

This thesis has been submitted in fulfilment of the requirements for a postgraduate degree

(e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following

terms and conditions of use:

• This work is protected by copyright and other intellectual property rights, which are

retained by the thesis author, unless otherwise stated.

• A copy can be downloaded for personal non-commercial research or study, without

prior permission or charge.

• This thesis cannot be reproduced or quoted extensively from without first obtaining

permission in writing from the author.

• The content must not be changed in any way or sold commercially in any format or

medium without the formal permission of the author.

• When referring to this work, full bibliographic details including the author, title,

awarding institution and date of the thesis must be given.

Reconfigurable Architectures for the Next

Generation of Mobile Device Telecommunications

Systems

Ahmed Osman El-Rayis

Thesis submitted for the degree of Doctor of Philosophy.

The University of Edinburgh

September 2014

ii

Declaration of originality

I hereby declare that the research recorded in this thesis and the thesis itself was

composed and originated entirely by myself in the School of Engineering at the

University of Edinburgh.

Ahmed Osman El-Rayis

iii

ACKNOWLEDGEMENT

Praise be to GOD the Almighty, who made me capable enough to complete this

thesis.

I am also grateful to my supervisor, Prof. Tughrul Arslan, for his knowledge, expert

guidance, trust, support, motivation and advice. His technical acumen, suggestions

and timely discussions are heartily appreciated.

I wish to express my gratitude to Dr. Khaled Benkrid for his helpful suggestions

and lively discussions during the writing of this work. I am grateful to Dr. Ahmet

T. Erdogan for his technical guidance, and also to the RICA team for their support

and assistance in using the tools and keeping upgrades to the latest available

version.

Very special thanks go to my parents, Osman and Zeinab, for their prayers,

continuous support and encouragement throughout my life. This thesis is dedicated

to them for their unlimited love, patience and unwavering belief in my capabilities.

Special thanks to my wife Olga and my beautiful daughters Laila and Sara in

whose presence I always find that life is at its brightest.

Last but not least, my sisters are always on my side supporting me and following

my success eagerly. Aya and Amel - thank you, my dears.

iv

PUBLICATIONS

Publications directly related to this thesis:

 A.O. El-Rayis, T. Arslan, K. Benkrid, Reconfigurable architectures for next

generation mobile devices, Consumer Electronics Times (CET) Journal,

Accepted Sept. 2014. [Chapter 2]

 A.O. El-Rayis, T. Arslan, A.T. Erdogan, A processing engine for GPS

correlation, IEEE 8th Symposium on Application Specific Processors (SASP)

2010, pp. 44-49, 13-14 June 2010. [Chapter 6]

 A.O. El-Rayis, X. Zhao, T. Arslan, A.T. Erdogan, Low power RS codec using

cell-based reconfigurable processor, 22
nd

 IEEE International SOC Conference

(SOCC) 2009, pp. 279-282, 9-11 Sept. 2009. [Chapter 5]

 A.O. El-Rayis, X. Zhao, T. Arslan, A.T. Erdogan, Dynamically programmable

Reed Solomon processor with embedded Galois Field multiplier, International

Conference on Field-Programmable Technology (FPT) 2008, pp. 269-272, 8-

10 Dec. 2008. [Chapter 5]

 A.O. El-Rayis, T. Arslan, A. Erdogan, High performance embedded

reconfigurable concatenated convolution-puncturing fabric for 802.16,

NASA/ESA Conference on Adaptive Hardware and Systems 2007, pp. 190-194,

August 5-8, 2007. [Chapter 3]

Publications inspired by or indirectly related to the work in this thesis:

 A.O. El-Rayis, T. Arslan, A.T. Erdogan, Addressing future space challenges

using reconfigurable instruction cell-based architectures, NASA/ESA

Conference on Adaptive Hardware and Systems, (AHS) 2008, pp. 199-203, 22-

25 June 2008.

 W. Li, T. Arslan, J. Han, A.T. Erdogan, A.O. El-Rayis, N. Haridas, E. Yang,

Energy efficiency enhancement in satellite based WSN through collaboration

and self-organized mobility, IEEE Aerospace conference 2009, pp. 1-8, 7-14

March 2009.

 W. Li, T. Arslan, A.O. El-Rayis, N. Haridas, A.T. Erdogan, E. Yang,

Distributed adaptability and mobility in space-based wireless pico-satellite

sensor networks, NASA/ESA Conference on Adaptive Hardware and Systems,

(AHS) 2008, pp. 277-282, 22-25 June 2008.

v

 ABSTRACT

Mobile devices have become a dominant tool in our daily lives. Business and

personal usage has escalated tremendously since the emergence of smartphoness

and tablets. The combination of powerful processing in mobile devices, such as

smartphoness and the Internet, have established a new era for communications

systems. This has put further pressure on the performance and efficiency of

telecommunications systems in delivering the aspirations of users. Mobile device

users no longer want devices that merely perform phone calls and messaging.

Rather, they look for further interactive applications such as video streaming,

navigation and real time social interaction. Such applications require a new set of

hardware and standards. The WiFi (IEEE 802.11) standard has been at the forefront

of reliable and high-speed internet access telecommunications. This is due to its

high signal quality (quality of service) and speed (throughput). However, its limited

availability and short range highlights the need for further protocols, in particular

when far away from access points or base stations. This led to the emergence of 3G

followed by 4G and the upcoming 5G standard that, if fully realised, will provide

another dimension in “anywhere, anytime internet connectivity.” On the other

hand, the WiMAX (IEEE 802.16) standard promises to exceed the WiFi signal

coverage range. The coverage range could be extended to kilometres at least with a

better or similar WiFi signal level.

This thesis considers a dynamically reconfigurable architecture that is capable of

processing various modules within telecommunications systems. Forward error

correction, coder and navigation modules are deployed in a unified low power

communication platform. These modules have been selected since they are among

those with the highest demand in terms of processing power, strict processing time

or throughput. The modules are mainly realised within WiFi and WiMAX systems

in addition to global positioning systems (GPS). The idea behind the selection of

these modules is to investigate the possibility of designing an architecture capable

vi

of processing various systems and dynamically reconfiguring between them. The

GPS system is a power-hungry application and, at the same time, it is not needed

all of the time. Hence, one key idea presented in this thesis is to effectively exploit

the dynamic reconfiguration capability so as to reconfigure the architecture (GPS)

when it is not needed in order to process another needed application or function

such as WiFi or WiMAX. This will allow lower energy consumption and the

optimum usage of the hardware available on the device.

This work investigates the major current coarse-grain reconfigurable architectures.

A novel multi-rate convolution encoder is then designed and realised as a

reconfigurable fabric. This demonstrates the ability to adapt the algorithms

involved to meet various requirements. A throughput of between 200 and 800

Mbps has been achieved for the rates 1/2 to 7/8, which is a great achievement for

the proposed novel architecture. A reconfigurable interleaver is designed as a

standalone fabric and on a dynamically reconfigurable processor. High throughputs

exceeding 90 Mbps are achieved for the various supported block sizes. The Reed

Solomon coder is the next challenging system to be designed into a dynamically

reconfigurable processor. A novel Galois Field multiplier is designed and

integrated into the developed Reed Solomon reconfigurable processor. As a result

of this work, throughputs of 200Mbps and 93Mbps respectively for RS encoding

and decoding are achieved. A GPS correlation module is also investigated in this

work. This is the main part of the GPS receiver responsible for continuously

tracking GPS satellites and extracting messages from them. The challenging aspect

of this part is its real-time nature and the associated critical time constraints. This

work resulted in a novel dynamically reconfigurable multi-channel GPS correlator

with up to 72 simultaneous channels.

This work is a contribution towards a global unified processing platform that is

capable of processing communication-related operations efficiently and

dynamically with minimum energy consumption.

vii

CONTENTS

Declaration of originality .. ii

PUBLICATIONS ... iv

ABSTRACT .. v

CONTENTS ... vii

LIST OF FIGURES ... x

LIST OF TABLES ... xv

LIST OF ACRONYMS AND ABBREVIATIONS ... xvi

1 INTRODUCTION ... 1

1.1 MOTIVATION .. 1
1.2 CONTRIBUTION ... 3
1.3 STRUCTURE .. 5
1.4 SUMMARY OF CONTRIBUTION .. 6

2 RECONFIGURABLE ARCHITECTURES ... 7

2.1 INTRODUCTION ... 7
2.2 BACKGROUND ... 8
2.3 GENERAL, DSP, FINE AND COARSE PROCESSORS .. 9

2.3.1 Reconfigurable Computing Classes ... 11
2.4 COARSE GRAIN RECONFIGURABLE ARCHITECTURES 12

2.4.1 CRISP: A Coarse-Grained Reconfigurable Instruction Set Processor 12
2.4.2 Systolic Ring Architecture ... 14
2.4.3 MATRIX Architecture .. 15
2.4.4 Cell Matrix and vCell Matrix Architectures .. 18
2.4.5 Pleiades Architecture ... 21
2.4.6 OneChip Architecture .. 22
2.4.7 Chimaera Architecture .. 23
2.4.8 REMARC Architecture ... 24
2.4.9 RaPiD Architecture.. 26
2.4.10 Garp Architecture ... 28
2.4.11 SRGA Architecture .. 30
2.4.12 CHESS Architecture .. 31
2.4.13 DART Architecture .. 33
2.4.14 DReAM Architecture ... 34
2.4.15 PADDI Architecture .. 37
2.4.16 MorphoSys Architecture ... 39

viii

2.4.17 PipeRench Architecture .. 40
2.4.18 rDPA Architecture .. 41
2.4.19 KressArray Architecture ... 43
2.4.20 MOVE Architecture... 45
2.4.21 RICA Architecture ... 48
2.4.22 CDDS Variable Datapath Architecture .. 51
2.4.23 BilRC Architecture .. 52

2.5 COMPARISON AND DISCUSSION ... 53
2.6 CONCLUSION.. 56

3 MULTIRATE CONVOLUTION ENCODER 58

3.1 INTRODUCTION ... 58
3.2 CONVOLUTION ENCODER AND PUNCTURING CONFIGURATION 60

3.2.1 Convolution Encoder ... 60
3.2.2 Puncturing Configuration .. 62

3.3 TECHNIQUE FOR THE PARALLELIZATION PUNCTURED CONVOLUTION

ENCODER .. 62
3.4 RECONFIGURABLE CONCATENATED CONVOLUTION-PUNCTURING

ARCHITECTURE ... 66
3.5 RESULTS .. 70
3.6 CONCLUSION.. 71

4 RECONFIGURABLE INTERLEAVER ON DYNAMICALLY

CELL-BASED ARCHITECTURE AND AS A FABRIC................................... 73

4.1 INTRODUCTION ... 73
4.2 INTERLEAVER/DE-INTERLEAVER ... 74
4.3 RECONFIGURABLE INTERLEAVER ... 77
4.4 RECONFIGURABLE INTERLEAVER FABRIC .. 78
4.5 INTERLEAVER ON A DYNAMICALLY RECONFIGURABLE PROCESSOR 82
4.6 RESULTS AND ANALYSIS .. 84
4.7 CONCLUSION.. 87

5 DYNAMICALLY PROGRAMMABLE REED SOLOMON

PROCESSOR ... 88

5.1 INTRODUCTION ... 88
5.2 RECONFIGURABLE RS-CODEC ALGORITHMS .. 90
5.3 RECONFIGURABLE RS PROCESSOR .. 91
5.4 RS ENCODER AND DECODER IMPLEMENTATION ON NOVEL RS PROCESSOR

 93
5.4.1 RS Encoding and Novel Design ... 93
5.4.2 RS Decoder on RS Processor ... 95

5.5 GALOIS FIELD MULTIPLIER CELL FOR RS PROCESSOR..................................... 98
5.6 RS PROCESSOR IMPLEMENTATIONS AND OPTIMISATIONS 100

5.6.1 Architecture Specific Optimisations .. 100
5.6.2 RS Encoder Implementation and Optimisation .. 107
5.6.3 RS Decoder Implementation and Optimisation.. 109

5.7 PERFORMANCE, COMPARISON ANALYSIS AND RESULTS 111
5.7.1 GF Multiplier Cell ... 111
5.7.2 RS Codec Processor... 112

ix

5.8 CONCLUSION.. 115

6 GPS DIGITAL MATCHED FILTERS USING DYNAMICALLY

RECONFIGURABLE ARCHITECTURE .. 116

6.1 INTRODUCTION ... 116
6.2 CORRELATION ARCHITECTURES .. 117

6.2.1 Serial Search Correlation .. 119
6.2.2 Conventional Digital Matched Filter ... 120
6.2.3 Differential Digital Matched Filter ... 121
6.2.4 Segment Processing Digital Matched Filter .. 122
6.2.5 Algorithmic Comparison .. 123

6.3 ENGINE ARCHITECTURE ... 123
6.4 ANALYSIS AND OPTIMISATIONS .. 125

6.4.1 Tier 1: Correlation Implementation ... 125
6.4.2 Tier 2: Architecture Optimisations .. 127
6.4.3 Tier 3: Engine Optimisation .. 129

