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This edited volume is a collection of reviewed and relevant research chapters 
concerning developments within the field of memristor devices. The book includes 
scholarly contributions by various authors and edited by a group of experts 
pertinent to Engineering. Each contribution comes as a separate chapter complete in 
itself but directly related to the book’s topics and objectives.

The book is divided into two sections: “Memristor Introduction and System Models” 
and “Applications.” The first section includes chapters on the challenges in neuro-
memristive circuit design, memristor synapses for neuromorphic computing, and 
coexistence of bipolar and unipolar memristor switching behavior. The second 
section includes chapters on memristive grids for maze solving, mathematical 
analysis of memristor cellular neural networks, memristor behavior under dark 
and violet illumination in thin films, and application of probe nanotechnologies for 
memristor structure formation and characterization. The target audience comprises 
scholars and specialists in the field.
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Chapter 1

Introductory Chapter: Challenges 
in Neuro-Memristive Circuit 
Design
Alex James

1. Introduction: what makes memristors attractive for neural networks?

The ability of the memristors to change its conductance i.e. behaves like a resistor, 
and yet be able to remain in that conductive state, be able to change the state based 
on a control voltage makes it resemble like a neuron. The spiking neurons in the 
brain respond to the stimuli in different ways. The continuous application of stimuli 
and the changing response of the neuron to this is related to learning. In the same 
way, by application of voltage pulses of certain amplitude and frequency can cause 
a change in conductance state, reflecting as changing the amplitude of the current 
outputs through a memristor [1–3]. The voltage pulse trains below a threshold 
voltage for a given conductance state produces a current signal output that follows 
the input voltages reflecting learning ability. As such this idea can be translated to 
emulate spiking neurons with memristors [4, 5].

Another major design use case for memristor is the crossbar arrangement of 
the memristors. The memristors are arranged in a crossbar architecture, with each 
memristor being able to be accessed with rows and columns. The memristors are 
programmed using the transistor switch control, or selector switch control often 
referred to as ITIM or 1S1M configuration [6, 7]. Multiple transistors are usually 
required in the practical control circuits and depending on the complexity of the 
task such as the need to access multiple conductance states, the design aspects 
become complicated [8]. Nonetheless, a single crossbar can emulate a single dot 
product matrix computation that is required for weighted summation of inputs in a 
neural network layer. From a design perspective, at a higher level the simplification 
of multiply and accumulate operation is simplified, and it can reduce the design 
complexity.

The neuro-memristive system requires architectural level combinations of 
crossbars and memristor neurons, and be able to fabricate along with CMOS 
devices. Usually, sensors, control circuits and memories, would be required for the 
neural network to be scaled to a large network. The larger the network or deeper the 
number of layers in the neural network, the complexity of implementing increases. 
Large crossbar arrays suffer from the sneak path currents and non-idealities of the 
devices, which introduces errors in the dot-product computations, that propagate 
from one layer to another. While to some extent these errors can be compensated 
with learning algorithms, they do not fully compensate for the changes in real-time 
conditions. Online learning is possibly a way to compensate for real-time errors, 
however, online learning systems are not easy to realise for analog circuits and often 
consume a large amount of area on-chip and power. For digital implementations, 
in general, online learning circuits consume larger area and higher delays, than the 
crossbar based analog counterparts.
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2. Main challenges

2.1 Modelling issues

Modelling realistic memristors devices is a challenging task [3]. There have been 
arguments for and against the existence of “ideal” memristor devices, based on 
electrical, physical, chemical and philosophical arguments [9, 10]. From a neural 
circuit design perspective, the arguments on the existence of such idealistic devices 
are practically not relevant. The more important question for the circuit designer 
is the accurate modelling of the practical device that can be either used as a spiking 
neuron or can be used in a crossbar.

When the models can incorporate into a simulator, it is important that the mod-
els represent accurately the true behaviour of the device and also are fast in terms 
of computation [3]. The ability for the models to be easily integrated into SPICE 
like simulators, that can enable simulations of millions of neurons are important for 
building neural networks [11]. Currently, the simulations with memristor models 
are extremely slow for deep neural networks, and often require the use of scripting 
languages such as Python to get around this issue.

2.2 Lack of design tools

There is limited availability of physical design kits (PDK) for use in standard 
design tools such as provided by Cadence [12], Mentor Graphics [13], Silvaco [14] 
etc. The support for memristor PDK suitable for integration with CMOS is largely 
an open problem. The accuracy of the design files is not comparable with CMOS 
processes, and the variability data is not very well disclosed. The design tools that 
can accurately translate the realistic memristor devices are not very common and is 
an active topic of study.

2.3 Reliability issues of memristors

The memristor devices suffer from a range of reliability issues. Some of the main 
issues include:

Ageing – the devices when switched ON and OFF for a long period of time 
suffer from the loss of conductance state. This creates a major problem in analog 
dot product computations with crossbar architecture. Ageing has better tolerance to 
binary neural networks [15, 16].

Noise – the electrical and thermal noise can play with the changes in output 
response of the memristors, which can interact with the design of the neurons. The 
exact interplay of the device noise within different configurations of the network is 
largely an open question [17].

Variability – the variability of the conductance due to process and fabrication 
challenges can create design challenges for the crossbars. The neural network design 
has shown to be tolerant to large variations in conductance [18–20]. The signal 
integrity and electromagnetics issues related to packaging also need to be taken into 
account in this challenge.

2.4 Complexity issues for programming memristors

Programming the memristors requires applying a series of voltage pulses for 
a sustained period of time until the conductance of the memristor changes to the 
desired value. The state changes are based on the magnitude of the voltages applied. 
The issue with the realistic design is the voltage control across several memristors is 
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not an easy task. The memristors in crossbar are prone to non-idealities and often 
faced with variable threshold voltages. This makes the design of the programing 
logic complex [21, 22]. The ability to program memristor devices in parallel with 
low cost on the power, and area on-chip, is a challenging program, especially if the 
design is for analog neural networks [23].

2.5 Architectural challenges

There are several types of neural networks. Many designs have multiple layers 
and they involve convolution layers that involve dendrite logic [24]. This makes the 
architecture design complex for generalisation. While crossbar-based designs can 
be used for a large number of neural network architectures, optimising the design 
for hardware is a totally different problem [6, 25]. The architectural changes need to 
be aligned with the circuit design challenges, especially, when the design constraints 
are with chasing accuracy and system-level performance metrics. The architectural 
designs also need to take care of a wide range of generalisation issues including 
those related to hardware-software co-design, and system of chip solutions [25].

2.6 Scaling and 3D integration

Scaling the CMOS circuits, and improving the packing density of the memris-
tors are not a well-studied problem. There have been several suggestions on using 
3D technologies and using vertical devices for very-large-scale integration [26, 27]. 
The main challenge in this regard has been the variability of the devices that prevent 
the large-scale 3D integration of crossbar-based designs. There are yet not full-
proof solutions to scaling up in density and scaling up in size. The best architecture 
level scale-up is the use of modular designs that make use of several small crossbars 
to create larger ones [28, 29]. However, these designs are yet to be fully tested in a 
realistic commercial application.

2.7 Neuron model

There are several types of neurons in the human brain [30–40]. The cognition is 
a result of interactions between varied types of neurons in the cortex. Most neural 
networks inspire from the cortical neural networks and often are oversimplifica-
tions of the biological networks. The exact form of how intelligence over a life-time 
of human are not very well understood to completely build an equivalent machine 
intelligence. At best what we have achieved today in neuro-chips is weak intel-
ligence, being able to implement some specific functionality of the human brain, 
that too not in its entirety. The journey of hardware AI research is its very early 
stages, with a scalable design similar to the human brain practically limited by the 
chemistry of how neurons work. The organic nature of the brain offers several 
advantages over the silicon neuron. The electrical models are many, but they all 
tend to be bulky and complex when implemented in silicon. Having a functionally 
complex neuron with simplistic implementation complexity is a major challenge in 
the system design of memristive neural networks.

3. Discussions and future outlook

While these challenges exist, the practical use of neural networks build with 
crossbar and that using memristive spiking neurons are many. Several problems 
having a few sets of sensors such as in biomedical sensing applications only need 
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smaller neural networks to make the sensor intelligent. Likewise, many time-series 
based prediction problems use one-dimensional data that again only need simple 
recurrent neural networks.

The practical implementation of large scale networks is required to match the 
neural network scale and size of the human brain [41–46]. Packing billions of 
neurons into a single chip is a major challenge, that requires to match the energy 
benchmarks and complexity. Current circuit implementations fail to match up with 
the energy benchmarks of the human brain, mainly as the scaling of power supply 
on chips are practically limited by electrical design and device constraints. In addi-
tion to this, packaging and electromagnetic effects also play a major role in building 
systems with neural chips. The precision engineering of these chips for reliable 
use is important for long term acceptability in higher intelligence tasks. Further, 
the data processing with the neurochips can be prone to adversarial attacks, which 
means the system needs to be made secure using dedicated cryptographic copro-
cessors. Going further, it will be also important to see the applications of these 
neurochips in human-machine interfaces, and for building connected and collective 
intelligence solutions.

Ageing is a time-dependent process, where the conductance of the memristors 
changes over a period of time and use [15, 16, 47–49]. The more the memristors 
are used, i.e., writing and reading, the ability to keep the expected conductance 
levels diminishes. This is wearing out the phenomenon that the memristor devices 
face due to continuous electrical stress on the devices impacting the chemistry and 
physics of the device. Over a period of time, the multiple conductance states get 
combined, or disappeared, making the reliability of programming memristors chal-
lenging. This makes fine-tuning as an essential part of memristor programming and 
test stages. Any changes in the conductance values introduce undesirable errors in 
the output of the crossbar arrays, which is far from expected ideal behaviour. This is 
a serious issue when the multiple conductance states are extensively used for build-
ing analog neural networks with crossbar arrays. The conductance of the memris-
tors is equated to weights in the analog neural network, and hence if a conductance 
state goes missing it makes the training more complicated. Additional, rules need 
to be framed to the pre-trained network models to further adjust the weight values 
to achieve convergence. Learning and self-tuning in this sense is an online process 
for analog neural networks with memristor crossbar arrays. Nonetheless, the 
advantages of the analog neural networks with crossbar outweigh the digital-only 
counterpart, for smart sensor integration and edge AI computing [50–59].

When the noise gets added to the signals at input, in-network layers or outputs 
of the analog neural network, it introduces errors in the layers of the neural net-
works. The noise can originate in different ways, such as due to thermal effects, 
electromagnetic effects, or through external sources. Noise is typically seen as a 
problem in circuits, however, with neural networks this may have some advantages 
to offer, such as with avoiding overfitting during training. The role of noise in the 
human brain is immense and it plays some major role in the way intelligence and 
perception is shaped [60, 61].

4. Conclusions

There are several open challenges in neuro-memristive circuit design. The design 
challenges go from classical circuit analysis to computer-aided design issues. The 
major bottleneck with creating a billion-neuron chip is the limitations imposed at 
the device and at architecture levels. There are yet no practical tools that can help 
address all the design challenges in a systematic way. Unlike software tools, where 
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debugging is a well-detailed topic of study, the neuro-memristive hardware design 
is not easy to debug due to a variety of non-idealities of crossbar and memristor 
devices. There have been several proofs of concepts of circuit designs and a grow-
ing body of literature on architectures that aim to address these very challenges. 
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smaller neural networks to make the sensor intelligent. Likewise, many time-series 
based prediction problems use one-dimensional data that again only need simple 
recurrent neural networks.

The practical implementation of large scale networks is required to match the 
neural network scale and size of the human brain [41–46]. Packing billions of 
neurons into a single chip is a major challenge, that requires to match the energy 
benchmarks and complexity. Current circuit implementations fail to match up with 
the energy benchmarks of the human brain, mainly as the scaling of power supply 
on chips are practically limited by electrical design and device constraints. In addi-
tion to this, packaging and electromagnetic effects also play a major role in building 
systems with neural chips. The precision engineering of these chips for reliable 
use is important for long term acceptability in higher intelligence tasks. Further, 
the data processing with the neurochips can be prone to adversarial attacks, which 
means the system needs to be made secure using dedicated cryptographic copro-
cessors. Going further, it will be also important to see the applications of these 
neurochips in human-machine interfaces, and for building connected and collective 
intelligence solutions.

Ageing is a time-dependent process, where the conductance of the memristors 
changes over a period of time and use [15, 16, 47–49]. The more the memristors 
are used, i.e., writing and reading, the ability to keep the expected conductance 
levels diminishes. This is wearing out the phenomenon that the memristor devices 
face due to continuous electrical stress on the devices impacting the chemistry and 
physics of the device. Over a period of time, the multiple conductance states get 
combined, or disappeared, making the reliability of programming memristors chal-
lenging. This makes fine-tuning as an essential part of memristor programming and 
test stages. Any changes in the conductance values introduce undesirable errors in 
the output of the crossbar arrays, which is far from expected ideal behaviour. This is 
a serious issue when the multiple conductance states are extensively used for build-
ing analog neural networks with crossbar arrays. The conductance of the memris-
tors is equated to weights in the analog neural network, and hence if a conductance 
state goes missing it makes the training more complicated. Additional, rules need 
to be framed to the pre-trained network models to further adjust the weight values 
to achieve convergence. Learning and self-tuning in this sense is an online process 
for analog neural networks with memristor crossbar arrays. Nonetheless, the 
advantages of the analog neural networks with crossbar outweigh the digital-only 
counterpart, for smart sensor integration and edge AI computing [50–59].

When the noise gets added to the signals at input, in-network layers or outputs 
of the analog neural network, it introduces errors in the layers of the neural net-
works. The noise can originate in different ways, such as due to thermal effects, 
electromagnetic effects, or through external sources. Noise is typically seen as a 
problem in circuits, however, with neural networks this may have some advantages 
to offer, such as with avoiding overfitting during training. The role of noise in the 
human brain is immense and it plays some major role in the way intelligence and 
perception is shaped [60, 61].

4. Conclusions

There are several open challenges in neuro-memristive circuit design. The design 
challenges go from classical circuit analysis to computer-aided design issues. The 
major bottleneck with creating a billion-neuron chip is the limitations imposed at 
the device and at architecture levels. There are yet no practical tools that can help 
address all the design challenges in a systematic way. Unlike software tools, where 
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Abstract

Neuromorphic computing, which imitates the principle behind biological 
synapses with a high degree of parallelism, has recently emerged as a promising 
candidate for novel and sustainable computing technologies. The first step toward 
realizing a massively parallel neuromorphic system is to develop an artificial syn-
apse capable of emulating synapse functionality, such as analog modulation, with 
ultralow power consumption and robust controllability. We begin this chapter with 
a simple description of neuromorphic systems and memristor synapses. Further, we 
introduce and evaluate the state-of-the-art neuromorphic hardware technology in 
terms of novel functional materials and device architectures toward the implemen-
tation of fully neuromorphic computers, which have been extensively explored in 
recent years. Finally, we briefly describe artificial neural networks based on mem-
ristor synapse in forms of crossbar arrays.

Keywords: memristor, artificial synapse, neuromorphic, bio-inspired,  
memristive systems

1. Introduction

Modern computers and electronics, such as smartphones and supercomputers, 
have been developed in accordance with Moore’s law [1], which implies improvement 
in cost, speed, and power consumption by scaling down devices. However, the funda-
mental physical limits and increased fabrication costs pose a hindrance to sustainable 
development of computing technology [2, 3]. Moreover, with the advent of the big 
data era, unstructured data and data complexity explosively increases, imposing 
constraints on the conventional computing technology owing to the von Neumann 
bottleneck [4, 5]. Neuromorphic systems [6, 7], which mimic the nervous system in 
the brain, have recently become known as strong candidates to overcome these techni-
cal and economic limitations owing to their proficiency in cognitive and data-intensive 
tasks, together with their low power consumption. To successfully implement these 
neuromorphic systems, it is of utmost importance to research and develop artificial 
synapses capable of synapse functions, high reliability, low energy consumption, etc. 
[8, 9]. In the plethora of possible devices, memristors have gained the spotlight because 
of their desirable characteristics as artificial synapses [10–12], including device speed 
[13], footprint [14], low energy consumption [15], and analog switching [16, 17].

In this chapter, we introduce the basic concepts of neuromorphic systems and 
memristor synapses. We also describe diverse examples for state-of-the-art artificial 
synapses in terms of novel functional materials and device architecture. We then 
briefly review the implemented neuromorphic systems based on memristor synapses.
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2. Neuromorphic systems and memristor synapses

2.1 Neuromorphic systems

Conventional computing architecture, that is, von Neumann architecture, forms 
the groundwork for modern computing technologies [3, 18]. Despite tremendous 
growth in computing performance, classical architecture currently suffers from 
the von Neumann bottleneck, which results from data movements between the 
processor and the memory unit [4, 5]. The memory wall issue, causing high power 
consumption and low speed, hinders the continuous development of computing 
technologies [4, 5, 9]. Moreover, artificial neural network (ANN) algorithms, such 
as deep learning [19], deal with image classification [20, 21], sound recognition  
[22, 23], specific complex tasks (e.g., the AlphaGo [24]) and so on. Although 
the ANN algorithms have exhibited superior performance over the conventional 
computing technologies, they are, at present, constructed on the von Neumann 
architecture; hence, considerable time and energy resources are required for their 
operation [8, 9]. Neuromorphic architecture [6, 7], a bio-inspired computing 
architecture, is one of the most promising candidates to resolve these problems. 
The neuromorphic systems take advantage of the cerebral nervous system, which 
consists of a massive parallel connectivity between the neurons (i.e., processor) and 
the synapses (i.e., memory), indicating the absence of the von Neumann bottleneck 
[8, 9]. Figure 1 shows the shift of the computing architecture from von Neumann 
architecture (Figure 1a) to neuromorphic architecture (Figure 1b). The von 
Neumann architecture shows that the processor and memory are separate, leading 
to the von Neumann bottleneck. In contrast, in the case of neuromorphic archi-
tecture, the neurons and synapses are combined, alleviating the bottleneck issue. 
The neurons are uncomplicated computing units, the synapses are local memory 
units, and the communication channels (red line) connect numerous neurons and 
synapses. It should be noted that the practical purpose of neuromorphic systems 
is not to replace the von Neumann architecture completely, but to supplement the 
conventional architecture to make up its leeway, especially for intelligent tasks such 
as image recognition and natural language processing.

Figure 1. 
(a) Conventional computing architecture (von Neumann architecture). Data transfer is performed through the 
bus (memory wall). (b) Neuromorphic architecture. In contrast to von Neumann architecture, von Neumann 
bottleneck does not exist.
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2.2 Memristor synapses

Memristors that consist of a storage layer inserted between the top and bottom 
electrodes can undergo dynamic reconfiguration within the storage layer with the 
application of electrical stimuli, resulting in resistance modulation referred to as 
memory effect [16, 17]. The changed resistance state can be retained even after 
electrical inputs are removed, and memristors are based on the history of applied 
electrical stimuli. These capabilities lead to analog switching, which resembles 
biological synapses where the strength (or synaptic weight) can increase or 
decrease depending on the applied action potential [25, 26]. When neuromorphic 
architecture is implemented on the conventional computing architecture, the 
synaptic weights are stored in the memory unit and are continuously read into the 
processor unit to transfer information to post-neurons. In other words, practically, 
the von Neumann bottleneck still remains challenged. However, in case of memris-
tor synapse-based neuromorphic systems, the synapses can not only store a specific 
weight but also naturally transmit information into post-neurons, overcoming the 
von Neumann bottleneck and improving system efficiency [8, 9]. In addition to 
analog switching, memristors have exhibited desirable device properties, includ-
ing nanoscale footprint [14], long endurance and retention [17, 27], nanosecond 
switching speed [13, 15], and low power consumption [15]. Owing to these charac-
teristics, memristors have emerged as promising candidates for artificial synapses. 
However, it should be noted that no specific material/device system has shown 
all-encompassed characteristics so far.

2.3 Switching mechanisms

Depending on their storage layer and electrode, memristors can be broadly 
classified into two categories: cation-based devices and anion-based devices. It is 
widely believed that cation-based devices are based on migration of metallic cations 
(see Figure 2a) [17, 28]. They employ electrochemically active materials such as 
Ag or Cu as an electrode [29–32]. The counter electrode is usually an electrochemi-
cally inert material, such as Pt, Au, or W, and the storage layer consists of a solid-
electrolyte like Ta2O5, SiO2, or Cu2S. For example, when a positive voltage is applied 
to an Ag top electrode, the atoms from this electrode are electrochemically oxidized 
to Ag+ cations because of anodic reaction, which are then dissolved into a solid-
electrolyte layer. The Ag+ cations migrate across the solid-electrolyte layer toward 
the counter electrode (e.g., Pt) depending on electric field. At the Pt electrode, the 
Ag+ cations are electrochemically reduced to Ag atoms because of cathodic reac-
tion and are deposited on its surface. Thus, conductive filaments grow toward the 
Ag top electrode, and eventually the filaments bridge the anode and the cathode, 
indicating that the device switches into ON state (low resistance state) as shown in 
Figure 2a. In contrast, when a negative voltage is applied to the Ag top electrode, 
the Ag filament begins to dissolve anodically, starting from the interface of the Ag 
top electrode/Ag filament, which results in OFF state (high resistance state). Owing 
to this process, cation-based devices are referred to as electrochemical metalliza-
tion memories and conductive bridging random access memories. It should be 
noted that the initial formation of conductive filaments is called the electroforming 
process, which needs a voltage higher than a switching voltage.

Anion-based devices usually require the initial electroforming process and are 
switched depending on the O2− anions (or positively charged oxygen vacancy V) 
induced into the storage layer by soft-breakdown (see Figure 2b). These devices 
consist of a sub-stoichiometric storage layer made of HfOx [33, 34], TaOx [35, 36], 
WOx [37, 38], etc. When a positive forming voltage is applied to the top electrode, 
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the induced O2− ions migrate toward it. This anion motion causes a change in the 
valence state of the cation to keep the charge neutral; hence, these devices are also 
referred to as valance change memories. Throughout the process, the oxygen vacan-
cies continue to form conductive filaments in the storage layer. When the filaments 
bridge the top and bottom electrodes, current flows through the filaments, with the 
result that the device switches to ON state. Contrastingly, when a negative voltage 
is applied to the top electrode, the O2− ions either recombine with oxygen vacancies 
present in the filaments or oxidize the cation precipitates, with the result that the 
device switches to OFF state. Thus, memristors could be understood to some extent 
based on cation- and anion-based mechanisms. However, identifying the precise 
mechanism of a specific device is a challenge because of the presence of mingled 
mechanisms and different driving forces or locations. Therefore, further studies are 
necessary for a deeper understanding of the switching mechanism.

2.4 Desirable properties of memristor synapses

Various properties of memristor synapses that affect the performance of neu-
romorphic computing need to be discussed in detail. Among them, representative 
characteristics such as the linearity in weight update, multilevel states, dynamic 
range (ON/OFF ratio), variation, retention, endurance, and footprint will be 
addressed in this section as they can substantially affect computing achievements 
[8, 35]. The linearity of the weight update indicates the linear relationship between 
synaptic weight change (∆w) and programming pulse. In other words, the conduc-
tance of the memristor synapse changes linearly in accordance with the number 
of programming pulses, which is associated with the mapping of weight in the 
algorithms for conductance in memristor synapses. Hence, the linearity of weight 
update affects the performance (e.g., accuracy). Notably, most memristor synapses 

Figure 2. 
(a) Cation-based devices: Through electrochemical reaction, metal cations M+ migrate toward the counter 
electrode and form conductive filaments between the top and bottom electrodes. (b) Anion-based devices: 
During electroforming, the soft-breakdown leads to O2− ions (oxygen vacancies V), and the oxygen vacancies 
form conductive filaments between the top and bottom electrodes.
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show a nonlinear weight update, where the conductance change gradually saturates, 
as shown in Figure 3. Hence, the nonlinearity of weight update should be improved 
to achieve highly efficient computing.

The resolution capability of storage is influenced by multilevel states and 
dynamic ranges because numerous conductance states can distinguishably store 
individual pixels of input patterns. Moreover, variations, including cycle-to-cycle 
and device-to-device variations, could degrade neuromorphic computing, particu-
larly in large-scale systems. However, considering that neuromorphic computing 
exhibits the fault-tolerant property, neuromorphic architectures could be immune 
to the variation to some extent, and this is supported by several papers [8, 35, 52]. 
In addition, memristor synapses are repeatedly updated during the training process 
and should retain the trained weights (i.e., final conductance). Subsequently, the 
larger the endurance cycles and retention time, the better are the achievements of 
the neuromorphic network. Last but not least, it is desirable that device’s footprint 
is below sub-10 nm because high density leads to more synaptic devices that store 
learned information under a specific area [8].

Furthermore, it is efficient to improve the characteristics of memristor synapses 
depending on individual neuromorphic networks, because a desirable memristor 
synapse capable of being employed into neuromorphic systems is yet to be reported. 
Supervised learning-based networks [35, 40–44], for example, are less vulnerable to 
cycle-to-cycle and device-to-device variations. This is because memristor synapses 
are updated according to calculated errors under known target values. By contrast, 
the networks based on unsupervised learning [39, 45–47] are directly affected by 
the variation owing to unknown target values. Therefore, memristor synapses need 
to be designed or selected depending on individual neuromorphic networks.

3.  Artificial synapses in terms of device architecture and novel 
functional materials

Memristors for synaptic devices with two-terminal (e.g., vertical/planar-type 
and gap-type) and three-terminal (e.g., field-effect transistor and lateral coupling 
type) structures are manufactured by well-established processing technologies 
[7–12, 35, 39–55].

