Giszter94].

3.2.2. Process Networks And The Process Description Language: PDL

The ideas of a dynamic network of interacting processes and of the PDL have been developed by 

Steels and others at the AI Laboratory in the Remish Free University of Brussels ([Steels92], 

[Steels93] and [Steels95]). It has been used to program a number of mobile robots to execute 

tasks starting with obstacle avoidance and wandering to homing behaviours in which the robot 

searches for light sources within a normal office environment. Work is continuing and more
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sophisticated behaviours are being experimented with such as battery recharging, landmark 

recognition and map making. It is intended to add these to the basic obstacle avoidance and 

navigation skills already developed [Steels94].'

Motor S p eed  
quantity register Action

Infra-red se n so r s  
quantity register

Real-World

Figure 3.4. A simple process network without internal quantities.

PDL provides a framework of processes that interact by modifying values called quantities. A 

quantity refers to a sensor value, an actuator's value or some internal value. A PDL process 

receives input from a preprogrammed set of quantities and outputs a value that weights a 

quantity. The fact that a quantity may or may not be tied directly to a real sensor or actuator is 

not significant to the functionality of the process. The main point with this network is that all 

quantities are related, without any necessity for categorisation or discretisation of their states, 

although there may still be discrete thresholds which may be subject to other adaptive processes. 

All processes are thought of as operating in parallel, although the overall scheme may be 

implemented on a single microcomputer with a time slicing mechanism.

In order to reduce the complexity of the analysis and design task, further structure has been 

added in the form of a number of recurrent patterns of process/quantity combinations. More 

detail is to be found in [Steels93].

3.2.3. The Subsumption Architecture

In 1986 Brooks published a paper entitled "A Robust Layered Control System For A Mobile 

Robot" [Brooks86]. The paper was one of the first reports of the now prolific stream of work 

resulting from the new approach to AI (other publications by Brooks that expand on this work 

include [Brooks89] and [Brooks90b]). It presented the Subsumption Architecture and an example 

of a real-world demonstration using the described techniques to control the movement and 

navigation of a relatively simple mobile robot. The behaviour of the robot was reported to be
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reliable and robust and achieved cheaply with a minimum of computational resources. This was 

compared to attempts at using traditional AI techniques to do similar tasks (e.g. the robot Shakey, 

developed at the Stanford University AI Laboratory [Nilsson84]). The comparison is still an 

impressive demonstration of the power and success of these newer methods.

The Subsumption Architecture is a bottom-up behaviour-oriented implementation of a layered 

network of semi-synchronous augmented finite state machine processes. It provides a mechanism 

that enables the real-time control structures of mobile robots to be built up in layers starting with 

very basic reactive response and reflexes. Further layers of the system can be added without the 

need to modify already-operational lower ones. One of the main characteristics of the system, one 

that typifies that of all BBAI research, is the nature of the interaction of the layers with sensors 

and actuators and thus with the real-world. Rather than using a functional approach which leads 

to a sequential pipe-line mechanism of sensors sensor-processing map-building action- 

planning action-realisation actuators (or something similar) the Subsumption Architecture 

results in a massively parallel mechanism with modules that have access to virtually any sensory 

or internal information. The redundancy that results enhances the system's performance by 

making it more robust and more able to respond quickly (as a reflex) to dangerous situations.

The mechanism consists of a number of finite state machines that have been augmented with 

real-time clock information, hence: Augmented Finite State Machines or AFSMs. The AFSMs 

are interconnected via single-element buffers and "wires". Information is not stored in the buffer, 

but only the value of the most recently-received wire signal. Consequently it is up to the AFSM to 

respond in some suitable way as messages can be lost if new ones arrive before the old ones have 

been used. The inputs and outputs of a particular AFSM may be inhibited or suppressed by a 

wire output of another AFSM. Inhibition is applied to a module's output and prevents this output 

from reaching its destination. Suppression affects the input to an AFSM. Its effect is similar to 

that of an inhibition but additionally the suppressing AFSM forces a new value onto the wire. 

Each AFSM also has a reset default input wire. Figure 3.5 below presents a single AFSM.

Inputs

Real-time:
clock

Finite
state

machine
O utputs

Figure 3.5. An augmented finite state machine and its interconnections: S: Suppressor; D: Default; I:
Inhibitor.
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Each AFSM acts on an asynchronous basis; there is no form of built-in handshaking operation 

(although this mechanism may be programmed in by the designer should this be desired). The 

system is, however, loosely synchronised by a characteristic time constant which determines the 

real-time processing rate of the AFSM. In other words the clock ticks of the AFSM real-time 

clock dictate the frequency at which the input registers are read and processed. This has an 

important effect. In normal software (software that does not have a similar real-time construct) 

the system slows down as the program becomes larger and more complex. The speed of execution 

is effectively determined by the size of the program. In stand-alone utility-type software (e.g. 

data-bases, spreadsheets, word processors etc.) the only effect that this has is to raise the user 

annoyance factor. However, in systems that interact directly with the real-world and that must 

respond to events as a matter of survival, this slowing down can lead to mistiming of actions. The 

characteristic time factor avoids this by ensuring that every AFSM's processing rate remains the 

same despite any later additions to the software loading on the processor - although inevitably the 

processor will eventually become overloaded and thus begin to slow everything down.
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Figure 3.6. An example of a subsumption control structure, used for the low-level control of a walking
robot’s legs (taken from [Brooks89]).

A single layer of a system will consists of several AFSMs and, as higher layers are added the 

lower layers become totally embedded in the system. The higher layers influence the lower layers 

by inhibition and suppression and also by their effect on the actuators and hence the vehicle's 

situation in the world. Figure 3.6 shows part of the control structure for the low-level control of 

the 12 degrees of freedom of the 6-legged walking robot Genghis in [Brooks89]. This work was 

later expanded to deal robustly with the 18 degrees of freedom of the Hannibal robot ([Ferrel93], 

[Ferrel94]). These control solutions provided robots that were able to navigate in complex 

environments and respond to various stimuli with changes in behaviour. The resulting behaviour 

of the robots was reliable and robust, with Hannibal being able to compensate for missing and 

damaged limbs. Another significant factor contributing to the success of these systems was the 

relatively small computational expense (typically a few 16-bit microprocessors) of the solutions
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offered. More detail on the programming of agents using the Subsumption Architecture and 

details of robots that have been built can be found in [Brooks89b], [Brooks90] and [Brooks91] as 

well as other robotic work emanating from the MIT AI laboratory ([Parker93] and [Mataric91]). 

Brooks' work is continuing with the development of the Cog robot as outlined in [Brooks & Stein

93]. Examples of other work using the subsumption architecture can be found in [Porter92], 

[Webber & Bisset94], [Mahadevan & Connell 92], [Gat et al 94], [Pinhanez95], [Cornell et al

94] and [Zorpette94] to name but a few.

3.3. Designing and Building Real-World Interaction Systems: 
Real-World Control or Interaction?

The real-world does not consist of discrete events, it does not contain repeatable situations, but 

just similar ones, and it is stochastic and chaotic. The methodology of BBAI illustrated by the 

agent design architectures outlined above attempts to deal with the problem of providing an agent 

with a sufficient behavioural repertoire to allow it to survive and carry out tasks in a maximally 

reliable and robust way. In order to achieve this, the agent and environment are considered 

together as a single agent-environment system. Development and adaptation to any part of the 

system may be considered should it be of benefit to the overall performance. Three factors result 

from this approach: i) that the agent can not be said to control its activities in the classical control 

sense of the word; ii) classical AI techniques do not usefully fit a continuous time agent- 

environment situation, and; iii) the importance of the environment is reflected in an increasing 

awareness of the necessity for experimentation with real-world embodied systems.

Control and Interaction

From a BBAI perspective the control of an agent is performed by a part of the system that 

responds to influences from both internal and external effects. It is often possible to identify this 

as being mostly made up of the software part of a behaviour based mobile robot, and "controller" 

is in fact the popular name for this part of an agent. However, the functionality of this 

"controller" is not really separable from the rest of the agent in the same way as is the more 

classical view of a controller. While in classical control terms the controller is seen as being a 

discrete part of a system, in the BBAI paradigm this differentiation is not possible since the 

boundary of any "controller" is blurred and all parts of an agent-environment system are 

recognised as being of more or less equal significance. For example, is the controller bounded by 

that which is software? Is it bounded by the sensors and actuators? and, if so, at what point? At 

analogue to digital signal conversion? At the physical boundaries of the sensor? what if the sensor 

is reliant on some form of actuation by the agent in order for it to work (for example, active 

sensors such as sonar)? Finally the notion that an agent controls its environment is, in the case of 

a mobile robot, patently untme. If anything the reverse is more often true, with the agent doing its 

utmost to maintain some semblance of status quo. When classical control is used, it is normally in
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extremely restricted domains, and in particular the domain has to have some semblance of 

linearity. An example of a classical control approach to autonomous systems development may be 

found in the Cybernetics literature, much of which dates from the 1960s and before. For example, 

see [Wiener48] and [Pratt87], A more recent approach along these lines can be found in 

[Albus81],

Classical AI and Real-World Time

The mechanisms of classical AI tend not to allow for the temporal constraints on a real-world 

situated system, and provide generally centralised solutions to a problem. Although many formal 

systems have been developed with logics specially designed to cope with temporal reasoning 

[Long89], these deal with time in an abstract sense rather than being grounded in the real-world 

of sensory information flow. An agent that experiences a continuous sensory input is immersed in 

the sequencing of environmental events. It is the rate of change in the environment that dictates 

the passage of time for the agent. An agent must be able to respond to these events in a timely 

manner if it is to have any chance of survival. Consequently the distributed and localised fast 

control loops of a behaviour based system are much better suited to generating a timely response. 

This is in contrast to the homunculus approach of a classical AI system which, with its pipeline 

architecture and formal symbolic manipulation, requires either vast computational resources to 

support rapid decision-making or vast amounts of time to come to a decision. This trade off 

between computation and time is often a no-win solution to the problem of real-world, real-time 

interaction.

Simulation Versus the Real-World

The importance of an agent's environment and morphology as factors contributing equally to 

an agent's behaviour is regarded as a fundamental aspect of BBAI. The agent is uniquely 

embodied and situated. Consequently experimentation must take environmental concerns as 

seriously as those of the agent in question. This has resulted in the use of two types of research 

tool: simulated worlds and real-world robots (most often small mobile robots). These each have a 

number of good and bad points. Real robots are complex, require significant resources to develop 

and maintain, and are often claimed to be too difficult to set up to do "interesting" experiments. 

However, these problems are all associated with the real task in hand: that of developing and 

researching real-world autonomous agents. Such problems should ideally be dealt with first in the 

typical bottom-up development path of BBAI. Lessons learned from this route are all valuable 

contributions to autonomous systems research. In contrast computational simulations, which are 

often run with fancy graphical representations of the worlds and agents that they are intended to 

represent, are relatively easy to set up and maintain in the first instance, being relatively cheap in 

terms of cost and time resources. Prototyping of agent control tactics is comparatively fast and 

trouble-free. For example, one does not have to remember to make sure that the batteries are 

charged before conducting an experiment. However, the problem with the simulated world is
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fundamental; it is not the real-world. In short, it is very difficult to provide a simulated model of 

the real-world that includes more than the most rudimentary of physical interactions, and any 

model that is provided is only as detailed as the designer has allowed. In fact it may be claimed 

that simulated solutions are not valid as solutions to anything other than the simplistic dynamical 

problem that is simulated. Issues concerning simulations versus the real-world are discussed in 

[Webb90], [Brooks90], [Jakobi et al 95][Smithers94] and are generally tied to the embodiment 

and situatedness factors of BBAI.

Work that has involved the experimentation of agent control mechanisms in simulation and the 

subsequent transfer to the real-world includes that reported in [Harvey et al 94] and [Nolfi et al

94]. Both of these examples involve the use of genetic algorithms ([Goldberg89]) and require 

many iterations of a build and test cycle that can only be realistically attempted in the fast 

prototyping domain offered by that of computer simulation. In the case of Harvey’s work the 

evolved mechanisms are periodically transferred to real-world robotic systems and tested before 

further evolution takes place, while Nolfi’s group’s approach is to evolve control solutions that 

are able to adapt to their environments and hence deal with the transfer from simulation to real- 

world.

3.4. Conclusions and Connections with the Project Work
From the discussion in the first part of this chapter it is clear that the ideas and methods of 

classical AI do not fit well into the behaviour based paradigm. This has already been observed to 

be the case in practice when it comes to physical real-world implementations (for example, 

[Simmons94] and [Nilsson84]). However, there are a number of domains in which the application 

of classical AI techniques may prove to be of significant benefit. For example and perhaps most 

notably, in providing a high-level designer and operator environment for communications with a 

lower-level behaviour based system. This concept has been expanded on in the form of a "hybrid" 

approach to autonomous systems design, the thought being that higher-level symbol based 

systems may be grounded in the activities of the lower behaviour based layers. In [Jaeger95] it is 

suggested that the strengths and weaknesses of the symbolic AI and dynamic BBAI approaches 

are more or less complementary. Examples in this area of integration include the robotic 

assembly work of [Malcolm95] in which an AI planning system is situated on top of behavioural 

modules that implement the various actions specified by the top level planner. Other work with 

this system level of hybridisation includes that of [Cooper et al 95] and [Downs et al 95] while 

[Ma et al 95] reports on the integration of artificial neural networks and knowledge based 

systems.

Another aspect of hybrid systems is one that utilises the various AI techniques on a subsystem 

level with the granularity of the mix being finer that that mentioned above. For example [Holgate 

& Clarke 95] integrate artificial neural networks and state machines in a distributed learning
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system and [Gaussier & Zrehen 94] utilise a similar arrangement for perception and action flows 

in mobile robots. This form of hybrid system is the main focus of the second part of this thesis 

starting in chapter 7.

The desirability of such hybrid solutions depends on the nature of the target system with each 

situation having to be accounted for on an individual basis, in keeping with the current state of 

the art in the pure behaviour based approach. A BBAI purist might argue that bolting together 

two fundamentally different approaches to systems design is in fact bad engineering practice. 

Interfaces, it might be claimed, would be ill-defined and arbitrary and it is in any case not clear 

that the phenomena of "reasoning" and "planning" are any more than emergent characteristics of a 

complex agent-environment system (albeit of a special nature) and arrived at through an 

observer's introspection. However on a systems engineering level there are clear advantages in 

utilising proven components that have been developed tried and tested elsewhere.

To date, much of the significant behaviour based work has dealt with the implementation of 

relatively simple mobile robots that most often utilise binary sensor and actuator control, 

although more complex analogue sensor and actuator systems are now increasingly being utihsed 

[Ferrell93]. For example, compare material in [Meyer et al 92] and [Cliff et al 94]. However, 

after 10 years of concerted effort it would seem that some move towards larger and more complex 

systems is needed to demonstrate that the techniques are useful and can be scaled up to larger 

problem domains in the form of more complex environments and task requirements. This, 

however, necessitates input from several diverse fields ranging from mechanical and materials 

engineering to computer science, as well as useful input from areas such as neuroscience and 

ethology. This is difficult to achieve in all but the largest of multi-person projects, one such being 

the Cog project that is currently in the engineering phase at the MIT AI laboratory [Brooks94].

The two ideas presented in this thesis regarding the distributed and localised autonomy of 

agent architectures and the necessity for embedded adaptivity and learning were outlined in the 

first chapter. These follow on from this perceived need for research into the implementation of 

larger and more complex behaviour based systems that are situated in the real-world (as opposed 

to simulations). While the work reported in this thesis has been undertaken as an individual 

project, it has been approached with a broader view. Existing systems have been taken from 

industry that provide a "pre-engineered" test-bed for the implementation of experiments in this 

expansive vein. Because of time constraints the issues relating to the development of the 

behavioural control of a subsystem of the main equipment set was undertaken but with (at all 

times) an eye for the larger scheme of a truly distributed real-world control system. A real-world 

test-bed framework for experimentation is the topic of the next chapter.
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4.An Industrially Situated Behaviour Based Control 
Test-Bed

This chapter covers the following:

An industrial laser-scanning inspection system .

An experimental test-bed.

The behaviour language - a  framework for constructing subsum ption control structures.

Industry is continually searching for solutions to the problem of automatic control of increasingly 

complex and diverse applications. The reasoning for such expansion ranges from cost reduction 

through greater efficiency and an increasing profusion of low-cost sensor devices (leading to large 

availability of information) to providing actuation in domains too dangerous for manual activities 

[Rokey & Grenander 90]. This increase in automation has led to an increase in the number of 

interacting self-regulating machine systems or work cells, which may be regarded as distributed 

systems or colonies of heterogeneous agents [Jones et is also the case that the individual

systems are increasingly utilising distributed control techniques with localised processing of, for 

example, sensory information. These systems may also be seen in the light of a colony of 

heterogeneous agents. In both cases the agents are at least to some extent physically embodied. 

They are also situated in particular environments with specific task requirements. But, being 

physically distributed, global data structures such as those reported in [Hayes-Roth88] and/or 

global control (for example, [Fraichard & Laugier 93] and [Simmons94]) are not efficiently 

implemented. The domain would appear to be most suited to the utilisation of behaviour based 

control techniques.

Currently the vast majority of interesting work in behaviour based artificial intelligence 

(BBAI) has focused on the control of small mobile robots within a laboratory setting. It is also 

the case that while many of these mobile robots utilise more than one processing resource and one 

can claim them to be distributed systems, few if any actually implement any form of behaviour 

based control in a truly distributed manner. A more common scenario is the use of a central 

processing unit mnning a number of pseudo-concurrent processes which send commands to one 

or more slave processors that provide a built-in and fixed actuator and sensor control 

functionality. The work reported in this chapter addresses two aspects of behaviour based 

control: i) an unusual agent-environment task domain is used for the implementation of ii) a truly 

distributed behaviour based control architecture. The behaviour based framework used is that of
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the Subsumption architecture and the task domain is the control of an active laser-scanning 

sensor used for industrial product inspection.

Figure 4.1. A laser-scanning inspection head mounted on a robot arm.

This chapter details a test-bed, oriented towards industrial applications, that was constructed 

to support experimentation with aspects of behaviour based control. The application of a 

technique in a new situation allows the strengths and weaknesses to be tested and highlighted 

within a different framework. The work reported here evaluates the use of behaviour based 

control in just such a situation and in the course of this thesis a number of consequent issues will 

be addressed. This chapter introduces the problem domain of an industrial laser-scanning surface 

inspection system and details a subsumption architecture programming framework that was used 

for all the experimental work presented in this dissertation. This test problem is, for the current 

state of the BBAI field, a novel domain and as such provides new perspective in which to 

evaluate behaviour based control.

4.1. Industrial Inspection: An Active Laser Scanner System
The laser-scanning system that forms the focus of the experimental work in this dissertation is 

used to inspect materials ranging from continuous lines of float glass and plastics to the finish on 

painted surfaces. Figure 4.1 shows a robot-arm-mounted device that has been used for inspecting 

the paint quality on car bodies while figure 4.2 shows a static mounted system above a 

continuous and moving product. This equipment is typically used in an environment that is noisy, 

often unstmctured, dirty and demanding on hardware. In these respects it presents a set of 

requirements similar to those addressed by the real-world systems of BBAI. The system presented 

is known as FastScan and is one of a series of product inspection systems marketed by Image 

Automation Ltd, a member of the Sira group of companies. Image Automation are currently 

directing their efforts towards providing the glass and plastics industries with real-time, on-line 

product inspection and automatic grading. The FastScan inspection systems are under a
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continued program of development, with a continued evaluation of other potential product 

inspection applications. The work of this thesis is directed towards a search for increasingly 

robust and adaptive control strategies that will enable the laser scanner system to operate in more 

exotic and unstructured industrial situations.

FastS can  Optical 
Front End.

Data com m unications.

Direction of product 
m ovem ent.

Laser light stripe.

Product under inspection

Personal Computer 
supporting Transputer 

p ro cessin g  system  
and interfaces to user  
and other production 

sy ste m s.

Figure 4.2. A single headed FastScan laser-scanning inspection system.

The engineering and constmction of an inspection system is, in many respects, a process of 

developing a tailor-made system designed for a specific and unique industrial situation. It is in 

effect a highly specialised and complex sensor. Potential customers for product inspection 

systems come from different industries with different inspection requirements (even for a similar 

product such as, for example, sheet glass). Obviously, producing a new inspection system for 

every new customer would be prohibitively expensive. Image Automation has therefore taken a 

modular approach. The FastScan system is arranged around a number of basic component parts 

which can be configured for different industrial production scenarios. The test-bed used for the 

experimental work of this thesis is a subset of the main system. The subset was chosen as a target 

for experimentation because it provided a compact and well-defined problem that was both 

relevant to the development of the FastScan system as a whole and also served to capture a 

number of key aspects relevant to the field of BBAI research. Moreover it was also of a size and 

complexity that suited the time and cost resources of the project that is reported in this thesis.

4.1.1. The FastScan Product Inspection System

The FastScan system inspects a product in real time, at the same speed as the inspected product 

is produced and travels past the FastScan sensors. During production, information concerning 

any defects or faults is used to control, sort and grade the inspected product automatically. In this 

respect the laser scanner is an integrated part of a number of plant production systems, the first 

level of agency mentioned in chapter 1. In turn the FastScan system consists of a number of 

parts: (i) a host computer, usually an IBM compatible personal computer; (ii) scan analysis and 

defect classification electronics; (iii) laser and light collector control electronics and; (iv) the laser 

and light collection assembly. Figure 4.3 shows a block diagram of these parts and their
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interconnections. The test-bed system detailed here has been constructed around the third and 

fourth elements which together make up the FastScan front-end system.

FastScan operates by striping the laser rapidly across the target product surface at a rate of 

approximately 2000 Hertz (a period of 500|liS). This is done by shining a red helium-neon laser 

onto a 12-sided reflective polygon rotating at approximately 10,000 revolutions per minute. Laser 

light is then reflected back from the product surface, captured by specialised optical mechanisms 

and focused onto a number of photomultiplier tubes which convert the light into an analogue 

electrical signal. This is the task of the laser and light collection assembly in (iv) above.
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Figure 4.3. Functional units of the laser-scanning inspection system.
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Figure 4.4. A single laser scan line signal showing an ideal signal pedestal.

As the laser stripes across the product surface, faults and defects manifest themselves as 

positive and negative spikes in the detected light level signal. Some defects (such as holes) 

prevent any return of light and others focus it directly back into the system's optics (a 

characteristic of certain scratch defects). Several highly sensitive photomultiplier channels are 

used to capture different types of defect through differing optical systems which are particularly 

designed for certain characteristics and situations. Features such as dust, dirt, scratches and holes 

with size scales down to around 500pm are typically the object of attention. Figure 4.4 shows a
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representative scan across a product surface which correlates with the raised central part of the 

scan. This is known as the scan pedestal. It is the task of the laser and collector electronics to 

control the various systems including the photomultiplier devices so that this signal format is 

maintained in as many situations as possible (given the generally inhospitable industrial 

environment mentioned above) in order for the scan signal to be analysed and any detected defects 

classified. As the product passes under the laser scan, a defect map of consecutive scan stripe 

data is built up. Different defects can be recognised and used to trigger required actions in other 

work cells and machinery that constitutes the overall production line.

4.1.2. An Experimental Test-Bed

As mentioned above, the experimental test-bed that has been the focus of the experimental work 

in this thesis was built around the laser and light collection components and their respective 

control requirements. This section details the hardware functionality and operation of the test-bed 

system. The actual control problem is dealt with in section 4.1.4. In particular, the reasons for 

treating this part of the system in isolation are highlighted. The experimental test-bed consisted of 

five main modules: (i) a host computer; (ii) optics and laser control electronics; (iii) channel 1 

photomultiplier and control electronics; (iv) channel 2 photomultiplier and control electronics; (v) 

a laser and light collector "optical front-end". Additionally, and not a part in the same sense as the 

first five there was (vi) a unit for presentation of test product surface. All of these are shown in 

Figure 4.5.

L
Figure 4.5. The two-channel laser scanner test-bed equipment. On the right is the host computer, in the 
centre the control electronics and on the left the system for the presentation of the test product surface.
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Host Computer

An IBM compatible personal computer was used to support a number of top-level transputer 

processors on an internal expansion card. The PC also provided for program development, run­

time status monitoring, data sampling and subsequent off-line analysis work.

Photomultiplier control hardware

Each of the two photomultiplier channels was controlled by software running on a dedicated 

transputer microprocessor. This aspect of the system is somewhat complex and provides the main 

experimental interest. It is discussed further in section 4.1.4.

Optics and laser control hardware

A single transputer based controller is used to monitor laser power and rotating polygon 

performance. This module also provides for the detection of a binary start_of_scan signal used 

throughout the system. For the purposes of the test-bed system, this controller also provides 

output to a variable-speed motor that drives the product sample past the laser.

Figure 4.6. Test-bed control electronics.

4.1.3. Test Product

In an industrial situation the FastScan system is mounted so as to have a suitable field of view of 

the product that is to be inspected. In most cases the product passes under the optical front-end 

which illuminates the surface with the laser and collects the returned light into the 

photomultipliers. In the case of the test-bed system there was no continuous-flow production line, 

and an alternative had to be provided in the form of a continuously rotating drum and a sample 

inspection surface, as in figure 4.7. The rotation mechanism was in part belt-driven which 

effectively added a degree of irregularity to the timing of the dmm's rotation. This useful feature
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meant that any control structure under test would not be able to rely on specific timing of any 

repeating test-surface features.

Figure 4.7. The test surface rotation unit.

Controlled by software running on the optics and laser electronics module (which is detailed in 

chapter 5), the test surface may be set at a number of different rotation speeds, thereby effectively 

changing the coarseness and rate of repetition of the sample inspection surface. Additionally, 

different product types and scenarios were provided by assembling a collection of dmms with 

different surface characteristics. These are shown in figure 4.8.

Figure 4.8. A collection of test surfaces.
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4.1.4. The Photomultiplier Control Task and Environment

The task domain used in the majority of the experimental work reported in this thesis concentrates 

on the low-level control and maintenance of the inspection system's optical head. By far the most 

significant and resource-consuming aspect of this activity is the control of the photomultiplier 

output signals.

Photomultiplier tubes are light-detecting devices that have a huge dynamic range, and are used 

in this application for that very reason. Light falling on the tube's cathode end causes electrons to 

be emitted from a phosphorous layer on the inside surface. The electrons are accelerated down the 

tube by a number of extra-high-tension (EHT) voltage dynodes towards the anode end of the tube. 

The electrons striking the anode generate an output signal with a voltage level that is indicative of 

the intensity of the detected light. Figure 4.4 shows a typical signal as the laser scans across an 

object in ideal conditions. The control problem is one of controlling a photomultiplier sensor 

channel so that it maintains an optimal signal output with a mean pedestal amplitude of 1 Volt 

peak to peak. The photomultiplier controllers each have a low-resolution 8-bit analogue to digital 

converter which provides up to 1000 pixels per scan line of light intensity data in the range 0 - 

255 units (referred to as ADC units). 0 indicates an absence of light and 255 a maximum. The 

plot in figure 4.4 was made by sampling these pixels.
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Figure 4.9. Photomultiplier control electronics.

The dynamic range of the output signal of a photomultiplier may be controlled by varying the 

voltage on the EHT dynodes of the tube. The graph in figure 4.10 shows a typical photomultiplier 

response for a constant light level and three different sensor-surface distances while 4.11 shows 

the response for differing ambient light levels. The Y axis shows the mean level of the signal 

pedestal, as in figure 4.4 (where this is the value used in current solutions to the control of the 

photomultipliers). In both cases the gain on the X axis (EHT voltage level) was increased from
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zero until the output signal from the photomultiplier became saturated and no longer accurately 

reflected the detected light intensity. It can be seen that this response characteristic is highly non­

linear and can be categorised into four main states that are indicated on the two graphs: (i) 

Quiescent; (ii) Near-Linear; (iii) Fold-back-A, and; (iv) Fold-back-B (the shape of the 

corresponding scan signals is shown in figure 4.12). As well as surface-sensor distance and 

ambient light, the regions also change as a result of other environmental effects such as changing 

product surface characteristics. The sensor controller must maintain a set-point operation in the 

near-linear region in order to provide a stable and usable light-intensity signal. Should the system 

be in any other state the sensor signal would be unusable. Different control tactics are required to 

return to the near-linear state from the others. Consequently, fast assessment of signal state is a 

fundamental aspect of the control process.
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Figure 4.10. Response of the test-bed photomultiplier for constant light level and changing sensor- 
surface distance. Plot shows mean amplitude of scan pedestal against photomultiplier EHT voltage. State 
1 iQuiescent; State 2:Near-linear response; State 3:Unstable fold-back-A; State 4:Zero level fold-back-B.

Of particular significance in the control of the photomultiplier is the fact that a set-point of 1 

volt may be achieved in either the near-linear or fold-back-A signal states. Clearly the latter is 

undesirable since it provides a highly distorted signal (see figure 4.12). It also is problematical in 

that control solutions that use only the mean level of the scan pedestal as reference can not simply 

distinguish between the two characteristic states. Highly unstable oscillation can result and this 

restricts the nature and extent of situations in which the FastScan system may operate. For 

example, while the management of control for a continuous product such as glass or plastic is 

relatively straightforward, a product that is sectioned and broken provides significant challenges 

to the existing control techniques. The search for a suitable control solution that can cope with 

this increased environmental complexity is the basis of the practical work reported in this thesis.

The control task, then, is to attempt to maintain the nice signal in figure 4.4 at a level of 50 

ADC units ( 1 volt) irrespective of what happens in the world, e.g. changing ambient light levels.

An Industrially Situated Behaviour Based Control Test-Bed 55



changing sensor-surface distance, changing surface reflectivity. All of these have significant 

effects. In an extreme case the surface may suddenly disappear (the product on the line breaks or 

the product is in sections) resulting in a complete absence of reflected laser light and thus laser 

light being returned to the sensor at all. These effects may or may not be part of the standard 

behaviour of the production line. Consequently one of the problems faced by the controller is to 

be able to respond appropriately. In the case of a momentary break in product surface, an 

intuitive reaction of a controller might be to ramp up the sensitivity of the photomultiplier to 

attempt to recover a vanished signal. However, this will be to no avail and the maximum EHT 

voltage will be reached. The problem is aggravated when the surface reappears, as the 

photomultiplier's sensitivity, being at a maximum level in conjunction with the sudden arrival of 

high levels of light, will saturate the output signal (resulting in a fold-back state). This can be 

likened to people trying to see in a darkened room and then suddenly opening the window shutters 

to let in bright sunshine; momentarily they are blinded while the irises in their eyes adjust to the 

new light levels. Thus the photomultiplier system is also momentarily blind and the EHT voltage 

must be adjusted to adapt to new light levels (the reverse is true for the case of moving from 

bright light into darkness) and obviously the quicker this is done the more effective and useful is 

the system.
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Figure 4.11. Response of the test-bed photomultiplier for constant sensor-surface distance and changing 
light levels. Plot shows mean amplitude of scan pedestal against photomultiplier EHT voltage. State 1; 

Quiescent; State 2: Near-linear response; State 3: Unstable fold-back-A; State 4; Zero level fold-back-B.

In order to control the photomultiplier, the generally accepted solution is to use an average 

level of the signal between the left and right surface edges. However, there is a potentially much 

richer source of information in the form of the 1000 scan signal pixels from the analogue to 

digital converter. From the plots in figure 4.12 it can be seen the four characteristic signal states 

are most distinctive. One aspect of the present work deals with the utilisation of this rich source 

of information. Also there are other sources which do not originate locally in an individual

An Industrially Situated Behaviour Based Control Test-Bed 56



photomultiplier controller, e.g. other photomultiplier channels in the system. Further sensor 

channels may provide useful secondary information on the state of the environment and a 

controller would be able to compare its own performance with that of others. Further, the 

possibility of self diagnosis is raised. In addition, it is often the case that other systems in the 

production line can provide information that may be useful in helping the photomultipher 

controller to make suitable control actions. BBAI techniques are particularly suited to dealing 

with problems of this nature, where large quantities of diverse (in terms of type and quality) 

information are available for use from both local and remote sources.
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Figure 4.12. Typical scan line shapes for each photomultiplier state: A: Quiescent; B: Near-Linear; C:
Fold-back-A; D: Fold-back-B.

Finally, other issues that are important include those of timing. The sensor's laser stripes 

across the field of view with a period of 500mS. It is clearly not possible to control the sensitivity 

of the photomultiplier within the scope of a single scan stripe and neither is it possible for each
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separate scan stripe to be controlled individually. The stability of the sensor's output is in any 

case a result of the rate of change in the world, e.g. the speed at which the surface characteristics 

change. A surface passing at Im/s will be scanned 2000 times per metre, each scan covering 500 

|im. The real-time control rate at which the sensor should be able to adapt to changes is 

realistically not going to have to be so fast. In fact a real-time processing rate of a comparatively 

slow 20Hz would enable the system to react to changes of 10mm and larger, and this is generally 

an acceptable and realistic performance. The current maximum speed of the test-rig sample 

surface is of the order of 0.35 m/s, allowing a scan rate of 5700 scans per metre.

4.1.5. Computational Resources

The experimental test-bed is hosted by a personal computer which supports a number of 

transputer microprocessors on an internal expansion circuit card. The internal transputers are 

connected via transputer links to the individual control modules of the laser scanner optical front- 

end as detailed above. This configuration and utilisation of transputer processors provides a 

powerful and flexible framework for experimentation allowing reconfiguration of network 

topology in both hardware and software should it be desired. The nature of the transputer 

communication links is such that the addition of extra computational power through new 

processors is simply a matter of adding the device. This is analogous to the way additional 

behavioural layers are built up in the Subsumption Architecture.
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Figure 4.13. Test-bed transputer computing network and resources.

Figure 4.13 shows the configuration of the transputer network. The transputers used are a mix 

of types. T222s are 16-bit processors, the T405 is a 32-bit device and the T805 a 32-bit device 

with an onboard floating-point arithmetic unit. Programs are downloaded and then distributed to 

target processors via the T405 which is connected via interface circuitry to the host computer. AH 

basic software is written in parallel 'C  which is a specialised form of ANSI standard 'C  that 

includes extra functional capacity to deal with the parallel process model and serial 

communications link protocols of transputers.
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The T222 transputers are standard components of the hardware, photomultiplier and optics 

control electronics. The T405 and T805 however are an addition to take the place of the parts of 

the FastScan system not included in the test-bed. The T405 was utilised primarily to provide a 

user interface via the host computer while the T805, with its floating-point arithmetic unit, was 

used to run more complex control algorithms. This arrangement arose as a result of the fixed 

configuration of the test-bed system. The low level T222 devices were pre-designed components 

of the hardware. The requirements for an interface with the PC host computer were not sufficient 

to merit the resources of the T805 device which was best utilised with balanced communications 

links to all lower-level transputers.

4.2. A Distributed Subsumption Architecture

The subsumption architecture was overviewed as the best-known of the behaviour based control 

methodologies in section 3.2.3 of chapter 3. It has had a foundational role in many subsequent 

developments of behaviour based control and is still in use to this date as a research tool in the 

form of the Behaviour Language [Brooks90b]. This control architecture is in fact also beginning 

to be used in the engineering community for the development of mobile autonomous vehicles such 

as unmanned submarines [Zorpette94]. For these reasons it was decided to develop and use a 

subsumption framework for the distributed control of the laser scanner test-bed by constructing a 

tool to translate the augmented finite state machine specifications of the behaviour language into 

the parallel 'C  used to program the laser scanner transputers. This is referred to and detailed 

below as the behaviour language translator program.

The main feature of the behaviour language is the constmction of a network of small and 

simple asynchronous processes known as augmented finite state machines (augmented in that they 

have real-time clock information built in to control timing) known as AFSMs. A number of 

AFSMs that have related functionality are built into "behaviour modules" which provide the 

layers of a subsumption architecture. Each AFSM has a number of input registers and a rule that 

defmes the state transition of the AFSM. Each AFSM executes according to a built-in time 

constant known as the characteristic time (an error is flagged should the processor become 

overloaded and time overmns occur). Further details on the behaviour language can be found in 

Appendix A: "A Transputer Environment For Building Subsumption Control Architectures" and 

in [Brooks89] and [Brooks90].

The 'C  programming toolset used for the transputer network allows a number of individually 

compiled programs to be targeted onto a network of transputers. Each program with its "main()" 

'C  function (and its collection of lower-level transputer processes) is configured to run as an 

individual transputer process set which may be loaded as many times as necessary onto one or 

many transputers for execution as one or many concurrent processes. Interprocess 

communication using the transputer channel protocol is taken care of by a virtual-link utility 

which is a background task automatically configured by the programming toolset. A subsumption
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network program consists of at least one such "main()" program core which is referred to here as 

a "behaviour-node".

An important aspect of the transputer implementation of the subsumption architecture 

involves the nature of the software load and processor bootstrap procedure that initialises a 

network of transputers. One "top-level" transputer is connected to the host computer via one of its 

links. This transputer is known as the "server" transputer and is treated differently from the other 

"slave transputers" in the network. The server transputer must handle all communications with 

the host computer including loading software onto the network and access to files, VDU and 

keyboard. It does this by communicating with a server program mnning on the host computer. 

The user effectively communicates with the transputer network through a pipeline consisting of 

the host server program, the server transputer and any subsequently-programmed protocol on the 

slave processors. A network of transputer processes must include at least one top-level process 

that has been linked with special libraries that deal with the host communications. Consequently 

every subsumption network requires a special behaviour-node which is compiled and linked to 

deal with these extra tasks and provide the system services to the rest of the network. This node is 

referred to as the server-node. The server-node must reside on the server transputer while normal 

behaviour-nodes may be installed on any transputer including the server so long as a server-node 

process is also there.

Server transputer 
co n n ected  to tiost system

Slave transputer 1

Server
behaviour-node

Slave transputer 2external AFSM 
connections

transputer link carries multiplexed 
subsumption wires

behaviour-node translated 
from a single program source file

Figure 4.14. Six behaviour-nodes on a network of three transputers.

Transputer processes are inherently synchronous, conforming to a dataflow model of 

computation. Whilst the subsumption architecture is also of a dataflow format, the AFSM 

processes are basically asynchronous in operation. This difference initially posed a problem but 

was solved with the inclusion of extra (background) transputer processes acting as 

desynchronising buffers located between each pair of AFSM processes.
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Another problem was how to implement the functionalities of the wires and the different 

connections which, in the subsumption architecture, arise as a property of the wires themselves. 

Transputer links have no function except to transfer data.

After experimenting with a number of process combinations, including single, twin (input 

buffer and AFSM driver) and triplet (input buffer, AFSM driver and output buffer) sets it was 

found that the most effective and computationally efficient solution was to implement each 

AFSM as a pair of transputer processes: an input buffer process and an AFSM driver process. 

These appear in figure 4.15. The subsumption wires and any connection functionality (suppress, 

default and inhibit) are implemented by the input buffer process. Hence each wire appears simply 

as a transputer channel. The subsumption connection node is not obviously distinguishable by 

viewing the transputer network channels alone. The following describes each transputer process 

in more detail.
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Driver

Process

■M Input 
I Butter 
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Figure 4.15. Transputer processes making up a single augmented finite state machine.

4.2.1. The Input buffer Process

The input buffer process has two functions. The first is to provide the desynchronisation between 

the transputer AFSM processes and the second is to implement the functionality of the 

subsumption wire connection nodes (inhibit suppression and default). Figure 4.16 shows how a 

number of AFSM outputs each suppress those of lower AFSMs and eventually affect an output 

AFSM. This is implemented as three separate channels, all connected to the input buffer of the 

final destination AFSM. It is this input buffer that performs the arbitration between the various 

suppressor nodes.

Channels into the input buffer are grouped into sets of wires as shown in the example in 

figure 4.16. The feature that brings these wires together is that they all have a common 

destination, as they are all connected either directly or by wire nodes to the destination AFSM D. 

The wires of each block are grouped and processed together because the value at the destination 

input buffer depends on the activity of all these wires and this must be taken into account when
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AFSM registers are updated. A simple order of priority is used for the suppress and default nodes 

with the highest (in the case of suppress) active AFSM taking priority over lower ones. This 

priority is set when the behaviour program is translated into 'C  and the priorities are sorted 

taking into account the characteristics of the wire set. For example, default nodes are effectively 

an inverse of 'suppress', resulting in a reduced rather than increased priority for the wire 

concerned. This scheme has been implemented following careful study of the subsumption 

architecture implementations reported in [Brooks89], [Brooks90] [Brooks90b] and [Porter92], 

and has been demonstrably adequate for the subsumption based work reported in this thesis. 

However, it may prove difficult to implement networks that are more complex than simple 

ordered priority lists and for this further development of both the behaviour language and 

transputer parallel ‘C ’ translator would be required.

Single Subsum ption Wire AFSMs

' J  AFSM C

1 AFSM B

AFSM A AFSM D

T ransputer
P ro cesses

A  r x

Figure 4.16. A set of wires with suppression nodes (left) as found in a Subsumption network and (right) 
as implemented in Transputer channels and processes.

Within the input buffer process is a main loop that polls the input wire set by set, testing 

continuously to see if any have data and servicing them if they do. A channel must be read in 

order that the sending process can continue operating. It is this continuous polling that 

desynchronises the system and prevents deadlock between processes, thus effectively breaking the 

dataflow model of computation used by transputers. At the end of each iteration the internal 

channel that connects to the AFSM driver process is tested to see if the AFSM driver is 

requesting an update of its internal registers. Finally, before repeating the loop the process is put 

on hold in order to give the other processes CPU time. This is presented in the pseudo-code listing 

below.

Input buffer p ro c e s s  pseudo -code:
Loop forever:

Test each input wire set for active channels 
if active then read in data 
if not suppressed

update register 
Test AFSM driver update request

if active send all register data and status to AFSM driver 
Reschedule the process 

Loop End
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4.2.2. The AFSM Process

This process executes the rule part of the AFSM as designed by the programmer, which takes the 

form of a block of standard 'C  code. This process also initialises and sets mnning the input 

buffer process during system start-up. A loop executes the relevant program instractions 

repeatedly with a characteristic time period that is determined when the program is compiled. 

This ensures that all the AFSMs in the network are loosely synchronised. The pseudo-code below 

outlines the operations. During the execution of the AFSM process the input registers are updated 

automatically. However, outputs must be commanded explicitly by the AFSM function as 

specified by the designer.

AFSM process pseudo-code:
Initialise and run input buffer p rocess 
Loop forever:

Store real-time clock reading for use in characteristic time calculation 
Complete handshake with input buffer process to update registers 
Execute AFSM rule block functionality
Test time and suspend  p rocess until system  characteristic time is up

If time overruns then flag error to time monitor running in mainQ
Loop end

4.2.3. 'C  MainQ Function and Program Initialisation

Each behaviour-node is built around a main() 'C  function. This function initialises external and 

internal inter-AFSM channels and the AFSM driver processes (while buffer processes are 

subsequently initialised by the driver processes). It then sets all the AFSMs mnning and goes into 

a continuous loop that monitors the real-time performance of all the AFSMs in the local 

behaviour-node. The time monitor function actually differs depending on whether the program is 

to be a server-node or a normal node member of the network. The time monitor on the server 

transputer must monitor local AFSM performance and also poll inputs from other network nodes. 

The server-node maintains a record of time stams reports from itself and all other behaviour- 

nodes. The time monitor on a normal behaviour-node simply polls local AFSMs and sends 

information to the server-node should any timing overmns occur.