6.5 PERFORMANCE ANALYSIS ... 131
6.6 CONCLUSION.. 138

7 GPS MULTI-CHANNEL CORRELATION USING THE

DYNAMICALLY RECONFIGURABLE PLATFORM 139

7.1 INTRODUCTION ... 139
7.2 GPS ENGINE CORRELATOR CAPABILITY REVIEW .. 139
7.3 GPS CORRELATION ‘ENGINE 2’ ... 140
7.4 MULTI-CHANNEL CORRELATION SOLUTION .. 142
7.5 ANALYSISOF RESULTS AND DISCUSSION .. 144
7.6 CONCLUSIONS ... 151

8 SUMMARY AND FUTURE WORK .. 152

8.1 INTODUCTION .. 152
8.2 SUMMARY OF THESIS AND CONTRIBUTION .. 152
8.3 FUTURE WORK... 156

REFERENCES ... 158

APPENDIX A: MATLAB MODELS ... 169

A.1 INTERLEAVER MODEL: ... 169
A.2 16-QAM INTERLEAVER MODEL: ... 170
A.3 QPSK INTERLEAVER MODEL: ... 172

APPENDIX B: VERILOG DESIGNS .. 174

B.1 INTERLEAVER DESIGN: .. 174
B.2 GF RECONFIGURABLE MULTIPLIER DESIGN .. 187
B.3 RS ENCONDER DESIGN ... 189

x

LIST OF FIGURES

Figure 1-1 General block diagrams of WiMAX/WiFi transmitter and receiver in addition to

GPS receiver. The hashed blocks are the subject of this thesis ... 2

Figure 2-1 FPGA building block - Xilinx .. 8

Figure 2-2 Computation architecture characteristics ... 10

Figure 2-3 CRISP architecture construction of processor and a reconfigurable functional

unit [13] ... 12

Figure 2-4 Reconfigurable slice internal structure [13] ... 13

Figure 2-5 The Ring architecture layout [14] .. 15

Figure 2-6 Dnode architecture [14] ... 16

Figure 2-7 Ring style for Dnode interconnections [14] ... 16

Figure 2-8 MATRIX Processing element (functional unit) [15] ... 17

Figure 2-9 MATRIX nearest neighbour interconnect [15] .. 18

Figure 2-10 PE structure for the Cell matrix architecture [16] .. 19

Figure 2-11 PE structure for the vCell matrix architecture [19] .. 19

Figure 2-12 Two-dimensional array structure for the vCell matrix architecture [19] 19

Figure 2-13 Two-dimensional array structure for the Cell Matrix architecture [19] 20

Figure 2-14 Pleiades processor reconfigurable architecture layout [17] 22

Figure 2-15 OneChip architecture layout .. 23

Figure 2-16 Chimaera architecture layout [7] .. 23

Figure 2-17 REMARC architecture layout [8] .. 25

Figure 2-18 REMARC architecture internal structure [8] ... 25

Figure 2-19 RaPiD-I basic cell structure [9] .. 27

Figure 2-20 Garp architecture block diagram [18] .. 27

Figure 2-21 Garp array organisation [18] .. 29

Figure 2-22 Garp program flowchart [18] ... 30

Figure 2-23 SRGA architecture interconnect mesh [11] ... 31

Figure 2-24 CHESS architecture layout and neighbouring interconnections [10] 32

Figure 2-25 DART system level architecture .. 33

Figure 2-26 DART cluster construction [12] ... 34

Figure 2-27 DReAM architecture structure ... 35

Figure 2-28 DReAM hierarchy control for dynamic reconfiguration [19] 36

THESIS_257_06.10.2014.doc#_Toc400397777
THESIS_257_06.10.2014.doc#_Toc400397777
THESIS_257_06.10.2014.doc#_Toc400397778
THESIS_257_06.10.2014.doc#_Toc400397779
THESIS_257_06.10.2014.doc#_Toc400397780
THESIS_257_06.10.2014.doc#_Toc400397780
THESIS_257_06.10.2014.doc#_Toc400397781
THESIS_257_06.10.2014.doc#_Toc400397782
THESIS_257_06.10.2014.doc#_Toc400397783
THESIS_257_06.10.2014.doc#_Toc400397784
THESIS_257_06.10.2014.doc#_Toc400397785
THESIS_257_06.10.2014.doc#_Toc400397786
THESIS_257_06.10.2014.doc#_Toc400397787
THESIS_257_06.10.2014.doc#_Toc400397788
THESIS_257_06.10.2014.doc#_Toc400397789
THESIS_257_06.10.2014.doc#_Toc400397790
THESIS_257_06.10.2014.doc#_Toc400397791
THESIS_257_06.10.2014.doc#_Toc400397792
THESIS_257_06.10.2014.doc#_Toc400397793
THESIS_257_06.10.2014.doc#_Toc400397794
THESIS_257_06.10.2014.doc#_Toc400397795
THESIS_257_06.10.2014.doc#_Toc400397796
THESIS_257_06.10.2014.doc#_Toc400397797
THESIS_257_06.10.2014.doc#_Toc400397798
THESIS_257_06.10.2014.doc#_Toc400397799
THESIS_257_06.10.2014.doc#_Toc400397800
THESIS_257_06.10.2014.doc#_Toc400397801
THESIS_257_06.10.2014.doc#_Toc400397802
THESIS_257_06.10.2014.doc#_Toc400397803
THESIS_257_06.10.2014.doc#_Toc400397804
THESIS_257_06.10.2014.doc#_Toc400397805

xi

Figure 2-29 PADDI architecture structure [20] ... 38

Figure 2-30 PADDI EXU architecture [20] ... 38

Figure 2-31 MorphoSys architecture layout [25] .. 39

Figure 2-32 MorphoSys 8x8 reconfigurable cell array and row-column connectivity

between each reconfigurable cell (RC) [25] .. 40

Figure 2-33 PipeRench architecture layout [26] .. 41

Figure 2-34 rDPA architecture with ALU controller [27] ... 42

Figure 2-35 KressArray architecture [27] .. 43

Figure 2-36 rDPU four configuration layers .. 44

Figure 2-37 Move architecture structure [30] .. 46

Figure 2-38 MOVE32INT block diagram [31] .. 47

Figure 2-39 Dynamic allocation of instruction cells into processing steps, scheduled within

the GCC tool chain .. 50

Figure 2-40 CDDS architecture’s reconfigurable datapath separated into static and dynamic

parts [40] .. 51

Figure 2-41 PE column based structure in BilRC [41] .. 52

Figure 2-42 Classification based on control/arithmetic ratio [42] 54

Figure 3-1 Convolution encoder and puncturing configuration as separate units in the

transmitter of a wireless communication system ... 59

Figure 3-2. Convolution encoder (rate=1/2, k=7) .. 61

Figure 3-3. Parallel punctured convolution encoder [49] .. 62

Figure 3-4. Punctured convolution encoder for the rate 2/3 .. 64

Figure 3-5. Punctured convolution encoder for the rate 5/6 .. 64

Figure 3-6. Punctured convolution encoder for rate 7/8 .. 65

Figure 3-7. First conventional approach for implementing punctured convolutional encoder

for different rates ... 66

Figure 3-8. Second conventional approach for implementing punctured convolution

encoder for different rates .. 67

Figure 3-9 Proposed top-level architecture for low power reconfigurable concatenated

convolution-puncturing module for 802.16 ... 68

Figure 3-10 Reconfigurable interconnections for the convolution-puncturing core (delay

units are implemented as registers) .. 68

Figure 3-11: Reconfigurable serial to parallel ... 69

Figure 4-1. The interleaver and de-interleaver in OFDM WiMAX baseband 74

THESIS_257_06.10.2014.doc#_Toc400397806
THESIS_257_06.10.2014.doc#_Toc400397807
THESIS_257_06.10.2014.doc#_Toc400397808
THESIS_257_06.10.2014.doc#_Toc400397809
THESIS_257_06.10.2014.doc#_Toc400397809
THESIS_257_06.10.2014.doc#_Toc400397810
THESIS_257_06.10.2014.doc#_Toc400397811
THESIS_257_06.10.2014.doc#_Toc400397812
THESIS_257_06.10.2014.doc#_Toc400397813
THESIS_257_06.10.2014.doc#_Toc400397814
THESIS_257_06.10.2014.doc#_Toc400397815
THESIS_257_06.10.2014.doc#_Toc400397816
THESIS_257_06.10.2014.doc#_Toc400397816
THESIS_257_06.10.2014.doc#_Toc400397817
THESIS_257_06.10.2014.doc#_Toc400397817
THESIS_257_06.10.2014.doc#_Toc400397818
THESIS_257_06.10.2014.doc#_Toc400397819
THESIS_257_06.10.2014.doc#_Toc400397820
THESIS_257_06.10.2014.doc#_Toc400397820
THESIS_257_06.10.2014.doc#_Toc400397821
THESIS_257_06.10.2014.doc#_Toc400397822
THESIS_257_06.10.2014.doc#_Toc400397823
THESIS_257_06.10.2014.doc#_Toc400397824
THESIS_257_06.10.2014.doc#_Toc400397825
THESIS_257_06.10.2014.doc#_Toc400397826
THESIS_257_06.10.2014.doc#_Toc400397826
THESIS_257_06.10.2014.doc#_Toc400397827
THESIS_257_06.10.2014.doc#_Toc400397827
THESIS_257_06.10.2014.doc#_Toc400397828
THESIS_257_06.10.2014.doc#_Toc400397828
THESIS_257_06.10.2014.doc#_Toc400397829
THESIS_257_06.10.2014.doc#_Toc400397829
THESIS_257_06.10.2014.doc#_Toc400397830
THESIS_257_06.10.2014.doc#_Toc400397831

xii

Figure 4-2: Proposed reconfigurable interleaver ... 80

Figure 4-3. WIMAX interleaver for QPSK modulation .. 81

Figure 4-4 Architecture Cells dynamic power in µW for interleaver 576 64-QAM with two

design methods and their optimisations ... 82

Figure 4-5. Architecture’s execution time in µs for interleaver 576 64-QAM with two

design methods and their optimisations ... 82

Figure 4-6. Architecture cells dynamic power in µW for interleaver 768 16-QAM with two

design methods and their optimisations ... 83

Figure 4-7. Architecture’s execution time in µs for interleaver 768 16-QAM with two

design methods and their optimisations ... 84

Figure 4-8. Reconfigurable interleaver execution time in µs for the various modes on the

dynamically reconfigurable architecture RICA ... 85

Figure 4-9. Reconfigurable interleaver dynamic power consumption in µW for the various

modes on the dynamically reconfigurable architecture RICA ... 85

Figure 4-10. Reconfigurable interleaver “steps” count for the various modes on the

dynamically reconfigurable architecture RICA ... 86

Figure 5-1 Reed-Solomon processor based on dynamically reconfigurable heterogeneous

cell array. ... 92

Figure 5-2. Reed-Solomon encoder using linear feedback shift register with n-k stages: (a)

classical RS encoder architecture; (b) novel design of parallel parity output 94

Figure 5-3. Reed Solomon decoder main algorithms .. 95

Figure 5-4. Syndrome computation architecture ... 95

Figure 5-5. The internal architecture of a single GF multiplier for 8-bit data width 98

Figure 5-6. A novel 8 bit GFMUL cell with four embedded GF multipliers maximising the

throughput by applying the SIMD technique (a) GF multiplier cell layout, (b) GF

multiplier internal structure ... 99

Figure 5-7. SIMD architecture for syndrome computation ... 102

Figure 5-8 Reed Solomon decoder (a) classical software approach of RS decoder; (b) new

approach with GF multiplier cell ... 103

Figure 5-9 RICA architecture tool flow ... 104

Figure 5-10 Programmable Reed Solomon processor architecture based on heterogeneous

cell array (dark coloured cells represent active cells in a certain configuration). The three

cases are: (a) initial configuration; (b) intermediate configuration, in which certain cells are

THESIS_257_06.10.2014.doc#_Toc400397832
THESIS_257_06.10.2014.doc#_Toc400397833
THESIS_257_06.10.2014.doc#_Toc400397834
THESIS_257_06.10.2014.doc#_Toc400397834
THESIS_257_06.10.2014.doc#_Toc400397835
THESIS_257_06.10.2014.doc#_Toc400397835
THESIS_257_06.10.2014.doc#_Toc400397836
THESIS_257_06.10.2014.doc#_Toc400397836
THESIS_257_06.10.2014.doc#_Toc400397837
THESIS_257_06.10.2014.doc#_Toc400397837
THESIS_257_06.10.2014.doc#_Toc400397838
THESIS_257_06.10.2014.doc#_Toc400397838
THESIS_257_06.10.2014.doc#_Toc400397839
THESIS_257_06.10.2014.doc#_Toc400397839
THESIS_257_06.10.2014.doc#_Toc400397840
THESIS_257_06.10.2014.doc#_Toc400397840
THESIS_257_06.10.2014.doc#_Toc400397841
THESIS_257_06.10.2014.doc#_Toc400397841
THESIS_257_06.10.2014.doc#_Toc400397842
THESIS_257_06.10.2014.doc#_Toc400397842
THESIS_257_06.10.2014.doc#_Toc400397843
THESIS_257_06.10.2014.doc#_Toc400397844
THESIS_257_06.10.2014.doc#_Toc400397845
THESIS_257_06.10.2014.doc#_Toc400397846
THESIS_257_06.10.2014.doc#_Toc400397846
THESIS_257_06.10.2014.doc#_Toc400397846
THESIS_257_06.10.2014.doc#_Toc400397847
THESIS_257_06.10.2014.doc#_Toc400397848
THESIS_257_06.10.2014.doc#_Toc400397848
THESIS_257_06.10.2014.doc#_Toc400397849
THESIS_257_06.10.2014.doc#_Toc400397850
THESIS_257_06.10.2014.doc#_Toc400397850
THESIS_257_06.10.2014.doc#_Toc400397850

xiii

configured to code/decode data from/to input/output ports; and (c) final configuration,

flushing remaining data out, and preparing for the subsequent configuration................... 106