In the case of a two-terminal structure, when different voltages are applied to 
each of the two electrodes, resulting in current flow through the insulator, varying 
the conductance of the device enables emulation of biological synapse functions 
such as synapse plasticity [10–12, 16, 35, 48]. In particular, the crossbar array of 

Figure 3. 
(a, b) Nonlinearity of weight update. Current abruptly changes in initial pulses and gradually saturates. Most 
memristors exhibit a nonlinear relationship. All figures are reproduced with permission from Ref [39, 10], 
respectively. Copyright (2017, 2010) American Chemical Society.
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memristors exhibit a nonlinear relationship. All figures are reproduced with permission from Ref [39, 10], 
respectively. Copyright (2017, 2010) American Chemical Society.
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two-terminal devices has received attention because of its characteristics relevant to 
synaptic devices, such as scalability for high density, simple fabrication process, low 
cost of fabrication, parallel connection structure, low power, fault-tolerance, and 
compactness. Thus, they are expected to provide an appropriate structure to support 
synaptic electronics. The type of two-terminal memristors that are being reffered 
to as the artificial synapses includes resistive random-access memory, phase change 
memory, conductive bridge memory, and spin-based memory. Although two-termi-
nal devices are attracting much attention because of their ease of implementation of 
crossbar arrays, a two-terminal device, as a matter of fact, requires a select device to 
eliminate the sneak path that occurs in a crossbar array configuration. Additionally, 
it is difficult to imitate complex synaptic functions such as hetero-synaptic plasticity 
(e.g., modulatory input-dependent plasticity).

Three-terminal structures (e.g., field effect transistor memory and floating/gate 
transistor memory) with tunable conductance of channels between the source and 
the drain are also considered as synaptic devices [49–51]. The gate electrode acts 
as the pre-synapse, transferring the stimulus to the insulating layer, indicating the 
cleft of the synapse, and modulates the conductance of the channel representing the 
synaptic strength. Although the three-terminal structure is more complicated than 
the two-terminal structure and is disadvantageous in terms of density, the terminal 
for the signal transmission process and the learning terminal are separated such that 
simultaneous signal processing is possible, and complex synapse functions such as 
hetero-synaptic plasticity can be mimicked. Moreover, they do not require an addi-
tional selector device to reduce sneak current in an integrated array architecture.

Recently, going beyond simply implementing a synapse function, researchers 
have demonstrated advanced concepts of synapse device functions, including self-
rectification, photo-assisted synaptic plasticity and neuromodulation to achieve 
more delicate imitation of the human brain and learning-and energy-efficiency in 
neurocomputing.

In [35], Choi et al. fabricated a self-rectifying memristor synapse through a two-
terminal structure (Pt/TaOy/nanoporous TaOx/Ta), which is capable of suppressing 
unwanted leakage pathways and then a 16 x 16 crossbar array using only the devices 
without an additional selector (see Figure 4a and b). The mechanism of memristive 
switching and synaptic functions, including long-term potentiation (LTP), STDP 
(spike-timing dependent plasticity), and long-term depression (LTD) were caused by 
the migration of O2− ions with oxygen vacancies V by applied electric field in the TaOx. 
In addition, the asymmetric interface contacts of Pt/TaOy and TaOx/Ta prevent the 
undesired signal by performing the self-rectification function without the selector.

In [51], Huh et al. reported a synapse device that performs the neuromodula-
tor function of a barristor structure using 2D material as shown in Figure 4c. The 
three-terminal device consisted of a vertically integrated monolithic tungsten 
oxide memristor, and a variable-barrier tungsten selenide/graphene Schottky 
diode, termed as a “synaptic barrister.” This synaptic barristor could implement 
fundamental synaptic functions, including short-term plasticity (STP), paired 
pulse facilitation (PPF), LTP, and LTD, with external gate controllability, termed 
as a neuromodulator in bio-synapse. This architecture potentially offers consider-
able power-saving benefits while significantly tuning the synaptic weights and 
intrinsically modifying the synaptic plasticity, in comparison with conventional 
two-neuronal-based synaptic architectures.

In [52], Ham et al. fabricated an organo-lead halide perovskite (OHP)-based 
photonic synapse in which the synaptic plasticity is modified by both electrical pulses 
and light illumination. The switching mechanism originates from the presence of a 
conductive filament by iodine-vacancy mediator, with its switching states controlled 
by electric-field domination (see Figure 4d). Using diverse electrical stimuli and 
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relative timing between the input pulses, essential synaptic functionalities such as 
STP, LTP, and LTD were successfully demonstrated. In addition, owing to the acceler-
ated migration of the iodine vacancy inherently existing in the coated OHP film under 
light illumination, the OHP synaptic device exhibits light-tunable synaptic function-
alities with very low programming inputs (≈0.1 V) as shown in Figure 4d. The ability 
of high-order tuning of the photo-assisted synaptic plasticity in an artificial synapse 
can offer significant improvements in the processing time, low-power recognition, 
and learning capability in a neuro-inspired computing system (Figure 4e).

In [12], Wang et al. designed a diffusive memristor for STP synapses and 
threshold neurons. The devices contain a switching layer doped with Ag nanoclu-
sters (MgOx:Ag, SiOxNy:Ag, and HfOx:Ag) using the co-sputtering method. The 
switching mechanism is based on the growth and relaxation of Ag nanoclusters 
depending on whether the voltage pulse is applied, which was experimentally veri-
fied by in-situ high-resolution transmission electron microscopy (HRTEM). The 
designed device mimicked STP under PPF and PPD. Moreover, the device was used 
as a threshold neuron along with drift memristor synapse based on TaOx to emulate 
STDP learning rule. Because the conductance of the device gradually increases 
according to applied voltage and then abruptly decreases under no applied voltage, 
the device can be used as a threshold neuron. The results give a potential application 
for simple artificial neurons as compared with CMOS artificial neurons [53, 54].

Figure 4. 
(a) Schematic of a self-rectifying memristor with a Pt/TaOy/nanoporous TaOx/Ta and cross-sectional image 
of a memristor synapse. (b) I-V curves of the self-rectifying memristor synapse. (a, b) are reproduced with 
permission from Ref [35] under a Creative Commons Attribution 4.0 International License. (c) Schematics 
of the suggested mechanism of how a conductive switching filament is formed by the iodine vacancy migration 
in the presence of light. (d) Synaptic potentiation and depression behavior of the OHP-based synaptic device. 
(c and d) are reproduced with permission from Ref [52]. Copyright (2018) John Wiley and Sons.
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relative timing between the input pulses, essential synaptic functionalities such as 
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ated migration of the iodine vacancy inherently existing in the coated OHP film under 
light illumination, the OHP synaptic device exhibits light-tunable synaptic function-
alities with very low programming inputs (≈0.1 V) as shown in Figure 4d. The ability 
of high-order tuning of the photo-assisted synaptic plasticity in an artificial synapse 
can offer significant improvements in the processing time, low-power recognition, 
and learning capability in a neuro-inspired computing system (Figure 4e).

In [12], Wang et al. designed a diffusive memristor for STP synapses and 
threshold neurons. The devices contain a switching layer doped with Ag nanoclu-
sters (MgOx:Ag, SiOxNy:Ag, and HfOx:Ag) using the co-sputtering method. The 
switching mechanism is based on the growth and relaxation of Ag nanoclusters 
depending on whether the voltage pulse is applied, which was experimentally veri-
fied by in-situ high-resolution transmission electron microscopy (HRTEM). The 
designed device mimicked STP under PPF and PPD. Moreover, the device was used 
as a threshold neuron along with drift memristor synapse based on TaOx to emulate 
STDP learning rule. Because the conductance of the device gradually increases 
according to applied voltage and then abruptly decreases under no applied voltage, 
the device can be used as a threshold neuron. The results give a potential application 
for simple artificial neurons as compared with CMOS artificial neurons [53, 54].

Figure 4. 
(a) Schematic of a self-rectifying memristor with a Pt/TaOy/nanoporous TaOx/Ta and cross-sectional image 
of a memristor synapse. (b) I-V curves of the self-rectifying memristor synapse. (a, b) are reproduced with 
permission from Ref [35] under a Creative Commons Attribution 4.0 International License. (c) Schematics 
of the suggested mechanism of how a conductive switching filament is formed by the iodine vacancy migration 
in the presence of light. (d) Synaptic potentiation and depression behavior of the OHP-based synaptic device. 
(c and d) are reproduced with permission from Ref [52]. Copyright (2018) John Wiley and Sons.
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4.  Neuromorphic systems based on crossbar array of memristor 
synapses

Prezioso et al. experimentally demonstrated neuromorphic networks based on 
memristor synapses (see [55]). In their paper, Al2O3/TiO2−x memristor was used 
to fabricate a 12 × 12 crossbar array to implement a single-layer network [56]. The 
single-layer network architecture was schematically described as shown in Figure 5a,  
where 10 input neurons and 3 output neurons are fully linked by 10 × 3 = 30 
synaptic weights (Wi,j). Notably, this ANN architecture naturally corresponds 
to a crossbar array [9, 35]. Input voltages (Vi = 1…9) assigned from pixels of the 
3 × 3 input images (see Figure 5b) were applied to each input neuron. After 
being applied into the network, the input voltages were individually weighted 
depending on each synaptic weight. Note that V10 is a bias voltage to control the 
degree of activation of the output neurons. The output neurons received each 
weighted voltage through linked weights and then integrated the weighted volt-
ages (∑Wi,jVj), where j and i represent the input (j = 1–9) and output (i = 1–3) 
neurons respectively. The output neurons converted each integrated voltage into 
output (fi) ranging from −1 to 1 according to the nonlinear activation function: 
fi = tanh(βIi), where β adjusts the nonlinearity of the activation function and 
Ii = ∑Wi,jVj. The activation function can be considered as the threshold firing 
function in a biological neuron. The synaptic weights were represented by a pair 
of adjacent memristors (Wi,j = Gi,j

+ − Gi,j
−) for the effectiveness of weight update. 

The number of selected memristor synapses in 12 × 12 array were 30 × 2 = 60, 
due to a pair of memristors (Figure 5c). When the network was under the train-
ing process, as shown in Figure 5d and e, memristor synapses between input 
and output neurons were updated based on the Manhattan update rule, which is 
classified as supervised learning: ∆Wi,j = ηsgn∑[(ti(n) − fi(n)) × df/dI × Vj(n)], 

Figure 5. 
(a) Input voltages corresponding to an input image (Vi = 1…9) and a bias voltage (V10). These voltages are 
fed into the single-layer network where 10 input neurons and 3 output neurons are linked by synaptic 
weights. (b) The “z,” “v,” and “n” input images. Aside from ideal images, other images contain one noise 
pixel. (c) The schematic of implemented 10 × 6 crossbar array, a pair of adjacent memristors provide one 
synaptic weight. (d) When an image (e.g., “z”) is fed into network, pixels for black give VR (read voltage) 
to the network, otherwise, −VR is applied into the network. (e) An instance of weight update according 
to Manhattan update rule. The synaptic weights corresponding to sign + should be increased, so that 
the memristors representing G1,1

+, G1,2
+, G1,5

+, G1,6
+, and G1,9

+ are applied by set voltage. All figures are 
reproduced with permission from Ref [55]. Copyright (2015) Springer Nature.
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where η is the learning rate, ti(n) is the target value, fi(n) is the output value, and 
n is the nth input image. After the training process was complete, the memristor 
synapses retained their final conductance, and the test process was performed 
without weight update (see Figure 5d). From the test process, the neuromorphic 
network exhibited perfect classification for the first time in 21 epochs (note that 
one epoch indicates one training process). Although simple and few input images 
were used to train/test the neuromorphic network, this work greatly contributed 
to neuromorphic systems based on memristor synapses in terms of experimental 
demonstration using crossbar arrays.

It should be noted that the circuit that acquires sgn[ fi(n)] = sgn[∑Wi,jVj] = sgn
[∑(Gi,j

+ − Gi,j)Vj] could be implemented by a virtual ground circuit and a differen-
tial amplifier [43, 57]. Then, the output value is compared with the target value by 
circuits using a comparator. According to calculated ∆Wi,j, programming memris-
tors of the array, for example, could be performed as shown in Figure 6 [39]. The 
test board contains four digital-to-analog converters (DACs) providing voltage 
pulses through the DACs. The DACs 1–4 represent the chosen bottom line, the 
unchosen bottom line, the chosen top line, and the unchosen top line, respectively. 
Using matrix switches (Switch 1 and 2), individual memristor is assigned to the cor-
responding DAC. The multiplexer (MUX) is operated to obtain currents that flow 
through memristors in the array by delivering the currents into the analog-to-digital 
converter (ADC). The ADC obtains the applied voltage of the resistor (1 kΩ), and 
the voltage is changed into the current. The arrows of Figure 6 represent the cur-
rent flowing through a chosen memristor in case of write, erase, and read processes. 
Notably, there are non-idealities such as sneak currents and wire resistance in 
array-level, which could degrade the performance of neuromorphic computing 
[35, 44, 58–60]. The sneak currents affect learning accuracy and epochs because of 
undesired information, especially large-scale array. In Figure 6, in order to avoid 
sneak currents during read process, unchosen rows and columns are grounded 
[39]. Moreover, wire resistance consumes input voltages, so that memristors far 
from points of input voltage could be applied by smaller voltage than input voltage. 

Figure 6. 
Circuit scheme for write, erase, and read processes. The figure is reproduced with permission from Ref [39]. 
Copyright (2017) American Chemical Society.
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where η is the learning rate, ti(n) is the target value, fi(n) is the output value, and 
n is the nth input image. After the training process was complete, the memristor 
synapses retained their final conductance, and the test process was performed 
without weight update (see Figure 5d). From the test process, the neuromorphic 
network exhibited perfect classification for the first time in 21 epochs (note that 
one epoch indicates one training process). Although simple and few input images 
were used to train/test the neuromorphic network, this work greatly contributed 
to neuromorphic systems based on memristor synapses in terms of experimental 
demonstration using crossbar arrays.

It should be noted that the circuit that acquires sgn[ fi(n)] = sgn[∑Wi,jVj] = sgn
[∑(Gi,j

+ − Gi,j)Vj] could be implemented by a virtual ground circuit and a differen-
tial amplifier [43, 57]. Then, the output value is compared with the target value by 
circuits using a comparator. According to calculated ∆Wi,j, programming memris-
tors of the array, for example, could be performed as shown in Figure 6 [39]. The 
test board contains four digital-to-analog converters (DACs) providing voltage 
pulses through the DACs. The DACs 1–4 represent the chosen bottom line, the 
unchosen bottom line, the chosen top line, and the unchosen top line, respectively. 
Using matrix switches (Switch 1 and 2), individual memristor is assigned to the cor-
responding DAC. The multiplexer (MUX) is operated to obtain currents that flow 
through memristors in the array by delivering the currents into the analog-to-digital 
converter (ADC). The ADC obtains the applied voltage of the resistor (1 kΩ), and 
the voltage is changed into the current. The arrows of Figure 6 represent the cur-
rent flowing through a chosen memristor in case of write, erase, and read processes. 
Notably, there are non-idealities such as sneak currents and wire resistance in 
array-level, which could degrade the performance of neuromorphic computing 
[35, 44, 58–60]. The sneak currents affect learning accuracy and epochs because of 
undesired information, especially large-scale array. In Figure 6, in order to avoid 
sneak currents during read process, unchosen rows and columns are grounded 
[39]. Moreover, wire resistance consumes input voltages, so that memristors far 
from points of input voltage could be applied by smaller voltage than input voltage. 

Figure 6. 
Circuit scheme for write, erase, and read processes. The figure is reproduced with permission from Ref [39]. 
Copyright (2017) American Chemical Society.
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This influences output currents, leading to degradation of learning performance. 
The non-idealities in array-level could be overcome by device functions [35, 44], 
operational scheme [39, 58–60], or learning algorithms [35, 40–44] to some degree.

5. Conclusion

Neuromorphic systems are one of the most promising candidates to deal with 
the von Neumann bottleneck caused by the memory wall between memory and 
process units. Using memristor synapses simply classified into cation- and anion-
based devices can resolve this bottleneck owing to their storage and transmittance 
capabilities. To obtain higher performance of neuromorphic systems, representative 
characteristics, including the linearity of weight update, large multilevel states 
and dynamic range (ON/OFF ratio), variation and endurance, and retention need 
to be improved. In this context, different memristor synapses based on novel 
materials and device structures were introduced. Finally, we have briefly explained 
neuromorphic networks based on crossbar arrays of memristor synapses, and the 
network demonstrated perfect classification after 21 epochs. We believe that this 
chapter offers a deep understanding of the field of memristor synapses.
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This influences output currents, leading to degradation of learning performance. 
The non-idealities in array-level could be overcome by device functions [35, 44], 
operational scheme [39, 58–60], or learning algorithms [35, 40–44] to some degree.

5. Conclusion

Neuromorphic systems are one of the most promising candidates to deal with 
the von Neumann bottleneck caused by the memory wall between memory and 
process units. Using memristor synapses simply classified into cation- and anion-
based devices can resolve this bottleneck owing to their storage and transmittance 
capabilities. To obtain higher performance of neuromorphic systems, representative 
characteristics, including the linearity of weight update, large multilevel states 
and dynamic range (ON/OFF ratio), variation and endurance, and retention need 
to be improved. In this context, different memristor synapses based on novel 
materials and device structures were introduced. Finally, we have briefly explained 
neuromorphic networks based on crossbar arrays of memristor synapses, and the 
network demonstrated perfect classification after 21 epochs. We believe that this 
chapter offers a deep understanding of the field of memristor synapses.
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Chapter 3

Coexistence of Bipolar and
Unipolar Memristor Switching
Behavior
Sami Ghedira, Faten Ouaja Rziga, Khaoula Mbarek
and Kamel Besbes

Abstract

The memristor has been theoretically investigated as one of the fundamental
electrical elements by Pr. Leon Chua in 1971. Meanwhile, its electrical
characteristics are not yet fully understood. The nonlinear characteristics and the
ability to examine large-scale amounts of storing data of this device reveal an
interesting development in emerging electronic systems. Research on memristor
modeling based on SPICE tools has grown rapidly. This leads us to study the
behavior of such devices. Our aim is to simulate different types of memristor
behavior. The adjustment of the model is based on the implementation of several
parameters, which enables the switching of this device. In this chapter, we prove
the flexibility and the correlation of memristor model with different memristive
characterization data, by applying different voltage bias, sinusoidal and with a
repetitive sweeping. Moreover, we demonstrate the memristor behavior as four
types of switching. This includes bipolar switching, unipolar switching, bipolar
switching with forgetting effect, and a reversible process between bipolar and
unipolar switching. In order to validate this study, we compare our simulation
results with experimental data and we prove a good agreement. The SPICE
model used in our simulations shows a special advantage for its flexibility
and simplicity.
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1. Introduction

Significant interest has been focused on the development of memristor-based
systems. It has been first developed on symmetry consideration by Prof. Leon Chua
in 1971 [1, 2]. In addition, it has been admitted physically by the HP Labs Team in
2008 [3]. This device does have a great potential to be the future memory cell, due
to the small feature size and ability to retain the content (nonvolatile). The identity
of such device is obvious on the I-V characteristics, i.e., its “pinched hysteresis
loop.” Thus, the choice of the model and the structure are necessary to achieve
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Abstract

The memristor has been theoretically investigated as one of the fundamental
electrical elements by Pr. Leon Chua in 1971. Meanwhile, its electrical
characteristics are not yet fully understood. The nonlinear characteristics and the
ability to examine large-scale amounts of storing data of this device reveal an
interesting development in emerging electronic systems. Research on memristor
modeling based on SPICE tools has grown rapidly. This leads us to study the
behavior of such devices. Our aim is to simulate different types of memristor
behavior. The adjustment of the model is based on the implementation of several
parameters, which enables the switching of this device. In this chapter, we prove
the flexibility and the correlation of memristor model with different memristive
characterization data, by applying different voltage bias, sinusoidal and with a
repetitive sweeping. Moreover, we demonstrate the memristor behavior as four
types of switching. This includes bipolar switching, unipolar switching, bipolar
switching with forgetting effect, and a reversible process between bipolar and
unipolar switching. In order to validate this study, we compare our simulation
results with experimental data and we prove a good agreement. The SPICE
model used in our simulations shows a special advantage for its flexibility
and simplicity.
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to the small feature size and ability to retain the content (nonvolatile). The identity
of such device is obvious on the I-V characteristics, i.e., its “pinched hysteresis
loop.” Thus, the choice of the model and the structure are necessary to achieve
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better endurance and performance. Hence, the correlation of one model to other
memristive devices is an interesting development to further research.

In the literature, memristor models studied in [3–10] have been published for
basic mathematical functioning properties of the memristor, which have been pro-
posed by HP Labs in [3]. Other models [11–14] focus on extracting the I-V charac-
teristic of the model with other mathematical method using boundary conditions.
They differ in complexity, materials, and accuracy. Thus, since our interest is in the
behavior of the memristor, we choose to explore and investigate a simple SPICE
model, which has been proposed by the present authors in [11]. The main differ-
ences are displayed in the implementation of parameters such as the state variable
of the device. However, so far, no SPICE model could be correlated to several
characterizations data of memristive devices. Our goal is to use a memristor model
to analyze its functioning for different voltage bias. We study the dynamical
behavior of memristor and we demonstrate that this model accounts for four dif-
ferent types of a memristor cited as the following: the bipolar behavior of
memristor, the unipolar behavior, the bipolar with forgetting effect, and the
reversible process between the bipolar and the unipolar behavior of memristor.
Those types of memristor change under distinct stimulus such as sinusoidal, trian-
gular, and repetitive DC sweeping voltage.

2. Theoretical principles

The wide variety in memristor structure and composition has led to the devel-
opment of many different memristor modeling techniques. Some of them have been
designed to represent a specific device for a specific type of application, such as
AHaH [12], ANN [15, 16], Slime mold [17], and neuromorphic applications [5].
Implementation of the memristor could be generated on several tools of simulation,
such as SPICE [18–25], Matlab [26–32], Verilog-A [33], and VHDL-AMS [34–37].
Resistive switching behavior is one of the fundamental properties showed in
memristors; the well-known HP lab model of a memristor [3] shown in Figure 1(a)
consists of a thin TiO2 double-layer of width D between a pair of platinum

Figure 1.
Physical model of memristor [3]. (a) Memristor thin film. (b) Memristor hysteresis loop.
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electrodes. One of the TiO2 layers of width w is doped with oxygen vacancies. The
second, undoped layer of width w-D has insulating properties. As a result of com-
plex processes in the device, the width w of the doped layer varies by applying a
voltage or current to the electrodes of the memristor, and there will be dramatic
changes in resistance. Therefore, the boundary, defined as the state variable
x = w/D, between the two layers moves simultaneously. The well-known charac-
teristic of the memristor is shown in Figure 1(b), the pinched hysteresis loop,
which indicates the switching behavior of memristive devices. An application of a
positive bias voltage to the electrodes of the device leads to the switching between
Off and On states, and this switching is labeled SET. A RESET switching corre-
sponds to the exchange between On and Off states. As current flows through the
device, the cross section between the regions moves. As a result, the doped and the
undoped regions have resistance Ron and Roff when each of them reaches the (D-w)
and the full-length D, respectively. Also, the width w of the doped region of the
memristor increases by applying a positive voltage bias, which causes the total
resistance of the device to decrease. The same process is carried out by applying a
negative voltage to the opposite side of the device. Moreover, there are two methods
of the behavior of resistive switching for memristors: static and dynamic switching.

2.1 Static characteristics

The characteristic of a static switching behavior is obtained with a slow sweep of
the voltage applied to the terminals of the device between the minimum and
maximum values eligible (typically a triangular signal).

2.2 Dynamic characteristics

In dynamic switching, voltage pulses are applied to the device and the current
rises under the constant voltage bias during the pulsing interval.

A comprehensive mathematical illustration of a SPICE memristor model has
been reported in [11], which will be used later on for our simulation results. This
model can illustrate the static and dynamic switching behavior, which will be
studied in the next section. Thus, this model is based on the assumption that the
switching behavior of the memristor is small or fast, below or above a threshold
voltage VSET or VRESET, respectively, which is considered as the minimum voltage
required to impose a change on the physical structure and thus the memristance of
the device. This assumption is encapsulated in the use of the multiple implemented
parameters, which are included in the set of equations below:

I tð Þ ¼ a1x tð Þsinh bV tð Þð Þ, V tð Þ > 0

a2x tð Þsinh bV tð Þð Þ, V tð Þ < 0

�
(1)

The relationship between the memristor voltage and the memristor current is
given by Eq. (1), and it comprises three main parameters: a1, a2, and b. These
parameters are responsible for the modeling of the nonlinear phenomenon of the
pinched hysteresis loop. a1 and a2 are the magnitude parameters that vary according
to the polarity of the input voltage; it is also related to the thickness of the dielectric
layer of the memristor. Meanwhile, b is defined as the control parameter, which
refers to the amount of oxygen deficiencies presented in the device, and it controls
the conductivity of the device. The main voltage equation is defined by the relation
g(t) defined below:
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plex processes in the device, the width w of the doped layer varies by applying a
voltage or current to the electrodes of the memristor, and there will be dramatic
changes in resistance. Therefore, the boundary, defined as the state variable
x = w/D, between the two layers moves simultaneously. The well-known charac-
teristic of the memristor is shown in Figure 1(b), the pinched hysteresis loop,
which indicates the switching behavior of memristive devices. An application of a
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sponds to the exchange between On and Off states. As current flows through the
device, the cross section between the regions moves. As a result, the doped and the
undoped regions have resistance Ron and Roff when each of them reaches the (D-w)
and the full-length D, respectively. Also, the width w of the doped region of the
memristor increases by applying a positive voltage bias, which causes the total
resistance of the device to decrease. The same process is carried out by applying a
negative voltage to the opposite side of the device. Moreover, there are two methods
of the behavior of resistive switching for memristors: static and dynamic switching.

2.1 Static characteristics

The characteristic of a static switching behavior is obtained with a slow sweep of
the voltage applied to the terminals of the device between the minimum and
maximum values eligible (typically a triangular signal).
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In dynamic switching, voltage pulses are applied to the device and the current
rises under the constant voltage bias during the pulsing interval.

