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SUMMARY 

 

One currency of the brain is action potentials. They relay sensations of the world 

into commands for muscles to move the body and produce speech, and their manipulation 

is responsible for adaptive behavior and cognition. However, much remains unknown 

about the fundamental rules governing such neural information processing in the brain. 

By growing networks of cortical neurons and glia over multi-electrode arrays (MEA), 

which can be used to both stimulate and record multiple neurons in parallel over 

durations up to months, a 2-way communication with neuronal network activity becomes 

feasible. In particular, I was interested in embodying these networks with robotics to 

study the importance of environmental interaction, or behavioral feedback, in neural 

processing. Here,  the recorded activity of the neurons was transformed into movements 

in an artificial environment, and sensory feedback was transformed into electrical 

stimulation on multiple electrodes. Stimulation influences neural activity and in turn the 

subsequent movements, creating a closed-loop system we call a neurally-controlled 

animat. 

My ultimate goal was to develop animats that could learn something about the 

environment and/or body given to them. Upon entering the lab, the technology to culture 

neurons for long durations on MEAs, robustly record neural activity, and stimulate an 

MEA’s electrodes was recently achieved. However, the crucial ability to induce and 

detect neural plasticity was missing: methods were needed to determine appropriate 

sensory-motor mappings and training algorithms in order to produce any kind of adaptive 

behavior. I took a step back to first determine, in open-loop experiments, what types of 
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stimulation could induce plasticity and what kinds of activity statistics could identify 

plasticity. This knowledge was then applied to construct embodied systems.  

To paraphrase the results, most any stimulation could induce neural plasticity, 

while the inclusion of temporal and/or spatial information about neural activity was 

needed to identify plasticity. Following a tangent from one of the open-loop experiments, 

the plasticity of action potential propagation was observed. This is a notion counter to the 

dominant theories of neuronal plasticity that focus on synaptic efficacies and is 

suggestive of a vast and novel computational mechanism for learning and memory in the 

brain. 

The results from the open-loop experiments were next used to develop animats 

that achieved adaptive goal-directed behavior. The feedback of patterned training stimuli, 

contingent on behavioral performance, was found able to sculpt the network activity into 

desired states. Network plasticity was not just induced, but could be customized, 

suggesting a potential role for the rehabilitation of neural pathologies. Furthermore, in 

collaboration with artists from SymbioticA at the University of Western Australia, 

neurons were embodied with a robotic drawing machine and exhibited at galleries 

throughout the world. This provided a platform to educate the public and initiate critical 

discussions of biotechnology. 
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CHAPTER 1 
 

INTRODUCTION 

 

 The brain is arguably the most complex system studied in science. A human brain 

contains about one hundred billion neurons, each of which communicate electrically and 

chemically with tens of thousands of other neurons to make up about a quadrillion (1015) 

synaptic connections. The patterns and strengths of connections constantly change with 

experience and no two brains are alike. Neural action potentials filter through the 

connections and give rise to perceptions, interpretation, memories, consciousness, 

imagination, language, and ultimately, actions. Quantifying how humans, animals, and 

recently algorithms (artificial intelligence) can make use of such complexity to 

successfully live in the world comprises a vast array of studies on intelligence, and in 

particular, our lab’s own niche in studies of embodied cortical networks. 

 Traditional neuroscience has studied the brain at many levels. At a global level, 

functional imaging techniques such as fMRI and PET are used to correlate behaviors with 

representational brain areas, consisting of tens of thousands of neurons. Experiments at 

the cellular level investigate the molecular mechanism and functional rules of cellular 

plasticity. However, the flow of information through the brain’s interconnected neural 

networks could not be accessed in detail until the relatively recent adoption of multi-unit 

functional stimulation and recording technology, which remain fringe techniques.  

 We directly investigate the neural population dynamics that give rise to the 

brain’s unique computational abilities and intelligence by growing networks of cortical 

neurons and glia over multi-electrode arrays (MEA) (see Appendix G for general 

methods). We embody the networks with a simulated or real body situated in an artificial 

environment, creating an “animat”, to observe learning and behavior in concert with 

detailed electrophysiology (DeMarse, Wagenaar et al. 2001; Shkolnik 2003; Bakkum, 
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Shkolnik et al. 2004a; Chao, Bakkum et al. 2005). The MEA allows for both the 

stimulation and recording of multiple neurons in parallel over durations of months (Pine 

1980; Gross, Williams et al. 1982; Potter and DeMarse 2001a). Cortical neurons are 

attractive because the cortex can be considered to be a type of general processing engine 

that is responsible for learning and memory in the brain. For example, altering sensory 

input of thalamic relays to cortical areas caused the cortex to develop structure 

appropriate to the new type of the sensory input (Sur, Garraghty et al. 1988). Intracellular 

electrodes, while allowing the direct measurement of a neuron’s membrane voltage, were 

not desired because their recordings are short-term (a few hours at most) and interfere 

with the neuron’s physiology due to dialysis of its cytosol and a rupture in its membrane, 

which eventually leads to cell death. An in vitro preparation was preferred over those in 

vivo because of better pharmacological access and control of variables: the confounding 

issues of competing goals, such as hunger or attention, must be accounted for during in 

vivo experiments but are absent here. Research in AI assesses network computation by 

creating algorithms for artificial networks, and has been a complimentary tool in our lab 

(Chao, Bakkum et al. 2005; Chao, Bakkum et al. 2007). The use of biological networks is 

conceptually simpler in one sense because our “control algorithm”  has already been 

greatly developed through evolution. A better understanding of the processes leading to 

biological intelligence can, in turn, help create fundamentally different computational 

systems, through new AI algorithms and their hardware implementations or by using 

biology itself in control systems. 

 The fields of cognitive science and artificial intelligence began inquiries into the 

nature of intelligence in the middle of the last century without a concern for its substrate: 

intelligent thought was considered the manipulation of abstract concepts, analogous to 

how digital computations could be run on any manner of Turing machine. However, 

intelligence has not yet been attributed to digital computers or the robots they have been 

used to control despite the fact that the units (neurons) of an “intelligent” brain relay their 
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signals (action potentials) at least 6 orders of magnitude slower, on the order of 

milliseconds. Tasks trivial to humans have proven difficult for computers, such as 

adaptation, multitasking, real-time performance, fault tolerance, handling incomplete or 

occluded sensation, etc. This is likely due to significant differences in computational 

implementation, with brains using massively parallel processing, feedback loops on many 

scales, and relay switches (neurons) that learn and change function, among other 

differences. 

 
Figure 0.1 Microscope images of growing axons and dendrites. 
The images were taken on three consecutive days beginning the second day after plating the cells. The 
black circles are the electrodes. Even left to themselves without external input other than cell culture media, 
neurons re-establish connections with their neighbors and begin communicating electrically and chemically 
within days, demonstrating an inherent drive to network; the essence of neural network processing remains 
without the confounding behavioral drives present in vivo.  (Pictures from P. Passaro) 
 
 Now becoming more accepted is the hypothesis that intelligence is not 

disembodied, but intimately entwined with the mechanics of the body and an interaction 

with the environment (Varela, Thompson et al. 1993; Pfeifer and Bongard 2007). The act 

of walking combines roles for neural signaling, proprioceptive feedback, the spring 

tension of muscles, the friction of shoes contacting pavement, and gravity to assist leg 

swing. Both our brains and bodies co-evolved to take advantage of the physics in the 

world, and the body is thought to be not just a medium possessed by the brain to behave 

and gather data, but instead another layer to filter behaviorally relevant information 

(Pfeifer and Bongard 2007). Neuroscientists consider the brain as the seat of intelligence. 

The ancient philosopher Aristotle imagined it to lie in the heart, and ancient Egyptians 
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thought so much of the brain that they threw it away prior to mummification. Maybe 

future generations will no longer throw away the body and its interaction with the 

environment in considering where lies intelligence. 

 Our ultimate goal was to follow the embodiment perspective and develop animats 

that exhibit adaptive goal-directed behavior, a trait at least one group considers to be the 

defining feature of intelligence (Sternberg and Salter 1988).When entering the lab, the 

technology to culture neurons for long durations on MEAs (Potter and DeMarse 2001b), 

robustly record activity (Wagenaar, DeMarse et al. 2005), and stimulate all electrodes 

(Wagenaar and Potter 2004a) was recently achieved. However, the crucial ability to 

induce and detect neural plasticity was missing: methods were needed to determine 

appropriate sensory-motor mappings and training algorithms in order to produce any kind 

of adaptive behavior. This required taking a step back and determining first, in open-loop 

experiments, what types of stimulation could induce plasticity and what kinds of activity 

statistics could identify plasticity (Chapters 3 and 4). We then applied this knowledge to 

construct embodied systems (Chapters 5 and Appendix A, with an overview in Chapter 

2). To paraphrase the results, most any stimulation could induce neural plasticity, while 

the inclusion of temporal and/or spatial information about neural activity was needed to 

identify plasticity. In Chapter 5, adaptive goal-directed behavior in animats was achieved 

by using patterned training stimuli, contingent on animat performance, to sculpt the 

network into behaviorally appropriate functional states: network plasticity was not just 

induced, but could be customized. Appendix A discusses progress (mainly engineering) 

towards moving the embodiment from an artificial world to the real world using robots. 

Chapter 2 provides an introduction of our philosophy and history of using animats. 

Chapter 6 concludes with a discussion of future directions, written as a guide to future 

students who wish to build upon the work begun here. 
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Chapter summaries 

 Chapter 2, Removing some ‘A’ from AI, overviews earlier attempts to embody the 

cortical networks and discusses in further detail our scientific motivations. 

 Experiments in Chapter 3, Tetanus-Induced plasticity and Region-Specific 

Changes in Network Activity, used tetanic stimulation to induce neural plasticity. To 

observe the plasticity, we developed statistics that included spatial and temporal 

information about neural activity, called the center of activity trajectory (CAT). While 

comparisons of firing rates show plasticity in intracellular recordings, more detailed 

statistics incorporating spatiotemporal population activity patterns were needed to reveal 

plasticity in extracellular multi-electrode recordings. Synaptic noise across a chain of 

neurons (Kandel, Schwartz et al. 2000), convergent and divergent pathways (Abeles 

1991), and homeostatic mechanisms that re-adjust firing rates in response to plasticity 

(Turrigiano and Nelson 2000; Spitzer, Borodinsky et al. 2005) all obscure firing rate 

measures of plasticity detected by extracellular MEAs. CAT was found to better detect 

tetanus-induced plasticity in both simulated and living networks than traditional statistics. 

 Experiments in Chapter 4, Plasticity Induced by Patterned Stimulation and 

Changes in Action Potential Propagation, were designed to test the ability of patterned 

stimulation to induce neural plasticity. To observe the plasticity, we quantified changes in 

the propagation delays of action potentials as they traveled through axons. From the 

viewpoint of a neuron, the specific timings of afferent synaptic potentials determines 

whether or not and when to fire an action potential. Tuning such input would provide a 

powerful mechanism to adjust the neuron’s behavior and perhaps play a large role in 

learning and memory in general. However, axonal plasticity of action potential timing is 

counter to conventional notions of stable propagation and to the dominant theories of 

plasticity focusing on synaptic efficacies. Here we show activity-dependent plasticity of 

action potential propagation could indeed occur. We used a multi-electrode array to 
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induce, detect, and track changes in propagation in multiple neurons while they adapted 

to different patterned stimuli in controlled in vitro neocortical networks. Changes 

occurred in delays (up to 4ms or 40% after minutes and 13ms or 74% after hours) and 

amplitudes (up to 87%). The changes did not occur when the same stimulation was 

repeated while blocking synaptic activity. Even though plasticity depended on 

synaptically evoked action potentials, its expression was non-synaptic: action potential 

propagation. We concluded that propagation plasticity is a cellular mechanism underlying 

information processing in neuronal networks and potentially learning and memory in the 

brain. 

 Experiments in Chapter 5 were designed for Shaping Embodied Neural Networks 

for Adaptive Goal-Directed Behavior. Spatiotemporal patterns inspired by Chapter 4 

were used as training signals, while the center of activity (CA instead of CAT; Chapter 3) 

was used to command motor output. We developed an adaptive training algorithm, 

whereby cortical networks learned to modulate their dynamics and achieve user-defined 

activity states within tens of minutes. A priori knowledge of functional connectivity was 

not necessary. Instead effective training sequences were continuously discovered and 

refined based on real-time feedback of animat performance. The short-term dynamics in 

response to training became engraved in the network, requiring fewer training stimuli 

later in time to achieve the same results. After 2 hours of training, plasticity was 

significantly greater than baseline for 80 min (P<0.05). Interestingly, a given sequence of 

stimuli did not induce detectable plasticity, let alone desired activity, when replayed to 

the network, demonstrating the importance of context dependent feedback. The chapter 

discusses the potential for targeted electrical stimulation of the brain, contingent on the 

activity of the body or even of the brain itself, to treat neurological movement disorders.  

 Chapter 6 concludes with future directions, written as a guide to students who 

wish to build upon the work begun here. These include using light to evoke 

channelrhodopsin-2 expressing neurons with high spatiotemporal resolution, 
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investigating the molecular mechanisms and functional rules of changes in action 

potential propagation, and finding new horizon’s for embodiment experiments. 

 Appendix A, Memoirs of a Cyborg Artist, describes the engineering and 

philosophy behind building a robotic drawing machine, named Meart, as part of an art-

science collaboration. Experiments originally designed for Meart founded the 

experimental design in Chapters 4 and 5. In Chapter 5, a simulated body was used while 

improving the sensory-motor mappings and training algorithms. However in order to 

engineer biologically-based control systems, their performance must be tested in the real 

world where noise and non-linearity are commonplace. In the case of Meart, we applied 

patterned training stimuli and tested the neuronal network's ability to learn the dynamics 

of its body to achieve a goal-directed behavior of drawing a geometrical shape. The 

transformation from visual sensation into the training stimuli was fixed, and while neural 

plasticity occurred, successful behavior did not. Either prior knowledge of network 

connectivity or adaptive training was needed. A future step is to apply the algorithms 

developed with the simulated animat to control the drawings of Meart, creating a real-

world biologically-based agent exhibiting goal-directed behavior.  

 Appendices B and C discuss two unpublished preliminary experiments, 

Homeostasis of global firing rate, and a Closed-loop ‘moth’ experiment. Appendix D 

describes testing of a custom built MEA stimulation board with artifact suppression 

(Neuromancer), developed by the DeWeerth laboratory. Appendices E and F overview 

code needed to conduct embodiment experiments and code to format and analyze spike 

data. Appendix G describes general methods for cell culturing, electrophysiology, and the 

common change-to-drift ratio (C/D) used to quantify plasticity. For further details, refer 

to the theses by Daniel Wagenaar and Radhika Madhavan for protocols to mix all 

solutions needed for cell culturing, using Meabench to record neural activity, and 

electrically stimulating the neural networks. 
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 Knowledge gained from our studies could provide insight for many fields. 

Clinically, understanding the relationships between electrical stimulation and neural 

activity and the functional expression of neural plasticity would help direct the 

development of neuroprosthetics. Considering our research is of a basic science nature, 

unforeseen applications may arise: for example, a recent collaboration was formed to 

apply a stimulation paradigm developed in the lab (Wagenaar, Madhavan et al. 2005) to 

treat epileptic patients. Likewise, benefit may come to other fields including psychology 

and educational instruction (Geake and Cooper 2003), the development of artificial 

intelligence (Bakkum, Shkolnik et al. 2004a), telecommunications (Clarkson 1999), the 

evolution of mathematics and statistics such as in dynamical systems and emergence 

(Beer 2000) and multivariate statistical analysis (Lee and Seung 1999), philosophy of the 

mind (Manson 2004a), and art (Bakkum, Shkolnik et al. 2004a). 
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CHAPTER 2 
 

REMOVING SOME ‘A’ FROM AI1 

We embodied networks of cultured biological neurons in simulation and in robotics. This is a new 
research paradigm to study learning, memory, and information processing in real time: the 
Neurally-Controlled Animat. Neural activity was subject to detailed electrical and optical 
observation using multi-electrode arrays and microscopy in order to access the neural correlates of 
animat behavior. Neurobiology has given inspiration to AI since the advent of the perceptron and 
consequent artificial neural networks, developed using local properties of individual neurons. We 
wish to continue this trend by studying the network processing of ensembles of living neurons that 
lead to higher-level cognition and intelligent behavior. 

 

2.1 Introduction 

 We present a new paradigm for studying the importance of interactions between 

an organism and its environment using a combination of biology and technology: 

embodying cultured living neurons via robotics. From this platform, explanations of the 

emergent neural network properties leading to cognition are sought through detailed 

electrical observation of neural activity. A better understanding of the processes leading 

to biological cognition can, in turn, facilitate progress in understanding neural 

pathologies, designing neural prosthetics, and creating fundamentally different types of 

artificial intelligence. The Potter group is one of seven in the Laboratory for 

Neuroengineering (Neurolab) at the Georgia Institute of Technology, all working at the 

interface between neural tissue and engineered systems.  We envision a future in which 

mechanisms employed by brains to achieve intelligent behavior are also used in artificial 

systems; we overview three preliminary examples of the Neurally-Controlled Animats 

approach below. By using biology directly, we hope to remove some of the 'A' from AI. 

                                                 

 
 
1 Adapted from: 
Bakkum DJ, Shkolnik AC, Ben-Ary G, Gamblen P, DeMarse TD, Potter SM, “Removing some of the ‘A’ 
from AI: embodied cultured networks”. In Proceedings of the Dagstuhl Conf on Embodied Artificial 
Intelligence, eds. Luc Steels and Rolf Pfeiffer, Springer, 2004 
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 No one would argue that environmental interaction, or embodiment, is 

unimportant in the wiring of the brain; no one is born with the innate ability to ride a 

bicycle or solve algebraic equations. Practice is needed. An individual's unique 

environmental interactions lead to a continuous 'experience-dependent' wiring of the 

brain (Weiler, Hawrylak et al. 1995). This makes evolutionary sense as it is helpful to 

learn new abilities throughout life: if there are some advantageous features of an 

organism that can be attained through learning, then the ability to learn such features can 

be established through evolution (the Baldwin effect) (Dennett 1991). Thus, the ability to 

learn is innate (learning usually being defined as the acquisition of novel behavior 

through experience (Morris 1973)). We suggest that environmental interaction is needed 

to expose the underlying mechanisms for learning and intelligent behavior. Many 

researchers use in vitro models (brain slices or dissociated neural cell cultures) to study 

the basic mechanisms of neural plasticity underlying learning.  We argue that because 

these systems are not embodied or situated, their applicability to learning in vivo is 

severely limited. We are developing systems to re-embody in vitro networks, and allow 

them to interact with an environment, so that we can watch the processes contributing to 

learning at the cellular and network levels while they happen. 

 We study networks of tens of thousands of brain cells in vitro (neurons and glia) 

on a scale of a few square millimeters. The cells in cortical tissue are separated using 

enzymes, and then cultured on a Petri dish with 59 electrodes embedded in the substrate, 

a multi-electrode array (MEA; from MultiChannel Systems) (Fig. 2.1) (Potter 2001; 

Potter and DeMarse 2001a). The neurons in these cultures spontaneously branch out (Fig. 

1.1). Even left to themselves without external input other than nutrients (cell culture 

media), they re-establish connections with their neighbors and begin communicating 

electrically and chemically within days, demonstrating an inherent goal to network. 

Electrical and morphological observations suggest these cultures mature in about four 

weeks (Gross, Rhoades et al. 1993; Kamioka, Maeda et al. 1996; Watanabe, Jimbo et al. 
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1996; Wagenaar, Pine et al. 2006a). The neurons and supporting glia form a monolayer 

culture over the clear MEA substrate, amenable to optical imaging with conventional and 

two-photon microscopy (Potter 1996; Potter 2000; Potter, Lukina et al. 2001). With sub-

micron resolution optical microscopy, we can observe learning-related changes in vitro 

with greater detail than is possible in living animals. The networks are also accessible to 

chemical or physical manipulation. We developed techniques to maintain neural cultures 

for up to two years, allowing for long-term continuous observation. For detailed methods, 

refer to (Potter and DeMarse 2001a) or Appendix G. 

  

Figure 0.1  Connecting neurons to multi-electrode arrays 

Left: Cells are plated inside a glass multi-electrode array culture dish such as this (Photo by Steve Potter). Right: 
recorded voltage traces in the lighter boxes overlay a microscope image of the neuronal network growing on a 60-
electrode array (electrode diameter, 30 µm). The thick lines are the electrode leads. The voltage spikes are neural 
signals (Figure by Daniel Wagenaar). 

 A multi-electrode array records extracellular neural signals fast enough to detect 

the firing of nearby neurons as voltage spikes (Fig. 2.1, right). Thus, the activity of 

multiple neurons can be observed in parallel and network phenomena can be studied. In 

addition to the expression of spontaneous activity, supplying electrical stimulation 

through the multiple electrodes induces neural activity; we have built custom circuitry to 

continuously stimulate the 60 electrodes (Wagenaar and Potter 2004b). The MEA forms a 

long-term non-destructive two-way interface to cultured neural tissue. The recorded 
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signals can be used as motor commands, while the stimuli represent sensory inputs, in our 

embodied system. These techniques allow high resolution, long term, and continuous 

studies on the role of embodiment throughout the life of a cultured neural network. 

 

Figure 0.2 Hybrot (Hybrid living+robotic) setup 
Optical and electrical data from neurons on an MEA are analyzed and used to control various robotic 
devices, while time-lapse imaging is carried out to make movies of neuronal plasticity. 
 

 Wilson (Meyer and Wilson 1991) coined the term 'animat' (a computer simulated 

or robotic animal behaving in an environment) in his studies of intelligence in the 

interactions of artificial animals. Our interfacing of cultures to a simulated environment 

(described below) was the first Neurally-Controlled Animat (Fig. 2.2) (Potter, Fraser et 

al. 1997; DeMarse, Wagenaar et al. 2001; DeMarse, Wagenaar et al. 2002). For cultures 

interfaced to physical robots, we introduce the term 'hybrot' for hybrid biological robot. 

Mussa-Ivaldi's group created the first closed-loop hybrot by controlling a Khepera robot 

with a brain stem slice from a sea lamprey (Reger, Fleming et al. 2000). In a related 

approach, our Neurolab colleague Robert Butera studies detailed neural dynamics by 

coupling simulated neurons to real neurons using an artificial conductance circuit (Sharp, 

Abbott et al. 1992; Butera, Wilson et al. 2001). Stephen DeWeerth's group in the 

Neurolab develops and studies, among others things, silicon model neurons interfaced 

with living mollusk and leech neurons (Simoni, Cymbaluyk et al. 2001). 
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 Using simulated environments is a good first step and provides easier control and 

repeatability compared to robotics. However, a 'real' environment's great complexity 

provides two advantages. First, many seemingly complex behaviors of animals are 

emergent: simple behavioral rules applied in a complex environment produce complex 

and productive behavior (Braitenberg 1984; Arkin 1999; Brooks 1999). Second, a 

complex environment produces a robust brain to take advantage of it: among other 

examples, this is evident in tool use (Clark 1997) and in exploiting properties such as the 

biomechanics of muscle tissue in repositioning an arm without excessive vibrations. It is 

difficult to simulate a complex environment with realistic physics. If physics plays an 

important role in the complex behavior of intelligent systems, then by using robots in the 

real world, the researcher gets the physics "for free." We believe that this merging of 

artificial intelligence concepts (including robotics) into neurobiological experiments can 

inform future AI approaches, making AI a bit less artificial. 

2.2 Examples: three embodied neural systems 

 Creating a neurally controlled robot that handles a specific task begins with a 

hypothesis of how information is encoded in the brain. Much remains to be determined, 

but numerous schemes have been proposed, most based on the quantity and/or relative 

timing of the firing of neural signals. A neural network may be considered as a type of 

processing unit with an input (synaptic or electrical stimulation patterns), and an output 

(neural firing patterns), which can perform interesting mappings to produce behavior. 

Later work has found that both low frequency patterns of stimuli (Chapter 4, (Eytan, 

Brenner et al. 2003b)) and high frequency tetanic stimuli (Chapter 3,(Chao, Bakkum et 

al. 2007) (Reich, Victor et al. 1997; Jimbo, Robinson et al. 1998; Maeda, Kuroda et al. 

1998; Jimbo, Tateno et al. 1999)) can induce plasticity. In addition behavioral feedback 

can be used to direct the plasticity (Chapter 5 and Appendix A). 
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 Below are overviews of three such systems. These examples could have been 

conducted with artificial neural networks. We use biological neural networks not as 

substitutes to artificial neural networks, but to tease out the intricacies of biological 

processing to inform future development of artificial processing. In particular, we 

analyzed how the properties of neurons lead to real-time control and adaptation to novel 

environments. 

2.2.1 Living neurons control a simulated animal 

 The first Neurally-Controlled Animat (DeMarse, Wagenaar et al. 2001) 

comprised a system for detecting spatio-temporal patterns of neural activity, which 

directed exploratory movement of a simulated animal in real time (Fig. 2.3). Neural 

firings were integrated over time to produce an activity vector every 200 ms, representing 

the current activity pattern, and recurring patterns were clustered in activity space. Each 

cluster was assigned a direction of movement (left, right, forward, backward). 

Proprioceptive and exteroceptive feedback via electrical stimulation was provided to the 

neural culture for each movement and for collisions with walls and barriers. The 

stimulation induced neural activity that, in turn, was detected through the activity vectors 

and used as commands for subsequent movements.  We created the software and 

hardware necessary to enable a 15-ms sensory-motor feedback latency, since we feel it is 

important that a tight connection between the neural system and its environment is likely 

to be crucial to adaptive control and learning. 

 Within this real-time feedback loop, both spontaneous and stimulated neural 

activity patterns were observed. These patterns emerged over the course of the 

experiment, sometimes assembling into a recurrent sequence of patterns over several 

seconds, or the development of new patterns, as the system evolved. The overall effect of 

the feedback loop on neural activity was observed from the path of the animat's 

movement throughout its environment (Fig. 2.3). As the neural network moved its 
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artificial body, it received feedback and in turn produced more movement. The 

behavioral output was a direct result of both spontaneous activity within the network as 

well as activity produced by feedback due to the networks interaction with its virtual 

environment. Hence the path of the animat was indicative of current activity as well as 

the effects of feedback. Analyzing the change in behavior of the neurally-controlled 

animat provided a simple behavioral tool to study shifts in the states of neural activity. 

However, this first Neurally-Controlled Animat did not demonstrate noticeable goal-

directed behavior, which the next example addresses explicitly. 

 

Figure 0.3 Animat setup and activity. 

Above: neural signals are used to control the movement of an animat, whose 'brain' is exposed to microscopic imaging; 
feedback from the environment determines subsequent electrical stimulation of the living neuronal network in an MEA. 
Below: One hour of the animat's path (curved lines), as it moves about within its environment under neural control, 
with feedback. The white boxes represent various environmental obstacles. (Figure by Tom DeMarse and Steve Potter.) 
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2.2.2 Living neurons control a mobile robot 

 

Figure 0.4 Living neurons control a mobile robot. 

Neural firings in response to paired electrical stimulations at various inter-stimulus intervals (ISI) are plotted. In the 
experiments, the ISI was proportional to the distance between the neurally controlled approaching animat and its target 
object. It was considered positive if the target was located to the right of the animat and negative if left of the robot. 
The neural response determined the magnitude of subsequent animat movement; the direction of movement was 
determined from which quadrant the ISI fell into (see the arrows and movement key, bottom). Inset: the neurally 
controlled animat's trajectory (Koala robot, represented by the triangle). The target object (Khepera robot, represented 
by the square) was held stationary until the robot approached, and then it was moved continuously under computer 
control (down and to the right in the figure). (Figure by Alec Shkolnik.) 

 

 One of the simplest forms of ‘intelligent’ behavior is that of approach and 

avoidance. The goal of the second system was to create a neural interface between neuron 

and robot that would approach a target object but not collide with it, maintaining a 

desired distance from the target. If a given neural reaction is repeatable with low 
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variance, then the response may be used to control a robot to handle a specific task. Using 

one of these response properties, we created a system that could achieve the goal 

(Shkolnik 2003). 

