1,384 research outputs found

    The SpikerBox: A Low Cost, Open-Source BioAmplifier for Increasing Public Participation in Neuroscience Inquiry

    Get PDF
    Although people are generally interested in how the brain functions, neuroscience education for the public is hampered by a lack of low cost and engaging teaching materials. To address this, we developed an open-source tool, the SpikerBox, which is appropriate for use in middle/high school educational programs and by amateurs. This device can be used in easy experiments in which students insert sewing pins into the leg of a cockroach, or other invertebrate, to amplify and listen to the electrical activity of neurons. With the cockroach leg preparation, students can hear and see (using a smartphone oscilloscope app we have developed) the dramatic changes in activity caused by touching the mechanosensitive barbs. Students can also experiment with other manipulations such as temperature, drugs, and microstimulation that affect the neural activity. We include teaching guides and other resources in the supplemental materials. These hands-on lessons with the SpikerBox have proven to be effective in teaching basic neuroscience

    Outan: An On-Head System for Driving micro-LED Arrays Implanted in Freely Moving Mice

    Full text link
    In the intact brain, neural activity can be recorded using sensing electrodes and manipulated using light stimulation. Silicon probes with integrated electrodes and micro-LEDs enable the detection and control of neural activity using a single implanted device. Miniaturized solutions for recordings from small freely moving animals are commercially available, but stimulation is driven by large, stationary current sources. We designed and fabricated a current source chip and integrated it into a headstage PCB that weighs 1.37 g. The proposed system provides 10-bit resolution current control for 32 channels, driving micro-LEDs with up to 4.6 V and sourcing up to 0.9 mA at a refresh rate of 5 kHz per channel. When calibrated against a micro-LED probe, the system allows linear control of light output power, up to 10 micro-W per micro-LED. To demonstrate the capabilities of the system, synthetic sequences of neural spiking activity were produced by driving multiple micro-LEDs implanted in the hippocampal CA1 area of a freely moving mouse. The high spatial, temporal, and amplitude resolution of the system provides a rich variety of stimulation patterns. Combined with commercially available sampling headstages, the system provides an easy to use back-end, fully utilizing the bi-directional potential of integrated opto-electronic arrays.Comment: 11 pages, 9 figure

    Memristors

    Get PDF
    This Edited Volume Memristors - Circuits and Applications of Memristor Devices is a collection of reviewed and relevant research chapters, offering a comprehensive overview of recent developments in the field of Engineering. The book comprises single chapters authored by various researchers and edited by an expert active in the physical sciences, engineering, and technology research areas. All chapters are complete in itself but united under a common research study topic. This publication aims at providing a thorough overview of the latest research efforts by international authors on physical sciences, engineering, and technology,and open new possible research paths for further novel developments

    A High Density Micro-Electrocorticography Device for a Rodent Model

    Get PDF
    Electrocorticography (ECoG) is a methodology for stable mapping of the brain surface using local field potentials (LFPs) with a wide cortical region, high signal fidelity, and minimal invasiveness to brain tissue. To compare surface ECoG signals with inter-cortical neuronal activity, we fabricated a flexible handcrafted ECoG electrode made with economically available materials. This research is on a Lewis rat implanted with a handcrafted 256-channel, non-penetrative ECoG electrode covering an area of 7mm x 7mm on the cortical surface. This device was placed on the motor and somatosensory cortex of the brain to record signals with an active animal. The recordings are acquired by using the Synapse Software and the Tucker-Davis Technologies acquisition system to monitor and analyze electrophysiological signals within the amplitude range of 200”V for local field potentials. This demonstrates how reactive channels and their spatiotemporal and frequency-specific characteristics can be identified by means of this method

    Dynamics of embodied dissociated cortical cultures for the control of hybrid biological robots.