Figure 5-11 Reconfigurable RS encoder data-flow graph ... 107

Figure 5-12 Reconfigurable RS encoder modified data-flow graph using GFMUL cell .. 108

Figure 5-13. Reed-Solomon decoder algorithm design ... 109

Figure 5-14 Memory usage for RS decoding on RS processor ... 112

Figure 5-15 Throughput of RS decoding on RS processor .. 113

Figure 5-16 Energy consumption for the RS decoder on RICA .. 114

Figure 6-1 Serial search correlation ... 119

Figure 6-2 Conventional digital matched filter (CDMF) ... 120

Figure 6-3 Differential digital matched filter (DDMF) ... 121

Figure 6-4 Segment processing digital matched filter (SPDMF) with K=2 122

Figure 6-5 Modified conventional digital matched filter (MCDMF) architecture 128

Figure 6-6 Modified differential digital matched filter (MDDMF) architecture 129

Figure 6-7. Modified segment processing digital matched filter (MSPDMF) architecture for

K=2 .. 130

Figure 6-8 Comparison of resulting Correlation times (ms) for the matching filter

architectures ... 132

Figure 6-9 Comparison of cell dynamic energy (J) for various matched filter architectures

 ... 133

Figure 6-10 Comparison of data memory access energy (J) for various matched filter

architectures ... 133

Figure 6-11 Comparison of total energy
*
 (J) for various matched filter architectures 133

Figure 6-12 Comparison of total step count for various matched filter architectures 134

Figure 6-13 Comparison of memory usage (bytes) for various matched filter architectures

 ... 134

Figure 6-14 Comparison of program memory access energy (J) for various matched filter

architectures ... 134

Figure 6-15 Comparison of correlation time (µs) with packed data results for matching

filter architectures .. 135

Figure 6-16 Comparison of data and Program memory access energy (J) for various

matched filter architectures with packed data optimisation ... 136

Figure 6-17 Comparison of cells and total dynamic energy (J) for various matched filter

architectures with packed data optimisation .. 136

THESIS_257_06.10.2014.doc#_Toc400397851
THESIS_257_06.10.2014.doc#_Toc400397852
THESIS_257_06.10.2014.doc#_Toc400397853
THESIS_257_06.10.2014.doc#_Toc400397854
THESIS_257_06.10.2014.doc#_Toc400397855
THESIS_257_06.10.2014.doc#_Toc400397856
THESIS_257_06.10.2014.doc#_Toc400397857
THESIS_257_06.10.2014.doc#_Toc400397858
THESIS_257_06.10.2014.doc#_Toc400397859
THESIS_257_06.10.2014.doc#_Toc400397860
THESIS_257_06.10.2014.doc#_Toc400397861
THESIS_257_06.10.2014.doc#_Toc400397862
THESIS_257_06.10.2014.doc#_Toc400397863
THESIS_257_06.10.2014.doc#_Toc400397863
THESIS_257_06.10.2014.doc#_Toc400397864
THESIS_257_06.10.2014.doc#_Toc400397864
THESIS_257_06.10.2014.doc#_Toc400397865
THESIS_257_06.10.2014.doc#_Toc400397865
THESIS_257_06.10.2014.doc#_Toc400397866
THESIS_257_06.10.2014.doc#_Toc400397866
THESIS_257_06.10.2014.doc#_Toc400397867
THESIS_257_06.10.2014.doc#_Toc400397868
THESIS_257_06.10.2014.doc#_Toc400397869
THESIS_257_06.10.2014.doc#_Toc400397869
THESIS_257_06.10.2014.doc#_Toc400397870
THESIS_257_06.10.2014.doc#_Toc400397870
THESIS_257_06.10.2014.doc#_Toc400397871
THESIS_257_06.10.2014.doc#_Toc400397871
THESIS_257_06.10.2014.doc#_Toc400397872
THESIS_257_06.10.2014.doc#_Toc400397872
THESIS_257_06.10.2014.doc#_Toc400397873
THESIS_257_06.10.2014.doc#_Toc400397873

xiv

Figure 6-18 Comparison of total step count for various matched filter architectures with

packed data optimisation ... 137

Figure 6-19 Comparison of memory usage (bytes) for various matched filter architectures

with packed data optimisation ... 137

Figure 7-1 ‘Engine 2’ is capable of providing 12 GPS correlation channels 141

Figure 7-2 ‘Engine 3’ is capable of providing 72 GPS correlation channels 143

Figure 7-3 ‘Engine 4’ is capable of providing 144 GPS correlation channels 144

Figure 7-4 ‘Engine 5’ core based on two ‘Engine 4’ cores or twenty four ‘Engine 2’ cores

for providing 288 GPS correlations ... 145

Figure 7-5 Variation in the single correlation results between the different multi-correlation

engines ... 146

Figure 7-6 Memory usage for the different multi-correlation engines 146

Figure 7-7 Total dynamic energy for the different multi-correlation engines 146

Figure 7-8 Data memory access energy for the different multi-correlation engines 147

Figure 7-9 Number of core cells used in each engine .. 147

Figure 7-10 Normalised cell numbers per correlation engine ... 149

Figure 7-11 Normalised number of cells used per engine and the associated normalised

number of correlations ... 149

Figure 7-12 Cost of adding “Engine 2” to the various engines ... 150

Figure 8-1 Fully reconfigurable baseband architecture ... 156

THESIS_257_06.10.2014.doc#_Toc400397874
THESIS_257_06.10.2014.doc#_Toc400397874
THESIS_257_06.10.2014.doc#_Toc400397875
THESIS_257_06.10.2014.doc#_Toc400397875
THESIS_257_06.10.2014.doc#_Toc400397876
THESIS_257_06.10.2014.doc#_Toc400397877
THESIS_257_06.10.2014.doc#_Toc400397878
THESIS_257_06.10.2014.doc#_Toc400397879
THESIS_257_06.10.2014.doc#_Toc400397879
THESIS_257_06.10.2014.doc#_Toc400397880
THESIS_257_06.10.2014.doc#_Toc400397880
THESIS_257_06.10.2014.doc#_Toc400397881
THESIS_257_06.10.2014.doc#_Toc400397882
THESIS_257_06.10.2014.doc#_Toc400397883
THESIS_257_06.10.2014.doc#_Toc400397884
THESIS_257_06.10.2014.doc#_Toc400397885
THESIS_257_06.10.2014.doc#_Toc400397886
THESIS_257_06.10.2014.doc#_Toc400397886
THESIS_257_06.10.2014.doc#_Toc400397887
THESIS_257_06.10.2014.doc#_Toc400397888

xv

LIST OF TABLES

Table 2-1 Main types of instruction cells types in the RICA architecture 48

Table 2-2 Comparison of studies of reconfigurable architectures 55

Table 3-1 WiMAX puncture pattern configuration and resulting convolution code

serialization .. 61

Table 3-2: External and internal configuration words ... 70

Table 3-3. Area and estimated power for all supported rates .. 71

Table 3-4. Throughput for all supported rates for the core unit and whole module 71

Table 4-1 Block sizes of bit interleaver for WiMAX [44]... 75

Table 4-2 Value of the s parameter in the interleaver/de-interleaver equations 76

Table 4-3 Block sizes of bit interleaver for Wimax. Circle marks show similar block sizes

with different modulations and Ncbps [1] .. 78

Table 4-4 External configuration word for interleaver/de-interleaver 79

Table 4-5 Internal configuration word: 4 bit ... 80

Table 5-1 Number of additions and multiplications in the Reed-Solomon decoder 98

Table 5-2 Implementation results for the GF multiplier cell ... 111

Table 5-3 Performance comparison of the novel RS processor and StarCore 140 for

RS(255,239) ... 113

Table 6-1 Comparison of theoretical computational complexity for various correlation

algorithms .. 123

Table 6-2 Comparison of results for digital matched filter correlator architectures (without

packed data) ... 132

Table 6-3 Comparison of results for digital matched filter correlator architectures (with

packed data) ... 135

Table 7-1 Industrial correlator processors and associated correlation channels 140

Table 7-2 Summary of key cell numbers used in each engine .. 148

Table 7-3 Summary of the number of correlations and embedded ‘Engine 2’s’ in each

engine ... 150

THESIS_257_06.10.2014.doc#_Toc400397889
THESIS_257_06.10.2014.doc#_Toc400397890
THESIS_257_06.10.2014.doc#_Toc400397891
THESIS_257_06.10.2014.doc#_Toc400397891
THESIS_257_06.10.2014.doc#_Toc400397892
THESIS_257_06.10.2014.doc#_Toc400397893
THESIS_257_06.10.2014.doc#_Toc400397894
THESIS_257_06.10.2014.doc#_Toc400397895
THESIS_257_06.10.2014.doc#_Toc400397896
THESIS_257_06.10.2014.doc#_Toc400397897
THESIS_257_06.10.2014.doc#_Toc400397897
THESIS_257_06.10.2014.doc#_Toc400397898
THESIS_257_06.10.2014.doc#_Toc400397899
THESIS_257_06.10.2014.doc#_Toc400397900
THESIS_257_06.10.2014.doc#_Toc400397901
THESIS_257_06.10.2014.doc#_Toc400397902
THESIS_257_06.10.2014.doc#_Toc400397902
THESIS_257_06.10.2014.doc#_Toc400397903
THESIS_257_06.10.2014.doc#_Toc400397903
THESIS_257_06.10.2014.doc#_Toc400397904
THESIS_257_06.10.2014.doc#_Toc400397904
THESIS_257_06.10.2014.doc#_Toc400397905
THESIS_257_06.10.2014.doc#_Toc400397905
THESIS_257_06.10.2014.doc#_Toc400397906
THESIS_257_06.10.2014.doc#_Toc400397907
THESIS_257_06.10.2014.doc#_Toc400397908
THESIS_257_06.10.2014.doc#_Toc400397908

xvi

LIST OF ACRONYMS AND ABBREVIATIONS

ACS Add compare select

ADC Analogue to digital converter

ADSL Asymmetric digital subscriber line

ALM Adaptive logic module

ALU Arithmetic logic unit

ASIC Application specific integrated circuit

ASRF Application specific reconfigurable fabric

BPSK Binary phase shift keying

CBox Connection box

CCM Custom compute machine

CDMA Code division multiple access

CLB Configurable logic blocks

CMOS Complementary metal oxide semiconductor technology

DCT Discrete cosine transform

DP Data ports

DSP Digital signal processing

FEC Forward error correction

FFT Fast Fourier transform

FIFO First in, first out

FIR Finite impulse response filter

FLUF Full loop unfolding

FP Forward processor

FPGA Field programmable gate array

FSM Finite state machine

FSM RAM Forward state metrics random access memory

FU Functional unit

GPS Global positioning system

GSM Global system for mobile communications

I/O Input-output

IFU Interconnected functional units

xvii

LAB Logic array block

LB Logic block

LC Logic cell

LE Logic element

LFSR Linear feedback shift register

LLR Log likelihood ratio

LSB Least significant bit

LUF Loop unfolding

LUT Look-up-table

MAC Media access control

MAC Multiply accumulate

Mbps Mega bit per second

MDF Machine description file

MSB Most significant bit

OFDM Orthogonal frequency division multiplexing

PE Processing element

PGAs Programmable gate arrays

PHY Physical layer

QoS Quality of service

QPSK Quadrature phase shift keying

RAM Random access memory

RD Reconfigurable design

RF Reconfiguration fabric

RISC Reduced instruction set computing

ROM Read only memory

RP Reverse processor

RS Reed solomon

RSC Recursive systematic convolutional

RTL Register transfer language

SAIF Switching activity interchange format

SBOX Switch box

SDF Standard delay format

SIMD Single instruction multiple data

SIMT Single instruction multiple transports

xviii

SISO Soft input soft output

SNR Signal to noise ratio

SOC System on chip

SRAM Static random access memory

TTA Transport triggered architecture

VLIW Very large instruction word

VLSI Very large scale integration

WCDMA Wide band carrier division multiple access

WiMAX Worldwide interoperability for microwave access

WL Window length

WLAN Wireless local area network

WRT With respect to

1

Chapter 1

1 INTRODUCTION

1.1 Motivation

Telecommunications systems are integrated into almost every consumer device.

They can be found in cars, wristwatches and, lately, in spectacles. The most

obvious example is mobile devices and, in particular, Smartphones. Consumers

expect their smartphone to be compact and condensed with functions. Its most

important features are the telecommunications functions. Communication protocols

range widely from WiMAX (IEEE 802.16) and WiFi (IEEE 802.11) to 3G, 4G and

the upcoming 5G. In addition, there are essential communication systems such as

GPS (Global Positioning System) for location services. All these functions require

dedicated processors with high performance.