 Networks stimulated with pairs of electrical stimuli applied at different electrodes 

reliably produce a nonlinear response, as a function of inter-stimulus interval (ISI). 

Figure 2.4 shows averaged firing rate over all 60 electrodes following two stimulations 

separated by a time interval. At short ISI's, the response of the network following 

stimulation was enhanced; at longer intervals, the response was depressed.  Furthermore, 

the variance of the data for each ISI was relatively small, indicating the effect is robust 

and thus qualifies as a good candidate for an input/output mapping to perform 

computation.  

 By mapping the neural response to a given ISI as a transformation of distance to 

an object, we created a robot that reacts to environmental stimuli (in this case sensory 

information about distance from an object) by approaching and avoiding that target.  To 

construct our "approach and follow" hybrot, sensory information (the location of a 

reference object with respect to the robot) was encoded in an ISI stimulation as follows:  

the closer the robot is to the object, the smaller the ISI. The response of the neurons to a 

stimulation pair, measured as an averaged firing rate across all electrodes for 100 ms after 

the second stimulus, was used to control the robot’s movements: a larger neural response 

corresponded to a longer movement (either forward or backward) of the robot. 

 When the robot was far away from the reference object, the ISI of the stimulation 

pair was long, and the neural response was large, moving the robot towards the object 

(Fig. 2.4, right). As the robot moved closer to the object, the stimulation interval 

decreased until it reached 150 ms. At this point, the neural response was minimal, and no 

movement was commanded. In other words, the robot reached its desired location with 

respect to the reference object. If the robot was closer to the object, the neural reaction 

was larger (a very short ISI), this time driving the robot away from the object. We 
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divided the input ISI into 4 quadrants (Fig. 2.4, left). Each of the 4 quadrants 

corresponded to a directional movement: forward/right, forward/left, backward/right, and 

backward/left. Then, a positive ISI caused movement in a direction opposite that for a 

negative ISI. Given the neural response to an ISI stimulation, we decoded which quadrant 

the response belonged to with good accuracy (>95%). 

 We used the Koala and Khepera robots (manufactured by K-Team) to embody the 

cultured network, and to provide an environment with a moving object. The Koala robot 

was used as the neurally controlled robot, while the Khepera served as the reference 

object, moving at random under computer control. Under neural control, the Koala 

successfully approached the Khepera and maintained a distance from it, moving forward 

if the Khepera moved away, or backing up if the Khepera approached  

 In addition to demonstrating the computational capacity inherent in cultured 

neurons, this hybrot can be used to study learning in cultured neural networks.  In this 

case, learning would be manifested through changes in the neural activity and changes at 

the behavioral level of the robot (Chapter 5 and Appendix A). 

2.2.3 Living neurons control a drawing arm 

 Meart (Multi-Electrode Array art) was a hybrot born from collaboration with the 

SymbioticA Research Group (discussed in greater detail in Appendix A). As an 

overview, the 'brain' of dissociated rat neurons in culture was grown on an MEA in our 

lab in Atlanta while the geographically detached 'body' resided in Perth. The body 

consisted of pneumatically actuated robotic arms moving pens on a piece of paper (Fig. 

2.5). A camera located above the workspace captured the progress of drawings created by 

the neurally-controlled movement of the arms. The visual data then instructed stimulation 

frequencies for the 60 electrodes on the MEA. The brain and body interacted through the 

internet (TCP/IP) in real time providing closed loop communication for a neurally 
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controlled 'semi-living artist'. We see this as a medium from which to address various 

scientific, philosophical, and artistic questions (see Discussion in Appendix A).  

 

  

Figure 0.5 Meart–The Semi-Living Artist. 

Left: Meart’s arms used markers to draw on a piece of paper, under live neural control. In the background was a 
projection of the MEA and cultured net, Meart's 'brain'. Right: one drawing created by Meart in an exhibition. (Photos 
by Guy Ben-Ary and Phil Gamblen.) 

 

 Meart has brought neurobiology research to numerous artistic events: Biennale of 

Electronic Arts Perth (Perth, 2003), Artbots: the Robot Talent Show at the Eyebeam 

gallery (New York, 2003), Cyber@rts at the Mercado del Ensanche (Bilbao, 2004), 

2004: Australia Culture Now at the Australian Center for the Moving Image and the 

National Gallery of Victoria (Melbourne, 2004), 1st Moscow Biennial for Contemporary 

Art at the M’ARS gallery (Moscow, 2005), Artrage at the Black Box (Perth, 2005), at the 

Eyedrum gallery (Atlanta, 2006), Strange Attractors: Australian Art & Science 

Exhibition at the Zendai gallery (Shanghai, 2006) and In the Presence of the Body, the 

first permanent art exhibit of the Art and Biology Department at the Rensselaer 

Polytechnic Institute. The robotic arm and video sensors were shipped to each gallery 

while the living neurons sent and received signals from Atlanta. An overview of how 
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Meart worked may best be described by the artistic conception behind the early 

presentations: portrait drawing. First, a blank piece of paper was placed beneath the arm's 

end-effector and a digital photograph was taken of an audience member. Then, 

communication between the arm and the neurons was begun. The neural stimulation via 

the MEA was determined by a comparison of the actual drawing, found using a video 

camera taking images of the drawing paper, to the target image of a person's photograph. 

Both the actual image and the target image were reduced to 60 pixels, corresponding to 

the MEA electrodes, and the gray scale intensity of each pixel was found. Similar to how 

an artist continually compares her work to her subject, the gray scale percentages for 

corresponding pixels on the two images were continuously compared, in this case 

subtracted to produce a matrix of error values. The 60 error values determined in real-

time the stimulation frequency per electrode using a custom stimulation circuit built by 

Thomas DeMarse. Arm movement was determined by the recorded neural activity, using 

averaged firing rates of the induced and spontaneous activity per stimulation. Stimulation 

affected this neural activity, and so the communication formed a loop, with a loop time of 

approximately one second. 

 In the prior example, the sensory-motor mappings used a stable neural property to 

reliably control the robot. With Meart’s early experiments as described above, the 

sensory-motor mappings were less well defined, in the hope of demonstrating a micro-

scale version of the brain's creative processes. The behavioral response of the robot sheds 

light on the properties of the neural network and directs further encoding refinements 

(Chapter 5 and Appendix A). An example drawing is shown in Figure 2.5. The drawings 

changed throughout the life of cultures (and were different for different cultures) 

demonstrating neural plasticity. Later experiments proved more promising, whereby 

goal-directed behavior was achieved in simulated animats (Chapter 5 and Appendix A). 
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2.3 Discussion 

2.3.1 Embodying cultures: theory 

2.3.1.1 A blank slate 

 Since the cultured neurons were first separated and allowed to settle onto the 

MEA at random, they start from a 'blank slate'. Neural structure is lost and the function of 

neural activity is no longer obvious, yet neural network processing remains, evidenced by 

the complex activity patterns we have observed. For traditional in vitro neural models, 

function is cloudy since activity no longer relates to or causes behavioral states or 

actions. One cannot say ‘this neuron is involved in color perception’ or ‘this neural 

structure helps to coordinate balance’ as could be said for in vivo experiments. 

Artificially embodying and situating cultured neurons redefines their behavioral function 

concretely. 

 The structure of neuronal networks is likely to be important in neuronal 

processing, and changes in structure are likely to underlie learning and memory (Engert 

and Bonhoeffer 1999; Trachtenberg, Chen et al. 2002). Our cultured neurons form two-

dimensional monolayers; functional importance may lie in the affordances given by the 

three-dimensional layered nature of the cortex. We and others in the Neurolab are 

pursuing the construction of 3D MEAs to support three-dimensional cultures, as part of 

an NIH Bioengineering Research Partnership (Choi, Powers et al. 2003), (Blum, Ross et 

al. 2003). However, even cultured cortical monolayers (without 3D structure nor sub-

cortical regions) have demonstrated an ability to adapt following stimulation via 

potentiation and/or depression (Jimbo, Tateno et al. 1999), (Tateno and Jimbo 1999), 

(Marom and Shahaf 2002), (Eytan, Brenner et al. 2003b).  We are exploring using these 

plasticity mechanisms as a means to shape the network during development, within the 

Neurally-Controlled Animat paradigm, so it is no longer a blank slate. 
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2.3.1.2 Associations.   

 The biological brain makes associations between different phenomena observed 

through sensation, whether between various external stimuli or between the actions of a 

body and their consequences, and then commands movement accordingly. Our methods 

have been developed to study these processes in real time with enough resolution to 

capture the dynamics of these interactions. These processes can be expressed using 

dynamical systems theory (DST), a mathematical framework to describe systems that 

change in time. For example, the formation of certain functional structures (ocular 

dominance columns) in the visual cortex has been described using Alan Turing's 

reaction-diffusion equations (Turing 1953). Kuniyoshi and his group explore DST to 

connect sensory-motor control to the cognitive level (Yamamoto and Kuniyoshi 2002). 

As applied to cognition (Port and van Gelder 1995), DST describes the mind with a set of 

complex, recursive filters. This opposes the classical cognitive concept of neural 

processing being analogous to a digital computer, containing distinct storage and 

processing of symbols (Fodor 1980), (Vera and Simon 1993). DST contends that multiple 

feedback loops and transmission delays, both of which are widespread in the brain, 

provide a time dimension to allow higher-level cognition to emerge without the need for 

symbolic processing (Edelman and Tononi 2000). DST is a framework compatible with 

embodied perspectives. The dynamical systems perspective has too often been neglected 

in neurobiology and cognitive sciences. 

 In contrast to an intact brain in an animal, cultures of neurons are isolated because 

they do not contain the afferent sensory inputs or efferent motor outputs a body would 

provide and therefore no longer have a world with which to reference their activity. 

Under these conditions, what associations can the network make, and what would those 

associations mean? Moreover, what symbols are operated on? Because of this, any 

associations that are made must consequently be self-referential or circular and neural 

activity may be misleading. The network as a set of complex, recursive filters has no 
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external signals to filter, possibly leading to the abnormal barrage activity described 

below. To address this major shortcoming of in vitro systems, our neural cultures are 

embodied with sensory feedback systems, motor systems, and situated in an environment, 

providing a new frame of reference. New findings about the dynamics of living neural 

networks might be used to design more biological, less artificial AI. 

2.3.1.3 Intelligence and Meaning.   

 By embodying cultured neurons, the ‘meaning’ of neural activity emerges, since 

this activity affects the external world and subsequent stimulation. Now the network has a 

body behaving and producing experiences, allowing for the study of concepts such as 

intelligence.  We will take a behavioral definition of intelligence as our start: Rodney 

Brooks described intelligence in terms of how successfully an agent interacts with its 

world to achieve goal directed behavior (Brooks 1991). William James stated, "Intelligent 

beings find a way to reach their goal, even if circuitous," (James 1890). Neurons have 

inherent local goals (to transmit signals, integrate synaptic input, optimize synaptic 

strengths, and much more) that provide the foundation to intelligently achieve meaningful 

behavioral goals. No doubt the basis for intelligence is inherent at birth, but an interaction 

with a sufficiently complex environment (learning) is needed to develop it. 

 In our cultured networks, the local goals of neural interaction are subject to 

detailed optical and electrical observation, while the execution of higher-level behavioral 

goals are observed through the activities of the robotic body. (Note that the behavioral 

goals are artificially constrained by the stimulation and recording transformations 

chosen.) We hope this combination will lead to a clearer definition and a better 

understanding of the neurological basis of intelligence, in addition to explanations of 

other psychological terms: learning, memory, creativity, etc. Neurobiology has given 

inspiration to AI since the advent of the perceptron and consequent artificial neural 

networks, which are based on the local properties (goals) of individual neurons. We wish 
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to continue this trend by finding the principles of network processing by multiple neurons 

that lead to higher-level goals. 

2.3.1.4 Network-wide Bursting.   

 The activity of cultured neurons tends towards the formation of dish-wide global 

bursts (barrages) (Kamioka, Maeda et al. 1996):  sweeps of fast, multiple neural firings 

throughout the network lasting between hundreds of milliseconds to seconds in duration. 

These barrages have been observed often in cultured neurons (Nakanishi and Kukita 

1998) but also in cortical slices (Corner and Ramakers 1991) and in computer models 

(Latham, Richmond et al. 2000a). Barrages of activity are reported in the cortex in vivo 

during early development, during epileptic seizures, while asleep, and when under 

anesthesia. These in vivo examples of barrages occur over finite periods of time. In 

contrast, barrages in vitro are continuous over the life of the culture. We consider the 

possibility that at some stage, dish-wide barrages of spiking activity are abnormal, a 

consequence of 'sensory deprivation' (Wagenaar, Madhavan et al. 2005), or a sign of 

arrested development (Tabak and Latham 2003). 

 For both a model system (Latham, Richmond et al. 2000a) and for cultured mouse 

spinal neurons (Latham, Richmond et al. 2000b), if more than 30% of the neurons are 

endogenously active, the neurons fire at a low steady rate of 1 to 5 Hz per neuron, while a 

reduction in the fraction of endogenously active cells leads to barrage activity. 

Endogenous activity is functionally similar to activity induced by afferent input, 

suggesting embodiment would lead to low steady firing rates. The hypothesis is then that 

the barrage activity may be due to the lack of an external environment with which to 

interact.  We are developing animat mappings in which continuous sensory input quiets 

barrages, bringing the networks to a less 'sensory-deprived' state that allows more 

complex, localized activity patterns. 
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2.3.1.5 The World and the Brain.   

 Environmental deprivation leads to abnormal brain structure and function, and 

environmental exposure shapes neural development. Similarly, patterned stimulation 

supplied to cultured neurons may lead to more robust network structure and functioning 

than with trivial or no stimulation. The most dramatic examples of the importance of 

embodiment come from studies during development, when the brain is most malleable. 

Cognitive tests were performed on institutionalized children in Romania, children 

typically deprived of proper environmental and social interaction early in life (Rutter 

1998), (O'Connor, Rutter et al. 2000). Compared to peers, the children showed severe 

developmental impairment that improved, however, after transplantation to a stable 

family. Those adopted prior to 6 months of age achieved nearly complete cognitive catch-

up to similarly aged children, while those adopted after 6 months of age had significant 

but incomplete catch-up. Likewise, laboratory rats raised in environments with mazes and 

varied visual stimuli had 30% greater cortical synaptic density than those raised in 

minimalist environments, and performed better in various cognitive experiments (Black, 

Isaacs et al. 1990), (Diamond 1990). Synaptic morphology in adults (Weiler, Hawrylak et 

al. 1995) and adult neurogenesis is dependent on external cues (Gross 2000) 

demonstrating that environmental interaction is important throughout life. 

 A disembodied neural culture, whose activity never influences future stimulation, 

will not develop meaningful associations to an input. In the brain, if a sensation is not 

useful in influencing future behavior (no association is made between the two) the 

percept of the sensation fades. The environment triggers an enormous number of sensory 

signals, and the brain develops to filter out the excess while perceiving the behaviorally 

relevant. All one-month-old infants can distinguish between the English L and R sounds. 

Five months later, Japanese infants lose the ability while American infants maintain it, 

because the distinction is not needed to understand the Japanese language (Kuhl, 
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Andruski et al. 1997). Japanese adults consequently have great difficulty distinguishing 

these sounds, but perception of the distinction can be learned through targeted instruction. 

These studies further demonstrate how brain (re)wiring depends on environmental 

context and occurs throughout life: the brain focuses on perceiving the portions of the 

environment relevant to produce a meaningful interaction.  

2.3.1.6 The Body and the Brain.   

The choice of how to instantiate an animat or hybrot is important to processing in 

cultured neural networks. For example, the body, with its various sensory apparatus and 

motor output, is what detects and interacts with the environment. In addition to how 

different environments cause differences in the brain, differences in the body will have 

analogous effects on the brain. Changes in the frequency or type of sensory input via 

practice or surgical manipulation of the body causes gross shifts in the functional 

organization of corresponding cortical areas (the somatotopic maps) (Buonomano and 

Merzenich 1998). Amputation causes a sudden change to a body, and amputees later 

report having at times a sensation or impression that the limb is still attached. The 

impression lasts for days or weeks in most cases (years or decades in other cases) and 

then gradually fades from consciousness (Ramachandran and Hirstein 1998). These false 

'phantom limb' sensations arise because the brain has wired itself for a given body that 

has now changed. This discrepancy further suggests the body and its interaction with the 

environment influence brain wiring and cognitive function.  Neurally-Controlled Animats 

allow an unlimited variety of bodies to be studied; their structure and operating 

parameters can be easily varied to test effects on brain-body interactions. 

2.3.2 Summary: integrating brain, body, and environment 

 The above paragraphs were worded as if the entities brain, body, and environment 

are independent. Finding physical boundaries between the three is easy, but since the 
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brain is so enmeshed in the states of the body (influencing mood, attention, and more), 

which in turn are so enmeshed in the body’s interaction with its environment, finding 

functional boundaries between the three is difficult, if possible at all (Varela, Thompson 

et al. 1993; Clark 1997; Pfeifer and Scheier 1999; Pfeifer and Bongard 2007). Damasio 

contends that the mind depends on the complex interplay of the brain and the body, and 

consequently emotions and rationality cannot be segregated (Damasio 1994). 

 We have integrated our hybrots' brain (cultured network), body (robot or 

simulated animat), and environment (simulation, lab, or gallery) into a functional whole, 

even while the parts are sometimes 12,000 miles apart.  Our experiments with these 

Neurally-Controlled Animats so far are rudimentary:  we are still setting up the 

microscopic imaging systems to allow us to make correlations between changes in 

behavior and changes in neuron or network structure; we have only recently developed 

training algorithms that reliably result in learning (Chapter 5 and Appendix A).  But in 

the process of creating this new research paradigm of embodied, situated cultured 

networks, we have already sparked a philosophical debate about the epistemological 

status of such semi-living systems (Manson 2004a), and have raised a number of issues 

about the validity of traditional (disembodied) in vitro neural research.   We hope that 

others will make use of the tools we have developed such as our MeaBench software 

(Wagenaar, DeMarse et al. 2005), sealed-dish culture system (Potter and DeMarse 

2001a), and multi-site stimulation tools (Wagenaar and Potter 2002a), to pursue a wide 

variety of questions about how neural systems function.  We expect that these inquiries 

will lead to fundamentally different, more capable, and less artificial forms of AI. 
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CHAPTER 3 
 

TETANUS INDUCED PLASTICITY AND 

REGION SPECIFIC CHANGES IN NETWORK ACTIVITY2 

 
Electrically interfaced cortical networks cultured in vitro can be used as a model for studying the 
network mechanisms of learning and memory. Lasting changes in functional connectivity have 
been difficult to detect with extracellular multi-electrode arrays using standard firing rate statistics. 
We compared the ability of various statistics to quantify functional plasticity at the network level. 
We compared three established statistical methods to one of our own design, called center of 
activity trajectory (CAT). CAT, which depicts dynamics of the location-weighted average of 
spatiotemporal patterns of action potentials across the physical space of the neuronal circuitry, was 
the most sensitive statistic for detecting tetanus-induced plasticity in both simulated and living 
networks. By reducing the dimensionality of multi-unit data while still including spatial 
information, CAT allows efficient real-time computation of spatiotemporal activity patterns. Thus, 
CAT will be useful for studies in vivo or in vitro in which the locations of recording sites on multi-
electrode probes are important. In a separate preliminary study using similar tetanus protocols, 
Principal Components Analysis of the spatiotemporal patterns of action potentials also 
demonstrated network plasticity. In a previous publication (Wagenaar 2006a) on the same data set, 
standard firing rate statistics were not capable of exposing plasticity. 

 
 

 High frequency tetanic stimulation has been traditionally used to induce plasticity 

of neurons in MEAs. Therefore, to determine if plasticity could occur in our preparations, 

we applied tetanic stimulation. We also quantified the ability of various statistics to detect 

the induced plasticity. A version of the best statistic, the center of neural activity (CA), 

was subsequently used in the embodiment experiments in Chapter 5 and Appendix A. 

                                                 

 
 
2 Contains sections from: 
Chao ZC, Bakkum DB, Potter SM, “Region-specific network plasticity in simulated and living cortical 
networks: comparison of the center of activity trajectory (CAT) with other statistics” J. Neural Eng. 4 
(2007) 294–308  
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3.1 Introduction 

 Modification of connectivity between cortical neurons plays an important role in 

the processes of learning (Ahissar, Vaadia et al. 1992; Buonomano 1998) and memory 

(Merzenich and Sameshima 1993 ). Connectivity at the synaptic level has been studied by 

administering stimuli while simultaneously recording neural activity, and then 

quantifying plasticity by analyzing the stimulus–response relationships. Culturing on 

multi-electrode arrays (MEAs) was introduced to help understand connectivity and 

plasticity in networks of neurons (Gross 1979; Pine 1980). This allows long-term 

(months), non-invasive observation of the electrical activity of multiple neurons 

simultaneously (Potter and DeMarse 2001b) in a system with less experimental 

complexity and greater control than preparations in vivo. External factors such as sensory 

inputs, attention and behavioral drives are absent, while many aspects of complex 

spatiotemporal spike patterns observed in animals remain (Gross and Kowalski 1999).  

 Many activity statistics have been used to quantify stimulus–response 

relationships from simultaneous recordings of multiple neurons (Brown, Kass et al. 

2004). Most analyze the dependences between spike trains, such as the maximum 

likelihood method (Chornoboy, Schramm et al. 1988; Okatan, Wilson et al. 2005), 

product–moment correlation coefficient (Kudrimoti, Barnes et al. 1999), functional 

holography (Baruchi and Ben-Jacob 2004), etc. However, only a few were applied for 

measuring network plasticity. The most common of these was the firing rate (FR), which 

showed plastic modifications of network response induced by tetanic stimulation in 

cortical cultures (Reich, Victor et al. 1997; Jimbo, Robinson et al. 1998; Maeda, Kuroda 

et al. 1998; Jimbo, Tateno et al. 1999) and dopamine regulated plasticity in anesthetized 

rats (Rosenkranz and Grace 1999). Firing rate histogram (FRH) uses firing rates 

integrated over successive sequential latency epochs to add detailed temporal 

information, and was applied to demonstrate adaptable image processing and pattern 
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recognition through training by tetanic stimulation in MEA cultures (Ruaro, Bonifazi et 

al. 2005). Mutual information (MI) characterized the statistical dependence between 

neuron pairs, exposing the strength of coupling between neurons and the functional 

connectivity among cortical areas (David, Cosmelli et al. 2004). Cross-correlation 

histograms (CCH) from pairs of neurons showed functional plasticity in the auditory 

cortex of behaving monkeys (Ahissar, Abeles et al. 1998), and the more advanced shift-

predictor corrected cross-correlogram (SCCC)was used to quantify receptive field 

plasticity in the rat auditory cortex (Bao, Chang et al. 2003). Joint peristimulus time 

histogram (JPSTH) characterized the causality of firing between neuron pairs, and 

successfully demonstrated long-term facilitation of neural activity involved in respiratory 

control (Morris, Baekey et al. 2003). Robust neuronal computation and encoding is 

believed to involve the distribution of information over populations of neurons and 

synapses in a combination of spatial and temporal domains. Observing only pairs of 

neurons (MI, CCH, SCCC and JPSTH), neglecting temporal information (FR) and 

neglecting spatial information (all) limit the ability of these to measure the complex 

plasticity of the brain. 

 We applied tetanic stimulation to our cultures as a bench mark to test whether or 

not an MEA could induce and observe plasticity in dissociated cortical neurons. Plasticity 

of neural firing rate after electrical probe stimulation using in vitro MEAs has been 

reported (Jimbo, Robinson et al. 1998; Maeda, Kuroda et al. 1998; Jimbo, Tateno et al. 

1999; Marom and Shahaf 2002; Ruaro, Bonifazi et al. 2005), but our lab has questioned 

the results as either the measured plasticity across the inducing stimulation did not exceed 

the inherent network drift (the measured plasticity outside of the inducing stimulation) or 

methodological flaws existed (Wagenaar, Pine et al. 2006b). Typically, firing rates were 

used to observe plasticity. However, rate-based plasticity metrics are not reliable: the 

presence of network drift (Madhavan, Chao et al. 2005), homeostatic mechanisms that re-

adjust firing rates in response to plasticity (Turrigiano 1999), and inconsistent synaptic 

 30



transmission (Kandel et al., 2000) all lower reliability. By incorporating the timing of 

neural activity to better characterize the dynamics of the population activity (see also 

Chapter 4), we found tetanus induced plasticity could be better observed than with firing 

rate statistics alone. In a separate preliminary study, Principal Components Analysis 

(PCA) of the temporal patterns of action potentials demonstrated network plasticity on a 

data set where standard firing rate statistics were previously reported not capable of 

exposing the plasticity (Wagenaar 2006a; Wagenaar, Pine et al. 2006b).  

 We then further incorporated information of the physical locations of the 

recording sites and devised a statistic called the center of activity trajectory (CAT). CAT 

detected more pronounced changes in the network following tetanus than the FR, FRH, 

and SCCC. (In simulation, CAT showed the ability to detect smaller changes in the 

distribution of network synaptic weights than did FR, FRH, MI, SCCC or JPSTH (Chao, 

Bakkum et al. 2007).) Center of activity (CA) is analogous to the center of mass, where 

‘mass’ at an electrode location is determined by the recorded firing rate, and CAT is the 

sequence of CAs over successive time intervals. CAT is advantageous because its values 

have a direct neural interpretation (see next paragraph). PCA reorients multidiminsional 

data into dimensions ordered by the greatest variance. This is used to reduce noise while 

maintaining signals (plasticity here), but a consequence of its abstracted data 

representation is the possible amplification of stimulation artifacts (giving false 

plasticity). 

 By applying a shuffling method to the CAT analysis to erase the spatial 

information of recording locations in its calculation, we found that changes in activity 

patterns recorded from neighboring electrodes were not independent and contributed to 

the better performance of CAT to detect plasticity. The network plasticity was region 

specific: despite the apparent random connectivity of neurons, plasticity was not 

symmetrically distributed, and the location of neurons played a role in stimulus-induced 

plasticity. 
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 No ground truth about network plasticity in living networks exists, because 

neuronal connectivity cannot be measured for more than a few pairs of neurons 

simultaneously. Therefore, the amount of plasticity detected by each statistic was cross-

validated in a simulated network, in which the weights of all synapses were observable. 

Work with the simulated network was done by Zenas Chao (Chao, Bakkum et al. 2007) 

and therefore will be mentioned only briefly. To summarize, the CAT demonstrated the 

ability to detect the smallest changes in the distribution of network synaptic weights 

compared to alternative statistics. 

3.2 Methods 

 Cell culturing and electrophysiology was done as reported in Appendix G. Culture 

ages during experiments  ranged from 1 to 3 months. 

3.2.1 Stimulation protocols 

 A neural response after a stimulation is due to a combination of the electrically 

evoked and ongoing neural activity. By measuring responses to repeated ‘probe’ 

stimulation, changes are due solely to changes in network state. Each experiment 

consisted of a 2h period of random probe stimulation (RPS) followed by a 15 min tetanic 

stimulation followed by another 2 h period of RPS (Protocol III.4, Table 7.3 in 

(Wagenaar 2006a)). In six experiments, the RPS periods consisted of six electrodes 

stimulated in a random order at an aggregate frequency of 0.5 Hz (in one experiment, the 

RPS periods consisted of only four probe electrodes). Two of these electrodes were used 

for the tetanic stimulation: 150 trains of 20 paired pulse stimuli with 10 ms intervals 

between paired pulses, 50 ms intervals between pairs and 6 s intervals between the start 

of each train. Prior to an experiment, every electrode was stimulated in a random order 20 

times, and electrodes with six (or four) highest responses (the total number of spikes 
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counted within 100 ms latency after stimuli over recording electrodes) were selected as 

probe electrodes. The tetanus electrodes were randomly chosen from these. 

3.2.2 Neural activity statistics 

 We used evoked responses within 100 ms after the stimuli of RPS for statistics 

calculations. We measured CAT from the evoked responses and compared it to the three 

most commonly used statistics: FR, FRH and SCCC. MI was not measured, due to its 

poor performance in detecting network plasticity in simulations (Chao, Bakkum et al. 

2007). JPSTH was not measured because of its high dimensionality and computation 

time. 