A comprehensive mathematical illustration of a SPICE memristor model has
been reported in [11], which will be used later on for our simulation results. This
model can illustrate the static and dynamic switching behavior, which will be
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g tð Þ ¼

Ap eV tð Þ � eVp

� �
, V tð Þ > Vp

� An e�V tð Þ � eVn

� �
, V tð Þ < �Vn

0, � Vn ≤V tð Þ≤Vp

8>>>><
>>>>:

(2)

Equation (2) incorporates the threshold voltage with Vp and Vn which refers to
the positive and negative polarizations, respectively, which makes a change in the
switching behavior for value below the external voltage of the memristor. Ap and An

are fitting parameters that affect the conductivity of the device. Accurately, it
controls the speed of the oxygen deficiencies motion. The demonstration of the
linearity of the model is described by parameters included in the following
equations:

f xð Þ ¼ e�αp x�xpð Þwp x; xp
� �

, x≥ xp

1, x < xp

(
(3)

f xð Þ ¼ eαn xþxn�1ð Þwn x; xnð Þ, x≤ 1� xn

1, x > 1� xn

(
(4)

The physical parameters xp and xn have been defined in Eqs. (3) and (4); it
represents the value of the state variable, which is responsible for the linearity of the
device. Fitting parameters αp and αn are also included in these equations; are
responsible for the linearity of the device; and they determine the degree of motion
including the amortization of the state variable. The parameters wn and wp are
defined by Eqs. (5) and (6), respectively. Those functions are used to shape the
intensity of the state variable dynamics, i.e., the rate of memristance change.

wp x; xp
� � ¼ xp � x

1� xp
þ 1 (5)

wn x; xnð Þ ¼ x
1� xn

(6)

Equation (7) represents the modeling function of the state variable. The fitting
parameter η represents the direction of the movement of the state variable
depending on the polarity of the input voltage. When η = 1, a positive voltage
greater than the threshold voltage will increase the value of the state variable; and
when η = �1, a positive voltage will decrease the value of the state variable.

dx
dt

¼ ηg V tð Þð Þf x tð Þð Þ (7)

Each pair of the parameters indicates the variation in the positive and negative
region of the polarization. These multiple parameters make it possible for this
device to be adaptable to a variety of characterization data of memristive devices,
which we will discuss in the next section.

3. Analysis of the I-V characteristics

In our previous work [38], we illustrated a methodology for a simple memristor
model to automatically adjust other behaviors of memristive devices. It effectively
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demonstrates the basic I-V characteristics of a memristive device. In addition, it acts
differently in the positive and negative regions of the applied voltage, and the
implemented parameters of the device take account on this, which makes the
analysis of the pinched hysteresis loop simple and coherent for the positive and the
negative regions independently. Therefore, we analyze the fundamental fingerprint
of the macromodel and its memristance switching behavior. In the simulation
results of Figure 2(a), we used a sinusoidal voltage 0.46 V with a frequency of
100 Hz, Figure 2(b) shows the resultant pinched hysteresis loop, which correlates
the characterization data of the proposed model [11]. Thereby, our results agree
well with the experimental results already published in [11], and we prove the
linearity property of the device for a higher value of frequency. The next simulation
results reveal the richness of memristor’s switching behavior confirming the use-
fulness of the specific design approach. The effect of memristive switching is
inspected by varying the implemented parameters of the model such as the magni-
tude of the voltage bias, the initial charge, and the state variable.

This changes the operating regime so the memristance value may not remain
constant and the memristor operates in different segments or takes different
memristance values. This sudden jump of memristance is called “memristive
switching” or “resistive switching.”

In this case, memristive switching depends on the bias of the applied voltage
across the device, which is represented in Figure 3(a), the curve of the state
variable motion at memristor boundaries. We consider the memristor in an Off
state, as an initial state of the device, switching the device to On state, requires a
positive bias across the device. While switching it to Off state requires negative bias.

Figure 2.
(a) Curve of current and voltage applied to the terminals of the memristor. (b) Represents the resultant
hysteresis loop at 100 Hz and 100 kHz where the deviates linear.

Figure 3.
(a) The state variable motion at memristor boundaries according to the applied voltage and (b) memristance
behavior over time.
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demonstrates the basic I-V characteristics of a memristive device. In addition, it acts
differently in the positive and negative regions of the applied voltage, and the
implemented parameters of the device take account on this, which makes the
analysis of the pinched hysteresis loop simple and coherent for the positive and the
negative regions independently. Therefore, we analyze the fundamental fingerprint
of the macromodel and its memristance switching behavior. In the simulation
results of Figure 2(a), we used a sinusoidal voltage 0.46 V with a frequency of
100 Hz, Figure 2(b) shows the resultant pinched hysteresis loop, which correlates
the characterization data of the proposed model [11]. Thereby, our results agree
well with the experimental results already published in [11], and we prove the
linearity property of the device for a higher value of frequency. The next simulation
results reveal the richness of memristor’s switching behavior confirming the use-
fulness of the specific design approach. The effect of memristive switching is
inspected by varying the implemented parameters of the model such as the magni-
tude of the voltage bias, the initial charge, and the state variable.

This changes the operating regime so the memristance value may not remain
constant and the memristor operates in different segments or takes different
memristance values. This sudden jump of memristance is called “memristive
switching” or “resistive switching.”

In this case, memristive switching depends on the bias of the applied voltage
across the device, which is represented in Figure 3(a), the curve of the state
variable motion at memristor boundaries. We consider the memristor in an Off
state, as an initial state of the device, switching the device to On state, requires a
positive bias across the device. While switching it to Off state requires negative bias.
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Figure 3(b) represents the curve of the memristance or the resistance of the
memristor on the On and Off states. From this results, Ron and Roff’s value estimated
by 1.3 kΩ and 1.1 kΩ, respectively.

4. Correlation of different memristive devices

In this section, we present our simulation results, in which we implement the
different values of parameters on PSPICE, to fit a set of memristive devices
studied for different types of applications. Those results describe the static and
dynamical characteristics of the model. Thus, we prove that the SPICE model fits
well with the characterization data of memristors defined in [8, 15, 17, 25, 39–44].
The polarization voltages studied are either sinusoidal pulses or repetitive DC
sweeping voltage to represent the different switching resistive levels of the
memristor. The simulation results of the proposed model [11] shown in Figure 4,
which indeed shows the characterization data of several memristive devices. In
these simulation results, we adjust the different implement parameters on the
SPICE model to fit the experimental results presented in [11]. Thus, it describes the
I-V characteristics for devices defined in [8, 9, 40–43], which has been correlated
by the SPICE model.

a.Figure 4(a) describes the simulation results of the device published by the
State University of Boise in [40].

b.Figure 4(b) describes the simulation results of the device published by the Tel
Aviv University in [9, 41].

c. Figure 4(c) describes the simulation results of the device published by the
University of Michigan in [8].

d.Figure 4(d) describes the simulation results of the device published by the
state University of Iowa in [42].

e.Figure 4(e) describes the simulation results of the device published by the
University of Michigan in [43].

4.1 Memristive device of the laboratory of slime mold

We adjust the implemented parameters to find the appropriate shape of I-V
characteristics of the Slime mold device [17] shown in Figure 5, our results fits well
the experimental results described in [17]. The application of Slime mold is a group
of bacteria that lives mainly in the soil, which has the ability to change its shape by
sliding every 50 s (by extension and retraction). This outcome contributes to the
development of bioelectronics circuits of self-growth. The I-V characteristics curve
for a DC voltage and a repetitive sweeping and the curve of the resistance of the
device shown in Figure 5(a)–(c), respectively. These results present the function-
ality of this model by applying a repetitive DC sweeping voltage to present the
various resistance switching states.

4.2 Memristive device of Strachan of the HP laboratory

Another memristive device based on TaOx was proposed by the team of HP Labs
in [44]; we adjust the fitting parameters with the characterization data of this
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device. The results are shown in Figure 6; it agrees with the experimental results
represented in [44]. The I-V characteristic curve for a DC voltage and a
repetitive sweeping and the curve of the resistance of the device are shown in
Figure 6(a)–(c), respectively. The simulation results present the functionality of
this model by applying a repetitive DC sweeping voltage to present the several
resistance switching states.

Figure 4.
(a) I-V curve of memristive device proposed by the State University of Boise [40], (b) I-V curve of memristive
device proposed by the Tel Aviv University [41], (c) I-V curve of memristive device proposed by the University
of Michigan in 2010 [8], (d) I-V curve of the device proposed by the State University of Iowa in 2010 [42], and
(e) I-V curve of the device proposed by the University of Michigan [43] including the parameter values.
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4.3 Memristor of Nugent for AHaH applications

Our model also fits well a learning AHaH application accomplished by
Nugent in [12]. After the application of a sinusoidal signal to the memristor with
amplitude 0.25 V for a period 10 ms, we found the resultant I-V characteristics
shown in Figure 7(a), which seems compatible with the I-V characterization
profile and it fits well the experimental results revealed in [12]. This model
works well for a repetitive DC sweeping voltage which is represented by the I-V
characteristics curves and the curve of the resistance of the device shown in
Figure 7(b), (c). The simulation results present the functionality of this model
by applying a repetitive DC sweeping voltage to present the several resistance
switching states.

Figure 5.
Simulation results of the memristor model adapted to the I-V characteristics profile of Slime mold memristive
device, the Simulation value: η = 1, x0 = 0.11, xp = 0.35, xn = 0.55, αp = 1, αn = 5, Vp = 0.1, Vn = 0.1,
Ap = An = 4 103, b = 2 10�5, a1 = a2 = 17 105.

Figure 6.
Simulation results of the model adapted to the I-V characteristics profile of the memristive device of Strachan,
the simulation value: η = 1, x0 = 99 � 10�3, xp = 0.3, xn = 0.63, αp = 0.1, αn = 20, Vp = 0.49, Vn = 0.6,
Ap = 400, An = 25, b = 1.3 � 10�3, a1 = 1.7, a2 = 1.2.

Figure 7.
Simulation results of the model adapted to the I-V characteristics profile of the memristive device of Nugent,
the simulation value: η = 1, x0 = 1.1 � 10�4, xp = 0.3, xn = 0.8, αp = 1, αn = 5, Vp = 0.1, Vn = 0.13,
Ap = An = 4 � 103, b = 6.5 � 10�2, a1 = a2 = 0.17.
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4.4 Memristive device of the University of Pittsburgh

The device represented by Zhang in [39] is based on TaOx material. The simu-
lation results of this device are represented in Figure 8(a) by applying a triangular
voltage with a sweeping of the magnitude, 0.74 V for the positive region, and
�1.25 V for the negative region. After adjustment of the parameters, we have a
nonlinear I-V curve which seems to be compatible with the I-V characterization
profile recorded in the experiments of HP labs in [39]. In addition, we proved the
functioning of this device with a repetitive DC sweeping voltage to present several
resistance switching states shown in Figure 8(b) and (c).

4.5 Memristive device for ANN learning application

Meanwhile, we also simulated the model with a square wave excitation shown in
Figure 9. This excitation method is used as a learning method, which presents the
behavior of this model as an artificial neural network ANN [15]. We follow the
learning experience carried out in [16]. As shown in Figure 9(c), the memristance
of the device increases along with the applied voltage. However, this behavior
response is different from the other previous excitation, and this depends on the
type of excitation and the followed current. The current curve decreases with each
pulse of the excitation voltage positive and negative.

In conclusion, we notice that this SPICE model is a general model that can be
applied in multiple domains. Furthermore, according to the simulation results of
both devices Slime mold and HP Labs, we notice that the hysteresis loop of the
memristor maintains its nonlinear shape even for a remarkable range of the values
of the parameters. The speed of movement for the memristive devices of Slime
mold and Nugent are faster compared to the other memristive devices since Ap and

Figure 8.
Simulation results compared to the simulation result of Zhang, the simulation value: η = 1, x0 = 55 � 10�4,
xp = 0.32, xn = 0.1, αp = 1, αn = 5, Vp = 0.7, Vn = 0.75, Ap = 4 � 103, An = 500, b = 11 � 10�4,
a1 = 0.17 � 103, a2 = 1.1 � 103.

Figure 9.
Simulation results of the model adapted to learning application, the simulation value: η = 1, x0 = 0.11,
xp = 0.3, xn = 0.5, αp = 1, αn = 5, Vp = Vn = 1, Ap = An = 4, b = 0.5, a1 = a2 = 0.01.
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An have higher values. Thus, the memristive devices of Slime mold and Zhang
application have the lowest values of b, which decrease its conductivity. The ANN
learning application presents another type of excitation, which largely affects the
dynamic of the memristor’s behavior. Thus, we will deal later with the use of
different memristor switching behavior, we demonstrate not only bipolar, but also
the unipolar switching behavior of memristors, which differs from bipolar
memristors in the fact that only the magnitude of the voltage across the device
determines the change in the resistance.

5. Behavior of the SPICE model for different types of memristors

Memristor models, in literature, have different responses, which are generated
for four different types of a memristor, i.e., bipolar, bipolar with a forgetting effect,
unipolar and reversible behavior between the bipolar, and the unipolar memristor.
For our simulation results, we used a SPICE model that can not only describe the
basic memory ability of memristor, but also be able to capture all of the four types
of memristor switching behavior.

Models with bipolar switching [45, 46] distinguishable by the memristance
which increases and decreases by different polarity voltages. Models with unipolar
switching behavior [45, 46] are distinguishable by its memristance, which can
increase and decrease by the same polarity voltage. The bipolar with forgetting
effect [47, 48] is distinguishable by its memristance which increases and decreases
by a different polarity voltage, but memristance can spontaneously decrease at the
same time, even with no voltage applied. The reversible bipolar and unipolar
switching behavior [49], here the memristor will behave like a bipolar memristor at
first, but after a few iterations, it will turn to a unipolar memristor.

In the same context, we use different polarization voltages, either sinusoidal or
repetitive DC sweeping voltage, exploited in order to present the different states of
resistance of the memristor, and thus it shows the behavior of the four different
types of a memristor. Those results reveal the richness of memristor’s dynamical
behavior confirming the usefulness of the specific model approach.

To verify the memristive characteristics and the coexistence of different
switching behavior of our proposed model, we employed different excitations
presented in the following figures of the rest of the paper. In fact, to characterize
different types of memristors, we need to verify the behavior of the model for the
well-known fundamental switching behavior in both bipolar and unipolar switching
behavior. In this case, we have adapted our model according to the experimental
results demonstrated in [50]. These observations are consistent and in very good
qualitative agreement with the experimental results of the memristor switching
behavior already published in [50].

In addition, Figure 10 shows the dynamical characteristics of a bipolar
memristor behavior. The sweeping voltage bias approaches a set value v = 1.8 V

Figure 10.
Memristor SPICE model response for a bipolar switching behavior.
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with current value I = 7 mA. Reversing the voltage polarity, the device switches to a
reset value at v = �1.8 V with current value I = �4.5 mA. The attained pinched
hysteresis I-V curves are shown in Figure 10(b), (c), which are the typical finger-
print of bipolar resistive switching. The corresponding resistance response is illus-
trated in Figure 10(d), which was measured according to voltage sweeping with a
maximum value of 1.2 kΩ and a lower value of 0.9 kΩ in the negative and positive
voltage application respectively. In addition, Figure 10(e) confirms that hysteresis
takes place in both I-V and C-V relationships of the device, and it shows a closed
switching cycle in the bipolar switching behavior for a maximum value of 25 mS.

Memristor behavior for a bipolar switching with forgetting effect is shown in
Figure 11. An obvious overlap of the I-V curve is shown in Figure 11(b), (c), due to
the repetitive sweeping of the applied voltage. The sweeping voltage bias
approaches a set value v = 1.2 V with a maximum current value I = 6 mA. Reversing
the voltage polarity, the device switches to a reset value at v = �1.2 V with a
maximum current value I = �5 mA. Also, it can be seen from these curves, an
accumulation of the current on each pulse. The corresponding resistance response
is illustrated in Figure 11(d), which was measured according to voltage sweeping
with a maximum value of 1.8 kΩ decreasing to a lower value of 0.3 kΩ in the
positive voltage application, on the opposite side of the negative voltage
application the resistance response shows an increase from 0.3 to 0.9 kΩ. The curve
in Figure 11(e) shows five switching cycles for a maximum value of 35 mS. This
C-V curve shows that the memristance not only increases and decreases by a
different polarity voltage, but it also can spontaneously decrease at the same time,
even with no voltage applied, and this is a unique switching behavior of memristor.
In fact, these curves show the operation of the model as a bipolar memristor with
forgetting effect.

Furthermore, the simulation results for the unipolar behavior of memristor are
shown in Figure 12, which show that another switching behavior is characterized
by the memory devices and also that the memristance of the device can increase and
decrease by the same polarity of the voltage. For this type of memristor, we use a
positive voltage excitation for a value of 2 V and maximum current value I = 17 mA,
which is shown in the curve (Figure 12(a)), we notice a slight accumulation of the
current on each pulse. The characteristics shown in Figure 12(d), (e) describe the
resistance and the conductance curve of the memristor. The resistance was

Figure 11.
Memristor SPICE model response to a bipolar with forgetting effect.

Figure 12.
Memristor SPICE model response to a unipolar behavior switching.
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measured with a maximum value of 2.8 kΩ decreasing to a lower value of 0.25 kΩ.
However, the conductance curve (Figure 12(e)) shows three switching cycles
related to voltage sweeping for a maximum value of 80 mS. In fact, this C-V curve
shows that the conductance change in response to three positive pulses, it initially
increases (during each pulse stimulus) and subsequently decays toward its original
value (between stimuli).

In the end, we represent the results of memristor under a reversible state
between the bipolar and the unipolar behavior in Figure 13. The sweeping voltage
bias, shown in Figure 13(a), approaches a set value v = 5 V with a maximum
current value I = 60 mA. Reversing the voltage polarity, the device switches to a
reset value at v = �5 V with a maximum current value I = �10 mA.

An obvious overlap of the I-V curve in Figure 13(b), (c) occurs due to the
repetitive sweeping of the applied voltage. The corresponding resistance response is
illustrated in Figure 13(d), which occurs in a different switching behavior; the rise
and fall of the resistance exist but with a large gap between high and low values. The
conductance curve in Figure 13(e) shows four switching cycles for a maximum
value of 100mS. This C-V curve shows that the first cycle of the switching behavior
differs to the other cycles of the switching behavior of the memristor. In fact, the
first cycle that can be seen from these curves shows bipolar operation, but after the
second pulse, it automatically turned to a unipolar memristor behavior. These
characteristic curves are shown, respectively, in Figures 10–13. The operation of
the memristor model as a bipolar memristor behavior is shown in Figure 10. The
response to a bipolar with forgetting effect is shown in Figure 11. The response to a
unipolar memristor behavior is shown in Figure 12. And, the memristor model
response to a reversible bipolar and unipolar behavior is shown in Figure 13. We
can conclude that our simulation results are consistent and in very good qualitative
agreement with the results already published in [15]. A detailed comparison
between our work model and other popular memristor models (the Chua [1], the
Strukov (HP) [3], Vourkas [45], and the Chen [15]) is shown in Table 1. We can
notice that the SPICE model gets a special advantage on describing various

Figure 13.
Memristor SPICE model response to reversible bipolar and unipolar behavior.

Memristor
models

Mechanism High
frequency

Low
complexity

Unipolar Bipolar Forgetting
effect

Reversible
effect

Parameters

Chua [1] Yes No Yes No Yes No No —

Strukov
(HP) [3]

Yes No Yes No Yes No No 5

Vourkas
[45]

Yes Yes Yes No Yes No No 12

Chen [15] Yes Yes No Yes Yes Yes Yes 13

This work Yes Yes Yes Yes Yes Yes Yes 13

Table 1.
Comparing memristor models.
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memristors models with an average number of parameters, and for its flexibility,
and low complexity.

6. Conclusion

The consideration of the SPICE memristor model as a simple and flexible model
was proved to explain the memristor switching, not only processing the general
memristor properties, but also catching the different types of memristor behavior:
the bipolar, unipolar, the bipolar with forgetting effect, and the reversible process
between the bipolar and the unipolar behavior. Our simulation results demonstrate
that for the bipolar memristor, a regular hysteresis curve can be obtained. For the
bipolar memristor with forgetting effect, an obvious overlap between the neighbor
loops of the I-V curve, and for the unipolar memristor, a positive voltage is applied,
but the conductance will increase only when the voltage is over 1 V. Also, for the
reversible process between bipolar and unipolar behavior, the memristor firstly
behaves as a bipolar switching, and its conductance increases and decreases
according to the polarity of the voltage. However, after applying a second pulse, it
will turn to behave as a unipolar switching. This chapter provides a practical
memristor model that can be simulated with different types of stimulus, and further
studies are aimed at integrating the memristor model into a computing design with
complementary metal-oxide-semiconductor (CMOS) circuits that can perform the
necessary functions on a chip.
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bias, shown in Figure 13(a), approaches a set value v = 5 V with a maximum
current value I = 60 mA. Reversing the voltage polarity, the device switches to a
reset value at v = �5 V with a maximum current value I = �10 mA.

An obvious overlap of the I-V curve in Figure 13(b), (c) occurs due to the
repetitive sweeping of the applied voltage. The corresponding resistance response is
illustrated in Figure 13(d), which occurs in a different switching behavior; the rise
and fall of the resistance exist but with a large gap between high and low values. The
conductance curve in Figure 13(e) shows four switching cycles for a maximum
value of 100mS. This C-V curve shows that the first cycle of the switching behavior
differs to the other cycles of the switching behavior of the memristor. In fact, the
first cycle that can be seen from these curves shows bipolar operation, but after the
second pulse, it automatically turned to a unipolar memristor behavior. These
characteristic curves are shown, respectively, in Figures 10–13. The operation of
the memristor model as a bipolar memristor behavior is shown in Figure 10. The
response to a bipolar with forgetting effect is shown in Figure 11. The response to a
unipolar memristor behavior is shown in Figure 12. And, the memristor model
response to a reversible bipolar and unipolar behavior is shown in Figure 13. We
can conclude that our simulation results are consistent and in very good qualitative
agreement with the results already published in [15]. A detailed comparison
between our work model and other popular memristor models (the Chua [1], the
Strukov (HP) [3], Vourkas [45], and the Chen [15]) is shown in Table 1. We can
notice that the SPICE model gets a special advantage on describing various

Figure 13.
Memristor SPICE model response to reversible bipolar and unipolar behavior.

Memristor
models

Mechanism High
frequency

Low
complexity

Unipolar Bipolar Forgetting
effect

Reversible
effect

Parameters

Chua [1] Yes No Yes No Yes No No —

Strukov
(HP) [3]

Yes No Yes No Yes No No 5

Vourkas
[45]

Yes Yes Yes No Yes No No 12

Chen [15] Yes Yes No Yes Yes Yes Yes 13

This work Yes Yes Yes Yes Yes Yes Yes 13

Table 1.
Comparing memristor models.
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memristors models with an average number of parameters, and for its flexibility,
and low complexity.

6. Conclusion

The consideration of the SPICE memristor model as a simple and flexible model
was proved to explain the memristor switching, not only processing the general
memristor properties, but also catching the different types of memristor behavior:
the bipolar, unipolar, the bipolar with forgetting effect, and the reversible process
between the bipolar and the unipolar behavior. Our simulation results demonstrate
that for the bipolar memristor, a regular hysteresis curve can be obtained. For the
bipolar memristor with forgetting effect, an obvious overlap between the neighbor
loops of the I-V curve, and for the unipolar memristor, a positive voltage is applied,
but the conductance will increase only when the voltage is over 1 V. Also, for the
reversible process between bipolar and unipolar behavior, the memristor firstly
behaves as a bipolar switching, and its conductance increases and decreases
according to the polarity of the voltage. However, after applying a second pulse, it
will turn to behave as a unipolar switching. This chapter provides a practical
memristor model that can be simulated with different types of stimulus, and further
studies are aimed at integrating the memristor model into a computing design with
complementary metal-oxide-semiconductor (CMOS) circuits that can perform the
necessary functions on a chip.
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Chapter 4

Memristive Grid for Maze Solving
Arturo Sarmiento-Reyes and Yojanes Rodríguez Velásquez

Abstract

Memcomputing represents a novel form of neuro-oriented signal processing that
uses the memristor as a key element. In this chapter, a memristive grid is developed
in order to achieve the specific task of solving mazes. This is done by resorting to
the dynamic behavior of the memristance in order to find the shortest path that
determines trajectory from entrance to exit. The structure of the maze is mapped
onto the memristive grid, which is formed by memristors that are defined by fully
analytical charge-controlled functions. The dependance on the electric charge per-
mits to analyze the variation of the branch memristance of the grid as a function of
time. As a result of the dynamic behavior of the developed memristor model, the
shortest path is formed by those memristive branches exhibiting the fastest
memristance change. Special attention is given to achieve a realistic implementation
of the fuses of the grid, which are formed by an anti-series connection of
memristors and CMOS circuitry. HSPICE is used in combination with MATLAB to
establish the simulation flow of the memristive grid. Besides, the memristor model
is recast in VERILOG-A, a high-level hardware description language for analog
circuits.

Keywords: memristive grids, symbolic memristor modeling, maze-solving,
analog processors

1. Introduction

For thousands of years, mazes have intrigued the human mind [1]. The laby-
rinths have been used in research with laboratory animals, in order to study their
ability to recognize their environment [2–4]. In the 1990s, artificial intelligence of
robots was studied by examining their ability to traverse unfamiliar mazes [5–7].
Maze exploration algorithms are closely related to graph theory and have been used
in both mathematics and computer science [8, 9].

There are several algorithms for maze solving in the literature, they can be
classified in two very well-defined groups: the algorithms used by a traveler in the
maze without knowledge of a general view of the maze, and the algorithms used for
a program that can have a whole view the whole maze. Some examples of the first
ones are the wall follower, random mouse, pledge algorithm [10], and Trémaux’s
algorithm [11]. In the second group, shortest path algorithms are most useful,
because they can find the solution not only for a simple connected maze, but also
for multiple-solution mazes.

In this chapter, we put a main idea into practice, namely that the topology of a
maze can be mapped onto a memristive grid. By exploiting the analog computations
performed by solving Kirchoft’s Current Laws (KCL) in a parallel manner,
memristive grids have demonstrated their ability for computing shortest paths in a
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in both mathematics and computer science [8, 9].

There are several algorithms for maze solving in the literature, they can be
classified in two very well-defined groups: the algorithms used by a traveler in the
maze without knowledge of a general view of the maze, and the algorithms used for
a program that can have a whole view the whole maze. Some examples of the first
ones are the wall follower, random mouse, pledge algorithm [10], and Trémaux’s
algorithm [11]. In the second group, shortest path algorithms are most useful,
because they can find the solution not only for a simple connected maze, but also
for multiple-solution mazes.