Power consumption is a key challenge in mobile devices. It has been widely

observed that the smartphones suffer from shorter battery life. This is mainly due to

the all-time connectivity to the internet and all active communication services with

classic processors. Therefore, the main motivation of this work is to try to reduce

the energy consumption on such devices. A two-fold approach has been chosen:

firstly, using a reconfigurable architecture for the realisation of a communication

system; and secondly, making this architecture dynamically reconfigurable. The

dynamism will not only allow functions to be reprogrammable but the architecture

will also be dynamically reconfigurable in order to process another function. This

work includes the design of key functions of communication systems into

dynamically reconfigurable processor in order to reduce power consumption.

Furthermore, the processor could switch or reconfigure from one communication

system to another. This will create savings in area and power consumption and

Chapter 1: Introduction

2

enable the use of dynamically reconfigurable or programmable baseband

processors.

Key functions within the communication systems of WiFi, WiMAX and GPS have

been identified as challenging in terms of processing time, power or resources.

Furthermore, they are certainly challenging in terms of the various modes, options

or configurations that such functions or modules are required to support. Hence, the

following modules or functions have been considered in this work. Firstly,

convolution, puncturing and de-puncturing are co-located modules that have to

support multiple rates in WiFi as well as WiMAX systems. Secondly, interleaver

and de-interleaver have multiple block sizes; and finally, Reed Solomon encoder

and decoder have different block sizes and various primitive polynomials as well as

correction capabilities and the associated challenges. All the above-mentioned

functions are constrained in throughput for the transmitter part to be up to at least

70Mbps. In addition, the GPS correlation function is challenging in terms of both

processing and time constraints. Figure 1-1 presents general block diagram of the

Figure 1-1 General block diagrams of WiMAX/WiFi transmitter and receiver in addition to
GPS receiver. The hashed blocks are the subject of this thesis

Chapter 1: Introduction

3

WiFi and WiMAX transmitter and receiver along with the GPS receiver. The

hashed blocks are the ones being considered and studied in this work.

1.2 Contribution

The main contribution of this work is to design reconfigurable processors that

could be exploited to implement various telecommunications functions using

dynamically reconfigurable architectures.

A novel reconfigurable architecture that provides a multi-rate punctured

convolution coder is introduced (Chapter 3). This architecture incorporates both

convolution and puncturing and can be used in wire/wireless communication

systems. The convolution-punctured multi-rate architecture has achieved a superior

throughput of 100 Mbps for all the required rates. Although the main architecture is

the core, which provides the concatenated convolution-punctured code,

reconfigurable input and output interfaces were designed and added to broaden the

usability of this reconfigurable fabric. The main advantage of this architecture is

that a single clock cycle is sufficient to provide the parallel convolution punctured

code for its parallel inputs, which can be used to maximise the throughput of the

whole transmitter system.

A novel reconfigurable interleaver is also presented (Chapter 4). The target

application was the WiMAX standard with its sophisticated block size system. The

interleaver has been researched and designed with a reconfigurable fabric

architecture and dynamically reconfigurable instruction cell-based architecture

(RICA). The interleaver throughput as a reconfigurable fabric satisfies the standard

requirements, while on RICA the throughput as well as the dynamic power

consumption are superior to the fabric realisation and other ASIC realisations.

These results are a step forward toward a fully reconfigurable baseband

telecommunications system. Moreover, the results represent a promising step

toward integrating the whole WIMAX system on a dynamically reconfigurable

architecture.

Chapter 1: Introduction

4

A novel Reed Solomon (RS) encoder architecture with parallel parity output is also

introduced (Chapter 5). A novel high-speed and low-power 4x8-bit Galois Field

(GF) multiplier cell is embedded within the novel low-power processor. A

programmable Reed Solomon coding processor is introduced along with its design,

optimisation and implementation. The real-time programmable RS encoder and

decoder processor supports several communication standards, such as WiMAX and

DVB-H. A number of approaches and optimisation techniques have been

implemented in order to enhance the processor performance. The processor

achieves high throughput and provides significant improvements in performance

and energy consumption. The novel dedicated GF multiplier cell leads to a

reduction in memory access energy of 72.4%, which improves the overall

performance of the processor. Different design approaches and optimisation

techniques have been applied in order to improve the processor throughput and

reduce its energy consumption. The throughputs achieved are up to 200 Mbps and

92 Mbps for the encoder and decoder respectively. The associated dynamic energy

consumption is in the range of 0.34 to 0.6µJ, demonstrating a design suitable for

present and future telecommunications systems.

Furthermore, a novel engine is presented based on the dynamically programmable

platform (RICA) targeting the computationally intensive correlation function used

in GPS-based positioning (Chapter 6). Various optimisation techniques have been

exploited in order to achieve the best performance on the platform. In addition,

modified correlation architectures are introduced, which demonstrate superiority in

terms of correlation time and energy consumption. Furthermore, the bitwise

optimisation technique has been applied for digital matched filters, which

demonstrate the maximum utilisation of the architecture leading to a higher

correlation speed of 62 μs for 1023 phase search correlations. Comparisons of the

achieved results and other relevant architectural configurations are presented,

showing that this work is a promising step towards high-speed, ultra-low-energy

GPS receivers.

Chapter 1: Introduction

5

A novel optimised multi-correlation processor is then introduced (Chapter 7). It is

concluded that, for the practical realisation of the multi-correlation engine, “Engine

2” and “Engine 3” provide the optimum solutions where 12 and 72 parallel

correlation channels respectively are being calculated. Moreover, a compromise

could be achieved through having an engine of three instead of six embedded

“Engine 2”, which is the case in “Engine 3A”. The new “Engine 3A” would

provide 36 parallel correlations. This work represents a step forward in the area of

dynamically reconfigurable architectures and correlation systems.

The contributions above taken together show how a dynamically reconfigurable

architecture can be used to dynamically reconfigure a device to perform the desired

function at any given time. For example, if the WiFi system is on and then the

mobile device moves out of the WiFi signal range, the processor will dynamically

reconfigure the device to work as a WiMAX system. Then if the present location

needs to be known, dynamic reconfiguration can get GPS positioning information

before switching back to WiMAX or another function. These possibilities clearly

show the potential power of dynamic reconfiguration for the next generation of

mobile devices. In particular, this can be very effective for miniature systems such

as wearable devices.

1.3 Structure

The structure of this thesis is as follows:

 Chapter 2 presents a review of research work in the area of reconfigurable

architectures with a focus on their suitability for telecommunications

systems

 Chapter 3 describes the reconfigurable architecture introduced so far that

provide multi-rate punctured convolution coders.

 Chapter 4 presents a novel reconfigurable interleaver and its design as a

reconfigurable fabric and on a dynamically reconfigurable architecture.

Chapter 1: Introduction

6

 Chapter 5 discuses the novel high-speed and low-power 4x8-bit Galois

Field (GF) multiplier cell embedded within the novel low-power processor

for programmable Reed Solomon coding, along with its design,

optimisation and implementation.

 Chapter 6 presents a novel engine based on the dynamically programmable

platform targeting the computationally intensive correlation functions used

in GPS-based positioning systems.

 Chapter 7 discusses the multi-engine correlation and introduces the novel

optimised multi-correlation processor.

 Chapter 8 gives a summary of and the conclusions drawn from the work.

 Appendix A contains the Matlab codes focusing mainly on the interleaver.

 Appendix B contains the Verilog code for the interleaver, GF cell and RS

coder.

1.4 Summary of Contribution

 Proposed multi-rate punctured convolution coder with 100 Mbps

throughput (Chapter 3).

 WiMAX interleaver reconfigurable fabric and WiMAX interleaver on

dynamically reconfigurable architecture (Chapter 4).

 Proposed RS encoder architecture with parallel parity output (Chapter 5).

 Novel high-speed and low-power 32 bit GF multiplier cell (Chapter 5).

 Novel real-time low power processor for programmable Reed Solomon

codec (Chapter 5).

 Modified matched filter designs (Chapter 6).

 Novel GPS correlation engine (Chapter 6).

 Multi-correlation GPS engine for 12 and up to 72 parallel correlations

(Chapter 7)

7

Chapter 2

2 RECONFIGURABLE ARCHITECTURES

2.1 Introduction

The development of mobile devices has challenged hardware designers to come up

with suitable architectures. Challenges such as power consumption, flexibility,

processing power and area are likely to lead to the need for a reconfigurable

architecture to cater for the growing demands made of mobile devices and to suit

the needs of the next generation of devices. Parallelism and multifunction in real-

time will be the minimum required characteristics of the architectures of such

devices. This chapter reviews the currently available reconfigurable architectures.

The focus here is on coarse-grain reconfigurable architectures, with particular

attention to those which support dynamic reconfiguration with low-power

consumption. The capacity for dynamic reconfiguration will be a key factor in

defining the most suitable architecture for future generations of mobile devices.

This chapter describes existing reconfigurable platforms. Their principles of

operation, architectures and structures are discussed highlighting their advantages

and disadvantages. Various coarse-grain reconfigurable architectures are discussed

along with their improvement with time. Finally the key characteristics which are

required for a reconfigurable architecture to be suitable for telecommunication

systems are identified and these are then the subjects of the following chapters in

this work. A comparison is given of for the various architectures discussed in terms

of suitability for telecommunications applications. The selected architecture will be

the subject pursued in this work.

Chapter 2: Reconfigurable Architectures

8

2.2 Background

The origins of reconfigurable computing date back to the 1960s, the concepts

proposed by Gerald Estrin [1]. The first FPGA (field programmable gate array) was

introduced by Carter et al [2]. Before the 1980s, software programmed

microprocessors were the only available resource for providing flexibility. The

emergence of the FPGA changed this situation. Configuration bits changes the

hardware realisation in FPGA as software instructions is programming the

processor. This led to another definition of reconfigurable computing, as a system

incorporating programmable logic to customise existing hardware. Programmable

logic is connected by flexible interconnects which can be changed periodically to

execute different implementations on the same hardware, thus providing an ASIC

(application-specific integrated circuit) solution with post-fabrication

programmability.

The FPGA consists of two main components, which are logic blocks and

interconnections or switches as illustrated in Figure 2-1. The programmable logic

blocks can be programmed along with the interconnections or switched array to

perform a certain logic function. The programmable logic block of one of the

leading FPGA manufacturers, Xilinx consists of a 3-input look-up table (LUT), a

multiplexer and a flip-flop in its basic building block [3]. Nowadays, Xilinx’s

series seven includes more complicated FPGAs with embedded processors, large

Figure 2-1 FPGA building block - Xilinx

Chapter 2: Reconfigurable Architectures

9

memory blocks and even transceivers along with various interface protocols [4].

The FPGA is a fine-grain reconfigurable architecture where it is based on a single

bit operation. FPGAs require a high volume of configuration data, and the mapping

functions are difficult and require specific skills.

The FPGA has various advantages, such as quick prototyping, speedy development

and clear basic blocks. However, it is obvious that it has various drawbacks, such

as being fine-granular. This property means that configuration data are

complicated, which as a consequence leads to the need for a large configuration

memory. This in turn increases the power consumption, area and design

complexity.

Architectures that use FPGA-based coprocessor along with a general purpose

processor are capable in processing complex algorithms [5]-[7]. However, this type

of configuration has two main drawbacks. Firstly, a wider datapath requires a large

area and longer delays occur due to the small width of the programmable logic

block and secondly FPGAs have lower logic density and are slower than a custom

ASIC [8].

In coarse-grain architectures, the datapath ranges from 2 to 32 bits or more. The

selection of the datapath width is a trade-off between flexibility, efficiency and

programmability. The main advantage of a reconfigurable processor or functional

unit is the ability to customise hardware for the requirements a specific algorithm

or function.

2.3 General, DSP, Fine and Coarse Processors

Multiprocessors or multi-core systems are increasingly introduced in personal

computing and smart mobile devices. There have been several approaches to the

enhancement of general-purpose architectures in order to increase performance,

such as the SIMD (single instruction, multiple data), MIMD (multiple instructions,

multiple data) and VLIW (very long instruction word) methods.

Chapter 2: Reconfigurable Architectures

10

Reconfigurable computation can enable increased computational performance and

lower energy consumption. Configurable computing combines the performance of

application-specific hardware with the reprogrammability of general-purpose

computers [9]. The FPGA may have advantages in reconfigurable computing;

however, it is based on a single bit which limits its capabilities compared to ASIC.

Such limitations can include low arithmetic density, reduced clock speeds, and low

internal RAM density and bandwidth, as well as the cost of higher reconfiguration

times. This is in addition to the large power consumption and large area, which are

crucial parameters in today’s and tomorrow’s compact designs [10].