Behaviour node main() function pseudo code:
Initialise external channels from other transputers
Initialise internal channels
Initialise AFSM driver p rocesses
S et AFSMs running
Loop forever:

Perform time monitor function 
Loop end

4.2.4. An Example AFSM

The behaviour language translator program, mentioned at the beginning of this section, has been 

used to build the subsumption architectures that are outlined in the experiments in the rest of this
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report. This section briefly presents the format used for specifying a single AFSM and its 

interconnections. The defmachine(){ } construct below is translated into the AFSM process pair 

as outlined above.

defm achinef some_name){ 
decis: type register_name_ 1 [ = initialisation value],

type register_name_n [ = initialisation value];
mie:

whenever( condition)!
rule block of 'C  code; 

jendwhenever; 
jendm achlne;

Each AFSM declared must have a unique name. AFSM input and output registers and any 

normal 'C  variables must be specified with a normal 'C  data type in the decls: field. An optional 

initialisation assignment can be made at this point to pre-set the variable at some value. If no 

initialisation value is supplied, a default of zero is used. Next the rule: field contains the block of 

'C  code that realises the action of the AFSM. 'C  code is usually placed within a whenever!) 

construct since this provides the looping and characteristic time functionality of the AFSM. The 

'C  code may contain normal 'C  function calls and output() statements which cause a register's 

contents to be sent to its destination AFSM via a subsumption wire. A subsumption wire between 

two AFSM registers may be of any 'C  data type (although arrays must be treated specially; see 

appendix A) and is specified:
connect! source, destination_1 [, destination_n]);

where source and destination are any valid AFSM registers. If the AFSM is located on 

another behaviour-node then it must be declared as extemal( source) or extemal( destination). If 

the connection is to be a suppressor, default or inhibition node onto another wire, then destination 

must be: suppress( destination), default( destination), inhibit( destination), where destination is 

the destination AFSM register of the original wire. Suppression, default and inhibit connections 

to AFSMs in other behavioural-nodes are specified by extemal( suppress( destination)).

The declaration of AFSM processes m this way hides the actual transputer dual-process 

construction of the AFSM and subsumption wire functionality. The programmer can effectively 

build systems in the same way as those detailed in the behaviour language [Brooks90b] by 

declaring AFSMs and wire connections. Other progranuning, including low level input-output to 

hardware devices, is easily coded in 'C. The behaviour language implemented here is in fact only 

a subset of that used by Brooks. Other features such as monostables and behaviour activation 

that were included by Brooks have not been implemented so far. The framework presented here 

was found to be sufficient for the experiments run with the laser-scanning application, and has 

been used throughout this thesis. It was the case that these programs did not include large agent 

behavioural repertoires so that activation and inhibition at this level was not deemed necessary.
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4.3. Discussion and Conclusions
This chapter has presented a test-bed system that provides an industrially-situated and distributed 

problem domain for a control system. The chapter has also outlined an implementation of a 

subsumption architecture programming framework which in conjunction with the test-bed has 

been used for the experiments detailed throughout this thesis.

The photomultiplier control problem is an interesting one in its own right, especially when 

issues regarding varying and disappearing surfaces are concerned. This added unreliability of the 

environmental situation increases the non-linearity of the control problem significantly from that 

usually dealt with by classical control techniques. A significant problem is the nature of the 

changing surface. The controller of the photomultiplier must be able to differentiate between 

changes in the light intensity signal that have resulted from some internal actuation and those 

caused by some environmental influence. It is this aspect of the system that will be the focus of 

experimentation in later chapters.

The transputer processing architecture of the system also provides some interesting 

implementational aspects for a system based on a subsumption architecture. Although distributed 

networks using other microprocessors may provide similar results, transputers have proved 

particularly suitable in the present work. Primarily this has allowed us to ensure a truly 

distributed target system. It is the case that many implementations of a subsumption-controlled 

agent have not been truly distributed but instead have utilised a central processing unit and 

perhaps a number of slave processors and software device drivers that control input-output 

functionality independently of the main behaviour control software, as in [Brooks89], [Jones & 

Flynn 93], [Ferrell94] and [Steels94]. An important exception to this is the work in [Connell89] 

which describes a can-collecting mobile robot that utilises a subsumption control structure 

resident on 24 processors. Other distributed implementations of subsumption are reported in 

[Cornell et al 94], [Porter92] and [Webber & Bisset94]. The total distributed nature of the 

transputer subsumption implementation reported here, along with the modular architecture of the 

laser scanner test-bed, provides an interesting framework for experimentation with behaviour 

based systems. In particular, the study of issues concerning the interaction and integration of 

several virtually independent parts of a system is possible.

Finally the nature of the test-bed allows extensive sampling and storage of mn-time program 

and system status which can then be analysed off-line in greater detail. This facility makes the 

test-bed a powerful tool for experimentation with different control tactics and even strategies.

The next chapter details a complete behaviour based implementation of the laser scanner 

optical head and its associated operating environment, using the subsumption architecture.
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5. The Behaviour Based Control of an Active Laser- 
Scanning Sensory System

This chapter covers the following:

The definition and integration of a  subsum ption control structure for the laser scanner 

test-bed.

A series of experiments that illustrate the behaviour based  control of the test-bed 

system  and the effects of altering behaviour-level priorities.

Som e initial conclusions on the experim ents from an applications viewpoint.

This chapter illustrates the use of a behaviour based design methodology on the laser-scanning 

inspection system test-bed that was presented in the previous chapter. The modular nature of the 

system hardware necessitated a correspondingly modular and distributed approach to the 

software element of the control. The control solutions described in this chapter can be seen 

globally as realising a three-layer subsumption control structure although at the local level of the 

separate controllers a two-layer system was more evident. The complete system was developed in 

the bottom-up manner typical of BBAI techniques. The latter part of this chapter reports on 

experiments with the tactics used for the control of the photomultiplier modules. These 

experiments serve both to illustrate the development and implementation of a behaviour based 

system and as a means of demonstrating the effectiveness of the methodology. The distributed 

nature of the system necessitated the development of a number of the control modules in parallel, 

which resulted in an almost stand-alone development for each subsystem: (i) motor and laser 

control; (ii) photomultiplier control channels; (iii) user interface. Figure 5.1 shows these modules.

This chapter is presented in 7 sections. The first three deal with the separate parts of the 

subsumption control structures that were assembled to control the system. The emphasis here is 

on the control of the behaviour of three separate component subsystems of the experimental test­

bed. This approach has been taken as a result of the natural divisions in the test-bed architecture. 

The motor and laser control subsystem is dealt with first, followed by the photomultipher 

subsystems and then a top-level user interface. Section 4 details the mapping of the software 

subsumption control structure onto the transputer network of the test-bed, and this is followed 

naturally by section 5 which outlines a series of experiments which tested the
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Figure 5.1. The behaviour-nodes of the laser scanner test-bed subsumption architecture.
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structure. Section 6 presents the results and section 7 discusses some aspects of this particular 

application of the subsumption architecture in preparation for the more general discussion and 

conclusions that are presented in chapter 6.

5.1. Motor and Laser Control Subsystem

This part of the laser scanner system was located on the optics controller module of the test-bed. 

It was required to monitor laser power and deal with switching of the laser depending on the 

setting of a number of safety interlocks and commands from the operator. Much of the 

functionality of this subsystem is dependent on the industrial situation in which the FastScan 

system is employed. In a full system the Optics controller is used to provide a number of 

interfaces with other systems, but this aspect was not required for the test-bed system. However, 

a particular and unique function relevant to the test-bed system only was the task of controlling 

and maintaining the test-surface rotation speed. This was performed by a subsumption control 

structure as shown in figure 5.2 below. Pseudocode listings for the functionality of each of the 

AFSMs of this svstem aonear in anoendix B.

Motor speed selection 

Laser on/off

Laser
power
sensor

Surface movement 

Laser power

Laser
activation

Laser Monitor 
AFSM

Motor Control 
AFSM Motor speed

Figure 5.2. The subsumption control structure for the Motor and Laser control subsystem.

Laser Monitor AFSM:

This AFSM provided the hardware control and signal distribution of the laser power sensor. 

The main function in the work reported here was for use as an indication that the laser was on 

and thus illuminating the surface under inspection. This information was particularly significant 

if a surface had disappeared. The fact that the laser was still on was a useful cue indicating that 

the physical system was still operating normally in this respect.

Motor Control AFSM:

This AFSM controlled the speed of the motor for rotation of the test-bed surface. In our 

experiments the speed was pre-set by the operator and maintained by this AFSM. It is possible to
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foresee further use of this functionality in providing an automatic variation of speed depending on 

the level of detail and stability of the laser scan signal as different surfaces are inspected.

The speed-maintenance functionality was required on the test-bed due to some irregular 

surface sample shapes tending to cause occasional stalling of the motor when running at low 

speeds. The response of the AFSM was to increase the power setting of the motor briefly until the 

drum restarted its rotation, whereupon the power was reset to its original value. Detection of a 

motor stalled state was provided by monitoring the scan signal for continuous small changes in 

level which was a normal condition as the product moved past the scanner. A stalled condition 

was validated by a continuous run of a number of static scan signals from all active 

photomultiplier channels. A pseudocode listing appears in appendix B.

5.2. Photomultiplier Control Modules
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Figure 5.3. The photomultiplier output response, given constant ambient light levels, constant surface­
sensor distance, constant surface characteristic and increasing EHT voltage.

The nature of the photomultiplier control problem was discussed extensively in chapter 4, section

1. Figure 5.3 below shows again a typical response of the photomultiplier scan pedestal to an 

increasing EHT voltage and the four characteristic signal states: quiescent, near-linear, fold-back- 

A and fold-back-B. The task of these control modules (one for each channel on the test-bed) is to 

maintain the set-point scan pedestal level of 1 volt (50 ADC units) in the near-linear signal state. 

One particular catch here, as highlighted in the previous chapter, is that the fold-back-A state 

may also be controlled to a similar set-point signal level. By examining the scan level alone it is 

not easy to distinguish between the correct set-point and the fold-back set-point. The fold-back 

set-point state must be avoided since the signal is extremely distorted and will generate errors in 

the defect detection parts of the FastScan system (which is not a part of the test-bed). The 

following gives details of a subsumption control structure designed to deal with these problems.
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Figure 5.4. An example of a subsumption control structure that was used during some of the laser 
scanner photomultiplier control experiments reported in section 5.5.

From the signal characteristic shown in figure 5.3, it is apparent that the near-linear part of 

the response would be suitably controlled with a relatively straightforward proportional error 

control scheme. In contrast the other regions, quiescent, fold-back-A and fold-back-B require 

specific strategies which must return the photomultipliers to the near-linear region as quickly as 

possible. The behavioural requirements here can be seen in the need for a smooth, precise and 

accurate control process to take care of the near-linear situations and a fast, coarse control of the 

other quiescent and fold-back situations that can return the system to the near-linear state as 

quickly as possible. Various combinations of a two-layer subsumption structure were used to deal 

with each of the aforementioned characteristic states of the photomultiplier. These are the focus 

of section 5 which details the configuration of the subsumption control structure and the 

experimental set-up. Subsequent sections of the chapter describe a set of AFSMs that were used 

in various combinations in the experimental runs but which generally followed the format shown 

in figure 5.4. Firstly the interfacing with hardware input-output devices is detailed. This 

necessary "housekeeping", performed generally on the lowest layer 0, concerns the operational 

protocols of analogue to digital and digital to analogue conversion devices used for reading in 

scan-line signal data and writing out EHT voltage level settings. The next section details two 

AFSMs: NearUn and BallPark. These two, dealing with the fine-tune near-linear control and 

coarse large stepping control respectively were used in various combinations to experiment with 

the layered nature of behaviour based control. Figure 5.4 shows an example of the subsumption 

structure used. Further details and other stmcture examples are given in section 5.5.
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5.2.1. Level 0: Hardware Interfacing

These AFSMs consisted of two groups clustered around the functionality of reading input devices 

and writing output to actuation devices in the form of the photomultiplier EHT amplifier. As such 

they formed the main part of the bottom layer of the photomultiplier subsumption control 

structure. Given the singular nature of the behavioural requirements at this level of system control 

the assignment and specification of AFSM tasks was relatively straight forward.

Scan Acquisition: ScanAquire, PedestalLevel, ScanSample and EdgeMonitor

These four AFSMs formed a small subsystem that processed the scan-level input data. The 

function of the ScanSample AFSM was to provide a scan stripe capture function in support of 

the user interface layer; it was not an active player in the control of the photomultiplier. The 

ScanAquire AFSM controlled the analogue to digital conversion of scan stripes and loaded the 

data into a vector of up to 1000 pixels. This vector was then accessed by the other AFSMs in tliis 

group. Each of these AFSMs was asynchronous; there was no handshaking or other form of 

svnchronisation. The EdgeMonitor nrocessed the scan strine vector bv searching for large 

gradients in pixel value (each pixel contains a value representing the intensity of the light 

detected). The first positive gradient was taken as the left edge and the last negative gradient the 

right edge. The EdgeMonitor was set up to execute only every four characteristic time cycles. 

This was because we judged that the surface edges would not be changing fast enough to warrant 

such a fast update, and in any case the PedestalLevel AFSM was able to provide a sufficient 

output so long as the left and right edge signals were somewhere near the right place.

The PedestalLevel AFSM calculated the mean level of the scan line between the left and right 

edges of the signal's pedestal and then used a rolling average of the last 10 scan lines in order to 

filter out noise. We decided on this aspect of the control after noticing that if the operator selected 

the EHT voltage output and left it fixed at one value, the scan-level fluctuated by a small number 

of ADC units either side of the desired set-point. The rolling average effectively filtered out this 

noise.

EHT Output

This AFSM formatted and output an EHT voltage level that was a function of the EHTVgradient 

input connection. The input provided a simple signed rate of change value which the EHTOutput 

AFSM used to step the EHT voltage level. This AFSM also received two inputs from the user 

interface level: (i) AutomaticEHT which effectively switched the lower level control on and off 

and (ii) FixedEHT which was a user-selected constant EHT output level.

5.2.2. Actuation Control AFSMs

Two AFSM processes were developed to control the photomultiplier. The first was the BallPark 

AFSM, built to act in the quiescent and fold-back states to return the photomultiplier to the near-
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linear state, i.e. to get the scan signal into the right general range so that a fine-tune process could 

be applied by the NearUn AFSM.

Ball Park AFSMr Coarse Control

This AFSM attempted to find the EHT voltage such that the scan-level pedestal was driven into 

the near-linear region (figure 5.3). This was achieved by outputting a value to the subsumption 

level 0 EHTOutput AFSM in the form of a particular size of step adjustment to the output 

voltage. Output of this AFSM consisted of a single signal - EHTVgradient - which was set 

according to the identified state of the scan level signal. This choice was intended to minimise the 

transition time to the near-linear characteristic region. Inputs used a combination of the current 

scan level as provided by the PedestalLevel AFSM and the current EHT voltage level as output 

by the EHTOutput AFSM. See the table in figure 5.5 for an outline of the five programmed states 

of this AFSM.

AFSM state identifying characteristic BallPark output
0. Inactive No identifiable input condition Inactive
1. Quiemcent 9 < S can  level < 1 fi S tep  s ize  = 200 Volts
2. Near-linear Scan level gradient polarity = EHT 

output gradient polarity
No output, desired sta te

3. Fold-back-A Scan level gradient polarity #  EHT 
output gradient polarity

S tep size = -20 Volts

4. Fold-back-B Scan level < 9 Step Size = -100 Volts

Figure 5.5. Table of BallPark AFSM input-output state mapping. Signal levels are in ADC units where
1 unit = 0.02 Volt.

NearLin AFSM: Linear Set-point Control

AFSM state Identifying
characteristic

NearLin output

0. Inactive No identifiable input 
condition

Inactive

1. Negative set- 
point error

Near-linear sta te  and 
scan  level < 47 step_size =  ADJUST_FACTOR x (set_point - scan_level)

2. Positive set-point 
error

Near-linear sta te  and 
scan  level > 53 step_size — ADJUST_FACTOR x (set_point - scan_level)

3. Signal in range Near-linear sta te  and 
47 < Scan level signal 
<53

No output, desired set-point achieved

Figure 5.6. Table of NearLin AFSM input-output state mapping. Signal levels are in ADC units where 1
unit = 0.02 Volt.

If the scan level was detected to be within the limits that characterised the linear response region 

(the same constants were used as in the BallPark AFSM above) of the photomultiplier, this 

AFSM acted by calculating an EHTStepSize output as a function of the size of the difference 

between the current scan pedestal level and the fixed set point of 1 Volt. The output of the 

NearLin AFSM was combined with that of the BallPark using various subsumption wire nodes 

(suppress and default). This is detailed below in section 5.5 of this chapter as a focus of the
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reported control structure experimentation. The table in figure 5.6 details the input-output 

mapping of this AFSM which operated with 4 basic states. The output caused the EHTOutput 

AFSM to alter the current EHT voltage accordingly. The constant parameter 

ADJUST_FACTOR was selected as a best compromise to approximating the scan-level gradient 

increase in response to EHT voltage increase. The compromise results from the fact that, as 

mentioned previously, this gradient is continually changing as an outcome of varying 

environmental conditions.

5.3. User Interface
This series of layers consisted of a number of AFSMs that were located as a top-level control 

structure designed to act on a global basis above whatever arrangement of layers existed on local 

low-level controller modules. The AFSMs were arranged to present the operator with a keyboard 

and screen interface to the activities of the laser scanner control systems and to provide data 

sampling and file storage facilities. In this respect it is possible to envisage the operator as a 

higher level of control, acting within and as part of the subsumption structure by subsuming the 

behaviour of the lower levels. Figure 5.7 shows this module's subsumption control structure.

Key-
-board Page-View-Select

AFSM timing 
information from all 
local and all remote 

AFSM processes

Master
page

Dual 
Lcitannei : 
^'control-a

I TTma 
monitor!
L D a g o ,  J

Ftx-AJI-EHT-Voltage

Set-A hAutomabc

EKey-
-txjard

EHT 1 
control 
page

EHT 2
co n tro-board Optics and

nitiafecontrol page initiate

actual motor speed  

laser-power

Set motor speed 
Enatite laser

Scan sample data 

EHT voltage 
Scan pedestal level

FIx-EHT-Voltage 
Set-Automatic 

Scan data request
Scan sample data 

EHT voltage 
Scan pedestal level

Fix-EHT-Voltage 
Set-Automatic 

Scan data request

To optics control electronics To photomultiplier channel 1 To photomultiplier channel 2

Figure 5.7. The subsumption control levels of the user interface. Bottom, layer 0: channel data sampling 
AFSMs, layer 1: sensor channel user/control interface, layer 2: Multi-channel control, and the top layer

3: Main keyboard and screen input output.

The input for this level of control comes from the user via keyboard entries and from lower 

levels of control via subsumption connecting wires. Input from files may also be regarded as 

input to the system at this level. Output or actuation at this level is via the host computer display, 

to host computer files and downwards to affect the behaviour of the lower subsumption control 

layers. A number of "pages" were created to present the user with different information. These 

are listed below. Each page AFSM was arranged in an order of priority so that at any one time
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only one is attempting to write messages to the screen. This is achieved using a hierarchy of 

suppressor nodes on the AFSM outputs. Figure 5.8 shows a typical screen for a display page.

FastScan Test-Bed - 2 Channel 

11111111111 EHT C hannel 1 .  111111111111

N earL in  AFSM o u tp u t  
N earL in  n e t  e f f e c t  

N earL in  r e in f o r c e m e n t  
B a l lP a rk  AFSM o u tp u t  

B a l lP a r k  n e t  e f f e c t  
B a l lP a rk  r e in fo r c e m e n t

B a llP a rk  q s r : 1137 
B a llP a r k  f b a r : -105  
B a llP a r k  f b b r :  -4 1 2 7  

NL a d j u s t  f a c t o r :  50 
NL max s t e p  s i z e :  357

L e v e l 0 c y c le s 3728
H ardw are EHT l i m i t 1695

EHT v o l ta g e 1695
Scan l e v e l 15

A u to m atic  mode 1
Scan l e f t  edge 100

Scan r i g h t  edge 420
D ata  Log F i l e  Open 0

D ata  L ogg ing 0

0
0.000
0 .0 8 9
4
0.000
0 .3 8 2

BP u p d a te d  r e g :  
mean a c t  iv  i t* / :  

u p d a te  v a lu e  : 
NL u p d a te d  r e g :  

mean a c t i v i t y ^  
u p d a te  v a lu e  :

2
0 .0 9 8
-1 2 7
0
0 .4 4 5
10.1

Commands :
F ix e d  EHT v a lu e .  Q u i t ,  A u to m a tic  EHT to g g le .  Open lo g  f i l e .
C lo se  lo g  f i l e .  S t a r t / S t o p  d a t a  lo g g in g .  G rab n e t  w e ig h t d a t a .  To p a g e . 
S e t  B a l lP a r k  in p u t  m ask. S e t  N earL in  in p u t  m ask.
L a s t  command:
>

Figure 5.S. The page screen display for the user interface EHTÎ Control AFSM.

Master Page: This page provides the overall coordination of other interface pages and 

presents the user with a top-level opening screen.

Time Monitor Page: This page provides a display of all system AFSM timing. If any 

AFSMs are computationally overloaded then it is possible for them to cause characteristic 

time overruns. This would result in indeterminate behaviour interactions. Despite the fact 

that the AFSMs are asynchronous, it is the case that, if transputer processes overrun their 

characteristic time allowance, actuation timing and external event timing can be corrupted. 

This page allows the operator to ascertain if any such events are imminent or occurring.

Photomultiplier Control Pages: These pages provided user switching to enable the system to* 

run on either automatic or fixed EHT modes. In fixed mode the operator was able to set the 

output EHT voltage level manually. Other channel-dependent control functions are 

provided to set up mn-time data sampling of certain aspects of the channel's behaviour. 

Each page actually utilised two AFSM processes: one to deal with the main user interface 

functions and the second to deal with the sampling of scan line arrays. The second process 

was used because of the necessity to transfer a large amount of data. It enabled a single 

scan to be transferred over several characteristic time cycles thereby reducing the real-time 

loading on transputer communication links.

Optics Control Page: This page provides for an operator interaction with the laser control 

and surface rotation control electronics. Laser power (as sampled by the optics control 

module) is displayed as well as motor control information. Provision is made for manual 

selection of the speed of rotation of the test surface dmm.
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5.4. Software-Hardware Mapping
The laser scanner test-bed provided a target network of 6 transputers. Of these there were two 

located in the host computer and the rest embedded amongst the various controller modules. As is 

always the case in real-life (and, in particular, in reflection of the general-purpose experimental 

nature of this implementation), the target hardware did not ideally match the breakdown of 

software functionality that was required to implement the proposed subsumption control structure 

most effectively. This section outlines a possible mapping of the subsumption control structure 

described above onto the test-bed that was detailed in chapter 4. Figure 5.9 shows the mapping of 

behaviour-nodes onto transputer hardware.

H o s t S c a n  lev e l s ig n a ls
c o m m u n ic a tio n s  to  h ig h e r  le v e ls

$______

B id ire c tio n a l 
t r a n s p u te r  lin k s

T 4 2 5  T ra n s p u te r  
S e rv e r -n o d e

 ̂ T 8 0 5
T ra n sp u te r

T 222 
T ran sp u te r

L aser, op tics, 
po lygon a n d  

s a m p le  su rfa c e  
ro tation  
con tro l

T222 T ranspu ter 
O ptics control 

behav iour-node

T222 T ransputer 
Photomultiplier 
behaviour-node

Photom ultiplier 
control 1

Host transputer 
mother-board

T222 Transputer 
Photomultiplier 
behaviour-node

Photom ultiplier 
control 1

Figure 5.9. Functional units of the laser-scanning inspection system.

The transputer subsumption framework required at least one server-node process set to 

provide a top-level interface with the host computer. This was the function of the user interface 

layer which was built into a single parallel 'C program of processes. This server node was 

located as the only behaviour-node resident on the top-level T405 transputer.

The relative simplicity of the optics control part of the subsumption control structure enabled 

an implementation of a single behaviour-node resident on the optics control module's main T222 

transputer. Connections to other processes utilised the auto-routing of the transputer 

programming environment with connections to the other behaviour-nodes located on the most 

direct transputer links.

The photomultiplier subsumption control structure was more complex but in this example we 

were nevertheless able to implement it as a single behaviour-node that was loaded once onto each 

of the photomultiplier control modules.
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5.5. Experiments
The experiments described here illustrate the performance and operational characteristics of the 

subsumption controlled laser scanner. The object of the exercise was to illustrate the use of this 

multilayer control strategy and compare its performance with that of a more .traditional single 

layer. These experiments, in conjunction with the control implementation details of section 5.3, 

will serve as the basis for extended discussion in chapter 6. The rest of this chapter deals directly 

with the experiments and the results as far as they affect the laser scanner test-bed system.

Ballpark

EHT
Output

EHT
Outputr

Configuration A Configuration B

Ballpark

EHT
Output r

Configuration C

Figure 5.10. Basic behaviour-defining elements of the three subsumption control structures used for the 
laser scanner photomultiplier control experiments: A: Near-linear control only; B: level 0 near linear 

control and ball-park level 1; C: ball-park level 0 and level 1 near-linear.

One of the main and most obvious benefits of the behaviour based approach to control 

appears to be the bottom-up development of competence. This series of experiments started with 

a simple single-layer-only test run that applied control only in the linear region of the 

photomultiplier's response. The system was tailored and set up to respond to the particular 

surface and environmental conditions in much the same way as a straightforward classical 

controller would be. This was implemented by using the NearLin AFSM only, without the actions 

of the BallPark behaviour. The second and third runs of the experiments used combinations of 

the complete subsumption control structure outlined above. In the first instance the level 0 

NearLin AFSM was supplemented with a subsuming level 1 BallPark AFSM, the idea being that 

when the NearLin AFSM lost control of the situation the BallPark would be able to take over to 

recover the near-linear signal region. In the final set of experiments the order of the layers was 

reversed. BallPark was situated in level 0 with NearLin suppressing from level 1. This third 

configuration is perhaps the most intuitive behaviour based control structure, given the bottom-up 

design constraints. This point is discussed further in the concluding section. Figure 5.10 shows 

sketches of the three structures.

In all cases of the experiment, four test runs were made, each with different surface types 

(figure 5.11):

1. Continuous single-tone surface.

2. Two-tone surface consisting of two repeating patches of differing reflectivity.
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3. Segmented surface consisting of a single level of reflectivity separated by a repeating 

pattern of non-reflective patches.

4. Multi-tone broken-surface.

 ̂ Surface i :  Single tone

Surface 2: Two-tone

54% r 46%

, .  _

Surface 3: Broken

■ 31%"

S urface  4: B roken-tw o-tone

35%

Figure 5.11. Surface configurations used on the test-bed's rotating surface for the three experimental
control architectures.

Each test run was conducted in a controlled lighting environment to remove any influence of 

differing daylight conditions (direct/shaded sun) on the test-bed photomultipliers. Each test 

configuration was run for a period of 60 minutes.

Each surface gave a different set of stimuli to the controller taken from possible industrial 

situations. Surface 1 was a continuous reflective surface and as such provided a basic example of 

the sort of situation currently encountered by the FastScan system. The other three surfaces each 

introduced additional complications including stimuli designed specifically to test the recovery 

from scan signal fold-back. For example, surface 3 provided a broken or jointed surface, similar 

to a production line that presented individual discrete items, such as television screens or car body 

panels, for inspection. In addition to these large-scale features the surfaces were by no means 

perfect, as they contained numerous scratches, dents and other blemishes that increased the 

variability of the signal significantly. Perhaps the most significant in these was the Join in the 

surface that provided every sample with a small break or uninspectable region in the order of 2 

mm in length.

Each surface was 490 millimetres in circumference and was rotated continuously past the 

laser scanner at a rate of 2 revolutions per minute (effectively a surface speed of 16 mm/second). 

Being in part belt-driven the rotation mechanism (as detailed in chapter 4) ensured that the actual

The Behaviour Based Control of an Active Laser-Scanning Sensory System 77



passing of the surface was of an irregular nature with the exact timing of each rotation varying to 

some indeterminate degree.

5.6. Performance
The performance of the laser scanner system was in principle relatively easy to quantify; it was 

simply the amount of time, out of the total time of operation under suitable conditions, when the 

sensor was in a state able to provide a stable scan signal as output to higher-level defect 

identification subsystems (which are not part of the test-bed). In practice however, there was not 

a clear-cut boundary between a "good" and a "bad" signal. Although the system was attempting 

to maintain a set point of a 1 Volt peak-to-peak signal on the photomultiplier, there was a region 

around this level which still provided a suitable signal. Indeed it will be evident from the 

description of the NearLin AFSM above that it only attempted to control the signal to maintain 

an output signal region of 0.94V - 1.06V. When the signal was in this state it was possible to flag 

this particular characteristic time instant as being a "good" state in which the scan signal pedestal 

provided an optimum level to make possible the differentiation of surface defects in the form of 

positive and negative spikes. While the signal was still usable outside of this region, it was 

increasingly less so with defect spikes becoming gradually more indistinguishable from signal 

background noise. Consequently near-linear time spent outside of this region was not counted.

A measure of performance was then made by calculating the percentage of time that the 

system was in a "good state". It should be noted that this gave a means of comparing relative 

performance of different control strategies on the sample surface sets illustrated in figure 5.11 

and not an absolute measure of system performance. Also, allowance had to be made for time 

periods in which there was no surface for the scanner to inspect (i.e. a situation in which a valid 

signal was impossible to achieve), such as during a break between surfaces.

A second performance measure available involved comparison of the mean scan signal levels. 

The nearer the mean level to the set-point, the better the system is doing (although, again, there is 

the problem that different surfaces had different areas that were inspectable, so that results in this 

format are still only relative).

Finally, a third measure is available in the form of the controller's actuation: the EHT voltage 

output. While specific levels of voltage serve only as an indication of the amount of light being 

detected by the photomultipher, the standard deviation of the EHT voltage can be used as an 

indication of the spread of EHT voltage activity. A greater standard deviation was indicative of a 

controller that was spending more time either oscillating around the set-point or constantly 

hunting for the correct setting. A stable controller on the other hand would have a smaller 

standard deviation since it would have a better ability to maintain the set-point.

A more substantial comparison of the control experiments was not practical within the 

resources and time available for the project. This would have necessitated experimentation with
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other FastScan systems. The experimental test-bed was constructed because there were no real 

industrial implementations of the FastScan system in the modality and situation of interest. In any 

case, the use of a fully operational system was not an available option for the project, even in the 

basic scenario of inspection of a continuous surface under realistic industrial conditions (e.g. 

inspection of float glass production).

The results of the experiments detailed in the previous section are summarised using the above 

three measures in the graphs of figure 5.12. The data represent a period of 60 minutes run time 

for each experimental configuration. It can be seen from the comparatively large success rate 

values that in two of the four tests controller configuration C was the most effective. The 

instances in which it was bettered were those in which a continuous surface (surfaces 1 and 2) 

was present. There, the constant use of the linear controller in the form of the dedicated NearLin 

AFSM was by far the most stable. In all cases the C configuration had a more stable performance 

than that of configuration B; indeed, system B can be seen to be significantly worse off in the 

case of the continuous single-surface test.

A: Percento^ set-point time

K
S in^e surfcce T wotone surfcce Broken surfcce Broken two-tone

surface

Configuration A Necr 
linea control only.

□  Configuration B: BdlPak 
level 1, NecrLin level 0

Configuration C NecrLin 
level 1, BdlPcrk level 0

B: Mecn Seen Level C EHT vdtcgestcncfcrddeviation

Ü
Q 30 Z 300

w 150

B roken B roken 
su-fœ e t\M> 

tone 
su-foce

Broken Broken
surface two-

tone 
surtocs

Figure 5.12. Bar charts showing the results of the four experimental runs of the varying controller 
configurations. In each case the data cover the full 60 minute period of each test run. A; Percentage of 
time during which the set-point was achieved +!- 0.06V; B: Mean scan level; C: Standard deviation of

EHT voltage output.
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Because the test surfaces were not matched in any way other than by the desire to provide an 

intuitively sufficient set of test situations, any comparison between performance is largely 

subjective. The number of factors contributing to the system's performance is in this case too 

large for any concise quantitative analysis. What can be said results from examination of the 

statistical information given in the charts in figure 5.12 and from observations made during the 

test runs. Plots of mn-time system state are used in the following text to provide indications of 

scan level and EHT voltage output in the form of a state space for the EHT voltage-scan levels. 

Where useful, the BallPark AFSM state and NearLin AFSM state are given as time series plots. 

For these it is necessary that the reader interpret the pictorial representation of the characteristic 

activity of a system. Unfortunately space is sufficient here to show only plots that illustrate 

specific points made rather than a complete record of the events. The following sections discuss 

the results of each set of experiments in more detail.

5,6.1. Controller Configuration A: Single Layer Linear Control
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Figure 5.13. Scan-level / EHT-voltage state space plots over the full test period for control architecture
configuration A {NearLin AFSM only).

This control solution was included in these experiments to provide a reference for the 

performance of the multilayer subsumption control stmctures. Although this photomultiplier 

controller was implemented using the subsumption architecture, it is only a single-layer strategy. 

As such, it had to be tailored to function correctly in the given environment. From figure 5.12 it
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can be seen that in the continuous-surface test this controller provided by far the most stable 

photomultiplier output signal. This controller also provided the most stable control of the multi­

surface sample although it was only more effective than controller C by a factor of about 7 

percent. This multi-surface success may be attributed to the relative similarity of the two surfaces 

used and to the fact that the near-linear region EHT voltage level range for the two overlapped 

somewhat. For both the broken-surface tests this controller provided the lowest performance 

solution with a particularly poor result in the case of test 3.

A particularly interesting result was the apparent improvement in performance for the broken 

multi-tone surface test. It is however possible, on examination of the surface map in figure 5.11, 

to attribute this to the small size of the broken non-reflecting surface. In the case of this single­

layer control there was not a rapid reaction to ramp up the EHT voltage in response to the lack of 

signal. The result was that by the time the surface had reappeared the signal was still in the near- 

linear region for that surface type and so control could continue in a relatively stable way. Had 

this break been larger, in the manner of those in the broken-surface test 3, then it is quite probable 

that the performance would have been reduced significantly. This is indicative of the critical 

aspects of system timing in real-world control. It is the case that if this controller had been even 

slower, then the scan level signal would have become even more stable for the continuous surface.

Run-time scan-level / EHT-voltage state space plots are shown in figure 5.13. It can be seen 

for the continuous surface in test 1 that the controller copes well. The set-point of 50 ADC units 

is maintained with an EHT voltage of around 1500. What little variation there is, is due to dirt 

and distortion of the surface along with probable environmental effects (such as the 

presence/absence of sunlight). The second plot shows the activity of the controller for the two- 

tone surface. It can be seen here that the controller was considerably more active. The main part 

of the surface was of the same material as surface 1, but the second section was of a highly 

reflective material that had a tendency to scatter the light. The left curve, corresponding to a drop 

in EHT voltage, is correlated with this surface. As the scanner moves from one to the other the 

controller has to re-adapt. This is seen in the curve to the right where the EHT voltage increases. 

The behaviour is effectively an overshoot of the required set-point.

The lower two plots in figure 5.13 show situations that include broken-surfaces. In plot 3 the 

characteristic movement around the set-point is distorted by the controller's unstable response to 

the disappearing surface. What is happening is this. When the surface disappears the controller 

ramps up the EHT voltage until either the surface returns and the signal goes into fold-back or a 

hardware EHT voltage limit is reached (hence the rightmost vertical straight line in the plot at 

around 1700 volts). If the maximum EHT voltage is reached, the action of the EHTOutput 

AFSM resets the voltage level to 0 volts in order to protect the photomultiplier. This can be seen 

as the rapid transition of the trace to 0 volts and a scan signal level of approximately 20 ADC
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units. The plot for the broken two-tone surface in test 4 is similar but the characteristic two-tone 

transition loop from test 2 is also observable.

5.6.2. Controller Configuration B: Two Layers, NearLin 0, BallPark 1

This controller presented an intuitive extension to the single subsumption layer of controller A. 

The idea was that the BallPark layer would add competence to the system in its ability to deal 

with disappearing surfaces by subsuming the lower-level NearLin AFSM when the 

photomultiplier signal characteristic became unstable. This control solution proved to be, perhaps 

surprisingly, unstable on the unbroken surfaces. It would seem to be reasonable to expect this 

control structure simply to add the corrective behaviour of the BallPark AFSM as and when 

necessary. However, this was obviously not the case. It seemed that sporadic coarse adjustments 

from the BallPark AFSM tended to disturb the smooth control of NearLin at inopportune 

moments. This can be attributed to the fact that identifying the onset of a real change in signal 

characteristic was not a trivial problem to solve. Distinguishing between changes in signal quality 

resulting from the system's internal actuation and external environmental perturbations is not easy 

when no direct reference is available.
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Figure 5.14. Scan-level / EHT-voltage state space plots over the full test period for control architecture 
configuration B, NearLin AFSM level 0 and BallPark AFSM level 1.
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It can be seen from the AFSM state space plots in figure 5.14 that for the continuous-surface 

tests 1 and 2 this control structure was considerably more unstable than that control configuration 

A {NearLin only). The characteristic state-space plot typical of the broken-surface specimens in 

the first test appeared in all results here. This can be attributed to two things. Firstly, the join in 

the surface that appeared once in every rotation and other transitive environmental effects were 

sufficient to trigger the BallPark AFSM and secondly, once triggered, the coarse control output 

of the BallPark AFSM suppressed the smooth actuation of the NearLin AFSM which then tended 

to upset the overall stability of the system by driving the photomultiplier into one of the fold-back 

states. The fold-back-B state resulted in a large reduction in EHT voltage which in turn 

necessitated a reacquisition of the near-linear state from the quiescent.

5.6.3. Controller Configuration C: Two Layers, BallPark 0, NearLin 1
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Figure 5.15. Scan-level / EHT-voltage state space plots over the full test period for control architecture 
configuration C, BallPark AFSM level 0 and NearLin AFSM level 1.

This controller configuration was perhaps the best compromise solution to the general 

photomultiplier control problem as explored in these experiments. This is especially the case 

when it is remembered that the percentage performances shown in figure 5.12 chart A were only 

approximations of a "good signal" and that in fact at times the signal was often of adequate
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stability, being sufficiently close to the declared "good region". This was evident from 

observation of the system during mn-time as can be seen from the plots for the corresponding test 

run in figure 5.15. This subsumption configuration performed at least adequately in the 

continuous-surface tests and provided the most stable response for the broken-surface. It is 

interesting to note the improvement in performance from the relatively simple reversal of 

controller behaviour levels from that of the configuration B controller (this being achieved easily 

within the subsumption design framework).

It would appear from examination of the AFSM state transitions that the low-level use of the 

BallPark AFSM was more appropriate than that of the NearLin AFSM. This is intuitively 

correct since as already mentioned above, the nature of the two control outputs is best suited for 

this configuration. Allowing the smooth control behaviour of the NearLin AFSM to subsume the 

coarse action behaviour of BallPark means that if the photomultiplier state is in doubt (often the 

near-linear state is difficult to differentiate from the fold-back-A state) the NearLin action wiU 

prevail, effectively damping out by suppression the large-scale actions that lead to signal loss and 

instability.

5.7. Discussion and Conclusions
This chapter has provided an illustration of the design of a distributed control stmcture for a 

multi-component laser-scanning sensor system. It has detailed the aspects of the low-level control 

of a complex set of loosely-coupled subsystems that have, in their own right, a potential for a 

limited degree of autonomy. The chapter has not dealt with issues concerning the higher-level 

functionality of feature detection and response except in the locahsed and restricted scope of 

individual processes where this has been relevant. The control structure was used to support a 

number of experiments that looked at the issues of a bottom-up, layered approach to the 

development of a behaviour based control strategy for the photomultiplier subsystems of the laser 

scanner test-bed.

There are two areas of conclusion that can be drawn from the above experiment and its 

associated work. The first concerns development at an application-specific level of an industrial 

laser-scanning inspection system while the other leads to a commentary on the use of the 

behaviour based control methodology. This section will deal mostly with the former while the 

next chapter will go into greater depth on the more general issues that have arisen as a result of 

this work and are illustrated by these experiments.

5.7.1. Laser-Scanning Test-Bed Application

The characteristics of behaviour based design can be seen in this system in the form of the 

layered approach to its development. They can also be seen in the use of Al-type rales in the 

definitions of the control processes as given in tables 5.5 and 5.6. These rales which are each in
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their own right relatively simple, acting only on a small part of the main problem, were used in 

combination within a particular subsumption layer and within multiple layers in order to achieve 

a global behaviour of the system. It is this relatively easy process of defining rules for a 

particular situation covering a small part of the system's behaviour that made the construction 

and subsequent testing of the test-bed control example relatively straightforward. From this work 

a number of points present themselves for discussion:

• System design and development

• System structure

• System definition - agent-environment boundaries

• Action selection

System Design and Development

The design and construction of a behaviour based control structure for the laser scanner test­

bed posed few (if any) major problems. The development framework offered by the subsumption 

architecture on the transputer network of processors supported an easy implementation of a 

multi-process software program. It was particularly the case that the intricate structure of the 

many communications links typical of such systems was achieved simply, which must be 

attributed largely to the asynchronous nature of the subsumption AFSM processes. This allowed 

processes to be coupled without the necessity for specific concern over rendezvous of process 

states or handshaking-type protocols. It turned out that the natural form of the behaviour based 

control structure meant that there was little need for concern regarding guarantees of data or 

information transfer. This is in keeping with the reports in [Brooks86] and [Brooks89]. 

Interestingly other implementations of subsumption architectures hardly mention this aspect of 

process timing, for example [Mahadevan & Connell 92], [Jones & Rynn 93] and [Gat et al 94], 

and it is not clear in these reports whether these timing issues were hidden from the design 

process or simply not addressed. Aspects of system timing are discussed in more detail in the next 

chapter.

An aspect of the control program's development that did require considerable work was that of 

setting up the AFSMs to interact in the right way, either with signals from external sensors or 

from other internal AFSMs. Each AFSM typically utilised a number of critical constant values in 

the form of state identification thresholds, maximum and minimum ranges of input values and 

specification of signal gradients as well as other sets of values used to determine an output. It was 

necessary to tune these parameters incrementally by mnning the systems and observing the 

resulting behaviour. Thus the effectiveness of the system was significantly dependent on the 

knowledge and ability of the designer to specify and develop both the internal structure and rules 

of an AFSM as well as the network interconnection and interaction of multiples of AFSMs. Some 

combinations proved to be more effective than others. For example, control configuration C in the
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experiments detailed here generally proved to be the best performing. The control structures 

outlined in this chapter are generally the result of several iterations of program development, each 

differing as a result of testing the complete system in its intended domain. One advantage of the 

bottom-up development approach, characteristic of BBAI and which is also evident here, is that 

the lower layers may be tested first, providing the designer with an opportunity to learn more 

about the intended interactions and behaviours of the target system. Perhaps the best example of 

this is in the development of the two photomultiplier control channels. While these each utilised 

the same basic AFSM structure, the setting of internal constants that enabled a reliable and 

robust performance differed considerably between the channels. This was a result of variations in 

hardware components, in this case the photomultiplier tubes themselves. Here, building in the 

lowest levels of control or device drivers in the same framework as that of the higher more 

abstract layers (such as in this case the user interface layers) proved to be a useful way of 

integrating different parts of the system.