 FR: The firing rate statistic summed the number of action potentials over 100 ms 

per each electrode e (dimension of 1 x Ne).  

 FRH: The firing rate histogram statistic summed firing rates per electrode over 5 

ms moving time windows (stepped by 500 µs up to 100 ms; dimension of 20 x Ne). 

 CAT: The center of activity statistic calculated the center of activity of FRs in a 5 

ms moving time windows (stepped by 500 µs up to 100 ms; dimension of 20 x 2) (see 

Fig. 3.1).  

 PCA: Principal component analysis was done on the FRH. As is standard, the first 

few principal components, representing the dimensions of largest variance, were used to 

calculate plasticity. We chose to use the first 2.  
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Figure 0.1 Whole-input–output (WIO) vectors for analyzing performances of different statistics. 
 
WIO vectors calculated from each statistic were used to represent the network input–output function. As an example, 
the WIO vector of CAT calculated from probe responses to one RPS (a) delivered during an experiment is 
demonstrated. (b) CA was calculated for evoked responses to the stimulation electrode Pj (j = 1 to 6). Each frame 
indicates the firing rate over a 5 ms moving time window (with a 500 µs time step) on an 8 by 8 grid of electrodes 
averaged over multiple stimuli at Pj (RPS might have multiple stimuli delivered at Pj , see (a)). The 2D trajectory of 
CAs from frame 1 to frame N (from 0 to 100 ms after the stimuli), CAT, can be represented by a 1D vector by joining 
CATX and CATY. This vector represents CAT of responses to stimuli Pj at the network state Si  (states at different times 
during an expeiment). (c) CATs for responses to 60 different stimulation electrodes (P1 to P60) were joined together to 
form the WIO vector. This WIO vector represents the input–output function, in terms of CAT, of the network. Each 
statistic has a corresponding WIO vector to describe its input–output function. Sensitivity to changes in network state 
are shown by significantly different WIO vectors. 

3.2.3 Quantifying plasticity 

 C/D: (See also a general description in Appendix G.) For each statistic, we 

calculated one WIO vector (see Fig 3.1) every 240 s (a ‘block’) for the experiments with 

six probe stimulation electrodes, and every 160 s for the experiments with four probe 

stimulation electrodes. Thus, there were 19.9 ± 4.2 (mean and standard deviation) stimuli 

delivered at each electrode for each WIO vector. Three periods were used for statistics: 
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Pre1, Pre2 and Post1 (see Fig. 3.2). Each period had a duration of 52.5 min, and the 

intervals between Pre1 and Pre2 and between Pre2 and Post1 were 15 min. The 15 min 

interval between Pre2 and Post1 was the tetanization. For each statistic, the mean 

distance of the WIO vectors in Pre1 to the centroid of the WIO vectors in Pre2 measured 

a quantity termed Change, C. A quantity termed Drift, D, was the mean distance of the 

WIO vectors in Pre2 to their own centroid. The ratio of change-to-drift, C/D, depicts the 

amount of neural plasticity between Pre1 and Pre2. No plasticity would give a ratio equal 

to 1. A similar measurement between Pre2 and Post1 was used to quantify the neural 

plasticity across the tetanus. The performance of each statistic to detect the tetanus-

induced change was quantified by comparing the two C/Ds (n = 6 experiments, Wilcoxon 

signed rank test). 

3.3 Results 

3.3.1 Preliminary principal components analysis of plasticity 

 PCA of FRH demonstrated tetanus-induced plasticity in a set of experiments done 

by Wagenaar (Wagenaar 2006b), in which FR statistics did not demonstrate plasticity 

(Fig. 3.2). Considering he excluded early phase responses (Fig. 4.2), additional data 

analysis was done on Wagenaar’s data in collaboration with Zenas Chao to search for 

plasticity. Projecting the main principal components back onto the temporally binned data 

showed that the early phase, occurring within 20 ms were the main contributors to 

plasticity.  

 The difference between Wagenaar’s four tetanus protocols are not pertinent to this 

chapter. The relevant point is that including temporal information now showed plasticity. 

The affect of burst quieting on tetanus-induced plasticity was pursued by labmate 

Radhika Madhavan as is further described in her thesis (Madhavan 2007). The above data 

supports her main conclusion that burst quieting was correlated to an increase in 
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plasticity. Here, quieting of bursts was achieved by distributing a 50 Hz stimulation over 

20 to 40 electrodes, except during tetanization (Wagenaar 2006a). 

 

 
Figure 0.2 Simultaneous tetanization of two electrodes produced a lasting change in network 
response properties. 
PCA was applied to the FRH statistic. (a) The fluctuation of the first 2 principle components within period 
Pre1, see top of (b), was compared to the change from Pre1 to Pre2 to quantify the drift before the tetanus. 
The fluctuation within Pre2 was compared to the change from Pre2 to Post1 to quantify the change across 
the tetanus. The ratios of change versus fluctuation before and across the tetanus are shown in cyan and 
blue respectively for four different experimental protocols (N=4 cultures tested, 6 probe electrodes per 
culture, for each protocol). Significant differences between change and fluctuation are marked as (*P < 10-
4), Wilcoxon rank sum test). The change due to the tetanus was larger than the change from drift in all 
cases. No significant change from drift or tetanus occurred in the presence of elevated magnesium. Weaker 
tetani lasted 5 min while tetani used throughout the rest of the chapter  lasted 15 min. See text for a 
discussion of the protocols. (b), In an example experiment from the burst quieting protocol, the tetanus 
caused a new PC cluster to form. Data is from table 7.3 in (Wagenaar 2006a). 
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 The same experiments conducted with the addition of +1 mM Mg++ above 

baseline did not show tetanus-induced plasticity nor network drift outside of the tetanus 

(Fig. 3.2). An increased level of Mg++ will occupy more NMDA-Rs, decreasing their 

effect in the transmission of synaptic signals. NMDA-R is considered important for 

neural plasticity, and this protocol served as a control that tetanus-induced changes were 

biological. Interestingly, the network plasticity that Jimbo observed was in the presence 

of elevated Mg++, counter to Figure 3.2A and conclusions by Wagenaar (Wagenaar 

2006a). 

 The use of PCA and further comparing it to FRH and FR statistics was not 

pursued further. The primary reason was that the decision of which PC to include is not 

well defined because the PCA’s matrix transformation obscures the relationship between 

PCs and their underlying data: PCA is often used to analyze multi-dimensional data by 

reorganizing the component axes based on largest variance. As a consequence, the early 

principal components are the most significant as they hold the most variance, and later 

principal components can be ignored (O'Connel 1974). We felt uncomfortable arbitrarily 

dropping data, especially considering biological properties originally considered to be 

noise can turn out to be important in neural information processing (i.e. synaptic noise 

(Mainen and Sejnowski 1995) and variation in action potential propagation discussed in 

Chapter 4). 

3.3.2 Incorporating spatial and temporal information: the center of activity 

trajectory (CAT). 

 We then focused our attention on a population statistic that did not drop data and 

additionally added spatial information, the center of activity trajectory (CAT). CAT was 

measured from the evoked responses to RPS in six experiments on living cultured 

cortical networks and compared to FR, FRH and SCCC. The change across the tetanus 

was significantly greater than the drift before the tetanus for CAT (p < 1 × 10−4, 
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Wilcoxon signed rank test), FRH (p < 0.01) and SCCC (p < 0.01), but not for FR (p = 

0.013). C/D ratios (Methods and Appendix G) were used to quantify the change before 

the tetanus and the change across the tetanus. If the statistic could detect tetanus-induced 

plasticity, the C/D ratio across the tetanus should be significantly greater than the C/D 

ratio before the tetanus. The statistics of C/D from six experiments are shown in Figure 

3.3.  

 In living networks, the change in synaptic weights throughout the network cannot 

be determined. Therefore, experiments were repeated in a simulated network (Chao, 

Bakkum et al. 2007) where synaptic weights could be directly measured. Results showed 

the CAT best exposed tetanus-induced plasticity (Figure 3.3C). Despite the reduced 

dimension over FRH, the addition of spatial information increased its sensitivity to 

tetanus induced plasticity. The location of the electrodes is relevant. The relationship 

between sensitivities of various statistics remained in the living network, and CAT was 

again the most sensitive statistic. 

 In order to get some idea of the degree of localization of function in cultured 

cortical networks, the performance of CAT statistic with electrode locations shuffled 

(CAT-ELS) was calculated. In CAT-ELSs, the information about the physical locations 

of the recording electrodes was removed. In both simulations (Chao, Bakkum et al. 2007) 

and experiments in living cultures, the electrode locations were shuffled ten times, and 

ten different corresponding CAT-ELSs were generated. The performance of these CAT-

ELSs was evaluated and compared to the original CAT. 

 CAT, unlike the other statistics, incorporates the physical locations of the 

recording electrodes. This is the primary difference between methods, and we attribute 

CAT’s superior performance in both living and simulated networks to this feature. For 

simulated networks (Chao, Bakkum et al. 2007), the comparison of the performance 

between CAT-ELS and original CAT is shown in Figure 3.4C. The detectable synaptic  
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Figure 0.3 Comparison of the performance of different statistics across a tetanization in living MEA 
cultures. 
(a). The C/D of the statistics (Plasticity across the tetanus normalized by ongoing plasticity = Change / 
Drift) from 6 experiments showed that the change across the tetanus was significantly greater than the drift 
before the tetanus for CAT (**, p< 1e-4, Wilcoxon signed rank test), FRH (*, p<0.01) and SCCC (*, 
p<0.01), but not for FR (p= 0.013). The p-values indicate that CAT was more capable of detecting the 
change over the drift than FRH, SCCC and FR. (b). Different patterns of CATs were observed before and 
after tetanization from responses to probe. CATs from every block were overlaid (black trajectories), and 
the average CATs were shown by series of circles (from blue to red). (c). CAT showed the highest 
sensitivity to changes in synaptic state among 6 metrics in a simulated network (Chao, Bakkum et al. 
2007). The percent synaptic change was a function of tetanus duration (S1 to S10) and could be observed in 
the model. Therefore, a known amount of plasticity was plotted and the minimum amount of plasticity 
significantly detectable by each statistic was found at the point the P-values reach a threshold of 0.05 (red 
arrows). Mean and standard deviation plotted. N = 50 model networks. 
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Figure 0.4 Comparison of CAT and CAT-ELS (Electrode Location Shuffled). 
(a). The statistics of C/D for CAT-ELS in living networks (n= 60, 6 experiments, 10 shuffles for each 
experiment). The change across the tetanus was no longer significantly different than the drift before the 
tetanus (p= 0.19, Wilcoxon signed rank test), unlike CAT (**, p< 1e-4). Thus, the shuffling of electrode 
locations greatly reduced the sensitivity of CAT. (b). The electrode locations shuffling “collapsed” the 
patterns of CAT-ELSs before and after tetanization. The difference between before and after tetanization 
trajectories (compared to Fig. 3.3) was reduced in CAT-ELS. (c). CAT-ELS from the simulated model with 
the same representation as Figure 3.3C) (Chao, Bakkum et al. 2007). Ten sensitivity curves corresponding 
to different random shuffled electrode locations (CAT-ELS) and the mean of the ten curves (Mean CAT-
ELS) are shown. The sensitivity curve of FRH is also shown for comparison. The decrease in sensitivity 
emphasized the importance of physical electrode locations in the sensitivity of CAT to synaptic change.  
 

change was worse than CAT The decrease in performance indicated that electrode 

locations significantly affect the performance of CAT. 

 For living networks, the comparison between CAT and CAT-ELS is shown in 

Figure 3.4. The electrode location shuffling ‘collapsed’ the patterns of CAT-ELSs before 

and after tetanization (compared to Figure 3.3). The difference between pre-tetanization 

and post-tetanization clusters found in CAT was also reduced in CAT-ELS. The statistics 

of C/D for CAT-ELS (n = 60, six experiments, ten shuffles for each experiment) are 
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shown in Figure 3.4. The change across the tetanus was significantly greater than the drift 

before the tetanus for CAT (P < 1×10−4, Wilcoxon signed rank test), but not for CAT-

ELS (P = 0.19). 

3.4 Discussion 

3.4.1 Statistics of functional plasticity in extracellular multi-electrode recordings 

 While comparisons of firing rates show plasticity in intracellular recordings, more 

detailed statistics incorporating spatiotemporal population activity patterns are needed to 

reveal plasticity in extracellular multi-electrode recordings. Electrode spacing on the 

order of hundreds of microns means that any induced or observed plasticity will span 

pathways of multiple neurons instead of neighboring monosynaptic neurons (Jimbo, 

Tateno et al. 1999). Intracellularly, synaptic strength is directly observable by stimulating 

a pre-synaptic neuron while recording from an adjacent post-synaptic neuron. 

Extracellularly, synaptic noise across a chain of neurons and convergent pathways will 

obscure firing rate measures of stimulus-induced plasticity. 

 Alternatively, by incorporating the timing and spatial flow of activity, 

spatiotemporal patterns have been found both in vivo and in vitro. Spike sequences, 

imposed upon the network by behavioral manipulations, recur spontaneously during 

subsequent sleep episodes (Nadasdy, Hirase et al. 1999; Nadasdy 2000; Lee and Wilson 

2002). Calcium imaging of cortical slices reveals reactivation of sequences of neurons, 

‘cortical songs’, with distinct spatiotemporal structures over tens of seconds (Ikegaya, 

Aaron et al. 2004). Robust recurrent spike patterns were also found in a detailed cortical 

simulation (Ikegaya, Aaron et al. 2004) and in living slices (Fellous, Tiesinga et al. 

2004). CAT provides a new and simple statistic to detect spatiotemporal patterns in 

networks and extends the previous studies by quantifiably demonstrating its ability to 

discern plasticity. 
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3.4.2 Region-specific plasticity 

 Although FRH included detailed temporal information about the activity 

dynamics at all electrodes, it was less capable of capturing network plasticity than CAT, 

which has the same temporal resolution as the FRH but ‘condenses’ the spatial dimension 

by linear combination. We hypothesize that this was due to the inclusion of spatial 

information of the electrode locations. The performance and the sensitivity of CAT with 

electrode locations shuffled were significantly worse than non-shuffled CAT, both in 

simulation and in living networks (the change across the tetanus was significantly greater 

than the drift before the tetanus for CAT, but not for CAT-ELS) (see Figure 3.4). This 

indicates that activity varied systematically with the electrode location, and also 

suggested that the observed network plasticity was region specific: the plasticity was not 

symmetrically distributed throughout the network. This further suggests that despite he 

apparent random connectivity of cultured neurons, neuron location played a role in 

tetanus-induced plasticity. Region specificity was not limited to plasticity induced by 

tetanization. In simulation, we also altered the weights of randomly selected synapses in 

reference networks to different degrees to generate different new network states. CAT 

still showed the highest sensitivity to changes, and furthermore, the sensitivity of CAT-

ELS was still significantly lower (data not shown). Despite the synaptic plasticity not 

being region specific, the spatiotemporal flow of neural activity was region dependent, 

effectively making the plasticity of neural activity region specific. This result supports 

the notion of synfire chains or braids of neural activity (Ikegaya, Aaron et al. 2004; 

Izhikevich 2006), where information is transmitted in a pipeline of neighboring pathways 

as opposed to a single string of connections. 

 A common misconception regarding dissociated cultures is that they are random, 

homogeneous and lack structure, and thus cannot support stable changes to synaptic 

weights associated with memory formation. While plated from a random cell suspension, 
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microscopic observation reveals that a heterogeneous arrangement develops over time 

(Gross and Kowalski 1999). Although very different than structures found in vivo, the 

ability of neurons and glia to interact in complex ways remains, and a network having a 

diverse array of activity arises spontaneously (Wagenaar, Pine et al. 2006a). Altering 

sensory input of thalamic relays to cortical areas has demonstrated that the cortex 

develops structure according to the type of the sensory input (Sur, Garraghty et al. 1988), 

which suggests an important relationship between neural structure and function. CAT 

demonstrates that structure is also relevant to neural function in a cultured network, and 

that tetanic stimulation alters network function. Future experiments will incorporate 

closed-loop sensory-motor feedback and optical imaging to investigate the network 

mechanisms of our cultures to functionally and structurally adapt to environmental 

interaction (Potter, Wagenaar et al. 2006). 

3.4.3 Plasticity versus spontaneous bursting 

 Without external stimulation, the most prominent feature of spontaneous activity 

found in MEA cultures and in simulated networks is synchronous bursting (Wong, 

Meister et al. 1993; Kamioka, Maeda et al. 1996; Gross and Kowalski 1999; Van Pelt, 

Wolters et al. 2004; Wagenaar, Pine et al. 2006a), and bursts were found to have effects 

on tetanus-induced synaptic plasticity in cortical neurons (Maeda, Kuroda et al. 1998). In 

simulation, the network synaptic state after tetanization was found to change gradually 

due to the presence of spontaneous bursts, which makes quantifying tetanus-induced 

plasticity difficult (Chao, Bakkum et al. 2005). In the six experiments we performed on 

living MEA cultures, 8.57 ± 3.33 spontaneous bursts per minute and 16.06 ± 4.55 

stimulus-evoked bursts per minute were observed. Even with the presence of the 

spontaneous bursts, the tetanus-induced plasticity was still detected by using CAT. Since 

the level of bursting can be finely controlled in MEA cultures with multisite stimulation 

(Wagenaar, Madhavan et al. 2005), CAT proved useful for investigating how the degree 
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of bursting affects a network’s ability to produce and/or maintain plasticity (Madhavan 

2007). 

3.4.4 Conclusion 

 Incorporating spatial and temporal information improved the performance of 

neural activity statistics in networks of cortical neurons grown over MEAs. CAT’s 

superior performance, sensitivity and low computational load make it an attractive 

method for real-time applications. CAT can also be applied to in vivo multi-electrode or 

optical recording studies for neural activity aligned to behavioral or sensory cues. As 

techniques for observing distributed activity become faster and more fine-grained, 

studying the details of the spatial flow of activity through neuronal networks will reveal 

more and more about processes of learning and memory.  
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CHAPTER 4 
 

PLASTICITY INDUCED BY PATTERNED STIMULATION: 

CHANGES IN ACTION POTENTIAL PROPAGATION3 

 
The precise temporal control of neuronal action potentials is essential for regulating many brain 
functions. From the viewpoint of a neuron, the specific timings of afferent input from the action 
potentials of its synaptic partners determines whether or not and when that neuron will fire its own 
action potential. Tuning such input would provide a powerful mechanism to adjust neuron 
behavior and in turn, that of the brain. However, axonal plasticity of action potential timing is 
counter to conventional notions of stable propagation and to the dominant theories of plasticity 
focusing on synaptic efficacies. Here we show the occurrence of activity-dependent plasticity of 
action potential propagation. We used a multi-electrode array to induce, detect, and track changes 
in propagation in multiple neurons while they adapted to different patterned stimuli in controlled 
neocortical networks in vitro. Changes occurred in action potential delays (up to 4ms or 40% after 
minutes and 13ms or 74% after hours) and amplitudes (up to 87%). The changes did not occur 
when the same stimulation was repeated while blocking synaptic activity. Even though the 
plasticity depended on synaptically evoked action potentials, its expression was non-synaptic: 
action potential propagation. We conclude that propagation plasticity is a cellular mechanism used 
to tune information processing in neuronal networks and potentially learning and memory in the 
brain. 

 

Chapter 3 demonstrated that plasticity could occur and also provided methods to map 

neural activity into animat movement. However, the use of tetani for sensory feedback 

would allow only crude encoding of sensations. Therefore, we tested whether plasticity 

could arise for stimulation at the opposite extreme: low frequency patterned stimulation. 

Plasticity did indeed occur, suggesting the network could respond to most any type of 

electrical stimuli. In addition, we observed that plasticity occurred in the propagation of 

action potentials, a potentially impactful finding described further below. Similar 

versions of patterned stimuli were used as plasticity inducing stimuli in the embodiment 

experiments in Chapter 5 and Appendix A. 

                                                 

 
 
3 Manuscript submitted as: 
Bakkum DJ, Chao ZC, Potter SM,  “Long-term activity-dependent plasticity of action potential propagation 
in cortical networks.” 
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4.1 Introduction 

 The specific arrival times of afferent synaptic excitatory and inhibitory potentials 

determine how they summate as they converge towards a neuron’s soma and whether or 

not and when to fire an action potential. Tuning such input timing would provide a 

powerful mechanism to adjust the output of a neuron, and potentially, could be a 

mechanism for learning and memory in the brain. We hypothesized that axonal plasticity 

of action potential propagation could vary how information is processed in the brain by 

regulating the timing and magnitude of synaptic input impinging on a neuron. This is 

fundamentally different than the dominant theories of neural plasticity that focus on the 

efficacy of synapses. 

 The specific arrival times of afferent synaptic excitatory and inhibitory potentials 

determine how they summate as they converge towards a neuron’s soma and whether or 

not and when to fire an action potential. Tuning the timing of such input would provide a 

powerful mechanism to adjust the output of a neuron, and potentially, could be a 

mechanism for learning and memory in the brain. We hypothesized that axonal plasticity 

of action potential propagation could vary how information is processed in the brain by 

regulating the timing and amplitude of synaptic input impinging on a neuron. This is 

fundamentally different than the dominant theories of neural plasticity that focus on the 

efficacy of synaptic transmission. 

 Axons in the mammalian cortex have traditionally been regarded as stable 

transmission cables. However, this view is more likely due to a lack of, rather than 

support from, experimental evidence (Debanne 2004; Clark and Hausser 2006) because 

their small diameter (< 1 mm) makes direct recordings at multiple sites difficult. The 

action potential is often viewed as a binary signal, but recent experiments have found a 

novel analog mechanism: the ability to encode a neuron’s background synaptic activity in 

the amplitude of its action potential in cortical slices from ferrets (Shu, Hasenstaub et al. 
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2006) and hippocampal slices from rats (Alle and Geiger 2006). Moreover, the temporal 

control of action potential propagation could encode a vast amount of information. For 

example, introducing non-uniform, although fixed, conduction delays in a model network 

produced a potentially unlimited number of “polychronous” groups of neurons capable of 

recognizing and classifying complex spatiotemporal stimuli (Izhikevich 2006), a 

theoretical canvas for memories; spike-timing dependent plasticity (STDP) organized the 

groups by potentiating afferent signals whose timings were close enough to integrate and 

produce an action potential in a post-synaptic neuron. Alternatively, modulating the 

propagation speeds themselves could also compose such groups (Eurich, Pawelzik et al. 

1999). STDP causes long-term synaptic potentiation or depression based on the temporal 

order of pre and post-synaptic activation (Bi and Poo 1998), and the magnitude of 

plasticity is greatest at smaller activation intervals, with a sharp discontinuity from 

potentiation to depression as the post-synaptic neuron went from lagging to leading. This 

feature of the STDP rule makes it a sensitive detector of relative spike order and a means 

to create and maintain causal pathways or synfire chains (Abeles 1991). Finely tuning 

action potential propagation speed could provide a means to continuously mold 

functional circuits in the brain throughout life.  

 The precise control of action potential propagation has been shown to be 

important in both the central and peripheral nervous systems after development or many 

days of experience (Waxman and Bennett 1972; Swadlow 1985), but modulation of 

propagation has not been reported on the seconds to hours time scales relevant to learning 

and memory consolidation. For instance, the propagation of action potentials in the 

olivocerebellar pathway of rats can vary by 40% such that isochronic conduction 

occurred between neurons independent of axon length, a finding conserved even between 

animals (Sugihara, Lang et al. 1993). In addition, a decrease in the size of a spinal stretch 

reflex (H-reflex) after 40 days of operant conditioning was accompanied by an 8% (rat) 

or 6% (monkey) decrease in motoneuron conduction velocity (Carp, Chen et al. 2001). 
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The reported propagation velocities were consistent with myelinated fibers. Propagation 

speeds have been proposed to be tuned with millisecond precision through axon diameter 

(Rushton 1951; Sugihara, Lang et al. 1993), myelin thickness (Rushton 1951; Fields 

2005), the location of nodes of Ranvier (Waxman 1997), and the kinetics of voltage gated 

sodium channels (Halter, Carp et al. 1995). 

 Research on neural intrinsic excitability has demonstrated that, in addition to the 

well studied synaptic plasticity, activity-dependent plasticity can be expressed outside of 

synapses on fast time scales (Daoudal and Debanne 2003; Zhang and Linden 2003; 

Debanne 2004; Xu, Kang et al. 2005). However, the proposed molecular mechanisms 

involved have not been investigated with respect to plasticity of action potential 

propagation. In embryonic rat hippocampal cultures, injecting depolarizing currents into a 

post-synaptic neuron such that it fired in synchrony with pre-synaptic activity for 80 

seconds caused long-term plasticity of the excitability of the pre-synaptic neuron, 

requiring post-synaptic NMDA-R and pre-synaptic PKC activation and affecting the 

gating kinetics of voltage gated sodium channels (Ganguly, Kiss et al. 2000); while in 

part synaptic in origin, the plasticity was expressed outside of synapses. These channels 

actively propagate action potentials, and changing their gating kinetics could change 

action potential shape and propagation velocity within the central nervous system within 

minutes.  

 The above work demonstrates that action potential propagation can encode 

information (Milton and Mackey 2000; Izhikevich 2006), is regulated (Waxman and 

Bennett 1972; Swadlow 1985; Sugihara, Lang et al. 1993), and potential mechanisms for 

changes in AP propagation exist (Ganguly, Kiss et al. 2000). However, the potential 

mechanisms have not been related to propagation plasticity, and propagation has not been 

shown to be regulated on the minutes to hours time scale relevant to much learning and 

memory. Here, we show experimental evidence of the rapid induction of activity-

dependent long-term plasticity of action potential propagation. Using networks of rat 
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neocortical neurons and glia grown over multi-electrode arrays (MEA), we observed the 

timing of direct electrically-evoked action potentials (dAPs) in multiple neurons changed 

up to 4 milliseconds (40%) after minutes of recording and up to 13 milliseconds (74%) 

after hours, adapting to different patterns of low frequency stimulation. The estimated 

propagation velocities suggest propagation occurred in unmyelinated axons (Waxman 

and Bennett 1972; Swadlow 1985; Manor, Koch et al. 1991; Debanne 2004; Patolsky, 

Timko et al. 2006). The plasticity was activity-dependent since no change occurred when 

synaptically-evoked action potentials (sAPs) were blocked using antagonists of the fast 

synaptic transmitter receptors NMDA-R, AMPA-R, and GABA-R. As with the intrinsic 

excitability experiments, the plasticity was expressed outside of the synapses. Action 

potential amplitude similarly adapted to the various patterned stimuli (up to 87% change). 

We conclude that propagation plasticity is a cellular mechanism used to tune temporal 

coding schemes and information processing in neural networks, and potentially learning 

and memory in the brain. 

4.2 Results 

This section begins with data describing the ability of our preparation to 

characterize dAP propagation (Figs. 4.1, 4.2, and 4.3). This is followed by experimental 

evidence of changes in the latencies and amplitudes of the dAPs in response to patterned 

stimulation (Figs. 4.4 and 4.5). Control experiments indicated that the plasticity, while 

requiring sAPs, was expressed independently of synaptic activity since the induced 

changes persisted when sAPs were blocked. The section ends with a theoretical 

consideration of our results intended to inspire others to appreciate the potential roles of 

action potential delays and timing in neural computation. 
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4.2.1 Propagation of direct electrically-evoked action potentials (dAPs) was robustly 

detected using planar multi-electrode arrays (MEAs). 

By using cortical neurons cultured on extracellular multi-electrode arrays (MEAs) 

(Fig. 4.1A and Appendix G), action potentials can be sampled at multiple sites up to 

millimeters apart for extended durations. Stimulation by one electrode evokes neural 

responses that can be recorded in a subset of the rest of the electrodes (Fig. 4.1B). Of 

these, dAPs have been observed up to 25 ms later and can be distinguished from 

subsequent sAPs based on their high reliability of occurrence (>80%), low jitter (160 µs), 

and consistency of waveform (Lipski 1981; Marom and Shahaf 2002; Wagenaar, Pine et 

al. 2004) (Fig 4.2). They are pre-synaptic as they persist when synaptic activity is 

blocked using fast neurotransmitter receptor antagonists, and they are propagating action 

potentials as they are eliminated with TTX (Wagenaar, Pine et al. 2004). In the following 

experiments, we quantified changes in dAP propagation by measuring their amplitudes 

and latencies (Fig. 4.2C) after the downswing of a biphasic stimulus pulse (Fig. 4.3), 

termed a “probe”. 