    Get PDF
    The thesis presents a new paradigm for studying the importance of interactions between an organism and its environment using a combination of biology and technology: embodying cultured cortical neurons via robotics. From this platform, explanations of the emergent neural network properties leading to cognition are sought through detailed electrical observation of neural activity. By growing the networks of neurons and glia over multi-electrode arrays (MEA), which can be used to both stimulate and record the activity of multiple neurons in parallel over months, a long-term real-time 2-way communication with the neural network becomes possible. A better understanding of the processes leading to biological cognition can, in turn, facilitate progress in understanding neural pathologies, designing neural prosthetics, and creating fundamentally different types of artificial cognition. Here, methods were first developed to reliably induce and detect neural plasticity using MEAs. This knowledge was then applied to construct sensory-motor mappings and training algorithms that produced adaptive goal-directed behavior. To paraphrase the results, most any stimulation could induce neural plasticity, while the inclusion of temporal and/or spatial information about neural activity was needed to identify plasticity. Interestingly, the plasticity of action potential propagation in axons was observed. This is a notion counter to the dominant theories of neural plasticity that focus on synaptic efficacies and is suggestive of a vast and novel computational mechanism for learning and memory in the brain. Adaptive goal-directed behavior was achieved by using patterned training stimuli, contingent on behavioral performance, to sculpt the network into behaviorally appropriate functional states: network plasticity was not only induced, but could be customized. Clinically, understanding the relationships between electrical stimulation, neural activity, and the functional expression of neural plasticity could assist neuro-rehabilitation and the design of neuroprosthetics. In a broader context, the networks were also embodied with a robotic drawing machine exhibited in galleries throughout the world. This provided a forum to educate the public and critically discuss neuroscience, robotics, neural interfaces, cybernetics, bio-art, and the ethics of biotechnology.Ph.D.Committee Chair: Steve M. Potter; Committee Member: Eric Schumacher; Committee Member: Robert J. Butera; Committee Member: Stephan P. DeWeerth; Committee Member: Thomas D. DeMars

    Decoding Neural Signals with Computational Models: A Systematic Review of Invasive BMI

    Full text link
    There are significant milestones in modern human's civilization in which mankind stepped into a different level of life with a new spectrum of possibilities and comfort. From fire-lighting technology and wheeled wagons to writing, electricity and the Internet, each one changed our lives dramatically. In this paper, we take a deep look into the invasive Brain Machine Interface (BMI), an ambitious and cutting-edge technology which has the potential to be another important milestone in human civilization. Not only beneficial for patients with severe medical conditions, the invasive BMI technology can significantly impact different technologies and almost every aspect of human's life. We review the biological and engineering concepts that underpin the implementation of BMI applications. There are various essential techniques that are necessary for making invasive BMI applications a reality. We review these through providing an analysis of (i) possible applications of invasive BMI technology, (ii) the methods and devices for detecting and decoding brain signals, as well as (iii) possible options for stimulating signals into human's brain. Finally, we discuss the challenges and opportunities of invasive BMI for further development in the area.Comment: 51 pages, 14 figures, review articl

    2017 Symposium Brochure

    Get PDF

    Synaptic Learning for Neuromorphic Vision - Processing Address Events with Spiking Neural Networks