In this chapter, we put a main idea into practice, namely that the topology of a
maze can be mapped onto a memristive grid. By exploiting the analog computations
performed by solving Kirchoft’s Current Laws (KCL) in a parallel manner,
memristive grids have demonstrated their ability for computing shortest paths in a
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given maze, levering on the dynamic adjustment of their intrinsic memristance
[12, 13].

The parallel solution of KCL introduces a resemblance of the memristive grid as
an analog processor [14] in counterposition to a digital approach in which the
processing can also be done in parallel way, but the overhead in additional conver-
sion circuitry is too high.

Two important milestones appear in the history of the memristor. The first one
in 1971 when professor Leon O. Chua introduced the memristor as the fourth basic
circuit element in his seminal paper [15]. It established that the memristor com-
pletes the number of possible relationships between the four fundamental circuit
variables: current, voltage, magnetic flux, and electric charge—as depicted in
Figure 1. Later, an extension to memristive systems was published in [16].

The second milestone occurred in 2008, when a team at Hewlett-Packard Labo-
ratories fabricated a device whose behavior exhibited the memristance phenome-
non [17]. Since the advent of the memristor as an actual device, research and
technological development in several areas related to memristive applications have
been increased.

In the field of signal processing, the memristor has special preponderance in
neuro-computing and artificial neural networks because it allows new architectures
and processing paradigms with important features based on biological neuronal
systems [18–22]. In summary, a novel form of neuro-computing is on scene, namely
memcomputing [23].

Memristive grids represent a family of neuro-computing systems that are able of
achieving in a very flexible way several tasks for analog applications. In the next
paragraphs, we present a specially tailored memristive grid that is focused on
solving mazes.

The rest of the manuscript is organized as follows: in Section 2, the developed
models are recast in a set of fully analytical expressions for the memristance, which
are given as charge-controlled functions that are further used in this application. The
components of the memristive grid are introduced in Section 3. The maze-solving
procedure is introduced in Section 4 by explaining the simulation flow of the
memristive grid. Subsequently, several mazes are solved in order to illustrate the
operation of the memristive grid in Section 6. Finally, a series of conclusions is drawn.

2. Development of a charge-controlled memristor model

In this section, a charge-controlled memristor model is introduced. The model
has been developed by solving the ordinary differential equation (ODE) that
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describes the nonlinear drift mechanism, with a homotopy perturbation method
that yields an analytical expression for the memristance [24–27].

In order to obtain a charge-dependent memristance model, the nonlinear drift
differential equation is expressed in terms of the electric charge:

dx qð Þ
dq

¼ ηκf w x qð Þð Þ (1)

where η defines the direction of the drift and it can be �1. Besides, f w is the
window function used to define the nonlinear and bounded behavior of the state
variable x qð Þ, and it is given as [28]:

f w ¼ 1� 2x� 1ð Þ2k (2)

Figure 2 shows the resulting window plots for various values of k. In addition, κ
is given as:

κ ¼ μRon

Δ2 (3)

where μ, Ron, and Δ are the mobility, the ON-state resistance, and the dimension
of the device.

The main goal is to obtain a solution to Eq. (1) in the form of an analytical
expression x(q). Once, this is done, this solution is substituted into the coupled
resistor equivalent of Figure 3 which is expressed as [17]:

M tð Þ ¼ Ronx qð Þ þ Roff 1� x qð Þ½ � (4)

where M tð Þ is the total memristance. Besides, Ron and Roff are the on-state and
the off-state resistances respectively.

In order to obtain an analytical solution to Eq. (1), we resort to the methodology
reported in [24, 29], which is based on the homotopy perturbation method (HPM).
HPM finds x qð Þ for a given order of the homotopy method as well as the integer
value of exponent of the window function (k). Furthermore, it should be also
pointed out that the charge may be positive or negative.

As a result, the sign of the charge as well as the direction of the drift (η) allows us
to introduce two operators that are used to simplify the final expressions for the
solution. These operators are denoted as Λ and Θ. Table 1 shows how they are
defined depending on the signs of the charge and η.

Figure 2.
Window function for different values of k.
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As a matter of an example, the expression of x qð Þ for order-1 with k ¼ 1 is given as:

XO1K1 qð Þ ¼ Θ 1þ X0 � 1ð Þ2e8Λκq � X0 � 1ð Þ X0 � 2ð Þe4Λκq
h i

þ 1� Θð ÞX0 �X0e8Λκq þ X0 þ 1ð Þe4Λκq� �

(5)

After substituting Eq. (5) in Eq. (4), it results in the memristance expression:

MO1K1 ¼ Θ Rd Xo� 1ð Þ X0 � 2ð ÞeΛ4κq � Xo� 1ð ÞeΛ8κq� �þ RON
� �

þ 1� Θð Þ RdX0 X0eΛ8κq � X0 þ 1ð ÞeΛ4κq� �þ Roff
� � (6)

where the variable Rd is given as:

Rd ¼ Roff � Ron (7)

For order-2 and k ¼ 1, the solution to Eq. (1) is given as:

XO2K1 qð Þ ¼ Θ 1þ X0 � 1ð Þ X2
0 � 3X0 þ 3

� �
e4Λκq � X0 � 1ð Þ2 2X0 � 3ð Þe8Λκq þ X0 � 1ð Þ3e12Λκq

h i

þ 1� Θð Þ X0 X2
0 þ X0 þ 1

� �
e4Λκq � X2

0 2X0 þ 1ð Þe8Λκq þ X3
0e

12Λκq� �

(8)

Again, after substituting the expression above in Eq. (4) and after some reduc-
tions, it is possible to obtain the memristance for order-2 and k ¼ 1 as:

MO2K1 ¼ MO1K1 þ Rd Θ Xo� 1ð Þ3 �eΛ4κq � 2eΛ8κq � eΛ12κqð Þ
h

þX3
0 �eΛ12κq � 2eΛ8κq � eΛ4κqð Þ 1� Θð Þ�

(9)

ON (x)R OFF(x)R

α =
R
RON

OFF

doped undoped

Figure 3.
Coupled series equivalent of the memristor.

q≥0 q<0

ηþ Λ ¼ �1

Θ ¼ 1

Λ ¼ 1

Θ ¼ 0

η� Λ ¼ �1
Θ ¼ 0

Λ ¼ 1
Θ ¼ 1

Table 1.
Operators for the signs of η and q.
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In a similar way, an expression for the memristance for order-3 and k ¼ 1 can be
obtained:

MO3K1 ¼ MO2K1 þ Rd Θ Xo� 1ð Þ4 �eΛ4κq � 3eΛ8κq � 3eΛ12κq � eΛ16κq
� �h

þX4
0 �eΛ16κq � 3eΛ12κq � 3eΛ8κq � eΛ4κq
� �

1� Θð Þ�
(10)

It can be noticed that HPM produces nested expressions of the memristance,
that is to say, a given memristance of a given order is expressed as function of the
memristance of lower orders.

For order-1 and k ¼ 2, the memristance is given as follows:

MO1K2 ¼ RdΘ

4
3

X2
0 þ 1

� �
X2

0 � 2X0 þ 2
� �

e8Λκq � 3 2X2
0 � 2X0 þ 1

� �
e16Λκq

þ2 3X2
0 � 3X0 þ 1

� �
e24Λκq � 4

3
X4

0 �
8
3
X3

0 þ 4X2
0 �

8
3
X0 þ 2

3

� �
e32Λκq � 1

2
66664

3
77775

þ Rd

� 1
3
X0 2X3

0 � 6X2
0 þ 9X0 þ 3

� �
e8Λκq

þ3X2
0e

16Λκq � 2X3
0e

24Λκq þ 2
3
X4

0e
32Λκq

2
6664

3
7775þ Roff

(11)

In a similar way, the memristance for order-2 and k ¼ 2 is given:

MO2K2 ¼ MO1K2 þ Rd

Θ
P1e8Λκq þ P2e16Λκq þ P3e24Λκq þ P4e32Λκq

þP5e40Λκq þ P6e48Λκq þ P7e56Λκq

0
@

1
A

� 1
45

X3
0P8e8Λκq þ 2X3

0P9e16Λκq � X3
0P10e24Λκq

þ 8
9
X4

0P11e32Λκq � 13X5
0e

40Λκq þ 24
5
e48Λκq � 8

9
e56Λκq

2
66666666664

3
77777777775

P1 ¼ � 128
45

X6
0 þ

128
15

X5
0 �

89
9
X4

0 þ
50
9
X3

0 þ
11
3
X2

0 �
226
45

X0 þ 106
45

P2 ¼ 4X4
0 � 8X3

0 � 22X2
0 þ 26X0 � 10

P3 ¼ 8X6
0 � 24X5

0 þ 36X4
0 � 32X3

0 þ 75X2
0 � 63X0 þ 19

P4 ¼ � 16
9
X6

0 þ
16
3
X5

0 �
488
9

X4
0 þ

896
9

X3
0 �

400
3

X2
0 þ

760
9

X0 � 184
9

P5 ¼ 65X4
0 � 130X3

0 þ 130X2
0 � 65X0 þ 13

P6 ¼ 2X2
0 � 2X0 þ 1

� �
X4

0 � 2X3
0 þ 5X2

0 � 4X0 þ 1
� �

P7 ¼ 56
9
X6

0 �
56
3
X5

0 þ
280
9

X4
0 �

280
9

X3
0 þ

56
3
X2

0 �
56
9
X0 þ 8

9

P8 ¼ 40X4
0 � 204X3

0 þ 495X2
0 � 630X0 þ 405

P9 ¼ 2X2
0 � 6X0 þ 9

P10 ¼ 4X3
0 � 12X2

0 þ 18X0 þ 9

P11 ¼ 2X3
0 � 6X2

0 þ 9X0 þ 18

(12)
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Eqs. (6), (9)–(12) are indeed the analytical expressions that constitute
memristor models. References [29, 30] contain a proper characterization of the
resulting models.

3. Implementing the memristive grid

A memristive grid is a rectangular array of memristive branches, as shown in
Figure 4. Herein, the memristive branches have been denoted as bricked circuit
elements called memristive fuses. In addition, a memristive fuse is composed of a
series connection of two memristors in anti-series and a switching device [14].

The switch is used to define the structure of the labyrinth, if the switch is in the
ON-state, then the way is free, while if the switch is in the OFF-state then a wall is
encountered. Figure 5 shows the equivalent of the memristive fuse.

In order to illustrate the use of the memristive grid in describing a maze, the
maze of Figure 6a is used. The entrance of the maze is marked by the green arrow
and the output is marked by a red arrow, and the walls are shown in red. The
maze is mapped onto the memristive grid as shown in Figure 6b by denoting the
entrance of the maze as a voltage source, while the output of the maze is given by
the ground node. For sake of clarity, both figures are merged into Figure 6c, where

Figure 4.
Description of the memristive grid.

Figure 5.
Configuration of the memristive fuse for maze solving.
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the blocked paths are represented by memristive fuses in red, on the contrary, the
paths that can be followed are represented by memristive fuses in white. It clearly
results that the walls should be given by memristive fuses with the switch in the
OFF-state (high-resistance), while the open paths are constituted by memristive
fuses with the switch in the ON-state (low-resistance).

On the top of this, the memristive grid can be straightforwardly adapted to other
kinds of mazes. Mazes with multiple entrances are represented with multiple input
voltages. Similarly, mazes with multiple outputs are given by setting multiple
instances of the ground node.

3.1 An algorithmic view

A close look of the solution path in Figure 6a can lead us to a graph-theoretical
explanation on how the memristive grid solves the maze, because the open ways in
the maze can be regarded as an unweighted graph where the solution path is
subgraph. The solution path can be found by using a breath-first-search (BFS)
algorithm in order to traverse the graph which yields indeed the shortest-path
because we deal with an unweighted graph [31].

The application of BFS is illustrated by determining the shortest path between
nodes 3 and 6 of the graph from Figure 7a. Here, node 3 can be regarded as the
input (i) and node 6 as the output (o). The algorithm starts by selecting the initial
node (3). From this, a first level of coloring is achieved by selecting the neighboring
nodes (2, 4, 5). This procedure is repeated until all nodes have been visited. For this
graph, it suffices with 2 levels. The shortest path is defined by the sequence
3!5!6, which is shown in red in Figure 7b.

Figure 6.
Mapping the maze onto the memristive grid. (a) Maze, (b) Grid and (c) Merging the maze and the grid.
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maze of Figure 6a is used. The entrance of the maze is marked by the green arrow
and the output is marked by a red arrow, and the walls are shown in red. The
maze is mapped onto the memristive grid as shown in Figure 6b by denoting the
entrance of the maze as a voltage source, while the output of the maze is given by
the ground node. For sake of clarity, both figures are merged into Figure 6c, where

Figure 4.
Description of the memristive grid.

Figure 5.
Configuration of the memristive fuse for maze solving.
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the blocked paths are represented by memristive fuses in red, on the contrary, the
paths that can be followed are represented by memristive fuses in white. It clearly
results that the walls should be given by memristive fuses with the switch in the
OFF-state (high-resistance), while the open paths are constituted by memristive
fuses with the switch in the ON-state (low-resistance).

On the top of this, the memristive grid can be straightforwardly adapted to other
kinds of mazes. Mazes with multiple entrances are represented with multiple input
voltages. Similarly, mazes with multiple outputs are given by setting multiple
instances of the ground node.

3.1 An algorithmic view

A close look of the solution path in Figure 6a can lead us to a graph-theoretical
explanation on how the memristive grid solves the maze, because the open ways in
the maze can be regarded as an unweighted graph where the solution path is
subgraph. The solution path can be found by using a breath-first-search (BFS)
algorithm in order to traverse the graph which yields indeed the shortest-path
because we deal with an unweighted graph [31].

The application of BFS is illustrated by determining the shortest path between
nodes 3 and 6 of the graph from Figure 7a. Here, node 3 can be regarded as the
input (i) and node 6 as the output (o). The algorithm starts by selecting the initial
node (3). From this, a first level of coloring is achieved by selecting the neighboring
nodes (2, 4, 5). This procedure is repeated until all nodes have been visited. For this
graph, it suffices with 2 levels. The shortest path is defined by the sequence
3!5!6, which is shown in red in Figure 7b.

Figure 6.
Mapping the maze onto the memristive grid. (a) Maze, (b) Grid and (c) Merging the maze and the grid.
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As a result, by representing the graph with the memristive grid, it allows us to
define ways for the current to flow through the open paths by gradually changing
the equivalent memristance of the fuse. Besides, what is more relevant, since the
current is given as the time-derivative of the charge, then the solution of the maze is
always given by the shortest path to ground which represents the path with the
fastest changing memristance.

3.2 Technical specifications of the memristive fuse

The memristive fuse from Figure 5 contains a pair of memristors in anti-series
connection. Such a memristor connection produces an M-q characteristic that is
composed of the overlapping of theM-q curves of the memristor expressions for η�

and ηþ. Figure 8a shows theM-q characteristics for the model of order-1, k ¼ 5 and
Figure 8b shows the schematic curve with the values of Roff and Rinit. Physical
parameters of the memristor model are given by the nominal values of the HP
memristor. A summary of the specs for the memristor model is given in Table 2.

Figure 7.
BFS algorithm to obtain the shortest path. (a) A graph and (b) The BFS algorithm.

Figure 8.
Memristance-charge characteristic of the anti-series connection. (a) MO1K5 and (b) M-q.

μv
m2

Vs

h i
Δ nm½ � Ron Ω½ � Roff Ω½ � Rinit Ω½ � k Order

1� 10�14 10 100 16� 103 1� 103 5 1

Table 2.
Memristor parameters of the anti-series connection.
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It clearly results that the overall performance of the grid in solving mazes is
based on the model of the memristors that form the fuses. Even though the models
are recast in fully symbolic form—which represent a great advantage, numeric
values should be assigned to the parameters of the model, as given in Table 2. Since
variations of the model parameters may appear, it is important to notice that the
anti-series connection alleviates the possible effects of those variations. Specific
sensitivity analysis on the parameter variations of the charge-controlled models are
given in [30].

3.2.1 Switch implementation

In the memristive fuse, an ideal switch can be used in the process of finding the
solution, however, with the aim to have a more realistic switch, a transmission gate
is used instead. The transmission gate is a switch in CMOS technology, it consists of
an NMOS transistor and a PMOS transistor connected in parallel, as in Figure 9a.
Both devices in combination can fully transmit any signal value between Vdd (the
supply voltage of the transistors) and ground. In order to switch, each transistor
requires a complementary control input. Therefore, it is necessary to add an
inverter connected between the control input and the PMOS gate [30, 32].

If the control input is Vdd then the switch is closed, and as a result, the trans-
mission gate can pass the input signal to output because it exhibits a low-resistance.
On the contrary, if the control input is grounded, then the switch is opened and the
transmission gate presents a high-resistance.

In order to simulate the transmission gate of the memristive fuse, a CMOS
180 nm technology is used. The parameters of the two complementary transistors
are shown in Table 3. The equivalent resistance of the transmission gate both states
as a function of the input voltage is shown in Figure 10.

The resistance values are extracted making a sweep of the input voltage and
measure the equivalent average resistance of the transistors in the ON-state

Figure 9.
Transmission gate. (a) Configuration and (b) symbol.

CMOS TG W μm L μm

PMOS 1.44 0.18

NMOS 0.48 0.18

Table 3.
Transmission gate: transistor parameters.
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(switch closed, Figure 10a) and OFF-state (switch opened, Figure 10b). Table 4
shows the selected values for RTG on and RTG off .

In addition, it can be noticed that the initial value of the ON-state resistance is
given as:

RTG init ¼ RTG on jVin¼0 ¼ 1:266 (13)

As a result of the specifications above, a couple of parameters are of special
interest, namely, the initial resistance and the maximum resistance of the
memristive fuses. At the start, the fuses present an initial resistance which is given
as the sum of the initial resistance of the memristors in the anti-series connection
plus initial resistance of the ON-state of the transmission gate:

Rfuseinit ¼ 2Rinit þ RTG init (14)

which is 3.266 kΩ.
Moreover, the maximum resistance of the fuse is given as:

Rfusemax
¼ Roff 1 þ Ron2 þ RTG on (15)

It is worthy to notice that the maximum fuse resistance does not contain Roff of
both memristor, but Roff of one memristor and Ron of the other memristor due to the
anti-series connection.

4. Simulation flow

Since the solution path for a given maze is obtained by determining the path
where the fastest change in resistance occurs, the core of the solution process
involves a transient analysis. We have chosen to achieve the electrical simulation of
the memristive grid by using HSPICE. Both memristors of the fuse are defined as
nonlinear resistors in the input netlist.

Figure 10.
Resistance characteristic of the transmission gate for both states. (a) ON-state and (b) OFF-state.

RTG on Ω RTG off Ω

2:504� 103 10:854� 109

Table 4.
Selected values for RTG on and RTG off .
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The simulation flow is shown in Figure 11 and is described as follows:
Maze generator: The first stage in the solution process is to generate the maze

by using a script in MATLAB that generates the maze and it is shown as a plot.
The walls of the maze are shown in green color in the resulting plot. From this
graphical description, the maze can be automatically mapped onto the memristive
grid and an input file for HSPICE is generated. The inputs in the maze are
represented by input voltage sources of 1 V and the exits are connected to ground.

Electric simulation: The netlist obtained by the maze generator is simulated
with HSPICE. Here, a transient analysis for 20 s is carried out, this time is enough to
find the solutions of the mazes under-test, however, the exact time when the
solutions are found depends on the maze dimensions (grid). The transient simula-
tion results are saved in a .tr0 output file.

Graphic display of the results: In order to visualize the results, a script in
MATLAB imports the output simulation signals obtained with HSPICE. The resis-
tance dynamic change (ΔR tð Þ) is calculated at each simulation time and then the
paths of the maze are represented by a graph, where the color in each branch
indicates the level of ΔR tð Þ at a given time. For sake of readiness, we have selected
white for the minimum change and black for the maximum change.

During the transient simulation, the equivalent resistance of the fuses is
obtained at every instant t. It clearly results that ΔR is obtained by calculating the
difference between the measured resistance and the minimum resistance from
Eq. (14):

ΔR tð Þ ¼ R tð Þ � Rfuseinit (16)

Consequently, the fuses that first reach the highest ΔR define indeed the solu-
tion path of the maze. In mazes with multiple solutions, fuses that belong to the
shortest path reach high values of ΔR more fastly. As time lapses, other solution
paths are revealed reaching high values of ΔR. For a given time, all fuses within the
solution paths reach the maximum ΔR, which is given by

max ΔR tð Þð Þ ¼ R tð Þ � Rfusemax
(17)

5. Mazes under-test

In order to prove the behavior of the memristive grid in maze solving, this
section presents several cases that have been ordered as follows:

• Mazes with a single solution

• Mazes with multiple solutions

Figure 11.
Simulation flow.
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The simulation flow is shown in Figure 11 and is described as follows:
Maze generator: The first stage in the solution process is to generate the maze

by using a script in MATLAB that generates the maze and it is shown as a plot.
The walls of the maze are shown in green color in the resulting plot. From this
graphical description, the maze can be automatically mapped onto the memristive
grid and an input file for HSPICE is generated. The inputs in the maze are
represented by input voltage sources of 1 V and the exits are connected to ground.

Electric simulation: The netlist obtained by the maze generator is simulated
with HSPICE. Here, a transient analysis for 20 s is carried out, this time is enough to
find the solutions of the mazes under-test, however, the exact time when the
solutions are found depends on the maze dimensions (grid). The transient simula-
tion results are saved in a .tr0 output file.
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• Maze with two inputs and two outputs

• An octogonal maze with three inputs and a single output

• A 3D maze

5.1 Single-solution mazes

The first set to be solved consists of three mazes with a single-entrance and
single-output and the solution is given by a unique path.

5.1.1 The 5� 5 maze

The first maze, from Figure 12a, is treated in full with the aim of highlighting
the details of the solution procedure. The first stage of the procedure yields the
memristive grid associated to the mapping of the maze, which is shown in
Figure 12b. The resulting netlist of the memristive grid is then simulated in a
transient analysis with HSPICE.

It can be noticed that there are 24 memristive fuses in the open paths of the
maze. The electrical simulation is applied in order to measure the instantaneous
resistance of the fuses. On the one hand, Figure 13a shows the transient behavior
of the resistance of those fuses for the first 1

5s. It can be noticed that all fuses start
with the same resistance at t ¼ 0, namely Rfuseinit . As a result, at t ¼ 0, ΔR ¼ 0 for all
fuses and the maze is not walked yet and the output display shows the open paths
in white color, as shown in Figure 13b.

As time lapses, at t ¼ 0:197s, only the fuses belonging to the solution path
exhibit significant changes in their resistance. Here, the blue lines correspond to
fuses outside the solution path, while the red lines correspond to fuses that belong
to solution path. These changes are represented in the output display of Figure 13c
for the same time in yellow. The solution path can already be distinguished.

On the other hand, Figure 14a shows R tð Þ of the memristive fuses for 0< t< 20s.
The red lines show that the fuses belonging to the solution path reached a maxi-
mum, while the blue lines remain in low levels of resistance, i.e., they belong to
paths that finish in dead-ends.

Within this time-window, two snapshots of the output display have been taken
at t ¼ 1:3929s and t ¼ 3:7886s—as depicted in the plots of Figure 14b and c,
respectively. In the first display, the solution path is already highlighted in red with

Figure 12.
Mapping the 5� 5 single-solution maze onto the memristive grid. (a) A 5� 5 maze and (b) associated
memristive grid.
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fuses having a value of ΔR≈8:0kΩ. At t ¼ 3:7886s, the fuses of the solution path
show ΔR ¼ 15:0kΩ.

In summary, it can be concluded that the memristive grid achieves the solution
of the maze in a parallel processing by calculating the resistance of the fuses simul-
taneously. The progress of the solution procedure can be regarded as tracking the
dynamic behavior of ΔR, which directly points out the solution path of the maze.
On top of this, the output display allows us to visualize this procedure with the help
of a color scale.

5.1.2 The 10� 10 and 15� 15 mazes

The memristive grid has also been applied to single-solution mazes that have
larger sizes. The first maze is of 10� 10 dimension and it is depicted in Figure 15a
showing these mazes.

The second case is a 15� 15 maze, which is shown altogether with its solution in
Figure 16.

5.2 Multiple solutions mazes

The second set to be solved consists of three mazes that have solutions with
multiple paths.

Figure 13.
Transient analysis of the maze in Figure 12 for small values of t. (a) R tð Þ of the fuses for 0< t<0:197s,
(b) t ¼ 0 s, and (c) t ¼ 0:197 s.
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5.2.1 The 5� 5 maze with multiple solutions

This maze is shown in Figure 17. It is a very simple example that is explained to
some extent in order to illustrate the procedure for finding the paths that constitute
the solutions.

After carrying out the transient simulation, the resistance of the memristive
fuses is obtained. Figure 18a shows R tð Þ for 0< t<0:65s. Herein, the attention is
focused only on the resistance of the fuses belonging to the solution paths.

Figure 14.
Transient analysis of the maze in Figure 12 for larger values of t. (a) R tð Þ of the fuses for 0< t< 20s,
(b) t ¼ 1:3929 s, and (c) t ¼ 3:7886 s.

Figure 15.
10� 10 maze and solution at t ¼ 1:3929s.
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Furthermore, the red lines show a steepest behavior which is a result that the red
lines are associated to the fuses belonging to the solution with the shortest path.
Besides, the blue lines are associated to fuses for the second solution path.

It can be observed that all paths start from Rfuseinit when t ¼ 0, i.e., the maze has
not yet been walked—as given in the display of Figure 18b. After 0.2204 s, both
solutions paths are already distinguishable, but the shortest path exhibits higher ΔR,
which denoted by the darkest yellow tones in Figure 18c. After a while, at
t ¼ 0:638, the solution given by the shortest path is perfectly differentiable from the
other solution, which can be compared by using the color bar.

After a larger sweep of time, the resistances of the fuses for both solutions have
coalesced into an asymptotic level, which is the maximum value of the resistance at
t ¼ 20s—as shown in Figure 19.

5.2.2 Other mazes with multiple solutions

In this paragraph, two case studies are presented. The first one is the maze
shown in Figure 20a, which is a 10� 10 maze that has a single entrance and a single
exit, but there are four possible solution paths.