In the final respect of system structure there were three distinct aspects of design and 

construction that seemed particularly complementary' when used in combination: (i) the physical 

transputers and their suitability for relatively simple network interconnection and expansion; (ii) 

the software process configuration and the transputer process execution environment, and (iii) the 

use of subsumption AFSM processes as a system-wide design framework.

System Structure; Communal or Unitary System

The resulting subsumption control structure for the laser scanner turned out to be distributed 

or modular on more than one level of abstraction. For example there were the discrete component 

modules of the photomultiplier, optics and high-level processor subsystems as well as the lower- 

level network of AFSM processes. If at the level of hardware module control and interfacing there 

is one scale of distributed system, there is another at the level of controller modules and then 

perhaps further ones at yet higher levels of the scanner system in the form of the optical head, the 

host computer front-end and defect detection system and finally the even higher level of the 

complete industrial plant. Viewed in a behavioural perspective these component parts can be seen 

as low-level reflexes of sensor control, higher-level intermediary control, and supervisory system- 

level control which in this case was provided by operator intervention via the user interface layer. 

This top layer could equally well have been replaced with a layer providing an interface to other 

systems in the industrial environment. Each level shows the same distinct characteristics of a 

distributed system and to some extent aspects of autonomous behaviour can be identified in the 

component parts. The major differentiating factor of scale is the level of abstraction from the 

dynamics of the real-world.

Given that the control solution presented in this chapter can be viewed as distributed on 

several different levels of abstraction, the question must be asked as to whether it is sensible to 

regard these subsystems as autonomous agents in their own right. [Brooks91] and [Smithers92]
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emphasise the need for an agent to be physically embodied and situated in the real-world. This 

can be said of all levels from the discrete component controllers, in the form of the 

photomultiplier and optics controllers, upwards through to the discrete "agents" that are the 

different machines on a production line. Thus it is postulated that the view of a behaviour based 

system moves from one of a single bottom-up layered system of processes to that of a colony of 

interacting agent processes with each agent interacting on an autonomous or at least semi- 

autonomous basis. The issues concerning levels of autonomy and system composition in terms of 

agent colony versus a single bottom-up layered structure are central to the first part of this thesis 

and are the main topic of the next chapter. This chapter has served to illustrate the issues in 

question from the standpoint of a real-world application.

System Boundaries: Where Does The Real-World Begin?

The physical configuration in conjunction with the relatively complex requirements of the 

laser scanner lead to the implementation of a distributed control system that utilised physically 

distributed centres of computation to supervise separate subsystem components such as the optics 

controller and the two photomultiplier controllers. In conjunction with the issues raised in the 

previous section a related issue also appears in the form of discussion regarding the boundary 

between the agent and the environment. In many Al-controlled systems such as mobile robots this 

boundary is clearly identified as being marked by the sensors and actuators of a system or by the 

limits of software activity in the form of accessing hardware input-output devices ([Langer et al 

94], [Herman et al 90] and [Balch et al 95], for example). These kinds of interpretations are not 

so clearly applicable to the laser scanner test-bed for a number of reasons listed bellow and dealt 

with in more detail in chapter 6. We suggested that this implementational detail had a significant 

impact on the view of the system as a whole and in particular its boundaries with the real world.

i) The system is genuinely distributed, so that there is no "central" control provided by 

software-accessing input-output. Thus the input-output is also distributed and differs from 

subsystem to subsystem.

ii) The processes of the system deal with input-output not only to local sensors and actuation 

but also as communication with processes elsewhere in the system.

iii) There is a certain degree of active hardware in the system that performs operations that 

receive triggering from software. Thus the difference between software and the rest of the 

hardware is not clearly defined.

iv) The complete test-bed system is, at the top level, a sensor in its own right. It must 

nevertheless act in its environment in order to function in a useful way. Thus the 

environment provides a critical loop in the processes of controlling the sensor which are 

hidden to the higher levels of the industrial inspection system.
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v) In the typical way of behaviour based systems, improvements in performance were 

possible by making adjustments not only to the "controller" itself but in fact to any 

appropriate part of the system. A cmde but relevant example of this can be seen in the 

adjustment of ambient hghting conditions so that the laser light was not completely 

saturated by other light sources.

From these points it is evident that an agent-environment boundary is not a hard and fast 

identifiable feature and in general would seem to be more often used as an arbitrary division of 

convenience. While it might be possible to create such an artificial division in more simple 

automaton-like robot experiments, in more complex systems such as this industrial system it is 

not. If anything, it might add a degree of perhaps confusing complexity to the control problem. 

The control problem in this light changes from one of attempting to control the agent or 

environment explicitly to that of setting up a complete agent-environment system to function in a 

desired way. At the low levels of photomultiplier control the environment provides the basis for 

action in the form of altering EHT voltage levels. If the EHT voltage were not constantly adapted, 

then the sensor would become unstable due to its loss of coherence with the environment. At the 

higher level of the inspection system it is possible to view the laser-scanning system as a sensor 

which generates a signal that is indicative of the amount of laser light reflected by a surface under 

inspection. Here again we are forced to return to the view of a system in terms of levels of 

abstraction and recognise that the agent-environment boundary, if this is indeed a helpful 

construct to use, is not a clear-cut border of activity but varies at different levels of system 

interaction. The ideas expressed here constitute a fundamental aspect of the first part of the thesis 

and as such are dealt with in greater detail in the next chapter.

Doing the Right Thing at the Right Time

From the experiments conducted with the laser scanner control structure developed in this 

chapter, it was evident that the use of a simple single layer structure in the form of the NearLin 

AFSM, with its linear control response, was considerably more effective in the particular case of 

a continuous surface with small or no characteristic changes (as in surfaces A and B). However, 

the performance of this configuration deteriorated massively (by a factor of up to 90%) for the 

broken-surfaces C and D. With the addition of the BallPark AFSM (either as a level 1 activity or 

the more successful level 0) the system's general performance over the wider range of conditions 

improved, although in the specific case of the continuous surface there was a performance 

reduction. It is clear that effort spent in better defining the periods of actuation of these AFSMs 

would be well directed. In particular, if the NearLin AFSM is so effective on continuous 

surfaces, why not redesign the system to identify the ongoing situation better so that the BallPark 

AFSM does not interject its actions when they are unwelcome? There are two issues here: (i) that 

the asynchronous nature of the subsumption control structure (especially between AFSMs on 

different transputers) can result in sporadic and indeterminate interaction between AFSMs and
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(ii) that the differentiation between a surface that has disappeared momentarily and one that has 

changed radically in reflectivity is not a simple problem to solve.

The first of the two issues highhghted above concerning the asynchronous nature of the 

subsumption architecture is really more indicative of the nature of behaviour based system design 

and the implementation of larger and more complex agents. The benefits of an inherently 

asynchronous set of processes are many. For example, the asynchronous communications of the 

subsumption architecture are cheaply implemented, and there is no need for costly (in terms of 

time and computational resources) mechanisms of synchronisation such as clocking, handshaking 

or rendezvous, i.e. mechanisms that can lead to a system being overly brittle. Robustness and 

utilisation of redundancy is more complicated to achieve in a system in which component or 

subsystem failure results in deadlocked processes. A chain of events can then lead to the halting 

of the entire system. Even the benefits of implementing a synchronous set of processes tend to be 

lost when the non-software aspects of the agent-environment system are also considered. The 

subset of software processes that is part of the total set of agent-environment processes, must 

interact with an asynchronous real-world. Consequently different parts of the agent must function 

at different rates. If they are designed to be asynchronous in the first place, then requirements and 

procedures for dealing with a lack of data become embedded in the dynamics of the system. 

However, such systems are not completely without synchronisation; instead it is provided by the 

movement, transfer and interaction of data within the system as a whole, ultimately being 

triggered by the agent’s interaction with its environment. If there is data then the process acts, if 

not it doesn’t (and can’t anyway) and the fact that it doesn’t should not result in the rest if the 

system going into deadlock. Problems of synchronisation magnify as systems become larger and 

more complex. It would seem that methods and techniques that facilitate the construction of 

asynchronous systems would lead to a useful increase in built-in robustness. These issues are 

taken further in the second part of chapter 6.

The second problem suggested above, that the recognition of system state is a far from trivial 

problem to solve, is in fact one inherent in many AI systems and can be traced back to the frame 

problem [Hayes79], [MinskySl] and [Pfeifer95]. The identification of the different 

photomultiplier states in the control stmctures detailed here relied on the explicit declarations of a 

number of simple mles that were built into the AFSMs, but there are always exceptions to the 

rales that cause instability when they are encountered. This hand-crafting of details is a major 

bottleneck in the design of complex systems and is increasingly being recognised as an important 

area in need of research attention. For example, the scan-line pixels read in by the ScanAquire 

AFSM provide a massive amount of information but in a form that would be very costly to 

classify into rale sets by hand. This problem, as encountered in the behaviour based control of the 

present laser scanner system, is the focus of the second part of this thesis and is taken further in 

chapter 7.
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Perhaps the solution to this problem of dealing with exceptions and out-of-the-ordinary 

situations should be application-specific at the level of development in individual subsystems. In 

other words perhaps a particular subsystem should be tuned to suit its particular operational 

domain. This, is the current state of affairs with this laser-scanning system and BBAI in general. 

One of the objectives of this research has been to examine techniques of increasing the flexibility 

and robustness of these systems so that they may function in more diverse environments. In the 

flavour of BBAI we should analyse the environmental situation of this laser-scanning agent and 

then decide whether it will encounter many breaks or large changes in surface. If not, then the 

system may be tuned explicitly for this restricted domain. Extra layers of control are not required 

and only serve to reduce performance and add complexity. The point that emerges from such 

considerations is that the complexity of the agent control strategy needs to be matched with the 

complexity of the environment ([Pfeifer93] and [Pfeifer96]). Obviously a mismatch in either 

direction is undesirable and will most probably result in an ineffective agent-environment system.

5.7.2. Conclusions

A number of aspects have emerged as a result of the work with the laser scanner test-bed that is 

illustrated in this chapter. They highlight some significant points regarding aspects of both 

behaviour based control (and BBAI) and also of the general architecture and implementation of 

real-world situated distributed systems.

In section 5.7.1 above, matters concerning the structure of the laser scanner test-bed control 

were discussed in the perspective of our view of the system as a collection of semi-autonomous 

processes within the body of the laser scanner. A hierarchical view of a behaviour based system 

was suggested that began at the lowest levels of agent "physiology" and continued upwards 

towards a community level of physical agents. As a result of this work which deals with a truly 

distributed system it has become apparent that the simple view of an agent as being a system of 

processes physically embodied in the real-world is only part of the story concerning the structure 

of a real-world agent system. The work in this respect has led to the ideas that make up the first 

of the two parts of the present thesis. The next chapter discusses these issues in detail.

The second part of the thesis concerns the nature of the design process for the laser-scanning 

test-bed system in particular and behaviour based systems in general. During the construction of 

the system and the implementation of the experiments reported in this chapter, it became apparent 

that the success of the target system was largely a result of the skiU and ability of the designer to 

assemble a suitable agent stmcture. In the case of this work the stmcture mostly concerned the 

programming of transputers, but in many behaviour based systems this work would include the 

design of physical morphology of the agent as well. In the case of the laser scanner, standard 

stock component parts were mostly used. This designer input is built into all aspects of the 

system and as such manifests itself as inbuilt or pre-programmed designer knowledge of the 

domain which is most often the critical differentiating factor between system success and failure.
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As system requirements become more complex in order to deal with more complex task and 

environment situations it will become increasingly difficult, if not impossible, for a designer to 

provide (let alone pre-specify) the complete set of domain knowledge required to make a system 

function. The second part of this thesis, beginning in chapter 7, introduces these ideas in more 

detail and leads on to a further set of experiments in which ways of enabling an agent system to 

learn and adapt to ongoing environmental changes and situations are presented in the light of the 

results that we have detailed here and more extensively in chapter 6.
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6• Distributed Control and Real-World Multi-Agent 
Interaction Systems

This chapter covers the following:

Sum m ary of BBAI.

A new lower level of behaviour b ased  control.

A multi-agent view of each  control level In a  behaviour b ased  system .

An Introduction to the second part of the thesis.

Now that we have introduced the field of behaviour based control and presented an application- 

oriented implementation of a real-world system that uses the techniques to manage the system's 

interactions, this chapter turns to discussion of some of the issues raised in the course of that 

work. From the specific results and conclusions that arose from the implementation of the 

distributed laser-scanning system, this chapter attempts to provide some more general comment 

on how these factors might affect or contribute towards the future of autonomous systems 

research and the field of behaviour based AI.

A Recap of BBAI and the Work so Far

In chapter 3 some background to behaviour based artificial intelligence (BBAI) was given. A 

number of key aspects were presented in the form of situatedness, embodiment, groimdedness, 

non-symbolic activation patterns, distributedness and emergence. These along with the important 

bottom-up approach to research and development form a field of study that crosses many 

disciplines from anatomy and neuroscience to mechanical and electronic engineering. This mix of 

research has resulted in many examples of physical realisations of agent-environment interaction 

systems that demonstrate the fundamental characteristics of behaviour based systems; that an 

agent is not taken as a discrete system separately from its environment but rather as a part of a 

whole system that is viewed as being an intimate coupling between two sets of agent and 

environmental processes [Beer94], [Smithers94b]. This pattern is continued with research and 

development on an upward path of abstraction from mechanisms and structural components, to 

processes and process structure, to theories of agent competencies and lastly to a global system 

view of task and environment [Smithers92] and [Steels95]. Intelligence is not regarded as a 

specific or quantifiable attribute of an agent but is seen to emerge as a result of the interaction of 

the agent and its environment together. In this way the folk psychology ([Churchland95]) of 

everyday concepts such as "thinking", "remembering", "planning", "wanting", "fearing" etc. is
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also side-stepped. A synthetic agent must be built up with all aspects of behaviour completely 

embedded in its mechanism and not bolted on top as and when convenient (which is seen as 

typical of classical AI and control).

Chapter 4 presented a real-world test-bed that had been built to experiment with the 

implementation of behaviour based control techniques in a somewhat unique domain; that of 

industrial production line inspection. The system was shown to be a suitable target for the 

methodologies of behavioural control inasmuch as it provided a complex non-linear task 

realisation problem that was situated in a real-world environment. It was stressed that, despite 

the fact that it was not a mobile or self-sufficient system in the manner of a mobile robot, the test­

bed still provided a valid problem domain which in fact had several advantages over the normal 

target of mobile robotic systems. An important feature of the test-bed was that it provided a basis 

for experimentation with a system that was genuinely distributed both in terms of physical 

functionality and computational resource. The development framework of the Subsumption 

Architecture [Brooks86] and the behaviour language [Brooks90b] was overviewed and its 

mapping onto a multiprocessor transputer network detailed. Aspects of timing and the 

asynchronous nature of the subsumption processes in the form of augmented finite state machines 

(AFSMs) was outlined.

BBAI and the Test-Bed Experiments

The last chapter detailed the development of a subsumption control structure for the complete 

scanner sensor system. Due to the distributed nature of the target system it was necessary to split 

the control structure not only in terms of behavioural layers but also in terms of local 

requirements for sensation and actuation. The result was a subsumption architecture that was 

genuinely distributed across a multiprocessor system with collections of AFSM processes making 

up "behavioural nodes" on the transputer processors. The characteristics of this control 

implementation meet the characteristics of BBAI, as outlined in chapter 3, in the following ways:

Situated: The laser scminer was situated in a real-world environment, that of an industrial 

production line.

Embodied: The laser scanner system was a physical system that experienced its world 

through its sensors and actuators, in this case the digital array of the scan stripe signal 

from a photomultiplier. Its actuation was in the form of adjustment to the EHT voltage and 

thus effectively the gain of the photomultipher.

Distributed: The distributed nature of the laser scanner has been emphasised already.

Non-Symbolic: There was no symbohc manipulation m any of the modules of the control 

implementation described in chapter 5. In fact it is hard to see how or if such symbohc 

mechanisms could have been used with any benefit.
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Emergence; The behaviour of the laser scanner front-end emerges as a result of the 

interactions among all the AFSM processes. Although there has been discussion in terms 

of the emergence of intelligence, it is clear that such a description has not been really 

useful in the context of the low-level embedded control of this sensory system.

Groundedness: The activities of the system are based on the close coupling of the real-world 

and internal system state and are thus truly grounded.

The simple experiments described in chapter 5 served really only as a means to illustrate the 

nature of the multilayer control architecture. A complete inspection system would necessitate the 

implementation of considerably more complex structures than the low levels presented here.

This Chapter

The main focus of this chapter has two main components. Firstly the issues regarding the 

nature of the bottom-up research and development methodology of BBAI are discussed and 

results from the laser scanner implementation are drawn upon to illustrate an apparent need for a 

lower level of starting point, one that addresses aspects of adaptive sensation and actuator control 

on a behavioural level below what is usually seen as the main agent-environment behaviour- 

generating system. The second part of this discussion then continues from the first by turning to 

the issues of the distribution of behaviour based systems and subsystems, bringing in 

consideration of the physical location of processes and the abstraction of their interactions from 

the domain of the physical world.

6.1. Bottom-Up Development From the Real Bottom
The development framework provided by the transputer network, the transputer run-time 

execution environment and the subsumption architecture implementation enabled the relatively 

straightforward construction and development of a distributed subsumption control network. 

Boundaries between actual processors were hidden by the inter-AFSM wire protocol of the 

subsumption architecture which was implemented using virtual transputer links (high-priority 

processes that multiplex and demultiplex software links onto transputer hardware). It was thus a 

relatively simple task to embed AFSM processes at all levels of system control from dedicated 

hardware controllers to general-purpose computational resources (for example, the T405 

transputer on the laser scanner test-bed). Consequently it was possible to utilise the full 

computational resources of the system in the most efficient way with potential bottlenecks in the 

physical communications links being avoided through careful AFSM process distribution. This 

resulted in a number of critical factors that are discussed in this section. One such is the ability to 

speed up reflexive actuation by locating complete control loops locally on processors that were 

nearest to the physical location of the respective system-environment activity, thereby reducing or 

eliminating propagation delays between processors. From examination of the literature it would 

seem that BBAI research into mobile robotics has not yet fully recognised or accepted the
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importance and necessity of maintaining a close mapping between program stmcture and robot- 

agent physical stmcture (which includes electronic hardware and robot morphology).

6.1.1. Early BBAI Systems

From the early examples of behaviour based mobile robot test-beds, which tended to consist of 

simple and single control processors and binary state sensors, there has been a steady increase in 

complexity of hardware resources towards multiprocessor multistate sensor systems. The early 

examples were typified by those reported in [Donnet & Smithers 90] and [Brooks86]. They 

consisted of easily-obtainable low-cost components, typically 8-bit microprocessors mnning at 

rates of a few megahertz with a few kilobytes of memory. These computational resources 

nevertheless proved completely adequate for the sensation and actuation faculties of the test-bed 

robots which were in general of a binary signal/command type. Examples are bump sensor 

switches, or infra-red sensors with a preset hardware threshold that enables the generation of a 

single-bit binary value whose state is dependent on the absence or presence of incoming infra-red 

light. This first generation of test-bed robots were and are still used in impressive demonstrations 

of behaviour in normal unstmctured environments such as offices and workshops. It is 

particularly interesting to note the simplicity and performance of these systems compared to those 

that utilise the techniques of classical AI such as [Nilsson84], [Simmons94], and the distinctly 

non-behaviour based [Langer et al 94]. These simple mobile vehicles have demonstrated fast, 

reliable and robust navigation of their environments including obstacle avoidance behaviours, 

taxis behaviours (such as phototaxis: homing in on a light source) and in some cases simple 

object manipulation ([Connell89] and [Pebody91]). It must be pointed out, however, that 

impressive examples of fully autonomous mobile vehicles using more classical AI and control 

techniques have been developed, for example [Dickmanns & Muller 96] and [Jochem & Baluja 

93] describe road following autonomous vans, and [Schell & Dickmanns 94] an autonomous 

aircraft landing system that uses visual flight queues. These examples are also extremely 

complex, Jochem and Baluja discuss the issues of using massively parallel computer architectures 

to implement machine vision. This contrasts to the low computational power of the BBAI 

approach which although still in its early days has stimulated a wide-ranging effort to develop a 

new generation of mobile robot test-beds using more up-to-date, but still (in comparison) simple 

technology.

BBAI research is now tending towards the utilisation of a new generation of robot test-beds 

which incorporate impressive ranges of sensors and sensor types that provide a rich range of 

views of the real-world. Analogue or multi-bit binary signals are used both as input from sensors 

and to drive actuators. Along with this increase in spatial resolution of the agent's world more 

powerful processing resources have been provided, including an increase in available memory. 

This increased memory has in turn opened up a new dimension in sensory resolution: that of the 

temporal domain in the form of stored sensor, actuator and internal states. While aspects of the
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time dimension have been used in the past, the resources of mobile robots (of the untethered 

variety) have always been significantly limited in capacity. The limited resources of the first 

generation of robot test-beds provided a clear demonstration of the levels of behaviour that were 

achievable but it was (and still is) anticipated that the new generation of vehicles would offer 

significant improvements.

6.1.2. Balancing System Resources

The increased sophistication of sensor and actuator devices has led to the usage of dedicated 

embedded control processors employed in various combinations. Examples occur in the robots 

used by [Smithers94], [Ferrell94], [Nehmzov & McGonigle 94], [Nourbakhsh et al 95] and 

[Balch et al 95], to list a small sample. The expectation seems to be generally that the same 

mechanisms and structures that were used on the first generation of test vehicles can be generally 

expanded and scaled up to provide a basis for more complex tasks, environments and thus 

behaviours. However, this has not generally been the evident result, as can be seen by comparing 

the robotics sections of both the artificial life and simulation of adaptive behaviour conferences 

series over the last five years or so ([Varela et al 91], [Meyer et al 93], [Cliff et al 94], [Moran et 

al 95]). The demonstrations typically consist of some form and combination of obstacle 

avoidance, exploration, taxis and object manipulation. From observations of robot 

demonstrations it is not clear that there has been any significant improvement in performance 

despite the developments in new and "better" technology. Although however, the work reported in 

[Horswill93] describing the robot Polly that is able to give laboratory and office tours is a clear 

exception to this trend.

This problem of better robots making things worse is well illustrated in a paper by a similar 

name [Smithers94] and also m other work: [Miller93] and [Mason93]. All discuss issues that 

depend on the quantity and nature of sensor devices in mobile robots. Of course the question of 

what constitutes a "better" sensor or actuator is totally application-dependent. This is in part the 

reason for the success of behaviour based control, where robots are given a set of sensors, 

actuators, interaction mapping mechanism and environment task domain that are all matched in a 

specific balance of resources and cost to achieve a particular rehability and robustness of 

behaviour. Adding more complex sensors and/or actuators to this set does not necessarily 

contribute to an improvement in a system's performance. It can in fact make things more difficult 

to manage since there is a large increase in the number of critical variables, internal states and 

degrees of freedom of the system.

6.1.3. Ideal Sensors and Actuators

The binary sensors and actuators of the early behaviour based robots are in effect realisations of 

virtually ideal sensors. Their relative simplicity allows a better understanding of their behaviour 

in which, at any particular instant in time, they present and act on a simple two-state true-false
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indication. The considerable advantage of this arrangement is that the designer is able to 

categorise clearly and concisely sensor-actuator mappings so that little more than a simple rule is 

involved in the agent's control mechanism. There is a complete dependence on the designer's 

ability to understand the agent-environment problem domain and provide the right sensor-actuator 

mapping mechanisms. Although this simplistic view is radically complicated when the changes of 

sensor state over time are taken into consideration, it is still the case that any sensor with more 

than two states will require more internal mechanism for translating the signals into some form of 

suitable response actuation. The BBAI approach to sensing and control utilises the skill of the 

designer to make use of particular dynamics of environment-sensor-actuator characteristics in 

defining the internal mechanism of an agent [Horswill93]. The designer's knowledge is embedded 

in the agent control structure m the form of "hardwired" sensor-actuator responses. In the 

relatively simple first generation of robot test-beds this was an almost trivial task; in the second 

generation it is at best manageable and at worst impossible. Clearly any third-generation 

development is going to require significantly different emphasis at all levels of construction.

6.1.4. Increasing Sensory Resolution and Behavioural Repertoire

Sensory resolution can be enhanced in a number of ways: individual binary sensors can be 

replaced with analogue sensors, an increased number of binary sensors can be used, an increased 

number of analogue sensors can be used or the temporal dimension may be opened up by 

sampling one or many sensors over time. All these "improvements" dramatically increase the 

number of possible states that the system's control mechanism has to deal with. This is the 

mechanism that has to be in place before any form of behaviour realisation can be implemented. 

The result is a requirement for an increased computational resource which, m many cases, 

effectively provides a mapping of complex sensory input into a simple binary decision about a 

possible action. This increased computational loading is currently taken care of by the more 

powerful processors used on the new-generation robots. However, even if the designer is able to 

provide a suitable mechanism, this only maintains the level of behaviour at that previously 

achieved by first-generation vehicles. Much effort is directed towards handling the now massive 

amounts of sensor state data. To match the increase in sensory and actuation capabilities, 

considerable computational resources have been required to match the behavioural levels of the 

first generation of robot test-beds. In order to increase the behavioural repertoire, there would 

seem to be a requirement for yet further increases in processing power. Clearly the addition of 

sensory resolution (both spatial and temporal) and the further development of behavioural 

competence of mobile robots is desirable in order to understand further and design more complex 

and sophisticated systems. However, the way in which these test-bed systems are expanded and 

enhanced (both physically, in terms of hardware, and in terms of control structure) would seem to 

be of fundamental importance. This was demonstrated by the addition of the BallPark behaviour
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to the laser scanner control system reported in chapter 5, where even the simple reversal of 

AFSM suppression had significant effects on performance.

The current tendency in dealing with the hardware implementation of enhanced sensor and 

actuator provision is to pre-program embedded microcontrollers to handle more complex sensors 

and actuators at a level below and hidden from that of the "real" AI control mechanism which 

remains located in a central processing unit (for example see [Ferrell94], [Steels94], [Smithers94] 

[Vereertbmgghen93] [Kweon et al 92] and [Ruyssinck92]). Typically commands are sent down a 

communications link to a low-level slave processor which responds with a simple execution of the 

"master's" request. The benefit of this form of modular arrangement is that off-the-shelf 

components can often be used, which substantially reduces the cost and work involved in 

developing and building a system. This is a good enough reason for such solutions in many 

application-oriented projects, but in the case of the construction of test-beds for behaviour based 

robotic research it has resulted in what is perhaps the misguided encouragement of a view that 

sees sensors and actuators as nothing more than input-output interfaces with the real world. 

VÆile it can be argued that this view might be satisfactory' in the case of binary sensors and 

actuators, it would appear that this is only because it is possible to take short cuts with these 

limited devices and get away with much of the baggage of real-world noise and indeterminacy. 

The lesson to be learned is apparently that there is much more to sensing and acting than issuing 

requests and commands to a remote component from a higher-level actuation realisation 

mechanism that is generally the preferred domain of AI research interest. This resultant 

"enhanced behaviour based" hardware architecture does not conform to the real behaviour based 

approach as the component modules are based functionally rather than behaviourally.

6.1.5. Inter-Process Timing

In addition to the above argument, and perhaps in continuation, there are more practical problems 

that result from the master-slave(s) approach to robot hardware configuration. The relegation of 

sensors and actuators to low-level slave control on embedded processor subsystems has an 

inherent potential for introducing significant propagation delays between the sensing of a stimulus 

and the actuation of a response. The fast stimulus^response cycle characteristic of the tight 

control loops of behaviour based architectures is lost to a more lengthy request data—>receive 

data—>generate response—>send command loop. It is the treatment of these devices as being 

separate from the AI control problem that leads to these difficulties

This argument is the same as or similar to that presented in [Brooks86]. However, the 

message of that paper seems to have been somewhat obscured recently by the continuing 

application of more complex robot control systems. Here I refer to the nature of truly distributed 

control on networks of physically separate microprocessor components. It is no longer practical 

or sufficient to restrict implementation of control to a single central processing unit that is able to 

"read" and "write" to the real world; rather, the implementation of AI control structures must
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additionally encompass the aspects of sensor and actuator dynamics, with behaviour realisation 

being physically distributed across the agent. For example, fast reflex responses may be 

implemented directly on low-level processors while actions with more complex constraints and 

with less need for speed can be implemented on higher-level hardware. This was clearly 

demonstrated in the laser scanner test-bed work of the previous chapter, with the reflex responses 

of the photomultiplier controllers being built into the lowest levels of the subsumption control 

structure and consequently located in the lowest-level transputers which were embedded locally in 

the relevant electronic circuitry.

The world is not static. Much effort is invested in providing AI control systems with increased 

ability to cope with unexpected events in reliable and robust ways by adapting to ongoing 

changes in situation. However, it would seem that the scope of dynamic adaptation of sensor and 

actuation control at lower levels is largely ignored. Work that does deal with adaptation is 

typified by [Clark et al 92]. This lower physical level of detail is often argued to belong to a more 

application-specific engineering domain rather than being a relevant part of mainstream AI. 

VÆile it was possible to do >J-type research with the simple systems that incorporated binar>' 

state sensors and actuators, the new state of affairs is vastly more complex. The use of discrete 

controller modules for sensors and actuators in itself seemingly suggests that low-level 

adaptability and localised action are possible and necessary. The provision of more complex 

sensors and actuators seems to be taken for granted in the AI field and much work concentrates 

on using these "powerful" new systems for more complex and interesting behaviour realisations - 

with often disappointing results. It was suggested in [Smithers94] that this disappointment is 

often being blamed on the "lack of suitable technology". The methodology of BBAI should not 

become entangled in this problem, which is really not relevant if the working characterisations of 

the field concerning distributedness, situatedness and groundedness of behaviour based systems 

are remembered. The solution, we suggest, is to be found in a more thorough adherence to a 

bottom-up development strategy.

6.1.6. Lowering the Bottom of Behaviour Based Systems

It is perhaps possible to conclude that the problem discussed here is in fact one of scale. Having 

increased the sensory and actuation resolution at the physical interface level of a robot it is not 

only a case of using these new faciUties at higher behavioural levels, but it is also necessary to 

step down a level and provide adaptive control of subsystems. With the first generation of test­

bed robots the low-level binary mechanism was relatively simply hardwired or prespecified by the 

designer. This is no longer possible, it is unrealistic to expect designers to be able to foresee all 

eventualities and preset such a complex array of devices. In the final analysis these new "better" 

systems have a lower-level "bottom" than their simple ancestors. It is suggested, as a result of the 

work reported here, that the starting point for the bottom-up research and development that is
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necessary for a behaviour based approach to systems development has moved. It has gone down a 

level. -

6.2. Distributed Systems of Layered Agent Processes

A: Several behaviour based programs running 
locally on distributed processor subsystem s
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B: A behaviour based program running 
on a central processor unit with 
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Figure 6.1. A real and a pretend behaviour based control structure using multiple processes. A: the extra 
controllers are incorporated into the behaviour based structure and B: a classical pipeline is formed by 

localised sensor and actuator processors being used as "invisible" control devices.

The previous section outlined the idea that the increased sophistication of recent development in 

behaviour based robot test-beds has necessitated a reassessment of the starting point in the 

bottom-up development and research of autonomous systems. While the early use of binary 

system state precluded the need for extensive sensory manipulation and adaptation, the 

increasingly complex analogue devices now used are often being controlled locally by dedicated 

and embedded processors ([Ferrell94], [Steels94], [Smithers94] [Vereertbrugghen93] [Kweon et 

al 92] and [Ruyssinck92]). This development has led to an architecture that effectively 

reintroduces the functional pipeline of classical systems (see figure 6.1b) as opposed to the 

proven parallel structures of true behaviour based systems (figure 6.1a). This difference is 

significant and the philosophies of the behaviour based approach that highlight the importance of 

the complete agent-environment system would bear this out. It is the case that even if the 

"central" processing block of figure 6.1b is executing a behaviour based control program (such as 

something with a subsumption structure) the physical realisation of this agent-environment 

system is not truly parallel. Moreover, the timing of such pipelines, which can have a critical 

effect on the behaviour of the complete agent-environment system, is generally not accounted for 

by the central block program except in the form of tailoring the parameters of the controller to 

function in the right way. This tailoring is normally an empirical process: often the reasons for a
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set of parameters (such as time constants and activation thresholds) being used are not 

understood, they just work. This is clearly not an ideal state of affairs for the development of a 

system control structure. A return to the genuinely parallel and distributed structures of 

behaviour based Control as characterised in [Brooks86], [Connell89] and [Malcolm et a l 89b], 

would be likely to reinforce much of the reliability, robustness and fast response characteristics of 

such systems.

The last section concluded by suggesting that the bottom starting point required for system 

development had gone down a level to that of the control of sensor and actuator behaviour. The 

complete picture resulting from the laser scanner control implementation in chapter 5 was, 

however, less clear than this. Views of a system in terms of level are helpful in theory but seldom 

seem to turn out to reflect the actual true state of affairs when it comes to building real-world 

implementations. There are frequently constraints from system hardware and/or task-environment 

that preclude a purist implementation. This is perhaps indicative of a problem in the basic view of 

systems in purely "levelist" terms.

This section presents the case that, in the light of the work and experiments detailed in 

chapters 4 and 5 and the conclusions regarding the lower-level starting point of behaviour based 

systems, the rather simplistic view of systems in terms of layers is not sufficient in dealing with 

complex real-world agents. The next section discusses the shortfall in a "layers only" viewpoint 

and suggests a more distributed and localised view in terms of layered subsystem components. 

The physical constraints on the different abstractions of agents are then discussed with emphasis 

on the low levels of software processes. This is then followed by the idea that systems of agents 

are seen better in terms of agent interactions than communication of information. First 

background is given on the area of Multi-Agent Systems research.

6.2.1. Layers are not Enough

Although a system of layers (for example, those advocated in [Brooks86], [Albus81] and 

[Newell81]) provides a useful view of a system in terms of different details of task, structure and 

interaction as well as different levels of observer abstraction, these all tend to focus on a system 

as being a single entity and do not generally allow for physical variation and distribution into 

different sub-units within the levels. The range of levels in a real-world situated agent must 

always start at the physical level or some boundary (no matter how hard to define) between agent 

and environment. For a complex agent the upward series of structures will vary from behaviour 

to behaviour and across the various subsystems of the agent (for example, the number of 

subsumption levels between the physical world and the top user-interface layers detailed in 

chapter 5, figure 5.1, differs between the photomultiplier controllers and the optics controller).

Despite the fact that the levelist views referenced above are all abstractions of a system, they 

give little account for the inevitable variation evident in truly distributed systems. There would
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seem to be a need for a view of systems that also accounts for clusters of related processes both 

in terms of physical location and behavioural relationships. This has been evidenced by the laser- 

scanner work reported in chapter 5 and also in other reports of behaviour based implementations 

such as [Ferrel94], [Colombetti et al 94], [Gaussier & Zrehen 94] and [Steels95] which all deal 

with modular and parallel approaches to the construction of complex agent systems. The ideas 

discussed here can perhaps be seen as being somewhat akin to those of Minsky's society of mind 

[Minsky85] which presents layers as agencies of interacting agent processes. However, for the 

same reasons that BBAI differs from classical AI, the ideas in this part of the thesis differ from 

those of Minsky.

Figure 6.2 shows three possible levels of complete subsumption control structures. Each is 

situated at a different level in terms of abstraction from real-world interaction. The top level is 

that of an industrial production line. A number of control behaviours might act to maintain the 

production line operation as a whole by interacting and communicating with subsystems, each 

controlled in turn by subsumption control stmctures. Then there is a lower level of component

parts, often utilising embedded microprocessors. These also can be seen as behaviour based 

agents and are controlled by their own local subsumption structures. In all cases of these 

subsumption system levels, the control stmctures are built using the augmented finite state 

machines and behavioural levels of the subsumption architecture. There is no significant 

difference in these components, but there is a difference in the nature of the information that they 

are responding and acting on and the degree to which they can interact. We thus have a number of 

levels of distributed systems which may be seen at each level as a community of interacting 

agents, with an agent being the atomic unit at each level and consisting of a number of internal 

interaction-determining processes. Figure 6.3 shows an instance.

Behaviour Layer 2 

B ehaviour L ayer 0

B ehaviour Layer 2 |
Behaviour Layer 1

B ehaviour Layer 0  |
B ehaviour Layer 0

Behaviour Layer 2 

Behaviour LayenO

Level 2 Subsum ption S tructure

Level 1 Subsum ption Structure

Level 0 Subsum ption Structure

Figure 6.2. Levels of subsumption control structures in a distributed system. Notice that each level 
effectively consists of a number of multi-level subsumption control stmctures.

At the top level of the distributed system in figure 6.3 is the industrial production line 

consisting of a diverse and concurrently-operating set of machines, tools and work cells. Each of 

these can be seen in turn in behaviour based terms as agents in their own right, all situated in the 

production line with their own task and environmental niches, and interacting and cooperating 

with other agents. Typically each of these machines is a complex device like the laser-scanning
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inspection system used in the work of, and as illustration in, this dissertation. Figure 6.3b shows 

an often-used configuration of this system with a top-level defect identification and classification 

unit and a set of four laser scanners acting in parallel to cover greater surface areas. At this level 

again, the constituent parts can be regarded as situated agents in terms of the BBAI working 

characterisations. The lower levels of the individual laser-scanning channels (which are the focus 

of the experimental work of this thesis and as such have already received much attention as 

regards their individual construction consisting of a parallel network of asynchronous 

subsumption AFSM processes) can be seen as yet another level of distributed system (figure 

6.3c). Below that, a further level consists of the software processes of the subsumption 

architecture (figure 6.3d). In summary then, it would appear that at all these levels of system 

interaction there is a place for a BBAI-type methodology based on the autonomous control of an 

agent entity that interacts in an agent-environment system with other agent entities.

6.2.2. Physical Constraints at the Software Processes Agent Level

This view of layers of interacting agent structures on different levels of scale and abstraction is 

all very well but so far, perhaps, there would appear to be little clear advantage in viewing a 

system in this way other than as a method of organising such systems. It may be that this is 

simply a description that could be foisted on any system. However, it is the behaviour based 

approach to system development that is the significant factor. Here there may indeed be benefits, 

especially when the advantages of parallel and asynchronous architectures are combined with the 

new global view of distributed control structures as agent-environment behaviour systems (at 

whatever level of interaction). Another factor that has emerged as being significant as a result of 

the experimental work of this project is that the physical location and abstraction of processes in 

a system is important. Most BBAI work focuses on agents, such as mobile robot vehicles, that 

are physically embodied in their environment, and it might be hard to see that "agent processes" 

or "agent subsystems" (such as photomultiplier controllers) in a network of transputers are 

embodied in the same way. However, it has been the case that the physical location and 

abstraction of interaction from the real-world of subsumption AFSM processes in the laser 

scanner test-bed have been critical factors in determining the behavioural characteristics of the 

system (see sections 6 and 7 in chapter 5). It would appear reasonable to suggest that this is a 

feature that might be found in many complex systems from mobile robots to industrial machinery. 

This introduces an important part of the thesis: one that concerns the physical location and 

interaction abstraction of an agent's control processes.

It is well recognised that engineering is in part an art form in which the designer must trade off 

a number of critical factors in order to achieve the most effective working balance. This was 

particularly the case in the construction of the control mechanisms of the laser scanner test-bed 

where the required interaction location of the AFSM processes and the interaction time 

constraints had to be offset. For example, the photomultiplier control modules utilised a cluster of
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closely-coupled AFSMs to deal with the task of controlling the physical aspects of the analogue 

to digital conversion electronics and formatting data for other more remote AFSMs to use. This 

was necessary because of the massive amount of sensory input generated for each laser scan 

stripe (equivalent to the output of up to 1000 analogue-valued sensors). It was not realistic to 

envisage this quantity of data being sent to various parts of the system in anything like the time 

required for stable control, due to the comparatively low bandwidth of the transputer 

communications links. In any case, the control AFSMs (BallPark and NearLin) did not function 

on these raw sensor signals alone, although it was still beneficial and necessary for them to be 

located nearby in order to reduce the time overheads of signal propagation between and across the 

processors in the network. Other low-level AFSMs (EdgeMonitor and PedestalLevel) together 

generated a single signal from the one-dimensional sensor array that indicated the voltage level of 

the signal pedestal (if a surface was present) tracking the surface edges as they moved across the 

sensor's field of view. It is clear that:

• The control AFSMs did not require large amounts of raw sensory data to provide 

stable functionality';

• Any attempt at transferring such large amounts of data along the serial transputer 

links would cause serious bottlenecks.

As a result of these constraints the pedestal level signal and the EHT voltage signal from the 

EHTOutput AFSM were connected to the higher subsumption control levels, whether or not these 

were physically nearby. The reduced quantity of data and the tuning of the required signals meant 

that propagation was not too costly. For example, compare the 1000 words of raw sensor data 

with the two carefully selected words of these specific signals.

The choice of the above AFSM connection scheme had significant importance for the 

behaviour of the test-bed system in terms of AFSM processing rate (as dictated by the system's 

characteristic time). In fact, it can now be seen that the timing of AFSM interaction also changes 

from layer to layer in the subsumption stmcture. The lowest levels are necessarily tied to the 

timing of physical devices which interact with the real world while the higher layers are less so, 

as (being more abstract in their interactions) they are not so critically linked to the real world. For 

example, the control page AFSMs of the user interface layer from chapter 5 were set to run with 

a slower characteristic time than those of the lower levels. This was necessary in order to allow 

time for storage of mn-time data. This attribute is also evident in mobile robot control stmctures. 

Here, the low-level reactive response of obstacle avoidance and taxis behaviour must mn in 

relatively tight and fast control loops whereas the actions concerning higher-level behaviour such 

as the selection between a search for a battery recharging point and some other task are less 

dependent on rigid synchronisation with the physical world. There is therefore a difference 

between the fast short time period response to a current situation of the lower levels and the
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longer-term effects of higher levels (see [Herman et al 90] for detailed discussion along similar 

lines).

Clearly, as the time domain is expanded in the higher levels of a system the cost of dealing 

with massive amounts of. rapidly-changing sensor and actuator states increases. Thus the 

engineering trade-off is to balance the degree to which the current sensory situation is merged 

with the system's situation over time. It is perhaps possible to see abstraction of agent layers in 

two-dimensional terms, one of interaction (including time) and the other as abstraction from the 

physical world including sensation and actuation (space).

6.2.3. Information Transfer or Interaction Dynamics

It is tempting to refer to this variation of abstraction in terms of sensory information. As the agent 

control layers become removed above or away from direct sensory input, it might be claimed that 

abstraction of sensory information would be required to reduce the signal bottleneck problem 

which might also be seen as an information bottleneck. However on analysis of the interactions of 

a single .APSM process this picture becomes less appropriate. We propose that this 

inappropriateness is not restricted to this level of agent system only but is also just as relevant at 

the level of physically-embodied agent interaction and the other levels of system suggested above. 

At the level of a physical agent being controlled by a distributed subsumption architecture, the 

constituent asynchronously-running AFSM processes can be viewed as individually-acting and 

interacting agents.

Given this view, it is interesting to emphasis the finite-state-machine nature of these processes. 