    Get PDF
    Das Gehirn ĂŒbertrifft herkömmliche Computerarchitekturen in Bezug auf Energieeffizienz, Robustheit und AnpassungsfĂ€higkeit. Diese Aspekte sind auch fĂŒr neue Technologien wichtig. Es lohnt sich daher, zu untersuchen, welche biologischen Prozesse das Gehirn zu Berechnungen befĂ€higen und wie sie in Silizium umgesetzt werden können. Um sich davon inspirieren zu lassen, wie das Gehirn Berechnungen durchfĂŒhrt, ist ein Paradigmenwechsel im Vergleich zu herkömmlichen Computerarchitekturen erforderlich. TatsĂ€chlich besteht das Gehirn aus Nervenzellen, Neuronen genannt, die ĂŒber Synapsen miteinander verbunden sind und selbstorganisierte Netzwerke bilden. Neuronen und Synapsen sind komplexe dynamische Systeme, die durch biochemische und elektrische Reaktionen gesteuert werden. Infolgedessen können sie ihre Berechnungen nur auf lokale Informationen stĂŒtzen. ZusĂ€tzlich kommunizieren Neuronen untereinander mit kurzen elektrischen Impulsen, den so genannten Spikes, die sich ĂŒber Synapsen bewegen. Computational Neuroscientists versuchen, diese Berechnungen mit spikenden neuronalen Netzen zu modellieren. Wenn sie auf dedizierter neuromorpher Hardware implementiert werden, können spikende neuronale Netze wie das Gehirn schnelle, energieeffiziente Berechnungen durchfĂŒhren. Bis vor kurzem waren die Vorteile dieser Technologie aufgrund des Mangels an funktionellen Methoden zur Programmierung von spikenden neuronalen Netzen begrenzt. Lernen ist ein Paradigma fĂŒr die Programmierung von spikenden neuronalen Netzen, bei dem sich Neuronen selbst zu funktionalen Netzen organisieren. Wie im Gehirn basiert das Lernen in neuromorpher Hardware auf synaptischer PlastizitĂ€t. Synaptische PlastizitĂ€tsregeln charakterisieren Gewichtsaktualisierungen im Hinblick auf Informationen, die lokal an der Synapse anliegen. Das Lernen geschieht also kontinuierlich und online, wĂ€hrend sensorischer Input in das Netzwerk gestreamt wird. Herkömmliche tiefe neuronale Netze werden ĂŒblicherweise durch Gradientenabstieg trainiert. Die durch die biologische Lerndynamik auferlegten EinschrĂ€nkungen verhindern jedoch die Verwendung der konventionellen Backpropagation zur Berechnung der Gradienten. Beispielsweise behindern kontinuierliche Aktualisierungen den synchronen Wechsel zwischen VorwĂ€rts- und RĂŒckwĂ€rtsphasen. DarĂŒber hinaus verhindern GedĂ€chtnisbeschrĂ€nkungen, dass die Geschichte der neuronalen AktivitĂ€t im Neuron gespeichert wird, so dass Verfahren wie Backpropagation-Through-Time nicht möglich sind. Neuartige Lösungen fĂŒr diese Probleme wurden von Computational Neuroscientists innerhalb des Zeitrahmens dieser Arbeit vorgeschlagen. In dieser Arbeit werden spikende neuronaler Netzwerke entwickelt, um Aufgaben der visuomotorischen Neurorobotik zu lösen. In der Tat entwickelten sich biologische neuronale Netze ursprĂŒnglich zur Steuerung des Körpers. Die Robotik stellt also den kĂŒnstlichen Körper fĂŒr das kĂŒnstliche Gehirn zur VerfĂŒgung. Auf der einen Seite trĂ€gt diese Arbeit zu den gegenwĂ€rtigen BemĂŒhungen um das VerstĂ€ndnis des Gehirns bei, indem sie schwierige Closed-Loop-Benchmarks liefert, Ă€hnlich dem, was dem biologischen Gehirn widerfĂ€hrt. Auf der anderen Seite werden neue Wege zur Lösung traditioneller Robotik Probleme vorgestellt, die auf vom Gehirn inspirierten Paradigmen basieren. Die Forschung wird in zwei Schritten durchgefĂŒhrt. ZunĂ€chst werden vielversprechende synaptische PlastizitĂ€tsregeln identifiziert und mit ereignisbasierten Vision-Benchmarks aus der realen Welt verglichen. Zweitens werden neuartige Methoden zur Abbildung visueller ReprĂ€sentationen auf motorische Befehle vorgestellt. Neuromorphe visuelle Sensoren stellen einen wichtigen Schritt auf dem Weg zu hirninspirierten Paradigmen dar. Im Gegensatz zu herkömmlichen Kameras senden diese Sensoren Adressereignisse aus, die lokalen Änderungen der LichtintensitĂ€t entsprechen. Das ereignisbasierte Paradigma ermöglicht eine energieeffiziente und schnelle Bildverarbeitung, erfordert aber die Ableitung neuer asynchroner Algorithmen. Spikende neuronale Netze stellen eine Untergruppe von asynchronen Algorithmen dar, die vom Gehirn inspiriert und fĂŒr neuromorphe Hardwaretechnologie geeignet sind. In enger Zusammenarbeit mit Computational Neuroscientists werden erfolgreiche Methoden zum Erlernen rĂ€umlich-zeitlicher Abstraktionen aus der Adressereignisdarstellung berichtet. Es wird gezeigt, dass Top-Down-Regeln der synaptischen PlastizitĂ€t, die zur Optimierung einer objektiven Funktion abgeleitet wurden, die Bottom-Up-Regeln ĂŒbertreffen, die allein auf Beobachtungen im Gehirn basieren. Mit dieser Einsicht wird eine neue synaptische PlastizitĂ€tsregel namens "Deep Continuous Local Learning" eingefĂŒhrt, die derzeit den neuesten Stand der Technik bei ereignisbasierten Vision-Benchmarks erreicht. Diese Regel wurde wĂ€hrend eines Aufenthalts an der UniversitĂ€t von Kalifornien, Irvine, gemeinsam abgeleitet, implementiert und evaluiert. Im zweiten Teil dieser Arbeit wird der visuomotorische Kreis geschlossen, indem die gelernten visuellen ReprĂ€sentationen auf motorische Befehle abgebildet werden. Drei AnsĂ€tze werden diskutiert, um ein visuomotorisches Mapping zu erhalten: manuelle Kopplung, Belohnungs-Kopplung und Minimierung des Vorhersagefehlers. Es wird gezeigt, wie diese AnsĂ€tze, welche als synaptische PlastizitĂ€tsregeln implementiert sind, verwendet werden können, um einfache Strategien und Bewegungen zu lernen. Diese Arbeit ebnet den Weg zur Integration von hirninspirierten Berechnungsparadigmen in das Gebiet der Robotik. Es wird sogar prognostiziert, dass Fortschritte in den neuromorphen Technologien und bei den PlastizitĂ€tsregeln die Entwicklung von Hochleistungs-Lernrobotern mit geringem Energieverbrauch ermöglicht

