330 research outputs found

    Efficient PID Controller based Hexapod Wall Following Robot

    Get PDF
    This paper presents a design of wall followingbehaviour for hexapod robot based on PID controller. PIDcontroller is proposed here because of its ability to controlmany cases of non-linear systems. In this case, we proposed aPID controller to improve the speed and stability of hexapodrobot movement while following the wall. In this paper, PIDcontroller is used to control the robot legs, by adjusting thevalue of swing angle during forward or backward movement tomaintain the distance between the robot and the wall. Theexperimental result was verified by implementing the proposedcontrol method into actual prototype of hexapod robot

    Concrete brick properties incorporating EPS and POFA as replacement materials

    Get PDF
    The implementation of sustainable construction and green building becomes the main attention of construction industries in Malaysia as it has been introduced by the government in the Construction Industry Transformation Programme (2016-2020). Therefore, this study focuses on the development of sustainable concrete bricks containing Expanded Polystyrene (EPS) and Palm Oil Fuel Ash (POFA) as sand and cement substitute materials. The percentage of replacement is 20%, 30%, 40% and 50% for EPS and 5%, 10%, 15%, 20% and 25% for POFA. There are 30 different mix designs of brick have been produced and their properties have been identified. Hardened brick density, compressive strength, water absorption and initial rate of absorption are the brick properties identified in this study. Based on the experimental results, it was found that the hardened brick density and compressive strength of the brick decreased as the replacement percentage increased. On the other hand, the water absorption and initial rate of absorption of the brick decreased as the percentage of EPS increased and increased as the percentage of POFA increased. Based on the findings, it shows that EPS and POFA has significantly contributes to the reduction of brick density. Next, for the compressive strength all the bricks have satisfied the minimum strength requirement of non-load bearing brick. Finally, for water absorption and initial rate of absorption, it has been found that majority of the bricks have an acceptable value based on standard requirements for brick. This can be concluded that EPS and POFA could be potential substitute materials for the manufacture of sustainable bricks

    Efficient PID Controller based Hexapod Wall Following Robot

    Get PDF
    This paper presents a design of wall following behaviour for hexapod robot based on PID controller. PID controller is proposed here because of its ability to control many cases of non-linear systems. In this case, we proposed a PID controller to improve the speed and stability of hexapod robot movement while following the wall. In this paper, PID controller is used to control the robot legs, by adjusting the value of swing angle during forward or backward movement to maintain the distance between the robot and the wall. The experimental result was verified by implementing the proposed control method into actual prototype of hexapod robot

    Intelligent Control System of Fire-Extinguishing and Obstacle-Avoiding Hexapod Robot

    Get PDF
    This hexapod fire extinguisher robot is constructed based on technological developments evolving very rapidly, especially in the field of robotics technology. The hexapod robot has become a big concern in the development of robotics technology with many existing contests of hexapod robot. This hexapod fire extinguisher robot is designed based on Fuzzy Mamdani Logic. The navigation of fire extinguisher hexapod robot is based on distance detection with ultrasonic sensor determining the movement of robot’s legs utilizing Fuzzy Logic. A fire extinguisher hexapod robot will explore a tunnel arena having several rooms created for the robot to explore. This hexapod robot uses Arduino as a microcontroller and uses 18 servo motors in which each foot requires 3 servo motors. Moreover, good navigation will be aimed by utilizing Fuzzy Logic in the hexapod robot design. The application of many rules on Fuzzy Logic makes the better navigation; furthermore, the results present the ultrasonic sensor having an average error of 1.256%, the Fuzzy Logic applied showing 0% error, and the overall success rate presenting approximately 80%

    Comprehensive review on controller for leader-follower robotic system

    Get PDF
    985-1007This paper presents a comprehensive review of the leader-follower robotics system. The aim of this paper is to find and elaborate on the current trends in the swarm robotic system, leader-follower, and multi-agent system. Another part of this review will focus on finding the trend of controller utilized by previous researchers in the leader-follower system. The controller that is commonly applied by the researchers is mostly adaptive and non-linear controllers. The paper also explores the subject of study or system used during the research which normally employs multi-robot, multi-agent, space flying, reconfigurable system, multi-legs system or unmanned system. Another aspect of this paper concentrates on the topology employed by the researchers when they conducted simulation or experimental studies