Figure 4.1 shows that MEAs can be used to investigate the dAPs of many neurons 

in a cultured network. Our MEAs contained 59 functional electrodes (Fig. 4.1A), and 

many could evoke and/or record neural activity depending on the relative location of the 

neurons (Fig. 4.1B). On average, an electrode that evoked activity yielded 6.2 ± 5.7 dAPs 

detected elsewhere. Figure 1B contains a set of raster plots of dAP latencies (x axes), 

arranged topographically by recording electrode and color coded by stimulation 

electrode, in response to 24 minutes (y axes) of “whole-dish probing” of a 4 week old 

culture. Whole-dish probing consisted of stimulating each electrode 240 times in random 

order at an overall rate of 10Hz, with sAPs blocked. It was used here to quickly sample 

all accessible dAPs in each network and later to quantify induced plasticity. 
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Figure 0.1 Multi-electrode arrays (MEA) robustly detected dAPs. 
(A) Neurons at 6 days in vitro grown over an MEA with 30 µm diameter electrodes spaced 0.2 mm apart. 
The large reference electrode is outside the field of view. Color represents the location of the stimulation 
electrode that evoked the dAPs plotted in B.  (B) Recording electrodes (arranged topographically) detected 
dAPs (dots) in a 4 week old culture in abundance.  (C) Pie chart comparing the proportion of the electrodes 
showing and/or evoking dAPs in 5 three to four week old cultures from 3 dissociations (295 electrodes; 
data also in Fig. 4.5). Their incomplete overlap suggests that the location of an extracellularly recorded 
action potential can differ from the location of an extracellularly evoked action potential within a given 
neuron. The data from B are presented in the adjacent plot as an example. (D) Histograms of dAP latencies, 
distances from the stimuli site, and estimated velocities. 
 

Extracellular stimulation and recording of neural activity may act on different 

sites of a neuron (McIntyre and Grill 2000). Interestingly, in data from 5 cultures (Figure 

4.1C), 34% of the stimulating electrodes that could evoke activity (21% + 40%) did not 

record activity (21%), and 13% of the electrodes that recorded activity (6% + 40%) did 

not evoke activity (6%) when stimulated. Although specific numbers will depend on the 

density and location of the neurons (see Methods), this nevertheless suggests that action 

potentials tended to be recorded from different parts of a neuron than where they were 
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induced by electrical stimulation. For example, an action potential in a soma may 

produce a larger signal on an extracellular electrode than one in an axon because more 

ions would be needed to depolarize the larger surface area. Therefore, the recording range 

of an electrode would be larger for cell bodies than axons. Conversely, an axon would 

require less current than a soma to become depolarized, and the stimulation range of an 

electrode would be larger for axons than cell bodies. This hypothesis was supported 

implicitly by the greater number of electrodes that evoked activity but did not show 

activity compared to the number that showed activity but did not evoke activity: a cell 

body could be located near just one electrode, while an axon could branch and pass over 

or near multiple electrodes. 

 
Figure 0.2 Neural activity recorded on one extracellular electrode in response to stimulation at 
another consists of an early directly-evoked action potential (dAP) phase and a later synaptically-
evoked action potential (sAP) phase. 
(A) The raster plot (1 dot per action potential) shows the first 100 ms of neural responses to 3 hours of 
periodic 1/4 Hz probe (red P) stimulation. (B) The peri-stimulus time histogram and (C) overlaid 
extracellular voltage traces across all trials emphasize the consistency of the early phase with respect to the 
later phase. The sharp peaks in the histogram arise from the trains of two dAPs. See also (Marom and 
Shahaf 2002). 
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Figure 0.3 DAPs were time-locked to biphasic voltage stimuli. 
Latencies of dAPs from 13 stimulation-electrode / recording-electrode pairs (thin lines) were measured 
from the beginning of voltage stimuli with varying pulse widths (inset); sAPs were blocked.  The thick line 
is a linear regression on all data points. 

 

Figure 4.1D further characterizes the observed dAPs. A few were detected up to 

25 ms after being evoked, but the majority were earlier. They could not be detected 

sooner than ~2 ms nor on the stimulating electrode due to the presence of electrical 

stimulation artifact (Wagenaar and Potter 2002). DAPs could have been evoked in the 

middle of axons that passed near an electrode, and thus the actual delay from the neuron 

to its post-synaptic targets would be longer than what was measured. Moreover, increased 

electrode spacing may lead to longer detectable latencies. Due to the geometry of the 

MEA, the majority of distances between stimulating and recording electrodes were closer 

to the minimum distance of 0.2 mm. Therefore, the plotted histogram of distances was 

normalized by the distribution of all possible inter-electrode distances. The estimated 
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velocities suggested the detected dAPs propagated through unmyelinated neurites 

(Waxman and Bennett 1972; Swadlow 1985; Manor, Koch et al. 1991; Debanne 2004; 

Patolsky, Timko et al. 2006). 

By recording extracellular voltage spikes of dAPs, an MEA is able to measure 

propagation delays with high precision (Fig. 4.3 and Methods) and can reveal whether or 

not plasticity occurred after an experimental manipulation. Negative extracellular current 

most effectively depolarizes a neuron, which for a voltage step occurs during the pulse 

downswing (I=C*dV/dt). Thus, unlike during a current step, dAP timing can be precisely 

time-locked to the stimulus downswing, as confirmed by plotting dAP latency for 

different voltage step widths (Fig. 4.3) (Wagenaar, Pine et al. 2004). In Figure 4.3, the 

width of rectangular stimuli were varied while magnitude was kept constant at ±500 mV; 

30 stimuli were delivered per width in random order. A linear regression of the averaged 

latencies (dots) from each of the 13 pairs was used to align the data: the regressions’ y-

intercepts at the 200 mV phase width were set as 0 ms latency change. Another linear 

regression on all aligned data points produced a representative slope of 1.10 ms/ms, 

indicating most dAPs were time-locked to the voltage downswing.  A slope m = 0 would 

indicate the dAPs were triggered at the beginning of stimuli; m = 1, at the downswing; m 

= 2, at the end; and 0 < m < 1 or 1 < m < 2, in the middle of a phase. See also (Wagenaar, 

Pine et al. 2004). 

4.2.2 Action potential propagation depended on neural activity and variation of 

stimulation pattern. 

 By varying a simple low frequency stimulation pattern every 40 minutes, we 

induced changes in the time elapsed for dAPs to propagate from a probe electrode to a 

recording electrode and also in their extracellularly recorded amplitude (Fig. 4.4). Each 

pattern consisted of alternatively stimulating 2 electrodes at 2 second intervals. (1/4 Hz 

stimulation per electrode and 1/2 Hz overall stimulation; Fig. 4.4A). The second  

 54



 
Figure 0.4 Action potential propagation depended on ongoing neural activity and stimulation 
pattern. 
(A) Experiment protocol. 1/4 Hz probe stimuli (red) produced dAPs whose latencies and amplitudes were 
investigated for plasticity. A context electrode (gray) was stimulated 2 sec prior to each probe stimulus, 
giving an overall 1/2 Hz stimulation frequency, and its location was shifted every 40 min to produce 
different patterns of stimulation (numbers and shaded bars). Right: electrode locations for data in B.  (B) 
Example raster plots of a given dAP recorded on one electrode in response to probe stimulation of another 
electrode in culture media (left, Unblocked; sAPs are plotted with smaller markers) and when blocking 
sAPs (right, Blocked). Ongoing neural activity modified latency (x axis) and amplitude (color). Varying 
stimulation pattern significantly altered dAP latency (C) and amplitude (D) within 5 minutes (Mean ± 
s.e.m). 

 

electrode, termed probe, was fixed and used throughout the duration of an experiment to 

consistently sample dAPs. The location of the first “context” electrode was moved 

spatially every 40 minutes to make each new pattern. The dAPs evoked by context 

stimuli were not analyzed. Interestingly, we found that the dAPs evoked by the probe 

stimuli changed via gradual shifts and jumps in latency (up to 4 ms or 40%) and 

amplitude (up to 20 mV or 80%) but not when the stimulation was repeated in the 

presence of antagonists of NMDA-R, AMPA-R, and GABA-R (Fig. 4.4B). These 

blocked all spontaneous activity (sAPs) except for an occasional self-firing neuron 
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(Latham, Richmond et al. 2000). Therefore, even though dAPs were detected pre-

synaptically, changes in their latency and amplitude required successful synaptic 

transmission of glutamate and/or GABA. Electrical artifact and chemical interactions at 

the electrode interface did not contribute since changes were minimal for identical 

stimulation while blocking sAPs (Fig. 4.4). 

 The propagation of dAPs adapted to new stimulation patterns within 

minutes. Changes in dAP latencies were significantly greater just after a change in the 

patterned stimulation than at the end of a 40 minute block of a given patterned 

stimulation (Fig. 4.4C; Mean ± s.e.m. Unblocked: **P < 1e-6, n = 130 dAP trains. 

Blocked: P = 0.24, n = 115 dAP trains; Wilcoxon signed rank test for paired samples. 6 

cultures from 4 dissociations). To a lesser significance, dAP amplitudes were similarly 

altered (Fig. 4.4D; Unblocked: *P = 0.003. Blockers: P = 0.59). The change “across” 

adjacent patterned stimulation blocks was calculated as the absolute value of the 

difference in mean latency between the 5 minute periods just prior to and just after 

shifting the location of the context electrode. Each 5 min period consisted of 75 probe 

stimuli. The change “within” a period was calculated between the 10 to 5 min and the 5 

to 0 min periods prior to a shift. The patterned stimulation protocol could be considered a 

simplified analog for memory processes found in the brain. For example, repetitive 

cortical activation by the hippocampus during sleep consolidates memories (Wilson and 

McNaughton 1994) and repetitive body movements lead to cortical plasticity (Classen, 

Liepert et al. 1998). 

4.2.3 Plasticity of action potential propagation had a non-synaptic expression. 

Although induction of propagation plasticity depended on the occurrence of sAPs, 

long-term plasticity of action potential latency and amplitude was expressed outside of 

synapses (Fig. 4.5). Accompanying plasticity expressed at synapses is expected to have 

occurred also. The changes in dAP latencies and amplitudes in Figure 4.4 could reflect a 
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variation in propagation or instead a variation in the recent background synaptic activity. 

The technique of using extracellular electrodes to investigate axonal properties has a long 

history, and delays in antidromic propagation have been shown to depend on the somatic 

membrane potential (Lipski 1981). In particular, the impedance mismatch due to the 

change in volume from the axon into the soma causes a delay in propagation proportional 

to the somatic membrane potential, which varies with synaptic input (Lipski 1981). 

However, such changes in delay were elastic, recovering within 100 ms after altering the 

membrane potential.  

 

 
Figure 0.5 The cause of plasticity was neural activity, and the site of plasticity was not synaptic. 
(A) Experiment protocol. SAPs were blocked to eliminate the influence of ongoing synaptic activity, and 3 
identical periods of whole-dish probing (shape and color coded) were applied before and after the 5 hours 
and 20 minutes of patterned stimulation (Fig. 4.4). (B) Example extracellular voltage traces for two 
separate dAPs during each whole-dish probing period (240 traces averaged). Changes that accrued during 
the patterned stimulation persisted (blue square to black triangle): they were not reflections of ongoing 
synaptic activity. Changes were minimal during patterned stimulation in the presence of blockers (red circle 
to blue square): the accrued changes were not artifacts from the electrical stimulation or replacing media. 
(C) Statistics for all observations (Mean ± s.e.m.). (D) Changes in latency were not monotonically 
correlated to changes in amplitude. The outlying data points, using an arbitrary cut-off at 10% of the 
distribution, were plotted with darker dots. 
 

 

 57



To experimentally eliminate variation in membrane potential due to background 

synaptic activity, additional whole-dish probing periods were conducted, in the presence 

of fast synaptic receptor blockers, before and after the patterned stimulation protocols 

(Fig. 4.5A), and long-term plasticity of action potential propagation delay and amplitude 

persisted (Fig. 4.5B). The whole-dish probing periods consisted of stimulating every 

electrode 240 times in random order at an overall frequency of 10 Hz (24 minutes) and 

recording the dAPs. If the changes in propagation induced by the patterned stimulation 

were expressed independently of synaptic activity, dAP latencies and amplitudes would 

vary between the periods of whole-dish probing before and after the 5 hour and 20 

minute sequence of patterned stimulation blocks. Then as a control, dAP latencies and 

amplitudes should not vary between the periods of whole-dish probing before and after 

patterned stimulation conducted with blockers. Consequently, action potential 

propagation did change (in one case, latency decreased by 13 ms or 74%) significantly 

more after the patterned stimulation without blockers than with blockers (Fig. 4.5C; 

Mean ± s.e.m.; **P < 1e-6 for change in latency, *P = 0.003 for change in amplitude; 

Wilcoxon signed rank test for paired samples. n = 904 dAP trains. 5 cultures from 3 

dissociations). Propagation plasticity was expressed outside of the synapses since it could 

be detected in the presence of synaptic blockers. Not all dAPs changed latency and 

amplitude (Fig. 4.5D), suggesting the plasticity induced by the patterned stimuli 

discriminated among different pathways of propagating neural activity (Jimbo, Tateno et 

al. 1999). As opposed to Figs. 4C and 4D, the propagation plasticity averaged in Fig. 

4.5C and plotted in Fig. 4.5D had accrued over the duration of the entire patterned 

stimulation protocol: 5 hours and 20 minutes instead of 5 minutes. 

Increasing the overall stimulation frequency from 1/2 Hz, as with patterned 

stimulation, to 10 Hz during the whole-dish probing was done to decrease experiment 

durations. Using a different stimulation frequency was not of concern because the whole-

dish probing was always done in the presence of blockers, where propagation plasticity 
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{{did not occur}}, and dAPs evoked by whole-dish probing sequences were compared 

only to those evoked by other whole-dish probing sequences. Moreover, the per electrode 

stimulation frequencies were comparable: whole-dish probing stimulated a given 

electrode every 5.9 seconds on average versus every 4 seconds during patterned 

stimulation.  

4.2.4 Theoretical computational capacity. 

 A given neuron might have the ability to differentially modulate the timing and/or 

amplitude of action potentials impinging on multiple post-synaptic cells, greatly 

increasing the available computational capacity. Both increases and decreases in dAP 

latency (up to 200%) and amplitude (up to 600%) occurred, but interestingly, a 

monotonic correlation between the two was not found (Fig. 4.5D; P = 0.22, r = 0.04 

Spearman’s rank correlation coefficient). Homogeneous plasticity of cell properties along 

the length of a neurite, for example of voltage gated Na+ channels, would be expected to 

cause a monotonic change between action potential latency and amplitude. Therefore, the 

plasticity occurred either via different mechanisms or in a locally discriminate manner 

throughout the neuron, perhaps by geometrical variations in axonal varicosities which 

could cause conduction delays up to 100s of ms at each synaptic bouton (Goldstein and 

Rall 1974; Manor, Koch et al. 1991). 

 As an example of the potential computational capacity for such a locally 

controllable propagation, a 1.2 mm axonal branch could achieve 1 billion temporal 

configurations for its synaptic output. Estimating the average conduction velocity to be 

0.25 mm/ms (Fig. 4.1D, histogram peak multiplied by a safety factor of 2) and the 

discrete time resolution to be the average dAP jitter during patterned stimulation 

experiments without blockers, 160 ms, gives a discrete spatial resolution of 40 mm 

(distance = velocity * time). This spatial resolution would not be decreased by 

considering the magnitude of the observed latency changes nor by synapse density: 
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axonal synaptic boutons were spaced 5 to 10 mm apart on average in cat cortical neurons 

(Anderson, Binzegger et al. 2002). A billion or approximately 230 configurations give 

1.2 mm in length (1.2 mm equals a 40 mm spatial resolution multiplied by 30 axonal 

sections). A neuron would have even more capacity considering (1) temporal encoding is 

analog, (2) axonal arbors have 2 to 3 orders of magnitude greater length (Anderson, 

Binzegger et al. 2002; Debanne 2004) and (3) extensive branching (Sik, Penttonen et al. 

1995; Debanne 2004), (4) the capacity of separate branches are multiplicative, and (5) 

encoding via action potential amplitude was not considered. However, the actual 

temporal and spatial resolutions are not known, neither are the rules of plasticity 

induction, and computational capacity is only an upper limit to memory capacity. In 

particular, what governs an increase versus a decrease in latency and amplitude? An 

understanding of these rules is needed to apply propagation plasticity in computational 

models or in further exploring its role in cognition. 

4.3 Discussion 

 We have identified plasticity mechanisms that depend on synaptic transmission 

for induction, but are nevertheless expressed without it. As with changes in synaptic 

strengths, the changes we observed in action potential propagation are also likely to 

influence computation, learning, and memory in neural systems. For example, changes in 

action potential delay alter the type and number of attractor states in recurrent delayed 

neural loops (Foss and Milton 2000; Ma and Wu 2007) and neural networks (Izhikevich 

2006). Elucidating the cellular mechanisms of propagation plasticity is left to future 

work, but possibilities include non-uniform changes in ion channel properties (Ganguly, 

Kiss et al. 2000), in the geometry of varicosities and branch points (Goldstein and Rall 

1974) or axonal arbors, in the proximity of glia (Ishibashi, Dakin et al. 2006), and in lipid 

membrane composition (Bedlack, Wei et al. 1994). The changes we observed in cortical 

neurons could be generalized to occur throughout the brain, although the role of glial 
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sheaths may dominate in faster-conducting myelinated axons (Ishibashi, Dakin et al. 

2006). Gap junctions were not considered because, in a similar preparation, both 

electrical and dye coupling experiments did not reveal coupled neurons (Nakanishi and 

Kukita 1998). Patterning axon growth over a series of electrodes (Suzuki and Yasuda 

2007) or nanowire transistor recording devices (Patolsky, Timko et al. 2006) and/or 

optical imaging (Kawaguchi and Fukunishi 1998) could expose the discrimination, 

resolution, and possible morphological correlates of propagation plasticity. 

 Past research has set the stage to discover the rules governing temporal coding in 

the brain. The neural orchestra is comprised of not only synapses but many instruments, 

in part tuned by propagation plasticity. By using an MEA to robustly detect and track 

changes in the propagation of electrically evoked action potentials, we found that 

variation of a low frequency patterned stimulation modulated action potential propagation 

delays and amplitudes. Even though the induction of plasticity depended on synaptically 

evoked action potentials, its expression was non-synaptic: action potential propagation. 

Propagation varied for different stimulation patterns and became more stable for 

unvarying patterns, attributes necessary for playing a role in encoding memories. 

Latencies and amplitudes increased and decreased in an un-correlated manner, potentially 

allowing a neuron to have variable synaptic transmission among multiple post-synaptic 

neurons. In summary, the results suggest that propagation plasticity could serve as a 

cellular mechanism to tune temporal coding schemes and information processing in 

neural networks. Plasticity mechanisms that regulate the timing and amplitude of synaptic 

input impinging on a neuron challenge the dogma that memories are stored solely as 

changes in synaptic strengths. 

4.4 Materials and Methods 

Cell culturing and electrophysiology was done as reported in Appendix G. 

Cultures matured for 3 weeks prior to experimentation. 

 61



4.4.1 Pharmacology. 

 To block synaptically-evoked action potentials (sAP), fast synaptic receptor 

antagonists were applied at concentrations of 50 µM bicuculline methiodide (BMI), 100 

µM 2-amino-5-phosphonovaleric acid (APV), and 10 µM 6-cyano-7-nitroquinoxaline-2, 

3-dione (CNQX) (from Sigma), dissolved in culture medium and stored at -80°C. These 

are antagonists of GABA-R, NMDA-R, and AMPA-R, respectively. Fresh 35°C culture 

medium was used at the start of experiments and when changing medium between 

patterned stimulation and whole-dish probing experiments. When replacing medium from 

with to without the antagonists, cultures were washed 4 times by applying and discarding 

1 mL volumes of fresh medium. A medium change lasted a couple minutes and cultures 

were allowed to equilibrate for an additional 30 minutes prior to beginning stimulation. 

4.4.2 Experiment parameters. 

 For the patterned stimulation experiments, a 40 minute duration was chosen for 

each stimulation pattern to allow enough time to stabilize plasticity induced after the 

patterns were changed. A slow 1/2 Hz overall stimulation rate (Fig. 4.4A) was chosen to 

avoid network fatigue or refractory periods (Darbon, Scicluna et al. 2002) from 

compromising the evoked responses. The stimulation electrode evoking the most dAPs 

was chosen as the probe electrode. The probe was paired with electrodes evoking varying 

degrees of neural activity to create patterned stimulation with diverse network activity 

responses. 

4.4.3 Automated detection of direct electrically-evoked action potentials (dAPs). 

 For each recording electrode, detected electrically evoked spikes were sorted from 

peaks in a firing rate histogram (Fig. 4.6), and latencies were tracked in consecutive 

moving time windows throughout the duration of an experiment. The histograms were 

constructed from 10 min windows (140 probe stimuli), stepped by 1 min. A given 
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histogram had a bin width of 0.04 ms, corresponding to the sampling frequency of 25 

kHz, and was smoothed in latency with a Gaussian kernel size of 31. All histogram peaks 

and valleys were found, up to 25 ms in latency. Directly-evoked action potentials (dAP) 

produced tall sharp peaks while synaptically-evoked action potentials (sAP) produced 

broader shallower peaks. Thus, a peak was considered to be caused by dAPs if the peak 

height was greater than 2 times the highest valley plus 0.5, which was an empirically 

determined threshold. The analysis was done separately for positive and negative height 

spikes. All assigned dAPs were verified manually in raster plots and by waveform. 

To track changes in the latency of a dAP, the peaks in consecutive histograms were 

compared.  

 

(1) If an assigned peak overlapped a peak in the previous histogram within a 

tolerance, then the peaks were considered to arise from the same dAP. The 

tolerance was the width of the Gaussian at the peak's half height plus 440 µs 

(11 samples) on either side. The tolerance allowed tracking a dAP that 

changed latency. 

(2) If a peak did not overlap any prior peaks, then a new dAP was assigned. 

(3) On rare occasions, if a peak overlapped 2 prior peaks, then the new peak was 

matched to the closest prior peak. 

 

Occasionally, dAPs would disappear and reappear. Therefore, a peak was kept in 

memory until overlapped by a new peak. However, only stable dAPs were considered in 

the paper. 
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Figure 0.6 DAPs were automatically detected and tracked from peaks and valleys in consecutive 
smoothed post-stimulus time histograms. 
(A) The first 25 ms of neural activity in response to 1/4 Hz probe stimulation were searched for the 
occurrence of dAPs in 10 min windows (shaded). (B) Expanded view of the shaded 10 min window in A. 
(C) A firing rate histogram of the neural activity in B was first constructed. (D) Then, the histogram was 
smoothed in latency with a Gaussian kernel, and all peaks (red circles) and valleys (green pentagons) were 
found (only 2 peaks and their corresponding valleys are plotted for clarity). A peak was considered to 
contain dAPs if it exceeded an empirical threshold. 
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CHAPTER 5 
 

SHAPING EMBODIED NEURAL NETWORKS FOR ADAPTIVE 

GOAL-DIRECTED BEHAVIOR4 

Therapeutic techniques used to treat neurological movement disorders attempt to re-link neuronal 
activity to a goal movement via the use of directed mental attention or perceptible feedback 
signals of behavior, and a lot of practice. While helpful, the benefits of these techniques are 
limited and not guaranteed among different individuals or different disorders. Successful cases of 
physical therapy have been accompanied by plasticity of the motor cortex. In turn, a range of 
studies have shown plasticity arising from electrical stimulation of neuronal tissue. Thus 
theoretically, targeted stimulation of the brain may improve therapeutic results by directly treating 
malfunctioning neuronal circuits and their related pathways. Many steps are required to reach this 
ambition, primarily that of quantifying the ability, limitations, and protocol for electrical 
stimulation to induce functional or adaptive changes in neuronal activity. Here, we developed an 
adaptive training algorithm, whereby a controlled in vitro neocortical network learned to modulate 
its dynamics and achieve pre-determined activity states within tens of minutes through the 
application of patterned training stimuli using a multi-electrode array. A priori knowledge of 
connectivity was not necessary. Instead effective training sequences were continuously discovered 
and refined based on real-time feedback of performance. The short-term dynamics in response to 
training became engraved in the network, requiring fewer training stimuli later in time to achieve 
the same results. After 2 hours of training, plasticity was significantly greater than baseline for 80 
min (p<0.05). Interestingly, a given sequence of stimuli did not induce plasticity, let alone desired 
activity, when replayed to the network and no longer contingent on feedback. Our results 
encourage an in vivo investigation of how targeted electrical stimulation of the brain, contingent 
on the activity of the body or even of the brain itself, could treat neurological disorders. 

 

 Chapters 3 and 4 demonstrated that plasticity could be induced by electrical 

stimulation. In this chapter, we explored whether we could not only induce plasticity, but 

customize it to achieve goal-directed behavior in an animat. The center of activity (CA) 

from Chapter 3 and versions of the patterned stimulation from Chapter 4 (patterned 

training stimuli; PTS) were used to map neural activity into animat movement and 

behavioral feedback into neural stimulation, respectively. Discussion of our results are 

framed within potential applications to neuro-rehabilitation. 
                                                 

 
 
4  Manuscript to be submitted by: Bakkum DJ & Chao ZC, Potter SM (the first 2 authors contributed equally) 
    Related work includes: 
Bakkum DJ & Chao ZC, Potter SM, “Adaptive goal-directed behavior in embodied cultured networks: 
living neuronal networks and a simulated model”. IEEE EMBS Conf. On Neural Engineering, Hawaii, 
2007. * first 2 authors contributed equally 
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5.1 Introduction 

 A life’s experiences spur the brain to continuously rewire itself to best achieve 

behavioral goals. However, errors can occur when injury or a pathological condition 

causes aberrant neural activity, and often a disconnection arises between the activity of 

the brain and that of the body. Treating movement disorders using physical therapy has 

been shown to modify neural activity, and a range of studies have shown electrically 

stimulated neuronal tissue exhibits neuronal plasticity (see below). Thus theoretically, 

electrically-induced plasticity could allow the brain to be rewired to achieve a more 

desired behavioral state. Here in a preliminary experiment, we investigated how a 

neocortical network could learn to modulate its dynamics and achieve user-defined 

activity states through feedback training with electrical stimuli. Besides elucidating 

potential therapeutic roles for artificial stimulation of the brain, these experiments give 

insight into how the processes underlying learning and memory are expressed in and 

induced by network activity. 

 Electrical stimulation has been extensively used to artificially induce neuronal 

plasticity and study learning and memory. For example, cellular plasticity has been 

observed in a variety of functions, including in synaptic efficacy (Bliss and Lomo 1973; 

Bi and Poo 1998a; Bi and Poo 1998b), intrinsic neuronal excitability (Daoudal and 

Debanne 2003; Zhang and Linden 2003), neuronal (Uesaka, Hayano et al. 2007) and glial 

(Fields 2005; Ishibashi, Dakin et al. 2006) morphology, action potential propagation 

(Chapter 4), and neurogenesis (Kempermann 2002). A subsequent progression in the 

field is determining how cellular plasticity scales and integrates to influence neuronal 

network dynamics. In primate motor cortex, a neuron was repetitively stimulated 5 ms 

after the occurrence of an action potential on a different neuron using an electronics 

implant (Jackson, Mavoori et al. 2006); after halting the stimulation, subsequent activity 

of the recorded neuron caused an increase in the firing rates in the vicinity of the 

stimulated neuron. This “pathway-specific” plasticity (Jimbo, Tateno et al. 1999) and also 
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a “region-specific” variation in the flow of neuronal activity (Chao, Bakkum et al. 2007) 

have been observed in our cultured networks. Thus electrical stimulation can sculpt the 

flow of neuronal information through a variety of mechanisms, and holds promise for 

either retraining or bypassing malfunctioning neuronal circuits. 