    Human Brain/Cloud Interface

    Get PDF
    The Internet comprises a decentralized global system that serves humanity’s collective effort to generate, process, and store data, most of which is handled by the rapidly expanding cloud. A stable, secure, real-time system may allow for interfacing the cloud with the human brain. One promising strategy for enabling such a system, denoted here as a “human brain/cloud interface” (“B/CI”), would be based on technologies referred to here as “neuralnanorobotics.” Future neuralnanorobotics technologies are anticipated to facilitate accurate diagnoses and eventual cures for the ∌400 conditions that affect the human brain. Neuralnanorobotics may also enable a B/CI with controlled connectivity between neural activity and external data storage and processing, via the direct monitoring of the brain’s ∌86 × 109 neurons and ∌2 × 1014 synapses. Subsequent to navigating the human vasculature, three species of neuralnanorobots (endoneurobots, gliabots, and synaptobots) could traverse the blood–brain barrier (BBB), enter the brain parenchyma, ingress into individual human brain cells, and autoposition themselves at the axon initial segments of neurons (endoneurobots), within glial cells (gliabots), and in intimate proximity to synapses (synaptobots). They would then wirelessly transmit up to ∌6 × 1016 bits per second of synaptically processed and encoded human–brain electrical information via auxiliary nanorobotic fiber optics (30 cm3) with the capacity to handle up to 1018 bits/sec and provide rapid data transfer to a cloud based supercomputer for real-time brain-state monitoring and data extraction. A neuralnanorobotically enabled human B/CI might serve as a personalized conduit, allowing persons to obtain direct, instantaneous access to virtually any facet of cumulative human knowledge. Other anticipated applications include myriad opportunities to improve education, intelligence, entertainment, traveling, and other interactive experiences. A specialized application might be the capacity to engage in fully immersive experiential/sensory experiences, including what is referred to here as “transparent shadowing” (TS). Through TS, individuals might experience episodic segments of the lives of other willing participants (locally or remote) to, hopefully, encourage and inspire improved understanding and tolerance among all members of the human family
    • 

    corecore