    Trends in the control of hexapod robots: a survey

    Get PDF
    The static stability of hexapods motivates their design for tasks in which stable locomotion is required, such as navigation across complex environments. This task is of high interest due to the possibility of replacing human beings in exploration, surveillance and rescue missions. For this application, the control system must adapt the actuation of the limbs according to their surroundings to ensure that the hexapod does not tumble during locomotion. The most traditional approach considers their limbs as robotic manipulators and relies on mechanical models to actuate them. However, the increasing interest in model-free models for the control of these systems has led to the design of novel solutions. Through a systematic literature review, this paper intends to overview the trends in this field of research and determine in which stage the design of autonomous and adaptable controllers for hexapods is.The first author received funding through a doctoral scholarship from the Portuguese Foundation for Science and Technology (FCT) (Grant No. SFRH/BD/145818/2019), with funds from the Portuguese Ministry of Science, Technology and Higher Education and the European Social Fund through the Programa Operacional Regional Norte. This work has been supported by the FCT national funds, under the national support to R&D units grant, through the reference project UIDB/04436/2020 and UIDP/04436/2020

    Design Issues for Hexapod Walking Robots

    Get PDF
    Hexapod walking robots have attracted considerable attention for several decades. Many studies have been carried out in research centers, universities and industries. However, only in the recent past have efficient walking machines been conceived, designed and built with performances that can be suitable for practical applications. This paper gives an overview of the state of the art on hexapod walking robots by referring both to the early design solutions and the most recent achievements. Careful attention is given to the main design issues and constraints that influence the technical feasibility and operation performance. A design procedure is outlined in order to systematically design a hexapod walking robot. In particular, the proposed design procedure takes into account the main features, such as mechanical structure and leg configuration, actuating and driving systems, payload, motion conditions, and walking gait. A case study is described in order to show the effectiveness and feasibility of the proposed design procedure

    The Development of Movement System of The Second Six-Legged Robot PTE Unima

    Get PDF
    Engineering technology in robotics for the present era is no longer new, especially in high education, marked by Indonesian robot contests routinely held annually by the national achievement center. The participants in this event are groups of students from all higher education institutions spread throughout Indonesia. The development of robotics technology is now faster to spur individuals and students to compete to conduct research and development in robotics. The study aims to develop a six-legged robotic motion system or so-called hexapod. The research was conducted using the Addie model research method consisting of five stages, namely, analyze stage to analyze the needs of the development of the robotic motion system and analysis of the needs of tools and materials to be used. The design stage of designing the mechanical structure of the robot both in terms of hardware and in terms of robot software, the development stage of developing a six-legged robot's motion system to be more stable and more efficient in moving, the implementation stage is a test stage of the robot's motion system that has been developed. The evaluation stage is the last stage of this development research; at this stage, the evaluation is done to ensure the robot's motion system is feasible to use

    Fast Damage Recovery in Robotics with the T-Resilience Algorithm

    Full text link
    Damage recovery is critical for autonomous robots that need to operate for a long time without assistance. Most current methods are complex and costly because they require anticipating each potential damage in order to have a contingency plan ready. As an alternative, we introduce the T-resilience algorithm, a new algorithm that allows robots to quickly and autonomously discover compensatory behaviors in unanticipated situations. This algorithm equips the robot with a self-model and discovers new behaviors by learning to avoid those that perform differently in the self-model and in reality. Our algorithm thus does not identify the damaged parts but it implicitly searches for efficient behaviors that do not use them. We evaluate the T-Resilience algorithm on a hexapod robot that needs to adapt to leg removal, broken legs and motor failures; we compare it to stochastic local search, policy gradient and the self-modeling algorithm proposed by Bongard et al. The behavior of the robot is assessed on-board thanks to a RGB-D sensor and a SLAM algorithm. Using only 25 tests on the robot and an overall running time of 20 minutes, T-Resilience consistently leads to substantially better results than the other approaches
    corecore