 Therapeutic techniques used to treat neurological disorders create links between 

neuronal activity and behavior via the use of directed attention or perceptible feedback 

signals and a lot of practice. Physical therapy, including treadmill training and robotic-

assisted or neuromuscular (functional) electrical stimulation (NMES / FES) -induced 

limb movement, has been used to combine natural motion with proprioceptive feedback 

(Dobkin 2004; Sheffler and Chae 2007). The feedback activates motor circuits, 

improving the control of paretic limbs. Further incorporating visual and aural cues, such 

as targets for foot steps or beats to maintain walking gaits, and also mental imagery of 

movement have been used to improve training by priming motor circuits in a top-down 

(cortical origin) manner (Morris 2000). Biofeedback therapy uses visual, aural, or tactile 

displays to improve performance by making underlying physiological or cognitive 

processes perceptible (Huang, Wolf et al. 2006). These examples all re-link neuronal 

activity to a movement, and moreover, physical therapies have led to cortical plasticity: 

improved hand movements after constraint-induced movement therapy was accompanied 

by an increased representational area in the motor cortex, observed by transcranial 

magnetic stimulation (Liepert, Bauder et al. 2000) and fMRI (Johansen-Berg, Dawes et 

al. 2002). However, while helpful, (1) benefits of these techniques are not guaranteed 

among different individuals or different disorders, (2) optimal therapeutic protocols have 

not been established, and (3) the relationship with neuronal plasticity is unclear (Dobkin 

2004) (Huang, Wolf et al. 2006). Adaptive electrical stimulation may improve therapeutic 

results by directly treating the abnormal neuronal circuits and related pathways 

themselves.  

 Additionally, but without re-linking neural activity and behavior, electrical  
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stimulation inside the brain has successfully managed pathological symptoms. Deep brain 

stimulation (DBS) has been used to treat severe cases of essential tremor, dystonia, 

Parkinson’s disease, Tourette syndrome, clinical depression, and epilepsy (Perlmutter and 

Mink 2006). However, its functional mechanisms are debated. It’s not clear that plasticity 

plays a key role in DBS therapy: effects depend on continual stimulation, which causes 

serious side effects including attentional and learning impairments (Jahanshahi, Ardouin 

et al. 2000). Other methods to reduce epileptic seizures have been used, including 

repetitive vagus nerve stimulation (Schachter and Saper 1998) or electrical pulses at or 

near seizure foci applied prior to a predicted seizure onset (Martinerie, Adam et al. 1998), 

but their consequences on neuronal plasticity are not known. Therefore, designing an 

adaptive algorithm to select appropriate training stimuli, contingent on neuronal output, 

could optimize the effect of a treatment while also avoiding extraneous side effects from 

excessive stimuli. 

 We hypothesize that electrical training stimuli contingent on neuronal or motor 

output could provide a therapy by taking advantage of existing neural plasticity 

mechanisms to re-link the body with the brain. Many steps are required to reach this 

ambition, including quantifying the ability and limitations of electrical stimulation to 

induce functional or adaptive changes in neural activity. Here, we developed an adaptive 

training algorithm which reshaped the activity of a neocortical network into different 

desired motor outputs within tens of minutes through the application of patterned training 

stimulation (PTS) using an extracellular multi-electrode array (MEA). A priori 

knowledge of connectivity was not necessary. Instead, effective sequences of PTSs were 

continuously discovered and refined based on real-time performance. The short-term 

dynamics in response to PTSs became engraved in the network, requiring fewer PTS 

applications later in time to achieve the same results. Reducing the amount of stimulation 

would be expected to reduce the incidence of side effects if applied in patients, and with 

enough training, allow removal of stimulation hardware. Interestingly, a given training 
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sequence did not induce plasticity, let alone desired motor output, when it was replayed 

to the network and no longer contingent on neural activity. Results from our controlled in 

vitro model encourage an in vivo investigation of how targeted electrical stimulation of 

the brain, contingent on the activity of the body, could  treat aberrant neural activity. 

5.2 Methods: 

 Cell culturing and electrophysiology was done as reported in Appendix G. 

Cultures matured for 3 weeks prior to experimentation. 

5.2.1 Closed-loop training algorithm 

 To train a cortical network to achieve a desired motor output, a feedback loop 

from neural activity to electrical stimulation needs to be created (Fig. 5.1). First, 

sequences of neuronal action potentials were transformed into movements. 

Understanding how such sequences encode movement and information in general is a 

subject of much scientific inquiry. Population coding is a candidate motor mapping found 

to occur in the motor cortex (Georgopoulos 1994), premotor cortex (Caminiti, Johnson et 

al. 1990), hippocampus (Wilson and McNaughton 1993), and other cortical areas: the 

firing rates of a group of broadly tuned neurons taken together provide an accurately  
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Figure 0.1 Schematic of the closed-loop feedback and adaptive training. 
See Methods for details. A.   A single probe electrode was repetitively stimulated every 6 sec. After each 
stimulus, 100 ms of evoked responses was recorded to form the 2D center of activity (CA) vector.   The 
CA was transformed (T ) into incremental movement {dX, dY}.   If movement was within ±30º of the 
user-defined desired direction, a shuffled background stimulation (SBS) was delivered. Otherwise, a set of 
patterned training stimulation (PTS) was delivered.   Context-control probing sequences (CPS) were 
delivered after SBS or PTS and before each probe to reduce variability in the probe response from ongoing 
activity. B. For unsuccesful movement, a PTS was selected from a pool of 100 possibilities. The probability 
of each PTS (P

ˆ

t) being chosen later (Pt+1) increased (blue) or decreased (red) depending on the success of 
the motor output. See Equations 5.2 and 5.3. 
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Figure 0.2  Stimulation sequence. 
The various stimuli during a loop through the closed-loop protocol described in Fig. 5.1 is given, scaled in 
time. Approximately 14 PTS or SBS are applied within 100s of ms of movement. 
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tuned representation (e.g., to a preferred direction of arm movement). We used a related 

population coding to instruct motor output, termed the center of activity (CA). For 

training, plasticity was induced by repetitive stimulation of a set of electrodes, termed 

patterned training stimulation (PTS). If the correct movement occurred, a shuffled 

background stimulation (SBS) was used instead, which balanced overall stimulation 

rates. The sequence of stimulation events is given in Figure 5.2. 

5.2.1.1 Motor mapping.   

 Action potentials evoked by repetitive stimulation (1/6 Hz) of a single electrode, 

termed probe, were recorded for 100 ms following each pulse on the remaining electrodes 

of an MEA. The same probe electrode was used throughout an experiment. The activity 

of cultured networks is characterized by global bursts lasting 100s of milliseconds 

interspersed by periods of quiescence (Wagenaar, Pine et al. 2006a), and a probe was 

needed to reliably and consistently sample network dynamics. A population code mapped 

the activity into incremental motor output {dX, dY}: 
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Analogous to center of mass, the center of activity ( ) is the vector summation of the 

number of action potentials recorded on each electrode e (N

CA
→

e) weighted by the spatial 

location of the electrode (We

r
) (Fig. 5.1A ). The inclusion of spatial information was 

found more reliable for quantifying network functional plasticity than using firing rates 

alone (Chao, Bakkum et al. 2007). The CA was normalized by a fixed transformation 

matrix, T , to remove any directional bias arising from different distributions of neurons 

in different MEAs.  (Fig. 5.1A ).  

ˆ
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5.2.1.2 Training algorithm.  

 For unsuccessful movement, plasticity of the probe response is desired. Paired 

stimulation of monosynaptically connected neurons evokes spike-timing dependent 

synaptic plasticity (STDP) dependent on the stimulation interval (Bi and Poo 1998a). 

Repetitive PTS using the extracellular electrodes of an MEA has the potential to induce 

STDP throughout any shared activation pathways. When movement was within ±30º of 

the desired direction, SBS was used instead of PTS (Fig. 5.1A ). Neurons at different 

electrodes can be connected through multiple neurons and pathways; some PTSs may 

give a desired neuronal plasticity while others may give the opposite or none. Therefore 

we compiled a pool of 100 possible PTSs, each with a different spatial stimulation 

sequence (see details below). Initially, each PTS had an equal probability of being 

chosen. If the current PTS (PTSk) improved the performance, then the probability of 

PTSk (Pk(t)) being chosen later (Pk(t+1)) increased, and the probability of other PTSs 

(Pi(t+1)) being chosen decreased (Figure 5.1B): 

 

 













≠
⋅+

=+

=
⋅+

⋅
=+

kifor
tP

tP
tP

PTScurrentk
tP

tP
tP

k

i
i

k

k
k

,
)(5.01

)(
)1(

,
)(5.01

)(5.1
)1(

 (5.2) 

 

Otherwise, if PTSk worsened the performance, than Pk(t+1) decreased from Pk(t) and 

Pi(t+1) for other PTSs increased: 
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In this manner, neuronal plasticity could be directed. A maximum of 50% was set so that 

a high probability for one PTS would not saturate the pool of possible choices. A 

minimum of 0.2% was set to ensure each PTS remained available in the future. This 

allowed the flexibility to adapt to ongoing changes in neuronal network dynamics. 

5.2.2 Experiment design 

5.2.2.1 Determining PTS, SBS, CPS, and probe:  

 Before every experiment, biphasic voltage stimuli (Wagenaar, Pine et al. 2004) of 

±300 mV, 400 us per phase were delivered randomly at the 59 usable electrodes on our 

MEAs for 30 mins, one at a time, with random inter-stimulus-intervals between 200~400 

ms. An electrode that evokes synaptic activity at multiple electrodes is capable of 

revealing changes in network-level synaptic connectivity, and one was selected as the 

probe electrode. Six electrodes that evoked only short responses (< 20 ms latency) were 

selected to create a context-control probing sequence (CPS). They were stimulated in 

order, prior to the probe stimuli, with inter-stimulus intervals between 200~400 ms in 

order to provide a consistent “context”. Once the spatiotemporal structure of the CPS and 

probe was determined, it was fixed throughout the experiment and used to sample the 

network state every 6 seconds to collect movement data.  

 The remaining electrodes that evoked activity were used as candidates for 

constructing PTS and SBS. The probe and the context electrodes were not used in PTS 

nor SBS. Each PTS consisted of 6 stimuli randomly selected from the candidate 

electrodes (repeated electrodes allowed). The inter-stimulus-interval between two 

consecutive stimuli was fixed at 10 ms. When training was required, a PTS was 

repetitively delivered until the beginning of the next CPS, with an inter-PTS-interval 

between 200-400 ms. When training was not required, SBS consisted of repetitively 
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delivering one randomly selected PTS with inter-SBS-intervals again between 200-400 

ms, but with randomized electrode order each time delivered. The randomized order in 

SBS maintained comparable overall rates and distribution of stimuli as in PTS, while 

removing the repeating spatiotemporal pattern of neural activation. The probe-evoked 

response's overall firing rates, and in turn their distribution of CAs, depended on the 

amount and spatial distribution of stimulation (data not shown). Therefore, any changes 

in motor output would stem from changes in network connectivity. Stimulation voltages 

of ±300 mV were lower than those in our previous investigations of plasticity magnitude 

(Chao, Bakkum et al. 2007) in order to better localize evoked neurons and PTS-induced 

plasticity. This and only a few seconds of training stimulation at a time were intended to 

induced plasticity incrementally with enough resolution to reach desired network states 

and minimize overshoot. 

5.2.2.2 SBS-only stimulation:  

 At the beginning of an experiment and prior to each closed-loop training, CPS and 

probe stimuli were delivered with SBS interspersed for 6 hours. This allowed the network 

to habituate to the presence of electrical stimulation. 

5.2.2.3 Closed-loop experiments with different desired movement directions:  

 One closed-loop experiment consisted of four 2-hr training periods, each with a 

different desired direction, and 2-hr SBS-only periods in between. After a training period, 

the duration of plasticity was measured during the 2-hr SBS-only period. The 

transformation matrix for each training period, T , was calculated during the last 30 min 

in the preceding SBS-only period. Six closed-loop experiments were performed on 5 

different cultures from 3 dissociations such that 23 training periods were analyzed (6*4 

minus 1 where a technical error caused a loss of data). Two experiments were performed 

on one culture, with 13 days in between, with different CPS, and PTS set. 

ˆ
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5.2.2.4 Open-loop stimulation experiments: 

To test if the improvement in performance was an artifact of the electronics or electrode 

chemistry arising from a particular stimulation sequence, the stimulation sequence 

recorded from each closed-loop experiment was replayed to the same network about a 

day later. Since the same transformation might not successfully offset the CAs if activity 

changed, the transformations were recalculated as before. However, any similarity in the 

directional plasticity between the closed-loop and replayed open-loop stimuli would be 

comparable in the analysis in Figures 5.3 and 5.5 because the scaling transformations 

between closed-loop and open-loop trials were found not significantly different (P-value= 

0.34 Wilcoxon sign rank test, N= 23 trials * 2 directions; transformation offsets do not 

affect movement direction). 

5.3 Results and Discussion 

5.3.1 Training shifted neural activity towards the desired activity 

 We designed a closed-loop algorithm to train cultured networks to learn user-

defined motor outputs: moving ± 30º within a pre-defined direction. The closed-loop 

training algorithm was tested in 5 cortical networks grown over MEAs. Action potentials 

evoked by repeating probe stimuli, at a single fixed electrode, commanded motor output, 

and electrical stimuli were fed back as training signals. The probability of selecting a PTS 

was updated based on how its application influenced the network’s short-term activity 

dynamics during the following motor output (see Method). Four goals were applied 

sequentially to a network, that is, the desired movement direction was changed ± 90º or 

180º 3 times. Overall success was judged by the ability of the network to crystallize 

successful short-term changes into long-term plasticity and also by its ability to adapt to 

new desired motor outputs. We found that with training, motor output was able to head 

toward the predefined desired directions (one representative experiment is shown in 
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Figure 5.3A). The learning curves show that a greater proportion of movements were in 

the desired direction as training progressed (Figure 5.3C). Since a correct movement 

meant applying SBS instead of PTS, fewer training stimuli were needed in time, 

suggesting the network was learning the appropriate input/output function to allow 

successful behavior. 

 Learning curves for all experiments are shown in Figure 5.4. A random movement 

would give a 16.67% chance (horizontal line) of movement within ± 30° of the desired 

direction (60°/360°). In 5 out of 23 trials (21.7%), the learning curves were below the 

16.67% chance in the last 10 minutes of training (black arrows in Figure 5.4). This 

suggests that a more optimal training algorithm may exist. For example, using a different 

set of possible PTSs might improve success rates by inducing a different plasticity. The 

average normalized learning curve of closed loop experiments showed the success rate 

increased by a factor of 2.88 ± 0.08 (Mean ± s.e.m.) times after 2 hours of training for 

each desired direction (n= 23 trials, from 6 experiments) (Figure 5.5).  

 The stimulation sequence delivered during a closed-loop experiment was recorded 

and replayed to the same network the next day. This ruled out artifactual changes in 

network responses due to non-biological causes, such as electrochemistry or electronic 

noise, and ensured that neuronal plasticity was responsible for the observed learning. 

With open-loop training, motor output was unable to move toward the desired directions 

(the motor outputs and the learning curves of the corresponding open-loop experiment of 

the closed-loop experiment shown in Figures 5.3A and 5.3C are shown in Figure 5.3B 

and 5.3D, respectively). The average learning curve of open-loop experiments was 

significantly lower than in closed-loop experiments (p-value= 9.9e-54, n= 23 trials, 

Wilcoxon signed rank test) (Figure 5.5). Changes in movement direction were distributed  
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Figure 0.3  Neural response to closed-loop and open-loop training. 
A. Closed-loop training: Movement trajectory (left column) and the change in the probability distribution 
of movement directions (right column) demonstrated the motor output adapted to the desired direction 
(black arcs). Desired directions of -135º, -45º, 135º, and 45º were applied in random order for 2-hr periods 
(light to dark blue in time) interspersed by 2-hr SBS-only periods (see Section 5.2). Successful motor 
output was considered to be movement within ± 30º of the desired direction. The smaller trajectory circle is 
a zoom-in of the beginning of the experiment and the 30-min SBS-only period (gray) used to calculate the 
transformation, T . The probability distribution of movement directions during 10 minutes at the start of 
experiments was subtracted from that during the final 10 minutes, thus allowing negative values (red). B. 
Open-loop training: The closed-loop stimulation sequence was recorded and replayed to the same network. 
Movement trajectories (scaled to match the corresponding closed-loop experiment) changed but not 
necessarily towards the desired direction. The distribution of movement directions also changed but in a 
more distributed manner. Learning curves of (C) closed-loop and (D) open-loop examples shown in A and 
B: A learning curve was defined as the probability of movement in the desired direction within a 10-min 
moving time window (time step= 1 min). The probability of successful motor output increased in time 
when training was contingent on motor output. A random movement would give a 16.67% chance 
(horizontal line) of movement within ± 30° of the desired direction (60°/360°).  

ˆ
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Figure 0.4  Learning curves for all closed-loop experiments 
For each experiment, the learning curves and the time courses of different PTS probabilities are shown. See 
more about the PTS probability in Section 5.3.3 and Figure 5.8B. In 5 out of 23 trials (21.7%), the learning 
curves were below the 16.67% chance in the last 10 minutes of training (black arrows).  
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Figure 0.5  Average normalized learning curves of all closed-loop and open-loop experiments. 
To compare trends among different experiments, each learning curve was normalized by dividing by the 
probability of successful motor output when training began. The average normalized learning curve in the 
last 10 minutes of closed loop experiments was 2.88 ± 0.08  (SEM) times higher than at the start, which 
was significantly higher than 1.24 ± 0.03 for open-loop experiments (p-value= 9.9e-54, n= 23 trials from 6 
experiments, Wilcoxon signed rank test). An exponential curve fit gives a time constant of 10.6 minutes 
and a learning curve asymptote of 3.13 (SSE= 2.95, R-square= 0.7814). 
 
across a wider range of angles than with closed-loop training (compare Figures 5.3B and 

5.3A). Therefore, we concluded that the successful learning reflected biological plasticity 

in the neuronal networks, and required closed-loop training in which stimuli were 

contingent on behavior. 

5.3.2 Changes in motor output arose from neuronal plasticity, not an elastic 

dependency on stimulation history 

 The improved performance could be due to plastic changes in the neuronal 

network or, alternatively, due to an elastic dependency on the recent stimulation history. 

An elastic change in the neurons’ responsiveness to stimuli was observed in dissociated 

cortical cultures, where the sensitivity of neurons selectively adapted to stimulation with 

different frequencies, and this change in the sensitivity faded away within several 

minutes after stimulation was removed (Eytan, Brenner et al. 2003a). In order to verify 

this, we followed the motor output after switching closed-loop training back to the SBS-
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only stimulation, and quantified whether the learned movement was maintained, and if 

so, for how long.  

 By sampling the distribution of movement angles every 10 minutes from 1 hour 

before to 2 hours after the closed-loop experiment, we found that: (1) the movement 

angle gradually converged to the desired directions during closed-loop training, and (2) 

the learned directions were maintained after training during SBS-only stimulation. 

Results from the experiment used in Figure 5.3 are shown in Figure 5.6A. The 

distribution of the 10-min SBS-only period immediately before (Pre) closed-loop training 

was significantly different than that immediately after (Post) closed-loop training 

(histograms on the right side of Figure 5.6A). This training-induced plasticity led to 

desired motor outputs in 18 out of 23 trials (78.3%) (see Figure 5.4). This demonstrated 

that closed-loop training successfully directed network plasticity, that directed plasticity 

had occurred (Figure 5.6C). Moreover, the distributions were not significantly different 

between the last 10 minutes of the training and the next 10 minutes of the SBS-only 

control (Figure 5.6D). This indicated that motor outputs were preserved in the SBS-only 

period after training was turned off, and further demonstrated that the improved 

performance was due to network plasticity, not non-biological causes (such as stimulation 

artifacts of PTS). 

 For replayed open-loop stimuli, the distribution of movements was less focused 

(Figure 5.6B) and no significant changes in motor output occurred for most of the open-

loop experiments (Figure 5.6C). Desired movement directions were found in 4 out of 23 

open-loop trials (17.4%) during the last 10 minutes (see -45º trial in Figure 5.6B), which 

was close to the 16.67% chance but significantly lower than the 78.3% success rate for 

closed-loop experiments. Interestingly, the PTSs in open-loop training by themselves 

could not cause noticeable plasticity, but when contingent on neural activity, the set of 

PTSs were able to incrementally shift network dynamics until a significant functional 

change was detectable. 
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Figure 0.6  Long-term plasticity of movement direction. 
A. Movement directions became concentrated within ± 30º of the desired direction (red numbers and 
horizontal lines) during closed-loop training (CL) and persisted into the SBS-only periods. Data is from the 
same representative experiment as in Figures 5.3. The distribution of movement angles was sampled every 
10 minutes from 1 hour before to 2 hours after the closed-loop experiment (gray scale). The distributions of 
the occurrence of different movement angles during 10-min SBS-only periods immediately before (Pre) 
and immediately after (Post) closed-loop training are shown in the histograms (right). B. Changes in 
movement direction were not observed in the corresponding open-loop experiment (OL). C. The 
distribution of movement angles in Pre periods was significantly different than that in Post periods for 
closed-loop training, suggesting directional plasticity occurred. This did not occur for replayed open-loop 
stimulation suggesting plasticity was not a stimulation artifact. P-values of the difference in movement 
angle distributions for 23 desired directions (two-sample Kolmogorov–Smirnov test, two-tailed) are 
represented in box plots showing the first (lower) quartile, the median, and the third (upper) quartile. 
Outliers are indicated as black dots, and the largest and smallest non-outlier observations are indicated as 
tic marks (whiskers). The median p-value for closed-loop experiments was below a significance level of 
0.05 (0.016 median). D. The distribution of movement angles between the last 10 minutes in closed-loop 
(or open-loop trials; CL, OL) and that during the next 10 minutes of SBS-only (Post) were not significantly 
different, demonstrating the directed plasticity was not an artifact of PTS history. 
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Figure 0.7  Plasticity induced by closed-loop training lasted for 80 minutes. 
Plasticity induced by closed-loop training was significantly greater than intrinsic plasticity before training, 
for 80 minutes on average for all experiments, but not for replayed open-loop stimulation. A. The change-
to-drift ratio (C/D, see the definition in Section 3.2.3) between CAs in different 10-min periods after 
training (Post, see Figure 5.6) moving with 1-min time steps and CAs in a 10-min reference period 
immediately before training (Pre) was calculated. The mean and SEM of C/D across closed-loop and open-
loop periods (n= 23 trials) was compared to C/D across SBS-only periods during the first 6 hours of SBS-
only stimulation (Before training, n= 12 closed-loop and open-loop experiments). B. Closed-loop training-
induced plasticity was significantly greater than intrinsic plasticity measured before training for 80 minutes. 
Time course of p-values were calculated by comparing C/D of closed-loop and open-loop experiments to 
C/D before training (shown in A). Plasticity in closed-loop experiments was significantly greater than 
intrinsic plasticity for 80 minutes (Wilcoxon rank sum test, α = 0.01). 
 

 Although the training algorithm increased the probability of occurrence of a PTS 

based on the success of short-term “elastic” responses after the next probe stimuli, the 

elastic responses became consolidated as long-term plastic changes in time. This is 

demonstrated by the stability of the distribution of movement directions into the SBS-

only period following training (Figure 5.6), by the learning curves (Figure 5.5), and by 
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progressively fewer PTSs being needed to maintain desired movement (Figure 5.8C). 

Initial changes in the probe responses were indeed short-term elastic responses because 

they were not maintained initially, requiring reapplication of PTSs. 

 In order to investigate the duration of training-induced plasticity, the change-to-

drift ratio (C/D, see Equations G.1 and G.2) between CAs in different 10-min periods 

after training (Post, see Figure 5.6) moving with 1-min time steps and CAs in a 10-min 

reference period immediately before training (Pre) was calculated. The mean and SEM of 

C/D across closed-loop and open-loop periods (n= 23 trials) was compared to C/D across 

SBS-only periods during the first 6 hours of SBS-only stimulation (Before training, n= 12 

closed-loop and open-loop experiments) (Figure 5.7A). Closed-loop training-induced 

plasticity was significantly greater than intrinsic plasticity (drift) measured before 

training for 80 minutes (Wilcoxon rank sum test, α = 0.01) (Figure 5.7B). Replayed open-

loop stimulation did not induce significant plasticity. The decrease in C/D about 70 

minutes after closed-loop training indicates that CAs returned back to the distribution 

before training, and so did movement directions. The return could be due to an active “re-

habituation” to the SBS-only stimulation. SBS, while less structured than PTS, still has a 

spatiotemporal structure and the ability to induce plasticity. 

5.3.3 Training required different PBS at different times 

 A neural network is continuously plastic, being modified by both stimulus-evoked 

and spontaneous activity. The same PTS may therefore have different effects at different 

points in time, and successful adaptation to a desired motor output would require 

application of PTSs in a certain sequence. This is what we observed (Figure 5.8B), in 

agreement with our preliminary results from Appendix A (Figure A.6). Additionally, 

logic dictates that a finite amount of plasticity is needed to achieve the desired motor 

output. A given PTS could induce appropriate plasticity initially, but continued 

application of the PTS could be maladaptive.  
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Figure 0.8 Training required different PTS at different times. 
A. A normalized version of the learning curve shown in Figure 5.3C. B. PTS probability in time for 
different desired directions, color coded to match A. Various series of PTS were needed to induce 
appropriate neural plasticity and successful motor output. For clarity, the PTS with lower probabilities were 
not plotted. Electrode locations and order (right) for the PTS indicated by red arrows are shown in 8 by 8 
grids of electrode locations. C. Across the 23 trials, fewer PTS were needed in time to maintain successful 
motor output. The frequency of occurrence of a PTS was measured by a 10-min moving time bin with 1-
min time step and normalized by its maximum value (set to 1). The initial rise occurred while appropriate 
PTSs were searched. PTS occurrence monotonically decreased over the last hour (Spearman correlation of 
means (dots), one-tailed, rho= -0.89, p-value= 1.2e-31, n= 231 successful PTSs in 23 trials). A successful 
PTS was defined as one that improved performance at least one time. A cubic polynomial (red) was fit to 
the data to better visualize the trend. 
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 We also found that fewer PTSs were needed across a training period to maintain 

successful motor output (Figure 5.8C). The trend of the PTS-delivering frequency was 

measured by counting successful PTSs in a 10-min moving time bin with 1-min time step 

and normalized by its maximum value. We defined a successful PTS as one that 

improved performance at least one time, and found that the occurrence of successful 

PTSs monotonically decreased over the last hour (Spearman correlation of means (dots), 

one-tailed, rho= -0.89, p-value= 1.2e-31, n= 231 successful PTSs in 23 trials). This 

suggests that the training stimuli which were successful in the first hour were less often 

or no longer required during the last hour to maintain a high rate of correct motor outputs 

(see average closed-loop learning curve in Figure 5.5). 

5.4 Conclusion 

 Following a footpath over a mountain range is quicker and more energy efficient 

than digging straight through middle. We hypothesize that directing plasticity using 

training stimuli contingent on the motor output is more efficient than blindly forcing 

plasticity, for example, via a large tetanic stimulation or open-loop DBS. Moreover, since 

neuronal activity is continuously plastic, each electrical stimulus and ongoing 

spontaneous activity alter the landscape, and routes cannot be plotted in advance. 

Learning is an ongoing and continuous process. Our training algorithm allowed the 

probabilities of the PTS pool to change, and “solutions” to achieve desired motor outputs 

were explored in real-time. 

 The learning curves increased (Figure 5.5), but success did not approach 100%, 

and some trials showed no learning (Figure 5.4). A more optimal training algorithm may 

exist, although learning may have continued if training was not stopped after 2 hours. 

Using a larger set of possible PTSs could improve success rates by inducing a greater 

range of plasticity; the tradeoff is potentially longer training to find an appropriate 

sequence of PTSs. Different spatiotemporally structured PTSs, e.g. using more 
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stimulation electrodes, could also produce different performance. Furthermore, the 0.5 

maximum criterion on the probability of selecting a PTS allows randomly-applied 

inappropriate PTS to produce setbacks. In addition, the 0.002 minimum may keep 

unhelpful PTSs in the loop. Different optimization rules, such as updating the PTS pool 

with a genetic algorithm, or introducing a PID controller to govern the duration of 

training could improve performance. Future work includes determining the abilities and 

limitations of electrical stimuli to induce neuronal plasticity, optimizing training 

parameters, and applying closed-loop algorithms to achieve multiple simultaneous 

desired motor outputs. 