Figure 2-2 presents a distribution of the computation architectures in relation to

flexibility, area, power consumption and performance. It is clear that ASIC is best

in terms of performance and having the lowest power consumption and area, while

on the other hand the general purpose processor has the highest flexibility but also

suffers having being the highest power consumption, lowest performance and

largest area. The focus in this chart is the highlighted dotted rectangle at the bottom

right-hand side, where low power consumption and area are the main

characteristics. From the point of view of flexibility within this zone, then the

coarse-grain reconfigurable architecture gives the best of both worlds in terms of

power consumption, flexibility, area and function diversity. This would appear to

be the privileged space for architectures that could satisfy the requirements of

F
le

x
ib

ili
ty

Performance

ASIC

RECONFIGURABLE

FABRIC

COARSE GRAIN

RECONFIGURABLE

FINE GRAIN RECONFIGURABLE

DIGITAL SIGNAL PROCESSOR

GENERAL

PURPOSE

Power Consumption

A
re

a

Function Diversity

Figure 2-2 Computation architecture characteristics

Chapter 2: Reconfigurable Architectures

11

mobile communication systems.

From the point of view of functional diversity microprocessors or general purpose

processors can achieve more functions than FPGA and other reconfigurable

architectures. On the other hand, a reconfigurable architecture can achieve higher

performance than processors on highly repetitive computing tasks with limited

functional diversity [5].

The rapid increase in demand for computation load has resulted in a number of

accelerator styles. These can take the form of specialised extended instruction-

specific processors, custom hardware, intense kernel codes, and reconfigurable

computing. Such accelerators can be implemented as independent processors, co-

processors or customised IP [10].

Wireless applications need processing modules that simultaneously demonstrate

high computational performance, ultra-low-power consumption and a high degree

of flexibility and adaptability. Reconfigurability is a necessity in the presence of

multiple and evolving standards in dynamic conditions. The computing challenges

for mobile devices are area, power and computing power efficiency.

To increase computing power, approaches such as larger processors, dedicated

fabrics with application-specific cores, and reconfigurable computing have been

considered. Most computationally complex applications spend 90% of their

execution time on only 10% of their code [19].

2.3.1 Reconfigurable Computing Classes

As mentioned earlier, a key interest in discussing reconfigurable architectures is

their capacity for reconfiguration and their flexibility. From the literature, it is clear

that there are different types of reconfiguration. In partial reconfiguration (PR) only

a part of the reconfigurable fabric is reconfigured and there are two types, static and

dynamic. The meaning of static partial reconfiguration (SPR) is clear from its

name; however, dynamic partial reconfiguration (DPR) usually requires an external

configuration control module. An improvement upon DPR is dynamic partial self-

reconfiguration (DPSR), which does not require an external configuration control

Chapter 2: Reconfigurable Architectures

12

module. Various reconfigurable architectures are discussed in the following

sections.

2.4 Coarse Grain Reconfigurable Architectures

Reconfigurable architectures are discussed in this section and their suitability for

communication systems is considered.

2.4.1 CRISP: A Coarse-Grained Reconfigurable Instruction Set
Processor

Francisco et al. [13] presented a coarse-grain reconfigurable processor named

CRISP, which consists of a processor and a reconfigurable logic. Thus it is based

on the concept of a co-processor for the reconfiguration part or as an add-on

functional unit. The architecture is illustrated in Figure 2-3. The reconfiguration

functional unit is activated through a special reconfigurable instruction from the

main processor. The architecture targets multimedia applications, with performance

Figure 2-3 CRISP architecture construction of processor and a reconfigurable functional
unit [13]

Chapter 2: Reconfigurable Architectures

13

claimed by the authors to be 2.5 times that of a RISC processor with an 18% energy

overhead [13].

This architecture operates on 8 to 32 bits. The reconfigurable logic in this

architecture consists of reconfigurable slices. Each slice contains several processing

elements (PEs), a register file, a programmable interconnect and a small

configuration memory. The internal elements of the single reconfigurable slice are

shown in Figure 2-3. Each PE can be an ALU (arithmetic logic unit), a shifter,

multiplier or memory unit. The interconnection used in this architecture is a full

crossbar.

The CRISP architecture is novel in that its reconfigurable part is based on two

levels or layers, the slice and PE layers. From one point of view, this appears to be

incompatible to other mainstream reconfigurable architectures where usually the

first layer is the PE and underneath it can be another layer. However, from a power

savings point of view it is an interesting concept, since the inactive slice will be

turned off completely along with all embedded PEs. From the programmability,

mapping and computation distribution points of view, it appears that it is quite

complex to realise functions on this architecture. The slices appear to be integrated

reconfigurable processors where, by default, the results of all PEs have to be

written into the register file of the slice prior to interaction with the outer world

such as other slices, memory or the main processor. The authors claim that the

interconnections could be configured in such a way as to allow direct interactions

between PEs within different slices [5] and [13]. The realisation of this will be

complex from a mapping point of view and costly in terms of configuration time. In

conclusion, the architecture is appealing for its power saving ability when unused

Figure 2-4 Reconfigurable slice internal structure [13]

Chapter 2: Reconfigurable Architectures

14

slices are disabled and its ability to execute loops with multi-integrated

configurations. The cost arising from the latter is degraded performance if the

number of configurations would surpasses configuration cache limitations.

2.4.2 Systolic Ring Architecture

The systolic ring architecture is a coarse-grained arithmetic block which includes a

custom RISC (reduced instruction set computing) processor [14]. The role of the

processor here is to dynamically configure the architecture and control dataflow at

the operative layer. The architecture is divided into operation and configuration

layers, as illustrated in Figure 2-5. The operation layer is the reconfiguration part

where the processing elements reside, while the configuration layer consists of

RAM that holds the configuration information which resembles a FPGA. The RAM

contents change every clock cycle.

The PE of this architecture is called the Dnode (data node). It consists of an ALU,

datapath components and a few registers. It is configured using micro instruction

code. Figure 2-6 demonstrates the PE or Dnode architecture. Each Dnode has two

execution modes, normal and standalone. In normal mode, the Dnode is in

operation where it follows the micro-instruction code. The stand-alone mode allows

the Dnode to take up to six clock cycles to process data or instructions located

internally in its own seven registers.

This architecture is called a “ring” due to the fact that the Dnodes are arranged in a

ring style or pipelined systolic structure. Each two adjacent Dnodes create a layer

and can interact with neighbouring layers through the switches shown in Figure 2-

7. The length of the structure is the number of layers, and its width is the number of

Dnodes per layer.

In this architecture the datapath (dataflow) is separated from data feedback or

Dnode results. Data feedback passes through isolated dedicated pipelines through

the switches as seen in Figure 2-7. Its designers claim that this technique of

separation dramatically reduces routing problems and supports the architecture

scalability [14]. It is clear that this architecture imitates the FPGA in having

Chapter 2: Reconfigurable Architectures

15

operational CLBs and a configuration layer which is usually a large SRAM. This

architecture is a clear step forward for coarse-grain reconfiguration and its

interconnection principle is interesting. However, mapping would be a complicated

task given the complex ring structure used for the connections. Most importantly,

the usage of RAM will clearly increase area and power consumption of the

architecture. Also the architecture is clearly complex from an implementation point

of view, due to the need for an embedded RISC processor within the architecture

just to drive the configuration, while the whole architecture has to interface with an

external processor in order to act as a co-processor as illustrated in Figure 2-5.

2.4.3 MATRIX Architecture

The MATRIX (multiple ALU architecture with reconfigurable interconnect

experiment) architecture is built according to an application-specific methodology,

aiming to be suitable for general purpose applications [15]-[16].

Figure 2-5 The Ring architecture layout [14]

Chapter 2: Reconfigurable Architectures

16

Figure 2-6 Dnode architecture [14]

Figure 2-7 Ring style for Dnode interconnections [14]

Chapter 2: Reconfigurable Architectures

17

The architecture is composed of an array of identical 8-bit basic functional units

and a configuration network. The basic functional units (or processing elements) in

this architecture include the following three main components as shown in Figure

2-8: 256 x 8-bit memory; an 8-bit ALU and multiply unit, and a control logic.

A multiply operation takes two operating cycles. The architecture is by default

pipelined due to the existence of a pipeline register at the input port of each

function unit.

The interconnection used in this architecture is almost a crossbar style

interconnection network. It has the capability of connecting nearest neighbours.

Also it has four bypass connections and global lines. Global lines imply the usage

of the four interconnect lines. Nearest neighbour interconnections can allow a

single processing element to have direct connections with up to 12 neighbouring

PEs as shown in Figure 2-9.

One key aspect of this architecture is the port programmability of the basic function

unit. The port configuration can be a holder of the input values of the ALU and this

is termed static value mode. Meanwhile, in the static source mode, the word hold in

the port is used to select the network bus from which data can be received. Another

mode for the port configuration is the dynamic source mode where the port

configuration word is ignored and the associated floating port controls the input

source on a cycle-by-cycle basis.

Figure 2-8 MATRIX Processing element (functional unit) [15]

Chapter 2: Reconfigurable Architectures

18

Another attractive point in this architecture is its ability to be configured in order to

operate VLIW, SIMD, MIMD, MSIMD or hybrids of these. Moreover, the

architecture datapath can be wired up in an application specific manner.

The architecture’s authors claimed that no specific applications are targeted and

that the architecture can be a general purpose one [16].

2.4.4 Cell Matrix and vCell Matrix Architectures

The vCell Matrix architecture [19] is based on a commercially available

architecture named the cell matrix architecture [16]. The vCell architecture

promises a simpler and faster reconfiguration mechanism compared with the cell

matrix. Both architectures consist of two-dimensional homogeneous cell arrays.

The PE in the Cell matrix architecture is called a Cell and is illustrated in Figure 2-

10, while the PE of the vCell matrix architecture is called the vCell and its structure

is illustrated in Figure 2-11.

Figure 2-9 MATRIX nearest neighbour interconnect [15]

Chapter 2: Reconfigurable Architectures

19

Figure 2-10 PE structure for the Cell matrix architecture [16]

Figure 2-11 PE structure for the vCell matrix architecture [19]

Figure 2-12 Two-dimensional array structure for the vCell matrix architecture [19]

Chapter 2: Reconfigurable Architectures

20

Each vCell has four input and four output data ports of 1-bit each distributed on its

four sides (DA-D). In addition, the vCell has two configuration control ports, one

input and one output, named CIN and COUT. When the input configuration control

port is activated, it allows the vCell to store the configuration data through the data

ports into its internal LUT. The output configuration control port allows the vCell

to control the mode of operation of its neighbouring cells. Each cell is connected to

its nearest neighbour to the north, south, east and west, as illustrated in Figure 2-12.

In the Cell matrix architecture, the reconfiguration process is distributed, so that

any cell can initiate the reconfiguration process by configuring its nearest

neighbours; hence it supports dynamic partial self-reconfiguration (DPSR). The

array structure of the Cell matrix architecture is illustrated in Figure 2-13, where

each cell is capable of configuring its nearest neighbour. The cell needs to be

configured first as a data bus in order to pass configuration data to the furthest cell.

In this architecture, the configuration mechanism allows great flexibility; however,

it requires a complex and sophisticated configuration algorithm.

Conversely, in the vCell matrix architecture, each vCell can configure only its

eastern neighbour, as shown in Figure 2-12. In addition, the vCell cannot initiate

the configuration process by itself. It has only two configuration ports, CIN west

and COUT east, whereas the Cell has eight configuration ports covering all the sides

Figure 2-13 Two-dimensional array structure for the Cell Matrix architecture [19]

Chapter 2: Reconfigurable Architectures

21

of the cell. The reduction in the number of configuration ports in the vCell

significantly reduces the architecture’s configuration flexibility as compared with

that of the Cell architecture. Despite this drawback, the reduced number of

configuration ports has the advantages of a simpler configuration mechanism and a

smaller LUT within each individual vCell. The Cell matrix architecture is intended

for a wide range of applications, being general purpose. The vCell matrix

architecture, however, is suitable for applications that require a regular datapath

and a simple control path, and thus mainly DSP applications.

2.4.5 Pleiades Architecture

The Pleiades processor architecture is based on the combination of a main

processor coupled with an array of heterogeneous computational units of various

granulates [17]. The PEs here are heterogeneous computational units and are

named satellite processors. In addition to the satellite-processors, the architecture

includes a reconfigurable interconnect network. The architecture’s layout is

presented in Figure 2-14.

The processor runs on data intensive loops called “kernels.” Synchronisation

between the satellite processors achieved is by a data-driven communication

protocol in relation to the kernels.

The architecture operates direct memory read/write. The mesh structure has a two-

level hierarchical reconfigurable interconnect network. The architecture address

generator can handle addressing issues in addition to nested loops with loop

counters. It controls the dataflow threads from initiation until end.

Because the system is realised on a data-driven principle, synchronisation between

the processing elements employs a two-phase self-timed handshaking protocol

consisting of request and acknowledge signals. This is realised in asynchronous

fashion.

The architecture data-links consist of a 16-bit fixed-width data word in addition to

2-bit control signals, while the configuration bus is 32bit.

Chapter 2: Reconfigurable Architectures

22

The hierarchical network architecture has sufficient connection flexibility for

targeted applications and in addition it cuts the interconnect energy to a seventh of

that of traditional crossbar network implementations [17]. This is achieved by

having a universal switch box associated with each mesh level; in addition to cross-

level interconnect switches so that only few buses are therefore required.

Targeted applications for this architecture are wireless devices and related

baseband applications.