A snapshot at 1.901 s has been taken—see Figure 20b. The four solution paths
are visible in different colors. The shortest path is shown in red exhibiting the
highest ΔR at the time of evaluation. On the opposite, the solution with the longest
path is given in pale yellow. This example shows the usefulness of the color palette

Figure 16.
15� 15 maze and solution at t ¼ 3:7886s.

Figure 17.
A 5� 5 double-solution maze.
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A 5� 5 double-solution maze.
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of the output display on its full extent, because all possible solution paths are visible
and it gives more insight on the progress of the solution procedure. After a long
time, all the solutions reach the same resistance value as shown in Figure 20c.

The second example of this paragraph is a maze with two entrances and two
exits that is shown in Figure 21a. We show in Figure 21b a snapshot taken at
1.0276 s. At this point, the memristive grid has been able to find both shortest paths
for the solutions between the entrances and the outputs. After a while, at
t ¼ 8:0716s, the output display shows the connection between both paths—as given
in Figure 21c.

Figure 18.
Progress of the solution search for small t for the maze in Figure 17. (a) R tð Þ for 0< t<0:65s, (b) t ¼ 0s, (c)
t ¼ 0:2204s, and (d) t ¼ 0:638 s.

Figure 19.
Transient analysis for larger values of t. (a) R tð Þ and (b) display at t ¼ 20s.
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5.3 Octogonal maze

A nonrectangular maze is given in Figure 22a, which is an octogonal concentric
maze with three entrances and with the output goal in the center of the maze. The
three entrances are denoted as S, E, and NW. Entrances E and NW cannot reach
the solution, while entrance S does. Given the impossibility of the output display for
dealing with nonrectangular mazes, the octogonal maze is converted into an iso-
morphic view that is given in Figure 22b that shows the solution path in red.

5.4 A 3D maze

In order to illustrate that the memristive grid is able to deal with a three-
dimensional maze, a three-layer maze is solved. For sake of readiness, Figure 23
shows the maze in separated levels in a puzzle-fashion. The ball on the top-layer

Figure 20.
Multiple-solution maze with one entrance and one exit. (a) Maze, (b) t ¼ 1:901s, and (c) t ¼ 20s.

Figure 21.
Multiple-solution maze with two entrances and one exits. (a) Maze, (b) t ¼ 1:0276s, and (c) t ¼ 8:0716s.

Figure 22.
Octogonal maze and solution.
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Figure 23.
A 3D-maze.

Figure 24.
Solutions of the 3D-maze.
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indicates the starting point of the maze, while the ball in the low-layer points out to
the output of the maze. The layers communicate each other with holes that are
depicted as circles on the floor and disks on the roof of them.

The memristive grid that describes this maze counts 16 nodes per layer which
yields a total of 48 nodes. Every layer possesses 24 branches (the external walls do
not count) plus four inter-layer branches, i.e., 78 memristive fuses to describe the
maze.

Finally, the output display given in Figure 24 shows the progress of the solution
procedure.

6. Code for the model

In the following, the code for the memristor model as used within HSPICE is
given.*Charge-controlled models
*INAOE, summer 2018
*Yojanes Rodríguez
.LIB MemModels
*———————————————————————————————————————————————————————
*HPMQ Joglekar k=5 O1
.SUBCKT HPMQK5O1N N+ N-
.PARAM Xo=0.99
.PARAM mu=10f
.PARAM eta=-1
.PARAM Roff=16e3
.PARAM Ron=100
.PARAM Delta=10n
.PARAM kappa=’Ron*mu/(POW(Delta,2))’
.PARAM Pol1=’-(256/45)*POW(Xo,10)+32*POW(Xo,9)-(576/7)*POW(Xo,8)+128*POW
(Xo,7)-
+(672/5)*POW(Xo,6)+(504/5)*POW(Xo,5)-56*POW(Xo,4)+24*POW(Xo,3)-9*POW
(Xo,2)-Xo’
.PARAM Pol2=’(256/45)*POW(Xo,10)-(224/9)*POW(Xo,9)+(352/7)*POW(Xo,8)-(1280/
21)*POW(Xo,7)+
+(736/15)*POW(Xo,6)-(136/5)*POW(Xo,5)+(32/3)*POW(Xo,4)-(8/3)*POW(Xo,3)+
+POW(Xo,2)-(1441/315)*Xo+1126/315’
.PARAM Pol3=’-9*POW(Xo,2)+18*Xo-9’
.PARAM Pol4=’-24*POW(Xo,3)+72*POW(Xo,2)-72*Xo+24’
.PARAM Pol5=’-56*POW(Xo,4)+224*POW(Xo,3)-336*POW(Xo,2)+224*Xo-56’
.PARAM Pol6=’-(504/5)*POW(Xo,5)+504*POW(Xo,4)-1008*POW(Xo,3)+1008*POW
(Xo,2)-504*Xo+504/5’
.PARAM Pol7=’-(672/5)*POW(Xo,6)+(4032/5)*POW(Xo,5)-2016*POW(Xo,4)
+2688*POW(Xo,3)-
+2016*POW(Xo,2)+(4032/5)*Xo-(672/5)’
.PARAM Pol8=’-128*POW(Xo,7)+896*POW(Xo,6)-2688*POW(Xo,5)+4480*POW(Xo,4)-
+4480*POW(Xo,3)+2688*POW(Xo,2)-896*Xo+128’
.PARAM Pol9=’-(576/7)*POW(Xo,8)+(4608/7)*POW(Xo,7)-2304*POW(Xo,6)
+4608*POW(Xo,5)-
+5760*POW(Xo,4)+4608*POW(Xo,3)-2304*POW(Xo,2)+(4608/7)*Xo-576/7’
.PARAM Pol10=’-32*POW(Xo,9)+288*POW(Xo,8)-1152*POW(Xo,7)+2688*POW(Xo,6)-
4032*POW(Xo,5)+
+4032*POW(Xo,4)-2688*POW(Xo,3)+1152*POW(Xo,2)-288*Xo+32’
.PARAM Pol11=’-(256/45)*POW(Xo,10)+(512/9)*POW(Xo,9)-256*POW(Xo,8)+(2048/
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+2688*POW(Xo,3)-
+2016*POW(Xo,2)+(4032/5)*Xo-(672/5)’
.PARAM Pol8=’-128*POW(Xo,7)+896*POW(Xo,6)-2688*POW(Xo,5)+4480*POW(Xo,4)-
+4480*POW(Xo,3)+2688*POW(Xo,2)-896*Xo+128’
.PARAM Pol9=’-(576/7)*POW(Xo,8)+(4608/7)*POW(Xo,7)-2304*POW(Xo,6)
+4608*POW(Xo,5)-
+5760*POW(Xo,4)+4608*POW(Xo,3)-2304*POW(Xo,2)+(4608/7)*Xo-576/7’
.PARAM Pol10=’-32*POW(Xo,9)+288*POW(Xo,8)-1152*POW(Xo,7)+2688*POW(Xo,6)-
4032*POW(Xo,5)+
+4032*POW(Xo,4)-2688*POW(Xo,3)+1152*POW(Xo,2)-288*Xo+32’
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3)*POW(Xo,7)-
+(3584/3)*POW(Xo,6)+(7168/5)*POW(Xo,5)-(3584/3)*POW(Xo,4)+
+(2048/3)*POW(Xo,3)-256*POW(Xo,2)+(512/9)*Xo-256/45’

*Integrator
Ecur Ni 0 VOL = ’I(Rmem)’
R Ni Na 1k
C Na No 1m
Eop No GND GND Na 1Meg

Echarge charge GND No GND -1

Rmem N+ N- R=’(V(charge)>0)?(+(256/45)*POW(Xo,10)*exp(-200*kappa*V
(charge))-
+32*POW(Xo,9)*exp(-180*kappa*V(charge))+(576/7)*POW(Xo,8)*exp(-160*kappa*V
(charge))-
+128*POW(Xo,7)*exp(-140*kappa*V(charge))+(672/5)*POW(Xo,6)*exp(-
120*kappa*V(charge))-
+(504/5)*POW(Xo,5)*exp(-100*kappa*V(charge))+56*POW(Xo,4)*exp(-80*kappa*V
(charge))-
+24*POW(Xo,3)*exp(-60*kappa*V(charge))+9*POW(Xo,2)*exp(-40*kappa*V
(charge))+
+(Pol1)*exp(-20*kappa*V(charge)))*(Roff-Ron)+Roff:((Pol2)*exp(20*kappa*V
(charge))+
+(Pol3)*exp(40*kappa*V(charge))+(Pol4)*exp(60*kappa*V(charge))+
+(Pol5)*exp(80*kappa*V(charge))+(Pol6)*exp(100*kappa*V(charge))+
+(Pol7)*exp(120*kappa*V(charge))+(Pol8)*exp(140*kappa*V(charge))+
+(Pol9)*exp(160*kappa*V(charge))+(Pol10)*exp(180*kappa*V(charge))+
+(Pol11)*exp(200*kappa*V(charge)))*(Roff-Ron)+Ron’
.ENDS
*———————————————————————————————————————————————————————
.ENDL MemModels

7. Conclusions

A specially tailored memristive grid has been used as an analog processor for
solving mazes. The memristives branches of the grid (fuses) are formed by an anti-
series connection of two memristors and a switch. On one side, we have introduced
a family of symbolic models for the memristor that are defined by charge-controlled
functions. The fact that the models are charge-controlled allows us to monitor the
velocity of the variation of the equivalent memristance of the fuses by carrying out
a transient analysis with HSPICE. It is worth to mention that the model has been
recast in VERILOG-A. On the other side, with the aim of producing a more realistic
scenario, the switches are implemented by a transmission gate in CMOS technology.
In this form, the resulting grid is in fact a hybrid CMOS-Memristor circuit.

The simulation flow-work is formed by an input stage developed in MATLAB,
the electric simulation in HSPICE and the output stage again in MATLAB. The input
stage is responsible for mapping the structure of the maze onto the memristive grid.
The outcome of this stage is an input file with the netlist of the grid. The interme-
diate stage executes the transient simulation. The output stage is used to display the
variation of the resistance of the fuses and it literally draws the solution path of the
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maze. The solution is found by sensing the variations of the resistance of the fuses
that belong to the path, which implies that the memristive grid achieves the shortest
path algorithm.

Finally, the maze grid has proven its reliability in solving mazes with different
levels of complexity. A series of examples has been analyzed: single-solution mazes,
multiple-solution mazes, and a 3D maze.
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Chapter 5

Mathematical Analysis of
Memristor CNN
Angela Slavova and Ronald Tetzlaff

Abstract

In this chapter we present mathematical study of memristor systems. More
precisely, we apply local activity theory in order to determine the edge of chaos
regime in reaction-diffusion memristor cellular nanoscale networks (RD-MCNN)
and in memristor hysteresis CNN (M-HCNN). First we give an overview of math-
ematical models of memristors, CNN and complexity. Then we consider the above
mentioned two models and we develop constructive algorithm for determination of
edge of chaos in them. Based on these algorithms numerical simulations are pro-
vided. Two applications of M-HCNN model in image processing are presented.

Keywords: memristor, cellular nanoscale networks, reaction-diffusion systems,
hysteresis, edge of chaos, image processing

1. Introduction

Memristors form an important emerging technology for memory and
neuromorphic computing applications (Figure 1). Chua has developed the funda-
mentals of the memistor framework nearly 40 years ago [1]. Since then, the indus-
try has been engaged in the search for novel materials and technologies of these
nano-structures [2].

Mathematical models of the complex dynamics which can be exhibited by nano-
devices is presented in [3]. General and simple models are very important in the
investigations of nonlinear dynamics in memristors [4]. Such models of memristor-
based circuits are presented in [5, 6]. In order to develop novel hybrid [7] hardware
architectures combining memory storage and data processing in the same physical
location and at the same time [8] to explain the behavior of biological systems [9]
new accurate mathematical models need to be introduced (Figure 2). Although
several physical models [10–13] have been derived in order to study phenomena
characterizing these nano-devices, a circuit theoretic-based mathematical treatment
allowing the development of memristor circuits is still restricted to few cases. Most
of these mathematical models have been studied in [14]. The merit for the first
model of a titanium dioxide-based nano-structure may be ascribed toWilliams [15].
This model is simple not specifying boundary conditions in the state equation.
Literature was later enriched with a number of more complex models taking into
account nonlinear effects on ionic transport and defining behavior at boundaries.
The model proposed by Joglekar and Wolf [16] may allow for single-valued state-
flux characteristics only, under any sign-varying periodic input with zero mean. By
contrast, only multi-valued state-flux characteristics may be reproduced by Biolek’s
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model [17] under the same type of excitation. A comparison of the dynamic behav-
ior of titanium dioxide memristor circuits assuming different boundary models
including the BCM model is given in [18]. The results underline the sensitivity of
these nonlinear circuits to the modeling accuracy. In the following, models have
been proposed also for memristors based on other materials, e.g., for a tantalum
oxide element [13, 19] and for a niobium dioxide memristors [12]. Nevertheless,
recent investigations [14] uncover numerical problems occurring in the numerical
solution of the strongly nonlinear differential-algebraic equations or in a SPICE
simulation [8] of these memristors.

Computing with memory is one of the main properties of neural networks, in
which the performance is within localized memory storage. Therefore, they can
provide high density analogue storage and can be integrated locally with computing
elements which is the main advantage of the network learning algorithms. The
memristive array works as a conventional memory, i.e., the weigh values can be
calculated outside the array and can be programmed to the correct addresses. The

Figure 1.
Crossbar architecture and crossbar elements of a memristor.

Figure 2.
Four basic circuit elements.

70

Memristors - Circuits and Applications of Memristor Devices

algorithms are flexible because they can be implemented with an appropriate
design. Local and non-local learning algorithms can be implemented in a straight-
forward way. The disadvantage is that they cannot have high connectivity and
internal dynamics.

Cellular Nonlinear/Nanoscale Networks (CNN) have been introduced in 1988 by
Chua and Yang [20, 21] as a new class of information processing systems which
show important potential applications (Figure 3). By endowing a single CNN cell
with local analog and logic memory, some communication circuitry and further
units, the CNN Universal Machine (CNN-UM) has been invented by Roska [22–24].
Analog CNN-UM chip hardware implementations have been developed some time
ago. A CNN-UM chip represents a parallel computer with stored programmability
allowing real-time processing of multivariate data. CNN have very promising
applications in image processing and pattern recognition [22, 25–27]. Although,
recently realized systems, e.g., the EyeRis 1.3 system, the MIPA4k, and SCAMP-5,
are characterized as sensor-processor systems for high speed vision by reaching
frames rates more than 20 kHz, their low resolution (e.g., 176 � 144 pixel in the
EyeRis 1.3 system) limits the applicability to certain problems in practice only. Since
the cell size cannot be decreased considerably in conventional CMOS technology,
nano-elements will play an important role in future CNN-UM chip realizations.
Especially, memristors [28] which are considered for synaptic connections in first
realizations [29], will play an important role for the realization of future CNN-UM
sensor-processor systems by taking their rich dynamical behavior into account.
However, a deep mathematical treatment of CNN with memristors, briefly called
memristor CNN in the following, has not been provided so far. Especially, the
derivation of methods allowing the determination of the parameter space of a
memristor CNN showing emergent complex behavior, is being essentially impor-
tant in the development of CNN-based computational methods.

Many scientists have struggled to uncover the elusive origin of “complexity” and
its many equivalent jargons, such as emergence, self-organization, synergetics,
collective behaviors, non-equilibrium phenomena, etc. [22, 30–32]. In his works,
Schrödinger [31] defines the exchange of energy as a necessary condition for com-
plexity of open systems. Prigogine [32] states the instability of the homogeneous
systems as a new principle of nature, whereas Turing finds the origin of morpho-
genesis in symmetry breaking. In [31] Smale considers a reaction-diffusion system

Figure 3.
CNN architecture.
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which has properties such that it makes the Turing interacting system to oscillate.
Recent laboratory observations suggesting that chaotic regimes may in fact repre-
sent the ground state of central nervous system point to the intriguing possibility of
exploiting and controlling chaos for future scientific and engineering applications.

Among other things, a mathematical proof is given in [22, 30, 33, 34] showing
that none of the complexity related jargons cited above can explain emergent
complex behavior in reaction-diffusion system without introducing local activity.
The theory of local activity offers a constructive method for determination of
complexity. We shall propose algorithm for hysteresis CNN which defines the
domain of the cell parameters in which the system is capable of exhibiting com-
plexity. The main advantage of local activity theory is that the complex behavior of
reaction-diffusion system can be explained in a rigorous way by explicit mathemat-
ical formulas determining a small subset of locally active parameters’ region called
edge of chaos. Cell kinetic equations which are locally active can exhibit limit cycles
or chaos if the cells are uncoupled from each other by letting all diffusion coeffi-
cients to be zero. In this case complex spatiotemporal phenomena arise, such as
spatiotemporal chaos or scroll waves.

In particular, constructive and explicit mathematical inequalities can be
obtained for identifying that region in the CNN parameter space. By restricting the
cell parameter space to the local activity domain, a major reduction in the comput-
ing time required by the parameter search algorithms is achieved [33, 34].

In the next sections we shall present two mathematical models of memristor
CNN. First one is reaction-diffusion memristor CNN, and the second one is
memristor hysteresis CNN. We shall derive algorithm for determination of edge of
chaos regime in these models based on local activity theory [33].

2. Reaction-diffusion memristor CNN (RD-MCNN)

Nonlinear reaction-diffusion types of equations are widely used to describe
phenomena in different fields. We shall determine for reaction-diffusion CNN the
domain of the cell parameters in which the cells are locally active and therefore they
can exhibit complex behavior. Edge of chaos (EC) is associated with a region of
parameter space in which complex phenomena and thus information processing can
appear.

In this section the principle of local activity will be applied in studying complex
behavior of reaction-diffusion CNN with memristor synapses (RD-MCNN). Semi-
conductor reaction-diffusion (RD) large scale circuits (LSI) implementing RD
dynamics, called reaction-diffusion chips, are mostly designed by digital, analog, or
mixed-signal complementary-metal-oxide-semiconductor (CMOS) circuits of CNN
and cellular automata (CA).

In our model each cell will be arranged on a two-dimensional square grid and will
be connected to adjacent cells through coupling devices that mimic 2-D spatial
diffusion and transmit the cell’s state to its neighboring cells, as in conventional CNN.

We shall consider a discrete medium of identical cells which interact locally and
therefore the homogeneous medium exhibits a non-homogeneous static or spatio-
temporal patterns under homogeneous initial and boundary conditions. The theory of
local activity will be formulated mathematically and implemented in circuit models.
We shall start with reaction-diffusion CNN equations as a special class of spatially
extended dynamical systems and we shall define the principle of local activity which
will not be based on observations but on rigorous mathematical analysis.
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2.1 Definition of local activity for reaction-diffusion equations

We call reaction-diffusion CNN equations locally active if and only if their cells
are locally active at some cell equilibrium points [33].

In [34] principle of local activity is explained with the assumption of zero energy
at the zero time. Therefore we can say that the cell is acting as a source of small
signal energy and it is able to give rise to an initially very small input signal to a
larger energy signal.

From mathematical point of view the signal should be very small in order to take
the linear terms of Taylor series expansion of the cell model. In this way we can
derive explicit analytical inequalities for the cell to be locally active at some equi-
librium points in which the Taylor series expansion is computed. In other words, we
can say that complex behavior of cells arises from infinitesimal small perturbations.

In this section we shall consider reaction-diffusion system [35, 36]:

∂u xð Þ
∂t

¼ gu∇
2u xð Þ þ f u u xð Þ; v xð Þð Þ

∂v xð Þ
∂t

¼ gv∇
2u xð Þ þ f v u xð Þ; v xð Þð Þ

(1)

where gu,v are the diffusion coefficients, f u,v :ð Þ state for the reaction model.
In (1) u(x) and v(x) are represented by voltages on the RD hardware, and the
gradient is represented by linear resistors.

Let us discretize first equation of (1) in space:

d uj tð Þ
dt

¼ gu uj�1 � uj
� �þ gu ujþ1 � uj

� �
Δx2

þ f u :ð Þ, (2)

where j is the spatial index, Δx is the discrete step in space, terms gu uj�1 � uj
� �

and gu ujþ1 � uj
� �

represent respectively current flowing into the jth node from
( j� 1)th and ( j + 1)th nodes via two resistors whose conductance is represented by gu.

We consider the memristor model [9], in which the resistors are replaced with
memristors:

i ¼ gu wð Þv, dw
dt

¼ i, (3)

where the voltage across the memristor is v, the current of the memristor is i, the
nominal internal state of the memristor corresponding to the charge flow is w, and
the monotonically non decreasing function is gu wð Þ when w is increasing.

We shall replace resistors for diffusion in analog RD LSIs with memristors
(Figure 4).

Then we obtain the resulting point dynamics

duj
dt

¼
gu wl

j

� �
uj�1 � uj
� �þ gu wr

j

� �
ujþ1 � uj
� �

Δx2
þ f u :ð Þ,

dvj
dt

¼ f v :ð Þ,
(4)

where gu :ð Þ is the monotonically increasing function defined by:
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gu wl, r
j

� �
¼ gmin þ gmax � gmin

� � 1

1þ e�βwl,r
j

, (5)

where β is the gain, gmin and gmax are the minimum and maximum coupling
strengths, respectively, and wl,r

j denotes the variables for determining the coupling
strength (l—leftward, r—rightward).

We introduce the following memristive dynamics for wl,r
j :

τ
dwl,r

j

dt
¼ gu wl, r

j

� �
:η1: uj�1 � uj

� �
, (6)

where the right-hand side represents the current of the memristors in (2), η1
denotes the polarity coefficient—η1 = + 1: wl

j, η1 = �1: wr
j .

In the next we shall study RD-MCNN model of FitzHugh-Nagumo system.
Simplification of Hodgkin-Huxley model (Figure 5) can be given by FitzHugh-

Nagumo system consisting of two coupled partial differential equations with two
diffusion coefficients. In generally it describes the electrical potential across cell
membrane when the flow of ionic channels is changed. It also can be presented as
the model of electrical waves of the heart.

In this section we shall present the following FitzHugh-Nagumo system with
two diffusion terms:

Figure 5.
Memristive model.

Figure 4.
Circuit realization.

74

Memristors - Circuits and Applications of Memristor Devices

∂u
∂t

¼ f 1 u; vð Þ þ d1∇2u,

∂v
∂t

¼ f 2 u; vð Þ þ d2∇2v,
(7)

where

f 1 u; vð Þ ¼ � 1
ε
u u� 1ð Þ u� bþ v

a

� �
,

f 2 u; vð Þ ¼ f uð Þ � v,
(8)

f(u) is monotonically non decreasing function

f uð Þ ¼
0, 0≤ u≤

1
3

1� 27u u� 1ð Þ2
4

,
1
3
≤ u≤ 1

1 u. 1

8>>>><
>>>>:

The parameters ε, a, b are physical parameters, related to pressures of oxide,
carbon oxide and to the temperature.

We discretize spatially system (7) and the resulting point dynamics are given as:

duij
dt

¼ f 1 uij; vij
� �þ d1 wl,r� �

ui�1j þ uiþ1j þ uij�1 þ uijþ1 � 4uij
� �

dvij
dt

¼ f 2 uij; vij
� �þ d2 wl,r� �

vi�1j þ viþ1j þ vij�1 þ vijþ1 � 4vij
� �

,
(9)

where dk wl,r� �
denotes the monotonically increasing function defined as

dk wl, r� � ¼ dmin þ dmax � dminð Þ: 1

1� e�βwl,r
k

, k ¼ 1, 2 (10)

Then the memristive dynamics is defined as in (6).
We shall apply the constructive algorithm for determining edge of chaos (EC)

region for the memristive FitzHugh-Nagumo system (9) and (10).

• We map memristive FitzHugh-Nagumo system into the associated FitzHugh-
Nagumo CNN model:

duij
dt

¼ f 1 uij; vij
� �þ d1 wð Þ ui�1j þ uiþ1j þ uij�1 þ uijþ1 � 4uij

� �

dvij
dt

¼ f 2 uij; vij
� �þ d2 wð Þ vi�1j þ viþ1j þ vij�1 þ vijþ1 � 4vij

� �
,

(11)

• We find the equilibrium points of (11). According to the theory of dynamical
systems equilibrium points u ∗ , v ∗ are these for which:

f 1 u ∗ ; v ∗ð Þ ¼ 0

f 2 u ∗ ; v ∗ð Þ ¼ 0
(12)

System (12) may have one, two or three real roots u ∗
1 ; v

∗
1

� �
, u ∗

2 ; v
∗
2

� �
, u ∗

3 ; v
∗
3

� �
.

In general, these roots are functions of the cell parameters a, b, ε.
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• We calculate the four cell coefficients a11, a12, a21, a22 of the Jacobian matrix of
(12) about each system equilibrium point E ∗

k , k ¼ 1, 2, 3.

• Then we calculate the trace Tr E ∗
k

�
) and the determinant D E ∗

k

� �
of the Jacobian

matrix of (12) for each equilibrium point.

• We define locally active region for each equilibrium point E ∗
k :

LAR E ∗
k

� �
: a22 .0, or 4a11a22 , a12 þ a21ð Þ2

• Additional stability condition in this case is:

Tr E ∗
k

� �
,0 and D E ∗

k

� �
.0

It can be shown that this is the only region which corresponds to locally asymp-
totically stable equilibrium points of our model.

• We define the stable and locally active region SLAR E ∗
k

� �
:

• In our particular case, we have three equilibrium points
E1 ¼ 0;0ð Þ, E2 ¼ 1; 1ð Þ, E3 ¼ bþ1

a ; 1
� �

.

Then we check the conditions for the local activity and stability of the equilib-
rium points. The result is that only E1, E2 satisfy these conditions.