 For neurological disorders, targeted electrical stimulation of the brain contingent 

on the activity of the body or even of the brain itself could direct neuronal plasticity to 

bypass or accommodate aberrant neural activity. Initial candidate pathologies include 

those with (1) a focal neural source or related pathway at which to insert an MEA for 

electrical training and (2) a measurable physical manifestation from which to gather 

feedback on performance. As an example, to treat movement disorders, such as after 

stroke or with Parkinson’s disease, electrical modification of the basal ganglia could be 

guided by physical measurements of changes in tremor, ataxia, rigidity, dystonia, etc. 

using electromyography. Directly measuring motor output negates the need for context 

and probe stimuli and allows training to be a continuous process. Ongoing afferent input 

from different brain areas would be expected to negate the need for SBS. Re-linking the 

body and the brain with electrical training stimuli would give existing brain mechanisms 

the potential to overcome neurological disorders. 
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CHAPTER 6 
 

FUTURE STUDIES 

 

My ultimate goal was to develop animats that could learn something about the 

environment and/or body given to them. Upon entering the lab, the technology to culture 

neurons for long durations on MEAs, robustly record neural activity, and stimulate an 

MEA’s electrodes was recently achieved. However, the crucial ability to induce and 

detect neural plasticity was missing: methods were needed to determine appropriate 

sensory-motor mappings and training algorithms in order to produce any kind of adaptive 

behavior. Identifying what types of stimulation could induce plasticity and what kinds of 

activity statistics could identify plasticity was the focus of the open-loop experiments 

presented in Chapters 3 and 4. The results from these experiments were next used to 

develop animats that achieved adaptive goal-directed behavior in Chapter 5 and 

Appendix A. Now, network plasticity could be not just induced, but customized, 

suggesting that animats may yet be able to be conceived to behave in interesting and 

intelligent ways. 

This chapter concludes with future directions, written as a guide to students who 

wish to build upon the work begun here. These include using light as an ideal stimulation 

interface with high spatiotemporal resolution in order to create better sensation-to-

stimulation mappings for animats; finding new horizons for embodiment experiments; 

and, following the tangent in Chapter 4, investigating the molecular mechanisms and 

functional rules of changes in action potential propagation. 

 88



6.1 Programmable array microscopy (PAM) to evoke activity in channelrhodopsin-2 

(ChR2) expressing neurons5 

 
Figure 6.0.1  Schematic of programmable array microscopy to evoke channelrhodopsin-2 expressing 
neurons. 
 

 Cortical cells are important for learning and memory, and have been studied 

extensively at the cell and molecular level. On the other hand, little is known about how 

the activity of individual cells combine to produce behavior, learning, and memory. Our 

embodied cultures address this issue by allowing detailed observation of neuron 

population dynamics while the networks are expressing behaviors. However, our 

experiments, and those in neuroscience in general, are limited by the technology available 

to investigate brain cells. In particular, conventional electrodes can record and stimulate 

neurons only at predetermined locations and cannot access neurons apart from the 

electrodes. Subtleties in neuron information processing cannot be observed. An ideal 
                                                 

 
 
5 Submitted to the Japanese Society for the Promotion of Science (JSPS) postdoctoral fellowship for 
international researchers. 
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interface would access such subtleties by recording and stimulating each neuron 

individually.  

 The use of light could provide an ideal stimulator (Fig. 6.1). Additional 

motivation comes from our previous experiment in Chapter 5,  where increasing the 

spatial resolution of stimuli (via lower voltage magnitudes) produced better learning 

results. This allowed electrodes to evoke finer tuned groups of neurons, and thus activity 

could be incrementally modified until the user-defined goal was reached. Further 

improving stimulation resolution is expected to improve learning performance (like 

treating a patient with acupuncture instead of a hammer) and allow more complex goals 

to be reached when integrated with MEA recording. 

 Table 1 compares conventional interfaces with the proposed interface and a light-

addressable electrode interface developed by Takahashi’s lab (Suzurikawa, Nakao et al. 

2007) - red indicates non-ideal properties. As the table shows, the proposed interface is 

the most attractive: an ideal stimulator and the optimal recorder. (An ideal recording 

interface does not yet exist, but high spatial resolution was found not as important as 

temporal resolution in analyzing neuron network activity; interestingly, lower spatial 

resolution of recordings may better improve analysis (Chao, Bakkum et al. 2007).) A 

detailed discussion follows. Takahashi’s lab combined a promising light-addressable 

electrode to stimulate neurons with special imaging dyes to record (Suzurikawa, Nakao et 

al. 2007). However, this technique sacrificed temporal resolution and experiment 

duration. Maintaining high temporal resolution of recordings is crucial because lower 

resolution measurements (firing rates recorded over 100s of milliseconds) were found to 

not adequately depict network plasticity (Chao, Bakkum et al. 2007). Moreover the 

calcium sensitive dyes can interfere with neuron learning 
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Conventional

 
Takahashi Lab

 
Proposed 

Table 6.1 
 

Neuron 
interface 
comparison MEA to stimulate 

and record 

Light addressed 
electrodes + calcium 

imaging to record 

PAM and ChR2 
optical stimulation + 

MEA to record 
temporal < 1 ms < 1 ms < 1 ms Stimulation 

resolution spatial 60 electrodes ~ 20 µm ~ 20 µm 
temporal 25 kHz ~ 10 Hz 25 kHz Recording 

resolution spatial 60 electrodes ~ 20 µm 60 electrodes 
Stimulation artifact yes no No 

Max experiment duration months 2 hours months 

 

 

 

 

 

  

 The proposed method consists of optically evoking neurons expressing 

channelrhodopsin-2 (ChR2), a light activated ion channel found in algae6. ChR2 can be 

inserted into the DNA of mammalian neurons using lentiviral vectors. High intensity blue 

light activates the channel and evokes neuron activity. Programmable array microscopes 

(PAM) use an array of mirrors (up to 2 million; Texas Instrument’s DLP originally 

developed for televisions) to pass a light beam onto addressable locations. PAM could 

evoke ChR2 expressing neurons in  (1) any instantaneous pattern with  (2) a spatial 

resolution of a neuron cell body and (3) temporal resolution of an action potential, (4) 

continuously, and (5) without electrical artifacts blanking recordings. In conventional 

MEAs, naturalistic stimulation cannot be applied while recording since stimulation 

artifacts would completely blank most recordings; using light to stimulate thus also 

increases the fidelity of electrode recordings. ChR2 expression persists for months 

allowing long-term experiments without photobleaching or phototoxicity. Both PAM and 

ChR2 technologies are relatively new and have not been used together. 

 Both the proposed PAM hardware and light-evoked mammalian brain cells 

expressing ChR2 have been used independently in other labs (Hanley, Verveer et al. 

1999; Boyden, Zhang et al. 2005). Unknown is how networks of neurons will respond to 

                                                 

 
 
6 channelrhodopsin.org 
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patterned optical stimulation. Neuron activity causing plasticity is accepted as fact, and 

therefore optical stimulation will very likely affect neuron dynamics. If not, then 

understanding the difference between optical and electrical stimulation would be useful 

for physiologists. The biological brain was designed to control a biological body, and 

behaving within an environment is considered a necessity for a neuron network to 

function at its fullest (Pfeifer and Bongard 2007). Our embodiment experiments appear 

promising, allowing detailed analysis of cell and network dynamics and already 

demonstrating simple behavior and learning. The proposed interface will be a powerful 

tool to advance these experiments and neuroscience in general by providing better 

experimental access to neuron networks and the brain. 

6.2 Future embodiments 

 Chapter 2 is entitled Removing some ‘A’ from AI, but adding back some of the ‘I’ 

from AI may likewise benefit neuroscience and our embodiment experiments. As 

discussed in the Embodiment and Intelligence section of Appendix A and elsewhere 

(Varela, Thompson et al. 1993; Pfeifer and Bongard 2007)], the fields AI and cognitive 

science began by assuming the brain manipulated concepts in order to produce cognition, 

a stance referred to as Good Old Fashioned AI (GOFAI). However, now becoming more 

accepted by scientists is the hypothesis that intelligence is not disembodied, but 

intimately entwined with the mechanics of the body and an interaction with the 

environment.  

 GOFAI has parallels in present-day neuroscience where many studies focus on 

“representation”, in particular the correlation of brain areas to mental processes as is done 

with many fMRI studies. However, correlation does not imply causation. In what Terry 

Sejnowski described as the “knee-jerk method of neuroscience” at a plenary talk for the 

EMBS Neural Engineering Conference 2007 in Hawaii, sensory information gets relayed 

through the thalamus to a primary sensory cortex, then to secondary sensory cortex to 
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frontal cortex to premotor cortex to motor cortex and finally culminating as muscle 

movement. This is true but vastly neglects the most prominent feature of the brain: about 

1% of the synapses in cortical tissue make up this feedforward relay system, while the 

rest comes from feedback signals from a diverse array of brain areas. “Representation” is 

but an abstract concept (as with GOFAI) and not very descriptive of the underlying brain 

mechanics, which uses the the brain’s ongoing activity as a context to continually 

filtering relevant information, at vast range of spatial and temporal levels. 

 Following the recent trends in AI may lead neuroscience into more productive 

territories. The roboticist Rodney Brooks pioneered the use of robotics in AI and the idea 

to test algorithms with such real-world embodiments. He gives an interesting focal point 

for experiments: study the process of “abstraction” (filtering) instead of the process of 

“search”. Search in his sense is the matching of sensory input into a discrete set of 

outputs, while abstraction is the filtering of relevant sensory input. The later is a process 

he considered far more relevant/important for artificial or biological autonomous agents 

to successfully behave, where the real world is filled with possible sensory information 

that is often incomplete and noisy.  

 While this dissertation provided the important steps that neural plasticity can 

occur in our preparations (Chapters 3 and 4) and can be directed with the feedback 

electrical stimulation contingent on behavior (Chapter 5 and Appendix A), the capacity of 

the neuronal networks to achieve multiple and complex behaviors is not known. 

Furthermore, the goal activity in Chapter 5 would be considered solving a “search” 

problem by Brooks. Investigating the ability of future animats to instead “filter” sensory 

information may lead to better insight into how neural networks and brains use 

environmental interaction in their computations.  

 As an example experiment to discriminate patterns, a closed-loop algorithm could 

be created to give a continuous naturalistic stimuli, possibly using the PAM and ChR2 

from the previous section. Relevant and extraneous sensory information could be 
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constructed by adjusting the frequency of occurrence of one (then more later) stimulation 

pattern contingent on neuron activity recorded at a set of electrodes. The network’s 

ability to filter information could be judged by the network’s ability to identify the 

contingent pattern, possibly by comparing the frequency of occurrence of the contingent 

pattern versus that of other non-contingent control patterns. Further exploring the AI 

literature may lead to other productive approaches. 

6.3 Explaining dAPs 

 Chapter 4 provided experimental evidence of plasticity of action potential 

propagation. Further elucidating the cellular mechanisms involved would help make a 

more convincing argument of its role in neural computation. Possibilities include non-

uniform changes in ion channel properties (Ganguly, Kiss et al. 2000), in the geometry of 

varicosities and branch points (Goldstein and Rall 1974) or axonal arbors, in the 

proximity of glia (Ishibashi, Dakin et al. 2006), and in lipid membrane composition 

(Bedlack, Wei et al. 1994). Moreover, besides the gradual shifts in latency described in 

Chapter 4, directly-evoked action potentials (dAPs) could appear and disappear (Fig. 6.2) 

and also jump to new latencies over multiple milliseconds (Fig. 3.4). Do these 

phenomenon arise from different mechanisms? A better characterization would make 

propagation plasticity better accepted and also provide novel targets for currently 

intractable pathologies. For example with schizophrenia, the coordination between 

different brain areas goes haywire, which could arise from a disorder in the temporal 

control of propagating action potentials. For neuroscientists, propagation plasticity offers 

a new perspective on neuron computation, learning, and memory in the brain. 

Theoreticians and investigators of artificial intelligence may consider new inquiries into 

the computational ability of the brain and into the engineering of artificial control 

systems. 
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 Determining what causes a propagation latency to increase versus decrease would 

help computational neuroscientists and researchers of artificial intelligence to create new 

algorithms and explore the computational capacity of the brain in fundamentally new 

ways (Milton and Mackey 2000; Izhikevich 2006). Patterning axon growth over a series 

of electrodes (Suzuki and Yasuda 2007) or nanowire transistor recording devices 

(Patolsky, Timko et al. 2006) and/or optical imaging(Kawaguchi and Fukunishi 1998) 

could expose the discrimination, resolution, and possible morphological correlates of 

propagation plasticity. Further patterning and selectively stimulating afferent input could 

expose an input/output function to changes in propagation. Repeating experiments with 

various antagonists of molecules involved in long-term plasticity could expose the 

underlying cellular mechanisms. 

 

 

Figure 6.0.2 Raster plot of evoked responses detected on one electrode in response to repeated 
stimulation on another electrode. 
The red bars indicate periods where the directly-evoked action potentials (dAP) at 5 ms latency mostly 
disappear. 
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APPENDIX A 
 

MEMOIRS OF A CYBORG ARTIST7 

Here, we and others describe an unusual neurorobotic project, a merging of art and science called 
MEART, the Semi-living Artist. We built a pneumatically-actuated robotic arm to create 
drawings, as controlled by a living network of neurons from rat cortex grown on a multi-electrode 
array. Such embodied cultured networks formed a real-time closed-loop system which could now 
behave and receive electrical stimulation as feedback on its behavior. We used MEART and 
simulated embodiments, or animats, to study the network mechanisms that produce adaptive, goal-
directed behavior. This approach to neural interfacing will help instruct the design of other hybrid 
neural-robotic systems we call hybrots. The interfacing technologies and algorithms developed 
have potential applications in responsive deep brain stimulation systems and for motor prosthetics 
using sensory components. In a broader context, MEART educates the public about neuroscience, 
neural interfaces, and robotics. It has paved the way for critical discussions on the future of bio-art 
and of biotechnology. 
 
 

6.1 Introduction 

 

 “The most beautiful thing we can experience is the mysterious. 

It is the source of all true art and all science.” – Albert Einstein, 1931 

 

 The mind’s emergence from the complex interactions of a brain is one of the 

greatest mysteries. Its contemplation has founded sciences and produced countless 

cultural artifacts in literature, film, and the arts. Here we present our own artifact, being a 

mixture of biology and technology, of metaphor and physicality, and of art and science, 

to question anew our notions and to seek a few answers. 

                                                 

 
 
7 Manuscript to be submitted as: 
Bakkum DJ, Gamblen P, Ben-Ary G, Chao ZC, Potter SM, “Memoirs of a cyborg artist”, Invited 
submission for inaugural issue of Frontiers in Neurorobotics, 2007 
   See also: 
Bakkum DJ, Chao ZC, Gamblen P, Ben-Ary G, Shkolnik A, DeMarse TD, Potter SM, “Embodying 
cultured neurons with a robotic drawing machine”. IEEE EMBS Conf. Lyon, 2007 
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Figure A.1 MEART’s body. 
Two arms cooperated to grip a set of colored pens and move them across a sheet of paper, according to 
neural activity in a culture dish that was up to 12,000 miles away. A CCD camera aimed at the drawing 
provided sensory feedback to the neuronal network. (Picture by Steve Potter.) 
 

 We built a robotic drawing machine and designed algorithms for it to converse 

with a network of cortical neurons grown in culture over a multi-electrode array (MEA), 

a cyborg named Meart (Multi-Electrode Array aRT) (Fig. A.1). The apparatus consisted 

of living neurons (Fig. A.2) in a laboratory connected by internet to a pen-wielding metal 

and plastic arms behaving in gallery exhibitions around the world. Neuronal action 

potentials recorded by an MEA determined movement, and video images of drawings 

determined the subsequent feedback of electrical stimuli delivered to the neurons. Artists 

and scientists collaborated to construct Meart, a concept stemming from prior artistic 

expressions of and scientific inquiries into hybrid bio-robotic technology, or “hybrots”. 

Our common ground was to explore the essence of creativity and intelligence. With an 

MEA, the underlying neural network mechanisms, including the manifestations of 

learning and memory, could then be quantified,. In neuroscience, a large gap exists 

between in vivo behavioral studies of learning and memory, and in vitro studies of 

cellular plasticity. With Meart, behavior and learning could be observed in concert with 
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the detailed and long-term electrophysiology available in vitro (Potter and DeMarse 

2001b). We sought whether Meart could learn something about the environment given to 

it, and if an act of creativity could emerge. 

 

 
Figure A.2 MEART’s Brain. 
(Above) A multi-electrode array culture dish. (Below) A culture of ~50,000 neurons and glia from 
embryonic rat cortex, growing in a multi-electrode array and forming a dense network 1-2 mm across. 
Fifty-nine 30 µm electrodes spaced at 200 µm intervals connect a few hundred of the network’s neurons to 
the outside world, by allowing their activity to be extracellularly recorded or evoked by electrical 
stimulation.  
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 Here we present, along with artistic and scientific dialogs, progress on 

engineering Meart’s hardware, software, and wetware. In experiments, we applied 

patterned training stimuli (PTS) contingent on behavioral performance in order to achieve 

the goal-directed behavior of drawing geometrical shapes. The transformation from 

visual sensation into the delivery of a PTS was fixed, and while neural plasticity 

occurred, successful behavior did not. Prior knowledge of network connectivity was 

needed to determine the appropriate transformation. However, we modified the training 

algorithm using a living network connected to a simulated robot (an animat). Instead of a 

fixed transformation, behavioral performance was used to continuously discover and 

refine effective sequences of PTSs, and in a preliminary experiment, an animat repeatedly 

learned to draw in different desired directions. Encoding more detailed sensation and 

motor output could lead to increasingly complex and interesting behaviors. What 

questions would be posed if Meart was eventually deemed to be intelligent? 

A.2 Methods: making the semi-living artist 

 Meart was comprised of living neurons, recording and stimulating electronics, 

robotic drawing arms, electronic control circuits for a pneumatic actuation system, a CCD 

camera to feedback images of drawings, and software communicating between the 

neurons and robot over the internet (Fig. A.3). The simulated animat was made of living 

neurons, recording and stimulating hardware, and a simple virtual embodiment on a 

computer. It was used to develop protocols in the intervals between Meart exhibitions. 

Three major topics needed to be addressed to embody the cultured networks:  

 A. The care and feeding of the biological brain;  

 B. The hardware (or software) implementation of the body; and  

 C. The sensory transformation, motor transformation and training algorithms. 
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A.2.1 Preparing and caring for Meart’s brain 

 Cell culturing and electrophysiology was done as reported in Appendix G. 

Cultures matured for 3 weeks prior to experimentation. 

 
 
 
 
 
 

 
 
Figure A.3 Schematic of the bio-robotic software algorithms and hardware, i.e. Meart’s components. 

Commanding movement. The Center of Activity (CA) of neuronal action potentials was calculated 
from 100 ms of responses after a probe stimulation (8x8 box representing the MEA; increasing firing 
rate is black to white). Animat movement was instructed from a transformation (T) of the CA into a 
Population vector. The X,Y movement command was sent over the internet (yellow arrows) to the 
robotic arms every 4 sec. Movement. The robotic drawing machine consisted of 2 perpendicular arms 
actuated by braided pneumatic artificial muscles, allowing independent retraction (R) or extension (E) of 
the left (EL/RL) and right (ER/RR) arms within approximately a 30 cm by 30 cm workspace. Similarly, 
smaller muscles pressed the pens to the paper when at the target location (T), or optionally to trace 
movement trajectories (M). The supply line from an air compressor was split between 3 pressure 
regulators (green circles, 1 for each arm and 1 for the pens). 24 volt AC reticulation valves (light blue 
rectangles) controlled muscle air pressure. Joint encoders (purple arrows; 10k potentiometers) tracked 
arm location, and a BASIC Stamp microcontroller (BS2SX-IC) modulated the relay valves to provide 
accurate movement. Sensory feedback. A CCD camera located above the workspace captured an 
image of accumulating markings every 5 min. The images were pixelated into 8 bit grayscale values 
(isomorphic to the electrodes on the MEA) and sent back over the internet to command feedback 
stimulation of the neurons. Training. Animat behavior was compared to the goal behavior to 
determine the application of training stimulation. Feedback stimuli could change neuronal activity, in 
turn varying subsequent animat movement and sensory feedback, thus forming a closed-loop system. 
TCP/IP sockets were used to communicate between the drawing machine and the neurons, which were 
often located on separate continents. 
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Figure A.4 Life-support system for MEART’s brain. 
 The microscope used for observing neural cultures in long-term experiments was wrapped in insulation 
and outfitted with systems for control of temperature and carbon dioxide levels to maintain normal cell 
culturing conditions. 
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Figure A.5 The body of Meart at the Moscow Biennale and drawings. 
(Top) Metal and plastic arms rest on an 3x3 meter table. Plastic tubes fed pressurized air to pneumatic 
muscles. A CCD camera hung from the ceiling (not shown) captured images of the drawing. (Bottom 
right) Development of Meart.  New York (July 2003). Video feedback was used for the first time to 
close the loop, but a “scribble” mode in effect randomized movement and pen placement. Bilbao (April 
2004) Removing scribble demonstrated the arm moved between 4 points only, via 8 movement 
directions corresponding to the possible combinations of muscle activation. Pen placement remained 
random. Melbourne (June 2004) Joint encoders were added to read in arm positions and command 
movement in a feedforward manner: muscles were flexed for a duration proportional to the distance to 
reach the commanded location. Interior positions could be reached as in New York, however accuracy 
was low. Pen placement remained random. Moscow accuracy test (January 2005) A Basic STAMP 
microcontroller implemented feedback control of arm positions to achieve accurate movement. Outside 
pens were commanded down when at the target location. The middle pen was commanded down during 
arm movement. 
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A.2.2 Meart’s body 

 Artistic design:  The Meart data presented here were collected during the First 

Moscow Biennale of Contemporary Art at an exhibition entitled “art_digital_2004: I 

Click, Therefore I Am”, where Meart’s goal of filling a square at the center of the 

drawing workspace was inspired by the Russian artist Kazimir Malevich’s “Black 

Square” painting. From the art_digital_2004 program, “The action of Meart observing 

and drawing the Black Square explores the fundamentals of visual creativity and the way 

we communicate with the world through images, symbols and their underlying 

meanings.” This goal behavior was a simplification of the mappings used during our 

previous exhibitions, to improve experimental controllability. In a previous Meart 

exhibit, we added an element of interactivity by having Meart draw photographed faces 

of gallery attendees, entitled the “Portrait Series”. As with images from the drawing, the 

faces were pixilated and Meart’s goal was to shade the drawing to match the grayscale 

pixel values. To give viewers a better understanding of Meart’s brain, and the lab in 

which it was studied, live images from the laboratory, a close-up of the MEA, and a data 

display of neural activity were projected onto the exhibit walls. This, along with 

computers displaying the movement and feedback data streams, made the distributed 

nature of Meart more apparent.   

 Meart’s body was designed to closely resemble organic forms in function and 

aesthetics. Shapes were based on bones (influenced by the photographer Andreas 

Feininger (Feininger and Schlatter 2003)), and sanded Perspex offered an elegant look 

that referred to a skeletal structure. Similarly, the pneumatic muscles paralleled biological 

muscles. The design had no covering, never attempting to hide or deny the underlying 

technology. Analogously, the complex biology of the rat was reduced to a few thousand 

neurons and glia, grown in vitro. Meart was thus a symbol of the reductionist nature of 

science and of the stripping down to expose the physical substrates of the creative process 
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(a parallel to Malevich’s stripping of conscious thought in an attempt to expose pure 

creativity in his work).  

 Below, Emma McRae (McRae 2004) paints a verbal picture of MEART: 

“1. Introduction to a Cybernetic Entity 
The soft popping sounds of air releasing, of the breaths taken between 
movements as the muscles contract and release on the mechanical 
structures at work on the table in the centre of the room, reach me 
first as I walk down the dark corridor in the Australian Centre for the 
Moving Image. I can see the plastic and metal arms and the tubes 
connected to two rows of valves – regular black garden hose valves – 
highlighted by a spotlight, that seem to create the movement of the 
arms. These arms (the creators call these structures arms, presumably 
because they hold pens and draw as human arms involved in drawing 
do) are busy drawing lines in apparently random directions with three 
different coloured pens on a large sheet of paper on the table. Behind 
the arms is a computer screen showing a photo of a man’s face, a 
pixellated black and white image, a scrolling text box, and some 
graphs. The only other thing on the table is a camera which looks 
down over the arms at the picture they’re drawing. A large screen on 
the wall behind the table shows a graph, a representation that looks 
like a glacial landscape and is constantly changing form, its peaks and 
troughs rising and falling in random motion, depicting varied 
intensities coloured in blue, yellow, white, and red. There are two 
smaller screens in the opposite corner of the room that intermittently 
display an image of a science laboratory, a close up of a petri-dish, a 
screen of 64 ECG-like blue tracking graphs, and a microscope view of 
cells.” 

 

 Movement - The drawing machine consisted of two perpendicular, rigid, jointed 

arms (aluminum & acrylic Perspex) hinged at their ends to a 3 m x 3 m table actuating 

the X and Y positions of a group of pens over a sheet of paper (Figs. A.1 and A.5). 

Similar to biceps and triceps, McKibben braided pneumatic artificial muscles could 

contract individually, allowing independent flexion or extension of each arm within 

approximately a 30 cm by 30 cm workspace. Similarly, activation of smaller muscles 

pressed pens to the paper; a dark pen marked target locations, while an optional lighter 

colored pen traced the movement trajectories. The supply line from an air compressor 

was split between 3 pressure regulators, 1 for each arm and 1 for the pens, to isolate 

pressure fluctuations. Air pressure and thus arm and pen movement was controlled by 

opening and closing 24 volt AC pneumatic valves. Pneumatic muscles, while offering a 
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high power to weight ratio, produce nonlinear motion difficult to predict. Therefore, arm 

location was tracked using joint encoders (10k potentiometers), and a BASIC Stamp 

microcontroller (BS2SX-IC) modulated valve opening to provide accurate movement as 

commanded by the living network (Fig. A.6). 

 

 
Figure A.6 Accuracy test of the robotic drawing machine. 
Movements between 7 locations were commanded 200 times in random order. A dark pen marked the 
target locations, while an offset lighter colored pen traced the movement trajectory. 3 cm x 3 cm resolution 
targets could be reached within 4 sec and a 1 cm x 1 cm target around 10 sec (not shown). A photograph of 
Malevich’s “Black Square” painting can be seen projected on the gallery wall. 
 

 Sensory feedback - A digital camera located above the movement workspace 

captured images of the drawing in progress. Fluctuations in light from shadows and 

clouds could strongly influence the image quality. Therefore, ambient and natural light 

sources were eliminated except for bright spotlights on the drawing itself. Image 

inhomogeneity was corrected by subtracting from the captured images an image of the 

sheet of paper when blank, prior to a drawing. The accumulation of markings was 

recorded every 5 min by retracting the arms out of view and capturing an image.  