On an individual basis they are simply clocking in a number of continuously-changing inputs and 

generating an output which may or may not change state depending on the configuration of the 

inputs (including internal variables which may be seen as direct feedback loops from the finite 

state machine's output back to its input). This is true for any AFSM process irrespective of its 

situation in the subsumption control structure and hence irrespective of the degree of abstraction 

from the physical world of its input and output interaction. As far as an individual AFSM process 

is concerned, its only world is that of its input and output connections. Any response that is fed 

back arrives either via other AFSMs or via an actuators^environment—>sensor loop, but this 

difference is not significant except in the eyes of an observer, for example the system designer. 

This suggests that there is little difference between a "normal" or common set of agent- 

environment interactions and what may be termed communication. An agent may enter into a 

pattern of stimulus-response behaviour in its environment. The fact that a significant part of that 

environment constitutes a second agent entity that is providing the bulk of the stimulation for the 

interaction is not significant to the internal mechanisms of the first agent.
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6.2.4. Layers of Interacting Agent Communities

To summarise, this section suggests that the control structures of real-world situated autonomous 

agents must take into consideration not only abstraction of the task or behaviour, as is common in 

the BBAI field, but also abstraction of component or layer interactions. This involves abstraction 

in both temporal and spatial dimensions:

Spatial: In terms of the physical location and situation of the processes with respect to 

the physical world.

Temporal: In terms of the characteristic time span over which the process operates.

Factors that this affects in system construction are the quantity and distance of interprocess 

connections, especially where these are between remotely-located hardware processes. The result 

is a system architecture similar to that of the layered diagram in figure 6.2 (and [Brooks86]) but 

also including the more obviously distributed characteristics of a multi-agent community of 

processes where the agents at this level are clusters of AFSM-like processes. An example is

shown in figure 6.4-. Factors determining an agent s ate ip u iu .1  a i i u  o j j a t i u i ,

seen in terms of:

The process location and signal connection distance/quantity trade-off. 

Behaviour and task requirements.

 ̂ d e t e c t ;  On

optical

controller

^ c o n tro lle r  " controller

S ubsum ption  level

Figure 6.4. A distributed-agent-based behaviour control structure of the laser scanner test-bed. Note the 
"sphere of influence" of each agent process, which is a function of its physical system location.

In particular, note how the prominence of the user interface layer in figure 6.4 has been 

reduced from that of the top layer in the original diagram (figure 5.1) to another set of agent 

processes situated in the host computer in this one. Here the keyboard and screen appear as local 

sensors and actuators, and communication is from the user interface AFSMs to other subsystem 

control agent process sets such as the photomultiplier controllers.
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6.2.5. Other Multi-Agent Systems Research

The topic of research referred to as Multi-Agent Systems covers a large area. With roots in 

distributed artificial intelligence, parallel computing and computer networking it has now matured 

into a recognised and individual field. Distributed Artificial Intelligence work such as that 

reported in [Hayes-Roth88] included aspects of system control using blackboard data structures 

for communication between processes or agents. This has been taken further in [Tigli et aï\ where 

distributed and parallel blackboard control architectures are discussed and [Simmons92] presents 

issues concerning the concurrent planning of robot motion. Other work concerning interactions 

within distributed systems is that of [Billard & Pasquale 93] where the effects of communication 

propagation time on process interaction are examined in terms of agents that have to share, 

combine or hold onto computing resources. [Jennings & Wooldridge 95] provides a useful and 

more recent view of the subject of multi-agent technology by introducing and setting the scene for 

much of the terminology. For example the properties of an agent are listed as including; 

Autonomy, Social Ability, Responsiveness and Proactiveness with additional characteristics of 

adaptabilit}', mobility, vcracit}' and rationality. From this and the work presented in this thesis it 

is apparent that many aspects of BBAI concerning the distributed nature of control architectures 

also fit into this paradigm.

Multi-agent systems research occurs on two main levels: i) At the system interaction level; for 

example that of interacting industrial machinery as reported in [Jennings 94] and [Freund & 

Buxbaum 93] and ii) at the subsystem or component interaction level; such as that reported in 

[Oliveira et al 91], [Habib et al 92] and [Lyons93]. In these latter examples architectures 

consisting of concurrent processes or multiple agents are suggested as tools for robot design 

although the designs discussed involve a largely functional (classical) breakdown of control 

structures rather than behaviour based. Conversely the behaviour based work reported in, for 

example [Parker93], [Mataric92], and [Arkin & Ali 94] deals with multi-agent systems in terms 

of teams of cooperating robots but the multi-agent or distributed nature of the individual control 

systems is not dwelt on.

Another active area of agent systems research is that of intelligent software agents that are 

designed to operate and complete tasks within the domain of the Internet [Riecken et al 94]. 

Although these agents may be said to be mobile and autonomous (within the virtual world of the 

Internet), the environments that they are situated in differ considerably from those of real-world 

autonomous systems, at least at the lower levels of sensation and actuation that have been the 

focus of the work reported so far in this thesis. The subsumption system-component agents 

discussed in this work are fixed into their niche like the bacteria in a cow's stomach. They are 

ineffective elsewhere and, as in the case of the bacteria, cannot survive elsewhere. Software 

agents of the Internet variety have a distinctly parasitic nature; they invade a host system in order 

to exploit some resource that it has and that they require. The agent view of autonomous systems
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proposed in this thesis is of a more symbiotic relationship, with each part of the system benefiting 

from and in many cases being dependent on the presence and activities of the other. Although 

there may well be cross-fertilisation of ideas, to some extent, we suggest that this lack of physical 

interaction within the Internet is likely to prove significant. It is after all one of the facets of BBAI 

that an agent is situated in its world. This we saw in chapter 3 with the spider. While being able 

to cope magnificently in the compUcated hedgerow environment, the spider was completely at a 

loss in the alien environment of the bathtub, being placed in a domain outside of its "design 

specification" so to speak.

The topic of this second part of the chapter leads to a proposal of a low-level behaviour based 

multi-agent view of system construction that may be expanded to include further behaviour based 

interactions at the higher system levels mentioned above (for example, the user interface layer). 

The multi-agent system developed with the subsumption architecture to control the laser scanner 

test-bed has displayed a truly behaviour based approach to both system and subsystem 

development.

6.3. Conclusions and Introductions
This final section serves both to conclude the first part of the thesis and to introduce the second. 

The work detailed in chapters 4 and 5 that dealt with the application of a behaviour based control 

solution to an industrial real-world control problem highlighted a number of factors relevant to 

both the development of large complex distributed control systems and to further research in 

BBAI. The final section summarises this and leads onto the next chapter by introducing the need 

for dynamic adaptation and embedded learning mechanisms in the low levels of behaviour based 

control architectures.

6.3.1. Benefits of a Layered-Agents View of Autonomous Systems

In [Brooks91] it is suggested that models for intelligence have largely followed the current state 

of the art in computational machinery, for example:

• The mechanical arithmetic machines of Babbage.

• The computability work of Turing and the Turing Test [TuringSO].

• Classical AI of the 1960s and 1970s with implementations testing the "physical 

symbol system" hypothesis.

• The distributed (classical) AI work typified by [Hayes-Roth88] that attempts to make 

use of the powers of parallel computer systems while maintaining the essentially 

centralised and symbolic theme of classical AI.

This progression is also interestingly presented in the robot evolution book [Rosheim94] 

although with a somewhat different emphasis. The observations of the current chapter seem to be
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a continuation of the trend, and we believe that there is considerable evidence that a distributed- 

agent-based view of a complex system is both more realistic in terms of actual design, 

implementation and development and better at matching the beneficial characteristics of natural 

solutions to similar problems [McFarland85] and [Zeki93]. This chapter has highhghted the 

following points:

• These ideas encompass a view of a complete system from the lowest levels of control 

upwards. Emphasis is on the starting point of bottom-up development and the 

necessity to start with the behavioural control of sensor and actuator subsystems.

• Consideration of time and timing of processes and their interactions is of central 

importance in the development of complex systems.

• The physical location of processes within an agent structure has been identified as 

being a significant contributing factor to agent-environment behaviour.

• A multilayer view of distributed agent systems is proposed, with levels and scope of 

levels being determined by abstraction in both temporal and spatial dimensions from 

the physical world.

• Communication at any level can be seen as a tight actuation-sensation exchange 

between two or more agents. The sensation of the receiving agent is little more than 

the characteristic of a particular agent-environment situation which may or may not 

stimulate a return actuation response, i.e. a reply.

The points above outline five significant factors in system development that are perhaps not 

currently taken into consideration explicitly during the design of a typical complex distributed 

system. The bias of the discussion has been towards the point of view of BBAI. As such, the 

commentary is suggestive of factors that are important in the future design and development of 

complex behaviour based systems. It has been observed that to date the behaviour based 

paradigm has not been used for large-scale development, being limited to examples in the form of 

mobile robot test-vehicles that offer a simplistic though realistic starting point for research on 

autonomous agents. This thesis has so far provided some indication of the issues that must be 

addressed if the behaviour based approach to systems control is to be expanded to realistic, real- 

world applications (in other words, the "real real-world" as seen through complex sensors that are 

entities in their own right interacting at their own level as agent-environment systems).

The Role of the Designer

The behaviour based approach to control, with its multitude of interconnected and interacting 

asynchronous rule-based processes has few if any strong design methodologies or techniques 

apart from the assiduous use of the techniques typified by the many architectures evident in the 

literature. Chapter 3 overviewed three such architectures for illustration: Subsumption 

Architecture [Brooks86], PDL [Steels93], and Spreading Activation Networks [Maes89].
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However there are others such as AuRa [Arkin90b], and ALFA [Gat et al 94]. There have been 

few (of which [Colombetti et al 94] is one) attempts to formalise the process of design of 

behaviour based systems. One of the fundamental results of the BBAI route to systems control 

has been the development of many tailor-made examples of solutions to specific problems. This, 

after all, is one of the main reasons for the apparent success of the paradigm; systems are built to 

function specifically in a particular environmental niche often utilising specific features of the 

interaction space that allow fast and simple solutions to the control problem. A good example is 

the can-collecting robot in [Connell88] and [Connell89] that uses combinations of agent and 

environmental situations to trigger the inevitable sequence of behaviours that constitute collecting 

a can.

This shrewd utilisation of agent-environment resources (see [Horswill93] for detailed 

discussion) in guiding the design of an agent's control structure has worked well in the behaviour 

based demonstrations of the past, but the resulting control solutions are typically unstructured 

and difficult for a third party to understand. This is despite the layered and parallel structure of 

such systems which aspires to (and can actually) facilitate the assembly of complex control 

structures. Architectures like subsumption tend to result in large and elaborate networks of 

AFSM processes (see figure 5.1 in chapter 5, for example) numbering in the dozens, or hundreds 

(as yet, larger systems have not been built). This work is tending to suggest that there may be 

limits to this approach, defined by the ability of a designer to keep track of and utilise the agent- 

environment situation to best effect.

One of the methods classically used by traditional AI in testing a system is to assess its ability 

to deal with exceptions or unusual events. Whilst the thrust of BBAI ignores this type of 

exception provision in order to keep system cost and complexity down, it is still the case that the 

designer must try to provide the agent with the most wide-ranging and robust set of resources 

possible. The designer or team of designers must apply their knowledge of the task domain to the 

intricate details of the target control structure, defining everything from process interconnections 

to time-constants and actuation profiles. This necessity for manual selection and provision of 

control resources or behavioural repertoire is a major factor affecting the prospects of further 

development of behaviour based control techniques. It is apparent that the task is quite probably 

impossible if anything approaching a human level of behaviour is desired. The techniques of 

BBAI have led to an impressive collection of control solutions but ultimately face the same 

problems of scale as other more traditional approaches. However, it has not reached the end of 

the line yet.

6.3.2. The Problem of Design of Large-Scale Complex Systems

This chapter has concluded by highlighting some fundamental problems in building more 

sophisticated autonomous agents. The perceptions reported here resulted from discussion and 

experimental work on an industrially-situated test-bed system where it was emphasised that there
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is a need for a greater recognition of the dynamics of agent-environment interaction, specifically 

through the increasing need to provide localised control and low-level (in behavioural terms) 

adaptation of sensor and actuator subsystems. It was argued that although sensors and actuators 

require discrete control at their own level of situation, it is still necessary to take the global 

behaviour of the agent into account during development. For example, it is desirable to pay 

attention to the implementation of low-level reflex behaviours physically side by side with sensor 

and actuator control in order to avoid the unnecessary propagation delays to and from higher- 

level and remote processing centres.

The work reported in this dissertation along with the accompanying discussion has led to a 

view of an agent system as being distributed to the extreme, both physically and functionally. It 

has been suggested ([Pfeifer & Verschure 91], [Mahadevan & Connell 92], [Maes & Brooks 90]) 

that the problems of designing, developing and tuning these systems to survive and perform tasks 

in a reliable and robust way becomes astronomically complex given the large amounts of internal 

and external state in systems that interact with the real-world. As a result there is clearly a need 

for some means of providing an automatic configuration of a system so that it becomes able to 

initialise and tune its own interaction parameters as and when it gains experience with 

environmental situations that the designer has not foreseen. Currently a wide range of 

multidisciplinary work is being conducted in the areas of autonomous adaptation and learning 

([Kaelbling93], [Mahadevan & Connell 92] and [Mataric94]) as well as automatic methods of 

generating complete agent control structures ([Cliff et al 93] and [Harvey et al 94]). While some 

of this work is also covered by the domains of classical AI (for example, [Bratko93] discusses 

approaches to the inductive learning of rules and decision tree structures) and classical control 

([Harris94] and [Miller.W et al 90] both of which deal with the application of artificial neural 

networks to the control of various real-world problems) in an attempt to solve similar scaleability 

problems, much is specific to the nature and methods of BBAI and is approached with the lessons 

of BBAI in mind.

The second theme of this dissertation starts with the next chapter, chapter 7. This concerns the 

equipping of behaviour based control systems with mechanisms of adaptivity and learning ability. 

Chapter 7 begins by discussing some history and the current state of play of various aspects of 

adaptivity, learning and automatic generation of control structures and interaction mechanisms of 

an agent. The second part of chapter 7 then presents a series of ideas for embedding such 

mechanisms into the subsumption architecture so that adaptivity and learning characteristics are 

built in as part of the whole system from the bottom up. This is particularly emphasised in the 

light of the results and conclusions from the first part of the dissertation concerning the need for 

localised, low-level control at a sub-behavioural or subsystem level in a behaviour based 

architecture. Chapter 8 then considers the implementation of these ideas in the laser scanner test­

bed that was described in chapter 4 and further develops the control structures outlined in chapter 

5.
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7. Adding Adaptivity and Learning Ability to the 
Lowest Levels of A Behaviour Based System

This chapter covers the following:

A need  for low-level adaptation and learning In behaviour b ased  system s. 

Enhancing the augm ented finite sta te  m achines of the subsum ption architecture. 

Continuous tuning of critical param eters In AFSM processes.

A com plete feedforward AFSM based  on an artificial neural network .

7.1. Introduction: A Need For Adaptation and Learning
So far in this dissertation the focus of attention has been on the use of behaviour based control 

techniques in the domain of truly distributed real-world systems that incorporate complex sensor- 

actuator subsystems. Illustration has been provided through the use of a test-bed in the form of an 

industrial laser-scanning sensor which is itself part of a larger distributed system. This has been 

in contrast to the usual experimental domain of behaviour based artificial intelligence (BBAI) 

which tends towards the use of mobile robot vehicles. The previous chapter concluded the work 

on that test-bed with a number of key observations including;

• The necessity for a truly bottom-up development of control structure starting with sensory 

and actuation subsystems: in other words, with the physical boundary with the real-world 

at a sub-behavioural level.

• The significance of the physical location of - and time constraints on - a process in the 

definition of an agent control structure.

• A view of a system as a hierarchy of distributed subsystems of agent-like processes with 

higher levels increasing in temporal and spatial abstraction.

This chapter now continues by taking up the problem resulting from the complexity of 

designing such systems to perform in the real-world in a reliable, robust and self-sufficient 

manner.

The construction of most behaviour based systems typically includes the definition, placement 

and interconnection of numerous simple processes (see chapter 6). In the case of the subsumption 

architecture these are augmented finite state machines (AFSM). There is little doubt that these
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processes can be seen as elementary, reactive or automatic, components of a larger system which 

exhibits complex repertoires of behaviour. But there appears to be some criticism in the literature, 

e.g. [Kirsh91], that discounts the resulting behaviour based systems as being reactive and 

automatic in the same way as their component parts. Another common suggestion is that so- 

called hybrid systems that incorporate a symbolic high level and behaviour based low level should 

be the focus of attention (as discussed by [Franks & Cooper 95]). The difference between a basic 

reactive system and the more complex behaviour based system is discussed and clarified in 

[Mataric92c]. Here it is suggested that the internal and external interactions of an agent's multiple 

control processes result in a system that is significantly more complex than an automaton (see 

also [McFarland95]). In addition, the specialised nature of the behaviour based development 

approach does not readily lend itself to a general or clearly defined interface with a more 

classically composed, higher level AI control system. Rather, specifically tailored solutions to 

specific problems are in evidence with examples of hybrid control solutions being presented in, 

for example, [Malcolm95], [Jaeger95], [Holgate & Clarke 95] and [Gaussier & Zrehen 94]. In 

this discussion it is important to summarise that while current instantiations of behaviour based 

systems may appear to be simplistic in terms of their task-achieving behaviour, this does not 

indicate that such systems are restricted due the reactive nature of their component parts.

A "reactive" system is taken to mean one that responds to nothing more than the current agent- 

environment situation as indicated by its inputs and without reference to any temporal constraints 

[Mataric92c]. The reason for the interpretation of behaviour based systems being of a purely 

reactive nature is most often a consequence of the implicit nature of any internal state in such 

systems. It is the case that as soon as a sensor is sampled the resulting data are in principle out of 

date, i.e. the world continues changing while the sensor reading remains static, frozen in time. 

This view is in part the result of the use of digital computation for the processing of such signals 

[Brooks91] (the issues of digital systems and control were dealt with in chapter 2). Here the point 

to be made is that the longer the signal data are maintained, the more out of date they are likely to 

become. Behaviour based systems overcome this by attempting to respond as quickly as possible 

to such signals through the provision of hardwired or fixed mappings of reflex-like actions. More 

classically oriented systems (such as [Simmons94]) attempt to transform these signals into 

symbols in order to support map making, reasoning and planning processes. The longer time 

spans required by the computational workload of these functions requires that more generalised 

actions have to be selected, or actions based on larger amounts of data. Meanwhile, in the same 

time period, a behaviour based system would have resampled the world and updated its actuation 

output. These issues once led to the statement that "the world is its own best model" in 

[Brooks90]. The meaning of the quotation is that agents find in the real-world the most valid and 

up-to-date information concerning their situation and status. Any internal state, from simple 

records of previous sensory signals to complex symbolic world-models, has a potential for 

inaccuracy if it is used to generate agent responses to external events without regard for the
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present situation. Behaviour based systems address this problem through the layering of 

behaviours and the temporal abstraction of higher levels using combinations of current agent- 

environment state and event history as ^ d  where necessary.

It is the interconnection and parallel assembly of the reactive behaviour based processes that 

introduces internal state into the system. For example, the subsumption AFSM processes are 

connected by wires that signal sensor and AFSM output states. While these wires can change 

state rapidly, they still constitute a wealth of information that is at any particular instant 

indicative of the agent's state. This form of internal state may be regarded as an implicit system 

state and contrasts with the explicit state of, for example, the constmction of symbolic maps or 

event tables. ([vanGelder94] and [Clark94] discuss these issues in terms of agents and the use of 

representations). Of course, as already mentioned, time does not stand still and hence this time- 

sliced view of an agent's state is not really a true indication of the system but just one encouraged 

by the technology of digital computers. This implicit state is continuously changing and in 

complex real-world agents is unlikely to be of an exactly repeatable pattern, which is in part a 

reflection of the nature of the real-world environment of such systems. This makes the design of 

behaviour based systems difficult, with solutions often resulting from much trial-and-error testing 

of the agent-environment system. For example a hypothetical and typical: if( left-collision) do 

tum-right( 90), coded and adapted by hand to suit a robot's environment. In this example the 90 

may refer to an angle for the motor to turn or alternatively refer to a time period. Whatever it is, 

the designer has put it there because it works and provides the robot with the right response to its 

current situation. Likewise the left-collision condition is typically formatted by the designer to 

consist of a number of relevant and discrete sensory inputs. As a result it may be argued that the 

designer has built personal knowledge of the domain into the structure of the agent control system 

providing the right process connections and constant values to elicit the right agent-environment 

interaction dynamics ([Brooks91] and [Smithers94]). This designer knowledge can be seen as an 

embedded property of the architecture of an agent in the form of implicit domain knowledge.

Building implicit domain knowledge into a control architecture is not in itself a bad thing. It is 

in fact the very essence of system design and can lead to considerable saving in terms of 

computational resources. Keeping things simple means additionally that there is less to go wrong 

in a system and it can be easier to track down problems if things do. It is also a sensible 

engineering approach to start out with an apparently simple but sufficient solution and only add 

functionality as and when required. But there are also drawbacks. Tuning a system to realise a 

predetermined response to an environmental situation is fine so long as the environment does not 

change and that the original tuning was sufficient in the first place. For small numbers of sensors 

and behaviours the hand tuning option has been demonstrated to be adequate, but there are two 

significant problems that become apparent for more complex systems:

• The designer is often unable to provide sufficient domain knowledge.
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• There will most probably be too many behaviour processes, too many parameters and 

too many process interconnections to hand-tune (the frame of reference problem 

[Pfeifer93]).

Therefore there is a distinct need for an automated method of building behaviour based robot 

control systems that can deal with both the problem of acquiring and maintaining sufficient 

domain knowledge and the problem of incorporating large numbers of processes generating 

different types of behaviour into a system. Because the domain knowledge required is very likely 

to be available only when the robot encounters situations in its world (much hand-tuning of 

behaviour based systems is done by observing the way robots interact with their environments 

and then making adjustments) and because the structure of the behaviour control processes can 

only be developed as and when this knowledge is acquired, there is a clear requirement for a robot 

to be given mechanisms that i) are able to learn and self-tune parameters and ii) learn, adapt and 

optimise their actions as the system encounters and experiences environmental situations.

Techniques of adaptive and learning control have been seen widely as a solution to this 

problem but in many cases have so far failed to be transferred from the idealistic test domain of 

simulations. Examples that do deal with real-world implementations of learning and adaptation 

can be seen in [Kaelbling93], [Mahadevan & Connell 92] and [Mataric94] where aspects of 

discrete state reinforcement learning are experimented with at the level of behaviour selection and 

adaptation. Reinforcement learning is an on-line technique for unsupervised learning in systems 

that are in active interaction with their environments. The basic idea is that a reinforcement 

function generates one or more values that are indicative of the agent's current situation. The 

reinforcement value is fed back to control processes which may then alter their behaviour 

depending on the value of the feedback. Other work reported in [Pfeifer & Verschure 93] details a 

technique for learning associations between complex sensors and actuators in the form of models 

of classical conditioning ([McFarland85]) applied to individual behaviours. The use of Genetic 

Algorithms to evolve sets of production rules known as Classifier Systems has been reviewed in 

[Kaelbling93] and [Beer94]. These systems have been demonstrated to have a potential for 

control but Kaelbling suggests that their application to real-time embedded systems may not be 

practical. Also [Nehmzow & Smithers 90] looks at the use of self-organising feature maps for 

landmark detection. Other work reported in [Clark et al 92] looks at on-line tuning of parameters 

in reactive control architectures.

Many learning and adaptive control problems remain open, with solutions obtained to date 

having many limitations. Much information exists on experiments with simulated domains but 

these applications fail to address the more important aspects of robotics that deal with "noisy" 

sensors and "unreliable" actuators (the adjectives are in quotes since there is no such thing as a 

perfect sensor and any solution that fails to address these aspects is not a solution) that are a fact 

of life in real-world systems. In fact, simulated domains tend unwittingly to support a necessary
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assumption that is required of a system in order to implement a reinforcement learning scheme 

such as Q-leaming [Watkins89]: namely, that the agent's domain must be modelled as a 

Markovian Decision Process which according to [Mataric95] is defined as follows:

i) The agent and environment can be modelled as synchronised finite state automata.

ii) The agent and the environment interact in discrete time intervals.

iii) The agent can sense the state of the environment and use it to make actions.

iv) After the agent acts, the environment makes a transition to a new state.

v) The agent receives a reward after performing an action.

In the real-world none of these characteristics can be relied upon. Work that does deal with 

real-world agent learning is scarce and in the case of examples of reinforcement learning such as 

Q-leaming the learned feature tends to be a relatively high and abstract level of behaviour 

([Kaelbling93], [Mataric95] and [Mahadevan & Connell 92]). These recent experiments in using 

reinforcement learning to learn control strategies for mobile robots, in the best traditions of the 

behaviour based approach to robot control, have incorporated considerable designer-tuned 

implicit domain knowledge in order to embed the learning mechanisms into the robot and ensure 

that they converge to some useful behaviour.

Many reinforcement learning mechanisms also typically suffer from bootstrap problems which 

are characterised by an initial period in which the agent builds up its interaction processes 

through environmental exploration and experimentation. During this time the agent's performance 

is unreliable at best. Other non-symbolic solutions, for example the classical conditioning and 

self-organisation models (for example [Pfeifer & Verschure 93]) that do have useful bootstrap 

mechanisms, tend to be very application-specific and centralised. A comphcation here is that, as 

concluded in chapter 6, distributed hardware architectures are becoming the norm for robot 

control with different parts of the robot being controlled locally by their own microprocessors. 

Another issue then, regarding the solution to providing learning and adaptive control for an agent, 

is that the design architecture should be able to deal with physically distributed centres of 

computation which have hmited-bandwidth communications and therefore require behaviour to be 

initiated locally. In such systems global data structures are not available as a component of a 

cost-effective solution.

The real-world reinforcement learning experiments to date have largely dealt with learning the 

when of doing an action rather than an action itself. This has been a necessary feature of such 

systems. [Mataric95] used multiple predesigned behaviours and here experiments succeeded in 

structuring behaviour selection so that groups of mobile robots could effectively interact and 

forage for objects in their environment. Hard-wired behaviours were used in order to speed up the 

learning process as well as to provide sufficient abstraction for the reinforcement learning to 

work. It was suggested that individual behaviour might be learned but would require a framework
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for tuning individual parameters. This in part is the focus of the work reported in this chapter and 

in the second part of this thesis. Other reinforcement learning work reported in [Mahadevan & 

Connell 92] deals with the automatic programming of a subsumption architecture. In these 

experiments a number of behaviours are learned but here again considerable domain knowledge is 

necessarily built into the system in the form of behaviour applicability functions and motor 

actions as well as the basic structure of the subsumption architecture layers. Both examples also 

incorporate a number of predefined reinforcement-generating functions. In short, these learning 

techniques require considerable tailoring in order that their terms of reference may be sufficiently 

grounded in the robot's domain. This development process is similar to the tailoring required of 

the behaviour based control architectures that was discussed above. The focus of the work 

reported in the second part of this thesis has been to explore ways of providing the basic building 

blocks of the subsumption architecture with an inherent abihty to learn input-output associations 

and subsequently to be able to adapt to long-term changes in the domains of the agent and 

environment. In this way the benefits may be built into a behaviour based control structure from 

the bottom up.

Summary

The discussion so far has pointed out that a fundamental characteristic of the behaviour based 

design of real-world situated systems is the built-in provision of domain-specific knowledge. This 

is necessary in order that the behaviour control processes are able to operate in a fast and robust 

manner. It has been suggested that this built-in knowledge is also a potential problem when larger 

and more complex systems are considered, and hence that systems should be given mechanisms 

that are able to acquire their own domain knowledge, represented implicitly in control structure 

and dynamics, as they experience their environments. In other words, the systems should be able 

to leam. The second part of the above discussion highhghted problems with current real-world 

robot learning implementations and it was identified there that these examples often failed to 

address aspects of low-level adaptation in component or sub-behavioural processes. Thus the 

second part of the "thesis" presented in this dissertation suggests that low-level embedded learning 

and adaptation are necessary additions to behaviour based robot control architectures, and 

addresses the following problems in this respect:

i) The techniques of learning and adaptation need to be grounded in the dynamics of real 

sensors and actuators from the bottom up, or conversely the lowest-level mechanisms such 

as sensor and actuator controllers require mechanisms of adaptivity to improve stability 

and performance.

ii) Adaptive and learning mechanisms need to be distributed around multiprocessing hardware 

architectures, i.e. there is no central resource of information to draw on, and timing 

between processes cannot realistically be synchronised.
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iii) An agent must have a minimum level of ability before and while the learning and adaptive 

mechanisms are initialised.

These factors are discussed at the same time as we present potential solutions and 

experiments. The experiments have been conducted on the laser scanning test-bed and use the 

relevant transputer-based subsumption programming framework (chapter 4). Experiments in the 

next chapter (8) examine possible improvements to the photomultiplier control subsystems that 

were the focus of chapter 5. This allows a useful comparison to be made with the earlier work 

and results.

7.2. Issues in Enhancing the Subsumption Architecture: 
Embedding Adaptation and Learning

A common feature of many behaviour based control architectures is the utilisation of a number of 

interlinked parallel processes repeatedly looping and executing condition statements of the form: 

if condition do action. Anyone with experience of building behaviour based robots will be 

familiar with this format; for example see [Brooks85], [Gat et al 94], [Mahadevan & Connell 92] 

and [Pebody91], amongst many others. The success of the behaviour based approach to robot 

control can be attributed largely to the skill of the designer in selecting the right conditions, action 

parameters and interconnections for each behaviour process. In order to automate this process the 

nature of the condition and action must be examined more closely.

The condition predicate part of the statement usually refers to a number of input values to the 

process that may originate either from a sensor or another internal process. It will typically 

be either a simple binary-valued variable or the binary result of some comparison of values 

- for example: input_a > threshold. As well as thresholds, other common conditions are 

for tests for a value to be within a certain minimum-maximum range. The critical aspects 

of the condition when it comes to building in domain knowledge are: i) which inputs are 

relevant and should be included? and ii) how should these inputs be evaluated to generate a 

true or false result, e.g. at what value should the threshold be set?

The action part of the statement usually consists of a value that is output from the process. 

This may either be a value output directly to an actuator or it may be connected to an input 

of another behaviour process. This value may also be updated as part of the output 

process. The critical aspects of the action output may be a combination of i) the actual 

value output if it is locally constant and ii) the size of modification to the output.

From this it would appear that some form of continuous parameter-tuning is required to effect 

an adaptation of thresholds and action modification, as well as some form of active search of 

sensory input combinations or input connections, to format both the condition and action part of 

the rule statement of a control process. In this way the initial rule as specified by the designer 

may be adjusted and tuned as the agent gains experience in its environment. This chapter
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discusses these points using the subsumption architecture for illustration and demonstration. 

However, it is emphasised that the techniques of domain knowledge acquisition explored here are 

not specific to this particular control framework and should be of interest to the wider field of 

behaviour based control systems.

The basic building block of the subsumption architecture is the Augmented Finite State 

Machine (AFSM) and its interconnections. It takes the form of a finite state machine augmented 

with a number of input registers plus real-time clock information. The AFSM clocks its inputs 

regularly, depending on a characteristic time defined for the system. Each input register contains 

the last data item received irrespective of how many times the register has received something. 

The rule element of the AFSM translates the inputs and conditionally activates the outputs which 

are connected to other AFSM input registers and actuators by "wires". Wires may be connected 

at special nodes. The most common node is the suppression node which allows a second wire to 

override any activity on a primary or lower wire. Nodes may be stacked up, allowing higher 

layers of AFSMs to subsume lower layers in the style typical of the subsumption architecture that 

was illustrated in chapters 3 and 5. Other nodes inelude an inhibition funetion and a default 

function (inverse of suppression). Implementational details were discussed in chapter 4.

In order to implement the automatic tuning of the parameters of an AFSM rule it would be 

possible to add more AFSMs into the control structure of the system. Each of the critical 

parameters that collectively contain the designed-in domain knowledge could be turned into a 

register that is updated, depending on the activities of the robot, by a higher-level AFSM. 

However, whilst adding robustness to the agent architecture, this approach involves considerably 

more work on the part of the designer with each new AFSM requiring additional domain 

knowledge for its implementation. More conditions and constant settings will have to be tuned. It 

is interesting to recall from chapter 6 that this higher-level domain knowledge would tend to be 

more abstract in the temporal dimension than the spatial, and the time constraints on these 

AFSMs would probably be less critical [Pebody94b]. Unfortunately this technique does not lend 

itself easily to on-line automatic methods. In this instance the learning process would involve the 

dynamic addition of new AFSMs, connecting them with wires to lower-level AFSM registers, 

selecting suitable rules that include condition predicates (with possible combinations of threshold 

and maximum-niinimum classification values) and a suitable action output. Clearly a solution is 

required that can adapt around an existing predefined control structure.

Figure 7.1 shows the proposed format of an enhanced AFSM. The basic AFSM pattern is 

maintained with the addition of two blocks: a condition-mapping association mechanism and an 

actuation output arbitration function. The rale acts both to bootstrap the association mechanism 

and also to ensure that the AFSM has a consistent minimum performance. Another way of seeing 

this arrangement is as an additional process learning a feedforward response based on a lower- 

level AFSM. The actuation arbitration function serves to generate the selected AFSM output
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which is effectively the result of the "action" part of the AFSM rule. Interestingly this 

arrangement has parallels with control solutions found in biological systems. For example, the 

motor-ocular reflexes that control the saccadic movement in the mammalian eye are based on a 

learned feedforward control that switches out a lower feedback control loop [Robinson90].

I n p u t s

Learned
feedforward

response

Action
arbitration

Finite
state

m achine

O u t p u t s

Figure 7.1. Enhancing an AFSM with the addition of a pattern association mechanism.

The rule of an AFSM may be regarded as the formulation of an input-output mapping. The 

input is some pattern of AFSM input states defined by the condition predicate of the rule and the 

output is an action that is associated with a particular condition. The problem of parameter 

selection and tuning may be partially solved with the use of a connectionist or artificial neural 

network approach. Artificial neural networks are able to leam on-line and also have useful 

generalisation characteristics. Noisy and incomplete input patterns can still trigger a specific 

response that was originally associated with more complete data. Both problems identified above 

- of selecting the input connections and tuning the parameters of the AFSM rule's condition 

predicate - may be addressed in this way, and are dealt with in section 7.3 below. The problem of 

tuning the AFSM action output, however, requires a different hybrid approach. We treat it 

separately with the use of simple optimisation and search algorithms such as hill climbing ([Luger 

& Stubblefield 89] and [Maza & Yuret 94]) which have previously been experimented with in 

autonomous agent work [Pierce & Kuipers 91] - albeit only in simulation. The output action 

tuning aspect of this work is treated separately in section 7.4.

These solutions separate the problem of input state identification and output actuation tuning 

in order to focus the development of experimental mechanisms. A third possible solution is to 

utilise a feedforward artificial neural network to map the complete input-output mle function. 

Section 7.5 details an approach along these lines as a contrast to the approach in the first two 

sections.
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Finally it should be emphasised that this additional computation must occur within the AFSM 

process and take place within the characteristic time frame of the subsumption control structure. 

In this way the AFSM interactions across the system that makes up an agent will not be affected 

by transitions between learning and adaptation phases of an individual AFSM.

Summary

The main job that we assign to the network is to leam an association within the array of inputs 

based on reinforcement from the AFSM mle activity. The network will be modified continuously, 

depending on changing environmental situations. The intention is to achieve a form of parameter 

tuning. Additional inputs may be incorporated to enhance the selectivity of the mle and thus 

provide an added robusmess. Also, redundancy in input state may be utilised in the case of 

missing or noisy input data. Finally, the behaviour of the enhanced AFSM is dictated by a small 

number of control parameters that are required to set the update and leaming characteristics of 

the AFSM processes.

When the system starts up, the basic AFSM mle will have domination over the output, but as 

time goes by the network will take over. This will allow associations between sensors and 

actuators to be acquired during a leaming phase with the nature of the mapping resulting from the 

activity of the basic mle (akin to a low-level reflex) which acts both to bootstrap the leaming 

process and to provide low-end limits of the system's performance. This has two main benefits; 

firstly the designer must necessarily provide some domain-specific knowledge and the basic mles 

allow for a relatively straightforward specification framework; secondly the mles ensure that 

when the system is first switched on there is some mdimentary reflex behaviour that will prevent 

the agent from damaging itself though random actions.

7.3. Providing An Input State Mapping: Enhancing the AFSM 
Rule Condition

Work presented in [Pfeifer & Verschure 93] has demonstrated that self-organising robot 

controllers can be developed from simple artificial neural networks. Here, a basic reflex action 

was associated with a secondary sensory source thus enhancing the robustness of the robot’s 

behaviour by leaming the extra inputs to the control action. We propose that this approach can be 

useful in generahsing the AFSM mles of the subsumption architecture over the auxiliary inputs 

as described above. While Pfeifer and Verschure’s work focused on the issues surrounding 

classical conditioning [McFarland85], it provided insight into the nature of continuous adaptive 

control when applied to real-world robots. More specifically, it had a strong bearing on how such 

adaptive mechanisms might be initialised (or bootstrapped) so as to ensure that the correct input- 

output association was acquired. The strategy presented in this chapter for leaming and adapting 

the input-output mapping of an AFSM is based firmly on these adaptive associative networks that 

are able to leam the associations of complex sensor states from a hmited set of simple key inputs.
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However, there are a number of factors that must be addressed for these techniques to be 

embedded in a subsumption-based architecture and used in a more general-purpose manner:

i) The likelihood of having to deal with complex input patterns that are not linearly separable • 

by a single-layer network;

ii) The embedding of the network into the framework of the AFSM to allow a physically 

distributed control architecture to be implemented;

iii) The temporal sequencing of events as utilised in the work of Pfeifer and Verschure, and 

typical of classical conditioning, can not be depended upon in all applications, so that an 

alternative method of allowing a learned response to override a basic reflex is needed.

The fact that the classical conditioning model developed by Verschure ([Pfeifer & Verschure 

93]) utilised only a single-layer network potentially left open the problems related to the linear 

separability of the input space. This problem was first highlighted in [Minsky & Papert 69] with 

the inability of single-layer perceptron neural networks to implement the simple XOR function 

which required a complex, and multi-boundar>' separation in the state space of solutions. More 

recent accounts can be found in [Wasserman89] and [Masters93] (amongst others). For simple 

feedforward rule association this is generally not a problem, but it may prove to be so when more 

complex input spaces are considered. The standard solution to this problem is the utilisation of 

multilayer networks trained by the backpropagation method. But such networks are notoriously 

difficult to set up, with training times often being undesirably long and convergence not 

guaranteed. For this reason work by Nehmzow and Smithers has been studied ([Nehmzow & 

Smithers 90], [Nehmzow et al 89]) which details experiments with self-organising feature maps 

using Kohonen network algorithms ([Kohonen88]) and later [Nehmzow & McGonigle 94], which 

combined this early work with additional decoding layers to create networks referred to as Pattern 

Associators [Rumelhart & McClelland 86]. This is similar to the counterpropagation algorithm 

originally developed by Hecht-Nielsen [Hecht-Nielsen88] which is detailed in [Wasserman89] as 

a possible alternative to multilayer perceptrons and the techniques of training by backpropagation 

of errors.

A series of exploratory experiments conducted with sampled data from the laser scanner test­

bed demonstrated that the stability and resolution of the counterpropagation algorithm was 

significantly superior to a single-layer network and that the convergence time of such networks 

was within the bounds of usefulness for the application of interest detailed in this chapter; that of 

enhancing and adapting the functionality of an AFSM control structure during its active life. 

Additionally, experiments reported in [Nehmzow & Smithers 90] have shown that the 

counterpropagation solution is capable of mapping a higher dimensionality in input space than 

that obviously provided by a perceptron network alone.
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7.3.1. A Mechanism: Implementing a Two-Layer Association Mapping 
Network

Figure 7.2 shows the addition of a counterpropagation network to a standard AFSM. The 

counterpropagation algorithm is a combination of two single-layer algorithms. The first layer is a 

Kohonen self-organising feature map [KohonenSS] and the second is an Outstar network 

[Grossberg69], similar in many respects to a single-layer perceptron. The counterpropagation 

algorithm functions as a look-up table that is capable of generalisation, allowing accurate 

reproduction of the output despite incomplete or noisy input data. The training process associates 

input vectors with output vectors which may be either binary or continuous values.

Kohonen
layer

AFSM
input

registers

Transduction, 
input scaling

Auxiliary
inputs

Output
generation

Neteffect  
(Output weighting 

factor)

Figure 7.2. An AFSM rule with a counterpropagation network implementation of the association 
network. Basic input values are routed to the AFSM rule (light grey lines) and the network (black lines); 
auxiliary inputs are routed to the network only, and are scaled into the range 0-1. In normal response the 
output of the rule and the output of the Grossberg layer are calculated with output bias being a function 

of the neteffect factor Y. The output generation converts the output vector from the Grossberg-rule 
combination into an integer AFSM output value.

A number of formats of the main algorithm for the enhanced AFSM process have been 

experimented with, all utilising the basic format shown in figure 7.2. During every processing 

cycle of the AlFSM the input registers are sampled. A set of key inputs is used to process the 

AFSM rule and then used further in conjunction with a set of auxiliary inputs to create an input 

vector for the associative network. This input vector is applied to the network and an output 

vector generated. Next this output is combined in a weighted way with a similar output vector 

from the rule and used to look up the AFSM's output action response value which is clocked out 

onto the wires to other AJFSMs or to hardware actuators. Every time an output is generated, the
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rule output vector is paired with the network input vector and used to update the weights of the 

counterpropagation network. This process continues indefinitely until the system is switched off.

The nature of the Kohonen layer and the algorithm for self-organising networks dictates that 

although small adjustments can be made continuously to fine-tune the network's response, an 

initial period of high-gain alterations is required to provide a start-up momentum for the self- 

organising process. During the early stages the network, outputs are ill-defined and most usually 

noisy. It is during this time that the mle output must provide the main contribution to the AFSM 

output. However, as time goes by the network becomes settled and is able to take over from the 

rule. Consequently, the AFSM can be seen to progress through an initial learning phase which 

relies on the basic rule for AFSM output and then on into an adaptive phase which relies on the 

network output. It is recommended in [Wasserman89] that to acquire statistically significant 

clustering of inputs a Kohonen network should be given 500 times the number of cells worth of 

training cycles. This is currently the time period used in the implementations described here. This 

is controlled by the maintenance of a variable referred to as the network output weighting factor 

or neîejfect which is detailed further below.

The following is a pseudocode hsting of the main steps of the algorithm for the enhanced 

AFSM process. After random initialisation of each of the network layers, the algorithm is 

repeated for each characteristic time step of the AFSM:

P rocess AFSM rule to get rule vector
Pre-process input vector (i.e. normalise or scale  input values to range 0-1)
Apply input to Kohonen layer
Apply situation map vector and rule vector to G rossberg layer to get network output
If AFSM rule is active{

Update Kohonen layer
Update G rossberg layer with rule vector

}
Combine rule and network output to generate  AFSM output
Output AFSM action value

7.3.2. Basic Rule

The basic rule takes a number of key inputs and uses them to generate an output vector R which 

has I elements, the same number as the output of the counterpropagation network. This vector is 

scaled and then combined with the Grossberg output layer of the association mapping network in 

the AFSM output generation function. It acts in the same way as the basic AFSMs detailed in 

chapters 4 and 5 except that the vector R is used as a lookup reference for the AFSM output 

register.