2.4.6 OneChip Architecture

The OneChip processor architecture is based on the combination of a fixed-logic

processor core with large reconfigurable logic resources. This is illustrated in

Figure 2-15, and the idea is to offer large reconfigurable resources with the core

processor. This is the classic processor and co-processor co-located approach. The

main drawbacks of the processor and co-processor approach are the limitations on

processor-coprocessor bandwidth and the rigidity in control and interaction of the

coprocessor [5].

The OneChip architecture consists of the integration of a 32-bit core RISC

processor surrounded by the reconfigurable logic resources which are tightly

integrated into the processor pipeline. In this architecture there are two distinctive

Figure 2-14 Pleiades processor reconfigurable architecture layout [17]

Chapter 2: Reconfigurable Architectures

23

PEs, the basic functional unit (BFU) and the programmable functional unit (PFU).

The BFU is responsible for basic functions, mainly arithmetic and logic operations;

while PFU is more complex and can perform various functions in combinational or

sequential form and in addition, it can work as glue logic whenever required.

It is worth mentioning that the OneChip architecture is an advanced version of the

PRISC architecture [6]. The key difference is that the PRISC PFU only supports

small combinational operations and is limited to one clock cycle operation. This

leads applications of PRISC to be limited to bit-level applications. On the other

hand, the OneChip architecture targets DSP applications.

2.4.7 Chimaera Architecture

The Chimaera architecture is based on the integration of reconfigurable logic into

Figure 2-15 OneChip architecture layout

Figure 2-16 Chimaera architecture layout [7]

Chapter 2: Reconfigurable Architectures

24

the host processor itself [7]. This allows direct access to the processor’s register file

and enables a set of new operands.

In addition, reconfigurable logic is always slower than the processor’s own

functional units when it comes to standard arithmetic computation. In the Chimaera

architecture, the designers have integrated the advantages of the reconfigurable

logic along with those of the processor. The processor is responsible for executing

the bulk of the functionality while the most critical computation kernels are

accelerated using the reconfigurable logic. Figure 2-16 represents the Chimaera

architecture layout with the reconfigurable logic at its heart. The architecture

comprises a microprocessor with an embedded reconfigurable functional unit,

which is described as a miniaturised FPGA array. The reconfigurable logic in this

architecture is considered to be a cache for reconfigurable functional unit

instructions. This architecture can be classified as fine-grained, due to its

reconfigurable fabric being 1-bit based. An interesting aspect of this architecture is

its instruction decoder, which supports multi-output functions and the efficient

implementation of complex operations. Another interesting aspect is the

availability of partial run-time reconfiguration, where the reconfigurable functional

unit functions as an operation cache holding necessary instructions for the current

operations. Many applications could potentially use the Chimaera, since the aim is

for it to be a general purpose.

2.4.8 REMARC Architecture

REMARC stands for reconfigurable multimedia array coprocessor, and this

architecture is a reconfigurable coprocessor coupled with a main RISC processor.

The coprocessor includes a global control unit along with 64 programmable logic

blocks or nano-processors, which are the PEs in this architecture [8].

The main processor has three coprocessors memory management and exception

handling; a floating point processor; and the REMARC co-processor.

Chapter 2: Reconfigurable Architectures

25

Figure 2-17 shows the architecture layout while Figure 2-18 illustrates its internal

construction of an 8x8 array of nano-processors and the global control unit. Each

nano-processor has: 32 entry instruction RAM, a 16-bit ALU; 16-bit entry data

RAM; 13x16-bit data registers; 4x16-bit data input registers; 1 instruction register;

and a 16-bit data-out register.

Figure 2-17 REMARC architecture layout [8]

Figure 2-18 REMARC architecture internal structure [8]

Chapter 2: Reconfigurable Architectures

26

Each nano-processor can communicate to the four adjacent nano-processors to the

north, south, east and west. In addition, it can communicate with the processors in

the same row and column through the 32-bit horizontal bus (HBUS) and the

vertical bus (VBUS). The eight 32-bit VBUSes are also used for communication

between the main the control unit and the nano-processors.

The nano-processors receive the program counter value from the global control

unit, since it does not have its own program counter. Moreover, the function of the

global control unit is to control the nano-processors and data transfer between the

main processor and the nano-processors.

The REMARC architecture is a VLIW processor as its instructions consist of 64

operations. Its datapath is 16-bit and its targets multimedia applications such as

image processing and video compression [8].

2.4.9 RaPiD Architecture

The reconfigurable Pipelined Datapath (RaPiD) is a coarse-grained FPGA

architecture which is designed for computing intensive, repetitive tasks where

configuration supports computation pipelines [9].

The architecture consists of an application-specific datapath and the program for

controlling it. The interconnections are based on a linear array, in nearest neighbour

style. The processor’s functional units are placed in a linear array and formed of

identical cells.

RaPiD-I is a prototype developed by the University of Washington, in which the

cells or PEs consist of an integer multiplier, two integer ALUs, six general-purpose

registers and three small local memories. The cells are interconnected with a series

of buses as demonstrated in Figure 2-19. The inputs and outputs of the cells have

multiplexers and de-multiplexers respectively to identify the specific buses to

receive and send data.

RaPiD-I operates on 16-bit data. The datapath has registers which are used to store

constant or intermediate values; however, these registers are costly in terms of area

and utilisation. The control signals in this architecture are divided into static and

dynamic signals. The former are used for initialisation and pipeline construction,

Chapter 2: Reconfigurable Architectures

27

while the latter are used for scheduling computation information and are

changeable in every cycle.

Around 34% of the cell control signals in the RaPiD-I are dynamic while the rest

are static signals, giving a total of 230 control signals per cell.

The RaPiD is not suited for non-highly repetitive algorithms or those whose control

flow is strongly dependent on data, such as in error correction, image processing or

data encoding.

Figure 2-19 RaPiD-I basic cell structure [9]

Figure 2-20 Garp architecture block diagram [18]

Chapter 2: Reconfigurable Architectures

28

2.4.10 Garp Architecture

The Garp architecture is based on a combination of reconfigurable hardware with a

standard MIPS processor [18]. This means that the Garp is reconfigurable

architecture as a co-processor for executing certain parts of the code which are

slower when running on the MIPS. A block diagram is presented in Figure 2-20.

The Garp’s reconfigurable array is used to speed up functions, loops or subroutines

that would be slower if run on the main processor. The reconfigurable array is fully

controlled by the program running on the main processor.

The main processor instruction set has been extended for Garp. The processing

element in the reconfigurable array is called a “block.” The block is a logic unit

which resembles the FPGA; however, at the start of the array row the first block is

a control unit as illustrated in Figure 2-21. The array has a restricted 24 columns,

while the number of rows is application-specific with a minimum of 32. The

architecture’s datapath is 2 bits, and thus to give a 16-bit operations at least eight

logic blocks will be required. Usually these blocks are combined in a linear style in

the same row.

The array has four vertical buses for interaction with the memory for the reception

or transmission of data. In addition, these buses are used for array reconfiguration.

There is an additional wiring network for data transfer between the different blocks.

An innovative feature within this architecture is the availability of cache units

within the array blocks, which hold recently used configurations in order to

minimise costly memory access and allow faster switching between

reconfigurations.

The Garp architecture has two clocks, one for the main processor and another for

the reconfigurable array. The control block at the end of each row works as the

interface control between the array and the main processor or main memory, and it

can even interrupt the main processor. Each block requires 64 configuration bits in

order to be fully configured. The configuration of the whole array is a lengthy and

costly process in terms of energy and waiting time without execution. The latter is

Chapter 2: Reconfigurable Architectures

29

assumed by the architecture’s authors to be 50µs in order to complete the

configuration load. An interesting aspect of this architecture is the ability of the

Figure 2-21 Garp array organisation [18]

Chapter 2: Reconfigurable Architectures

30

array to be partially reconfigured if only partial usage of the array is required. The

architecture’s minimum configuration is for a single row.

2.4.11 SRGA Architecture

The self-reconfigurable gate array (SRGA) architecture consists of an array of

processing elements [11]. The processing element consists of a logic cell and

memory block. The logic cell contains a 16-bit LUT and a flip-flop. The memory

block can store one or several configuration contexts as well as data for the logic.

Processing elements are connected to their four nearest neighbours in addition to

the mesh of the tree network. With this network context switching and memory

access operations can be performed in a single clock cycle. Each PE has two

switches a row switch and a column switch, as demonstrated in Figure 2-23.

Self-reconfiguration in this architecture is mainly used to allow each logic cell to

modify its own configuration at run time. Therefore, instead of having an external

or centralised reconfiguration controller, this architecture has a distributed

reconfiguration capability integrated within each PE. This gives the device fast

memory access and context switching.

To achieve self-configuration, a very complex interconnection network is required

which consists of a logic interconnection network and a memory interconnection

network, in addition to the switching network at each node.

Figure 2-22 Garp program flowchart [18]

Chapter 2: Reconfigurable Architectures

31

2.4.12 CHESS Architecture

The CHESS architecture was developed by Hewlett-Packard (HP) laboratories

targeting multimedia applications. This architecture is intended to be an ASIC IP or

a unit of the processor datapath [10].

The PE in this architecture is a 4-bit ALU with a set of 16 primary instructions. The

instructions can be constant and stored within the configuration word or dynamic

and generated through an external circuitry feeding into the instruction input of the

ALU or PE.

The datapath of this architecture is 4-bit, allowing much flexibility and a wider

range of datapath applications compared with 1-bit architectures (FPGA).

The architecture has a switch box which has a dual functions based on the mode of

operation. First it may act as a cross-point switch, allowing 64 connections by

connecting vertical and horizontal buses. Secondly, it may be a RAM of 16 words x

4 bits using the 64-bits configuration.

The architecture’s layout has PEs arranged as a chessboard in a symmetrical

fashion. This increases neighbourhood connectivity, and also reduces the routing

network complexity due to the maximisation of the number of neighbours in close

Figure 2-23 SRGA architecture interconnect mesh [11]

Chapter 2: Reconfigurable Architectures

32

proximity to each other, as illustrated in Figure 2-24. This proximity allows each

ALU to have input and output buses on all four sides, enabling data transmission

and reception from any of the eight surrounding ALUs. In addition, the architecture

provides embedded evenly distributed block RAMs of 256W x 8-bits per 16 ALUs.

The pipelining support increases throughput and efficiency of the architecture.

There are two registers or buffers for each switchbox, and this is particularly

helpful for long connections in order to avoid limiting the clock speeds of the entire

architecture. Each PE has 100 configuration bits, which allows fast reconfiguration.

The architecture does not support partial reconfiguration; however, it has the usual

offline reconfiguration in addition to the ability to alter changes in functionality at

runtime through feeding instructions into the ALU in a cycle-by-cycle approach.

One of this architecture’s advantages is the capability of the switch boxes to act as

memory (RAM) of a reasonable size. In other architectures, the conventional

technique is to use the PE’s own configuration bit as a memory, and this is usually

small and thus limits the architecture’s capability.

Figure 2-24 CHESS architecture layout and neighbouring interconnections [10]

Chapter 2: Reconfigurable Architectures

33

The PE or ALU can be combined with an adjacent switch box to provide a 16W x

4-bit memory. In this architecture the routing scheme is large since it uses 50% of

the array area; however, this is less than in most FPGAs.

2.4.13 DART Architecture

The DART architecture is intended to be a reconfigurable architecture for

telecommunications applications. The authors claimed that the architecture can

handle complex processing tasks of third generation telecommunications systems in

an efficient and low-power manner [12]. The architecture can be broken down into

independent processing units named clusters. Those clusters can work

independently or in cooperation with other clusters, as illustrated in Figure 2-25.

The top level or cluster level architecture shows the main controller that is

responsible for distributing tasks to specific clusters to execute. Then each cluster

has its own embedded controller to manage the internal processing of the task

allocated to it.

This architecture uses a hierarchical interconnect network, which is more suitable,

smaller and less complex than a global interconnect network.

Figure 2-26 shows the interesting feature of the DART architecture that it has two

PE types inside each cluster; a reconfigurable datapath (DPR) and an FPGA core.

Figure 2-25 DART system level architecture

Chapter 2: Reconfigurable Architectures

34

Each cluster consists of one FPGA core and six arithmetic processing primitives

(DPR). Each DPR has four functional units of two ALUs and two multipliers. The

functional units are dynamically reconfigurable. As illustrated in Figure 2-26, there

is an interconnection between the DPRs, so they can be configured to work

together or work independently (in parallel).

In this architecture, there are three modes of reconfiguration. In dynamic

reconfiguration mode, the interconnections within the cluster are reconfigured

according to the calculation pattern. In hardware reconfiguration mode, this is the

kernel configuration and it take four cycles and requires a large amount of data; this

is the regular ongoing configuration process. Software reconfiguration mode

concerns only the functionality of operators and is used for irregular processing

where the DPR configuration needs to be changed.

This is clearly a very interesting architecture on various levels: firstly in its

combination of FPGA and reconfigurable processing elements; secondly for the

reconfiguration modes available, including dynamic reconfiguration; and thirdly

given that its area of application is in the same domain as that addressed in this

thesis.