 Internet communication - TCP/IP sockets were used to send motor commands to 

the drawing machine and return images of the progression of a drawing for feedback. To 

reduce internet bandwidth, 8 bit grayscale values of an 8 x 8 grid of pixels (isomorphic to 

the electrodes on the MEA) were sent back over the internet to command feedback 

stimulation of the neurons.  
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A.2.3 Software development and Experimental design 

. Motor transformation - For an animat to behave, sequences of neuronal action 

potentials need to be transformed into body movements, but understanding how such 

sequences encode information is a subject of much scientific inquiry. Population vector 

coding is a candidate motor mapping found to occur in the motor cortex (Georgopoulos 

1994), premotor cortex (Caminiti, Johnson et al. 1990), hippocampus (Wilson and 

McNaughton 1993), and other cortical areas: the vector sum of firing rates of a group of 

broadly tuned neurons taken together provide an accurately tuned representation (e.g., to 

a preferred direction of arm movement). We found that a related population calculation of 

the Center of neural Activity (CA, analogous to the center of mass) could reliably 

quantify neuronal network plasticity on a MEA by including spatial information, whereas 

measuring firing rates alone could not (Chao, Bakkum et al. 2007). Therefore, animat 

movement was calculated from the CA of 100 ms of responses after each probe stimulus: 
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 Simulated animat: 
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 The CA is the vector summation of action potentials at each electrode e (Ne) 

weighted by the spatial location of the electrode (We). The transformation, T , is a 

normalization matrix found prior to the closed-loop experiment to offset and scale the 

CAs (in electrode space) such that  animat movement could produce a uniform 

distribution and the ability to place pen marks throughout the workspace (Meart) or move 

in any direction (simulated animat). Achieving a goal for either Meart or the animat 

required shifting the distribution of normalized CAs. Therefore, plasticity results were 

comparable. The responses to 1 Hz stimulation on a probe electrode were averaged 

ˆ
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between consecutive movements (every 4 sec or 1/4 Hz) and used to command Meart pen 

location, while the responses to 1/4 Hz stimulation on a probe electrode were used to 

command the simulated animat. A single repeating probe electrode was used throughout 

an experiment. 

 Movement could be commanded by absolute location (Meart) or in relative 

increments (simulated animat). For each case, the activity was normalized to equally 

distribute the distribution of CAs prior to experiments. For absolute location, this set the 

possible pen locations to be distributed throughout the whole workspace. For incremental 

movement, this set the possible movement directions to be distributed throughout 360º. 

Absolute pen location was used with Meart to avoid movement exceeding the workspace, 

which would introduce discontinuities in behavior. Incremental movement (eqn. 2) was 

later used for the simulated animat as workspace size was not physically limited, and we 

were more interested in direction of movement than position. 

 Training and sensory feedback – Successful behavior was determined from 

comparisons between consecutive feedback images. If a larger proportion of markings 

occurred inside the target geometrical area than outside, behavior was considered 

successful. Otherwise, a change in the probe response was desired. For training, plasticity 

was induced by repetitive stimulation of paired electrodes, termed Patterned Training 

Stimulation (PTS). A PTS was constructed by pairing the probe electrode with another 

active electrode (one that evokes network responses) 20 ms later, repetitively stimulated 

for 3 sec with an inter-pair-interval of 100 ms. 

 For the simulated animat, the training algorithm was modified in 2 ways. A pool 

of candidate PTSs was formed by pairing the probe electrode with other electrodes (NE = 

58) and inter-pulse intervals {-80, -40, -10, 10, 40, 80 ms} (NPTS = 58*6). The 

probabilities of choosing a given PTS were initially uniform and increased or decreased 

based on whether subsequent animat performance was successful or not. This allowed an 

iterative search for an appropriate training "solution" to direct neuronal plasticity. 
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Second, plasticity can arise from both the PTS stimuli and ongoing spontaneous activity 

occurring between probes. In a model network, a random stimulation stabilized neural 

synaptic weights (Chao et al., 2005). Therefore, when animat behavior was successful (no 

PTS application), a random background stimulation was used between probes such that 

the plasticity accumulated from a series of PTSs was maintained. The goal of the 

simulated animat was now to learn to move within ± 30° of a goal angle. 

A.3 Results: 

 Meart was first exhibited in August 2002 at the Biennale of Electronic Arts Perth 

(BEAP). However, the precursor to Meart, Fish & Chips, was shown in 2001 at Ars 

Electronica in Austria. For this ground-breaking bio-art exibit, SymbioticA Research 

Group created Meart’s drawing arm and used it as the embodiment of a semi-living artist. 

This was called Fish & Chips because an acute goldfish brain slice was maintained and 

electrically interfaced on a silicon chip, and used as the controlling “brain” of the arm. 

From the collaboration between SymbioticA in Perth and the Potter lab in Atlanta, Meart 

was born: the first robot controlled by a network of neurons in a culture dish, with a 2-

way interface via a multi-electrode array. To the existing drawing arm, we added a 

sensory system, where images from a CCD camera were translated into electrical stimuli 

for the cultured network. It was also the first neurally-controlled robot whose brain lay 

far away from its body, with the internet in some ways serving as a very long nerve 

connecting brain to body. It was the first physical embodiment for a cultured network that 

remained continuously connected for extended periods of several days, creating 

numerous drawings during exhibitions.  

 Early exhibitions were devoted to debugging the communication software and 

robot mechanics (Fig. A.5), and the most recent exhibitions allowed experimentation. We 

noticed early that continuous sensory input over the course of days tended to reduce the 

number of spontaneously occurring network-wide bursts. This led to a hypothesis that 
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other types of bursting, such as epileptic seizures, might be treated by continuous multi-

electrode stimulation. We quantified the short term “quieting” effects of distributed 

multi-site stimulation on cortical cultures (Wagenaar et al., 2005b), and we are now 

pursuing the longer-term, or homeostatic effects of continuous stimulation that comes as 

a consequence of embodiment. 

 For the data presented here, Meart’s behavioral goal was to draw a solid 12 cm x 

12 cm square within the center of its 30 cm x 30 cm workspace. The simulated animat 

was used to test training algorithms between Meart exhibitions in order to improve 

behavioral performance. The simulated animat’s behavioral goal was to incrementally 

move within ±30° of a desired angle. (Note that this differed from Meart’s goal behavior 

of producing pen markings, commanded by absolute location.) For both Meart and the 

simulated animat, the relationship between changes in neuronal activity and the decision 

whether or not to apply feedback training stimulation were identical, and thus results 

about plasticity and learning were comparable. 

 Meart behavior (unsuccessful), during an exhibition at the M’ARS gallery as part 

of the 1st Moscow Biennial for Contemporary Art, and animat behavior (successful) are 

presented in Figure A.7. Electrical stimulation can be an artificial inducer of neuronal 

plasticity, changing a network’s input-output function. Bi and Poo found that for mono-

synaptically connected cultured neurons firing within a few tens of milliseconds of each 

other, directional spike timing dependent synaptic plasticity occurred (Bi and Poo 1998a). 

Repetitive stimulation of pairs of electrodes in a PTS could therefore cause plasticity in 

shared pathways of neural activation. Fetz and co-workers  (Jackson, Mavoori et al. 

2006) provided supporting evidence of pathway plasticity in vivo: they repetitively 

stimulated a neuron in the primate motor cortex 5 milliseconds after the occurrence of an 

action potential on a different poly-synaptically connected neuron using a chronically 

implanted neural interface. After halting the stimulation, subsequent activity of the 

recorded neuron caused an increase in the firing rates in the vicinity of the stimulated 
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neuron. In this manner, we hypothesized the PTS would lead to potentiation of the probe 

response in the vicinity of the second paired electrode, modifying the CA and population 

vector such that arm movements would approach the target area.  

 
 

 
 

Figure A.7 Plastic changes in Meart and animat behavior.  
Unsuccessful and successful training of goal-directed animat behavior. Meart. Training with predetermined 
patterned training stimuli (PTS) caused a shift in the probability distribution of commanded movement 
directions in 2 experiments (circles, bottom row), but in an uncontrolled manner. The presence of a 
movement bias (see Methods) caused marks to accumulate on a side of the drawing's workspace (CCD 
camera image of the drawing and pixelized feedback), but successful PTS training should shift the 
markings back towards the center (red arrow middle row; black arc bottom row). The probability 
distribution of movement directions during 10 min at the start of 2 hr experiments was subtracted from that 
during the final 10 min, thus allowing negative values (red). Simulated animat. Iteratively updating the 
probability of selecting a given PTS for training allowed an animat to learn to move in multiple 
directions  (circles; see Methods). Desired angles of 0°, 90°, and -45° (black arcs) were applied in 
consecutive 2 hr periods. Successful behavior was considered to be movement within the desired angle ± 
30°. Notice the changes in probability distribution of movement direction were now more likely to be in the 
appropriate direction and more focused than for Meart. 
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 For Meart, the transformation from visual sensation into the delivery of a PTS 

was fixed. For example, if previous movements occurred below the target area, the probe 

was paired with a predetermined electrode at the top of the MEA. While successful 

behavior did not occur (Fig. A.7), neural plasticity did (Figs. A.7 and A.8), suggesting 

training stimuli had the potential to modify behavior. Normalized plasticity was defined 

as the difference in distribution of movement-controlling output (the CAs) in a given 10 

minute period (CAPost) to those of the first 10 minutes (CAPre). It is equivalent to the C/D 

calculation in Equations G.1 and G.2. A value of 1 indicates no change.  

 We concluded that since neurons at different electrodes are connected through 

multiple intermediate neurons and pathways, the effect of a given PTS can not be 

predicted. By using feedback of behavioral performance to select and refine effective 

sequences of PTSs, instead of using Meart’s fixed PTSs, the simulated animat could now 

achieve its goal-directed behavior (Fig. A.7). To demonstrate that the successful behavior 

was a consequence of the biological changes in the neural network and not an artifact of 

the algorithms, the desired movement angle was switched between 3 angles every 2 

hourrs. Even though movement was commanded by absolute location for Meart and 

incremental movement for the animat, training was intended to produce the same effect 

on neural activity: shift the distribution of CAs (and in turn movement angles) towards a 

desired goal direction.   

 The adaptive training algorithm allowed a search for "solutions" to achieve goal 

directed behavior (Figs. A.7 and A.8). Some PTSs may give desired neuronal plasticity 

while others may give the opposite or none. Furthermore, a neural network is 

continuously plastic, and the same PTS may have different effects at different times. The 

training algorithm commanded the application of a sequence of PTSs to produce the 

appropriate neural plasticity for successful adaptation. The learning curve in Fig. A.9 

shows the percentage of successful movements in time; progressively fewer PTSs were 
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needed to maintain the desired behavior, suggesting that the animat was learning the 

appropriate behavior. 

 

 

 

 

Figure A.8 Neuronal plasticity. 
A. An experiment with Meart (data is the same as Fig. A.7, left) run for 2 hours and compared to 1 hour 
probe-only periods before and after. “Normalized change” is a comparison of the movement outputs (the 
CAs) in any 10 min period to those of the first 10 min. At time = 0, the same periods were compared, 
giving no change (a value of 1), and the 10-minute window for subsequent values was stepped by 1 minute. 
The drop below 1 in the control periods meant the variability in CAs decreased, possibly indicating a 
habituation to the stimulation. The addition of training stimuli caused plasticity, but not behavioral success 
(Fig. A.7). B. The experiments with the animat (data is the same as Fig. A.7) run for 2 hours. The adaptive 
training algorithm caused plasticity. For 90°, change hovered around 1 because this was the direction of 
bias, a 60°/360° chance, (see Methods). 
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Figure A.9 Training series and learning curve for the simulated animat. 
Animat learning curve and training history in living culture. (Data from the -45° desired angle trial in Fig. 
A.7.) A. A greater portion of animat movement was toward the desired direction after 30 min. An animat 
moving randomly would give a 16.67% chance that the movement was within the ± 30° range of the 
desired angle (60°/360°). B. Training was designed to select the PTS that induced appropriate neural 
plasticity as determined by subsequent animat behavior. The improved performance at 30 min 
corresponded to an increase in the occurrence of PTS205, whose paired pulse pattern is shown below; its 
electrode location is shown in the 8x8 grid (blue dot; the probe electrode is a black X). A different PTS 
pattern increased the RBS occurrence at 80 min (red). 
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A.4 Discussion 

To view Meart is to witness a collage of contradictions. It offers us the 
actual biological substance of the thinking brain yet out of its biological 
context and system of developmental ordering. What is visible to us as 
Meart in the space of public display is a visualization of and/or window 
into ongoing experiments occurring thousands of miles away in a 
laboratory. The outcomes are neither pre-defined, nor are their 
meanings fully understood. Indeed, any of the aforementioned 
skeptical questions place us as viewers firmly in the midst of vigorous 
scientific debates—a fact underscored by the “real-time” nature of the 
Meart performance.  
 
Like a work of science fiction, Meart stimulates broad inquiry into our 
own lived contexts. However, unlike sci-fi, it is not simply a 
representational text, but also an operational one. It cannot be 
dismissed as a mere illustrative flight of fancy, but must be 
interrogated as a concrete example. Meart is an “operational fiction”--a 
cyborg of representation and reality, art and science, and of course 
flesh and transistor. 
 

-- Paul Vanouse, Excerpt from the Strange Attractors exhibition 
catalogue, Zendai gallery, Shanghai, 2006 

 

 Gallery visitors were first captivated by the aesthetics of the kinetic sculpture. 

Meart’s organic movement and the “breathing” sound of the pneumatic relay valves 

intermittently popping and hissing, not quite structured and not quite random, gave an 

intriguing sense of calm, maybe similar to watching trees sway in a gentle breeze. This 

hinted at the presence of an underlying natural process. A subtle curiosity to figure out 

what was happening turned into apprehension of the uniqueness of this semi-living artist, 

and then intense questions about the nature of the mind, the body, life, and about the 

artistic and scientific messages.  

A.4.1 Art vs Science  

 In our society, art and science usually occupy distinct disciplines. Humans are 

very adept at forming categories, and this is useful in making sense of the world, but 

convention is tailored by culture’s current mood. The wide influence of 15th century 
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artist and scientist Leonardo Da Vinci gives reason for pause and reminds us of the many 

connections between the artistic and scientific. After working on Meart, we have come to 

appreciate that both developing a work of art and making a scientific discovery require a 

curiosity and a passion to find new ideas, an ability to recognize a void in human 

understanding, and the creativity to form a solution. Does this comprise the ‘mysterious’ 

in Einstein’s quote?  

 Of course, tensions exist. The scientist needs to add precision and controllability 

to the project, then objectively document the results, constraints an artist may consider 

extraneous. In turn, the artist needs to conceptualize the project’s importance and perfect 

its aesthetics, details a scientist may consider superficial. However, art and science also 

share the same goal: to expose new perspectives or forgotten truths about the world – to 

expand wisdom. Their presentation differs, but viewing an object of study from multiple 

angles broadens perspectives to new, possibly fertile ground. Exposure to the other’s 

discourse can lead to a clash of cultures, but also a mirror to critically reassess one’s own 

perspective. If nothing else, Meart certainly got artists thinking more about science, and 

scientists thinking more about art. Since 2002, “Meart, the semi-living artist” has 

exhibited at galleries in Shanghai, Moscow, Atlanta, Melbourne, Bilbao, New York, and 

Perth, often as part of larger exhibitions that focused on the use of new technology in art. 

The galleries became laboratories, as exhibitions were nearly the only time when 

experimentation was possible, and the scientific method became performance art. Meart 

has been presented at scientific conferences on artificial intelligence, neuroscience, and 

bioengineering in Switzerland8, Germany9, Italy10, and France11, in addition to numerous 

other lectures to scientists and college students. 

                                                 

 
 
8 50th Anniversary Summit of Artificial Intelligence, Monte Verita, Switzerland, 9-14 July 2006 
9 Embodied Artificial Intelligence, International Seminar, Dagstuhl Castle, Germany, July 7-11, 2003 
10 European School of Neuro-IT and Neuroengineering, Genova, Italy, June 13-17, 2006 
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A.4.2 Intelligence and embodiment 

 The desire to breathe life into sculpted clay, or today into silicon microchips, has 

been around for thousands of years (www.a-i.com ; (Kac 1997)). This desire in part 

formed the scientific fields of aritificial intelligence, cognitive science, and robotics. 

Their inquiries into the nature of intelligence began in the middle of the last century 

without a concern for its substrate: intelligent thought was considered the manipulation of 

abstract concepts, synonymous to how digital computations could be run on any manner 

of Turing machine. Digital computers (computers used to be humans who computed) 

have accomplished impressive feats, solving equations and defeating chess champions by 

relaying bits of information through discrete logic gates within nanoseconds. However, 

intelligence has not yet been attributed to computers or the robots they have been used to 

control. Tasks trivial to humans have proven difficult for computers, such as adaptation, 

multitasking, pattern recognition, fault tolerance, etc. This is likely due to significant 

differences in computational implementation, with brains using massively parallel 

processing, feedback loops on many scales, and relay switches (neurons) that learn and 

change function (Potter 2007). Digital computers were predicted to revolutionize 

calculators and the control of traffic lights. They did that, but obviously have embedded 

themselves in almost every aspect of our modern lives and technology. A better 

understanding of biological intelligence would have its own exceedingly unimaginable 

impact. 

 Now becoming more accepted by scientists is the hypothesis that intelligence is 

not disembodied, but intimately entwined with the mechanics of the body and an 

interaction with the environment (Varela, Thompson et al. 1993; Clark 1997; Pfeifer and 
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Bongard 2007). The act of walking combines roles for neural signaling, proprioceptive 

feedback, the spring tension of muscles, the friction of shoes contacting pavement, and 

gravity to assist leg swing: both our brains and bodies were designed to take advantage of 

the physics in the world. With Meart and also biological movement, the presence of 

friction improved precision and stability by damping overshoot. Meart's muscles and 

other nonlinear components were not considered negatives, and our experiments tested 

the neuronal network's ability to learn the dynamics of its body to achieve goal-directed 

behaviors. 

 So Meart is embodied and situated in the real world. Does Meart manipulate 

abstract concepts of the external world in its small brain of a few thousand neurons? We 

doubt it, agreeing with the anti-representationalist stance Neil Manson and his 

interpretation of our work, whether the cultured network is embodied in a simulated 

neurally-controlled animat or an actual robot (Manson 2004b): 

“Anti-representationalist theorists propose an alternative model: an 
embodied agent conception of cognition (Varela, et al., 1991; Franklin, 
1995; Clark, 1997). On this conception the creature is viewed as part 
of the causal flux of its environment. Its success in satisfying its needs 
depends upon its competence in shaping its trajectory through the 
environment. Successful action requires creatures to use the 
information present in their environment (i.e., the causal regularities 
that actually obtain in their environment). This does not require the 
formation of an internal representation of the environment, it simply 
requires the creature to stand in the right kind of causal relations to its 
environment. Cognition on this view is an embodied, situated affair.” 

“The NCA (neurally-controlled animat) experiment has it background in 
this model of cognition. Earlier, I talked of the cognitive aspirations of 
the Potter Group. This can be read in two ways. If we assume the 
traditional model of cognition, the NCA methodology will only be of use 
for cognitive neuroscience if the cluster of neural cells gives rise to 
internal representations of the virtual environment. If we reject this 
model and situate the NCA methodology in its proper home—artificial 
life and embodied-agent AI—the cognitive aspirations look quite 
different. Some of the explananda of cognitive neuroscience (e.g., the 
brain’s role in learning, adaptive behaviour, and linking perception and 
action) are amenable to embodied-agent modelling, and this is exactly 
what the Potter Group seem to be doing with the NCA experiment. On 
this second interpretation it need not be assumed that the neural cells 
subserve internal representations of the objects in the artificial world,”  
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 A natural extension is the use of external tools to scaffold intelligence (Clark 

1997). People have learned to extend memories with notebooks, voices with cell phones, 

vision with microscopes, and more. The intelligent task of multiplying large numbers 

often combines cognition with a pencil and paper. The distinction between technology 

and biology in ‘being human’ is becoming more tenuous (Clark 2003). Many humans 

now live symbiotically with heart pacemakers and cochlear neural interfaces, and extend 

life spans with medicine. Meart continues this conversation and further questions the 

body-space of living agents by including the internet as an ‘extended nervous system’: its 

biological brain and artificial body were often located on different continents. 

 On the other hand, behavior is constrained by the limitations of the brain and the 

body. With Meart, movement was confined to a 2 dimensional plane and constrained by 

the machine's speed and accuracy. The choice of how to map neuronal activity into 

motion and sensory feedback into electrical stimuli constrains which neuronal plasticity 

mechanisms could be observed behaviorally. This can be an advantage if investigating an 

individual mechanism or a disadvantage by limiting the available neuronal computational 

capacity. 

A.4.3 Nature of art and being an artist  

  Meart has many of the characteristics of a “real” artist.  It lives, it dies, it leaves 

behind a body of work for others to contemplate, but can rat neurons and a mechanical 

body be labeled an artist? Maybe Meart is disqualified by being manmade. However, 

fillings for cavities in teeth and artificial hips make people part manmade, but no less 

human. Meart would have to be disqualified in some other sense. Does it possess 

sufficient creativity and intelligence to produce a work of art? Maybe not, but if so, 

would this suggest art is not solely a human endeavor; have we made an artist?  If it 

possesses intention, maybe we have infringed on its intellectual property rights when 
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drawings were purchased by a gallery as discussed by Hughes (Hughes 2007) (Fig. 

A.10).  Will the training algorithm enslave biology in order to steal from it, or are such 

goals natural: does the body enslave the brain in order to live, by demanding it learn how 

to find and eat food? 

 

 

 
 
Figure A.10 Does Meart create valuable art?  Meart drawing and notes from an early accuracy test. 
This and four other drawings were purchased by a museum in Spain (MEIAC, Museu Ibero Americano de 
Arte Contemporânea) for their permanent collection. 
 

 Of course, Meart is a primitive construction, and much scientific inquiry remains 

to be done. But the continued merging of biology and technology give substance to such 

questions. The answers given for the potential offspring of the Meart project may be 

more controversial. For now, the tangible debate centers on what is the creative output: 

the drawings, the machine (if so then why not the brain?), a performance piece, 

conceptual art, not art because it was infected by science, or the system as a whole. 
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A.4.4 Fear and the future 

"Within thirty years, we will have the technological means to create 
superhuman intelligence. Shortly thereafter, the human era will be 
ended."  
Vernor Vinge -- 1993 essay "The Coming Technological Singularity" 

 

 After addressing viewer’s typical first questions during exhibitions: ‘Is it alive?’, 

‘Is it thinking?’, ‘Is it creating art?’ (‘Partly.’, ‘That is the scientific question.’, ‘What do 

you think?’), a next question is often “Will this turn into Terminator II?”, a robotic 

harbinger of the apocalypse in a doomsday movie. One of the goals of Meart is to provide 

a public forum for education and dialogue to address the “fear of the unknown” and to 

critically examine the paths to be paved by biotechnology: living with the semi-living, 

becoming the semi-living as we incorporate more technology into our bodies and lives. 

Further understanding biological intelligence is expected to improve artificial intelligence 

(Bakkum, Shkolnik et al. 2004b; Potter 2007), but Meart remains rudimentary, and as 

mentioned above, digital computers and robotics lag behind the capabilities of biological 

agents. 

 The ethics of any technology lie not in the technology itself, but in how it is used. 

For example, nuclear energy can both level cities and create a nuclear winter or power 

cities and create life. Plague bearing rats themselves have now become indispensable 

tools to advance medical technology. An understanding of how networks of neurons 

process information and how they can be best interfaced to achieve goal-directed 

behavior could influence future neural prosthetics for sensory deprived or paralyzed 

patients. Currently, prosthetics are being developed to restore hearing, vision, motion and 

even anatomical parts of the brain itself (Berger and Glanzman 2005). Will giving a bit 

back to those who have lost outweigh potential negatives and sacrificed animals? 

 More immediate are concerns about the continued melding of biology and 

technology and the role humans will have in creating life and death, especially if ‘semi-

living’ agents ever learn human qualities: intentionality, memory, irony, interpretation, 
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creativity, etc. Moreover, the use of biology as an artistic pallet shifts art from imitation 

of nature to one that subsumes nature in its expression: partly alive artwork. Meart 

required constant care and attention. During the 2002 BEAP - Biofeel exhibition at PICA 

in Perth, Meart stopped moving when the neuronal culture died from insufficient 

environmental control, since improved (see Methods). The gallery went silent with the 

sudden realization that Meart had been somehow alive. The implications of such 

technology to manipulate life had been presented through the irony of a death, and 

highlighted the need for compassion and a greater understanding of life. 

A.4.5 Conclusion 

 Meart and other hybrots provide a platform to continue philosophical and begin 

experimental inquiry into the fundamental makeup of intelligence and existence. Our next 

step is to apply the algorithms developed with the simulated animat to control the 

drawings of Meart, creating a real-world biologically-based agent exhibiting goal-

directed behavior. 
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APPENDIX B 

HOMEOSTASIS OF GLOBAL FIRING RATE 

 

B.1 Introduction 

 Neurons modify their activity through synaptic and intrinsic plasticity 

mechanisms induced by efferent input and temper these changes through homeostatic 

mechanisms. Consequently, most cortical neurons tend to fire within a frequency range, 1 

to 5 Hz in vivo (Abeles 1991), as maintained by homeostatic mechanisms (Turrigiano and 

Nelson 2000). This implies that a network of neurons will tend to operate within a 

corresponding set of network activity states. Indeed, we found that while comparisons of 

firing rates have shown plasticity in intracellular recordings, firing rate statistics alone 

could not depict plasticity across networks of neurons (Chao, Bakkum et al. 2007). 

Synaptic noise across a chain of neurons (Kandel, Schwartz et al. 2000), convergent and 

divergent pathways (Abeles 1991), and homeostatic mechanisms that re-adjust firing 

rates in response to plasticity (Turrigiano and Nelson 2000; Spitzer, Borodinsky et al. 

2005) all obscure firing rate measures of plasticity detected by extracellular MEAs. 

Therefore, we investigated the relationship between homeostasis of firing rate in our 

cultures and the activity dependent plasticity of action potential propagation (Chapter 4). 

We found that network firing rate was perturbed by application of a patterned 

stimulation, and as plasticity accumulated, network firing rate re-approached a 

“homeostatic set point”. 

B.2 Methods 

From the patterned stimulation protocol in Chapter 4, a simple low frequency 

stimulation pattern was varied every 40 minutes. Each pattern consisted of alternatively 
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stimulating 2 electrodes at 2 second intervals. The second electrode, termed probe, was 

fixed and used throughout, while the location of a preceding context electrode was moved 

spatially every 40 minutes to make each new pattern. An experiment consisted of 8 

consecutive sets of patterned stimulation. 40 minutes was chosen to allow enough time to 

stabilize plasticity induced after the patterns were changed. A slow 1/2 Hz overall 

stimulation rate was chosen to avoid network fatigue or refractory periods (Darbon, 

Scicluna et al. 2002) from compromising the evoked responses. The stimulation electrode 

evoking the most dAPs was chosen as the probe electrode. The probe was paired with 

electrodes evoking varying degrees of neural activity to create patterned stimulation with 

diverse network activity responses. See Methods in Chapter 4 for how to detect dAPs and 

Appendix G for cell culture methods and electrophysiology. 

B.3 Results 

 The original motivation for the pattern stimulation protocol in Chapter 4 was to 

test if the cortical networks exhibit homeostasis of firing rate and then characterize the 

mechanism and rate of adaptation (Fig. B.1). Changing the pattern or location of 

stimulation changes which neurons and which order those neurons produce action 

potentials. Some synapses may become more active and others less. Some neurons may 

fire more and others less. These induced changes in the spatiotemporal flow of network 

activity may place the network state outside of its ‘comfort area’ or area of ‘homeostatic 

stability’, depending on the effectiveness and amount of stimulation. Given homeostasis 

mechanisms, synaptic and/or intrinsic plasticity are expected to occur in order to move 

the network state back into an area of homeostatic stability. 

 The best estimate for the homeostatic network firing rate is the end of the 

experiment where the network would have had the most time to habituate to 5 hours of 

1/2 Hz stimulation, and after the last half of the final period to minimize the effect of the 

last change in patterned stimulation. Since 6 experiments were conducted, 6 firing rate set 
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points were found, and the firing rates within each of the 8 pattern stimulation periods 

were indeed found to significantly move closer to the estimated set rate. Figure B.1a 

suggests the network firing rate homeostatically adapted to changes in stimulation 

pattern.  

 Many cellular mechanisms could contribute, including the modulation of action 

potential latency. Despite the large variance in Figure B.1b, changes in latencies after a 

change in stimulation pattern relative to the end of a stimulation pattern were significant 

(Fig. 4.4c). This supports changes in dAP latency being an adaptive plasticity mechanism 

that may have a role in the homeostasis of network firing rate. 