7.3.3. Input Scaling

The association network takes as input a vector that includes a set of key inputs as used by the 

AFSM rule and a set of extra auxiliary inputs as specified by the designer. Real-valued inputs to
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Kohonen networks are usually normalised to values in the range 0-1 before being applied. 

However, the standard normahsation procedure as provided in [Wasserman89] causes the inputs 

to influence each other in terms of both overall magnitude and changes over time. To avoid this, a 

simple scaling factor was used for each input. The value of scaling was chosen as an approximate 

maximum value for each input type so that a scaled input would have a range between 0 and 1. 

For binary inputs this process is not required.

7.3.4. The Kohonen Layer

Kohonen self-organising networks have been shown to have useful mapping characteristics. The 

self-organisation of these networks involves the clustering of similar input vectors applied over 

time. Convergence in the clustering process can be relatively fast, depending on the degree of 

difference in the input vectors. However, the speed of convergence is also influenced by factors 

such as the number of cells in the network and the number of distinct clusterings that result from 

the input.
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X An input vector with elements X;

K The Kohonen network weight matrix with elements kji, where j indexes the

Kohonen elements and i the input vector 

Y An output vector with elements yj

n The number of cells in the Kohonen network and output vector Y

m The number of input elements in the input vector X

G Kohonen update group vector, a moving subset of K, with elements gi

u A variable size of the update group G. Decays to a value of 1 during

execution

Çk Gain factor for the weight update in the Kohonen layer

The input-stage layer in Figure 7.2 uses a one-dimensional Kohonen network with a number 

of weight-storage units in a vector K. The number of units used depends on the required 

associative mapping. From experimentation it was found that Af- units was a generally suitable 

number, where I is the approximate number of input states to be differentiated (effectively the 

size of the basic mle output vector R). Each unit is a vector with the same number of elements as 

the input vector and each such vector contains the weights associated with that unit. The weights 

are updated according to the following scheme (having been initialised to random values in the 

range 0-1):

1. An input vector (X with elements x̂ ) is applied to each of the Kohonen-layer units and 

a measure of appropriateness to the current input is made using a simple dot product 

of the two vectors. The most active unit is selected and the neighbouring cells in the 

range +/- u!2 in K are selected as members of the update group G.
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2. The weights (vector with elements kjj) of the selected unit and the adjacent group of 

units G are updated according to the following, where controls the gain of the 

weight update and X is the input vector:

kji(t + \) = kji(t) + ̂ K.[xi-kji(t)] (1)

3. The update gain and the size of the update group u are reduced, and steps 1 and 2 

repeated for other input vectors. The group size is reduced gradually during the 

learning phase until only one unit is selected for updating and the update gain is 

reduced to a value of 0.1.

The calculation of the output (vector Y with n yj elements) of the Kohonen layer is made in 

the same basic way as in many other artificial neural net algorithms:

yj = ^ k j i .x i  (2)
f=l

All elements of the output vector Y are reset to zero except for a group of the p  most active. This 

grouping is independent of the group G used in the weight update procedure. A set with size of 

approximately p = O.l/i of the number of cells in the Kohonen layer was generally found to be the 

most effective in providing a distinct output signature.

During the learning phase the update group size of the Kohonen layer Gy is reduced from an 

initial size of half the number of cells in the Kohonen layer to one cell only and the gain in the 

weight update function, is reduced from an initial value of 0.7 down to 0.1. These figures were

selected as being generally suitable after extensive testing of various network configurations and

values. Once the update gain has decayed and the group size is reduced to 1, the learning phase is 

over. During the subsequent adaptive phase the Kohonen layer still adjusts the network weights, 

but only in small increments, with the learning rate being left at a constant 0.1. This provides a 

continuous and gradual adaptation to any changes in the agent-environment situation.

7.3.5. The Grossberg Layer

The purpose of this layer is to match patterns generated by the Kohonen layer and map them onto 

an output as trained by the activity of the AFSM rule. The number of units o in the Grossberg 

layer is matched to the number of basic rule-action states. The basic mle output is in the form of 

a vector R which has s binary-valued units. An action output from the mle is indicated in the 

vector R by a unit value of 1 (all others set to 0). The output elements Zj and finally outi of the 

Grossberg layer output are calculated in the manner of a single-layer perceptron using the 

following (from [Wasserman89]):

Zi = ^ w i j .y j  (3)
7=1

outi = - (4)
1 + e~^‘
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In these equations and below, we have;

Y An output vector from the Kohonen layer with elements y j

n The number of cells in the Kohonen network and output vector Y

W Grossberg weight matrix with weight elements w,j

Z Grossberg output vector with elements z,

o The number of cells in the Grossberg layer W and output vector Z

out Counterpropagation final output vector with elements out,

Çq Grossberg layer weight update gain factor. Set to a constant value of 0.2

The weight update function of the Grossberg layer was of the standard single-layer perceptron 

form with Çq, the learning rate constant, set to 0.2 in both learning and adaptive phases. This 

ensured that the layer responded quickly to continuing changes on the Kohonen layer during the 

ongoing adaptive phase. At all times the weights in the Grossberg layer were updated using the 

difference between the current output Z (with elements ẑ ) and the output from the AFSM rule 

vector R (with elements r̂ ) and the input vector Y from the Kohonen layer. The weights j  of 

element I of the Grossberg layer were updated using the following (taken from [Wasserman89]):

Awi = ^ G .[n -z i] .n .{ l-r i)  (5)
wijo + 1) =  wij(t) +  A wl yj (6)

7.3.6. AFSM Output Generation

The output is a function of both AFSM basic rule output and the counterpropagation network 

output (see figure 7.2). The influence of each depends on the phase of the system (learning or 

adaptive) and this is indicated by a variable netejfect which provides an output weighting factor 

Y. This value grows exponentially from 0 at start-up to a value of 1 at the end of the learning 

phase (see the next section for further details) and is indicative of the output influence of the 

association network. The AFSM output vector AFSMout is a weighted combination of the rule 

vector R (with elements and the counterpropagation output vector out (with elements out^ 

with values in the range 0-1 and is calculated for each element I as follows:

AFSMouti = ( l- \ \ f) .r i+ \\f . outi (7)

The AFSMout vector is used to select the actual AFSM output. This is the unit with the highest 

activation that is greater than a threshold of 0.5.

7.3.7. When to Leam and When to Adapt

The transition from an initial learning phase to that of adaptation is controlled by the growth of

the netejfect variable referred to as the network output weighting factor (Y above). The rate of

growth of this variable is an important factor in the performance and development of the AFSM 

and as such has been the focus of considerable experimentation. The reason for introducing the

Adding Adaptivity and Learning Ability to the Lowest Levels of A Behaviour Based System 128



weighting factor is that Pfeifer and Verschure's work was based on modelling the phenomenon of 

classical conditioning, which relies on a temporal difference between the basic and associated 

actions. It relied on the associated response occurring before the built-in response. The decay 

used here ensures that the associated action becomes the dominant output whether or not there is 

a timing factor involved. The network output weighting factor Y  is initialised at a value of 0 and 

as time passes is gradually updated after every learning event according to:

(8)

where T is the time period (number of events) selected for the learning phase, t is a specific event 

number in the range [1,T], and f is a scaling factor to ensure a growth from 0 to 1 in the time 

period, f is initialised as the natural logarithm of T. This simple non-linear weighting function, 

used by the AFSM output generation function to calculate the AFSM output (described above in 

section 7.3.6), was chosen because it was found from experimentation that the self-organisation 

of the Kohonen network layer did not progress in a linear fashion. It was the case that although 

the update group size u and update adjustment gam were reduced linearly, the output accuracy 

of the Kohonen layer did not behave accordingly. The graph in figure 7.3a shows a plot on a 

simple incremental time base with a T value of 1000, as would occur if the system were to update 

the network at every time step (which does not in fact happen; see below). The continuous plot 

depicts the decay of the update group size of the Kohonen layer and the gain of the update 

function while the grey lines indicate the value of the network weighting factor. Once the network 

weighting value becomes 1, the leaming phase is over and the system remains in the adaptive 

phase. Note that the Kohonen leaming gain does not decay to 0 but remains at a value of 0.1.

The plot in figure 7.3a, however, is not the whole story. It is often the case that an AFSM in a 

subsumption control stmcture will not trigger an output signal (or in the case of our 

implementation, a mle output vector containing only zeroes is generated). When this happens it is 

often useful to set the AFSM either to output the previous signal state or to generate an output at 

random. The justification for the choice is that this wül prevent the system from falling into a 

deadlock, as often in real-world situations doing something is better than doing nothing. This is 

particularly the situation in mobile-robot work where an extra movement may get the vehicle out 

of a sticky situation such as a particularly tight dead-ended passageway. This technique has also 

proved useful in the development of the laser scanner test-bed control programs. This trick, 

though, presents a potential problem for the leaming of the condition part of the mle. If the 

AFSM is occasionally outputting random signals, any network leaming algorithm presented with 

these atypical input—>output pairings will fail to obtain convergent values for the network 

weights. Consequently the identification of a suitable range of situations for leaming is necessary. 

It may be argued that these extra and sporadic AFSM outputs are beneficial and that they should 

also be learned, since this might provide an impressive ability to leam and recall occasional
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beneficial events. However, this would require considerable computation and the holding of an 

extra volume of data and would run the risk of overloading the AFSM process (given the current 

processing resources). It is also a complex extension, and as such would unduly increase the 

complexity of this initial work.

A: Learning - Adoptive phos e  trcns ition for continuous time s teps

Chaocteris tic time s teps

: Learning - Adoptive phos e  trcns ition for dis continuous learning events

30

ChCTocteris tic time steps

Neteffect Leaming gain Updote group size

Figure 7.3. Plot showing a continuous transition from learning to adaptive phase; A) assuming that 
every characteristic time event of an AFSM provides a valid output state and B) in the real sampled case 
of non-continuous AFSM events. The drop-off around 121 steps resulted from a reduction in stimulation 

frequency from the test surface (when the surface was changed for one with fewer breaks).

Thus the issue regarding when to leam is apparently clear. It is when the AFSM mle makes a 

positive state identification. However, one further problem now arises. If the agent-environment 

situation is relatively constant, then it is likely that the AFSM will spend more time leaming a 

limited number of input-output mappings during the leaming phase. This problem can be 

partially solved by setting the leaming event to occur only when the AFSM mle output changes 

state and not every time a signal is output that is the same as at the previous time step. Obviously 

this only solves the problem partially. If the system is not presented with a sufficiently diverse 

and interesting set of environmental conditions during the leaming phase, it cannot be expected to 

cope with variation later in its operational life despite limited continuous adaptation of input- 

output mappings during the adaptive phase.

So now the issue of when to leam is less apparent. Should the AFSM input mapping be 

leamed every time the mle makes a state identification or only when it identifies a new state? It 

tums out in our experiments that the most effective solution is to keep things simple and 

implement a leaming event every time the AFSM mle identifies a particular state. This is mainly 

because of the nature of the mle and the identification of real-world states. It is possible that short 

transitive conditions may trigger a change of AFSM state but not necessarily be the best
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examples of that state for the purposes of learning. Leaming only these transitions is obviously 

not a good thing. The other factor that is significant here is that no matter how careful the 

designer is in setting up conditions for leaming to occur, this is all made irrelevant if the real- 

world does not present enough variation during the leaming phase.

The final result is that the time taken for the leaming phase to pass into the adaptive phase is 

determined not by an intemal time constant but by the activity of the complete agent-environment 

system. AFSMs that are connected to sensors and actuators will have their leaming rates dictated 

by the frequency of environmental events and their activity. Some AFSMs will be completely 

embedded in amongst others and so in this case the timing of the leaming phase will be 

determined by intemal activity as well as (ultimately) extemal activity from agent-environment 

interaction. For the initial leaming period it is helpful if the system is presented with as rich a set 

of input stimuli as possible, since it is at this time that the system is maximally responsive to 

leaming various input characteristics. This will not only ensure a more thorough repertoire of 

leamed input conditions but will also allow a faster rate of leaming since the number of leaming 

events required will pass more quickly. The difference between the leaming rates of two AFSMs 

is evident in the examples in the next chapter. One, being more active than the other, generally 

goes into its adaptive phase much more quickly than the other. Figure 7.3b shows a more realistic 

example of the growth of the network output weighting factor.

7.3.8. What to Learn
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Figure 7.4. Illustration of two different schemes for updating network weights. At left is the feedback of 
the complete weighted AFSM output. The feedback of the rule output only is shown on the right.

There remains one aspect of the input-output association leaming mechanism that has not been 

addressed: the source of the output that is used as part of the input-output pair during the 

updating of the Grossberg network weights. This may originate from one of two places; either the 

direct output from the basic mle or the combined mle-network output that is the final AFSM 

output (see figure 7.4). The second of these would start off as the basic mle output but, as the 

AFSM gained experience and the output weighting factor grew, the source of the network update
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would change to that of the network output. Experimentation has shown that the usage of the 

weighted AFSM output may result in a better immediate performance level than if the basic mle 

output only is used. However, gradually over a period of time, the performance degrades and the 

AFSM output becomes incoherent. Conversely, although the basic mle may not achieve such high 

initial performance, it is generally the case that the system maintains its ability indefinitely once 

the adaptive phase is entered.

On analysis, the reasons for these phenomena are relatively straightforward. In the first 

leaming case, the initial network output is trained from a combination of the basic mle that is 

combined with an increasingly superior network output (as will be demonstrated in the next 

chapter). Eventually the network output takes over the reinforcement activity completely. Over 

time, however, activity in the network that classifies situations differently from the mle causes the 

weight clusterings of the Kohonen layer to lose their sharpness so that the Grossberg layer is 

unable to differentiate them. On the other hand, the constant use of the mle output for providing 

the weight update irrespective of the "age" of the AFSM provides a stable response to 

environmental situations and guarantees a minimum level of performance which is continually 

reinforcing the network layers in the same way, throughout the life of the AFSM. It is the case 

that the removal of the mle output from the source of training stimuli results in a network for 

which the fixed-point of the leaming dynamics is the state in which it receives maximum reward. 

When used as the source of training, the mle acts to prevent this fixed-point convergence by 

maintaining the response to the AFSM’s basic inputs.

7.4. Tuning the Output Registers: Continuous Adaptation by Hill 
Climbing

The previous section dealt with the provision of an adaptable input-condition mapping 

mechanism for a subsumption AFSM. The counterpropagation network was intended to provide 

an enhanced decoding of the AFSM input state leaming to incorporate additional inputs over and 

above those required for the basic mle functionality. This mechanism, however, only served to 

increase the resolution of the action selection and did not manage to affect the response action at 

all, other than on the particular issue of when it was selected. This section looks at a scheme that 

attempts to provide the AFSM output values with a degree of adaptability or automatic tuning. 

Again, as before, the main reasoning behind our approach is that the designer can only make an 

approximation of the correct values of the outputs, or the correct adjustment factors used to 

modify the outputs.

This requirement for adaptability was introduced at the beginning of the present chapter, and 

is a result of the design task that necessitates the provision of implicit domain knowledge to 

provide the AFSM with an effective actuation (whether the output is connected to other AFSM 

inputs or directly to an acmator). An example of the criticality of how this is done can be seen in
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the BallPark AFSM of the laser scanner control structure of chapter 5. The operation of this 

AFSM is to identify a number of photomultiplier states that are outside the basic near-linear 

state. Depending on the identified state the BallPark AFSM. outputs a value that causes the 

output EHT voltage to be increased by a fixed step size. The output values for each state have 

optimum values that depend on the characteristics of a particular photomultiplier and its response 

to incoming light. Consequently the EHT step size associated with the quiescent signal 

characteristic might be optimised so that the near-linear region is reached as quickly as possible. 

If the step size is too big, overshoot will probably occur; if it is too small, the signal will take too 

long to adjust. As a photomultiplier ages, its response characteristics change. Thus, additionally, 

a system should be able to adapt to these changing circumstances, which are of a more long-term 

nature than the speedy response provided by normal control techniques.

The concepts presented in this section are intended only to serve as an indication of a desirable 

solution. The work so far in this area has been limited to simple experimentation with some initial 

ideas. It is nevertheless included in the this part of the dissertation to complete the story, so to 

speak, of adding adaptivity to the basic building blocks of a subsumption architecture and thereby 

introducing these mechanisms at the lowest possible level of an agent's control structure.

7.4.1. An Adaptation Mechanism

The output of an AFSM takes the form of an execution of the command output( register) where 

the register is one of the AFSM output connections as declared in the program code (see appendix 

A). The value of the register may be constant (e.g. it may simply be a binary output indicating a 

true condition) or it may be modified in some way depending on the outcome of the AFSM rule. 

In the first case the constant value is determined by the designer and is most often the target of 

some empirical tuning. In the second case the update function that affects the output register 

generally utilises some constant (designer-provided) value. The purpose of the mechanism 

outlined here is to adapt this constant value, as initially set by the designer, on a continuous basis 

with the adaptation being dependent on some form of performance measure or reinforcement 

value. In other words, the problem is one of optimising the register value such that the maximum 

reinforcement is attained over time. Reinforcement optimisation is dealt with in many sources, in 

terms of control in [Miller.W et al 90] and [Harris94] and in mobile robots [Mataric95], 

[Mahadevan & Connell 92] and [Sutton91]. It is also treated in terms of heuristic search 

problems in sources such as [Luger & Stubblefield 89] and [Chamiak & McDermott 85] which 

outline hill-climbing search as one of the simplest and earliest optimisation algorithms. Despite its 

well-known limitations, hill climbing has several advantages, and with some modification (for 

example [Maza & Yuret 94] and [Cvijovic & Klinowski 95]) it has been made into a more robust 

technique.

The nature of the problem dealt with here is one of tuning, or optimising, a single parameter 

over a long time period. Although an AFSM will typically contain many "magic constants", all of
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which may benefit from dynamic optimisation, the potentially n-dimensional optimisation space 

can be reduced to a direct product of one-dimensional spaces by treating each constant 

individually in time. In other words, time-slicing the AFSM optimisation problem and dealing 

with one dimension at each instant. The solution to the problem outlined here relies on the fact 

that the adaptation of the AFSM output registers can take place over considerable time periods 

(determined ultimately by the speed and nature of environmental changes) that may be in the 

order of tens of minutes or more, so that the tuning of each individual register in an AFSM will 

occur in a sequence with each register taking its turn.

The mechanism presented here is based loosely on a steepest-gradient hill-climbing 

optimisation process which works by making a change to a parameter and then monitoring the 

effects of making that change. If the situation improves, then the change is kept and a further 

change in the same direction is made for further adaptation. If the situation worsens, then the 

change is retracted and the direction of adaptation altered. In a one-dimensional space this is 

relatively straightforward. The main criteria that dictate the nature of the output register 

optimisation process are the following;

• The optimisation function must be computationally cheap both in terms of time and 

resource usage. An AFSM is supposed to be a relatively simple process used as a low-level 

building block for higher-level control functionality and there are likely to be many such 

optimisation processes going on in many of the AFSMs in the system.

• Real-world factors must be taken into account such as the frequency of activity of the 

AFSM. If an AFSM is inactive for a considerable proportion of time, any tuning or 

optimisation to an output register might end up being based on other system dynamics and 

not the result of the local alteration of parameters.

• A reinforcement feedback is required in order to provide an "assessment" of the AFSM's 

performance resulting from an adjustment of a parameter. In a distributed system, global 

reinforcement is not always possible. Ideally therefore, an AFSM should be able to 

generate its own reinforcement value internally depending on its own assessment of 

performance.

For the dynamic adaptation of a single output register the following is executed after each 

count of a preset number of AFSM characteristic time steps referred to as the adjustment period. 

The reinforcement period is the time span over which the reinforcement value is accumulated. 

The value of this parameter is the result of a trade-off between filtering out short-term transitive 

events and being able to respond to changes (whether beneficial or not) in time to maintain the 

system's performance. The basic computation is as follows:
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R epeat after each adjustment_period{
Calculate reinforcement value for last reinforcementjperiod 
If reinforcement has gone down since value w as adjusted!

R eset to original value 
R everse direction of adjustment 

}Else reinforcement has gone up{
Save new value a s  a function of register m ean activity

}
Make new adjustm ent to register value a s  a  function of tuning_factor, current value,

m ean reinforcement and m ean register activity
}

The above sequence is executed with a frequency that is preset by the designer, not at every 

characteristic time step. The period must be set such that sufficient time is provided to monitor 

the change in system performance that is a result of adjustment to the value of the register in 

question. This algorithm takes a number of factors into account: (i) The size of the trial 

adjustment, in the first instance, is determined by a preset parameter as a percentage of the 

original value in the register; (ii) The size of the trial adjustment is also dependent on the size of 

the reinforcement signal (which is always in the range 0-1). The larger the reinforcement, the 

smaller the change made. This is to ensure that the method homes in on an optimum value and 

does not oscillate around it; (iii) In the case of an increase in reinforcement the actual change to 

the register value is not the full amount of the initial change but a proportion depending on the 

activity of the register during the time period of the adjustment trial. This eliminates, as far as 

possible, the number of changes that are based on effects of other processes and events in the 

agent-environment system. The expression for a single register trial update tv is:

rv = rv - l- / .rv .( l - r )  (9)

The actual register value rv update, given an increase in reinforcement, is:

rv = tv.r\ (10)

where:

rv = Current value in the register 

tv = Trial value in the register

h = Mean activation adjustment during last period (0 < h < 1)

/ =  Update factor (0 < / <  1)

r = Mean reinforcement over last reinforcement period (0 < r < 1)

Further, the information required to maintain this process for one adaptive register is:
Mean activity: Variable holding register activity during adjustm ent period
Original register value: Variable holding previous best register value before adjustm ent is m ade
New register value: Variable holding current register value including trial adjustm ent
Reinforcement: Variable holding previous reinforcement associa ted  with original register value

The following three parameters are used to tune the update characteristics:

Reinforcement period tp  Time span  over which reinforcement is accum ulated 
Adjustment period t^: Number of AFSM characteristic time s tep s over which

adjustm ents are tested  
Update fac to r/: P ercentage of current register value for te s t alteration.
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The values assigned to these three parameters must be tuned for the environment in which the 

system is intended to operate (but they are of a fairly general nature and it will be seen in chapter 

8 that the initialisation is relatively simple). For exaihple, an inspection surface with gaps and 

spaces will mean that a reinforcement value of 1 (100%) is impossible to achieve. Consequently a 

higher-valued update factor may be required to ensure that register updates are of a sufficient 

magnitude to have an effect on the system's behaviour. In addition, the reinforcement and 

adjustment periods must reflect the periodicity and rates of change of the inspection surface.

The pseudocode above dealt with a single output register value. However, it is Ukely that an 

AFSM will contain multiples of such registers. To deal with this situation each adaptive output 

register is given one adjustment event in turn. Consequently the set of variables listed above must 

be maintained for each output register along with a pointer to indicate the output register 

currently under adjustment. The result is that the AFSM output registers are adjusted one by one, 

with changes being made that take into account the activity of the AFSM and the optimality of 

the current register value in terms of a reinforcement value. It is up to the designer to preset the 

time inter/al bet'.veen adjustment events, although this might be adapted dynamically by a higher- 

level subsumption control layer in a future implementation. Chapter 9 discusses further additions 

to this work.

7.4.2. Reinforcement Functions

A reinforcement value is an arbitrary number that ranges from an indication of "good" to "bad". 

The particular representation varies from implementation to implementation. For example, in 

[Mahadevan & Connell 92] values of the range -I-/-3 were used, -3 being a sign of negative 

reinforcement and +3 positive. In the work reported here a binary indication was used. At each 

characteristic time step a 1 was used to indicate a good situation with any other situation (bad or 

indifferent) being indicated by 0. As a result, an average reinforcement value could be calculated, 

generating a real number between 0 and 1. This fraction provided an indication of the proportion 

of time in which the system was in a good state; e.g. an average of 0.8 indicated than for 80% of 

the sample time the system was in a good state.

As already indicated above, the source of a reinforcement value in a distributed system is not 

straightforward. It is also the case that the reinforcement must be related directly to the 

performance of the AFSM at the level of a community of interacting AFSM processes rather than 

entirely at the level of the physical agent-environment system. Since the relationship between real- 

world events and the action of a particular AFSM in the agent control structure is at best tenuous, 

it was necessary to base the generation of reinforcement on intemal AFSM activity alone. For 

example, the BallPark AFSM is responsible for driving the photomultiplier into the near-linear 

condition. It may happen that a change in the environment, and not any actuation of BallPark, 

results in the desired near-linear photomultiplier state being achieved. Alternatively, another part 

of the system such as the NearLin AFSM may act to achieve this state. Consequently any
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reinforcement that is generated must be grounded in the activities of the AFSM to which it is 

being applied. It may be that in the future more complex tactics might be used in the form of 

weighted reinforcement from extemal sources. But in general the weighting would have to reflect 

the closeness (or conversely the remoteness) of the reinforcement source and take into 

consideration other possible contributions towards the reinforcement value - something that is 

difficult to quantify.

We have thus generated the reinforcement value for an AFSM by setting a flag every time the 

process goes into a pre-nominated state and then maintaining a rolling average of the 

reinforcement level over a preset period (reinforcement period tj. above). This has resulted in a 

reinforcement value with a range of 0-1. For example, the BallPark AFSM in the near-linear 

signal region is an indication that the AFSM has succeeded in its local task. Consequently every 

time the AFSM is in the near-linear state a reinforcement value of 1 is incorporated into the mean 

reinforcement value for the register adaptation function. This mechanism is easily and cheaply 

incorporated into the existing AFSM mle mechanism, and in fact was very similar to the method 

used in chapter 5 for providing a means of quantifying the performance of various control 

stmctures. Issues of experimentation arose in order to assess the relative merits of using the main 

network-driven AFSM output or the output of the basic mle only. It was the case that the basic 

mle, being a designer-defined function, was the most stable source of reinforcement and so 

provided the most useful solution. This was mainly because of the relative rather than absolute 

nature of the reinforcement value and the fact that the behaviour of the designed-in basic AFSM 

mle remained unaltered throughout the system's life, resulting in a constant source of system self- 

assessment.

7.5. Complete AFSM Input-Output: Feedforward 
Counterpropagation

Finally in this chapter a further possible solution to the problem of building leaming and 

adaptivity into a subsumption architecture AFSM process is detailed. It is in fact little more than 

an extension of the mechanism presented in section 7.3. Rather than using the artificial neural 

network approach to leam only the AFSM input state mapping as an action selection (or state 

identification) mechanism, the output of the network is used here to provide directly a 

continuous/real value AFSM register output. This output is weighted by the netejfect variable in 

the same way as that above, but here the real value is used as the output rather than the contents 

of an output register. During leaming events the actual output value from the AFSM basic mle is 

used rather than the state identification value that was previously used to activate the output 

register. In this way the network leams to provide a complete input-output AFSM state mapping. 

Possible advantages here are that: (i) the real output values from the network will reflect to some 

extent a continuous mapping of output space and (ii) a simpler enhanced AFSM mechanism is
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used compared to that of the combined enhanced input and adaptive output mechanisms of the 

previous two sections.
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Figure 7.5. A complete network solution to the AFSM enhancement problem. A; A continuous output 
solution and B: An activated output, with occasional output being enabled by a second output network

cell.

An AFSM Architecture

Figure 7.5a shows the basic architecture for this format of AFSM. The same two-layer 

counterpropagation network as outlined in section 7.3 was used but the output Grossberg 

perceptron layer has been replaced with a single continuous-valued output cell. During leaming, 

the output value from the basic rule is presented to the network whenever the rule has been 

triggered positively. The netejfect parameter provides a similar weighting of output, but rather 

than weighting the selection of output register it provides a direct weighting of output value. 

Again an exponential output function was used on the output-layer cells and this necessitated the 

provision of a transfer function to translate the network output from its normal range of 0-1 into 

the required AFSM output range. This function is application-dependent and must be set up by 

the application designer. For example, in order to provide a range between a negative minimum 

and positive maximum the following function may be applied to the output of a network where m 

is the positive maximum value of the output range and outj is the output of the perceptron layer 

cell j  (in this case there is only one) generated by equation 4 above:

action = 2)1. {outj -  0 .5) (11)

The action output value is then weighted with the n g f^cryparam eter and the rule output r as 

follows:

a fsm _ o p  = .a c tio n +  r (12)

The use of a single cell in the output layer is only suitable if the AFSM provides actuation at 

all characteristic time steps; in other words, if at all times a register output is transmitted onto the 

AFSM output wire. However, this is not often the case. For example, when an AFSM subsumes 

a lower level with a suppressor connection then it must only make an output at particular relevant 

events. In section 7.3 this aspect was not an issue since the counterpropagation network was 

leaming a mapping of input space which was effectively an output-selection mechanism and a
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"non-output" was just one of the set of possible actions to be selected. In order to allow for this 

here, a second output cell is added to the perceptron network, the job of which is to act as an 

output activation switch to the other output cell (see figure 7.6b). This is treated in the same way 

as the other perceptron output cell but the output function is a simple binary 0 or 1. Consequently 

the output processing of equation 9 is not needed, although the output is still weighted by 

netejfect to arbitrate between a similar rule-generated activation variable and the network output.

The Leaming Phase

The leaming of the output layer is, in the same way as that of section 7.3, a continuous 

process with a constant leaming-rate factor. Equations 5 and 6 above are again used. However, 

an inverse output transfer function is required to translate the mle output into the required 

network output.

training_ op = 0.5+  (13)
2\i

In the case of the AFSM activation output a binary training value is used in exactly the same 

way as in section 7.3.5.

7.6. Summary
This chapter started by bringing to attention the requirement that a behaviour based controller 

should have mechanisms of adaptation at the lowest levels. A need for the self-organisation of 

these systems was identified to enhance the domain knowledge and stmcture provided by a 

designer. It was suggested that various methods of leaming and optimisation could be useful in 

this respect. The first two main sections then presented a solution to these problems with attention 

centred around the basic mle and stmcture of a subsumption AFSM. The condition and action 

part of the mle were treated separately with an artificial neural network being used to leam and 

then adapt a feedforward mapping of the mle's condition. A simple optimisation strategy based on 

hill climbing was used for the action part of the mle. The third main section then dealt with a 

network-only implementation of the AFSM input-output mapping, replacing the output registers 

with a single continuous-valued output network layer. Issues of when and what to leam were also 

discussed, with particular emphasis on the problems associated with real-world situations.

The next chapter outlines a series of experiments on the use of the above ideas on the laser 

scanning test-bed (described in chapter 4). These experiments deal with issues including the 

location of the enhanced AFSM processes and the integration of these devices within a standard 

subsumption control stmcture based on that developed in chapter 5. A gradual and incremental 

approach is followed with each of the above mechanisms being added in turn and compared with 

the basic system.
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8.Experiments in Embedded Leaming and Adaptation

This chapter covers the following:

Experiments on learning AFSM input sta te  recognition. 

Experiments concerning choice of adaptive actuation param eters. 

Enhanced-adaptive AFSMs and feedforward networks.

The previous chapter suggested a number of additions to the augmented finite state machine 

(AFSM) processes of the subsumption architecture which were intended to provide low-level 

leaming of input mappings and continuous adaptation of actuation parameters. This chapter deals 

with the testing of these ideas in the form of a series of experiments that use the laser-scanning 

test-bed from chapter 4 and a basic subsumption control structure that is adapted from the one 

described in chapter 5. The experiments reported here serve to illustrate the characteristics and 

performance of the laser-scanner system controlled by the new enhanced and adaptive AFSM 

processes. Their results are compared with the behaviour of the system reported previously in 

chapter 5.

Firstly, this chapter deals with the issues of applying the counterpropagation networks, which 

were presented in the previous chapter, to the inputs of AFSMs within the photomultiplier control 

structure that was the focus of chapter 5. In the first instance only one AFSM, BallPark, is 

modified and tested in experiments. The issues of when and what to leam that were discussed in 

the previous chapter are illustrated before we proceed to a description of an implementation of 

multiple enhanced AFSMs in section 8.1.2. The second part of this chapter details the application 

of the action output optimisation mechanism, also described in the previous chapter. Here again 

at first only one AFSM is modified, but then subsequently others. In the final series of 

experiments reported here, these two mechanisms are combined and the resulting control stmcture 

compared with that of the continuous output network solution detailed at the end of chapter 7 in 

section 7.5. Results from each set of experiments are discussed as the chapter progresses, and 

factors and assumptions affecting each subsequent set of experiments are outlined. At the end of 

this chapter, in section 8.4, results from the series of experiments are given along with some 

application-related conclusions and discussion. Discussion regarding the techniques in general is 

saved until chapter 9.
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Figure 8.1. The control structure used for a single photomultiplier channel and as the basic framework 
for the experiments reported in this chapter. Note the insertion of the level-0 MetaPixelGen AFSM, 

added to format scan-stripe pixel data for higher-level AFSMs.

Figure 8.1 shows the basic subsumption control structure for the single photomultiplier 

channel that was used previously in chapter 5. In this current chapter the BallPark and NearLin 

AFSMs are the focus of further development and are used as the main targets for 

experimentation. To support the enhancements, which deal in part with an expanded input space, 

a low-level AFSM has been added as part of the level-0 scan-acquisition behavioural node. This 

is the MetaPixelGen AFSM. It is introduced below. This architecture was tested in its various 

configurations on the same set of surfaces that were used in chapter 5. These are shown again in 

figure 8.2.

Surface 2: Two-tone

54%

urfece 3: Broken

ulriiac^e 4: B roken-tw o-tcne

35% 1 • 26%

Figure 8.2. Characteristics of the surfaces used on the rotating test-bed.
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8.1. Experiments in Learning Enhanced State Recognition

This section outlines the implementation and set-up of a series of experiments that test the 

utilisation of leaming a feedforward association mapping of an AFSM input. The first part 

details the enhancement of the BallPark AFSM. The second part of this section details the 

additional eiihancement of the NearLin AFSM and thus addresses issues concerning the 

performance and stability of incorporating more than one enhanced AFSM process into an 

asynchronous control stmcture.

The Experiments

A number of experiments were mn in both single enhanced AFSM and multi-enhanced AFSM 

control configurations to test the following:

1. Effects of different leaming-phase interactions.
1. Broken surface stimulation using test surface 3 (figure 8.2).
2. Continuous surface stimulation; test surface 2 (figure 8.2).

2. Effects of introducing different surfaces other than those used during leaming. These 

different surfaces are taken from the set shown in figure 8.2.

3. Effects of removing AFSM inputs (simulating system breakdown).
1. No basic rule inputs
2. No auxiliary inputs
3. 1 in 2 scan  pixels missing
4 .1  in 3 scan  pixels missing 
5. 1 in 4 scan  pixels missing
6 .1  in 5 scan  pixels missing 
7. 1 in 6 scan  pixels missing
8 .1  in 8 scan  pixeis missing 
9. 1 in 11 scan  pixels missing

For each set of experiments a control mn was done using the non-enhanced AFSM 

architecture from chapter 5 (figure 8.1). The data recorded was then used in order to quantify 

differences in performance of the new configurations.

Firstly, the system was trained with an intuitively-chosen surface, one that provided the 

highest frequency of variation to the photomultiplier. This was the broken-surface sample of 

dmm 3. Once the learning phase was complete, the system's performance with missing inputs was 

tested according to the pattems above. The system was then tested with the other surfaces: 

continuous, two-tone and broken two-tone. Next the system was retrained using the two-tone 

surface sample of dmm 2 and then tested with the different continuous, broken and broken two- 

tone surfaces of dmms 1,3, and 4. After each alteration of system configuration a period of at 

least 1000 characteristic time steps (approximately 1 minute, given a characteristic update rate of 

15 Hz) was provided in order for the system to have time to settle in to the different set of 

circumstances.

During the tests a continuous measurement of BallPark and NearLin AFSM output state was 

recorded to provide comparative data in the same way as that used in chapter 5. Further, three
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recordings of the various weight vectors in the BallPark network were made, once when the

system was first started, secondly after the leaming phase was over and then finally after a

further period equal to that of the leaming phase (the actual time of which depended on the

stimulation and consequently the activity of the AFSM in question). This scheme was adopted in

order to examine any further adaptation that occurred after the leaming phase was over. Finally,

at intervals during the system's mn-time (including initialisation, after leaming phase, after a

period of stable adaptation and then once for each of the experimental changes in input and

surface characteristics) an intensive set of 1000 samples was made over a period of

approximately 4000 characteristic time steps (approximately 4 minutes) in which the following

system parameters were recorded:

EHT voltage output level,
Photomultiplier scan-level,
BallPark AFSM rule o u tp u t,
BallPark AFSM output (including network contribution),
BallPark net output weighting,
BallPark network input vector,
NearLin AFSM rule o u tp u t,
NearLin AFSM output (including network contribution),
NearLin net output weighting,
NearLin network input vector.

Assessing the Results

In chapter 5 the results of the behaviour based laser-scanner control implementations were 

presented in terms of the scan-level output of a photomultiplier channel. A region of +/-0.06V 

was used and a count was maintained during mntime for every characteristic time step that the 

NearLin AFSM occupied in this "signal in range" state. Because the control solutions in this 

chapter are significantly more complex in terms of the number of factors affecting the system's 

performance, we selected several different measures for use that focus on two levels of system 

activity.

At the level of individual AFSMs, namely BallPark and NearLin, the values of reinforcement 

that are built into the adaptive output mechanisms (chapter 7.4) are used as local measures of 

AFSM performance. This applies even in the experiments that do not utilise a reinforcement 

function directly during their operation because the value is easy to compute and provides a 

useful indication of the system's behaviour. However, it will be seen below that these measures of 

the quantity of reinforcement alone are not completely adequate as indicators of performance. 

These values typically do not reflect aspects such as the stability and usefulness of the 

photomultiplier scan signal, or in other words the degree to which the system is succeeding at its 

overall task. A measure or measures that indicate the performance at the level of the performance 

of the complete photomultiplier subsystem are required. The most obvious choice here is to use 

the characteristics of the scan-level signal itself; a less obvious source of information is in the 

nature of the EHT voltage output from the level-0 EHTOutput AFSM.
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A system-level analysis of the photomultiplier scan-level signal is not as straightforward as at 

first might be envisaged. As a single measure over a sample period the mean of the scan-level 

may be calculated. This will be closer to 1 volt for the more successful systems and so provides a 

useful indicator of general system performance. However, this figure will not take into account 

extremes of signal variation. The scan-level signal is in effect an incoming pattern of peaks and 

troughs that indicate the amount of laser light collected by the optical components on the front- 

end of the photomultiplier tube. While the control AFSMs are attempting to maintain a fixed- 

point signal level for the scan stripe at 1 volt, activity in the outside world almost guarantees that 

this level is not maintained for long. Consequently the dangers in using the level of the scan signal 

as a measure of system performance manifest themselves in the fact that the signal emanates from 

a sensor device, the purpose of which is to reflect activity in the world and not an intemal state. 

Any change in signal level is most likely to be a result of unpredictable extemal activity and not 

directly of system actuation. Even processing such data to acquire the standard deviation of a 

sample does not really provide any useful guide. Although it could be claimed that a smaller 

standard deviation would indicate a more stable signal, this would only be tme if the environment 

were stable. Since this was not the case with the set-up used in these experiments the standard 

deviation of scan-level signal was not used as a measure of system performance.

Additionally then, the voltage output from the EHTOutput AFSM was monitored. While the 

mean level of the scan signal did prove useful to a limited extent, the mean level of the output 

voltage was relatively meaningless (except perhaps as an indirect indication of ambient light 

level). The standard deviation, however, is more useful as it provided an indication of the extent 

to which the EHT voltage was being adjusted by the controller about the mean level (whatever 

that might be). By monitoring the standard deviation of the output over time it is possible to gam 

a better idea of the stability of the system, with a smaller standard deviation typifying a more 

stable system. This can be likened to a hyperactive characteristic at one extreme and that of being 

lazy (with the appropriate benefits) at the other. So long as the scan-level signal is maintained, it 

can be appreciated that the lazy system will be doing the Job more efficiently than a hyperactive 

one. In conclusion, however, it must be pointed out that care must be exercised when using the 

standard deviation of system activity as a measure of system performance. It is the case that a 

good controller may exhibit a high standard deviation when it is coping with a complex and 

changing situation while a poor controller might have a very low standard deviation when 

confronting an unchanging one. Clearly a like for like comparison must be made, to account for 

the systems situation. In the case of the laser scanner this means comparing the performance of 

different control solutions on the same test-bed surface sample (figure 8.2).

The measures used to report the results of this set of experiments are thus: (i) BallPark 

reinforcement over time, (ii) NearLin reinforcement over time, (iii) Mean scan signal level and 

(iv) The standard deviation of the EHT voltage output. Other plots and graphs wül be used to
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show time series data and state-space plots of system activities to enhance the quantitative 

evidence of the above listed factors.

Relative Performance and Reinforcement Values

Finally it should be emphasised that for some of the result formats, such as the use of a 

reinforcement value, a 100% success rate was not achievable. This applied to the tests run on the 

broken and two-tone surface samples which contained blank or missing areas that did not reflect 

the laser light. Surface D had 27% of its area blanked out and so in consequence the best that any 

controller applied to this problem could hope to achieve was a result of 73% surface in view. For 

the BallPark AFSM this generally corresponded to a reinforcement value of around 0.73, so the 

values of more than 0.5 witnessed in these tests are reasonably impressive. Allowing for the blank 

spaces, this is in fact a success rate of around 70%. Given this, it can also be appreciated better 

that the NearLin AFSM which, only being able to function in the near-linear signal region, and 

having a reinforcement performance of 0.3, was in fact performing well with a success rate of 

around 60%. In addition, allowing that the reinforcement was given when the signal was within a 

region of +/- 0.06Volts either side of the required 1-volt signal set-point, this result is 

encouraging.

8.1.1. The Use of A Single Enhanced AFSM

In this set of experiments the BallPark AFSM of the subsumption control structure of the 

photomultiplier was enhanced with an associative network to leam the feedforward mapping of 

the AFSM input-output state transitions and to associate the basic functionality of the mle with a 

set of auxiliary inputs. The counterpropagation network was used as described in chapter 7, 

along with the basic mle of the BallPark AFSM from chapter 5 for which the table in figure 8.3 

gives the state conditions.

AFSM s ta te Identifying ch a ra c te r is tic BallPark output
0. Inactive No identifiable input condition Inactive
1. Q uiescent 9 < Scan-level < 18 Step size = 200 Volts
2. Near-linear Scan-level gradient polarity = 

EHT output gradient polarity
No output, desired s ta te

3. Fold-back-A Scan-level gradient polarity # 
EHT output gradient polarity

S tep size = -20 Volts

4. Fold-back-B Scan-level < 9 S tep Size = -100 Volts

Figure 8.3. Table of BallPark AFSM input-output state mapping. Signal levels are in ADC counts
where 1 count = 0.02 Volt.

System Set-up

The mle part of BallPark uses various combinations of current scan-level, current EHT level, 

the gradient of the scan-level over time and the gradient of the EHT voltage over time as input. 

These were sufficient to identify approximately the four photomultiplier states (quiescent, near-
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linear, fold-back-A and fold-back-B). However, as can be seen in figure 8.4, an array of coarse­

grained pixels, called meta-pixels, formed by averaging sets of the main 1000-element scan-level 

pixel data, is also highly indicative of the state though difficult to characterise in terms of explicit 

rule Conditions. Thus for this enhanced AFSM the scan-level, scan-level gradient, EHT level and 

EHT-level gradient are basic rule inputs and the meta-pixel array is used as an auxiliary input. 