2.4.14 DReAM Architecture

The DReAM (dynamically reconfigurable hardware architecture for mobile

communication systems) is a coarse-grained architecture dedicated for wireless

Figure 2-26 DART cluster construction [12]

Chapter 2: Reconfigurable Architectures

35

communication applications [19]. This architecture has been designed to work

within a system or system-on-chip, which means that the architecture would require

a DSP, memory, controllers, and so on. The architecture has been developed at the

Darmstadt University of Technology.

As illustrated in Figure 2-27, the DReAM architecture consists of an array of

reconfigurable processing units (RPUs) interconnected through local and global

connections. In addition, there are dedicated input and output ports at the borders of

the architecture for data and control interfaces. Within the array, each RPU is able

to connect directly to its nearest four neighbours through the local communication

network. Moreover, within the array each four processing units share one

configuration memory unit.

Figure 2-27 DReAM architecture structure

Chapter 2: Reconfigurable Architectures

36

The RPU is able to execute data-flow arithmetic, data manipulations and finite state

machines for the control-flow. Each RPU contains two reconfigurable arithmetic

processing units, one spreading datapath unit, two dual-port RAMs and one

communication protocol controller. An interesting aspect of this architecture is the

dedication of a specific unit the spreading datapath unit to processing correlation

operations for the communication standards quadrature phase shift keying (QPSK)

and bi-phase shift keying (BPSK) required for code division multiple access

(CDMA) systems. The correlation process is based on generating PN codes within

the unit, which require a PN-code generator. This makes the architecture suitable

for the communication applications targeted. However, having such dedicated and

fixed units in every RPU within the array, despite the fact that it may be neither

used nor required, represents a waste of resources in terms of area and power.

The RPU is the processing element in this architecture and the architecture’s

datapath is 8-bit based. Despite this 8-bit limitation, the PRU unit is capable of

addressing a higher number of operands through the manipulation of the RAM as a

LUT.

The architecture is built on a hierarchical concept where the global communication

unit is the controller for the whole architecture as illustrated in Figure 2-28. The

Figure 2-28 DReAM hierarchy control for dynamic reconfiguration [19]

Chapter 2: Reconfigurable Architectures

37

designers claimed that they used this approach as it offers a trade-off between area

and configuration performance. However, the hierarchical concept not only adds

complexity to both the system and its control, but it also increases its area and

power consumption. It is possible for the dynamic reconfiguration in this

architecture to occur in different scenarios, including during run-time by

conducting partial reconfiguration.

2.4.15 PADDI Architecture

PADDI stands for programmable arithmetic devices for high speed digital signal

processing architecture. The PADDI architecture was first introduced in 1990 [20].

The architecture targets the rapid prototyping of high-speed data paths for real-time

digital signal processing applications.

The PADDI architecture contains a cluster of eight EXUs or processing elements

[21]. The interconnection between the EXUs is a crossbar-based network termed a

switch, which is dynamically reconfigurable, as shown in Figure 2-29.

EXUs can be configured into two modes, 16 or 32-bit wide. Each EXU contains

two register files each of which contains six registers. Registers are used for

temporary data buffering, and the register files have dual ports for simultaneous

read and write operations. Figure 2-30 represents the internal architecture of the

EXU or processing element.

Chapter 2: Reconfigurable Architectures

38

Each EXU needs a 53-bits control word. The Nanostore holds words of 8 bits

necessary for controlling the eight EXU units. A global controller is responsible for

feeding or loading the instruction word into each Nano-unit. The programming for

this processor takes place using a high-level data flow language, “Silage” [22].

Figure 2-29 PADDI architecture structure [20]

Figure 2-30 PADDI EXU architecture [20]

Chapter 2: Reconfigurable Architectures

39

2.4.16 MorphoSys Architecture

MorphoSys is a reconfigurable architecture developed at the University of

California targeting computation-intensive and high-throughput applications [25].

The architecture comprises a reconfigurable array, core processor and memory

interface as illustrated in Figure 2-31. The reconfigurable array acts as a SIMD

coprocessor and is responsible for exploiting the parallelism available in the

application’s algorithm.

The key component in this architecture is the reconfigurable cell array. The array

consists of 8 x 8 reconfigurable cells (RCs), each of which consists of an ALU, a

multiplier, a shifter and a register file and it is configured by a 32-bit context word

stored within the array context memory. Each RC is connected to all of its

neighbours in the same quadrant in both row and column directions in addition to

the interconnection between the neighbouring quadrants as shown in Figure 2-32.

All eight RCs in the same column or row are configured by the same context word;

however, each operates on different data.

Dynamic reconfiguration is supported in this architecture and takes place through

having context data loaded into an inactive part of the context memory without

Figure 2-31 MorphoSys architecture layout [25]

Chapter 2: Reconfigurable Architectures

40

interrupting the array operation. Interconnectivity here within the array is based on

the use of a 2D mesh and hierarchical bus network.

the MorphoSys system can operate on 8 or 16-bit data, despite the fact that the

architecture’s RISC processor is 32-bit.

This architecture has some clear features and advantages that have been highlighted

earlier; however, there are also some drawbacks. The extensive use of multilevel

memories has a significant effect on the processing times and power consumption.

Moreover, the processing element or RC is complex and sophisticated which

implies a significant effect on the architecture’s area and power consumption. In

addition, all RC units in a single row or column have the same functionality.

Although one of the reasons for this was to is try to limit the interconnectivity

overheads; however, this dramatically limits the architecture capabilities and

flexibility and leads to a reduction in the range of applications that can be executed.

2.4.17 PipeRench Architecture

The PipeRench architecture use pipeline reconfiguration as its c main concept [26].

The architecture is composed of a set of pipeline stages, rows or stripes, as

illustrated in Figure 2-33. Each stripe consists of processing elements up to N and

Figure 2-32 MorphoSys 8x8 reconfigurable cell array and row-column connectivity
between each reconfigurable cell (RC) [25]

Chapter 2: Reconfigurable Architectures

41

an interconnect network. Each processing element contains registers and ALUs.

The ALU is based on a look-up-table, and. PEs can interact with each other within

the same stripe but not adjacent ones.

This architecture has two types of interconnections: a local network where all PEs

within the same stripe can share some data and have local transfer; and a global

network where a PE in a stripe can read data from the output register of the above

stripe. Each PE is 8-bits based while the whole stripe totals 128-bit in width. This

means that there are 16 PEs per stripe.

The architecture’s principle of operation in having two levels of configuration for

the PE and the stripe is novel. However, it is too hardware-oriented and overly

focused on the pipeline approach. This limits the applications that this architecture

can handle. Moreover, it appears that the implementation of such an architecture

will be costly in terms of area, power and performance.

2.4.18 rDPA Architecture

The processing elements in the reconfigurable datapath architecture (rDPA) are

called datapath units (DPU) [27]-[29]. The rDPA is reconfigurable in-circuit and is

scalable to large array sizes. The architecture has an added controller called the

Figure 2-33 PipeRench architecture layout [26]

Chapter 2: Reconfigurable Architectures

42

reconfigurable ALU (rALU) which allows the architecture to be data-driven. The

rALU provides the architecture with the capability for the parallel and pipeline

computation of complex expressions.

The rDPA architecture consists of an array of reconfigurable processing elements

or DPUs, as illustrated in Figure 2-34. The number of DPUs within the array can be

up to 128. The elements are connected using a mesh type interconnect network.

The architecture has two interconnection levels: global interconnection through

longer lines and local interconnection through shorter lines.

As illustrated in Figure 2-34, the rALU consists of an rDPA control unit, an rDPA

address generation unit and a register file. A data-driven reconfigurable ALU is the

result of having rALU with rDPA within the architecture. The register file has 64 x

32-bit registers used for holding intermediate data in order to reduce the multiple

reading of data from the memory. The execution of the whole architecture is data-

driven, including the configuration process. The rDPA control unit holds the

Figure 2-34 rDPA architecture with ALU controller [27]

Chapter 2: Reconfigurable Architectures

43

instructions sets and delivers instructions to the designated DPU within the rDPA.

The architecture is uses a single I/O bus to connect all datapath units using

multiplexing; however, the designers hinted that the architecture would benefit

from two buses to speed up I/O operations [27].

2.4.19 KressArray Architecture

The KressArray architecture or KressArray-III is a 32-bit-based coarse-grain

architecture [27]-[29]. The processing elements of this architecture are called

reconfigurable datapath units or rDPUs. Figure 2-35 represents the structure of the

architecture’s layout with its interconnection network. Local interconnections are

used to feed data directly to the designated PE or rDPU or to read the resulting

data. In addition, they can be used to pass intermediate results from one rDPU to

another. The hierarchical interconnects allows this flexibility. The architecture has

nine PEs and 32-bit duplex connections in four directions, north, east, west and

south (NEWS). The direction of the dataflow through the connection is

programmable.

An interesting feature in this architecture is its capability to allow the rDPU to be

reconfigurable as a router. Usually architectures have dedicated switches to

Figure 2-35 KressArray architecture [27]

Chapter 2: Reconfigurable Architectures

44

reconfigure interconnections, and these switches act as routers. This is a

compromise from the architectural design point of view, since having a complete

rDPU acting like a router is a waste of valuable computation resources. However,

the authors claimed that the rDPU can be split into a partial router (routing only

limited number of connections; usually one) and a processing element. They

suggest that, in partial mode, the processing capabilities remain intact and the PE

can fully utilise them. Nevertheless; is unclear weather or not what has been

proposed by the authors really is a full integration between the PE and the switch in

the single unit called the rDPU. This may have implications for the area, power

consumption and flexibility of the system, and could complicate the programming

of the system as well.

Another interesting feature of this architecture is that the configuration memory

consists of four independent layers. In addition, the register file within each rDPU

has four configuration layers, as illustrated in Figure 2-36, to hold the four

complete configuration sets. All rDPUs within the architecture simultaneously

Figure 2-36 rDPU four configuration layers

Chapter 2: Reconfigurable Architectures

45

change the actual configuration memory layer. The aim of these layers is to

minimise or eliminate the reconfiguration time of the array, since there will be only

one active configuration layer at any given time while the others are idle. The

system can reprogram those layers, given that the configuration data and

configuration control buses are independent. The elimination of reconfiguration

time is a great step forward towards real-time reconfiguration.

A key drawback of having four layers is the need for four times the size of the

configuration memory and registers, which will reflect negatively on the

architecture area and, most importantly, power consumption. It is worth noting that

the KressArray architecture is meant to be a co-processor or accelerator. Moreover,

this architecture has a strong tool set that supports various optimisations for the

algorithms implemented in seeking the best performance level.

2.4.20 MOVE Architecture

Any thorough review of reconfigurable architectures would usually consider some

or all of those discussed above. However, transport-triggered architectures (TTAs)

are usually missing from such studies. However, this is such an important type of

architecture that it must be taken into consideration. Arguably, the TTA may or

may not be considered to be a truly reconfigurable architecture; however, from the

point of view of performance and flexibility it is significant and deserves to be

considered among the reconfigurable architectures rather than as a general-purpose

processor.

The transport-triggered programming paradigm was developed at the Delft

University of Technology [30]-[32]. The paradigm was changed from ‘operation

triggered’ to ‘transport triggered’, and the realisation of this paradigm is an

architecture called the MOVE32INT. The key feature and main principle in this

architecture is the reduction of the instruction set to only one operand, which is the

‘MOVE’ function; hence, the name of the architecture.

Figure 2-37 shows the architecture’s structure where the focus is the transport

network and the processing elements or the functional units (FU) are distributed

along the network. There are sockets that define the connection between FU and

Chapter 2: Reconfigurable Architectures

46

the network which can be either input or output from the function unit. The

functions of the FU can range from being a single operation unit (operand), to a

complete ALU, and it can also accommodate internal pipelining. Each FU has a

register at its output named the result register. An interesting aspect here is that the

FUs in general are heterogeneous and designed to fit targeted areas of application

or can be narrowed down to suit a specific algorithm.

It is worth mentioning that there is a clear separation in this architecture between

operations and transport.

As can be seen from Figure 2-38, there are four types of registers within the

architecture: ‘O’ is the operand register; ‘T’ is the trigger register, ‘R’ is the result

register and finally ‘r’ is the general purpose register.

Operations within the FU will kick-start once the trigger register T is loaded. The

cycle time of this architecture is determined by data transport.

The MOVE32INT is a 32-bit-based processor, which uses Harvard architecture

with separate data and address paths to memory. The processor is capable of four

concurrent data transports per clock.

It is clear that this architecture is conceptually interesting, allowing high enough

flexibility for it to be a programmable processor. Despite all of its interesting

features, however the architecture has a key drawback which is the complicated

process of code compilation. When the MOVE was compared with VLIW in DSP

applications [33], it was noted that MOVE has a much lower code density resulting

in a larger code size. This is clearly one of the main drawbacks of the architecture.

Figure 2-37 Move architecture structure [30]

Chapter 2: Reconfigurable Architectures

47

Another upgraded processor has been developed to overcome some of these

drawbacks, namely the MOVE-Pro [34]. This new processor is based on the TTA

architectural concept; however, it is built with power savings as a major driver

along with increasing code density.

Move-Pro promises significant dynamic power savings through the reduction of the

number of accesses needed to the register file. Key changes from the earlier

processor are the addition of jump and branch instructions to the instruction set.

