Considerable research has taken place in recent times in the area of
parameterization of software defined radio (SDR) architecture. Parameterization
decreases the size of the software to be downloaded and also limits the
hardware reconfiguration time. The present paper is based on the design and
development of a programmable baseband modulator that perform the QPSK
modulation schemes and as well as its other three commonly used variants to
satisfy the requirement of several established 2G and 3G wireless communication
standards. The proposed design has been shown to be capable of operating at a
maximum data rate of 77 Mbps on Xilinx Virtex 2-Pro University field
programmable gate array (FPGA) board. The pulse shaping root raised cosine
(RRC) filter has been implemented using distributed arithmetic (DA) technique
in the present work in order to reduce the computational complexity, and to
achieve appropriate power reduction and enhanced throughput. The designed
multiplier-less programmable 32-tap FIR-based RRC filter has been found to
withstand a peak inter-symbol interference (ISI) distortion of -41 dB