By the above presented algorithm we can prove the following theorem:

Theorem 1. We say that MCNN model of FitzHugh-Nagumo system (7) and (8)
operates in EC region if and only if the following conditions for the cell parameters are
satisfied:

ε≪ 1,
a� b� 1

a
, 1:

In other words there is at least one equilibrium point which is in SLAR E ∗
k

� �
:

In the simulations of the above algorithm we can see the cell parameter projec-
tion on the (T, Δ, a22)-plane (Figure 6). We have red subregion in which we have
three equilibrium points of our model and at least one is both stable and locally
active; blue subregion in which we have either one or three equilibrium points and
every equilibrium point is unstable; green subregion in which there is only
one equilibrium point and it is both stable and locally active. By definition, red and
green subregions in Figure 6a together constitute the edge of chaos. In Figure 6b
we can see the plot of edge of chaos regime in the parameter (a, b, ε) plane.

Through extensive numerical simulations we obtain that non uniform spatial
patterns are generated in our CNN model with memristor synapses depending on
initial conditions—see Figure 7.

Through the above numerical simulations, the following things were demon-
strated: (a) excitable waves propagating on the memristor can modulate the
memristor conductance which depends on the memristor’s polarity; (b) change of
memristor conductance can modulate the velocity of the excitable wave propaga-
tion, and it is inversely proportional to the time constant of the model; (c) the
model under consideration generates nonuniform spatial patterns which process
depends on the initial condition of FitzHugh-Nagumo system (7) and (8),
memristor polarity and stimulation.
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Figure 6.
Simulations.

Figure 7.
Pattern formation: (a) spatial pattern formation and (b) clockwise spiral wave patterns.
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3. Hysteresis CNN with memristor synapses

In this section we shall present mathematical study of hysteresis CNN (HCNN)
with memristor synapses. In our model the cells are of first order and they have
hysteresis switches. It is known from the literature [21–26, 35, 37–41] that such
models have many applications because they operate in two modes—bi-stable
multi-vibrator mode and relaxation oscillator mode. We shall consider HCNN
working in second one. When CNN operates in the relaxation oscillator mode then
various patterns and nonlinear waves can be generated. Associative (static) and
dynamic memories functions can be derived from the hysteresis CNN [35, 37, 41].

Let us consider hysteresis CNN with memristor synapses, which we shall call
memristor hysteresis CNN (M-HCNN):

duij
dt

¼ �m uij
� �þ ∑

k, l∈Nij

ak�i, l�j f uklð Þ� �
1≤ i, j≤ N, (13)

where uij denotes the state of the cell, the output yij ¼ f uij
� �

is dynamic hyster-
esis function defined by:

f u tð Þð Þ ¼

1, for u tð Þ. � 1, f u t�ð Þð Þ ¼ 1

�1, for u tð Þ ¼ �1

�1, for u tð Þ, 1, f u t�ð Þð Þ ¼ �1

1, for u tð Þ ¼ 1,

8>>><
>>>:

(14)

t� ¼ limε!0 t� εð Þ, ε.0, m :ð Þ is defined as m uij
� � ¼ uij

M tð Þ in which by M tð Þ we
denote the memristance. When we insert memristor [9] in HCNN model we expect
to obtain better resolution in static and dynamic images [41]. We introduce a
memristor in HCNN by replacing the original linear resistor. In this way it can
exhibit nonlinear current-voltage characteristic with locally negative differential
resistance. The main advantage of our memristor HCNN (M-HCNN) is the versa-
tility and compactness due to the nonvolatile and programmable synapse circuits. In
the circuit realization of M-HCNN the output function is not complex.

Let us consider M-HCNN model working in a relaxation oscillator mode
described by

duij
dt

¼ �m uij
� �� 2 h uij

� �þ bf uij
� �

, 1≤ i, j≤ N: (15)

Below is the picture of relaxation oscillator under consideration (Figure 8).
M-HCNN model (15) generates patterns close to the bifurcation point b = 3.

Computer simulations of (15) when we use the Laplace template

0 1 0

1 �4 1

0 1 0

0
B@

1
CA

show the generation of spiral waves for b = 3 (see Figure 9):

3.1 Determination of edge of chaos domain in M-HCNN model

We shall apply theory of local activity [33, 34] in order to study the dynamics of
M-HCNN model (15). The theory which will be presented below offers both con-
structive analytical and numerical method for obtaining local activity of M-HCNN.
It is known [35, 41] that the cells of HCNN can exhibit complexity in the domain of
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cell parameters in which the cells are locally active. We shall develop constructive
and explicit mathematical inequalities for identifying the region in the M-HCNN
model (15) parameter space where complexity phenomena may emerge. By
restricting the cell parameter space to the local activity domain we can achieve a
major reduction in the computing time required by the parameter search algo-
rithms. This will allow to determine and control chaos which will be useful for the
future scientific and engineering applications [34, 41, 42].

We shall develop constructive algorithm for studying the dynamics of our M-
HCNN model (15) based on [33]:

(1) We chose the Laplace template of the following type

0 1 0

1 �4 1

0 1 0

0
B@

1
CA in order

to discretize the M-HCNN model (15). Then in relaxation mode the dynam-
ics of an isolated cell when there are no control and threshold parameters can
be written:

duij
dt

¼ �m uij
� �� 2h uij

� �þ bf uij
� � ¼ F uij

� �
: (16)

Figure 8.
Relaxation oscillator defined by (15).

Figure 9.
Spiral waves in HCNN model (15).
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(2) We can find the equilibrium points Ek of (16), which satisfy the equation
F uij
� � ¼ 0. In general, this system may have four real roots as functions of

the cell parameters.

(3) We calculate the cell coefficients a11 Ekð Þ, a12 Ekð Þ, a21 Ekð Þ, a22 Ekð Þ,
k ¼ 1, 2, 3, 4.

(4) We denote the trace of the Jacobian matrix at equilibrium point by Tr Ekð Þ
and determinant by Δ Ekð Þ.

Remark. In order to provide physical implementation it is important to have
appropriate circuit model for which we can use the results from the classical circuit
theory. In order to obtain locally active cells it is sufficient the cell to act as a source
of small signal in at least one equilibrium point. In this way the cell injects a net
small signal average power into the passive resistive grids.

Let us now define stable and locally active region for the M-HCNN model (16).
Definition 1. We say that the cell is both stable and locally active region at the

equilibrium point Ek for M-HCNN model (16) if

a22 .0 or 4a11a22 , a12 þ a21ð Þ2 and
Tr Ekð Þ,0 and Δ Ekð Þ.0:

This region in the parameter space is called SLAR Ekð Þ.

(5) We shall define the EC region our M-HCNN model (16). According to
[33, 34] it is such region in the cell parameter space where we can expect
emergence of complex phenomena and information processing.

Definition 2. For M-HCNN model (16) edge of chaos region is such that there exists
at least one equilibrium point both locally active and stable.

Based on the above algorithm we can prove the following theorem:
Theorem 2. We say that M-HCNN model (16) is working in edge of chaos regime if

and only if the following conditions are satisfied: �1 < b < 3. In other words there is at
least one equilibrium point which is locally active and stable.

We obtain the following edge of chaos domain for our M-HCNN model (16)
through computer simulation:

The location of 16 cell parameter points arbitrarily chosen within the locally
active domain. We have locally active and stable (or edge of chaos) in red; locally
active and unstable in green; locally passive in blue (Figure 10).

3.2 Simulation results and some applications

In this section we shall consider two applications of M-HCNN model (16) in
image processing. First one is for edge extraction and the second one is for noise
removal. In our simulations we use programing environment MATLAB and we use
a forward Euler algorithm with a time step size Δt = 0.01. The dynamic hysteresis
function h(x) can be programmed applying this algorithm is:

h u tnð Þð Þ ¼

1, for u tnð Þ. � 1, h u tn�1ð Þð Þ ¼ 1

�1, for u tnð Þ ¼ �1,
�1, for u tnð Þ, 1, h u tn�1ð Þð Þ ¼ �1

1, for u tnð Þ ¼ 1,

8>>><
>>>:
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tn ¼ nΔt, n ¼ 1, 2,…

We shall start with the application of our M-HCNN model for edge extraction.
The simulations are presented below (see Figure 11):

It is known that for feature extraction we firstly extract the edges of the image,
which contain most of the information for the image shape. In the example provide
on Figure 11we show the original image—(a), and then the results which we obtain
simulating M-HCNN model—(b) and standard CNN model—(c). It can be seen
that the results from M-HCNN (16) model and CNN model are very similar.

Figure 10.
Edge of chaos domain for M-HCNN model (16).

Figure 11.
Example of edge extraction: (a) original image, (b) M-HCNN, and (c) standard CNN.
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Definition 2. For M-HCNN model (16) edge of chaos region is such that there exists
at least one equilibrium point both locally active and stable.

Based on the above algorithm we can prove the following theorem:
Theorem 2. We say that M-HCNN model (16) is working in edge of chaos regime if

and only if the following conditions are satisfied: �1 < b < 3. In other words there is at
least one equilibrium point which is locally active and stable.

We obtain the following edge of chaos domain for our M-HCNN model (16)
through computer simulation:

The location of 16 cell parameter points arbitrarily chosen within the locally
active domain. We have locally active and stable (or edge of chaos) in red; locally
active and unstable in green; locally passive in blue (Figure 10).

3.2 Simulation results and some applications

In this section we shall consider two applications of M-HCNN model (16) in
image processing. First one is for edge extraction and the second one is for noise
removal. In our simulations we use programing environment MATLAB and we use
a forward Euler algorithm with a time step size Δt = 0.01. The dynamic hysteresis
function h(x) can be programmed applying this algorithm is:

h u tnð Þð Þ ¼

1, for u tnð Þ. � 1, h u tn�1ð Þð Þ ¼ 1

�1, for u tnð Þ ¼ �1,
�1, for u tnð Þ, 1, h u tn�1ð Þð Þ ¼ �1

1, for u tnð Þ ¼ 1,

8>>><
>>>:
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tn ¼ nΔt, n ¼ 1, 2,…

We shall start with the application of our M-HCNN model for edge extraction.
The simulations are presented below (see Figure 11):

It is known that for feature extraction we firstly extract the edges of the image,
which contain most of the information for the image shape. In the example provide
on Figure 11we show the original image—(a), and then the results which we obtain
simulating M-HCNN model—(b) and standard CNN model—(c). It can be seen
that the results from M-HCNN (16) model and CNN model are very similar.

Figure 10.
Edge of chaos domain for M-HCNN model (16).

Figure 11.
Example of edge extraction: (a) original image, (b) M-HCNN, and (c) standard CNN.
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Another application which we shall present is for noise removal. The results of
our simulations are given on the figure below (see Figure 12):

The applications of CNN show that the linear image processing can be compared
to spatial convolution with infinite impulse response kernels [21, 41, 42]. When
taking the image by a camera from the real world there is a possibility it to be
polluted with some noise. That is why noise removal is very important for CNN
applications such as AI devices, IoT. In our case, the simulations of M-HCNNmodel
(16) shown in Figure 12 present very good processing performance of noise
removal similar to the simulations of standard CNN.

4. Conclusions and discussion

In this chapter, we stated the local activity theory for reaction-diffusion equa-
tions and hysteresis systems. However it can be generalized to other systems. In
particular, the developed constructive procedure is applicable to any system whose
cells and couplings are described by deterministic mathematical models. The crux
of the problem is to derive testable necessary and sufficient conditions which
guarantee that the system has a unique steady state solution at t ! ∞. A homoge-
neous non conservative medium cannot exhibit complexity unless the cells, or the
coupling network is locally active.

In the second part of the chapter we focus our attention on HCNN model which
has memristor synapses. The concept of CNN is based on some aspects of neurobi-
ology and is adapted to integrated circuits. CNN are defined as spatial arrangements
of locally coupled dynamical systems, cells. The CNN dynamics is determined by a
dynamic law of an isolated cell, by the coupling laws between the cell and by
boundary and initial conditions. The dynamic law and the coupling laws of a cell are
often combined and described by a nonlinear ordinary differential- or difference
equation (ODE), the state equation of a cell. Thus a CNN is given by a system of
coupled ODEs with a very compact representation in the case of translation invari-
ant state equations. Despite of having a compact representation CNN can show very
complex dynamics like chaotic behavior, self-organization, pattern formation or
nonlinear oscillation and wave propagation. Analog CNN chip hardware
implementations have been developed [23]. The future of CNN implementation is
in nano-structure computer architecture. CNN not only represent a new paradigm
for complexity but also establish novel approaches to information processing by
nonlinear complex systems. CNN have very impressive and promising applications
in image processing and pattern recognition [22, 43]. After the introduction of the
CNN paradigm, CNN Technology got a boost when the analogic cellular computer

Figure 12.
Simulation of noise removal by M-HCNN model and by standard CNN model: (a) noise, (b) M-HCNN, and
(c) CNN.
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architecture, the CNN Universal Machine has been invented [24, 30]. The unique
combined property of memristors [44] to store the information for a very long time
after the power is switched off may allow the development and circuit implemen-
tation of memcomputing paradigms.

We develop algorithm for determination of EC domain of the cell parameter
space for M-HCNNmodel (16). Two applications are presented—for edge detection
and noise removal. The conclusions of the simulation results are that the image does
not change when we vary the memristor weights which is possible because of the
binary quantization of the output. The speed of the numerical simulations of our M-
HCNN model could be enlarged due to the need of more iterations of the algorithm
in order to obtain stable solutions. But the quality of the image does not change.
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architecture, the CNN Universal Machine has been invented [24, 30]. The unique
combined property of memristors [44] to store the information for a very long time
after the power is switched off may allow the development and circuit implemen-
tation of memcomputing paradigms.

We develop algorithm for determination of EC domain of the cell parameter
space for M-HCNNmodel (16). Two applications are presented—for edge detection
and noise removal. The conclusions of the simulation results are that the image does
not change when we vary the memristor weights which is possible because of the
binary quantization of the output. The speed of the numerical simulations of our M-
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Chapter 6

Memristor Behavior under Dark 
and Violet Illumination in Thin 
Films of ZnO/ZnO-Al Multilayers
Adolfo Henrique Nunes Melo, Raiane Sodre de Araujo, 
Eduardo Valença and Marcelo Andrade Macêdo

Abstract

ZnO/ZnO-Al thin films were grown aiming the development of a memristor. 
Electrical voltage sweeps were imposed to induce dopant migration and to achieve 
several resistance states. A memristor behavior was observed, presenting adapta-
tion to external electrical stimulus. Voltage sweeps occurred under the influence 
of violet light and in the dark, alternately, and the influence of the photon inci-
dence on the current intensity was noticed. Throughout the alternating cycles 
between light and dark, less resistance was observed under illumination, but 
the migration of Al and O ions caused the formation of Al2O3 and ZnO oxides, 
resulting in a gradual increase in resistance. With constant voltage, the device 
presented continuous modification of resistance and sensitivity to the violet light 
with generation of free carriers. These results bring new opportunities for using 
memristors as violet light sensors as well as new insights for light-controlled 
memristor development.

Keywords: memristor, ZnO, ZnO-Al, thin films, violet sensor, dark, illumination, 
memristive behavior

1. Introduction

In 1971, Leon Chua predicted the existence of a fourth electronic passive element 
of two terminals, called a memristor (a union of the terms memory and resistance) 
[1]. A memristor is basically a resistor that has its resistance altered with external 
stimulation in a nonvolatile way. In other words, it maintains the state of resistance 
even if the stimulus is removed. In 1976, Chua and Kang determined that a wide 
class of devices and systems can be considered as memristives when they present 
time-dependent electrical resistance and also depend on application of electric volt-
age [2]. Memristor devices can be configured in nonvolatile memories, logic gates, 
and programmable connections having high-density integration or presenting 
complementary metal-oxide-semiconductor (CMOS) compatibility [3]. This CMOS 
compatibility makes memristors excellent candidates to go beyond Moore’s law.

In 2008, in Hewlett-Packard (HP) laboratories, thin films of titanium dioxide 
prepared with two terminals presented memristor characteristics [4]. Their basic 
structure was based on epitaxial growth of metal-insulator-metal (MIM) thin 
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Chapter 6

Memristor Behavior under Dark 
and Violet Illumination in Thin 
Films of ZnO/ZnO-Al Multilayers
Adolfo Henrique Nunes Melo, Raiane Sodre de Araujo, 
Eduardo Valença and Marcelo Andrade Macêdo

Abstract

ZnO/ZnO-Al thin films were grown aiming the development of a memristor. 
Electrical voltage sweeps were imposed to induce dopant migration and to achieve 
several resistance states. A memristor behavior was observed, presenting adapta-
tion to external electrical stimulus. Voltage sweeps occurred under the influence 
of violet light and in the dark, alternately, and the influence of the photon inci-
dence on the current intensity was noticed. Throughout the alternating cycles 
between light and dark, less resistance was observed under illumination, but 
the migration of Al and O ions caused the formation of Al2O3 and ZnO oxides, 
resulting in a gradual increase in resistance. With constant voltage, the device 
presented continuous modification of resistance and sensitivity to the violet light 
with generation of free carriers. These results bring new opportunities for using 
memristors as violet light sensors as well as new insights for light-controlled 
memristor development.

Keywords: memristor, ZnO, ZnO-Al, thin films, violet sensor, dark, illumination, 
memristive behavior

1. Introduction

In 1971, Leon Chua predicted the existence of a fourth electronic passive element 
of two terminals, called a memristor (a union of the terms memory and resistance) 
[1]. A memristor is basically a resistor that has its resistance altered with external 
stimulation in a nonvolatile way. In other words, it maintains the state of resistance 
even if the stimulus is removed. In 1976, Chua and Kang determined that a wide 
class of devices and systems can be considered as memristives when they present 
time-dependent electrical resistance and also depend on application of electric volt-
age [2]. Memristor devices can be configured in nonvolatile memories, logic gates, 
and programmable connections having high-density integration or presenting 
complementary metal-oxide-semiconductor (CMOS) compatibility [3]. This CMOS 
compatibility makes memristors excellent candidates to go beyond Moore’s law.

In 2008, in Hewlett-Packard (HP) laboratories, thin films of titanium dioxide 
prepared with two terminals presented memristor characteristics [4]. Their basic 
structure was based on epitaxial growth of metal-insulator-metal (MIM) thin 
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films [5–7]. With the experimental development of memristors in HP laboratories, 
there has been increasing research in this area, and several materials have been 
constructed in the MIM structure for analysis of memristive behavior. There is an 
appreciable number of materials that have been applied in the design of the MIM 
structure, such as semiconductor insulation (III-V), including MgO, TiOx, ZrOx, 
HfOx, NbOx, AlOx, ZnOx, or rare-earth oxides containing Y, Ce, Sm, Gd, Eu, Nd, 
and perovskites (SrTiO3, Ba0.7Sr0.3TiO3) [8, 9]. In addition to such applications 
as nonvolatile memory, devices based on transparent memristors can be applied 
even in near-eye display technology that requires the construction of transparent 
memories, transparent switches, and optical sensors [10]. These devices can also act 
as synapse elements, creating neural computing machines resembling the behavior 
of the biological brain [7, 11, 12].

However, transparent conductive oxides (TCOs) have been widely studied 
because they are essential components in flat-panel monitors, solar cells, touch 
screens, light-emitting diodes (LEDs), ultraviolet (UV) detectors, and other 
optoelectronic devices [10, 13, 14]. In addition, new transparent devices are being 
developed in applications of neuromorphic circuits [4, 7, 15] and adaptive systems 
[16, 17] in which they are based on resistive commutation depending on the history 
of the electric voltage application. Among the various materials that have memris-
tor characteristics, ZnO stands out for its low toxicity, low cost, wide resistive 
switching ratio (  R  off   /  R  on    ~1011), low power consumption, fast recording, and high-
density storage [5, 10, 18, 19]. For the construction of a transparent MIM system, 
an indium tin oxide (ITO) substrate can be used because of its optical properties 
(transmittance ~90%) and electrical properties (sheet resistance ~20  Ω / sq ) 
[20]. Transparent thin films of ZnO have been extensively studied which acquires 
excellent optical and electrical properties when doped with such metals as Al [21], 
Ti [22], and Nb [13], but a multilayer insulator/insulator+metal system may be a 
good candidate for memristor characteristics, where the diffusion of metallic ions 
may favor the mechanism of adaptation to the external electrical stimulus. Some 
researchers have reported thin films of ZnO/ZnO:Al presenting optical transmis-
sion of > 80% and bandgap   E  g   = 3.32 eV  [23] or ranging from 3.65 to 3.72 eV when 
grown under heat treatment (300–500°C) [24].

Bandgap studies have an important role for light detection (near the ultraviolet 
UV zone in the case of ZnO), biological and environmental research, and detection 
sensors, being a protagonist in several chemical processes, which makes its deter-
mination extremely important. Bandgap determination can favor the development 
of wavelength-sensitive circuits enabling the generation of electrical signals that 
can be measured. However, memristive systems require electric charge flux through 
the device, which causes variation in the internal electrical resistance. This can be 
controlled using light incidence in addition to the usual electrical voltage. Inspired 
by the biological processes, Chen et al. demonstrated a visual memory unit in which 
it was based on In2O3 resistive switching, where logic states (0) and (1) associated 
with the high-resistance state and low-resistance state, respectively, were achieved 
under dark and UV illumination conditions, where the existence of UV stimulation 
provides the possibility of light information being memorized and erased under 
voltage sweep and then records light patterns, such as butterfly or heart shaped, in 
arrangements of 10 × 10 pixels [25].

In this work, ITO/ZnO/ZnO-Al memristor devices were grown using magnetron 
sputtering. They were subjected to electrical voltage sweep to study homogeneous 
resistive switching behavior under illumination and dark ambient conditions. The 
analysis of optical transmission and absorption properties and bandgap determina-
tion are also presented.
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2. Experimental details

Thin films of ZnO/ZnO-Al were deposited on substrates of 100-nm Asahi Glass 
indium tin oxide (ITO) through physical deposition system RF/DC magnetron 
sputtering (AJA International). Three samples of ZnO thin films were grown on 
ITO using 100-W RF applied to a ceramic target of ZnO (99.9% purity, Macashew 
Technologies) as a function of the deposition time (40, 60, and 100 min). On these 
samples, a ZnO-Al film was grown by codeposition for 15 min, where an Al target 
(98.8%) was exposed to a 50 W DC source and simultaneously the ZnO target 
to 100 W RF. In all depositions, the base pressure was  ~ 10   −6   Torr, and the work-
ing pressure with Ar gas was 20 mTorr with continuous flux of 20 sccm. There 
was no supply of oxygen flow, and all depositions were without heating source. 
The samples in this case had an epitaxial architecture. For simplicity, coding was 
performed, where ZA1 refers to the sample ITO/ZnO(100 min)/ZnO-Al(15 min), 
ZA2 refers to ITO/ZnO(60 min)/ZnO-Al(15 min), and ZA3 to ITO/ZnO(40 min)/
ZnO-Al(15 min). The crystallinity of the samples was analyzed by X-ray diffraction 
(Bruker D8 Advance—CuKα radiation with λ = 0.154 nm). A concentration profile 
of chemicals per depth was obtained through the Rutherford backscattering spec-
troscopy (RBS) technique carried out by bombardment of He+ (2.2 MeV). The RBS 
data were obtained simultaneously at 120° and 170° scattering angles. This method-
ology was applied previously for the fabrication of these samples, and some results 
were previously published [26]. Transmission and optical absorption measurements 
were performed by UV-Vis spectrophotometry between 200 and 800 nm (Varian 
Cary 100 Scan UV-Vis spectrophotometer). All electrical measurements were per-
formed using a voltage-current source (Keysight Agilent B2901) where, for the upper 
electrode, a Pt tip with ~200 μm in diameter was attached to a rod with micrometric 
displacement for a better approximation of the sample surface. The lower electrode 
(ITO) was grounded in all measurements. For realization of the measurements 
under illumination and dark conditions, a dark chamber was home built. A violet 
LED was coupled 1 cm away from the sample surface; this distance was suitably 
selected, aiming to provide a better homogeneity in the sample illumination where 
the Pt probe electrode would be acting. In addition, IR heating is minimized.

3. Structural and optical properties

Previously published [26] X-ray diffraction analyses showed hexagonal crystal-
line phase formation with a wurtzite ZnO structure where the films grew preferably 
along the axis c perpendicular to the substrate in direction (002). No phases cor-
responding to Al were identified, indicating possible incorporation of Al3+ ions in 
place of Zn2+ without altering the structure. This agreed with the results of RBS, 
confirming the structure ITO/ZnO/ZnO-Al [26, 27]. The nonidentification of 
crystalline phases of Al may be relevant for the construction of a device in which 
the insertion of the metal ion may favor the electric conduction without reducing 
the transparency and enabling the memristive behavior.

The transmittance and absorbance spectra are shown in Figure 1a and b. The 
transmittance of the glass is given for reference only. The glass/ITO substrate pres-
ents an average transmittance, in the visible region, of 90%, while the ZA1, ZA2, 
and ZA3 films show transmittance of ~88, 80, and 79.8%, respectively, and have 
absorption bands at wavelengths of 350–650 nm. This indicates that the investigated 
thin films exhibit excellent optical properties in the visible and near-infrared region 
and are semiconductors suitable for applications in electronic devices [28].
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The values of the optical bandgap (  E  g   ) were estimated using the Tauc relation in 
Eq. (1) [29]:

    (𝛼𝛼h𝜈𝜈)    2  = A   (h𝜈𝜈 −  E  g  )    n    (1)

where  A  is a constant,  α  is the absorption coefficient,  ν  is the frequency of 
incident photons,  h  is the Planck constant, and   E  g    is the optical bandgap, which 
is associated with direct (n  =  2) and direct   (n = 1 / 2)   transitions [28]. Adjustment 
was performed by linear extrapolation    (αhν)    2  = 0 , and the graph was plotted with 
relation to    (𝛼𝛼h𝜈𝜈)    2   vs.  E . The bandgap energy values of the samples are shown in 
Figure 2 and Table 1. The bandgap energy obtained for the pure ITO was 3.75 eV, 
and the deposited films ZA1, ZA2, and ZA3 are in the range of 3.26, 3.23, and 3.19 eV, 
respectively. The bandgap reported in the literature for ZnO, Al-doped ZnO, and 
ITO is ~3.37, 3.28, and 4.2 eV, respectively [30–33]. It is important to note that in the 
ITO/ZnO/ZnO-Al thin films, an increase of the bandgap energy is observed with the 
increased thickness of the ZnO layer. This behavior depends on some process param-
eters such as crystallinity, grain size, and charge carrier density, which significantly 
affect bandgap energy [32, 34]. However, it is believed that for a greater thickness of 
the ZnO layer (Al poor region), the proportional number of defects that create traps 
between the valence band (VB) and the conduction band (CB) is smaller, resulting 

Figure 1. 
(a) Transmittance and (b) absorbance spectra for ZA1, ZA2, ZA3 (ITO/glass substrate contributions were 
removed), ITO, and glass.