The meta-pixels are generated by a new level-0 AFSM: MetaPixelGen. This AFSM splits each 

sampled scan stripe into 16 large or coarse-grained pixels by storing the average level of every 62 

real pixels. A 16-element vector was chosen since it provided a clear characterisation of the scan- 

stripe state and seemed to strike a good balance of level of detail. It was particularly important to 

minimise the data transfer between AFSM processes as well as the computation required to 

process the counterpropagation algorithm within the characteristic time frame of the AFSM. The 

input of the enhanced BallPark AFSM is shown in the table in figure 8.5.
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Figure 8.4. Laser-scan stripe states as characterised by a 16-element meta-pixel vector.

The Kohonen layer of the BallPark counterpropagation network was given an array of 64 

processing cells (or artificial neurons). This was in accord with the equation from chapter 7: 

number of units = 4n^ where n (in this case 4) is the number of differentiable input states. The 

Grossberg layer was given 4 cells to represent the four photomultiplier signal states that the 

BallPark AFSM had to deal with. This was effectively a binary representation of the 

photomultiplier state with one bit for each state. Each of the four units was connected to the 

outputs of the Kohonen layer. The training of the BallPark associative network was set up so that 

the basic rule function would also generate a 4-element vector. If no bits were set, then the rule 

had failed to identify a specific state. This was used to determine if a network leaming event 

should take place. Otherwise the rale output vector was used to train the Grossberg layer by
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associating the Kohonen-network output with the rule output. With a Kohonen network size of 64 

elements the leaming phase, and thus the network output weight factor growth rate, was set (as 

described in chapter 7.3.1) at 500x64=32000 training events which, with a system characteristic 

time of 66mS (15 Hz), was approximately 35 minutes of real-time.

Signal Name BallPark
Input

Signal Name BallPark
Input

EHT Level 1 Meta-Pixel 6 11
EHT Gradient 2 7 12

Scan-level 3 8 13
Scan-Level Gradient 4 9 14

Meta-Pixel 0 5 10 15
1 6 11 16
2 7 12 17
3 8 13 18
4 9 14 19
5 10 15 20

Figure 8.5. BallPark AFSM input vector.

The execution of the new BallPark AFSM was moved to the T805 transputer that was 

connected to the two photomultiplier controllers (see chapter 4, figure 4.6). This was done to 

make use of the second transputer's floating-point arithmetic unit and larger amounts of memory. 

The transputer's subsumption program structure was thus broken into a collection of five 

behaviour nodes: (i) the server node, (ii) optics-controller node, (iii) photomultiplier level-0 for 

channel A and (iv) channel B and (v) the code for the BallPark AFSM.

8.1.2. The Activity of an Enhanced AFSM

Figure 8.6 shows the output clusterings generated by the Kohonen self-organising network layer 

of the associative network in the BallPark AFSM. It compares the input vector, which consists of 

both basic rule inputs and the extra auxiliary inputs, with the output of the Kohonen layer. It can 

be seen that the Kohonen outputs are clearly different for each of the AFSM states as presented 

by the basic mle. It was these outputs that were presented to the Grossberg layer. It can be seen 

that in this activity, the first part of the associative network performed completely adequately.

Figure 8.7 shows a series of BallPark outputs for sensor transition over the test surface. The 

left column of graphs show the development of the association network output in comparison with 

the AFSM mle output. It can be seen that the network output eventually develops a similar 

response to the mle but differs in small ways, particularly in the speed of state transition and 

filtering out of transitive state changes. The right-hand column shows the merged AFSM output 

compared to that of the mle output. Here it can be seen that, as expected, the mle output 

dominates in the early stages. However, by the end the output has become that of the network 

output. It can be seen clearly there that the an association has caused the early indication of state 

4 on two occasions, characterised by spikes of the thin black curve at around samples 250 and 

380.
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Experiments in dealing with unusual circumstances: Altering the test surfaces

The results of switching from the rule-based action-state identification to that of the network 

are shown in the various graphs of figure 8.8 for a number of different surfaces. The first test 

involved the comparison of the two trained sessions with that of the completely reactive system of 

chapter 5. The first training set used the broken-surface sample of drum 3 for the training period; 

the second used the continuous but varying surface of drum 2. After training, the system was 

tested on other drum surfaces in order to asses robustness when confronted with unusual 

circumstances.
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Figure 8.8. Graph A: NearLin AFSM state output, percentage of time that scan signal was in an 
acceptable range of the control set point (+/- 0.6V). Graph B: BallPark AFSM state output, percentage 

of time in near-linear state. Graph C: Mean level of the scan signal for each surface in the test. Graph D: 
Standard deviation of the EHT voltage output showing controller activity.

Graph B compares the percentage of time that the BallPark AFSM was in the near-linear 

output state (i.e. accumulating reinforcement value) for various surface samples and for the two 

leaming regimes outlined in the experimental description above. It can be seen that there is in fact 

little difference between the systems that were trained on different surfaces. It can also be seen 

that there is only a small trend towards the leamed systems having higher percentages of time in 

the near-linear state. The fact to note about this graph is that the leamed response is not 

significantly worse than the reactive mle-based system. Examination of the NearLin output state 

in graph A, however, shows a more marked difference. Despite the fact that the NearLin AFSM 

did not support an input association network, it can be seen that the percentage of time for which
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it was in the signal-in-range state increased markedly for the learned responses. This may be 

attributed to the more timely action selection of the BallPark AFSM.

The performance at the system level can be seen most clearly by comparing the standard 

deviations of the control-voltage outputs of the EHTOutput AFSM in graph D of figure 8.8. It is 

apparent that the standard deviation of the basic mle-controlled system is significantly larger than 

the enhanced AFSM outputs in all cases. This suggests an improved stability of the enhanced 

BallPark-controWed photomultiplier system as a result of reduced actuation from more 

appropriate action selection. In other words, a more appropriate classification of system state. 

Further analysis of the mean scan signal level, however, provides little further indication of the 

state of affairs, although the small increases in mean level for the broken and two-tone surfaces 

again indicate an improvement in the enhanced BallPark systems. The mean scan-level is 

markedly lower for the two broken-surface types, but this is due to the fact that the broken gaps 

inherently reduce the mean from that of the desired control set-point as a result of the scan signal 

spending considerable periods in the quiescent state as the gaps pass by.

Experiments in Robustness: Reducing AFSM Inputs

A; Mecn Seen Level

q 30

B : E H T Voltage S tcndcrd Deviction

^ 300

Figure 8.9. System performance with reduced BallPark AFSM inputs. Graph A shows that the mean 
scan-level remains more or less unaffected. Graph B: Standard deviations of the increasing EHT voltage 

show that the system gradually becomes more unstable as the inputs are reduced.

The graphs in figure 8.9 show the relative performances of the various tests in input reduction 

for the series of experiments on the single enhanced AFSM. Firstly it should be noted that when 

the basic rule inputs of the BallPark AFSM were removed, the system's performance was not 

significantly reduced. This indicates that the network's auxiliary inputs have indeed been 

assimilated into the network and that it is not simply providing a retranslation of the basic rule. In
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fact, it can be seen that as the inputs to the network were progressively removed (by setting them 

to zero, see above) the degradation in system stability, as indicated by the standard deviations of 

the EHT voltage, was remarkably gradual with even a minimum of two network inputs proving to 

be sufficient for stable control. The reason for this apparent impressive robustness, however, 

results from an artificial construct in the structure of the experiment. It was the case that the 

basic inputs to the NearLin AFSM were the same as those used for BallPark and during the 

various stages of the experiment the NearLin inputs were not disabled in the same way. Therefore 

the NearLin this process continued to act unimpaired, providing a subsuming controlled output 

despite the gradual degradation of BallPark output. Because of this, the experiments in the next 

section provide a better indication as to the robustness of the system when faced with 

disappearing input state information. More detail will be provided there.

Summary

In general it can be seen from these experiments that a distinct, if not massive, improvement in 

system behaviour was gained through the use of an enhanced BallPark AFSM. While the 

statistical evidence may not seem to be overly impressive, it can be seen more clearly in scan- 

level/EHT-voltage state-space plots in figure 8.10 of the actual scan signal and EHT control data 

that, after leaming, a more stable response is achieved. The measurement of the preferred output 

state or reinforcement level for each of the AFSMs (see section 8.1: Assessing the Results) did 

not account for the frequency of state transition. A system may spend time oscillating between 

two states and still accme a similar reinforcement as a smoother-acting system. This in itself is 

perhaps indicative of two things: (i) That the reinforcement functions used as measures in these 

experiments were too simplistic and (ii) that the ever-present problem of credit assignment 

([Barto90] and [M inskyôl]) applies as much at the level of AFSM processes in a parallel control 

architecture as it does at higher levels. This is discussed further in the final section of the present 

chapter.
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Figure 8.10. EHT control output plots for A: A reactive system on the broken surface and B: After the 
learning phase has passed, again on the same broken surface.
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8.1.3. Multiple Enhanced AFSMs

In these experiments the control stmcture developed above with one enhanced AFSM was 

expanded to include two, the second being the NearLin AFSM. The other AFSMs in an 

individual photomultipher-channel control mechanism did not lend themselves to the utilisation of 

the leaming and adaptivity enhancement provided by the inclusion of the feedforward association 

network. Indeed these other AFSMs {ScanAquire, PedestalLevel, EdgeMonitor and EHTOutput) 

were of such a character that there was no obvious benefit in adding further mechanism to them. 

This is discussed again in the conclusions in chapter 9.

System Set-up

AFSM state Identifying
characteristic

NearLin output

0. Inactive No identifiable input 
condition

Inactive

1. Negative set-point 
error

Near-linear sta te  and 
scan-level < 47 step_size =  ADJUST_FACTOR x (set_point - scan_level)

2. Positive set-point 
error

Near-linear sta te  and 
scan-level > 53 step_size =  ADJUST_FACTOR x (set_poinr - scan_ievei)

3. Signal in range Near-linear sta te  and 
47 < Scan-level signal 
< 53

No output, desired set-point achieved

Figure 8.11. Table of NearLin AFSM input-output state mapping. Signal levels are in ADC counts
where 1 count = 0.02 Volt.

The NearLin AFSM has a different input requirement from that of the BallPark, although at 

first sight it uses the same set of basic mle signals. From the table in figure 8.11 it can be seen 

that the inputs are used firstly to identify a near-linear state and then subsequently the scan signal 

level is used to select a positive or negative step-size output function. From examination of the 

meta-pixel array in figure 8.3 it can be seen that within the near-linear region there is little to 

differentiate between a signal level higher or lower than the set point of 50 analogue to digital 

converter units (1 volt). For this reason the network input scaling factor was used to enhance the 

meta-pixel's relative size so that the range around the set point was enhanced.

The Experiments

With the addition of associative network mechanisms to the NearLin AFSM and the retention 

of the BallPark AFSM from the previous work the photomultiplier controller reported here 

incorporated two enhanced AFSMs. The new NearLin AFSM was also relocated to the 

secondary T805 transputer to make use of the onboard floating-point arithmetic processor and 

additional memory. The main object of this set of experiments was to demonstrate the stability of 

utilising more than one, essentially asynchronous, enhanced AFSM in the same control structure. 

The experiments for this control stmcture were mn along the same lines as those for the single 

enhanced AFSM. First the effects of different leaming environments were observed, again with

Experiments in Embedded Leam ing and Adaptation 152



leaming applied to the broken surface and the two-tone surface. After each leaming phase the 

systems were tested with the same set of secondary surfaces as before. Next, the robustness of the 

system to disappearing inputs was tested - again in the same way as in the previous section.

A: N earLin R ein forcem ent

C  M ean S c a n  Levei

s  50
a 40

S  10

B: BaiiPark R e in fo rcem en t

D: E HT V oltage S ta n d a rd  D eviation

2  100

R e a c tiv e  only □  B roken-surface  learning T w o-tone  s u rface  learning

Figure 8.12. Comparative performance of multi-enhanced AFSM control of the photomultiplier 
subsystem. Graph A; Percentage of time that the NearLin AFSM state output was in acceptable range of 
the scan-signal set point level. Graph B: Percentage of time that the BallPark AFSM output was in the 

near-linear state. Graph C: Mean scan signal level for each surface sample set. Graph D: Standard 
deviation of EHT voltage outputs showing controller activity.

8.1.4. The A ctivity o f M ultiple Enhanced A FSM s 

Different Learning Phases and Altered Test Surfaces

The results of the first series of experiments conceming the different leaming phases are shown in 

the graphs of figure 8.12. It can be seen from comparing these graphs with those of figure 8.8 

that there was very little difference in the performance characteristics of these two systems. In 

fact the data would suggest that there was little benefit from the added complexity of the second 

enhanced AFSM. However, the fact that the system remained stable while both AFSM processes 

were going through their leaming and adaptive phases demonstrates that the localised association 

of additional inputs can be made to occur successfully in a distributed fashion. It is perhaps 

hardly surprising that the performance change was so small when it is remembered that the 

source of the entire subsystem activity is the same set of inputs all originating from the same 

sensor signal, albeit with different interpretations and emphasis on different dynamics of the 

signal. This stability may be seen by comparing the scan-level/EHT-voltage state-space plots in 

figures 8.13 for the broken-surface training and 8.14 for the two-tone-surface training.
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Figure 8.13. Scan-level / EHT-voltage state-space plots for broken-surface learning. 1. Before learning, 
2. After learning, 3. After a period of adaptation, 4. Continuous surface, 5. Two-tone surface, 6. Broken

two-tone surface.
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Figure 8.14. Scan-level / EHT-voltage state-space plots for two-tone surface learning. 1. Before 
learning, 2. After learning, 3. After a period of adaptation, 4. Continuous surface, 4. Broken surface, 5.

Broken two-tone surface.

Experiments in Embedded Learning and Adaptation 155



Reducing AFSM Inputs

The apparent performance of this version of the system appears to be worse than that for the 

BallPark-on\y version. This is entirely due to the fact that in this case when inputs are disabled 

they are removed from both the BallPark and NearLin AFSMs with the result that the complete 

system degrades. This is actually a more realistic test than that of the single enhanced AFSM 

system above in section 8.1.3.
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Figure 8.15. Scan-level / EHT voltage state-space plots showing degradation of performance with
removal of AFSM input connections.

From the graphs in figure 8.16 it can be seen that a similar set of results was obtained as those 

for the first set of experiments above although the degradation of the NearLin AFSM 

performance due to missing inputs is more marked. Both AFSMs can be seen to perform 

satisfactorily when the basic rule inputs are removed and they are forced to rely exclusively on 

the learned response to the auxiliary inputs. It is interesting to note the apparently consistent 

performance in terms of preferred state (graph A and B) as inputs are disabled until a seeming 

collapse of competence when only one or two inputs remain. This robustness is however 

somewhat artificial in that the inputs are switched to 0 when we remove them. In actual fact it is 

quite likely that a failed input would manifest itself either as an indiscriminate fluctuation or a
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fixed value and it is unlikely that the robustness under these circumstances would be as strong. 

Further experimentation in this area would be desirable but is beyond the scope of this initial 

exploratory work. Figure 8.15 shows scan-level / EHT voltage state-space plots for each test, 

where here again the degradation of performance stands out clearly.

A; Mecn S ccn Level

B; EHT VoltageStcndadDeviciion
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Figure 8.16. System performance with reduced BallPark and NearLin AFSM inputs. Graph A: The 
increase in the standard deviations of the EHT voltage shows that the system gradually becomes more 

unstable while Graph B shows that the mean scan-level remains more or less unaffected.

Summary

The main point to emphasise from this last set of experiments is that the system has remained 

stable despite considerable amounts of locally altering control processes. Issues of sequencing the 

leaming phases of different AFSMs in different parts of the system are an important aspect that 

may affect the behaviour of the system significantly. This is discussed in more detail in the next 

chapter. Finally, it should be emphasised that the enhancement mechanism presented in this 

section only affects the input-state recognition of an AFSM and does not adapt the actual output 

values in any way. Consequently any improvement is the result of a more effective action 

selection and nothing more. Adaptive outputs are the focus of the next section.

8.2. Experiments in Adaptive Actuation Parameters
This section examines the use of the adaptive output registers detailed in chapter 7, section 7.4. 

Again, as for the experiments with the enhanced input AFSMs above, the first section below first 

deals with the use of a modified BallPark AFSM before the direction continues on to the 

operation of a system with more than one such mechanism in section 8.2.2.

8.2.1. Tuning Output Parameters Of A Single AFSM

As a first example of the use of the output adaptation mechanism, the three BallPark AFSM 

output registers; Quiescent_step-size, Foldback_A_step-size and Foldback_B_step-size were
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provided with the requisite software infrastructure. With initial values set at the level used in all 

previous experiments, the adaptation mechanism was given a head start in that it did not have to 

find a suitable value from scratch. This is reasonable since in normal circumstances a designer is 

in a position to insert some sort of educated estimation of suitable initial values, and in any case 

the mechanism is intended to provide a continuous tuning of the register value rather than a 

complete initialisation from scratch. The BallPark AFSM utilises three output registers that, 

when activated, specify an EHT voltage increase or decrease, the magnitude of which depends on 

the current state of the photomultiplier-output scan signal. The following are the constant settings 

used for these registers in the experiments in section 8.1:
Quiescent output register; EHT step  size = 200 Volts

Fold-back-A output register: EHT step  size = -20 Volts
Fold-back-B output register: EHT step  Size = -100 Volts

In the following experiments these values are turned into variables which are modified on a 

continuous basis by the output-register adaptation mechanism.

The Experiments

The register-adaptation mechanism presented in chapter 7 utilised three behaviour-tuning

variables in the form of: Reinforcement Period tj-, Adjustment Period t^ and Adjustment Factor

f  The experiments that follow explore a space of possible settings of these parameters by using 

them to vary the output tuning mechanism's adaptivity from fast with large changes to slow with 

gradual changes. These are of course imprecise constraints and the interaction of the system 

within its environment is of primary importance in determining the best values for these settings. 

Consequently the activity on the sample surface provides a means of comparing the relative 

effects of different combinations of parameter settings and subsequent register-update 

characteristics.

The broken surface was used for the duration of these experiments. The unit that rotated the 

surface sample was set to provide a repeating pattern at a rate of one sample per (approximately) 

30 seconds; in other words, the dmm was rotating at 2 revolutions per minute. With a system 

characteristic frequency of 15 Hz this meant that the surface pattern repeated at a rate of 

approximately once in every 45Ô characteristic time steps. With this in mind the table in figure 

8.17 shows the points in the 3-dimensional space of the three relevant tuning parameters used for 

experimentation in 12 tests referenced as numbered in the table. The use of a reinforcement 

period that was considerably larger than that of the repeating surface pattern was chosen in order 

to test the idea that the longer averaging-time function for the reinforcement value would provide 

a smoothing-out of any transient peaks and troughs in system performance that might result from 

irregularities in the outside world. The update periods were chosen to demonstrate the benefits 

from rapid and short-term experimental periods compared to longer periods, in this case 

equivalent to approximately two surface passes. A range of adaptation factors was selected for 

each combination of reinforcement and update periods.
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Test
number

Update Period 
100

Test
num ber

Update Period 
1000

Reinforcement 1 Adaptation 0.2 4 Adaptation 0.2
Period 2 Adaptation 0.5 5 Adaptation 0.5

1000 3 Adaptation 0.8 6 Adaptation 0.8

Reinforcement 7 Adaptation 0.2 10 Adaptation 0.2
Period 8 Adaptation 0.5 11 Adaptation 0.5

5000 9 Adaptation 0.8 12 Adaptation 0.8

Figure 8.17. The parameter space of the adaptive output mechanism for the laser-scanning test-bed.
Period times are shown in characteristic time steps: 1 count equals approximately 0.067 seconds at

15Hz.

Each system configuration in figure 8.17 was run continuously for more than 100,000 

characteristic time steps with periodic sampling of reinforcement values and register values. 

Every 50,000 time steps, 1000 detailed traces of system status were made for a continuous period 

of 4000 time steps as in the previous section. This extensive test period, in the order of 110 

minutes per test, was used so that any transient behaviour would be filtered out from the long­

term results.

Assessing the Results

The adaptation mechanisms implemented here are of a continuous nature, within the 

constraints of pre-set update-frequency parameters that dictate the speed of adaptation. 

Consequently the change in system performance over time is of interest in assessing the results of 

these experiments. To facilitate this, the reinforcement values returned from the BallPark and 

NearLin AFSMs along with the value of each output register were sampled at regular intervals 

over the complete time span of each experiment. At longer intervals complete traces of system 

activity were recorded to provide similar information to that used in the previous section, 

although in this case only serving to provide a snapshot of a continuously evolving system.

The plots in figure 8.18 show the reinforcement over time of test run 7 along with the values 

of the output registers. The changes in output values can be seen to match up with corresponding 

changes in reinforcement. However, the comparison of data in this format is difficult. The results 

have therefore been collected in the form of mean reinforcement values and ranges of 

reinforcement values for each test run. The graphs in figure 8.19 show this information for each 

of the test runs of table 8,17. It can be seen that a number of patterns have emerged as a result of 

different parameter settings. The material that follows will deal with the parameter variations 

(reinforcement period, update period and update factor) separately. Before this, however, it is 

worth pointing out the difference between an observed increase in BallPark reinforcement and a 

simultaneous decrease in NearLin reinforcement. This effect on the NearLin AFSM response 

may be seen as a secondary result of the parameter adjustments. As previously, it should be 

expected that the performance of NearLin would at least improve gradually in line with BallPark.
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However, the results here emphasise the activity of the BallPark AFSM since the experiments 

concern its own local reinforcement and interaction.
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Figure 8.18. Reinforcement and BallPark output register values over time during test run 7. Samples 
were taken every 1000 characteristic time steps for the duration of the test run.
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Figure 8.19. A: Mean reinforcement (success) levels and B: Range values for both BallPark and 
NearLin AFSMs (although only BallPark was adaptive).

The range of values tested for the update factor was 0.2, 0.5 and 0.8. This parameter had the 

effect of biasing the size of any exploratory alteration to a register's value. Since this exploration 

is an on-line process the effects of a "bad move" are reflected in the output of the system. In this 

case graph B in figure 8.19 can be examined to see the effective range of reinforcement values.
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The range reflects the distance between the maximum and minimum recorded reinforcement. As a 

result, therefore, the stability of the system in terms of maintenance of a usable scan signal can be 

assessed. It is generally the case that the larger values of the update factor lead to larger ranges of 

reinforcement, which is intuitively understandable as the larger update factors correspond to a 

larger experimental variation in output register value. The larger range had some effect on the 

level of the mean reinforcement value but in general a higher mean value is indicative of a more 

successful system. From comparison of the range and the mean values it would appear that a 

factor of 0.5 provided the best compromise of maximising the mean level whilst keeping a 

relatively small and manageable reinforcement range.

Reinforcement Period and Update Period

The effect of increasing the update factors in graph B in figure 8.19 can be seen clearly to 

cluster the observed behaviour into the four groupings determined by the reinforcement period 

and update period. For example, tests 1,2 and 3 resulted in a gradual increase in BallPark mean 

reinforcement whilst the NearLin reinforcement dropped steadily. This pattern recurs across the 

graph but with differing levels of mean remforcement. From the mean levels the results are 

seemingly consistent across the four test sets with the exception of test set 3. This is characterised 

by a large reinforcement period and small update period of 5000 and 100 respectively. It is 

evident that the rapid rate of change realised by the small setting of the update period was not 

given enough time to manifest in the long reinforcement period (5000 characteristic time steps at 

15Hz is 5V2 minutes, 100 steps is just under 7 seconds).

Further insight into the system's behaviour may be attained by examining the reinforcement 

ranges in figure 8.19, graph B. Here it can be seen that the three tests in set 2 have a consistently 

smaller reinforcement range than the others. Set 3 also has reasonably small range but compared 

with the reinforcement levels attained (graph A) this is to be expected. Test sets 1 and 4 both 

demonstrate systems with still relatively high reinforcement period / update period ratios and it 

can be seen that here again the ranges achieved were quite large, especially in the case of the 

higher update factors. It can be concluded from these results that the most stable systems had an 

equal reinforcement period and update period. The reasoning that suggested that a longer 

reinforcement period might be beneficial is therefore disproved. It is the case that the matching of 

the two parameters provides the most suitable response for the reinforcement over the time 

period, allowing the register adjustment to be tuned to the relevant time period. The idea that the 

longer reinforcement period would be beneficial due to an inherent filtering of transient 

performance changes was not upheld.

Finally in this section the relationship between the update and reinforcement periods and 

events in the agent's environment should be emphasised. It is quite likely that the 1000/1000 

reinforcement/update period parameter setting proved successful because this coincided with two 

passes of the test surface. It is therefore the case that even with localised adaptation at the level of

Experiments in Em bedded Leam ing and Adaptation 161



individual AFSM processes the activity of the system and the physical world are of fundamental 

importance.

The Winners

The next section deals with the use of adaptive outputs in more than one AFSM. The 

experiments will build on the results of this section by concentrating on development of systems 

that use the better parameter sets from the results discussed here. From the graphs in figure 8.19 

it can be seen that generally test sets 4, 5 and 6 are the most effective both in terms of higher 

reinforcement and smaller reinforcement ranges. Consequently the set-up of test 5 will be used 

along with (for comparison) that of test 1, which actually achieved a respectable reinforcement 

level while maintaining the lowest reinforcement range with values of 0.49 and 0.1 respectively.

8.2.2. Multiple-AFSM Output Tuning

The object of making the test runs reported here is to demonstrate the performance of a system 

with more than one adaptive AFSM. Again, it is the NearLin AFSM that is used as the second 

target for modification. Two test mns demonstrate the system's performance with the initialisation 

shown in the table of figure 8.20. The tests were run on the broken surface in the same manner as 

those in 8.2.2 above.

Reinforcement Period 1000
Test 13 Update Period 100

Update Factor 0.2
Reinforcement Period 1000

Test 14 Update Period 1000
Update Factor 0.5

Figure 8.20. Table showing adaptive output parameters for multiple adaptive AFSM demonstration. 
Parameters are taken from results obtained from section 8.2.1. BP = BallPark AFSM settings and ML =

NearLin AFSM settings.

System Set-up

The BallPark AFSM remains the same as that used above. The NearLin AFSM, however, 

required the addition of the adaptive mechanism for a single output parameter which served to 

determine the response of the AFSM to varying scan-levels by scaling the step size for the output 

EHT voltage (as sent to the EHTOutput AFSM in level 0). The ADJUST_FACTOR used in the 

output rule effectively determines the gradient of the step-size output in comparison with scan- 

level. Changing the ADJUST_FACTOR will effectively change the step-size output for a given 

input condition. This factor was used previously as a preset constant with a value of 5 during the 

calculation of the EHT voltage step in the near-linear region of photomultiplier operation:

step_size = ADJUST_FACTOR x (set_point - scanjevel)
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By making this parameter adaptable we intended that the NearLin AFSM would be able to 

tune itself automatically to differing environmental conditions including surfaces, ambient light 

and sensor-surface distance.

Results
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Figure 8.21. Mean reinforcement and range for the two multiple adaptive AFSM experiments. Tests 
were run using the broken-surface sample number 3. (see figure 8.2 above).

Figure 8.21 shows the results of the two test runs compared with their BallPark-oniy 

counterparts in the single adaptive AFSM tests reported in the previous section and with the 

reactive AFSM system of chapter 5. In graph A it can be seen that the reinforcement values for 

the two test runs differ significantly in format. The first test (13), based on test 1 of the last 

period with small update period and relatively large reinforcement period, demonstrates a drop in 

performance, while that in test 14 with its equal timing parameters is most notable for its 

distinctly improved NearLin performance. Although in this result the BallPark AFSM appears to 

have dropped in the amount of time spent in its preferred state, the global view of the system is 

represented better by that of the scan-level state of NearLin. This performance, however, must be 

qualified by the apparent increase in range of reinforcement received over the test period. The 

effect of this adaptation to the NearLin register is to retune the controller continually in response 

to varying scan-level/EHT-voltage gradient. This was highlighted in chapter 4 as the main non­

linear characteristic of the photomultiplier tube, which is affected by changing environmental 

conditions such as surface type, ambient light and surface-sensor distance.

It is clear that the extra activity of the NearLin AFSM added to the variability in environment 

to which the BallPark AFSM had to adapt. While in the previous experiments only one AFSM 

was adapting while the rest remained constant, in this series of tests much more was happening 

within the system. By examining the output plots of the test-14 reinforcement over time and the 

corresponding adjustments to register values (figure 8.22), the degree of adaptation and change 

within the system can be appreciated. There, the fact that the performance of the photomultiplier 

control channel as a whole not only remained stable but actually improved is noteworthy. Finally,
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the poor performance of the test-13 configuration can be attributed to its fast update rate. From 

the earlier series of experiments using this configuration it was noted that the performance was 

marginal as evidenced by the relatively large ranges of reinforcement values (figure 8.16a, tests 1, 

2 and 3). In this last instance we believe that it was not possible for the adaptation mechanism to 

compensate for the increased complexity of the control system by the small update-factor 

parameter of 0.2.
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Figure 8.22. Test-14 reinforcement over time in conjunction with BallPark and NearLin AFSM output 
register values. On the broken-surface sample 3 samples were taken every 1000 characteristic time steps

over the duration of the test run.

Figure 8.23 shows scan-level / EHT-voltage state-space plots for four samples made during 

test 14. It can be seen that there is not necessarily a smooth and consistent trend towards 

improved performance, although in plot 4, after 120 000 steps, this was actually the case. This 

apparent irregularity in performance was due to the experimental nature of the hill-climbing 

register-adjustment mechanism and the fact that the changes made were not always beneficial. In 

general the results show that the update period must be long enough to filter out transient 

environmental effects while at the same time being short enough to provide a rapid readjustment
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of parameters should the system performance deteriorate. This apparent catch-22 might be solved 

in the future by cutting short the update period should things become too unstable and reinstating 

the parameter levels early.
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Figure 8.23. Scan-level / EHT voltage state-space plots for three samples of test run 14 and the broken-
surface sample 3.

From these experiments the configuration of test-14 was chosen as the most suitable candidate 

for the final test illustrated in this chapter, that of the complete system of multiple adaptive 

AFSMs including both input-state recognition from the feedforward associative networks and the 

adaptive output registers.

8.3. Bringing it All Together
In this section the enhanced AFSM input associative mapping provided by the 

counterpropagation network in section 8.1 is combined with the output-adaptation mechanism of 

section 8.2. This is compared with a further possible solution to the problem of enhancing an 

AFSM in the form of a network-only solution, that of the real-valued output counterpropagation 

net as detailed in section 5 of chapter 7. Potentially both of these implementations provide a 

similar result in terms of enhancing the input-output mapping of an APSM, but the latter does not 

allow automatic tuning of output registers. Rather, it allows a varying output depending on input-
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output mapping strengths and network weights. The experiments below will compare the merits 

of these two approaches.

Figure 8.24 shows the control structure of the BallPark and NearLin AFSMs for the new 

feedforward network enhanced system. Note that the NearLin AFSM subsumes BallPark and so 

utilises a counterpropagation network with a two-element output layer, one to generate the output 

value and the other to act as an output gating switch. Apart from this structural difference all 

network configuration parameters are the same as those used in the first (input only) 

implementation.
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Figure 8.24. BallPark and NearLin AFSM network control configuration.

Experiments

The two systems were each trained with the broken-surface sample and then tested with the 

same range of other surfaces (continuous, two-tone and broken two-tone) as used in section 8.1. 

Likewise a similar set of reduced input tests was performed by disabling the inputs to the 

networks in the same way as in section 8.1. Traces of the data relevant to system performance 

were made as before. Tests were run with the separate enhanced/adaptive AFSM processes and 

then with the complete feedforward-network AFSM process.

Continuous Output AFSM Activity

Figure 8.25 shows a time series of output from the continuous-output network AFSMs after a 

leaming period on the broken-surface sample. The plots here show the EHTStepSize value output 

to the EHTOutput AFSM and illustrate that the rigid step-like output of the rule is superseded by 

a more flexible output. While the BallPark AFSM outputs generally match the basic mle output, 

it is interesting to note the expanded range of the NearLin AFSM actuation which was
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additionally controlled by the learned output switch (figure 8.25). We deal with this in more 

detail in the discussion of results immediately below.
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Figure 8.25. Comparison of step sizes in EHT voltage as output by A: NearLin and B; BallPark. Basic 
rule output is compared with learned EHT step size. Plots relate to the broken-surface (surface sample

number 3).

Results

Figure 8.26 shows result graphs of the tests and compares previous tests with the two results 

(full feedforward network and enhanced input, adaptive output AFSMs) obtained here. It can be 

seen that the enhanced-input, adaptive-output configuration resulted in the higher reinforcement 

values for both the BallPark and NearLin AFSMs by a considerable margin. This was paid for 

by an accompanying small increase in the range of the reinforcement values. It is interesting to 

note the difference in AFSM output signals for these two configurations of controllers. It can be 

seen in figure 8.25 that the continuous-valued output AFSMs provided a much more gradual 

change in EHT step-size compared to the fixed-register-determined output of the 

enhanced/adaptive AFSMs. This is reflected in the relative sizes of standard deviations of EHT 

voltage output from the EHTOutput AFSM seen in figure 8.26. As a result the continuous-value 

output AFSMs appeared to have a much smoother control behaviour than that of the 

enhanced/adaptive type.
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Figure 8.26. Results of the Enhanced/Adaptive AFSM versus continuous-valued output AFSM tests 
compared with the best performers of the other tests in previous sections. As before, tests were conducted

on the broken-surface sample.
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Figure 8.27. Scan-level / EHT-voltage state-space plots for the three test runs compared to the reactive- 
only system. 1. Enhanced/Adaptive AFSM, 2. Continuous-valued output AFSM. Plots relate to the

broken-surface sample (number 3).

It is therefore a matter of debate as to whether one technique should be chosen as a winner 

over the other, although comparison of the scan-level/EHT-voltage state-spaces in figure 8.27 

provides another useful source of information. Here it would appear that the continuous-output- 

network AFSMs were significantly better. However, the answer to the question of the relative 

performances of these two techniques is most likely to be highly application-dependent. Some
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other form of control activity would have to be implemented to address these issues, but that 

would be too large a programme to be within the scope of this thesis.

8.4. Summary of Results

NeaLin Reinforcement Percentage 
difference

6 0  -r

3 0  -L

Single Broken
SLTfœe

B token
su rfœ e

B dlPak R einforcement Percentage  
dfference

Single B token 
SLrfcre

B token

s u f  ace

Mecn S een  Level Percentage  
dfference

EHT V dtage Level S tcn d a d  Deviation 
Percentage dfference

s in g le B to k m  
surface

B token
su rface

su rface

100 - -

Tw o Broken
to n e  su rface

su rface

H  Input Networks Only Q  Continuous Output Net ®  Net/Adcptive Registers

Figure 8.28. A comparison of "best of each" reinforcement results from the experiments in this chapter 
with comparisons in terms of percentage difference with respect to the performance of the basic 

component system from chapter 5. All results are taken from the broken-surface test sets (surface 3).

This chapter has presented an empirical exploration of some implementational aspects of leaming 

and adaptivity in the sub-behavioural mechanisms of a behaviour based control structure. More 

specifically a number of additions to the basic APSM building blocks of the subsumption 

architecture were made in an effort to provide a degree of automatic configuring and continuous 

adaptation to the ongoing environmental situation. Firstly the addition of a simple feedforward 

artificial neural network to the input-state identification part of an AFSM was tested and then 

followed by the addition of an automatic adaptation of the AFSM output registers. Finally these 

two mechanisms were combined and tested against a third method for providing adaptivity in an 

AFSM process, the continuous-valued output counterpropagation network. Figure 8.28 

summarises the results by comparing the performances of the various implementations in terms of 

reinforcement values for individual AFSM processes and also at a system level in terms of mean
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scan-level and the standard deviation of the EHT voltage output. The results for the broken- 

surface training examples are shown and the performance of each configuration on the other main 

test surfaces is compared. It can be seen that a clear improvement has been achieved through the 

addition of these mechanisms. In fact, an extra aspect not emphasised by the graphs in figure 

8.28 is that of the improved robustness and resistance to noise and reduced inputs, as evidenced 

in figure 8.15 and figure 8.16.

In the last section the performance of the continuous-valued output counterpropagation, in 

terms of mean reinforcement values, did not appear greatly impressive. However, given the 

comparative graphs in figure 8.28 that show more detail in terms of a system-level examination 

using mean scan-level and the standard deviation of the EHT voltage output, the results are more 

notable. In the final analysis the choice of mechanisms is probably one that is application-specific 

and there is certainly nothing to preclude the use of both techniques at different points in the same 

control structure. It may be that in the long term the "pure" network approach will provide more 

scope for further research through the use of more advanced artificial neural network techniques. 

But it may also be beneficial to keep the adaptive output function, which is not very expensive in 

computational terms, and use this to adapt the basic AFSM rule which is in turn used to update 

the feedforward network as before. The adaptation then becomes a background mechanism only, 

manifesting itself through producing changes in behaviour via its influence on modification of the 

network weights. Future work of this nature is discussed in more detail in the next chapter.

Multi-Agent Interactions

One of the original aims of this work was to explore the feasibility of embedding leaming and 

adaptation mechanisms into the functionality of a low-level behaviour based control process. The 

subsumption architecture was used as a target for the research in part because it provided a 

framework of asynchronous control processes, the augmented finite state machines. The issues of 

synchronisation have been largely left out of the discussion so far, but one or two factors have 

materialised as being important in this respect. These concern firstly the nature of setting up the 

parameters of the adaptation and leaming mechanism so that the inter-AFSM processes will 

interact in a sustainably stable manner. The second factor concems any explicit synchronisation 

strategy that the designer builds into the system. For example, a handshake type of signal between 

two AFSMs (which was included in the user interface layer described in chapter 5). It was the 

case with the BallPark and NearLin AFSMs in the photomultiplier control stmcture in this 

chapter that it was not possible to guarantee to maintain any interaction built in by the designer as 

part of the AFSM basic mle once the network had taken over the state identification/action 

selection process. Consequently the design and initialisation of an enhanced/adaptive AFSM 

process had to be such that any change in interaction could be compensated for elsewhere within 

the distributed system. Each component must be able to cope with continually changing 

characteristics of any interaction of processes. The problem is that the design task now includes
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the local initialisation of internal process adaptation mechanisms. The agent-community-oriented 

view of systems at this level consequently becomes more relevant. We therefore take up this view 

as a topic of discussion in both the next and final chapters.
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9. Discussion of Adaptation and Learning

This chapter covers the following:

Discussion based  on the laseir-scanner experiments.

G eneral outlook and continuinig developm ent of enhanced-adaptive AFSMs.

The experiments reported in the previous chapter served to illustrate and highlight the application 

of leaming and adaptive capabilities into the lowest levels of a behaviour based artificial 

intelligence (BBAI) control architecture. Chapter 7 built up the case and reasoning regarding the 

need and desirability for such mechanisms, which resulted from previous experience in the first 

part of this thesis and elsewhere ([Pebody91], for example). The present chapter aims to draw 

some conclusions from that work with regard to this second theme of the thesis.

This chapter is split into two main sections. The first part deals with conclusions and 

discussion of direct relevance to the laser-scanning test-bed control application. There are many 

loose ends and points of interest that resulted from the work reported in chapter 8 and several of 

these show promise for further development and experimentation. The second part of this chapter 

brings together aspects of a more general nature. In particular, the results are presented within the 

context of BBAI at large.

Chapter 8 has shown that through the addition of a number of relatively simple mechanisms a 

given behaviour based control structure may be made more robust and more effective. The 

enhanced systems were shown to provide a more stable scan signal over a greater variety of 

conditions as well as being resilient to degradation of sensory input (as illustrated in the previous 

chapter in sections 8.1.4 and 8.4). The application of learned feedforward input state-space 

mappings that provided an enhanced selection of actions (chapter 8.1), along with the automatic 

tuning of critical output parameters to locally situated asynchronous control components (chapter 

8.2 and 8.3), was shown to be not only achievable without loss of system stability but also to be 

of observably consistent and positive benefit to the system on a global level (chapter 8.4). While 

some of these additions have been used previously in unique behaviour based control solutions 

(classical conditioning [Pfeifer & Verschure 91] and counterpropagation [Nehmzow & Smithers 

90]), the work reported in this thesis has emphasised an architectural or developmental 

framework approach to the construction of such systems that has not been in evidence in earlier 

work. We hope that the techniques and lessons discussed here will be of use in, and provide 

stimulation for, further behaviour based control experimentation along these lines
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9.1. Discussion on the Laser Scanner Experiments

The experiments and control structures presented in the previous chapter did not necessarily 

provide demonstrations of the best possible solution to the control of the an active laser-scanning 

inspection system. Rather they were implanted in order to test the mechanisms and ideas detailed 

in chapter 7 which in turn resulted from the demonstration of behaviour based control reported 

and discussed in chapters 5 and 6. Nevertheless, it has been found that the solutions arrived at are 

still of a usefully robust nature and can provide a serviceable system for use in a real industrial 

situation. There is of course much remaining scope for improvement and further development, but 

first it is necessary to discuss some important factors that affected the experiments and 

implementations of this work.

9.1.1. Factors Affecting Performance 

Test Surfaces

One of the most important factors affecting the development and results of this work was the 

range and nature of sample test surfaces available for experimentation. In chapter 5.1.1 tlie 

provision of target inspection surfaces was detailed, and again in chapter 8 the variety of samples 

was shown (in figure 8.2). While only a subset of these was used for the reported experiments, 

there were in fact several other desirable surface types, each with varying characteristics selected 

to provide some significant obstacle to the laser-scanner control system. The surface types that 

appear in the experiments reported in this thesis were chosen carefully in order to provide a 

manageable and representative range of situations and characteristics.

The surface samples were also somewhat limited in their size and extent. The pattern repeated 

every 490mm (as the surface rotated beneath the laser-scanner). Although the surface rotation 

unit had variable speed, effectively providing a varying resolution of feature size, it was found 

that for most work the slowest speed available should be used in order to ensure that sufficient 

feature variation was available within the imposed surface-length-time constraints.

Low-Power Laser

Another factor that affected the extent of the experiments was the comparatively low power of 

the laser light source in the sensor. It was found that under many circumstances the laser light 

would be saturated by ambient light. This had several effects, both good and bad, on the 

experiments. For example, the low power of the laser meant that the photomultiplier devices 

tended to be mnning at the limits of their operational range. This was useful in that it increased 

the tendency of the outputs to go into the foldback states thereby, increasing the requirement for 

active control. A disadvantage was that it limited the variety and types of inspection surfaces that 

could be used.

Discussion of Adaptation and Learning 173



Sensor Input Space

For experimentation with BBAI control techniques, a suitable balance is required in terms 

sensory complexity and practical manageability. Too simple a system leads to an insufficient 

richness of problem, experiments become contrived and the outcome is often inconclusive, while 

complex systems can tend to lose the focus of the experiment. At first sight we thought that the 

laser scanner test-bed might fall into the former category of over-simplicity since the range of 

available actuation of the system is, in the final analysis, only a one-dimensional problem space. 

But the non-linear nature of the control problem, in conjunction with the rich and critical input 

space, leads to what we can make an argument for calling an almost optimal level of complexity 

given the time constraints on this project work. Each photomultiplier controller input space 

consisted of an array of up to 1000 pixels each with a value in the range 0 - 255 representing the 

intensity of detected laser light from the inspected surface. For the task in hand, this provided an 

interesting and yet manageable set of sensors and was probably one of the main contributing 

factors to the focus and timely completion of this work.

