1,007 research outputs found

    Baseband analog front-end and digital back-end for reconfigurable multi-standard terminals

    Get PDF
    Multimedia applications are driving wireless network operators to add high-speed data services such as Edge (E-GPRS), WCDMA (UMTS) and WLAN (IEEE 802.11a,b,g) to the existing GSM network. This creates the need for multi-mode cellular handsets that support a wide range of communication standards, each with a different RF frequency, signal bandwidth, modulation scheme etc. This in turn generates several design challenges for the analog and digital building blocks of the physical layer. In addition to the above-mentioned protocols, mobile devices often include Bluetooth, GPS, FM-radio and TV services that can work concurrently with data and voice communication. Multi-mode, multi-band, and multi-standard mobile terminals must satisfy all these different requirements. Sharing and/or switching transceiver building blocks in these handsets is mandatory in order to extend battery life and/or reduce cost. Only adaptive circuits that are able to reconfigure themselves within the handover time can meet the design requirements of a single receiver or transmitter covering all the different standards while ensuring seamless inter-interoperability. This paper presents analog and digital base-band circuits that are able to support GSM (with Edge), WCDMA (UMTS), WLAN and Bluetooth using reconfigurable building blocks. The blocks can trade off power consumption for performance on the fly, depending on the standard to be supported and the required QoS (Quality of Service) leve

    Field programmable gate array based multiple input multiple output transmitter

    Get PDF
    MIMO is an advanced antenna technology compared to Single Input Single output (SISO), Multiple Input Single Output (MISO), and Single Input Multiple Output (SIMO) and is used to obtain high data rate in the system. Multiple-Input Multiple-Output (MIMO) systems have at least two transmitting antennas, each generating unique signals. However some applications may require three, four, or more transmitting devices to achieve the desired system performance. This thesis describes a comparison between different approaches like the microcontroller, ASICs and the FPGA available in the market for baseband signal generation. It also describes the design of a scalable MIMO transmitter, based on field programmable gate array (FPGA) technology that was selected among the processors due to its capability to provide reconfigurable hardware and software. Each module of the MIMO transmitter contains a FPGA, and associated digital-to-analog converters, I/Q modulators, and RF amplifiers needed to power one of the MIMO transmitters. The system is designed to handle up to a 10 Mbps data rate, and transmit signals in the unlicensed 2.4 GHz ISM band --Abstract, page iii

    Implementation of a real-time industrial web scanning system hardware architecture

    Get PDF
    None provided

    Implementation of Four Real-Time Software Defined Receivers and a Space-Time Decoder using Xilinx Virtex 2 Pro Field Programmable Gate Array

    Get PDF
    This paper describes the concept, architecture, development and demonstration of a real time, high performance, software defined 4-receiver system and a space time decoder to be implemented on a Xilinx Virtex 2 Pro Field Programmable Gate Array. It is designed and developed for research into receiver diversity and multiple input and multiple output (MIMO)wireless systems. Each receiver has a Freescale DSP56321 digital signal processor (DSP) to run synchronization, channel state estimation and equalization algorithms. The system is software defined to allow for flexibility in the choice of receiver demodulation formats, output data rates and space-time decoding schemes. Hardware, firmware and software aspects of the receiver and space time decoder system to meet design requirements are discussed

    Reconfigurable architectures for the next generation of mobile device telecommunications systems