Figure 2. 
Plots of    (𝛼𝛼h𝜈𝜈)    2   vs. energy of all ZnO/ZnO-Al and ITO substrates.
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in a higher bandgap energy. However, for low ZnO thicknesses, the influence of the 
Al-rich region becomes relevant. Therefore, the number of energy levels between 
the VB and CB is higher, resulting in a lower average bandgap energy value. It is 
important to note that defects caused by the presence of Al metal forming an Al-rich 
ZnO (ZnO-Al) region, which may create energy levels within the bandgap, increase 
the availability of charge carriers over the sample when the photons impinge, thus 
reducing the electrical resistance.

4. Memristor behavior under dark and illumination

The memristor behavior as a function of the incidence violet light is presented 
in Figure 3a, where voltage sweeps between 0 and 2 V occurred five times and then 
five other sweeps between 0 and −5 V. The first five sweeps for the positive voltage 
polarity with the five negative polarity sweeps were performed under illumination 
of the violet LED (Illumination 1). Then, the same sweeping scheme was imposed 
on the sample; however, without ambient light (dark 1), the dark chamber was used 
to provide this situation. In total, the same sample was subjected to 10 alternating 
sweeps between illumination and dark. Observing specifically the first sweep under 
illumination, an adaptive-like response was found, in which the maximum value 
of the measured current intensity gradually increased, indicating that the electri-
cal resistance of the sample decreases as the sweep occurs. This type of behavior is 
widely known in the scientific literature as the fingerprint of a memristor, where a 

Thin film Time deposition ZnO layer (min) Thickness (nm) Bandgap (eV)

ITO — 100 3.77

ZA1 100 150 3.26

ZA2 60 110 3.23

ZA3 40 90 3.19

Table 1. 
Optical properties of thin films of ITO/ZnO/AZO.

Figure 3. 
(a) I–V characteristic curves of the ZA1 sample under continuous voltage scans 
(0 – 2 – 0 V) × 5 – (0 – (−2) – 0 V) × 5 under violet LED illumination and under darkness and (b) highlight 
of the first sweep cycles (0 – 2 – 0 V) × 5 under illumination and darkness.



Memristors - Circuits and Applications of Memristor Devices

90

The values of the optical bandgap (  E  g   ) were estimated using the Tauc relation in 
Eq. (1) [29]:

    (𝛼𝛼h𝜈𝜈)    2  = A   (h𝜈𝜈 −  E  g  )    n    (1)

where  A  is a constant,  α  is the absorption coefficient,  ν  is the frequency of 
incident photons,  h  is the Planck constant, and   E  g    is the optical bandgap, which 
is associated with direct (n  =  2) and direct   (n = 1 / 2)   transitions [28]. Adjustment 
was performed by linear extrapolation    (αhν)    2  = 0 , and the graph was plotted with 
relation to    (𝛼𝛼h𝜈𝜈)    2   vs.  E . The bandgap energy values of the samples are shown in 
Figure 2 and Table 1. The bandgap energy obtained for the pure ITO was 3.75 eV, 
and the deposited films ZA1, ZA2, and ZA3 are in the range of 3.26, 3.23, and 3.19 eV, 
respectively. The bandgap reported in the literature for ZnO, Al-doped ZnO, and 
ITO is ~3.37, 3.28, and 4.2 eV, respectively [30–33]. It is important to note that in the 
ITO/ZnO/ZnO-Al thin films, an increase of the bandgap energy is observed with the 
increased thickness of the ZnO layer. This behavior depends on some process param-
eters such as crystallinity, grain size, and charge carrier density, which significantly 
affect bandgap energy [32, 34]. However, it is believed that for a greater thickness of 
the ZnO layer (Al poor region), the proportional number of defects that create traps 
between the valence band (VB) and the conduction band (CB) is smaller, resulting 

Figure 1. 
(a) Transmittance and (b) absorbance spectra for ZA1, ZA2, ZA3 (ITO/glass substrate contributions were 
removed), ITO, and glass.

Figure 2. 
Plots of    (𝛼𝛼h𝜈𝜈)    2   vs. energy of all ZnO/ZnO-Al and ITO substrates.

91

Memristor Behavior under Dark and Violet Illumination in Thin Films of ZnO/ZnO-Al…
DOI: http://dx.doi.org/10.5772/intechopen.86557

in a higher bandgap energy. However, for low ZnO thicknesses, the influence of the 
Al-rich region becomes relevant. Therefore, the number of energy levels between 
the VB and CB is higher, resulting in a lower average bandgap energy value. It is 
important to note that defects caused by the presence of Al metal forming an Al-rich 
ZnO (ZnO-Al) region, which may create energy levels within the bandgap, increase 
the availability of charge carriers over the sample when the photons impinge, thus 
reducing the electrical resistance.

4. Memristor behavior under dark and illumination

The memristor behavior as a function of the incidence violet light is presented 
in Figure 3a, where voltage sweeps between 0 and 2 V occurred five times and then 
five other sweeps between 0 and −5 V. The first five sweeps for the positive voltage 
polarity with the five negative polarity sweeps were performed under illumination 
of the violet LED (Illumination 1). Then, the same sweeping scheme was imposed 
on the sample; however, without ambient light (dark 1), the dark chamber was used 
to provide this situation. In total, the same sample was subjected to 10 alternating 
sweeps between illumination and dark. Observing specifically the first sweep under 
illumination, an adaptive-like response was found, in which the maximum value 
of the measured current intensity gradually increased, indicating that the electri-
cal resistance of the sample decreases as the sweep occurs. This type of behavior is 
widely known in the scientific literature as the fingerprint of a memristor, where a 

Thin film Time deposition ZnO layer (min) Thickness (nm) Bandgap (eV)

ITO — 100 3.77

ZA1 100 150 3.26

ZA2 60 110 3.23

ZA3 40 90 3.19

Table 1. 
Optical properties of thin films of ITO/ZnO/AZO.

Figure 3. 
(a) I–V characteristic curves of the ZA1 sample under continuous voltage scans 
(0 – 2 – 0 V) × 5 – (0 – (−2) – 0 V) × 5 under violet LED illumination and under darkness and (b) highlight 
of the first sweep cycles (0 – 2 – 0 V) × 5 under illumination and darkness.



Memristors - Circuits and Applications of Memristor Devices

92

device constructed in the form of metal-insulator (semiconductor)-metal presents 
electrical resistance dependent on the history of excitation by the application of an 
external electric field [1, 7, 26, 35].

The gradual conductivity increasing with the application of voltage is a desir-
able aspect related to memristors, as the memory effect associated to these devices 
is based on a change in the resistance state, usually a higher resistive state ROFF 
and lower resistive states, reaching a minimum resistance level at RON [5, 8, 36]. 
Computational logic states are, therefore, associated with these two values of elec-
trical resistance (bit 0—ROFF; bit 1—RON). However, in this type of application, the 
memristors commonly present filamentary resistive switching mechanisms, where 
a conductive filament is formed by connecting one electrode to another [5, 6, 37]. 
The samples analyzed in this chapter are mechanisms based on a homogeneous 
resistive switching, in which electrical resistance states are gradually modified and 
controlled [26, 36, 38]. In this type of homogeneous resistive switching, it is pos-
sible to note an adaptive character to the applied electric voltage in which the state 
of resistance at a given instant depends on the entire history of the voltage sweep. 
Jo et al. presented a very interesting aspect of adaptation to the voltage in memris-
tors of Si/Si + Ag thin films which behaved in a way similar to biological synaptic 
neurons, in other words, a neuromorphic behavior [7]. The samples worked in this 
chapter presented results of adaptation to voltage sweep very similar to Si/Si + Ag 
thin films; however, this work focused on the influence of violet LED light on 
memristive behaviors.

It is interesting to note that the sample showed a behavior of gradually increasing 
conductivity under illumination and darkness in all the sweeps. In addition, in the 
negative polarity, the reverse effect of decreasing conductivity was observed. These 
behaviors as memristors are explained in materials such as ZnO/ZnO-Ag, ZnO/
ZnO-Al, or WO3/Ag by ionic migrations through the insulating lattice [7, 26, 39]. As 
theoretically demonstrated by Strukov et al. [36], initially, a device with thickness 
D (distance between electrodes) presents maximum resistance   R  off   ; however, the 
device may be constructed with a dopant-rich region that can continuously modulate 
the total resistance between   R  off    and   R  on    through ionic migrations. The control of the 
ionic migrations and, therefore, the resistance values reached by the device can be 
obtained with the application of electric voltage V(t). The boundary separating the 
dopant-rich region from the poor region moves as a function of the applied voltage, 
which can cause diffusion of the ions, and the normalized position (w(t)) of this 
boundary can have values assigned between 0 and 1, where 0 refers to the case where 
the resistance is maximal (  R  off   ) and 1 to the minimum resistance (  R  on   ). Previous 
work has already shown that this typical behavior of the current in a memristor can 
be characterized as Eq. (2):

  I (t)  =   1 _________________   R  on   w (t)  +  R  off   (1 − w (t) )    V (t)    (2)

where a pinched hysteresis loop can be obtained [1, 7, 26, 36, 40].
Characteristic I-V curves for different voltage frequencies were published previ-

ously in [26]; when voltage excitation frequency is diminished, the step between 
one conduction state and another is increased. This behavior is typical of memristor 
and was theoretically predicted by Chua [1] which showed that as the excitation 
frequency tends to infinity, the area under the I-V curve tends to zero: the effect of 
adaptation to the excitation is decreased dramatically. On the other hand, when the 
frequency is reduced, the mechanism of adaptation is evidenced. The work presented 
in this chapter used a fixed frequency of 5 Hz (or 200 ms excitation period) in all 
sweeps and samples; on this frequency, an adaptive behavior was very well observed.
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The I-V characteristic curves under illumination present higher current values 
under the same voltage sweep than the dark response (see Figure 3b). This result 
indicates that the incidence of photons can significantly alter the number of free 
charge carriers in the CB, favoring the decrease of the electrical resistance. In this 
case, electrons trapped at energy levels between the VB and CB are excited due to the 
incidence of photons, increasing the electron population in the CB, which reduces 
the electrical resistance, a fact evidenced also in the bandgap values of these samples. 
However, as new voltage sweeps occur alternately between illumination and dark-
ness (Illumination 1  →  Dark 1  →  Illumination 2  →  Dark 2  → … → Dark 5), a gradual 
increase in resistance is observed (decrease of the current intensity generated by the 
same voltage scanning interval). When the first sweep is initiated, the ion diffusion 

Figure 4. 
Diffusion scheme of Al and oxygen dopant ions: (a) initially the Al ions are mostly in the Al-rich region, but, 
when the voltage sweep is initiated, Al and O ions migrate simultaneously in opposite directions; (b) after the 
first five sweep for positive polarity, a higher distribution of Al can be directed to the ZnO network, and oxygen 
ions can be allocated in the Al-rich region; (c) and (d) possible combinations of ions O with Al or Zn ions may 
prevent new migrations when the polarity is reversed, which indicates a formation of Al2O3 oxides in addition 
to the present ZnO; (e) ZnO and Al distribution scheme before voltage sweeps; and (f) scheme of ZnO and 
Al2O3 oxide distribution after all sweeps.
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device constructed in the form of metal-insulator (semiconductor)-metal presents 
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process occurs, causing a distribution of Al3+ and O2− along the entire crystalline 
network of the sample in a way where simultaneous migrations of Al and O ions (or 
oxygen vacancies) are realized. This distribution of ion dopants to the ZnO network 
facilitates electronic conduction, which results in the gradual decrease of the resis-
tance, a fact known as homogeneous resistive switching [26, 38]. However, after 
several sweeps for positive and negative polarity, the distribution of Al and O ions 
enables the formation of Al2O3 oxide in addition to the existing ZnO network, where 
this fact may result in the gradual increase of the resistance after each set of voltage 
sweeps. Figure 4 illustrates this ion diffusion scheme throughout the sample. Similar 
results were observed for samples ZA2 and ZA3 (not shown in this work).

Figure 5 shows a curve of the electric current intensity measured through the sam-
ple ZA1 as a function of the time for application of a constant voltage of 1.5 V. In each 
100 s, the violet LED oscillated between on and off, where it was possible to perceive 
the sample response as a sensor of violet light by increasing the current intensity when 
illuminated for 100 s. This result is interesting because it demonstrates two simultane-
ous responses. The first is a homogeneous resistive switching response that indicates 
an adaptive process of the sample because there is no variation of the applied voltage 
modulus, and a gradual increase of current is observed. In addition, this memristor-
like behavior is affected when the LED light is on. The first five illuminations in the 
sample are indicated in the inset of Figure 5, where the baseline has been removed. 
Considering that the incidence of photons in the sample can promote trapped charge 
carriers in the network to the CB, the amount of charge generated in the first five 
incidences of violet light was calculated knowing that  q = ∫ Idt . The calculated electric 
charges were, respectively,  320.4, 420.0, 242.1, and 650.9 μC .

5. Conclusions

The ZnO/ZnO-Al thin films with memristor behavior showed a transparency of 
88% in the visible region for a thickness of 150 nm, which makes it a relevant can-
didate in transparent electronics. The bandgap values were determined through the 

Figure 5. 
Current as a function of time for a fixed voltage of 1.5 V: the red arrow indicates the direction of growth of 
the characteristic resistive switching current, and the violet LED light was set to oscillate between on and off 
at intervals Δt = 100 s; the first five light exposures are emphasized in the curve (inset: first five violet light 
exposures in which the baseline was removed).
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optical absorption spectrum where the values are between 3.19 and 3.26 eV, similar to 
values in the literature for this type of material. The ZnO/ZnO-Al thin films’ memris-
tive behaviors were observed under the incidence of violet light and under darkness 
for cycles of voltage sweeps in which an adaptive character can be inferred. The inci-
dence of light favored the increase of the number of carriers, but it did not impede 
the ion migration to form Al2O3 and ZnO oxides throughout the sample, a fact 
that gradually increased the resistance of the device. The memristor behavior was 
explained by the diffusion of Al ions that facilitated the electric conduction mecha-
nism between illumination and dark conditions; however, for several voltage sweep 
cycles, the formation of oxides resulted in the reverse effect, increasing the resis-
tance. Testing as a violet light sensor indicated the generation of electrical charges 
in the sample network while an adaptive behavior characteristic of the memristor 
occurred. In other words, two simultaneous phenomena were observed, in which the 
ZnO/ZnO-Al memristor was influenced by violet light, increasing the conductivity, 
at the time when it had homogeneous resistive switching due to the electric voltage. 
These results indicate a scientific advance in the area of resistive switching with the 
observation of ZnO/ZnO-Al memristive behavior dependent on the voltage applica-
tion history and the ambient light conditions. In addition, new insight is provided for 
future research related to optical effects on memristor behaviors.
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Chapter 7

Application of Probe 
Nanotechnologies for Memristor 
Structures Formation and 
Characterization
Vladimir A. Smirnov, Marina V. Il’ina, Vadim I. Avilov, 
Roman V. Tominov, Oleg I. Il’in and Oleg A. Ageev

Abstract

This chapter presents the results of experimental studies of the formation and 
investigation of the memristors by probe nanotechnologies. This chapter also per-
spectives and possibilities of application of local anodic oxidation and scratching 
probe nanolithography for the manufacture of memristors based on titanium oxide 
structures, nanocrystalline ZnO thin film, and vertically aligned carbon nanotubes. 
Memristive properties of vertically aligned carbon nanotubes, titanium oxide, and 
ZnO nanostructures were investigated by scanning probe microscopy methods. It 
is shown that nanocrystalline ZnO films manifest a stable memristor effect slightly 
dependent on its morphology. Titanium oxide nanoscale structures of different 
thicknesses obtained by local anodic oxidation demonstrate a memristive effect 
without the need to perform any additional electroforming operations. This experi-
mentally confirmed the memristive switching of a two-electrode structure based 
on a vertically aligned carbon nanotube. These results can be used in the develop-
ment of designs and technological processes of resistive random access memory 
(ReRAM) units based on the memristor devices.

Keywords: nanotechnology, scanning probe microscopy, memristor, titanium oxide, 
nanocrystalline ZnO films, carbon nanotubes

1. Introduction

Reducing the elements of integrated circuits (ICs) leads to an increase in the 
speed of the processors and an increase in the amount of memory, but at the same 
time the bandwidth between them varies only slightly. This is referred as the von 
Neumann bottleneck and often limits the performance of the system [1]. One pos-
sible solution to this problem is the transition of computing systems to an archi-
tecture close to the structure of a biological brain, which is a set of elements of low 
power connected in parallel neurons interconnected via special channels synapses 
[1–4]. Processors built on this architecture have concurrent computing and will be 
able to surpass modern computers in tasks related to unstructured data classifica-
tion, pattern recognition, as well as in applications with adaptable and self-learning 
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control systems. One of the possible ways of implementing such an architecture is 
to manufacture ICs based on neuromorphic structures, which are memory elements 
in the form of cells (neurons) interconnected by data buses (synapses) and are 
capable of changing their electrical resistance under the influence of an external 
electric field (the effect of resistive switch) [1–5]. Such structures can maintain 
cell resistance after the termination of the external electric field and are the basis 
of non-volatile resistive memory (ReRAM). The advantages of ReRAM include 
small size, high degree of integration, low power consumption, and high speed, 
which allows on its basis to realize the mass parallelism and low power calculations 
observed in the study of biological brain [6–8].

Currently, active theoretical and experimental studies of the effect of resistive 
switching in nanomaterials and nanostructures are underway to create elements of 
the ReRAM self-learning adaptive neuromorphic processor with high speed and low 
power consumption. An analysis of the publications showed that for the manufacture of 
ReRAM, films based on binary metal oxides (SiOx, TiO2, ZnO, HfOx, etc.) are promis-
ing from which amorphous titanium oxide and nanocrystalline zinc oxide can be distin-
guished, allowing for high response speed of the resistive switching process [8–10].

The creation of ReRAM elements for a neuromorphic processor is associated 
with the development and research of the formation processes of structures with a 
nanometer resolution. Existing lithographic methods of semiconductor technolo-
gies are approaching the limit of their resolution, characterized by a high degree 
of complexity and cost of equipment. Therefore, there is a need for research and 
development of new methods, the use of which will allow the creation of nano-
structures of ReRAM elements, including at the prototyping stage.

One possible way of ReRAM elements prototyping is probe nanotechnologies 
usage, which is a combination of methods for nanostructures forming using a probe 
tip with visualization and process control in situ. Promising methods of probe 
nanotechnologies for ReRAM elements prototyping include local anodic oxidation 
(LAO) and scanning probe nanolithography (SPN) of atomic force microscope.

The method of local anodic oxidation is promising for the manufacture of oxide 
nanostructures (ONS) of titanium, which have reproducible memristor effect and 
do not require forming [11–14]. The advantages of the LAO method also include 
precision, the possibility of conducting research on electrochemical processes in local 
areas up to the size of several nanometers in situ diagnostics of the results of the 
formation of ONS on the substrate surface, the absence of additional technological 
operations for applying, exposing, and removing photoresist, as well as the relatively 
low cost of process equipment [15–20]. A variety of nanoimprint lithography is 
scratching probe nanolithography, which allows using the tip of an atomic force 
microscope probe to form profiled nanostructures in polymer films [21]. The sim-
plicity of the method implementation allows using it in the development and study of 
promising design and technological solutions for prototyping ReRAM elements [22].

At the present stage of nanotechnology development, one of the most promising 
methods for surface diagnostics is scanning probe microscopy (SPM). The use of 
SPM methods allows the study of the local geometric, electrical, and mechanical 
properties of the sample surface [23–26].

Of interest for creating ReRAM with high cell density are memristor structures 
based on vertically aligned carbon nanotubes (VA CNTs) [27, 28]. The vertical 
orientation of the nanotubes provides a significant reduction in the memory cell 
area and the technology of producing VA CNTs based on the method of plasma-
enhanced chemical vapor deposition (PECVD) allows localized growth of nano-
tubes in a process compatible with silicon technology [29, 30]. In addition, the 
use of VA CNTs as a storage element is expected to reduce the switching time to 
picoseconds [28, 31].
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A promising method of probe nanotechnologies for creation and characteriza-
tion of memristor structures based on VA CNTs is the scanning tunneling micros-
copy (STM) [26]. This method allows you to create a controlled elastic deformation 
in VA CNT, the presence of which is a prerequisite for the occurrence of the mem-
ristor effect in VA CNT [32]. The mechanism of memristive switching of strained 
carbon nanotube is described in detail in [28].

This chapter describes application of scanning probe microscopy techniques for 
determination of resistive switching effects in vertically aligned carbon nanotubes, 
TiO2 nanostructures, and ZnO thin nanocrystalline films. Described techniques can 
be used for formation and nanodiagnostics of parameters of memristor structures 
for creation of metal oxide and CNT-based neuromorphic system.

2.  Formation and investigation of memristor structures based  
on titanium oxide by atomic force microscopy

2.1  Investigation of resistive switching of titanium oxide nanostructures  
formed by local anodic oxidation

The memristor effect study was carried out on titanium oxide nanostructures 
(ONS) using AFM spectroscopy using SPM Solver P47 Pro. For this purpose, local 
anodic oxidation (LAO) was carried out on the thin titanium film surface with a 
20 nm thickness, and as a result, titanium ONS was formed with lateral dimensions 
1 × 1 μm and 1.1 nm thick (Figure 1).

Then, using the AFM, the current-voltage (I-V) characteristics of the 
obtained structure were measured according to the scheme shown in Figure 1c 
with the application of a triangular-shaped voltage pulse (Figure 2a inset). It 
was shown that the titanium ONS obtained by the LAO exhibits a bipolar resis-
tive switching effect (Figure 2) without additional doping and electroforming 
operations.

The analysis showed that the current-voltage characteristic type corresponds 
to the switching mechanism due to potential barrier width modulation at the 

Figure 1. 
Titanium oxide nanostructures, formed by LAO: (a) AFM image; (b) profilogram along the line; and  
(c) current-voltage characteristics measuring scheme.
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Figure 1. 
Titanium oxide nanostructures, formed by LAO: (a) AFM image; (b) profilogram along the line; and  
(c) current-voltage characteristics measuring scheme.
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electrode/oxide interface described in [11, 12]. In this case, the potential barrier 
modulation occurs alternately at both the electrodes boundaries.

Initially, the structure is in high resistance state (HRS) (1.3 GΩ at 3.5 V) in the 
forward bias region (region I in Figure 2), while at a negative voltage applied to 
−5 V, the structure is in low resistance state (LRS) (0.27 GΩ at −3 V) (region II in 
Figure 2). Then, as the voltage rises in the reverse bias region from −6 to −10 V, 
the structure is switched, resulting in a HRS state (3.4 GΩ at −3 V) at the reverse 
bias (region III in Figure 2) and LRS (0.35 GΩ at 3.5 V) at up to 5 V direct bias 
(region IV in Figure 2). With an increase in the applied voltage from 6 to 10 V, 
the structure is switched to the initial state. In this case, the structure resistance 
ratio in the HRS state to the LRS state for positive voltages is 3.6, and for negative 
voltages is 12.6.

2.2  Investigation of influence of AFM probe pressing force on the resistive 
switching in titanium oxide nanostructures

For the experimental study, titanium ONS with 2 × 2 μm lateral dimensions 
and 6.8 nm thick was formed by LAO. Then, on its surface in the AFM contact 
mode was performed a spectroscopic measurement of dependence of the feed-
back circuit current on the cantilever beam bending. The spectrogram showed 
that with an increase in the feedback circuit current by 1.02 nA, the beam is 
bent by 20.8 nm. Since the cantilever beam stiffness is 2.5 N/m, it is possible to 
calculate the AFM probe pressing force to the ONS surface for a given feedback 
circuit current Figure 3.

Then, current-voltage characteristics were measured on the ONS surface in 
the ±10 V range with the AFM feedback circuit current values from 0.01 to 2 nA 
(Figure 4), after which the structure resistance values in the HRS and LRS states 
were measured at 3.5 V.

Obtained dependences analysis showed that an increase in the AFM probe 
clamping force to the surface from 0.51 to 102.8 nN leads to a decrease in the struc-
ture resistance in the HRS state from 1.12 × 1011 to 9.63 × 109 Ω and in the LRS state 
from 2.28 × 1010 to 1.38 × 109 Ω.

This dependence can be explained by the fact that with a clamping force 
increase, an increase in the contact area between the AFM probe and the oxide 

Figure 2. 
Current-voltage characteristic of titanium ONS, formed by the LAO.
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surface occurs. In further studies, 60 nN clamping force was used, ensuring reliable 
contact of the probe with the structure.

2.3  Investigation of influence of top electrode materials on the resistive 
switching in titanium oxide nanostructures

Literature analysis showed that the top electrode material has a significant 
impact on the resistive switching of memristor structures. To study this effect, the 
current-voltage characteristics were measured in the mode of current AFM spec-
troscopy on the surface of oxide nanostructures formed by the LAO method; AFM 
probes with different conducting coating were used as the upper electrode. The 
resulting characteristics are presented on (Figure 5).

Obtained dependences analysis showed that the use of cantilevers with dif-
ferent coatings significantly affects the manifested memristor effect. So, when 
using a cantilever with a Pt coating, a symmetrical I-V characteristic was obtained 
(Figure 5a) with low current values, the structure resistance in the HRS state is 
327 × 109 Ω, and in the LRS state is 22 × 109 Ω, while the resistance ratio in the high 
resistance to low resistance is 15.

When using a cantilever with a TiN coating, an asymmetric I-V characteristic 
was obtained (Figure 5b), while in the negative voltage region the memristor effect 

Figure 3. 
Dependence of feedback circuit current from the cantilever beam bending.

Figure 4. 
Dependence of titanium ONS resistance in the HRS and LRS states on the pressing force.
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surface occurs. In further studies, 60 nN clamping force was used, ensuring reliable 
contact of the probe with the structure.