MuJii-Channel Seiutur System

The experiments reported here illustrate the use of only one sensor channel while the test-rig 

provided two. Work has been conducted on a two-channel system which was implemented 

successfully by simply copying the first channel's software to the second and providing a set of 

high-level user interface AFSMs as implemented in chapter 5. It was found that the adaptive 

AFSM processes were able to adjust for the different characteristics of the second photomultiplier 

channel (no two systems are alike) - which, in the case of the original reactive AFSM, would have 

required considerable hand-tuning of critical parameters. This illustrates a significant payoff for 

the cost of developing the first adaptive enhanced AFSM control stmcture. It is possible to 

envisage the transfer of these software modules to as many different photomultiplier channels as 

necessary, and in this aspect the results are certainly encouraging. However, for the purposes of 

continued enhancement of this application, the second channel was not used extensively due 

mainly to the bottleneck of the top server-level transputer and its inability to handle the necessary 

storage of large amounts of mntime data conceming the trace of the system's status.

Industrial Situation

The implementation of an industrial laser-scanning inspection system test-bed for experiments 

in behaviour based control provided an unusual problem domain. As such, the industrial 

framework contributed towards the shaping of the solutions reported in this thesis. The nature of 

the control of the sensor required a system that was able to analyse a signal that reflected 

characteristics of the physical environment and then to make changes to maintain the quality of 

the signal. The problem of differentiating between changes resulting from external influences and 

those from the controller itself was real and in fact characterised in a straightforward way one of
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the fundamental problems that are the focus of much of the research effort on the control of 

autonomous systems.

9.1.2. Further Application-Specific Development and Enhancement 

Utilising the Temporal Dimension
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Figure 9.1. A third subsumption layer using temporal information to inhibit the lower levels of EHT 
voltage stepping during "recognised" periods of surface disappearance.

Further development of the photomultiplier control strategy for a single channel may be 

achieved by adding a third subsumption level onto the existing control structure as shown in 

figure 9.1. The idea is that this enhanced AFSM learns to override and inhibit the output of EHT 

voltage step commands during periods when there is no surface present to inspect. This would 

prevent the hunting of EHT voltage that is characteristic of this transition period as the controller 

continuously ramps up the EHT voltage in a search for any detected laser light. When the surface 

actually returns, the EHT voltage setting is typically far from the right value, and a period or 

readjustment is needed while the signal set-point is re-acquired. By learning surface 

characteristics over time, this layer should be able to recognise and predict regularly-occurring 

breaks and hold the EHT voltage at a fixed level until the surface reappears. Obviously a strategy 

is required both for the occasions when mistakes are made and when the surface does not 

reappear as expected. After this the hunting strategy would take over again. The implementation 

of this expansion into the domain of temporal activity could be implemented in a number of ways, 

either through the simple maintenance of a shifting array of scan-level values that is updated at 

each characteristic time step (see [Pebody94] for an implementation of a TimePixels AFSM) or 

through the use of recurrent or feedback artificial neural networks such as Hopfield networks and
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bidirectional associative memory nets (see [Wasserman89] for an overview and further 

references). The incorporation of other mechanisms is discussed in more detail in section 9.2.2 

below.

Inter-Channel Communication

Finally, it is worth suggesting here that a large area of interest might be opened up through the 

idea of experimenting with inter-channel communication. As one possibility, the agent-like 

properties at the level of the photomultiplier control subsystems might be utilised in order that 

they "compare notes" on activities. For example, if one channel is spending large amounts of time 

in a foldback state it may benefit from "looking" at the state of the other channel. This may result 

in either the recognition of some component failure or a change in control strategy to compensate 

for the new situation. A possible scheme is illustrated in figure 9.2. The mechanisms of 

associative learning, including a temporal aspect, could prove useful here in an arrangement 

similar to the original work that was reported in [Pfeifer & Verschure 91J (although in this case 

the temporal association was a result of the physical properties of sensor devices). This 

communicaiion layer may well serve to bring the channels of the system together to some extent 

as a higher-level agent system, presenting a combined front to other parts of the system.
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Figure 9.2. Showing a possible inter-channel communication between photomultiplier controllers.

9.2. A More General Outlook and Continuing Development
Having dealt with application-specific continuations of experimentation and development along 

the lines of the laser-scanning inspection system, this section now turns to a more general 

examination and discussion of the enhanced and adaptive AFSM mechanisms within the 

framework of BBAI.

9.2.1. Discussion on Enhanced and Adaptive AFSM Processes

At the beginning of chapter 7 the characteristics of behaviour based system development were 

discussed and the nature of the exercise of constructing agent control structures from parallel and 

distributed processes was outlined. The importance in this procedure of embedding designer
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domain knowledge was emphasised as a significant factor contributing to a system's capabilities. 

This designer knowledge was identified as manifesting itself in the control stmcture in the form of 

rule specifications including critical parameters within processes and sensor and actuator 

interconnections between processes. It was pointed out that the design of such systems was often 

a lengthy and largely empirical procedure with designers spending much time on the tuning of 

critical behaviour-defining parameters of distributed rule processes. This observation was in part 

the result of the earlier work reported in the first chapters of the present dissertation and in part 

the result of observation of other work in the BBAI community typified by [Arkin90b], 

[Ferrell94], [Maes89], [Mahadevan & Connell 92], [Mataric95], [Gat et al 94] and [Steels93]. 

The use of on-line learning and adaptivity was identified earlier in chapter 6 as a necessary 

component of these systems, though at a sub-behavioural level.

The Original Requirements

A solution to these problems was proposed in the form of a number of functional additions at 

the basic building-block level of a behaviour based control architecture. Techniques of 

unsupervised on-line learning and adaptation were suggested to provide a sub-behavioural level 

of automatic system configuration and continuous tuning. For experimental purposes the 

subsumption architecture was chosen and the augmented finite state machines used to support the 

additional functionality, although it was stressed that the ideas were intended to be useful in other 

BBAI control architectures and not to be specifically subsumption-oriented.

The additions to the subsumption architecture focused on the internal mechanisms of the 

AFSM building blocks. It was intended that the basic interconnection and interaction of the 

subsumption architecture should remain unaffected. In particular, the aspects of synchronisation 

between AFSMs and the use of the loose synchronisation provided by the characteristic time 

factor were considered of fundamental importance, as was a consistent characteristic time at all 

stages of the system's operation. Also, the single-element input registers and the suppression, 

inhibition and default wire nodes were not to be altered in any way. The result was a set of three 

proposed additions to the basic mle element of the subsumption architecture.

i) The utilisation of a simple feedforward artificial neural network to learn an association 

between the AFSM inputs and output selection and activation. The AFSM rule was used to 

bootstrap the basic rule inputs with the AFSM outputs and to provide the integration of a 

further set of auxiliary inputs.

ii) Tuning of output register values and other critical parameters through the utilisation of a 

simple hill-climbing optimisation approach applied separately to each target variable.

iii) The use of a real, continuous-valued output artificial neural network similar to that used in 

(i) above but providing a complete input-output mapping of the basic AFSM rule, again 

with the incorporation of additional auxiliary inputs.
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The first two of these proposals were complementary in their effects while the third, a simple 

network extension of the first, was intended to supersede or replace the second. Chapter 8 

reported on a series of experiments that tested the use of these mechanisms extensively.

Results

The solutions to the above mentioned requirements certainly fitted into the format of the 

subsumption architecture AFSMs m an almost seamless manner. From an external point of view, 

in terms of the interaction dynamics there was no difference in the timing and response speed 

between a normal and an enhanced/adaptive AFSM. Both types maintained the characteristic­

time period that was pre-set for the system (as verified by a continuous characteristic-time 

monitor process that ran as part of the user interface layer; see chapter 5). The mechanisms of 

learning and adaptation did function successfully as on-line and unsupervised, processes although 

it was necessary to ensure that during the learning phase a sufficiently "interesting" set of 

environmental conditions was experienced by the system. Subsequent adaptive performance was 

in general improved in terms of the local reinforcement, global scan level and EHT voltage output 

performance measures used, as well as in the resulting increases in robustness against degraded 

inputs. It was found that the adaptive architecture increased the amount of domain knowledge 

that the agent could acquire for itself, making it is less dependent on the initial control structure 

and parameters imposed by the designer.

The resulting mechanisms have provided what is best described as sub-behavioural learning 

and adaptation. That is, the mechanisms have been embedded into the behaviour based control 

system at the level below that of the general behaviour-achieving structures which, in the case of 

the subsumption architecture, manifest as behaviour levels that consist of a number of interacting 

AFSM processes. It was found that the design process, in terms of the breakdown of system 

behaviour, was little different from that of the fundamental behaviour based technique, although 

extra specification and design of enhanced/receptive AFSM input sets was required. Examples of 

such details include the selection and transduction of auxiliary inputs and the choice of critical 

output-register parameters needed to achieve the best-performance result. However, in the final 

analysis the design task is made more simple if it is remembered that the provision of basic rules 

with large numbers of extra real-valued inputs is a massive task not normally considered as 

viable for the basic AFSM, Consequently it should be stressed that these new mechanisms are not 

required in all parts of a subsumption control structure. In the case of the laser-scanning 

inspection system, many basic AFSM processes remained in operation and did not present any 

potential for enhancement.

There were several instances in which the only contribution of the "new improved" versions of 

AFSM processes to the global behaviour of the system was the costly reduction of overall 

stability. It was usually the case that these processes suffered from an unsuitable initialisation of 

parameters. The set-up of the update and reinforcement period parameters in the experiments of
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the adaptation process in chapter 8.2 is an instance of this effect. The potential for instability is 

not an unexpected outcome. When the number of variables in a system is increased, the potential 

for instability is also increased. It is interesting to note that as the enhanced/adaptive AFSMs 

completed their learning phases and their behaviour became less predictable, the various 

adaptation mechanisms were able to cope with this and still provide a global as well as local 

improvement in performance.

This was reflected in the following ways:

i) The necessity of using a diverse number of factors to assess the performance of the system.

ii) The increasingly obvious difference between local AFSM process behaviour and that of 

the global system.

iii) The use of both local and global AFSM reinforcement performance measures: local in the 

form of preferred local state, and global in the form of the mean scan level over time and 

EHT output voltage standard deviation.

Consequently the appearance of the system as a community of interacting agents was 

reinforced and the fixed view of the system as a number of distributed reactive control processes 

became less realistic.

System Design and Development

The demonstrations of the enhanced input and adaptive output subsumption AFSM processes 

in chapter 8 are the result of a gradual and incremental development that was driven by the need 

to test ideas and explore potential solutions to problems. This is not a typical procedure as far as 

the development of actual applications is concerned. As a result, the question of whether this 

work actually does provide a useful technique for simplifying or at least helping in the 

development of autonomous systems remains open in some respects. An important point to 

emphasise here is that although a number of low-level factors are automatically taken care of by 

automatic mechanisms, this very utilisation leads directly to a new set of critical parameters that 

affect the behaviour of the system significantly. These in turn need to be set up by the designer. In 

the final analysis none of the proposed frameworks removes the task of system design; this would 

perhaps be wishing too much. The design task is however altered in nature and is perhaps more 

complex as a result. The systems that can be built with these added learning and adaptive 

components may be significantly more elaborate than it was previously possible to achieve. The 

management of large arrays of sensory information, for example, may be assimilated into an 

AFSM by comparatively simple specification of a basic mle set and then allowing the 

feedforward network component to take care of the details of associating the large amounts of 

sensor state information into the activity of the AFSM (although the designer must still exercise 

care with the selection of input sets so that the auxiliary inputs to an AFSM are at least relevant 

in some way and do not sap computational resources unnecessarily). Likewise the iterative task of
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tuning critical parameters in the output of an AFSM may be left to an automatic process, the 

designer only having to specify a near guess at a suitable value. The designer is thus able to 

develop a much larger system than previously possible, as well as one that has a significantly 

more complicated interaction with its world.

Control Parameters

This issue of increasing the number of critical parameters in a system leads on to some 

interesting points. It was claimed above that the extra mechanism necessary to provide for an 

automatic and on-line learning behaviour leads to a new set of critical parameters which must be 

set up in order for the system to behave in a satisfactory way. These new parameters do however 

supersede to a large extent the criticality of the lower-level values which were of the threshold, 

max.-min. range and gradient-defining variety. This can be seen in the more abstract effect of the 

new parameters on system performance. For example, the four factors that affect speed of 

adaptation to change in the world of the output adaptation mechanism: reinforcement period tj-, 

adjustment period t^, and the update factor /  as well as the time period of the neteffect (v|/) 

variable in the input mapping network. The AFSM mechanisms that used these parameters 

proved to be relatively robust to initialisation values. More significant, apparently, were the 

magnitudes of the parameters in relation to each other (see results in the previous chapter 8.2, for 

example). It was the case that an acceptable though possibly sub-optimal performance could be 

achieved with only a small amount of thought on the part of the designer.

The main feature of the new group of pre-set parameters for the system is that they are nearly 

all related (either directly or indirectly) to the generation of credit for system activity, especially 

when experimental adjustments are being made. The solutions experimented with here were 

necessarily simplistic in order to keep the complexity and computational requirements of a single 

AFSM process at an acceptably low level. However, the problem of credit assignment is one of 

the main factors affecting automatic adaptation and learning in systems and has been recognised 

as such, probably since [Minskybl] was published.

Untested Factors

An important aspect of behaviour based control is the implementation of systems that are able 

to deal with events in the time domain rather than just behave in a reactive way to the current 

state of an agent-environment system. The experiments reported here did not deal with the 

temporal dimension other than in the accumulation of domain knowledge over time by the 

learning and adaptation mechanisms. However, this does not address the nature of temporal 

activity and sequencing of action that is in question here. The further extensions to the 

photomultiplier control structure detailed above in section 9.1 as a third subsumption layer would 

start to deal with this point, while the next part of this chapter below presents some ideas for 

implementing these factors within the enhanced adaptive AFSM processes. This issue is really 

less the concern of the work reported in this part of the thesis concerning photomultiplier control
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than it is of the field of BBAI as a whole. The provision of behavioural mechanisms that exhibit 

some form of predictive or temporal look-ahead ability without recourse to central representation 

and symbolic manipulation is discussed in [Maes89] and [Churchland95] among other places.

Another factor that was not fully addressed in the reported work was that of the benefits of 

using the counterpropagation network in preference to the more common multi-layer network 

with learning by backpropagation. A comparison of performance along these lines would be 

useful, but in general it is an issue of implementation rather than a factor that bears on the 

principle in question addressed here; that of enhancing a subsumption AFSM process with the use 

of a feedforward artificial neural network mechanism. It is the case that there are some features 

of counterpropagation, mostly concerning the input Kohonen layer, that might be considered as 

weak points in the system. For example in [Wasserman89] it is suggested that the benefits of the 

shorter weight-settling times of the counterpropagation network might be offset by lower 

generality of the learned response. Even so, for the purposes of this work it has proved to be a 

robust mechanism (which was also the case reported in [Nehmzow & Smithers 90]) and the 

reasoning for its selection that was outlined in chapter 7 concerning computational cost and 

weight convergence has been demonstrated to be sound. It is clear that this mechanism would be a 

useful starting point for further research and other applications of enhanced subsumption 

architectures.

9.2.2. Other Techniques

The implementations presented in this thesis utilised two techniques of on-line knowledge 

accumulation and adaptation in the form of a simple two-layer feedforward artificial neural 

network and a simple multi-dimensional search using a steepest-ascent hill climbing type of 

approach. Before dealing with other viable techniques it is worth pointing out that within the 

domains of the techniques used there is an enormous amount of material and work, constituting 

research fields in their own right. For example, the field of artificial neural network research is 

massive and there are countless sources of ideas here alone. The work in this thesis has used ideas 

from [Wasserman89] and [Masters93] amongst other more applied sources such as [Nehmzow & 

Smithers 90] and [Pfeifer and Verschure 91]. Likewise methods of state-space search also 

constitute a massive research field, and again material is in abundance. Useful references here 

have been [Chamiak & McDermott 85], [Luger & Stubblefield 89], [Maza & Yuret 94] and 

[Cvijovic & Klinowski 95]. Nevertheless, for the experimental work reported in this thesis the 

constraints imposed by the required simplicity of an AFSM process and the potential for large- 

scale parallelism meant that uncomplicated solutions were implemented in order to keep 

computational overheads to a minimum.

The addition of the mechanisms described in chapter 7 to the basic subsumption AFSM 

process structure was implemented in a modular way, so that (if desired) other association 

mapping or adaptation techniques could be built in with httle extra work. One such interesting
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experiment would be, as mentioned above, the implementation of a standard multilayer 

backpropagation neural network to compare with the behaviour of the currently-used 

counterpropagation network. Consequently an advantage of the system developed and presented 

in this dissertation is that it would be relatively easy to configure and experiment with other 

algorithms, and even other non-network-oriented learning mechanisms. Other areas of research 

that might be of some interest in this respect are principally characterised by the fields of Genetic 

Algorithms, Fuzzy Logic and Machine Learning, as well as other projects within the BBAI field. 

These fields are discussed briefly below.

Genetic Algorithms

Genetic algorithms (GAs), as outlined in [Goldberg89] and widely reported in conference 

proceedings such as [Varela & Bourgine 91] and [Cliff et al 94] are most often used for off-line 

development and optimisation, some of which has been directed at autonomous systems. 

Examples are [Harvey et al 94], [Beer & Gallagher 92], [Manela & Campbell 95], [Ram et al 

94] and [Koza91]. The last of these details a GA evolution of a simulated subsumption based 

control stmcture. However, GA procedures do not lend themselves ideally to control solutions 

where continual on-line adaptation is required within the life-span of a single agent. GAs typically 

operate in large populations with ineffective solutions being weeded out as the representative 

phenotypes are killed off. Clearly if only one agent is available as a target system, death for any 

reason is unacceptable.

Work that does transfer GA control solutions to real-world robots has been reported in a 

number of papers that have explored the combination of simulation and real-world robot trials. 

For example [Nolfi et al 94] details control stmctures that are evolved with phenotypic plasticity 

(i.e. control stmctures that can adapt during their lifetime). In this way an instance of a control 

solution for a mobile robot has been shown to demonstrate an ability to adapt to different 

environments. Other GA work, [Lund95], deals with the evolution of artificial neural network 

controllers and the parallel evolution of the fitness criteria that dictates the selection of control 

solutions. This results in a dynamic fitness landscape that can adapt to different environments. 

Finally [Mondada & Floreano 94] also report on promising GA work that evolves artificial neural 

network control solutions to the perception and actuation of small mobile robots.

The contribution of GA techniques to the work reported in this thesis is most likely to manifest 

itself in the form of off-line development of the control stmcture for an agent. Most interesting 

here would be experimentation with the ideas reported by Nolfi and colleagues. It may be that the 

parameters affecting learning and adaptation along with the configurations themselves could be 

expressed as a particular genotype and optimised through evolution. But this would require 

considerable off-line experimentation or the provision of some sort of simulated domain.
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Fuzzy Logic

Fuzzy logic (and, more significantly, fuzzy control) is another large research domain and has 

much to offer in the area of adaptivity and learning in control systems. A significant amount of 

work is reported in sources typified by [Kim.S-H et al 93] and [Kim.S-W et al 93] as well as 

[Harris94] and [Cox94] which provide recent collections of applications and techniques. It would 

be desirable to experiment with these techniques in the framework of the AFSM processes used in 

our work, particularly in the light of recent results on neuro-fuzzy controllers [Yamaguchi et al 

94] and reports in [Godjevac94] concerning a behaviour based implementation of fuzzy control 

in a real-world mobile robot. The fuzzy-systems field remains an open area of interest with 

respect to the ideas presented in this thesis. The only reason why these ideas were not 

experimented with in the course of this project was that there was not enough time available.

Machine Learning

Machine learning is a wide and diverse field and it is most likely that some will claim that it 

encompasses all of the previous domains mentioned separately above. However, machine learning 

here is taken to refer to areas of more classically oriented AI learning that tends towards 

techniques of inductive logic programming as a form of relational learning as well as the learning 

of decision rules, e.g. as in [Bratko93]. The work reported in this thesis has taken on board many 

aspects of reinforcement learning but arguably in a different format to that typical of the machine 

learning literature, examples of which date back to research reported in [Minskybl] and 

[TsypkinTl].

One area of machine learning with particular relevance to the area of autonomous systems is 

that of Q-learning, originally proposed in [Watkins89] and extensively reported in [Kaelbling93], 

[Mahadevan & Connell 92], [Mataric95] and [Sutton91], amongst others. All of these deal with 

the robotics domain. However, the nature of this learning process is governed by the fact that the 

problem space to be learned is typically one described as a “Markovian Decision Process” (as 

discussed at the beginning of chapter 7 and in [Mataric95] and [Kaelbling93]). While at the 

behavioural level of control learning has been demonstrated using these techniques, we suggest 

that they are not so appropriate for the situations that have been the focus of this thesis, i.e. those 

of sub-behavioural learning and adaptation. One example that does implement a similar level of 

adaptation to that described here is that reported in [Clark et al 92]. While that work is very 

application-specific and does not appear to be readily suited to truly distributed control systems, 

it does at least look at the problem from a behaviour based architectural perspective.

Related BBAI W ork

Techniques of learning and adaptation are widely researched within the field of BBAI. 

However, much of this work is still in the simulation stage and has not been demonstrated on 

real-world systems. For example, [Digney & Gupta 94] and [Wei695] present distributed and
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modular approaches to reinforcement learning, while [Gruau94] presents an off-line method of 

defining control systems using modular neural networks and. genetic algorithms. Being 

simulations, the processes detailed in these works are not genuinely distributed, and so there are 

no allowances for the characteristics of physical process distribution that were outlined in chapter 

6. Additionally Digney and Gupta state explicitly that: "...the robot model neglected dynamics 

and the sensors and actuators were assumed ideal.". It is the subsequent transfer of this type of 

work to the real-world that provides emphasis for the need for further research into the lower sub- 

behavioural level of automatic configuration and adaptation that has been the focus of this second 

part of the thesis.

Examples of behaviour based work that does address the problems associated with adaptive 

control architectures in real-world situations can be found in [Clark et al 92] and [Gaussier & 

Zrehen 94]. The work of Gaussier and Zrehen demonstrates a modular neural network approach 

to on-line learning and adaptation at a behavioural level in a real mobile robot, but the lower-level 

control structures in this example are not subject to adaptation. In contrast, the work of Clark et 

al does deal with the problem of low-level adaptation and also refers to a real-world robot control 

system. Still, this scheme would appear to be of a specialised parameter-tuning nature and 

specific to the application in hand. Consequently the work reported in this dissertation 

complements these accomplishments towards the development of autonomous control systems by 

demonstrating the real-world application of learning and adaptation that is embedded in the 

component parts of a general-purpose behaviour based control architecture.

9.2.3. Continuing Architectural Development and Experimentation

The work that has been reported in this thesis has been used to illustrate the development and 

construction of the distributed control components of an autonomous system. As is often the case 

with such work, the possibilities and avenues of interesting development are more numerous and 

extensive than the project time permits for complete exploration. Section 9.1 above has already 

outlined a number of interesting developments that might be implemented to further the 

performance of the laser-scanning inspection system in particular. This section outlines some 

more general ideas and concepts that would provide interesting continuation from the point of 

view of implementing sub-behavioural learning and adaptive capabilities in a behaviour based 

control architecture.

Regression to the Learning Phase

It was suggested in chapter 7 that one of the benefits gained from using the basic rule of the 

subsumption AFSM process to bootstrap the associative network is that there is an inbuilt and 

known base-level performance of the control process. It was claimed there that this enabled the 

system to have a guaranteed minimum performance. To date this has been implemented with the 

basic AFSM rule that tunes the associative network output layer throughout the life of the
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system, i.e. the adaptive phase. This allows a continual adaptation to gradual change in the output 

of the Kohonen self-organising input network as the agent-environment situation changes over 

longer periods of time (in the order of several hours or more of operation). Nevertheless it has 

been the case during some experiments, usually triggered by a sudden change of test surface 

characteristic, that the system is unable to readapt in this way. Consequently the learning phase 

had to be restarted from scratch. This leads to two potential features worthy of development: (i) 

An automatic regression mechanism to reset the neteffect parameter back to zero, thus restarting 

the learning phase and (ii) once point one is working, experimentation with partial regression of 

the learning mechanism.

Automatic reset of the neteffect variable could be achieved relatively easily by adding an 

AFSM or two to monitor the system's performance (perhaps in comparison with other 

photomultiplier channels in the case of the laser-scanner situation) and externally affect the 

neteffect parameters of lower-level AFSMs. But the partial regression may not be achieved so 

easily. In the case of a reset, the network weights could simply be reinitialised to random 

numbers, but in the case of a partial regression the networks would be expected to retain some of 

their prior configuration and only partially readapt to the new agent-environment situation. This 

is not an insurmountable problem. Indeed the work reported in [Pfeifer & Verschure 91] used a 

decay factor in the network update functions on a continual basis in order that there was an 

inbuilt "forgetting factor" in the network's operation. Although this was implemented in a 

relatively simple (single layer) perceptron, it is not inconceivable that a similar mechanism could 

be built into the two layers of a counterpropagation network.

Sequenced and Layered Learning

The use of the two enhanced AFSMs in chapter 8 gives only a flavour of what might be 

achieved in larger systems. Still, there are aspects of the learning process that are not clearly 

understood, e.g. the nature of what happens or ought to happen when an AFSM undergoes its 

learning phase. If other AFSMs in the system play a significant role in the local control 

structure's behaviour, then it may be beneficial for higher-level AFSMs to hold back and wait for 

the lower-level learning phases to finish before they themselves begin the initialisation procedure 

of their own networks. In this way these higher-level AFSMs may benefit from a more effectively 

operating lower-level system on which to base their new input-space mappings. While this is all 

well and good, the reverse may also be true. It may be that the lower levels could benefit from 

waiting until the higher levels have completed their learning phases, for exactly the same reasons.

In order to effect a sequencing of learning phases an interconnecting signal would be required, 

daisy-chained between AFSMs so that they would indicate their progress through the learning 

phase. This signal could actually be the neteffect parameter. In this way local groups of AFSM 

processes would be able to monitor each other's progress. Given the indeterminacy about which 

AFSM would benefit the most from waiting to learn, it might transpire that a free-for-all pohcy
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would be the best general approach. This would be even more the case if the AFSMs were able to 

regress and relearn if need be. It is also definitely the case that AFSMs will learn at different rates 

anyway. This is because the growth of the neteffect parameter is dependent on the frequency of 

the AFSM's interaction with its environment, and most AFSMs interact at different frequencies 

by the nature of their differing functions. Consequently it may be that the best policy is to leave a 

system to settle of its own accord.

In this vein there has been considerable work on the modelling in artificial neural networks of 

secondary and tertiary conditioning, and more besides. Secondary conditioning is the phenomenon 

of classical conditioning that occurs on top of or after a primary conditioning association between 

stimuli has been formed; likewise tertiary conditioning would occur after a secondary association. 

The mechanism used for the associative mapping in this work was based strongly on material 

reported in [Pfeifer & Verschure 91] and [Pfeifer & Verschure 93] which has dealt with models 

of classical conditioning. This phenomenon is also discussed in [Edelman87] and [McFarland85]. 

It is possible that the behaviour of low-level enhanced AFSMs may be used to bootstrap higher 

levels in the same way. with a more structured interdependency of stimuli and response than the 

somewhat loose grouping suggested above.

Further Sources Of Reinforcement

The adaptive outputs of the BallPark and NearLin AFSMs used a simple reinforcement 

function which monitored the state of the AFSM in question and set a flag when a predefined 

preferred state was entered. The reinforcement value was generated by taking the average of the 

values of this flag over a fixed time period. The result was a value m the range 0 - 1  with a 1 

indicating a 100% occupation of the preferred state. This proved to be useful in the case of the 

laser-scanner test-bed but it may be beneficial at some point in the future to consider two further 

aspects: (i) The autonomous alteration of the preferred state that generates the reinforcement; (ii) 

The augmentation of the AFSM's internal reinforcement with that of an external source such as a 

higher-level AFSM.

Both the reinforcement function for the adaptive output stage and the effect of the neteffect 

parameter may be augmented externally via other sources of reinforcement. In general it would 

seem reasonable to postulate that both positive and negative reinforcement might be applied 

usefully to the register adaptation and neteffect mechanisms. The registers currently utilise an 

internal positive reinforcement in the form of the preferred-state flag, while the neteffect, being 

reduced to a lower value by an external-negative valued influence, would provide a regression to 

a more active learning phase as discussed above. Other possible sources of reinforcement would 

generally be application - and implementation - dependent although it is possible to envisage some 

benefit from monitoring the frequency of an AFSM's activity and quantity of unclassified states. 

One factor worth emphasising at this point is that remote sources of reinforcement may become 

more difficult to assign to local AFSM actions. This was one reason why only the preferred-state
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reinforcement was used in the experiments in chapter 8. It may, for example, be possible to set up 

a local area of influence around a group of AFSMs such that if one attains a particularly high 

reinforcement measure, the others reduce the degree to which they adapt. But this introduces a 

further complication via aspects of communal interaction (which were also highlighted at the end 

of chapter 6,2) and this along with the other factors mentioned here is clearly an area for 

considerable continued research. [Sutton91] provides useful discussion on relevant issues in 

reinforcement learning in autonomous agents, as do [Kaebling93] and [Miller.W et al 90].

Further Aspects of Automatic Configuration

The counterpropagation network used in the enhanced AFSM to implement an associative 

learning mechanism allowed an additional set of auxiliary inputs over and above those required 

for the basic function of the AFSM to be included in the process of recognition of an AFSMs 

input state. This alone provided a degree of flexibility in design, since the format of the auxiliary 

inputs was left to the activity of the Kohonen self-organising input network. However, it was still 

necessary for the designer to pre-specify all of the connections and the configuration of the 

network layers. Work reported in [Fritzke91] details a self-organising-seif-organising network, or 

in other words a Kohonen network that adapts its structure in response to the activities of the self- 

organising process. The result is an optimisation of the network size in response to the probability 

distribution of the inputs. Other work details a similar process for backpropagation networks; for 

example, [Khorasani & Weng 94] and [Salome & Bersini 94]. Using these techniques it may be 

possible to provide a mechanism that searches the local neighbourhood of other AFSMs actively 

for other input connections that may correlate usefully with the AFSM's activities. This additional 

activity might be similar to that developed and demonstrated in [Maes & Brooks 90].

Mobile Robot Implementation

This work has been, to much positive advantage, conducted with the aid of an experimental 

test-bed constructed around an industrially situated laser-scanning inspection system. The 

advantages of this choice have been stated already (e.g. see chapter 4). It would be nice to be able 

to transfer some of these ideas to a mobile robot test-bed to experiment with the interactions of an 

enhanced subsumption architecture in a more diverse agent-environment system and task domain. 

The focusing effect of the laser-scanner test-bed has been a useful source of discipline in ensuring 

that experiments were thoroughly implemented. But in the final analysis, the majority of BBAI 

work is carried out on mobile robot test-beds and to compare the ideas of this thesis with other 

control, learning and adaptive architectures it would probably be necessary to use a mobile robot 

and real physical environment and task set.

9.3. Summary
This chapter has concluded the second part of the thesis with discussion of the implementation of 

embedded learning and adaptation at the sub-behavioural levels of a behaviour based control
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architecture. This direction of development was taken after observing that the control of a 

distributed system using the techniques of BBAI resulted in the need for some form of designer- 

independent means of tuning critical parameters and classification of complex sensory input 

spaces. This was implemented in the framework of the subsumption architecture, which resulted 

in a distinctly communal control structure made up of a number of asynchronously-interacting 

AFSM processes. The agent-like nature of these processes that was highlighted in chapter 6 

became even more evident when, given their own mechanisms for learning input-output mappings 

and adapting their actuation parameters, these process started to self-organise into a more 

effective community or (at the next level up) system. These observations build on those developed 

in chapter 6. The next chapter concludes this thesis by bringing the two parts together.
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10. Autonomous Systems In the Real-World

This chap ter covers the following:

Distributed behaviour based  system s.

S ystem s a s  layers of agent entities.

Distributed sub-behavioural learning and adaptation. 

O ther points of view.

Conclusion.

This dissertation has reponea on me course of a series of experiments that examined the use of 

techniques from behaviour based artificial intelligence (BBAI) in an industrial application 

domain. The reasoning behind this work was twofold. In the first place it was recognised that the 

field of BBAI has provided many novel and interesting solutions to problems of control of 

complex systems but that virtually all of the examples of the techniques have utilised mobile 

robot test-beds for experimentation - with little trace of industrially situated work, other than that 

of mobile robots that happened to operate in an industrial environment. We decided that it would 

be interesting to look at the use of these techniques in another test situation, and selected the 

industrially situated laser-scanning product inspection system as a significant and somewhat 

unusual example in part because of its modular and distributed hardware architecture. The 

second reason for the work was an observation that systems, including those of the BBAI mobile 

robot test-beds, are becoming increasingly complex and utilising several or many special-purpose 

hardware processing units (typically in the form of embedded microprocessors). The view of 

these systems in terms of a single behaviour-generating agent acting in the physical world was 

becoming overstretched and the multiple centres of activity, often physically distributed within the 

same system, were perhaps not being given the degree of attention required in order to elicit the 

best performance in terms of reliability and robustness of the main system. One of our aims was 

to gain and report some insight into the nature of constmcting behaviour based control structures 

for systems of this kind containing such forms of complexity.

Because of the way in which the structure of the thesis has been presented in two parts, this 

chapter concludes by bringing the two main themes of the work together. In chapters 4, 5 and 6 

the implementation of and subsequent experimentation with the behaviour based control strategy 

for an industrially situated laser-scanning inspection system was detailed. This work involved the
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development of control systems for the laser-scanning sensory subsystem of the main inspection 

equipment, and prepared the way for the second part of the thesis by identifying the need for a 

distributed sub-behavioural level of learning and adaptation in BBAI control stmctures. In that 

second part, chapter 7 posited some solutions to these requirements while chapters 8 and 9 

illustrated and discussed experimentation in this area on the laser-scanning test-bed.

This chapter concludes by discussing the most important results that have emerged from the 

reported work. In particular, the viewpoint of distributed behaviour based systems and its 

emphasis on control in terms of the interactions of physical real-world systems is dealt with. 

Next, the need for BBAI to address lower levels of system interactions is discussed. This is used 

to introduce the idea that the control of autonomous systems may be seen usefully as a series of 

levels of agent communities acting on different levels of interaction abstractions. The use of 

learning and adaptation is then reviewed in order both to summarise the case for its use and to 

reinforce the agent-like view of asynchronous control processes. Finally, some alternative 

viewpoints are briefly outlined.

10.1. Distributed Behaviour Based Control Systems
The fundamentals of BBAI were covered in chapter 3. Factors including situatedness, 

groundedness, physical embodiment, non-symbolic computation, emergence and (not least) 

bottom-up development were described and highlighted. These characteristics typify a number of 

diverse examples of research into autonomous systems, ranging from robotics and engineering 

[Arkin90] to neuroscience and cognitive science [Giszter94]. Each of these fields, although its 

practitioners may not necessarily consider it to be a particular branch of artificial intelhgence, 

does nevertheless contribute to a common theme. Together, they have generated a large body of 

knowledge about the control of real-world situated systems.

The exploration of the use of the subsumption architecture as a framework for the control of 

the laser-scanning inspection test-bed in chapter 5 led to some interesting observations of system 

design, using such techniques, which were detailed in chapter 6. Firstly in this implementation it 

was observed that the constraints imposed by the physical as well as functionally distributed 

target system demanded the development of a control structure that consisted of a number of 

almost independent subsystems. "Independent" here refers to the degree with which components 

within the subsystems interact amongst themselves compared to interaction with other parts of the 

system. Additionally, it was found that the nature of each subsystem was distinctly agent-like in 

its own right but that the typical task and behaviour requirements were at a level below that of the 

main agent system. Consequently, a layered hierarchy of agent-communities was proposed, with 

the definition of each agent-community layer being a function of its temporal and spatial 

abstraction from the real physical world.
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10.2. A Lower Bottom to the AI
Chapter 6 highlighted the ongoing trend of increasingly complex control systems both within the 

BBAI field and in technology at large. Systems typically consist of multiple centres of 

computation and localised processing of control functions. There are examples that cover both 

BBAI ([Smithers94], [Ferrell94], [Nehmzov & McGonigle 94], [Nourbakhsh et al 95] and 

[Balch et al 95]) and the world in general (such as manufacturing systems and automated 

banking systems). It was suggested that the embedding of low-level processing often resulted in a 

fixed-strategy control of active sensors and sophisticated actuator devices. This assignment of 

subsystem control to the sidelines, it was claimed, led to a view that sensors and actuators were 

just interfaces to the world.

This attitude seems to be particularly prevalent in the BBAI literature (see for example 

[Ferrell93], [Steels94], [Smithers94], [Ruyssinck92], [Kweon et al 92], [Vereertbrugghen93]). It 

can be attributed to the early experiments in BBAI that utilised mobile robot test-beds which 

provided relatively simple, often binary, sensors and actuators. The strength of the early BBAI 

work was in the demonstration that these systems were capable of complex and even 

sophisticated behaviours in cluttered and unstructured environments despite (or more likely as a 

result of) the simplistic sensor-actuator functionality. Work is now focusing on BBAI systems 

with increasingly complex sensors and actuators which often provide and respond to real or 

continuous-valued signals (although often within the limits of digital to analogue and analogue to 

digital conversion devices) where the simple control strategies are no longer proving to be so 

robust. More effort is now being put into sensor and actuator transduction. In fact, complete 

subsystems are being constructed with processors that are dedicated to these increasingly 

important tasks. Figure 10.1 below is repeated from chapter 6. It shows again in 10.1b that the 

result of setting aside sensor and actuator control as being "someone else's problem" can lead to 

the subtle concealment of the true distributed structure that is an important characteristic of 

BBAI systems.

The behaviour based control structure developed for the laser-scanner test-bed, however, did 

not conform to this regressive tendency. Even so, in the first instance it was not by conscious 

design. The hardware architecture and characteristics of the transputer network that provided the 

computational resources for the test-bed effectively dictated the architecture in figure 10.1a. As a 

result, a new sub-behavioural level was identified in the system: a level that concerned the control 

of complex sensor devices such as the photomultiplier controllers, and actuators such as the test 

surface rotation motor control which automatically detected stalled states and acted to restart the 

motor. The processes at this level were built up around a small number of subsumption AFSMs 

which were referred to in chapter 4 as behavioural nodes. These, as behavioural nodes, acted on 

an asynchronous and local basis to achieve their own task agenda. Being physically embodied,
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these behavioural nodes have a case for being viewed as agents in their own right. This is exactly 

the interpretation that we propose.

A: Several behaviour based  programs running 
locally on distributed processor subsystem s

se n sa tio n  and actuation

B: A behaviour based  program running 

on a central processor unit with 

slave  input-output processing
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Figure 10.1. Two inteipretations of behaviour based systems. A; a genuinely behaviour based approach 
to low-level sensor and actuator control. B: showing the software implementation on a classical 

hardware architecture and the subtle and hidden maintenance of a pipelined control flow.

10.3. Layers of Agent Entities
On examining the processes of the laser scanner implementation, we recognised that there was a 

pattern dictated by the time and space dimensionality and abstraction of different layers in the 

system. This was discussed in chapter 6. It would appear that there is a closed loop of reasoning 

which follows: High-level control at the behavioural level (and above) tends to deal with abstract 

representations of sensor and internal state including dynamical patterns that are the result of 

extended interaction over the lifetime of the system (e.g. the proposed level 3 of the 

photomultiplier controller detailed in chapter 9). Lower levels, such as those that have been the 

subject of this thesis, are more directly coupled with the physical world. For example, the control 

of active sensor devices and actuators takes place within a shorter temporal span and possibly has 

to deal with a greater spatial domain (as for the PedestalLevel, EdgeMonitor and MetaPixelGen 

AFSMs in the laser scanner). The low-level systems are embedded in the physical interaction of 

the agent and its environment, and as a result must be able to filter out massive amounts of 

rapidly changing and irrelevant information from their "view" of the world in order to provide 

higher levels with stable and more slowly changing information. They must do this for two 

reasons: firstly, the higher levels are normally physically remote from the low levels and the 

transfer of large amounts of information in suitable time periods is not practical; secondly, the 

higher levels require information of a more general nature in order expand the temporal domain in
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more abstract terms. The latter is true in part because they are forced to interact on a longer time 

scale due to their remoteness from the physical world and also because of the benefits gained 

from taking the temporal domain into account. This brings us back to the beginning of the loop. 

Figure 10.2 shows this in pictorial format with the low-level processes of an agent acting with a 

large spatial resolution and feeding back to higher levels that have an increased temporal 

resolution and different terms of reference from those of the lower layers.

G rad ien t S ignal

D ifferentiation Function

Tim e S e r ie s  S igna ls : t-3

Tim e d e la y s

O n e -d im en sio n a l s e n s o r  a rra y s

A verag ing  function

Figure 10.2. Low-level spatial resolution turning into high-level temporal resolution.

This layered abstraction based on the temporal and spatial interactions of processes is also 

suggested and implemented in mobile robot control in [AlbusSl] and [Herman et al 90], Further, 

it is similar to the discussion in the Society of Mind [Minsky85], although the ideas presented in 

that reference are largely unsubstantiated there in terms of physical real-world examples. Other 

sources too recognise this phenomenon which, if not considered explicitly in system development, 

results implicitly from work on system constmction and development. Work that does address 

these issues can be found in [Causse & Christiensen 94]. The relevant message of the first part of 

this thesis was that behaviour based systems must also take this gradation of interaction into 

account, but in a way that maintains the essential characteristics of the field. We have done this in 

our work. A resulting observation is that at each level the interacting processes may be viewed as 

communities of interacting agents or agent-processes (depending on the viewpoint of the 

observer), not only at that of the physical-world agent environment level but as also at layers of 

activity below that, within subsystems of individual agents.

This layered multi-agent community view of a system emerges naturally in many examples. 

Starting at the physical component level it can be seen that there is a clustering of activity that 

has already been identified as the sub-behavioural level. The next level up is that of the larger
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task and behaviour-achieving agent that interacts in the world in the manner of a robot or animal. 

Above this it is possible to identify a level of interacting communities, such as groups or teams of 

people or more obviously the communal insects such as bees, ants and termites. In this vein 

BBAI work in multi-robot systems has been reported in [Parker92], [Balch et al 95], [Mein91], 

[Mataric95], [Steels89] and [Steels94], among others. A similar upward expansion of agenthood 

can be attributed to the more technological domain of the industrially situated-laser scanner 

system. The bottom level is the activity of the controlling AFSM processes that interact and 

manifest themselves at the subsystem level of the photomultiplier and optics controllers along 

with the user interface. The next layer up is that of the hardware parts of the laser-scanner, the 

optical head and the front-end defect-detection host computer. Going one level up again, there is 

the level of interacting machines in the machine room of the factory.

Given this layered picture, it is reasonable to postulate that the general techniques, design 

philosophies and frameworks of BBAI systems may well prove to be sufficient for system 

development at all these levels of agent abstraction. It must be emphasised that there is still much 

work to be done to investigate the effect and value of this postulate, though, not least in the 

automation of the design and development process that was introduced and explored in the second 

part of this thesis.