    Get PDF
    Mobile devices have become a dominant tool in our daily lives. Business and personal usage has escalated tremendously since the emergence of smartphones and tablets. The combination of powerful processing in mobile devices, such as smartphones and the Internet, have established a new era for communications systems. This has put further pressure on the performance and efficiency of telecommunications systems in delivering the aspirations of users. Mobile device users no longer want devices that merely perform phone calls and messaging. Rather, they look for further interactive applications such as video streaming, navigation and real time social interaction. Such applications require a new set of hardware and standards. The WiFi (IEEE 802.11) standard has been at the forefront of reliable and high-speed internet access telecommunications. This is due to its high signal quality (quality of service) and speed (throughput). However, its limited availability and short range highlights the need for further protocols, in particular when far away from access points or base stations. This led to the emergence of 3G followed by 4G and the upcoming 5G standard that, if fully realised, will provide another dimension in “anywhere, anytime internet connectivity.” On the other hand, the WiMAX (IEEE 802.16) standard promises to exceed the WiFi signal coverage range. The coverage range could be extended to kilometres at least with a better or similar WiFi signal level. This thesis considers a dynamically reconfigurable architecture that is capable of processing various modules within telecommunications systems. Forward error correction, coder and navigation modules are deployed in a unified low power communication platform. These modules have been selected since they are among those with the highest demand in terms of processing power, strict processing time or throughput. The modules are mainly realised within WiFi and WiMAX systems in addition to global positioning systems (GPS). The idea behind the selection of these modules is to investigate the possibility of designing an architecture capable of processing various systems and dynamically reconfiguring between them. The GPS system is a power-hungry application and, at the same time, it is not needed all of the time. Hence, one key idea presented in this thesis is to effectively exploit the dynamic reconfiguration capability so as to reconfigure the architecture (GPS) when it is not needed in order to process another needed application or function such as WiFi or WiMAX. This will allow lower energy consumption and the optimum usage of the hardware available on the device. This work investigates the major current coarse-grain reconfigurable architectures. A novel multi-rate convolution encoder is then designed and realised as a reconfigurable fabric. This demonstrates the ability to adapt the algorithms involved to meet various requirements. A throughput of between 200 and 800 Mbps has been achieved for the rates 1/2 to 7/8, which is a great achievement for the proposed novel architecture. A reconfigurable interleaver is designed as a standalone fabric and on a dynamically reconfigurable processor. High throughputs exceeding 90 Mbps are achieved for the various supported block sizes. The Reed Solomon coder is the next challenging system to be designed into a dynamically reconfigurable processor. A novel Galois Field multiplier is designed and integrated into the developed Reed Solomon reconfigurable processor. As a result of this work, throughputs of 200Mbps and 93Mbps respectively for RS encoding and decoding are achieved. A GPS correlation module is also investigated in this work. This is the main part of the GPS receiver responsible for continuously tracking GPS satellites and extracting messages from them. The challenging aspect of this part is its real-time nature and the associated critical time constraints. This work resulted in a novel dynamically reconfigurable multi-channel GPS correlator with up to 72 simultaneous channels. This work is a contribution towards a global unified processing platform that is capable of processing communication-related operations efficiently and dynamically with minimum energy consumption

    Advanced Modulation and Coding Technology Conference

    Get PDF
    The objectives, approach, and status of all current LeRC-sponsored industry contracts and university grants are presented. The following topics are covered: (1) the LeRC Space Communications Program, and Advanced Modulation and Coding Projects; (2) the status of four contracts for development of proof-of-concept modems; (3) modulation and coding work done under three university grants, two small business innovation research contracts, and two demonstration model hardware development contracts; and (4) technology needs and opportunities for future missions

    Multi-standard programmable baseband modulator for next generation wireless communication

    Full text link
    Considerable research has taken place in recent times in the area of parameterization of software defined radio (SDR) architecture. Parameterization decreases the size of the software to be downloaded and also limits the hardware reconfiguration time. The present paper is based on the design and development of a programmable baseband modulator that perform the QPSK modulation schemes and as well as its other three commonly used variants to satisfy the requirement of several established 2G and 3G wireless communication standards. The proposed design has been shown to be capable of operating at a maximum data rate of 77 Mbps on Xilinx Virtex 2-Pro University field programmable gate array (FPGA) board. The pulse shaping root raised cosine (RRC) filter has been implemented using distributed arithmetic (DA) technique in the present work in order to reduce the computational complexity, and to achieve appropriate power reduction and enhanced throughput. The designed multiplier-less programmable 32-tap FIR-based RRC filter has been found to withstand a peak inter-symbol interference (ISI) distortion of -41 dB

    Implementation of Four Real-Time Software Defined Receivers and a Space-Time Decoder using Xilinx Virtex 2 Pro Field Programmable Gate Array

    Get PDF
    This paper describes the concept, architecture, development and demonstration of a real time, high performance, software defined 4-receiver system and a space time decoder to be implemented on a Xilinx Virtex 2 Pro Field Programmable Gate Array. It is designed and developed for research into receiver diversity and multiple input and multiple output (MIMO)wireless systems. Each receiver has a Freescale DSP56321 digital signal processor (DSP) to run synchronization, channel state estimation and equalization algorithms. The system is software defined to allow for flexibility in the choice of receiver demodulation formats, output data rates and space-time decoding schemes. Hardware, firmware and software aspects of the receiver and space time decoder system to meet design requirements are discussed
    • 

    corecore