 

 
Figure B.11  Network firing rate (FR) and dAP latency adapted to stimulation pattern. 
(a). The FR is plotted in time for each 40 minute stimulation period. FR is plotted as a percent of an 
estimated FR set point, the FR measured at the end of the experiments (see text). The FR difference was 
closer to zero at the end of a period than the beginning indicating FRs approached the set point (p = 0.02, 
Wilcoxon signed rank test. N = 48 periods; 6 cultures from 4 platings). 3σ was fit with an exponential 
curve (τ = 15 min; R2 = 0.88). (b) The accumulation of plasticity in dAP latency slows in time. Similar to 
the calculation of normalized change in Chapter 5 (also the C/D calculation in Appendix G), the average 
difference from each latency for 5 minutes (150 probe stimuli; time within period denoted on the x-axis) to 
the mean latency in the 5 minutes prior to the period, was calculated. The mean and s.e.m. are plotted and 
an exponential curve is fit through the mean values (τ = 33 min; R2 = 0.92; N = 130 PTS trains; 6 cultures 
from 4 dissociations). 
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APPENDIX C 

CLOSED-LOOP MOTH EXPERIMENT 

 

 My first closed-loop experiment consisted of a simple embodiment with a single 

association between neural activity and the frequency of feedback stimulation on one 

electrode. This was preliminary work for the embodiment experiments described in 

Chapters 2 and 5 and Appendix A in order to test the closed-loop interface and software. 

The experimental design was inspired by a moth’s tendency to fly towards a light bulb: 

the closer it gets the stronger the stimulation. Thus, the inter-pulse-interval, T(x), of 

stimulation on one electrode was adjusted based on the animat’s location in an artificial 

environment, x: 

( ) 1T x b kx
frequency

= = −   (C.1) 

 
where k and b are constants equal to 4.9 and 5 seconds. The constants were chosen such 

that the maximum stimulation frequency was 10Hz for values of x constrained within ±1. 

The x location determined stimulation, but the artificial environment was a 2D plane {x, 

y}. (This was done for controls, where later experiments would switch to the y location to 

command T(y)) Eight electrodes with high activity were chosen to contribute to the 

population vector, representing eight cardinal directions (Fig. C.1). Locations x and y 

were calculated from the firing rates of these electrodes: 
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where i is an electrode index, R is a normalized electrode firing rate, and Q is a unit 

vector with x and y components. The normalization constants, Rnorm,  were determined in 

advance from averaging firing rates of each electrode during 5 minutes of 0.2  Hz   

stimulation  (corresponded to x = 0).  The  normalization  of  the  electrode corresponding 

to positive x movement was slightly decreased to bias the increments of x to be in the 

positive direction at the start. Changes in the trajectory of movement indicated a change 

in the ratio of firing rates (Fig. C.1). The first occurrence of such a change was around 27 

min and was accompanied by a period of high activity sustained for 40 to 60 seconds. 

The elevated activity appeared to be different than a typical network burst in that it had a 

longer duration and lower firing rate.  

 

  
Figure C.1 Closed-loop moth experiment. 
(left) The trajectory of movement. (right) The firing rates of the electrodes contributing to the movement. 
A period of high activity sustained for 40 to 60 seconds was observed (peaks in the right figure) upon 
reaching ~2 Hz stimulation, after which the network activity patterns changed such that the movement 
became relatively stationary with respect to the direction of adjusting frequency (the upward shift in the left 
figure). 
 

 Unfortunately, the data for this and a large number of similar experiments was 

corrupted and so cannot be analyzed further. However, the results suggest differences 

could exist between open-loop and closed-loop protocols in how stimulation can encode 
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plasticity. For example, neural networks are characterized by feedback loops, and adding 

an external (environmental) loop may better allow the electrical stimuli to tap into neural 

population dynamics. I hypothesized that such effects would manifest themselves as 

differences in the time course, magnitude, or stability of plasticity (see also Fig.5.5). I 

expect similar simple closed-loop experiments could tease apart a few details. 
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APPENDIX D 

USING THE NEUROMANCER STIMULATION BOARD FOR 

ARTIFACT SUPPRESSION 

 

D.1 Introduction 

 The Neuromancer stimulation and recording board was developed by Edgar 

Brown, Jim Ross, and Richard Blum in Steve DeWeerth’s laboratory in order to actively 

suppress electrical artifacts arising from electrical stimulation (Brown, Ross et al. 2007; 

R.A. Blum, J.D. Ross et al. 2007). Artifacts dominate recorded voltages traces for a 

period of time after a stimulus, masking the detection of action potentials and thus 

limiting the maximum stimulation frequency. To use the Neuromancer stimulation board 

in experiments, its performance on real MEAs plated with neurons needed to be 

understood. Artifact suppression here is different than results using test MEAs (resistors 

connected to ground) because electrodes have varying properties dependent on wear, and 

the MCS amplifier introduces 3rd order dynamics. In addition, the communication speed 

of the board was also tested to determine if it could be used in closed-loop embodiment 

experiments. 

 To summarize, the Neuromancer suppressed artifacts on the stimulation  electrode 

but offered no advantages for suppressing artifact on non-stimulation  electrodes, where a 

few ms blanking was unavoidable. Moreover, the artifact  suppression parameters needed 

to be hand adjusted for each electrode, which can be very tedious. An advantage was 

multiple electrodes could be stimulated at the same time, although the board currently 

supports half (32) of the MEA electrodes. Edgar Brown made a new microchip to allow 

stimulation encoding on an  analog channel, but this was not yet tested. The board could 
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handle closed-loop speeds of 20 Hz now and 100 Hz if code is adapted to use pthreads in 

rtlinux. The main points are: 

1. The Neuromancer stimulation board successfully suppressed artifact to (on 

average) within 1 ms of evoking neural activity.  

2. The Neuromancer stimulation board successfully evoked neural activity at 

comparable rates to the RACS stimulation board. 

3. The Neuromancer stimulation board could record neural activity on the 

stimulation electrode after filtering through Salpa on average within 3.12 ms after 

evoking activity. However, the discharge phases distorted the voltage waveform 

and introduced false but repeatable spikes. 

4. The Neuromancer stimulation board did not reduce the time until other non-

stimulated electrodes could be recorded, compared to stimulation with the RACS 

board. 

D.2 Artifact suppression of the Neuromancer board compared to the RACS board, 

on MEAs plated with neurons. 

 Artifact suppression was quantified on the Neuromancer stimulation board and 

compared to the performance of the RACS stimulation board (designed by Daniel 

Wagenaar). 5 electrodes were stimulated in random order 24 times each at 2Hz, giving 1 

minute total stimulation time. Three setups were compared: 

1. RACS board with a biphasic voltage stimulation:  

a. 400us, 500mV per phase (Potter lab standard setup). 
 

2. Neuromancer board with the same biphasic voltage stimulation + a single discharge phase: 

a. Discharge phase D1 of 400us length, Rej = -1.65V, and Vref = 0V. 
b. 400us, 500mV per phase. 

 
3. Neuromancer board with voltage pulse optimized (by hand):  

a. 350us 400mV up phase; 250us -600mV down phase. 
b. Discharge phase D1 of 2.5ms length, Rej = -1.65V, Vref = 0V. 
c. Discharge phase D2 of 5 ms length, Rej = -0.05V. 
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Voltage traces were recorded using Meabench via the MCCard data acquisition card. 

Four signals were extracted: 

1. Raw voltage trace. 
2. Raw voltage trace filtered through Salpa. 
3. Spikes detected from the raw voltage trace. 
4. Spikes detected from the Salpa voltage trace. 
 

 See also the movies each showing a close up of the stimulation artifact, raw 

voltage responses, and salpa filtered voltage responses. The stimulation electrodes were 

in random order, but for clarity are aligned in the movies (t-square: Douglas_Bakkum / 

Progress Reports / Progress Report 092706 - artifact suppress Neuromancer vs RACS): 

- RACSmovie.mov 
 
- NMmovie.mov 
 
- NMoptmovie.mov 

 

 In case 2, the voltage trace recorded on an oscilloscope would not return to zero 

without a D1 phase included. The RACS board voltage trace did return to zero. However, 

the Neuromancer board’s artifact suppression outperformed the RACS board. (The 

RACS board did not have active artifact suppression built in to its circuit: increasing the 

time until switching off of the stimulation electrode did not boost artifact suppression of 

the RACS board, and instead made the artifact bigger.)  

 When using a test MEA, which connects each electrode contact pad to a common 

ground through resistors, the artifact produced by the Neuromancer board was consistent 

among channels and was able to be suppressed. In contrast, when using a standard MEA 

(8x8 grid with 30 um electrodes spaced 200 um center to center), the artifact produced by 

the Neuromancer board was inconsistent among channels, requiring the discharge 

parameters to be set for each stimulation electrode independently. Not all artifacts were 

able to be suppressed fully. Failure here is defined as the voltage trace recorded through 

the MCCard remained on the rail after the commanded biphasic voltage pulse ended. (In 
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Case 3, the optimal discharge parameters were chosen such that they could be used for 

each of 5 stimulation electrodes. These parameters were not optimal for all electrodes.) 

 Setting the discharge parameters for each channel by hand makes using the 

Neuromancer stimulation board time consuming and tedious for experiments using many 

stimulation electrodes. The DeWeerth group is working on an automated system to set 

the parameters.
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Results 

A raw voltage trace of an artifact for a stimulation electrode for the Neuromancer board 

with optimized discharge parameters: 

Artifact lengths: 
NMopt NM  

Raw rail edge 
(ms from stim) 

Salpa blank edge 
(ms from stim) 

Raw rail edge 
(ms from stim) 

Salpa blank edge 
(ms from edge) 

Probe 
HW Probe Others Probe Others Probe Others Probe Others 

57 0.39 0.89 2.02 2.51 48.16 0.93 48.42 2.22 
51 0.40 0.68 4.66 2.04 43.07 0.83 43.37 1.94 
6 0.38 0.54 3.25 1.99 42.27 0.75 42.55 1.92 
1 0.56 0.81 1.83 2.33 38.53 0.89 38.80 2.12 
0 1.85 1.02 3.83 2.70 52.88 1.00 53.14 2.48 

Average 0.72 0.79 3.12 2.31 44.98    0.88    45.26    2.14 
 

Raw rail edge: longest latency until the 
recorded voltage is within the recordable 
range. The raw rail edge indicates the 
speed of artifact suppression. 
 
Salpa blank edge: salpa will return values 
of 0 when the raw trace is on a rail OR 
when the raw trace is too steep. The salpa 
blank edge indicates the earliest time we 
can record spikes.  
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RACS  
Raw rail edge 
(ms from stim) 

Salpa blank edge 
(ms from stim) 

Probe 
HW Probe Others Probe Others 

55 54.14 0.48 54.39 1.31 
51 49.35 0.47 49.61 1.42 
24 65.35 0.50 68.73 1.31 
1 41.69 0.48 41.97 1.31 
0 58.70 0.48 58.92 1.31 

Average 58.85 0.48 54.72 1.33 
 



Noise levels over 5 sec interval (uV std). 
 
 NMopt NM RACS

South Plug  
(16 pins) 2.59 2.61 2.57 

East Plug 
(14 pins) 2.57 2.57 2.55 

Non-
plugged 2.55 2.55 2.54 

 
 
Global firing rates on recording electrodes, 
excluding the probe, within 200 ms latency  
(Hz) are comparable. 

 
 NMopt NM RACS

Probe    
NM:57 

RACS:54 127 125 113 

51 102 103 86 
NM:6 

RACS:24 14 2 1 

1 65 77 53 
0 24 34 27 

 
 
 
 The Neuromancer stimulation board successfully suppressed artifact to (on 

average) within 1 ms of evoking neural activity, and recording neural activity on the 

stimulation channel after filtering through Salpa could be done on average within 3.12 ms 

after evoking activity.  

 However, even though the Neuromancer with optimized stimulation gave an 

electrode voltage trace that is off the rail within a few milliseconds, the 2 discharge 

phases distorted the voltage trace waveform and can produce false positive spikes. The 

effective recording delay would then be after the discharge phases for the stimulation 

electrode. Minimizing the discharge times by modifying the biphasic stimulation pulse or 

smoothing the transitions between different stimulation phases using the ramp (/R) 
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command may help eliminate false spikes. Nevertheless, this time is much less than for 

non-optimized cases. 

 The Neuromancer stimulation board successfully evoked neural activity (see 

movies). For non-stimulated recording electrodes, The Neuromancer board did not allow 

earlier recordings than the RACS board used in the Potter lab. The Neuromancer board 

and RACS board did not add noise to the system, and noise levels remained around 2.5 

uV. 

D.3 Update speed and timing accuracy of the Neuromancer stimulation board for 

closed-loop experiments. 

 The stimulation part of the Neuromancer stimulation and recording board was 

further tested on our setup for use in closed-loop embodiment experiments. (Recording 

continued to be done with MCCard and Meabench.) 60Hz noise was eliminated using a 

lot of tin foil to wrap around the ribbon cables extending to the MEA and the box 

containing the board. As the current implementation of the board required updating a 

microcontroller via a serial cord for each change in stimulation (i.e. choosing a different 

electrode or voltage), the speed of update provided a limiting factor to maximum 

stimulation frequency. However, testing indicated speeds of 20 Hz were possible and up 

to 100 Hz if code is adapted to use pthreads in rtlinux: see details below. Also I wrote a C 

driver to control the board, as opposed to Matlab. 

Testing the Neuromancer board for stimulation.  
 
 I received the board with a Matlab GUI as the control interface where buttons 

needed to be pushed to send consecutive stimuli. To test how fast the board could update 

stimuli, as would be needed for background stimulation for example, I modified the 

Matlab code to automatically send a series of stimulations. Later, a TCP/IP socket was 

added to communicate with a rtlinux computer and Daniel’s stimulation board for 

accurate timing.  
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To test speed, code was developed to loop through:  

> Start  
- Update the PIC microcontroller (serial port) stimulation setting (i.e. stim 

channel). 
- Send a trigger to stimulate (either via the serial port or an external pulse 

on Daniel’s stim board).  
- Send a wait period until next stimulation (inter-stim interval, ISI).  
- Read data returned from PIC (serial port) signaling execution of trigger.  

< Goto start  
 
 
 The resulting stimulation pulses were sent to the analog A1 channel of the 

MCCard, recorded with Meabench, and speed and accuracy were measured. For accurate 

timing, rtlinux was used (Daniel’s racs module containing pthreads). The external 

triggers were commanded via a TCP/IP socket from the recording computer to an rtlinux 

computer controlling the RACS stimulator. RACS was commanded to send a digital 

output via a BNC cable to the external trigger of Neuromancer to trigger stimulation. In 

time, rtlinux code similar to the Racs.o driver can be developed to control Neuromancer – 

meaning the results given below should be representative of a standalone Neuromancer 

application.  
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Setup 1: *Matlab* interface communicating with the serial port for Neuromancer and a 

*TCP/IP* socket for Racs.  

 For commanded ISIs of 100 ms, the mean actual ISI was 102.8 ms with nearly all 

values within one sample rate. The sample rate was 25 kHz or every 0.04 ms; 14/100 

varied by 1 sample rate. The maximum speed while maintaining a high accuracy was 

estimated to be 80 ms.  

 

Setup 2: *C-code* interface communicating with the serial port for Neuromancer and a 

*TCP/IP* socket for Racs.  

 For commanded ISIs of 50 ms, the mean actual ISI was 52.4 ms with nearly all 

values within a sample rate (25 kHz or 0.04 ms; 9/100 varied by 1 sample rate). The 

maximum speed while maintaining a high accuracy was estimated to be 40 ms.  

 

Setup 3: *C-code* interface communicating with the serial port for Neuromancer without 

Racs. Trigger was instead sent by the serial cable – faster but less accurate until 

optimized with rtlinux / pthreads.  

 For the usleep() function call to delay 10 ms, the mean actual ISI was 15.1 ms 

with 85% within 1 sample rate. The maximum spread was 1.28 ms. For usleep() set to 1 

ms, the ISI was around 6-7 ms; this is the likely upper bound on stimulation frequency. I 

expect that implementing timing control, for example with rtlinux and pthreads, would  

improve the accuracy and stability of this setup. 
 
 
A C-code driver is on the file server along with the movies. 
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D.4 Methods 

 See Appendix G for cell culturing and general electrophysiology methods. The 

neural cultures were E-18 rat cortices plated 4/13/6 (4 ½ mo old) on dish 7113 

(Multichannel systems MEA). A total of 55k cells were plated: 5uL/k*6.5uL. 

 Salpa filtering and spike detection were done using built in functions in 

Meabench. Salpa is a software implementation of artifact suppression (smoothing). It 

creates a series of polynomials to fit the artifact curve then subtracts these from the 

original data to get a flat trace (Wagenaar, Pine, Potter 2004). A drawback is large spikes 

or a series of close spikes as in a burst can be fit by Salpa, distorting the waveform and 

inducing false positive and negative spikes.   

 Spike detector type 8  “LimAda-70%-98%-20ms-1s-5.0” was used. It is a 

bandpass filter that calculates noise levels in a local time slice such that it adapts in real 

time to sudden changes in electrode noise levels. It also ignores spike occurrence when 

calculating noise levels (see online Meabench manual). A drawback is the noise 

adaptation can be fooled and consider bursts a change in noise level, and thus miss spikes 

during bursts. 

 Since the raw voltage traces were recorded, they can be passed through alternative 

filters and spike detectors if desired. 
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APPENDIX E 

HOW TO CODE CLOSED-LOOP EXPERIMENTS 

 
MENTIONED FILES ARE ON THE FILE SERVER (or accompany Meabench) 
www.t-square.gatech.edu 
Potter Lab Resources / Potter / Douglas_Bakkum / CODE / Generic Closed-loop / . 

 

 I have used C/C++ to code my closed-loop experiments. The program 

generic_closedloop.cpp is provided as an example to create new closed-loop 

experiments. This program accesses Meabench’s (Wagenaar, DeMarse et al. 2005) 

spikedet spike stream using EasyClient.H (a part of the Meabench download). Therefore, 

Meabench must be run, as done for normal recording, to create the spike stream. Neural 

spikes are read into generic_closedloop.cpp and will be used to determine motor output. 

For Meart, TCP/IP sockets were used to send the output to move the arms and to receive 

feedback. For simulated animats, the program (or a companion program run on the same 

computer) can hold its own virtual world. The feedback determined which subsequent 

stimulation was sent via another TCP/IP socket to the stimulation computer, completing 

the closed-loop. I used Daniel Wagenaar’s stimulator which accepted text files coded in 

C as:  

 

string COMMANDstring=""; 
 
sprintf( tmp,”%i  aux   %3i    0 “ 

“ aux   %3i  400 “ 
“ aux   127  800 “ 
“   aux   %3i 1200 “ 
“  aux     0 1600 “ 
“    sw   e%i 1700 “ 
“  dac %3.2f 1800 “ 
“  dac %3.2f 2200 “ 
“  dac     0 2600 “ 
“   sw     0 2700\n”, \ 

IPI,-13*(CR(0)-1),-13*(CR(1)-1),EPOCH*3,CR(0)*10+CR(1),VOLT,-VOLT ); 
 
COMMANDstring= tmp; 

 138

http://www.t-square.gatech.edu/
https://t-square.gatech.edu/portal/tool/af662d2c-3a10-49b9-005f-77eab33205e9?panel=Main
https://t-square.gatech.edu/portal/tool/af662d2c-3a10-49b9-005f-77eab33205e9?panel=Main


 

where IPI is the inter-pulse-interval in milliseconds, CR is a two value int array holding 

the Column and Row values of the electrode to stimulate, EPOCH is an int to encode 

user defined epochs, and VOLT is the stimulation voltage in Volts. The third column 

indicates the time of application of the line item command in microseconds. aux 

commands the auxiliary output on the stimulation board (to connect to BNC analog 

inputs of the MCCard data acquisition card, used here for encoding the stimulation 

channel, time, and epoch. dac is the digital to analog voltage supply. sw switches the dac 

to the correct electrode. 

 The stimulator board runs on an rtlinux computer. I modified DW’s accstep perl 

script to run a TCP/IP server, stim_server.perl, which needs to be started prior to 

attempting a connection. 

 Companion TCP/IP libraries were modified from open-source code found online, 

and need to be compiled before hand: ClientSocket.cpp, ServerSocket.cpp, Socket.cpp, 

ClientSocket.H, ServerSocket.H, Socket.H, SocketException.H. Note that other TCP/IP 

software can be used, such as built in code in Matlab. 

 To compile generic_closed_loop.cpp, include the Makefile in the current directory 

and type ‘make’ on the command line. Be sure to specify the correct version of 

Meabench in the Makefile such that the EasyClient.H can be found. Note, sometimes the 

Meabench library libmea-1.0.##.so needs to be copied into the directory for the spike 

stream to be accessed correctly, where ‘##’ is the Meabench version number. 

 To run: 
1- Run Meabench’s spikedet 

2- Run stim_server.perl 

3- Run the closed-loop program adapted from generic_closedloop.cpp 
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If Meabench has been recently installed, an error may occur when running the program 

stating libmea-1.0.##.so cannot be found. In this case, the library needs to be added to a 

configuration file: 

1. Login as the root (administrator) user. 

2. In the /etc/ld.so.conf file, add the line “/usr/local/lib”. This is the location of 

the Meabench libraries. 

3. Then on the command line, type “/sbin/ldconfig –v”. 

 

 A sample spike data file is provided for testing purposes. It consists of 2.5 hours 

of neural spikes from a tetanus experiment. The first 20 minutes has spontaneous activity, 

followed by an hour of ½ Hz “probe” stimulation, then a large tetanus, then another hour 

of ½ Hz probe stimulation. Use Meabench’s replay program to rerun the spike data file, 

and use Meabench’s spikedet program to create the spikestream accessed by 

generic_closedloop.cpp program. See the Meabench manual for further details. 

 

The spike file is also located at: 

www.t-square.gatech.edu 
Potter Lab Resources / Potter / Douglas_Bakkum / CODE / 061605_D.spike 
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APPENDIX F 

FORMATING AND ANALYZING LARGE SPIKE DATA SETS 

 

MENTIONED FILES ARE ON THE FILE SERVER: 
www.t-square.gatech.edu 
Potter Lab Resources / Potter / Douglas_Bakkum / CODE / Format Spike File / . 

 

 Long experiments produce large spike files that can take a lot of time to load into 

Matlab for analysis, and an especially long time to format spike latency from a 

stimulation and to decode stimulation channel and epoch from the analog signal. 

Therefore, I made a C program to do this quickly, called FormatSpikeData.cpp, and a 

Matlab program to load the formatted data, called loadspikeform.m. 

 To compile FormatSpikeData.cpp in Linux, include the Makefile in a directory 

folder (along with all other files downloaded from the website) and type ‘make’ on the 

command line of a terminal window. Be sure to specify the correct version of Meabench 

that was installed on the computer in the Makefile such that the header files can be found 

during compilation. The companion library Tools.H contains the following functions: 

 

 int hw2cr(int hw)  to convert electrodes notation from hardware to column/row format. 

 int cr2hw(int cr)  to convert electrodes notation from column/row to hardware format. 

 int cleanlite( float *context)  to use cleanlite to remove ‘dirty’ spikes (likely false positives). 

 short context2probe( float *context)  to decode probe hardware electrode from analog channel. 

 short context2epoch( float *context)  to decode epoch from analog channel. 

 

Tools.H also creates a data type to hold very large 3 dimensioned matrices called 

Matrix3. 
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To run, type in the terminal window: 

 ./FormatSpikeData   -o  outputFileName   -s in.spike 

Optional flags are: 

 -a  analogHW (default 60),    

 -p number (1 to find dAPs; default 0 to ignore dAPs; see Chapter 4) 

 
 
The default value for analogHW is hardware channel 60, corresponding to analog 

channel 1. The default value for number is 0. Using the value of 1 will find and number 

dAPs (see Chapter 4; dAPs used to be called precisely-timed spikes, hence the p 

notation). 

 

This program outputs a binary file that can be quickly loaded into Matlab with 

loadspikeform.m. To load into Matlab, in the Matlab editor type: 

 y = loadspikeform(outputFileName); 

 

The following is now available: 

y.T      spike time             (sec) 
y.L      spike latency          (msec) 
y.P_t    probe time             (sec) 
y.C      spike hardware channel (0 to 63) 
y.H      height                 (uVolts) 
y.W      width                  (msec) 
y.Th     threshold              (uVolts) 
y.E      epoch                  (integer)  
y.clid   clean spike ID         (1 or 0) 
y.CLID   clean spike ID         (ID of clean spikes) 
y.PTS    dAP number             (integer) 
y.P_hw   probe hardware channel (0 to 63) 
y.P_num  probe number           (integer) 
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Each variable in the y structure is an array with values for each spike detected in 

Meabench (except y.CLID). Use the find command in Matlab to parse different sections 

of data. For example: 

 ID = find( y.T > 10 & y.T < 30 ) 

will assign the indices of spikes that occurred between 10 and 30 seconds in ID, and  

 ID = find( y.L > 0 & y.L < 20 ) 

will assign ID with the indices of spikes that occurred less than 20 milliseconds after a 

stimulation. y.CLID is equal to find( y.clid == 1). 

 

 A sample spike data file is provided for testing purposes. It consists of 2.5 hours 

of neural spikes from a tetanus experiment. The first 20 minutes has spontaneous activity, 

followed by an hour of ½ Hz “probe” stimulation, then a large tetanus, then another hour 

of ½ Hz probe stimulation. 

 The spike file is also located at: 

www.t-square.gatech.edu 
Potter Lab Resources / Potter / Douglas_Bakkum / CODE / 061605_D.spike 
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APPENDIX G 

GENERAL METHODS 

 

G.1 Cell culturing 

 We have developed techniques to maintain neuronal cultures and conduct 

experiments for many months (Potter and DeMarse 2001b). Briefly, 50k cells from E18 

rat cortices were dissociated using papain and trituration and plated over an 

approximately 3 mm diameter area on top of multi-electrode arrays (MEA; from Multi 

Channel Systems). A thin layer of polyethyleneimine followed by a 15 µL drop of 

laminin were used for cell adhesion. The cultures were grown in 1 mL of DMEM 

containing 10% horse serum with glutamax, insulin, and sodium pyruvate additives. 

Experiments were conducted inside an incubator to control environmental conditions 

(35°C, 65% humidity, 9% O2, 5%CO2). The MEAs were sealed with a hydrophobic 

membrane (fluorinated ethylene–propylene) that is selectively permeable to O2 and CO2, 

and relatively impermeable to water vapor, bacteria, and fungus, allowing us to conduct 

long-term, non-invasive experiments. 

G.2 Electrophysiology and data acquisition 

 Electrically evoked activity was induced using symmetric positive then negative 

voltage pulses of 400 µs duration and 500 mV magnitude per phase (Wagenaar, Pine et 

al. 2004) using a custom built all-channel stimulation circuit board (Wagenaar and Potter 

2004a). Data was collected through Multi Channel Systems’ pre-amplifier and data 

acquisition card (MCCard), which had a 25 kHz sampling frequency and could accurately 

record microvolt signals. Data processing, visualization, artifact suppression, and spike 

detection were controlled using Meabench (Wagenaar, DeMarse et al. 2005) 

(www.its.caltech.edu/~pinelab/wagenaar/meabench.html). Neural action potentials were 
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detected if the absolute value of a voltage spike exceeded 5 standard deviations rms noise 

in amplitude. Algorithms to suppress the electrical artifacts from stimuli allowed us to 

detect neural action potentials ~2 ms after being evoked (Wagenaar and Potter 2002b). 

G.3 Change to drift ratio, C/D 

 The change-to-drift ratio (C/D) is used to quantify the amount of plasticity that a 

neural activity statistic (such as the center of activity trajectory) detected between two 

periods of interest, for example between the periods before (Pi) and after (Pj) a plasticity-

inducing stimulation. Change, C, is the average of the Euclidean distances of each 

activity statistic (x) in Pj to the mean activity statistic in Pi. Drift, D, is the average of the 

Euclidean distances of each activity statistic in Pi to its own mean activity statistic. The 

change-to-drift ratio, C/D, then quantifies an amount of neural plasticity. A ratio of 1 

would indicate no plasticity. 

 

 Change =      (G.1) 

 

 

 Drift  =      (G.2) 

 

 

 Note that the C/D nomenclature can lead to confusion. Change is often used as a 

synonym to plasticity, and drift can also refer to the inherent background plasticity ever 

present in neural activity. Finding a new name may be appropriate. 
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