2.3  Investigation of influence of top electrode materials on the resistive 
switching in titanium oxide nanostructures

Literature analysis showed that the top electrode material has a significant 
impact on the resistive switching of memristor structures. To study this effect, the 
current-voltage characteristics were measured in the mode of current AFM spec-
troscopy on the surface of oxide nanostructures formed by the LAO method; AFM 
probes with different conducting coating were used as the upper electrode. The 
resulting characteristics are presented on (Figure 5).

Obtained dependences analysis showed that the use of cantilevers with dif-
ferent coatings significantly affects the manifested memristor effect. So, when 
using a cantilever with a Pt coating, a symmetrical I-V characteristic was obtained 
(Figure 5a) with low current values, the structure resistance in the HRS state is 
327 × 109 Ω, and in the LRS state is 22 × 109 Ω, while the resistance ratio in the high 
resistance to low resistance is 15.

When using a cantilever with a TiN coating, an asymmetric I-V characteristic 
was obtained (Figure 5b), while in the negative voltage region the memristor effect 
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Dependence of feedback circuit current from the cantilever beam bending.
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is insignificant, the structure’s resistance in the HRS state is 4.65 × 109 Ω, and in the 
LRS state −0.39 × 109 Ω, at the same time, resistance ratio in the high resistance to 
low resistance is 12. In the case of using a carbon-coated cantilever, an asymmetric 
I-V characteristic is also observed (Figure 5c), and there is no current through 
the ONS when applying voltages less than ±5 V in the case of a structure being in 
HRS and applying a voltage less than ±2 V in case of a structure being in LRS. The 
structure’s resistance in the HRS state is 1.74 × 109 Ω, and in the LRS state, it is 
0.3 × 109 Ω, and the resistance ratio in the high resistance to low resistance is 6.

Study results showed that the platinum-coated cantilever use as the top electrode 
is characterized by a largest resistance ratio in the HRS and LRS states.

2.4  Investigation of influence of titanium oxide nanostructures geometric 
parameters on their resistive switching

Another goal is to study titanium ONS thickness effect and applied voltage 
pulses on the memristor effect. For this, four ONSs were formed with lateral 
2 × 2 μm dimensions and 1.6–3.6 nm height, which, based on the expression describ-
ing the oxide height and depth ratio presented in [3], corresponds to 3.6–8.2 nm 
thickness. The current-voltage characteristics were measured on these structures 
surface by applying ±2.4 voltage pulse (Figure 6).

Obtained expression analysis showed that with an increase in the ONS thick-
ness, a decrease in the current corresponding to the LRS state and an increase in the 
resistance in this state are observed, to the extent that the memristor effect does not 
manifest itself when the oxide thickness is 8.2 nm.

The results allowed us to obtain voltage of the switching structure in the HRS 
state (Ures) and in the LRS state (Uset) dependence, as well as the corresponding 

Figure 5. 
Titanium ONS current-voltage characteristics, obtained using a cantilever coated by: (a) Pt; (b) TiN; and  
(c) carbon.
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currents (Ires and Iset) on the titanium ONS thickness (Figure 7). In addition, the 
dependence of the structure resistance measured in a HRS and LRS state on the 
ONS thickness measured at 1.5 V was obtained (Figure 8).

It is shown that increasing the thickness from 3.6 to 8.2 nm increases the resis-
tance in the HRS state from 1.4 × 1011 to 8.8 × 1011 Ω, while the resistance in the LRS 
state increases from 1.765 × 109 to 2.4 × 1011 Ω, while the structure resistance ratio in 
the high resistance to low resistance decreases from 79.4 to 3.6.

2.5  Investigation of influence of voltage pulses amplitude on the titanium  
oxide nanostructures resistive switching

To study the applied voltage pulses amplitude effect on the memristor effect, an 
titanium ONS with 2 × 2 μm lateral dimensions and 3.6 nm thickness was formed. 
Then, its current-voltage characteristic was measured in the voltage range from ±1 
to ±4 V (Figure 9).

The analysis showed that when measuring the titanium ONS current-voltage 
characteristics with 3.6 nm thickness in the voltage range ± 1 V, the memristor effect 
is not observed, the structure shows the conductivity absence. When measuring 
the I-V characteristic in the ±2 V range, the structure also shows the conductivity 
absence, however, a small current surge in the I-V characteristic is already observed. 
When measuring the I-V characteristic in ±3 and ± 4 V range, this structure exhibits 
a memristor effect. It is shown that in the case of measuring the I-V characteristic in 
±3 V range, the structure resistance in the HRS state is 39.2 × 109 Ω, and in the LRS 

Figure 6. 
Titanium ONS current-voltage characteristics with a thickness: (a) 3.6 nm; (b) 5.4 nm; (c) 7.2 nm; and  
(d) 8.2 nm.
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currents (Ires and Iset) on the titanium ONS thickness (Figure 7). In addition, the 
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It is shown that increasing the thickness from 3.6 to 8.2 nm increases the resis-
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characteristics with 3.6 nm thickness in the voltage range ± 1 V, the memristor effect 
is not observed, the structure shows the conductivity absence. When measuring 
the I-V characteristic in the ±2 V range, the structure also shows the conductivity 
absence, however, a small current surge in the I-V characteristic is already observed. 
When measuring the I-V characteristic in ±3 and ± 4 V range, this structure exhibits 
a memristor effect. It is shown that in the case of measuring the I-V characteristic in 
±3 V range, the structure resistance in the HRS state is 39.2 × 109 Ω, and in the LRS 
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state −1.4 × 109 Ω, the resistance ratio in the HRS and LRS states is 27.4. In the case 
of measuring the I-V characteristic in ±4 V range, the structure resistance the in the 

Figure 9. 
Current-voltage characteristics of titanium ONS in the different voltage range: (a) ±1 V; (b) ±2 V; (c) ±3 V; 
and (d) ±4 V.

Figure 7. 
Dependence of electrical parameters of titanium ONS on the oxide thickness: (a) voltage and (b) current.

Figure 8. 
Dependence of titanium ONS resistance on the thickness.
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HRS state is 1.08 × 109 Ω, and in the LRS state it is 0.14 × 109 Ω, the resistance ratio 
in the HRS and LRS states is 7.5.

Such a memristor effect dependence on the titanium ONS thickness and the 
applied voltage pulses amplitude is explained by the electric field intensity influ-
ence in the oxide on the oxygen vacancies transfer in the oxide volume between the 
electrodes and the titanium ONS switching between high-resistance and low-
resistance states.

3.  Formation and investigation of memristor structures based on 
nanocrystalline ZnO thin films by atomic force microscopy

3.1 Investigation of resistive switching of nanocrystalline ZnO thin films

A resistive switching effect in thin oxide films is attractive for manufacturing 
of neuromorphic system, which offers significant advantages over classical com-
puters, such as an effective processing of data recognition. ZnO is the one of the 
promising materials, which is widely used in electronic element developments, 
sensors, and microsystem technology. Also, ZnO demonstrates resistive switch-
ing, which has just one phase and is compatible with semiconductor technology. 
To fabricate ZnO-based neuromorphic system, it is necessary to study resistive 
switching in ZnO films and today there are insufficient experimental results 
about it.

Figure 10. 
ZnO film surface: (a) AFM-image; (b) AFM cross-sectional profile on (a); and (c) phase.
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HRS state is 1.08 × 109 Ω, and in the LRS state it is 0.14 × 109 Ω, the resistance ratio 
in the HRS and LRS states is 7.5.

Such a memristor effect dependence on the titanium ONS thickness and the 
applied voltage pulses amplitude is explained by the electric field intensity influ-
ence in the oxide on the oxygen vacancies transfer in the oxide volume between the 
electrodes and the titanium ONS switching between high-resistance and low-
resistance states.

3.  Formation and investigation of memristor structures based on 
nanocrystalline ZnO thin films by atomic force microscopy
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A resistive switching effect in thin oxide films is attractive for manufacturing 
of neuromorphic system, which offers significant advantages over classical com-
puters, such as an effective processing of data recognition. ZnO is the one of the 
promising materials, which is widely used in electronic element developments, 
sensors, and microsystem technology. Also, ZnO demonstrates resistive switch-
ing, which has just one phase and is compatible with semiconductor technology. 
To fabricate ZnO-based neuromorphic system, it is necessary to study resistive 
switching in ZnO films and today there are insufficient experimental results 
about it.

Figure 10. 
ZnO film surface: (a) AFM-image; (b) AFM cross-sectional profile on (a); and (c) phase.
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To investigate resistive switching Al2O3/ZnO:In (42.1 ± 5.6 nm) as a wafer was 
used. ZnO thin films were grown using pulsed laser deposition under the following 
conditions: wafer temperature: 400°C, target-wafer distance: 50 mm, O2 pressure: 
1 mTorr, pulse energy: 300 ml. To provide electrical contact to the bottom ZnO:In 
electrode, ZnO films were deposited through a mask.

Electrical properties of obtained ZnO films were measured by Ecopia HMS-
3000 equipment (Ecopia Co., Republic of Korea). Obtained ZnO films had electron 
concentration 8.4 × 1019 cm−3, electron mobility 12 cm2/V∙s, and resistivity 5.2 × 10−3 
Ω∙cm.

AFM-images of the ZnO film surface were obtained in semi-contact mode 
using scanning probe microscope Solver 47 Pro (NT-MDT, Russia). The AFM-
image processing was performed using Image Analysis software. Figure 10 shows 
experimental investigations of ZnO film morphology. It is shown that ZnO film 
surface has a granular structure (Figure 10a and c) with 1.53 ± 0.27 nm roughness 
(Figure 10b). The ZnO film thickness was measured by ZnO/ZnO:In stair scanning, 
and was equaled 32.3 ± 7.2 nm.

Electrical measurements were taken using nanolaboratory Ntegra with W2C probes. 
During the resistive switching investigation, ZnO:In film was grounded.

Current-voltage curves (CVC) were obtained from −3 to +3 V sweep for 15 cycles 
at the same point and for 15 cycles at different points on ZnO surface (Figure 11a). 
Based on the results obtained, resistance dependence on cycle number (uniformity 
test) and resistance dependence on number point were built (homogeneity test). 
It was shown RHRS and RLRS were equaled to 0.68 ± 0.07 GΩ and 0.11 ± 0.04 GΩ, 

Figure 11. 
Investigation of resistive switching in ZnO film: (a) current-voltage characteristic; (b) uniformity; and (c) 
variability.
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respectively at the same point on ZnO surface. At different points, RHRS and RLRS were 
equaled to 0.75 ± 0.13 GΩ and 0.12 ± 0.06 GΩ. RHRS/RLRS was equaled to 9.05 ± 5.65 at 
0.7 V. Resistance dispersion during uniformity test was more than resistance dispersion 
during homogeneity test that can be explained by a granular structure of ZnO film.

Time stability of resistive switching in ZnO was implemented using Ntegra in 
two stages. On the first stage, charge structure was formed on the ZnO surface at 
+5 V (Figure 12a). On the second stage, charged structure was scanned in Kelvin 
mode in the interval from 5 to 30 minutes with a step 5 minute (Figure 12b and 
c). It was shown that voltage decreased from 266 ± 17 to 68 ± 7 mV in 30 minutes 
(Figure 12a). 

3.2 Investigation of scratching probe nanolithography regimes for memristor 
structure formation

Resistive switching element manufacturing is associated with the development 
and research of the formation processes of structures with a nanometer resolution. 
Existing lithographic methods of semiconductor technologies are approaching the 
limit of their resolution, characterized by a high degree of complexity and cost of 
equipment. Therefore, there is a need for research and development of new meth-
ods, the use of which will allow the creation of nanostructures of resistive switching 
elements, including at the prototyping stage. A promising method for the formation 
of nanoscale structures that can be used to create resistive switching elements is 
nanoimprint lithography based on the use of special dies and films of polymeric 
materials. A type of nanoimprint lithography is scratching probe nanolithography 

Figure 12. 
Investigation of ZnO film surface charge: (a) Kelvin mode image of charged structure; (b) AFM cross-sectional 
profile on (a); and (c) time dependence of voltage.



Memristors - Circuits and Applications of Memristor Devices

110

To investigate resistive switching Al2O3/ZnO:In (42.1 ± 5.6 nm) as a wafer was 
used. ZnO thin films were grown using pulsed laser deposition under the following 
conditions: wafer temperature: 400°C, target-wafer distance: 50 mm, O2 pressure: 
1 mTorr, pulse energy: 300 ml. To provide electrical contact to the bottom ZnO:In 
electrode, ZnO films were deposited through a mask.

Electrical properties of obtained ZnO films were measured by Ecopia HMS-
3000 equipment (Ecopia Co., Republic of Korea). Obtained ZnO films had electron 
concentration 8.4 × 1019 cm−3, electron mobility 12 cm2/V∙s, and resistivity 5.2 × 10−3 
Ω∙cm.

AFM-images of the ZnO film surface were obtained in semi-contact mode 
using scanning probe microscope Solver 47 Pro (NT-MDT, Russia). The AFM-
image processing was performed using Image Analysis software. Figure 10 shows 
experimental investigations of ZnO film morphology. It is shown that ZnO film 
surface has a granular structure (Figure 10a and c) with 1.53 ± 0.27 nm roughness 
(Figure 10b). The ZnO film thickness was measured by ZnO/ZnO:In stair scanning, 
and was equaled 32.3 ± 7.2 nm.

Electrical measurements were taken using nanolaboratory Ntegra with W2C probes. 
During the resistive switching investigation, ZnO:In film was grounded.

Current-voltage curves (CVC) were obtained from −3 to +3 V sweep for 15 cycles 
at the same point and for 15 cycles at different points on ZnO surface (Figure 11a). 
Based on the results obtained, resistance dependence on cycle number (uniformity 
test) and resistance dependence on number point were built (homogeneity test). 
It was shown RHRS and RLRS were equaled to 0.68 ± 0.07 GΩ and 0.11 ± 0.04 GΩ, 

Figure 11. 
Investigation of resistive switching in ZnO film: (a) current-voltage characteristic; (b) uniformity; and (c) 
variability.

111

Application of Probe Nanotechnologies for Memristor Structures Formation and Characterization
DOI: http://dx.doi.org/10.5772/intechopen.86555
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(SPN), which allows using the tip of an atomic force microscope probe to form 
profiled nano-sized structures in polymer films. It was decided to use photoresist 
FP-383 as polymer film, because it is cheaper and has longer shelf life compared to 
other types of polymer films.

The solution of photoresist/thinner (FP-383/RPF383F) at volume ratio of 1:10 
was transferred onto Si substrate using the centrifugal method at the rotation 
speed of a Laurell WS-400B-6NPP centrifuge at 5000 rpm. After the deposi-
tion of the film, the photoresist/thinner film was dried at a temperature of 
90°С for 25 minutes. Thickness of the photoresist/thinner film was equaled to 
32.1 ± 4.7 nm.

Scratching probe nanolithography on the photoresist/thinner film was 
performed using a Solver P47 Pro scanning probe microscope. Indentation was 
performed by applying an AFM probe to the surface of a FP-383 film with a fixed 
clamping force (the Set Point parameter in the AFM control program). Thus, arrays 
of the seven profiled lines-grooves were formed at different nanoindentation forces 
(Figure 13).

Analysis of the results obtained showed that nanoindentation force increase 
from 0.5 to 3.5 μN leads to nanostructure-groove depth increase from 2.7 ± 0.8 
to 25.31 ± 2.11 nm (Figure 14a), tip velocity increase from 0.1 to 5 μm/s leads 
to nanostructure-groove depth decrease from 25.10 ± 1.2 to 8.87 ± 1.34 nm 
(Figure 14b).

Figure 14. 
Investigation of scratching probe nanolithography regimes: (a) force of depth dependence; (b) velocity of depth 
dependence.

Figure 13. 
Profiled nanostructures on photoresist surface: (a)AFM-image; and (b) AFM cross-sectional profile on (a).
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The nonlinearity of the dependences obtained can be explained by the inhomo-
geneity of the viscoelastic properties of the FP-383 film. It should also be noted that 
the nature of the contact interaction between the probe and the film is complex and 
is largely determined by the elastic forces.

Figure 15. 
Profiled nanostructure on FP-383 film surface: (a) AFM-image; and (b) AFM cross-sectional profile on (a).

Figure 16. 
Resistive switching Al2O3/ZnO:In/ZnO/Ti/W2C memristor structure: (a) AFM-image; (b) AFM cross-
sectional profile on (a); and (c) phase.
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performed by applying an AFM probe to the surface of a FP-383 film with a fixed 
clamping force (the Set Point parameter in the AFM control program). Thus, arrays 
of the seven profiled lines-grooves were formed at different nanoindentation forces 
(Figure 13).

Analysis of the results obtained showed that nanoindentation force increase 
from 0.5 to 3.5 μN leads to nanostructure-groove depth increase from 2.7 ± 0.8 
to 25.31 ± 2.11 nm (Figure 14a), tip velocity increase from 0.1 to 5 μm/s leads 
to nanostructure-groove depth decrease from 25.10 ± 1.2 to 8.87 ± 1.34 nm 
(Figure 14b).

Figure 14. 
Investigation of scratching probe nanolithography regimes: (a) force of depth dependence; (b) velocity of depth 
dependence.

Figure 13. 
Profiled nanostructures on photoresist surface: (a)AFM-image; and (b) AFM cross-sectional profile on (a).
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The nonlinearity of the dependences obtained can be explained by the inhomo-
geneity of the viscoelastic properties of the FP-383 film. It should also be noted that 
the nature of the contact interaction between the probe and the film is complex and 
is largely determined by the elastic forces.

Figure 15. 
Profiled nanostructure on FP-383 film surface: (a) AFM-image; and (b) AFM cross-sectional profile on (a).

Figure 16. 
Resistive switching Al2O3/ZnO:In/ZnO/Ti/W2C memristor structure: (a) AFM-image; (b) AFM cross-
sectional profile on (a); and (c) phase.
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3.3 Fabrication and investigation of resistive switching of memristor structures 
based on nanocrystalline ZnO thin films

To fabricate memristor structure, photoresist FP-383 thin film with thickness 
21.4 ± 3.1 nm was formed on Al2O3/ZnO:In/ZnO substrate. Then squared nanostruc-
ture-groove was formed on FP-383 film surface using scratching probe nanolithog-
raphy at nanoindentation force 3.18 μN (Figure 15). Thin Ti film was deposited 
using BOC Edwards Auto 500 system. After that lift-off process was applied using 
dimethylformamide. AFM-image of the Al2O3/ZnO:In/ZnO/Ti resistive switching 
structure obtained is shown in Figure 16. Analysis of the result obtained showed 
that Ti film thickness was equaled to 4.1 ± 0.3 nm (Figure 16b). Ripped edges of Ti 
structures are result of lift-off process.

Figure 17 shows current-voltage characteristic of Al2O3/ZnO:In/ZnO/Ti/W2C 
structure at −4 to +4 voltage sweep. It was shown that Al2O3/ZnO:In/ZnO/Ti/W2C 
structure has nonlinear, bipolar behavior when the electric potential gradient is the 
dominant parameter of resistive switching.

Investigation of resistive switching of Al2O3/ZnO:In/ZnO/Ti/W2C structure 
in the single point (uniformity test) shown that RHRS was 8.23 ± 1.93 GΩ and RLRS 
was 0.11 ± 0.06 GΩ (Figure 17b). At different points, RHRS and RLRS were equaled 
7.65 ± 2.83 GΩ and 0.18 ± 0.11 GΩ, respectively (Figure 17c). It was shown, that 
RHRS/RLRS coefficient was equaled 135.31 ± 44.38 at 0.7 V.

In the end, it was shown that the use of Ti film allowed to increase RHRS/RLRS 
coefficient from 9.05 ± 5.65 to 135.31 ± 44.38 and to decrease the resistance disper-
sion of resistance switching (Figures 11 and 17). It can be explained by exception 
for the influence of air oxygen in Al2O3/ZnO:In/ZnO/Ti structure that significantly 
worsens the resistive switching.

Figure 17. 
Investigation of resistive switching in Al2O3/ZnO:In/ZnO/Ti/W2C structure: (a) current-voltage characteristic; 
(b) uniformity; and (c) homogeneity.
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4.  Investigation of resistive switching in vertically aligned carbon 
nanotubes using scanning tunnel microscopy

4.1 Influence of voltage pulses amplitude on resistive switching of strained 
carbon nanotubes

The dependence of the resistive switching of a vertically aligned carbon 
nanotube on the voltage pulse amplitude was studied using the STM spectroscopy 
using the probe nanolaboratory Ntegra. Figure 18 shows the current-voltage 
characteristics of a strained carbon nanotube, obtained by applying a series of 
voltage sawtooth pulses with amplitude of 1–8 V, duration of 1 second, and tunnel 
gap of 1 nm. The diameter of a VA CNT of the investigated array was 95 ± 5 nm, 
length 2.3 ± 0.2 μm, and density of nanotubes in the array was 18 μm−2. It should be 
noted that the current-voltage characteristics are represented in the range from 0 
to 50 nA, which relates to the peculiarities of the measuring system of the scanning 
tunneling microscope.

The measurement results showed that resistive switching of the VA CNT does 
not occur when the applied voltage amplitude is less than2 V (Figure 18a). This 
is due to the insufficient value of the external electric field for the formation of a 
low-resistance state in the nanotube [28]. The reproducible resistive switching was 
observed with a further increase in amplitude to 4 V and more (Figure 18b–d). 

Figure 18. 
CVCs of VA CNT upon application of a series of sawtooth voltage pulses with amplitude: (a) 2 V; (b) 4 V;  
(c) 6 V; and (d) 8 V.
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4.  Investigation of resistive switching in vertically aligned carbon 
nanotubes using scanning tunnel microscopy

4.1 Influence of voltage pulses amplitude on resistive switching of strained 
carbon nanotubes

The dependence of the resistive switching of a vertically aligned carbon 
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tunneling microscope.

The measurement results showed that resistive switching of the VA CNT does 
not occur when the applied voltage amplitude is less than2 V (Figure 18a). This 
is due to the insufficient value of the external electric field for the formation of a 
low-resistance state in the nanotube [28]. The reproducible resistive switching was 
observed with a further increase in amplitude to 4 V and more (Figure 18b–d). 

Figure 18. 
CVCs of VA CNT upon application of a series of sawtooth voltage pulses with amplitude: (a) 2 V; (b) 4 V;  
(c) 6 V; and (d) 8 V.
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The RHRS/RLRS ratio increased from 1 to 52 with an increase in the amplitude U from 
1 to 8 V. This dependence is explained by the fact that the nanotube had the same 
resistance values of RHRS, while the resistance of its low resistance state decreased 
inversely to the increase in the applied voltage amplitude due to the compensation 
of the internal electric field arising during deformation of the VA CNT with an 
external electric field [28].

It should be noted that the values of RHRS and RLRS of the VA CNT are 2–3 
times lower at U < 0 than at U > 0. It is due to the fact that associated with the 
occurrence of a piezoelectric charge, internal field of the nanotube [33, 34]  
is co-directed with an external electric field, and accordingly, reduces the 
resistance of the VA CNT when a negative voltage is applied and is oppositely 
directed and increases the total resistance of the VA CNT when a positive volt-
age is applied.

4.2 Influence of deformation on resistive switching of strained carbon nanotubes

The studies of the influence of deformation on resistive switching of a VA CNT 
were performed by the STM spectroscopy with a tunneling gap d = 0.2, 0.5, 1, and 
2 nm. Controlled elastic deformation of VA CNT was formed on the basis of the 
previously developed technique [32] and was equal to the tunnel gap. The value d was 
determined on the basis of current-height characteristics and was controlled using 
the STM feedback system. Figure 19 shows the experimental current-voltage charac-
teristics obtained by applying voltage sawtooth pulses with amplitudes of 4 and 8 V.

Analysis of the obtained CVCs showed that at U = 4 V, the RLRS value initially 
decreased and increased again at ΔL = d = 2 nm (Figure 19a). This is due to the 
fact that the magnitude of the external electric field was not enough to compensate 
the internal electric field of the nanotube at a deformation of 2 nm. This effect 
disappeared as the voltage amplitude increased to U = 8 V due to an increase in the 
external electric field (Figure 19b). The values of RHRS and RLRS of the VA CNT 
decreased with increasing deformation (Figure 19b). The decrease in the of RHRS 
and RLRS of the VA CNT is due to the increase in the initial deformation ΔL ≈ d 
and the corresponding value of the piezoelectric charge, and is consistent with the 
mechanism of memristive switching of VA CNT [28].

It was also shown that the RHRS/RLRS ratio of the VA CNT does not depend 
on the deformation value and is determined by the value of the applied voltage: 
the RHRS/RLRS = 2–3 at U = 4 V (Figure 19a) and the RHRS/RLRS > 50 at U = 8 V 
(Figure 19b).

Figure 19. 
CVCs of VA CNT at various values of deformation ΔL ≈ d and at voltage sawtooth pulses amplitude: (a) 4 V; 
and (b) 8 V.
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5. Conclusion

Thus, application of scanning probe microscopy techniques for fabrication and 
determination of electrical parameters of memristor structures based on vertically 
aligned carbon nanotubes, titanium oxide nanostructures, and nanocrystalline ZnO 
thin films was presented. It is shown that titanium oxide nanostructures obtained by 
local anodic oxidation have a memristor effect without additional electroforming. 
The regularities of the manifestation of the memristor properties of oxide nanoscale 
structures of titanium are established, and the effect of the thickness of oxide 
nanoscale structures and the amplitude of applied voltage pulses on the displayed 
memristor effect in them is shown. It was found that the oxide nanoscale structures 
of titanium with a thickness of 1.6 nm have a resistance ratio in the high resistance 
to low resistance equal to 79.4. By using scratching probe nanolithography was made 
memristor structure based on nanocrystalline ZnO thin film obtained by pulsed 
laser deposition. The results can be used for micro- and nano-electronic elements 
manufacturing, as well as memristor structures, ReRAM elements using probe 
nanotechnologies, and for metal oxide and VA CNT-based neuromorphic system 
fabrication. The results of the study of resistive switching of vertical aligned carbon 
nanotubes using scanning tunneling microscopy are presented.

The results were obtained using the equipment of Research and Education 
Center and the Center for collective use “Nanotechnologies” of Southern Federal 
University.
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