10.4. Distributed Sub-Behavioural Learning and Adaptation
The second part of the thesis led on from the first as the consequence of a perceived need for 

automation in the design and development of complex BBAI control structures at the various 

levels of abstraction and terms of reference identified above. Aspects of embedded learning and 

adaptation were examined in order to assess the effect of building them into a BBAI control 

architecture at a component or sub-behavioural level. The results were demonstrated in the 

framework of the subsumption architecture with the respective enhancements and additions to the 

basic augmented finite state machine (AFSM) processes. The use of learning and adaptivity has 

been reported extensively in the BBAI literature, but almost entirely at the level of the behaviour 

of the main agent in response to its environment. Our work has concentrated on the actual 

mechanisms that maintain the behaviour - mechanisms that are normally hardwired at the design 

stage.

It was found that the enhanced/adaptive AFSM processes could be built beneficially into 

existing subsumption control structures and that two or more such processes could be utilised 

with no adverse effects in terms of system stability. On the contrary, it was found that the 

systems with more that one enhanced/adaptive AFSM were generally more effective on a global 

system level than their non-enhanced counterparts in terms of both robustness and task 

achievement. However, it was also noted that it was not necessary to enhance all of the AFSMs 

within a system; some cases existed where no obvious benefit would result from the added
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complexity (e.g. the AFSMs in the scan acquisition subsystem of the photomultiplier control 

structure in chapter 5 section 2).

In general the robustness of a system is increased if subsystems are designed to be as self- 

sufficient as possible and are able to utilise their own "knowledge" of their local domain in order 

to function better. "Knowledge" in the case of the BBAI systems implemented for this thesis 

refers to the implicit domain knowledge that is present m the parameter values and structure of 

the various levels of an agent's control mechanism. Although a system that consists of a number 

of communicating, interacting and asynchronous (i.e. with no imposed artificial timing constraints 

that can lead to deadlock between processes) agents may perhaps not achieve an optimal 

performance in any given situation, it is nevertheless inherently more robust due to the decreased 

dependence on specific relationships with other parts of the system.

10.5. Some Other Points Of View
The lower-level AI based control advocated in the thesis is not intended to replace the techniques 

of classical control. At the same time it is not augmenting a classical control regime. The nature 

of AI system design has so far generally failed to address the lowest of the conceptual levels of 

activity that have been highlighted by the work reported in this thesis and the domain has largely 

been left to be filled by existing tried and tested control techniques. This trend has resulted in the 

development of some hybrid systems that utilise a two-part combination of both methodologies: 

AI and classical control (an example of which is detailed in [Herman et al 90]). These 

architectures have in general been the focus of much recent attention. However, there is room 

within the AI framework and BBAI in particular for attention to lower-level control issues that 

are not suited for treatment by classical techniques. It is suggested that any hybridisation at these 

lower levels would seem to be more likely to occur beneficially with a merging of techniques 

rather than from a basic top-down two-part split.

The problems typified by real-world domains such as robotics consist of tasks that contain 

unpredictable events, changing environments and systems that are difficult to model [Franklin & 

Selfridge 90]. The work reported in this thesis has taken the issues of intelligent-agent-based 

control down to that of sensory subsystems. This effectively removes the need for the two-part 

split between high-level AI and low-level control development that is a fundamental characteristic 

of hybrid systems. Although both classical control and the planning and modelling frameworks of 

classical AI are tried and tested methodologies that are used far too widely and successfully to be 

dismissed, the positive results of the experiments on the laser-scanner inspection system reported 

in this dissertation have shown that the low level AI, intelligent-agent-based approach is at least 

viable and shows promise for use in applications as well as in future research.
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10.6. Conclusion

The results of the second part of the thesis reinforce the agent-based system view of an 

autonomous system's control stmcture that is advocated in the first. By enhancing some of the 

component parts of a behaviour based control architecture at a sub-behavioural level, we 

achieved an improvement in global system stability and robustness. The additional functionality 

included the embedding of a number of different processes that ran in the background of the basic 

mechanism, providing automatic configuration {learning) and adaptation. These processes were 

shown in chapter 8 to provide also an automatic association of complex input information with a 

basic system operation, and a continuous tuning of output and actuation characteristics. At the 

level of the work reported here, the basic architectural building-block was an inherently 

asynchronous component of a behaviour-achieving control stmcture. The addition of an ability to 

learn useful input-space configurations and to adapt output continuously to ongoing changes in 

the immediate surroundings and situation gives these basic processes a significant boost in the 

direction of autonomy. For example, it was reported that designer-specified relationships between 

two such processes were often changed dynamically later as they gained experience in their 

environment. Thus it can be appreciated that these processes are acquiring their own repertoire of 

skills and abilities on top of and sometimes in place of those originally laid out by the designer.

It was stressed that these "sub-behavioural" components were operating as part of a 

behaviour-achieving stmcture, but it is now apparent that they are exhibiting their own form of 

behaviour as dictated initially by the designer but to an increasing extent driven by their ongoing 

interactions with surrounding processes. At this level of system abstraction, below that of the 

physical agent system (such as a mobile robot or product inspection system) there is clearly a 

lower-level community of interacting agents, each with its own unique behaviour. This presents a 

very different view of a system from that generally taken in classical design and classical AI and 

one which currently does not provide any kind of formal methodology, though [Smithers94] and 

[Beer94] give examples of work directed toward this end based on dynamical systems theory 

while [Colombetti et al 94] presents an attempt at setting out a formal approach to systems 

design and development called "Behaviour Engineering".

This multi-level, distributed and multi-agent view of complex systems gives a different 

perspective from that normally taken by designers. Any use of it in the future should contribute to 

and augment understanding of the physical and behavioural requirements for complex systems 

development, in a realistic environment. This thesis has illustrated many aspects of this novel 

approach to system development. Chapter 9 indicated the lines of future research that we consider 

to be most useful on the basis of our experience with the laser-scanning test-bed application, and 

each of these fall within the three main result areas that have been emphasised in this concluding 

chapter: i) the need for a layered agent-based approach to the distributed control of real-world 

autonomous systems (section 10.1 and 10.3), ii) the presence of sub-behavioural layers of
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interaction and activity below that currently addressed by BBAI systems (section 10.2), and iii) 

the benefits of embedding mechanisms of learning and adaptivity within all these agent-levels 

including, especially, the lowest level aspects of sensor and actuator interaction (section 10.4).
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A. A Transputer Environment for Building 

Subsumption Control Architectures

A.I. The Subsumption Architecture
The Subsumption Architecture was amongst the first frameworks to emerge from the Al 

community that advocated the bottom-up design methodology for intelhgent robotics. It has since 

been continuously under development and a programming language called the Behaviour 

Language has been designed to support it at a higher level. This work was started by Rodney 

Brooks of the Massachusetts Institute Of Technology and has lead the way in the up and coming 

field of Behaviour Based Artificial Intelligence.

The Subsumption Architecture provides a mechanism which enables the real-time control 

mechanisms of autonomous mobile robots to be built up in layers starting with very basic, 

reactive response and reflexes. New layers of the system can be added without the need to 

modify already operational lower ones. One of the main characteristics of the system, one that 

typifies that of all BBAJ research, is the nature of the interaction of the layers with sensors and 

actuators and thus the real-world. Rather than using a functional approach which leads to a 

sequential pipe-line mechanism of: sensors—>sensor processing—>map building—̂action planning 

-faction realisation—̂actuators (or some such), the Subsumption Architecture results in a 

massively parallel mechanism with modules which have access to virtually any sensory or 

internal information. The exact interface for each module is specified and built into the system as 

part of the design process (although work has been reported that examines mechanisms for 

learning these interconnections dynamically [Maes & Brooks 90]). The resulting redundancy 

enhances the systems performance by making it more robust and more able to respond quickly (as 

a reflex) to critical situations.

The architecture focuses around a number of interconnected finite state machine processes 

that have been augmented with real-time clock information, hence: Augmented Finite State 

Machines: AFSM. The AFSMs are interconnected via single element buffers and "wires". 

Information is not stored in the buffer, it simply contains the most recently arrived message, it is 

up to the AFSM to respond to this in some suitable way as messages can be lost if a new one 

arrives before the old has been used.

Each AFSM uses its real-time clock information to maintain a regular processing cycle. The 

finite state machine inputs are sampled and processed to provide the next output state once every 

clock period. This period is constant for all AFSMs in the network, being fixed at compile time.
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Thus the AFSMs are loosely synchronised in that they all process at the same rate. However, the 

exact stage of an AFSMs process can not be determined since there is no signal between the 

machines to provide this information. It is in this respect that the network is asynchronous. 

Therefore an AFSM reads its input state and calculates its output which is then transmitted. 

Because of the asynchronous aspect of the AFSMs the longer an output remains active the more 

likely it is to have an effect. However it may also be that the response of an AFSM must change 

quickly in order to reflect the state of its inputs. These are some of the aspects that must be 

considered during the design of Subsumption networks.

The inputs and outputs of a particular AFSM may be inhibited, suppressed or given a default 

value by a wire output of another AFSM. This is the only way in which wire may interconnect. 

Figure A.l presents a single AFSM.

Inhibition is applied to a module's output and prevents the module's output from reaching its 

destination.

Suppression effects the input to an AFSM. Its effect is similar to that of an inhibition but 

additionally the suppressing AFSM forces a new value onto the wire.

Default provides a value for a wire that is not currently active. It is in effect an inverse of 

suppression.

S u p p r e s s o r Inhibitor

Inputs Outputs
A F S M

Default

Figure A.I. An augmented finite state machine and its interconnections.

A single layer of a system consists of several AFSMs and as higher layers are added the 

lower layers become totally embedded in the system. The higher layers influence the lower layers 

by inhibition and suppression and also by their effect on the actuators and hence the vehicle's 

situation in the world. More detail on programming agents using the Subsumption Architecture
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and details of robots that have been built can be found in (amongst others) [Brooks86b], 

[Brooks90] and [Brooks91].

Sensory
Input

Actuory
Output

Figure A.2. An example Subsumption network showing the layered development of such systems with 
each layer being built up out of multiple AFSMs.

A.2. Subsumption on Transputers
This section begins by briefly describing the transputer microprocessor. For further details the 

reader is guided to one of the many transputer programming text books (for example [Bums88]). 

After this introduction the section continues with the implementation of the subsumption 

architecture onto a transputer based system.

A.2.1. The Transputer

Transputers are high performance, reduced instruction set (RISC) microprocessors designed to be 

easily incorporated into parallel networks of multiple processors. Each transputer can run time- 

sliced processes the scheduling of which is implemented in the processors hardware rather than in 

some higher level kernel or operating system. A single transputer has a standard type address 

space for local memory and other local input/output ports. In addition to this four bi-directional 

high speed (up to 20Mbits/s) links for connections to other transputers are provided with on chip 

control hardware for each link. Figure A.3 shows a simplified layout of both a single transputer 

and a simple array of nine.

Software on a transputer can communicate with that on a neighbouring transputer via a 

channel protocol that is implemented over the hardware links. This channel protocol is used to 

communicate between all processes in a transputer system whether they are located on the same 

processor or not. This means that at the process level the hardware division of transputers is not 

significant, processes communicate in the same way whether they are located on the same 

processor or on a neighbouring processor. Standard routing software is available that provides a 

network with message routing between non-neighbouring transputers. This message passing

A Transputer Environment for Building Subsumption Control Architectures 215



between processes is a fundamental characteristic of the transputer. Whilst global data may exist 

between processes mnning on a single transputer there is no means of providing a complete 

network with global data. In fact the use of global data is generally not encouraged.

Local
M em ory

T ra n s p u te r
M ic ro p ro c esso r

Local 
Input & 
O u tp u t
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figure A3. Showing details or a single iranspuier (left) and an array or interconnected transputers
(not showing local address space)

Interconnected by a grid of physical links large arrays of transputers can be built up relatively 

easily and in many configurations (the grid shown above in figure A.3 is a simple example). It is 

also relatively straight forward to add new transputers to an existing system in order to increase 

the available processing resources. Multiple transputers can be used in close proximity or they 

can be distributed around a larger system using the high-speed serial links for communication (for 

a more detailed discussion see [Ibbett & Topham 89]).

A.2.2. Augmented Finite State Machines and Wires

It would appear that the layered AFSM approach of the Subsumption Architecture will adapt 

well to the distributed processing architecture of the transputer. In the same way that each AFSM 

is an isolated processing machine only connected by its input and output registers, each 

transputer process only shares data with other processes via channels. The communication 

between discrete transputers and multiple processes running on them would thus appear to be a 

useful characteristic when implementing the wires of a Subsumption network. There is no marked 

difference between hardware processors and software processes and this allows the distributed 

machines of the Subsumption Architecture to map well onto a transputer network. Another aspect 

that supports the conjected suitability of the Subsumption Architecture is the fact that the 

characteristics of enhancing a system by adding further behavioural layers is similar in principal 

to adding extra transputer based hardware in order to increase a systems processing resources.

Transputer processes are inherently synchronous and this posed a problem with an 

architecture along the lines of that implemented by Brooks in which all AFSMs are fundamentally
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asynchronous. Another problem was how to implement the functionality of the wires and the 

different connections which in the Subsumption architecture which takes place as a property of 

the wires themselves. Transputer links have no function except to transfer data. It turned out that 

both of these aspects could be solved by implementing each AFSM as a pair of transputer 

processes: An input process and an AFSM process. These appear in figure A.4.

Augmented Finite
State Mcctiine

AFSM
Driver

Process

Input 
J  Buffet 
■W ProcessInput Channels

Output Channels

Figure A 4. Transputer processes making up a Subsumption augmented finite state machine.

The diagram above shows the two AFSM transputer processes and the transputer channels 

that connect them. The subsumption wires and their connection node function is implemented by 

the input buffer process. Hence each wire appears simply as a transputer channel. The 

subsumption connection node is not obviously distinguishable by viewing the transputer network 

channels alone. The following describes each process in more detail.

Input buffer Process

The input buffer process has two functions. The first is to provide the desynchronisation 

between the transputer AFSM processes and the second is to implement the functionality of the 

wire connections nodes (Inhibit suppression and default). Figure A.5 shows how a number of 

AFSM outputs each suppress those of lower AFSMs and eventually effect an output AFSM. This 

is implemented in transputer processes as four separate channels all connected to the input buffer 

of the final destination AFSM process pair. It is this input buffer that performs the arbitration 

between the various suppressor nodes.

Channels into the input buffer are grouped into blocks of wires as shown in the example in 

figure A.5. The feature that brings these wires together is that they all have a common 

destination, they are all connected either directly or by wire nodes to the destination AFSM D. 

The wires of each block are grouped and processed together because the value at the destination
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input buffer depends in the activity of all these wires and this must be taken into account when 

AFSM registers are updated. A simple order of priority is used for the suppress and default nodes 

with the highest (in the case of suppress) active AFSM taking priority over lower ones. This 

priority is set when the system is built and the priorities are sorted taking into account the 

characteristics of the wire block. For example default nodes are effectively an inverse of suppress 

resulting in a reduced priority for the wire concerned rather than increased.

Single Subsumption Wire 
Subsumption AFSMs

AFSMDAFSM A

AFSMB ?

Transputer
Processes

Figure A.5. A set of wires with suppression nodes left as found in a Subsumption network and right as
implemented in Transputer processes.

Within the input buffer process is a main loop that continuously polls the input channels wire 

block by wire block testing to see if any have data and servicing them if they do. A channel must 

be read in order that the sending process can continue operating. It is this that desynchronises the 

system and prevents deadlock between processes. At the end of each iteration, the internal 

channel that connects to the AFSM driver process is tested to see if the AFSM driver is 

requesting an update of its internal registers. Finally before repeating the loop the process is put 

on hold in order to give other processes CPU time. This is presented in the pseudo-code listing 

below.
D o forever:

T e st  e a c h  input w ire s e t  for a c tiv e  c h a n n e ls  
if a c t iv e  th en  read  in d a ta  
if not su p p r e s s e d

u p d a te  reg ister  
T e st  A FSM  driver u p d a te  r eq u est  

if a c t iv e  s e n d  all reg is ter  d a ta  and  s ta tu s  to A F SM  driver  
R e s c h e d u le  th e  p r o c e s s  

L oop End
Input buffer process pseudo-code.

AFSM Process

This process performs the actual function of the AFSM as designed by the programmer. A 

loop repeatedly executes the relevant program instructions with the characteristic time period that 

is determined at compile time. This ensures that all the AFSMs in the network are loosely
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synchronised. The pseudo-code bellow outlines the operations. During the execution of the AFSM 

process the input registers are updated automatically. However, outputs must be exphcitly 

commanded by the AFSM function that is written by the designer.

Do forever:
Store real-time clock reading for u se  in characteristic time calculation  
C om plete handshake with input buffer p rocess to update registers 
E xecute AFSM functionality
T est time and suspend  p rocess until system  characteristic time is up 

Loop end
AFSM process pseudo-code.

A.3. A Behaviour Language
This section outlines the method of specifying and programming a network of augmented finite 

state machines to run on a transputer system and hence build a subsumption architecture control 

stmcture. The syntax is loosely founded on that of the behaviour language developed by Rodney 

Brooks and others at the Massachusetts Institute of Technology, however rather than being based 

on the LISP programming language this version is built around C. This is because the available 

transputer programming tool-set uses a parallel dialect of the C language. The implementation 

bellow provides a subset of the behaviour language, as presented in [Brooks90b], which can then 

be translated into standard C, compiled linked and configured for execution on a transputer 

system.

The body-forms of the AFSMs are specified as a number of "whenever" rules or simply as a 

block of C program code. If C code is used it must be ensured that there are no loops included 

that may take longer than the systems characteristic time to execute. If this does happen the 

synchronisation of the network will be dismpted. Instead, iteration should be built in to the 

function of the AFSM which is also more in keeping with the philosophy of the subsumption 

architecture. AFSMs are generated from level zero (i.e. non-nested) whenever statements and 

defmachine statements only. As in the behaviour language the interconnecting subsumption wires 

are defined using the connect statement. Details follow.

Single Rules:

Each AFSM is implemented as an individual process that runs concurrently with all other

AFSMs in the system. The most simple way of creating one of these in the Behaviour Language

is to specify a whenever construct of the form:
w henever( condition)!

body-form;
}endwhenever;

This creates a process that continuously loops once each period of the systems characteristic 

time, monitoring the specified condition and when found to be true executes the body form. In the
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Transputer C  version the body form can either take the form of further nested whenever 

statements or a number of 'C  statements (which should not include any loops).

Nested Rules:

Whenever statements may be nested but lower levels are not turned into separate processes,

they are built into the process of the first, top level whenever mle term. Each whenever mle is

executed as a continuous loop that ensures the correct functionality and dynamics of the AFSM

(see section A.2 above). In normal cases once entered the whenever wül execute infinitely and so

in the case of the example below, once condition_la is found to be true the original condition_l

will no longer be tested. This can be remedied in two ways described bellow.
w henever( condition_1 ){

whenever! condition_1 a){ 
body-form_1 a;

}endwhenever;
jendw henever

Exclusive Rules:

The exclusive form causes all whenever forms on the same nest level to be actively tested each

cycle of the system's characteristic time. This allows more than one whenever condition to be

monitored and different actions taken depending on the result:
exclusive!

whenever! condition_1 )( 
body-form_1 ;

Jendwhenever; 
w henever! condition_2){ 

body-form_2; 
jendwhenever;

}endexcluslve;

This effectively creates a loop that tests both conditions and then executes the body-form of 

the first condition to become true. Exclusive whenevers may also be nested and they may also be 

combined with normal whenever forms.

Terminating A Whenever Execution:

The continuous loop executed by a whenever form may be terminated with the use of a

donewheneveri) statement:

w henever! conditlon_1 ){
whenever! conclition_1 a){

w henever! conditlon_1aa){ 
body-form_1 aa; 
donew henever! level); 

jendwhenever; 
jendwhenever; 

jendwhenever;

The donewhenever causes the program to exit the current level of whenever form and to 

return to testing the condition of the specified level. The argument level can be used to specify the 

number of levels to jump out. The default is to simply exit the current whenever level.
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Machines That Can Be Interlinked:

The whenever form on its own is of little use in building subsumption networks as it does not 

provide for the declaration of AFSM registers which allow the interconnection of wires. The 

defmachine construct allows this by having an AFSM name declaration field and a register 

declaration field.

The machine name is used in conjunction with register names in the generation of Transputer 

channel implementations of the Subsumption wires. The deals: field contains the register 

declarations which are standard 'C  variable type definitions with an optional initialisation value 

for each (the default initialisation value is zero). The mle: field contains a body-form as outlined 

above with whenever and exclusive forms and standard C code. These make use of the declared 

registers.
defm achine( name){

deals: type1 name1 [ = initial va iu e l], typeN nam eN [ = initial vaiueN]; 
rule: body-form;

}endmachine;

Connecting The AFSMs:

Wires are generated from connect() statements. These may be located anywhere in the 

program code so long as they appear at the beginning of their own line. The connect statement is 

of the form:
connect( source, destination [, destination2, destinationN] );

Where: source and destination are of the form: AFSM-name.Reglster-name

As indicated a single source register may be connected to an unlimited (within reason) number 

of destination registers however the reverse is not true, only one register can input to a destination 

unless Inhibit, Suppression or Default connections are used. In which case the connect statement 

take on the form:
connect( source inhibit( destination));
connect( source suppress( destination));
connect( source defauit( destination));

Sending Out Register Contents:

The output() statement uses the parallel 'C  ChanOut() function to transmit the contents 
of a specified register over its wire-channel. The form is:

output( register_name);
Register Status:

The receivedO and ifreceived() fmnctions return an integer value of 1 (TRUE) if the 

specified register has been updated since the last time it was read.
received( register_name);

ifreceived( register_name){
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body-form:
}

A.3.1 Multi-Transputer Programs

The Inmos C  development tool-set requires that at least one "mainQ" function be complied 

and linked for each target transputer. This is easily achieved by writing separate behaviour 

programs and translating them into 'C separately. The only new behaviour statement that is 

necessary is extemal( reg.afsm), which is used in place of the source or destination part of a 

connect statement.

For wires originating locally use:
connect! source, external! destination nam e), destination2... destinationN); 
connect! source, extem a^suppress! destination nam e)), d estin a tion 2 ,.... 
destinationN);

Wires that originate from another transputers must be declared as external inputs: 
connect! external! source name), d estination i,....destinationN);

The configuration of the transputer network is however more complex and care must be taken 

to match up the transputer channels in the *.CFS file with the references in the behave *.CON 

output file.

*NB* When building multi-transputer programs care must be taken to ensure that the 'C  

compiler uses standard data types for all transputers in the network. For example the default size 

of an "int" data type on a 16bit transputer (e.g. T222) is 16 bits whilst on a 32bit transputer (e.g. 

T425) it is 32 bits. This can lead to problems with the channel protocol. The afsmglobs.h file 

includes a data type definition for INT32 which specifies a 32 bit integer ("long int"). Using this 

for all integer data connections between AFSMs will prevent this problem from arising. 

Alternatively specifying either "long int" or "short int" for both transputers will also be 

satisfactory. Floating point and character data types do not cause problems.

Array Data And AFSM Connections

It is possible to specify AFSM registers to be arrays of up to 65535 bytes. These are dealt 

with slightly differently by the behaviour translator program which requires the following special 

attention:

• A typedef statement must define the array i.e: typedef int array[200]; defines an array 
of 200 integers. This "array" type can then be used to declare registers in machine afsms: array 
dataarray.
• All array registers must have names ending in "array" e.g. "dataarray".
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A.4. An Example Program
Hundreds

Units Count:

TehsCounI

Key Input I Display

Figure A.6. Showing the counter AFSMs of the test program.

This program is a test program written to be executed on one transputer that is resident on the 

personal computer development system expansion card. Since the only input and out put available 

is the screen and keyboard these are used to control and display the outputs of a several counter 

AFSMs as shown in the diagram bellow. This program is also available as a multi-transputer 

version with the key input and display being run on one transputer and the counter AFSMs on 

another.

The following is the behaviour language program listing:
/ * * * * * *     /

r  */

r  COMMUNICATING MACHINE TEST.
/* V
/* Basic Suppression test. */
/* Layers of counter afsm s output to a display afsm, bottom is */ 
/* a units counter which is subsum ed by a tens counter is a '2' */ 
/* key is hit etc. */
r ......................................................  *.............
#include<iocntrl.h>
#include<ctype.h>

/* KEYBOARD afsm reads the PC key board and if a digit is read 
/* its decimal value is sent.

defmachine( keyboard)! 
decis: int keyin, int numin;

connect! keyboard.numin, units.resetval); 
connect! keyboard.keyin, tens.sendflag); 
connect! keyboard.keyin, hundreds.sendflag);

mle:
whenever! 1){

keyin = pollkeyQ; 
if! isdigit! keyin)){

numin = keyin - 48; 
output! numin);

}
if! isalpha! keyin)){

output! keyin);
}

jendwhenever;
jendmachine;

/* Convert ascii to decimal.*/
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/*****************************************************************/
/*****— ********************************************************/

/* DISPLAY machine sen d s value to screen.*/

defm achlne( display){ 
decIs: Int countvalue;

rule:
whenever( recelved( countvalue)){

printf("THIRD: Count value = %d\n", countvalue): 
jendwhenever;

jendm achine;
/****************— ******.*********************.****************/

/ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

/* UNITS machine sen d s value to third machine.*/

defm achine( units){
decis: int count, int resetval;
connect( units.count, display.countvalue);

w henever( 1){
if( count% 4 == 0){

output(count);
}
count++;
ifreceived( resetval){

count = resetval;
j

jendwhenever;
jendm achine;
/*********.***— *****************— **************************/
/ * * * * * * * * * * * * * * * * — * * * * * * * * * * * * * * * * — * * * * * * * — * * * * * * * — * * /

/* TENS afsm  caounts in tens and if a  Ï  is received from the */ 
r  keyboard then the count value is output to the DISPLAY afsm . */ 
r  the counter to that value. */

defm achine( tens){
decis: int count, int sendflag;
connect( tens.count, suppress(display.countvalue));

rule:
whenever( 1){

count = count + 10; 
if( (char) sendflag == 't'){

if( (count/10)% 2 == G){ 
output( count);

j
}

jendwhenever;
jendm achine;
/ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * /

/ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * /

/* HUNDREDS afsm caounts in 100s and if an 'H' is received from */
/* THE keyboard then the count value is output to the DISPLAY */ 
r  AFSM. the counter to that value. */

defm achine( hundreds)! 
decis: int count, int sendflag;
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connect( hundreds.count, suppress( display.countvalue)); 

rule:
whenever( 1){

count = count + 100; 
lf( (char) sendflag == ‘h'){ 

output( count);
}

}endwhenever;
jendm achine;

/***************************«******************— *************/

/* End Of B ehave Source File */ 
/*************************************.***************************/
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B Pseudocode Listings

B.l. Pseudocode for Chapter 5

B.1.1. Motor and Laser Control Subsystem

MotorControl AFSM:
connect this stalled counter register to external optics control page stalled counter register 
connect this actual motor sp eed  register to external optics actual motor sp eed  register 
connect external optics control page se t motor sp eed  register to this motor se t  sp eed  register

whenever( ALLWAYS){
If photomultipler channel 1 is active and motor sp eed  setting > 0

calculate channel 1 average scan level over last 5 AFSM cycles  
if average scan level is the sam e as the last average scan  level 

se t possible_stall_chan1 flag
end if

end if
If photomultipler channel 2 is active and motor sp eed  setting > 0

calculate channel 2 average scan level over last 5 AFSM cycles  
if average scan  level is the sam e as the last average scan  level 

se t possible_stall_chan2 flag
end if

end if

sta lL possib le = possible_stall_chan1 flag OR possible_stall_chan2 flag 
if sta lL possib le

increment stalled counter 
if stalled counter > 5

reset stalled counter to 0 
increment motor sp eed

else
reset motor sp eed

end if

}

output actual motor sp eed  register 
output motor stalled state register

LaserMonitor AFSM:
connect laser power register to external optics control p age laser power register

w henever( ALLWAYS){ 
read laser power 
output laser power register

}
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B.1.2. Photomultiplier Control Modules

ScanAquire AFSM:
connect scan  buffer to external EHT control page, PedistalLevel AFSM and EdgeMonitor AFSM

w henever( ALLWAYS){
initiate sca n  buffer read 
wait for sca n  acquisition  
if error then output error signal 
Increment sam p le  counter 
output sca n  buffer register

}

PedestalLevel AFSM:
connect scan level to external EHT control page, BallPark AFSM and NearLin AFSM

whenever( scan  buffer received){
sca n  level = m ean scan  level betw een left scan  ed ge  and right scan  ed ge  
output scan level register

}

EdgeMonitor AFSM:
connect leftsdge register tc PedestalLevel AFSM left scan  ed ge register 
connect rightedge register to PedestalLevel AFSM right scan  ed g e  register 
connect external BallPark state register to this state register

w henever( state is not foldback){

search  scan  buffer for left positive edge  
search rest of scan  buffer for right negative ed ge  
output left ed g e  register 
output right ed g e  register

BallPark AFSM:
connect this EHT step  s ize  register to EHTOutPut AFSM step  s ize  register 
connect this state register to EdgeMonitor state register

w henever( system  in automatic mode){

if scan level < FOLDBACK_B max limit OR EHT voltage at hi limit 
state = FOLDBACK_B 
step size  = FOLDBACK_B EHT voltage step

e lse
if scan  level < QDIESCENT_MAX limit and scan  level < QUIESCENT_MIN limit 

state = QUIESCENT
stepsize = QUIESCENT EHT voltage step

e lse
if scanlevel gradient = EHT voltage gradient 

state = NEAR LINEAR 
step size = 0

else

end if

state = FCLDBACK_A
step size = step size  = FCLDBACK_A EHT voltage step

end if
end if
output state register 
output step size  register
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NearLin AFSM:
connect this EHT step  size  register to suppress EHTOutPut AFSM step  size  register

w henever( system  in automatic mode){
if scan level > QUIESCENT_MAX limit and scan level gradient = EHT voltage gradient 

if scan  level < setpoint - BOUNDARY
step size  = adjust factor x  (setpoint - scanlevel)

e lse
if scan  level > setpoint BOUNDARY

step size  = adjust factor x (setpoint - scanlevel)
e lse

do nothing, scan  level is within range.
end if

end if
end if
output step  size  register

}

EHTOutPut AFSM:
connect EHT voltage register to external EHT control page, BallPark AFSM and NearLin AFSM

w henever( ALLWAYS){
if received fixed voltage setting

EHT voltage = fixed voltage setting
else

if EHT voltage + step size  > 0
EHT voltage = EHT voltage + step size

e lse
EHT voltage = 0

end if
end if

if EHT voltage < hardware voltage limit 
se t EHT voltage

e lse
set voltage to hardware limit 
EHT voltage register = hardware limit

end if
output EHT voltage level register

B .l.3. User Interface 
MasterPage AFSM:
connect page view  se lec t register to other display p age AFSM s

w henever( ALLWAYS){
if p age display is se lected

display user interface and p age status
end if
process user input requests

}

TimeMonitorPage AFSM:

w henever( ALLWAYS){
poll AFSM timer channels for characteristic time overruns 
if overruns detected  and page display is selected  

display overrun status
end if

}
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DualChannei Control AFSM:
connect fixed EHT voltage register to suppress all

external photomultiplier channel EHTOutPut AFSM s
connect se t automatic register to suppress all

external photomultiplier channel BallPark and NearLin AFSM s

w henever( ALLWAYS){
If p age display Is selected

display channel status summary for all channels
end If
p rocess user Input requests

}

PhotomultiplierControlPage AFSMs:
connect fixed EHT voltage register to external photomultiplier channel EHTOutPut AFSM 
connect se t  automatic register to external photomultiplier channel BallPark and NearLin AFSM s

whenever(ALLWAYS){
If p age display Is selected

display channel status
end If
if status monitor enabled

sa v e  status data to file
end If
process user Input requests

}

OpticsControlPage:
connect motor sp eed  register to extem al MotorControl AFSM se t motor sp eed

whenever(ALLWAYS){
If p age  display Is selected

display motor and laser status
end If
p rocess user Input requests

}
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B.2. Pseudocode for Chapter 8

Enhanced BallPark AFSM:
connect this EHT step  size  register to EHTOutPut AFSM step s ize  register
connect this state register to EdgeMonitor state register
connect status registers to external user interface EHT control page

w henever( system  in automatic mode){

if scan level < FOLDBACK_B max limit OR EHT voltage at hi limit 
rule vector = 0,0,0,1

e lse
if scan  level < QUIESCENT_MAX limit and scan  level < QUIESCENT_MIN limit 

rule vector = 1 ,0,0,0
e lse

if scanlevel gradient = EHT voltage gradient 
rule vector = 0 ,1 ,0 ,0

else
rule vector = 0 ,0 ,1 ,0

end if
end if

end if
Pre-process input vector (i.e. normalise or sca le  input values to range 0-1)
Apply input to Kohonen layer to get situation map vector
Apply situation map vector and rule vector to G rossberg layer to get final output
If AFSM rule active{

Update Kohonen layer
Update Grossberg layer with rule vector
update neteffect variable

end if

if AFSM final output active
generate step  s ize  and state register value 

state = NEAR LINEAR 
step size  = 0 OR

state = FOLDBACK_A
step size  = FOLDBACK_A EHT voltage step  OR 

state = QUIESCENT
step size  = QUIESCENT EHT voltage step  OR 

state = FOLDBACK_B 
stepsize = FOLDBACK_B EHT voltage step

output step  size  register
end if
generate state indication

output status information registers 
output state register
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Enhanced NearLin AFSM:
connect this EHT step  s ize  register to suppress EHTOutPut AFSM step  size  register 
connect status registers to external user interface EHT control page

w henever( system  in automatic mode){
if scan  level > QUIESCENT_MAX limit and scan level gradient = EHT voltage gradient 

if scan  level < setpoint - BOUNDARY 
rule vector = 1,0,0

e lse
if scan  level > setpoint BOUNDARY 

rule vector = 0 ,1 ,0
e lse

rule vector = 0,0,1
end if

end if
end if
P re-process input vector (i.e. normalise or sca le  input values to range 0-1)
Apply input to Kohonen layer to get situation map vector
Apply situation map vector and rule vector to G rossberg layer to get final output
If AFSM rule active{

Update Kohonen layer
Update Grossberg layer with rule vector
update neteffect variable

end if

if AFSM final output active
generate step size  register value depending on identified AFSM state  

rule output = adjust factor x (setpoint - scan level) OR
rule output = adjust factor x (setpoint - scan leve) OR 

do nothing, scan  level is within range
output step  size  register

end if

output status information registers
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Adaptive BallPark AFSM:
connect this EHT step  s ize  register to EHTOutPut AFSM step  size  register
connect this state register to EdgeMonitor state register
connect status registers to external user interface EHT control page

adaptive registers: q u iescent_step_size - adaptreg[0]
foldback_A_step_size - adaptreg[1] 
foldback_B_step_size - adaptreg[2]

w henever( system  in automatic mode){

if scan ievel < FOLDBACK_B max limit OR EHT voltage at hi limit 
state = FOLDBACK_B 
step size  = qu iescent_step_size - adaptreg[2]

else
if scan  level < QUIESCENT_MAX limit and scan  level < QUIESCENT_MIN limit 

state = QUIESCENT
step size  = qu iescent_step_size - adaptreg[0]

e lse
if scanlevel gradient = EHT voltage gradient 

state = NEAR LINEAR 
step size  = 0

e lse

end if

state = FOLDBACK_A
stepsize = foldback_A_step_size - adaptreg[1]

end if
end if

if ad justm en tjjeriod  is over
Calculate reinforcement value for last reinforcementjDeriod  for register - adaptreg[n]

If reinforcement has gone down for current register since value w as adjusted  
R eset current register adaptreg[n] to original value 
R everse direction of current register adaptreg[n] adjustment

Else reinforcement has gone up
Save new  value a s  a function of current register adaptreg[n] m ean activity

end if

se t pointer to next register for adjustment adaptreg[n+1]
Make new  adjustment to new  current register adaptreg[n] value a s  a  function of 

tuningjactor, 
current value,
adaptreg[n] m ean reinforcement and 
adaptregjn] register activity

end if

output state register 
output step size  register
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Adaptive NearLin AFSM:
connect this EHT step  s ize  register to suppress EHTOutPut AFSM step  s ize  register

adaptive registers: adjust factor

w henever( system  in automatic mode){
if scan  level > QUIESCENT_MAX limit and scan level gradient = EHT voltage gradient 

if scan  level < setpoint - BOUNDARY
step size  = adjust factor x (setpoint - scanlevel)

e lse
if scan  level > setpoint BOUNDARY

step size  = -adjust factor x (scanlevel - setpoint )
e lse

do nothing, scan  level is within range.
end if

end if
end if

if adjustment_period  is over
Calculate reinforcement value for last reinforcement_period for adjust factor register 
If reinforcement h as gone down for adjust factor setting s in ce  value w as adjusted  

R eset adjust factor register adaptreg[n] to original value 
R everse direction of adjust factor register adjustment

Else reinforcement has gone up
S ave new  value a s  a function of adjust factor register m ean activity

end if

Make new  adjustment to adjust factor register value a s  a  function of 
tuningjactor, 
current value, 
m ean reinforcement and 
register activity

end if

output step  s ize  register
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Enhanced - Adaptive BallPark AFSM:
connect this EHT step  size  register to EHTOutPut AFSM step  s ize  register
connect this state register to EdgeMonitor state register
connect status registers to external user interface EHT control page

adaptive registers: qu iescent_step_size - adaptreg[0]
foldback_A_step_size - adaptreg[1] 
foldback_B_step_size - adaptreg[2]

w henever( system  in automatic mode){
if scan level < FOLD BAG K_B m ax limit OR EHT voltage at hi limit 

rule vector = 0,0,0,1
e lse

if scan  level < QUIESCENT_MAX limit and scan  level < QUIESCENT_MIN limit 
rule vector = 1,0,0,0

e lse
if scanlevel gradient = EHT voltage gradient 

rule vector = 0 ,1 ,0 ,0
e lse

rule vector = 0 ,0 ,1 ,0
end if

end if
end if
P re-process input vector (i.e. normalise or sca le  input values to range 0-1)
Apply input to Kohonen layer to get situation map vector
Apply situation map vector and rule vector to G rossberg layer to get final output
If AFSM rule active{

Update Kohonen layer
Update Grossberg layer with rule vector
update neteffect variable

end if

if AFSM final output active
generate step s ize  and state register value 
state = FOLDBACK_B
step size  = qu iescent_step_size - adaptreg[2] OR 

state = QUIESCENT
step size  = qu iescen t_step_size - adaptreg[0] OR 

state = NEAR LINEAR 
step size  = 0 OR

state = FOLDBACK_A
step size  = foldback_A _step_size - adaptreg[1]

output step  size  register
end if

if adjustment_period  is over
Calculate reinforcement value for last reinforcement_period  for register - adaptreg[n]

If reinforcement has gon e down for current register sin ce  value w as adjusted  
R eset current register adaptregjn] to original value 
R everse direction of current register adaptreg[n] adjustment

Else reinforcement has gone up
S ave  new value a s  a function of current register adaptreg[n] m ean activity

end if
se t  pointer to next register for adjustment adaptreg[n+1]
Make new  adjustment to new current register adaptreg[n] value a s  a function of 

tuningjactor, 
current value,
adaptreg[n] m ean reinforcement and 
adaptreg[n] register activity

end if

output status information registers 
output state register
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Enhanced - Adaptive NearLin AFSM:
connect this EHT step  s ize  register to suppress EHTOutPut AFSM step  s ize  register 
connect status registers to extem al user interface EHT control page

adaptive registers: adjust factor

w henever( system  in automatic mode){
if scan  level > QUIESCENT_MAX limit and scan level gradient = EHT voltage gradient 

if scan  level < setpoint - BOUNDARY 
rule vector = 1,0,0

else
if scan  level > setpoint BOUNDARY 

rule vector = 0 ,1 ,0
else

rule vector = 0,0,1
end if

end if
end if
P re-process input vector (i.e. normalise or sca le  input values to range 0-1)
Apply input to Kohonen layer to get situation map vector
Apply situation map vector and rule vector to G rossberg layer to get final output
If AFSM rule active

Update Kohonen layer
Update Grossberg layer with rule vector
update neteffect variable

end if

if AFSM final output active
generate step size  register value depending on identified AFSM state  

rule output = adjust factor x  (setpoint - scan level) OR
rule output = adjust factor x (setpoint - sca n lev e  ) OR 

do nothing, scan  level is within range
output step  s ize  register

end if

if adjustment_period  is over
Calculate reinforcement value for last rein forcem en tjjenod  tor adjust factor register 
If reinforcement has gone down for adjust factor setting s in ce  value w as adjusted  

R eset adjust factor register adaptreg[n] to original value  
R everse direction of adjust factor register adjustment

Else reinforcement has gone up
Save new  value as a function of adjust factor register m ean activity

end if

Make new  adjustment to adjust factor register value a s a function of 
tuningjactor, 
current value, 
mean reinforcement and 
register activity

end if
output status information registers
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Continuous Output Net BallPark AFSM:
connect this EHT step  s ize  register to EHTOutPut AFSM step  s ize  register
connect this state register to EdgeMonitor state register
connect status registers to external user interface EHT control page

w henever( system  in automatic mode){

rule active = 0
if scan level < FOLDBACK_B max limit OR EHT voltage at hi limit 

state = FOLDBACK_B
rulestepsize = FOLDBACK_B EHT voltage step  
rule active = 1

else
if scan  level < QUIESCENT_MAX limit and scan  level < QUIESCENT_MIN limit 

state = QUIESCENT
rulestepsize = QUIESCENT EHT voltage step  
rule active = 1

else

e lse

end if

if scan level gradient = EHT voltage gradient 
state = NEAR LINEAR 

. rulestepsize = 0 
rule active = 1

state = FOLDBACK_A
rulestepsize = FOLDBACK_A EHT voltage step  
rule active = 1

end if

end if
P re-process input vector (i.e. normalise or sca le  input values to range 0-1) 
Apply input to Kohonen layer to get situation map vector 
Apply situation map vector and rule vector to Grossberg layer to netoutput 
If AFSM rule active

Update Kohonen layer
Update Grossberg layer with rulestepsize
update neteffect variable

end if

AFSM step size  output = (neteffect x netoutput) + (1-neteffect x rulestepsize)

output AFSM step size  output 
output status information registers 
output state register
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Continuous Output Net NearLin AFSM:
connect this EHT step  size  register to suppress EHTOutPut AFSM step  size  register 

w henever( system  in automatic mode){ 

rule active = 0
if scan  level > QUIESCENT_MAX limit and scanlevel gradient = EHT voltage gradient 

if scan  level < setpoint - BOUNDARY
rulestepsize = adjust factor x (setpoint - scanlevel) 
rule active = 1

e lse
if scan  level > setpoint BOUNDARY

rulestepsize = adjust factor x  (setpoint - scan leve  ) 
rule active = 1

e lse

end if

rulestepsize = 0
do nothing, scan  level is within range, 
rule active = 1

end if
end if

P re-process input vector (i.e. normalise or sca le  input va lu es to range 0-1) 
Apply input to Kohonen layer to get situation map vector 
Apply situation map vector and rule vector to G rossberg layer to get netoutput 
If AFSM rule active

Update Kohonen layer
Update Grossberg layer with rulestepsize
update neteffect variable

end if

AFSM step size  output = (neteffect x netoutput) + (1-neteffect x rulestepsize)

output AFSM step size  output 
output status information registers
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