The authors concluded that the new processor achieves 80% savings in register file

access and a total of 11% reduction in power consumption compared to the older

version [34].

Despite the two processor versions, TTA has some clear advantages such as

modularity, flexibility and scalability. TTA architectures may have a future as a

reconfigurable architectures; however, this would require more time and effort

from the developers. Instead of trying to compare it with RISC processor, it may be

worth looking further into moving the TTA architecture into the reconfigurable

architecture arena.

Figure 2-38 MOVE32INT block diagram [31]

Chapter 2: Reconfigurable Architectures

48

2.4.21 RICA Architecture

The reconfigurable instruction cell array (RICA) architecture was developed at the

University of Edinburgh [35]. This architecture is based on having an array of

customizable instruction cells or processing elements. A unique feature is that the

architecture’s processing elements or instruction cells are heterogeneous. Table 2-1

lists the different types of instruction cells.

The main concept behind the RICA is the processor, which is able to handle the

control and dataflow aspects of applications. This handling is flexible, maximises

utilisation, and supports parallel processing and low-power consumption. Thus, the

RICA architecture is characterised by a high performance high parallelism and has

a processor with low power consumption and small area. It is highly flexible being

coarse-grain and scalable which allows it to be adapted to the application required

by using the most suitable combination of types and numbers of instruction cells.

From a programming point of view, this processor has the key advantage of DSP

processors of being programmable using the ANSI-C programming language and

its tool flow can be designed using GNU C-compilers, which is familiar to

programmers. Therefore the architecture will not need a skilled hardware engineer

with experience in HDL languages, but on the contrary C-programmers will be able

Table 2-1 Main types of instruction cells types in the RICA architecture

Instruction Cell Operations executed

ADD Addition/subtraction

COMP Compare two values

DIV Signed/unsigned divisions

I/O REG Register with access to I/O ports

JUMP Branches/ step end

LOGIC Logic operations (AND, OR, XOR, etc.)

MEM Data memory READ/WRITE functions

MUL Signed/unsigned multiplications

MUX Multiplexer/simple branching

REG Register

RRC Reconfiguration rate controller

SHIFT Shift logic operation

Chapter 2: Reconfigurable Architectures

49

to efficiently use and program this processor, thus saving time and resources. When

the algorithm program is compiled, the resulting assembly code is then sliced into

blocks of instructions, and each block is executed in a single step. The step size is

defined by the resources available within the architecture and the number of

read/write operations included. Therefore, the algorithm will be executed in steps,

which allows the architecture to be dynamically adaptable to each step. Each step

can have a different critical path, where the clock that controls the program counter

and memory is reconfigurable. The programmable clock allows the architecture to

provide optimum performance, by providing the maximum performance level for

each step, so that maximum performance or throughput for the whole application is

guaranteed. The JUMP instruction is used as a trigger for the architecture to load

the next configuration or step. If the step contains a full loop of instructions, this

means that the processor will avoid any reconfigurations. Only the data will be

loaded from the memory or registers, giving the processor a great advantage over

other architectures. Figure 2-39 illustrates how a single C-code instruction is

compiled and mapped on the architecture cells. This allocation or mapping changes

with every code or set of codes.

Various applications have been implemented on the RICA and customised versions

show high performance with significantly lower power consumption [36]-[39].

There are two features which the RICA and TTA architectures have in common,

discussed earlier in section 2.4.20. Firstly, both are architectures based on

heterogeneous processing elements. The RICA has heterogeneous instruction cells

while the TTA architecture has heterogeneous functional units. Secondly, both are

claimed to be processors or processor-like architectures with Harvard-like

structures. In other words, both can run independently without the need for an

external processor to fetch instructions or synchronise operations. However, the

drawbacks of the TTA discussed earlier, including its complex register file

structure, do not apply to the RICA. Moreover, the RICA is designed from the

ground up based on two key features, which are low power consumption and an

architecture which is easy to program.

Chapter 2: Reconfigurable Architectures

50

Figure 2-39 Dynamic allocation of instruction cells into processing steps, scheduled
within the GCC tool chain

Chapter 2: Reconfigurable Architectures

51

2.4.22 CDDS Variable Datapath Architecture

A control-flow driven data-flow switching (CDDS) variable data architecture has

been introduced at by Hokkaido University, which is characterised by flexibility

and low energy consumption as cited by the authors [40]. The authors achieved the

balance between performance and power consumption was achieved by limitating

the scope of dynamic reconfiguration. This architecture is aimed at control-

intensive programs, and its datapath is divided into static and dynamic sections.

Only the dynamic part is allowed to be dynamically reconfigurable at run time.

Figure 2-40 illustrate the split in dynamic reconfiguration the architecture datapath.

The architecture is designed to work mainly as an accelerator beside the main

processor.

The PEs in this architecture are ALU which are asymmetric to those of the main

processor in the whole system, in order to streamline the architecture’s

programming and mapping.

Figure 2-40 CDDS architecture’s reconfigurable datapath separated into static and
dynamic parts [40]

Chapter 2: Reconfigurable Architectures

52

This architecture is similar to RICA in that the key parameter for switching the

dynamic reconfiguration is the branch, which in this case matches the RICA jump

instruction.

The architecture has a clear novelty in restricting dynamic reconfiguration and

memory access during execution for the static portions or PEs, while this is allowed

for switching. This approach may have clear advantages in terms of power

consumption; however, it has limitations in terms of being suitable for a restricted

range of applications and needing a larger area in order to cater for the multiple

branch options on the array so as to proceed with reconfiguration. This architecture

is still in its early days, and may evolve when significant algorithms are

implemented with it.

2.4.23 BilRC Architecture

The PEs of a execution-triggered coarse-grain reconfigurable architecture entitled

BilRC [41] are inspired by the FPGA. The PEs in BilRC are of three types: ALU,

memory and multiplier. The PEs are realised in columns of the same type as

illustrated in Figure 2-41.

Figure 2-41 PE column based structure in BilRC [41]

Chapter 2: Reconfigurable Architectures

53

The applications this architecture is intended for span in a wide range, from signal

processing to telecommunications. However it is clear that PEs the distribution of

PEs will change depending on the application domain targeted. An interesting

aspect of this architecture is that the authors used the MUX instruction for

transportation within the architecture, which is similar to the MOVE instruction in

the MOVE32int architecture.

Key points of this architecture are that it is static and not dynamically reconfigured;

moreover, it is programmed through a special language developed by the authors

called LRC. Despite the high reported performance compared to FPGAs and

dedicated DSPs, no comparison of power consumption was mentioned. This may

be expected to be addressed in future publications.

2.5 Comparison and discussion

Reconfigurable architectures can be classified based on various criteria, including

datapath width, type of PE interconnection, reconfiguration model, programming

language, placement and routing.

Chapter 2: Reconfigurable Architectures

54

One classification can be based on the control/arithmetic ratio. Brodersen and et.al.

[42] categorised architectures based on the amount of sharing operations on an

arithmetic unit. As seen in Figure 2-42, all operations in the micro-processor of the

general purpose ALU are all operation time-multiplexed; hence, it is a control-

driven architecture. On the other hand, a systolic array, for example, has each

operation represented by separate hardware with minimal control. The best

outcome would be the right balance between control and datapath for a given

application and throughput.

For a reconfigurable architecture to be capable of carrying out the tasks of

telecommunications system efficiently, various criteria would need to be satisfied.

Datapath width or granularity is one of the key features of such architectures, and

should be between 8 to 32 bits. This range would be suitable for

telecommunications applications today and in the near future. It is anticipated that

64 bits would be desirable for future systems. Furthermore, it is desirable for

reconfigurable architecture to have heterogeneous rather than homogenous PEs,

for two reasons. Firstly, this will allow enough flexibility to accommodate the

challenging functions of telecommunications systems. Secondly, it will most

probably involve lower power consumption due to the high utilisation of the

Figure 2-42 Classification based on control/arithmetic ratio [42]

Chapter 2: Reconfigurable Architectures

55

resources in the architecture. Another key aspect to consider is the ability of the

reconfigurable architecture to work as a standalone unit and not just as a co-

processor or an extra functional unit for a main processor. This is the key for

telecommunications systems, from the point of view of efficiency, optimisation and

power consumption.

Various efforts have been made to compare reconfigurable architectures and in

particular the coarse-grain architectures [43]. The present study focuses on

reconfigurable architectures suitable for telecommunications systems.

A comprehensive comparison of the various architecture is provided in Table 2-2.

Here the approach used with each processor can be clearly identified in terms of

datapath width, and level of supported reconfiguration in terms of whether it

Table 2-2 Comparison of studies of reconfigurable architectures

A
rc

h
it

ec
tu

re

P
E

s

H
o

m
o

g
en

eo
u

s/

H
et

er
o

g
en

eo
u

s

D
a

ta
p

a
th

 W
id

th

R
ec

o
n

fi
g

u
ra

ti
o

n
.

D
y

n
a

m
ic

/S
ta

ti
c

A
p

p
li

ca
ti

o
n

R
o

le

BilRC Heterogeneous 16-bit Static General Standalone

CDDS Homogeneous 32-bit Dynamic DSP Coprocessor

CHESS Homogeneous 4-bit Static Multimedia. Coprocessor

Chimaera Homogeneous 16-bit Static DSP Coprocessor

CRISP Heterogeneous 8-bit Static Multimedia. Coprocessor

DART Homogeneous 8-bit Dynamic Telecomm. Coprocessor

DREAM Homogeneous 8-bit Dynamic Telecomm. Coprocessor

Garp Homogeneous 2-bit Static DSP Coprocessor

KressArray Homogeneous 32-bit Static General Coprocessor

MATRIX Homogeneous 8-bit Dynamic General Coprocessor

Morphosys Homogeneous 8-bit Dynamic General Coprocessor

MOVE Heterogeneous 32-bit Static DSP Standalone

OneChip Heterogeneous 32-bit Static DSP Coprocessor

PADDI Homogeneous 16-bit Dynamic DSP Coprocessor

PipeRench Homogeneous 8-bit Static DSP Coprocessor

Pleiades Homogeneous 8-bit Static Telecomm. Coprocessor

RaPiD Homogeneous 16-bit Static DSP Coprocessor

rDPA Homogeneous 32-bit Dynamic Telecom Standalone

REMARC Homogeneous 16-bit Static DSP Coprocessor

RICA Heterogeneous 32-bit Dynamic DSP Standalone

SRGA Homogeneous 2-bit Dynamic General Coprocessor

Systolic Ring Homogeneous 8-bit Static General Coprocessor

vCell Matrix Homogeneous 4-bit Static General Coprocessor

Chapter 2: Reconfigurable Architectures

56

supports dynamic reconfiguration or is limited to static reconfiguration. In addition,

it should be noted whether the architecture is capable of being standalone or if it

requires an external processor. Moreover, key differentiation among PEs in an

architecture is whether they are homogeneous or heterogeneous. The architectures

considered were built in targeting specific applications, which are also indicated in

table 2-2.

Most of the reconfigurable architectures are designed to act as co-processors,

except for the RICA, MOVE, BilRC and rDPA. Another important criterion is the

nature of the reconfigurable cells or PEs. Most of the architectures are based on

homogeneous PEs, except for the RICA, CRISP, Pleiades, OneChip, MOVE and

BilRC architectures which have heterogeneous PEs. Dynamic configuration is

another key feature that is most desirable for telecommunications systems, as

highlighted earlier. Several applications are highlighted in table 2-2 which support

dynamic reconfiguration, either partially or fully.

2.6 Conclusion

A reconfigurable architecture which can meet the challenging requirement of

communications systems has to have many crucial characteristics. Primarily it has

to operate with low power consumption. In order to sustain this, the use of

heterogeneous PEs is the best approach. PEs can be customised specifically to the

system’s needs, resulting in the highest utilisation, which will lead to lower power

consumption and smaller area.

It appears from Table 2-2 that the most suitable architectures for

telecommunications systems are the MOVE, BilRC and RICA. BilRC is

disregarded here since it uses a new nonstandard programming language.

The MOVE and RICA are very different architectures; however, they are similar in

that the PEs used are being heterogeneous, both are standalone and do not need

external processors for control, and are programmable using C-language.

However, the RICA appears to be superior in terms of power consumption, the

processor has been built with low power use as its core principle. The MOVE

Chapter 2: Reconfigurable Architectures

57

designers only started to address power savings at a later stage, whereupon they

deviated from having MOVE as the only instruction and added the two additional

instructions - JUMP and BRANCH. In addition, the RICA is fully dynamically

reconfigurable, which is a key feature lacking in MOVE. Hence, the RICA is the

architecture chosen as the paradigm upon which the reconfigurable architectures in

this work is built.

58

Chapter 3

3 MULTIRATE CONVOLUTION

ENCODER

3.1 Introduction

The integration of a number of digital devices into a single device is of great

interest in the present decade. In order to achieve this, a design of miniaturised

devices with reduced power consumption accompanied with a degree of flexibility

is the key to success. The recent IEEE 802.16 (also known as WiMAX) standard

promises ultra long communication ranges over kilometers for wireless systems

[44]. The communication distance supported by WiMAX is suitable for sensor

node and cluster head communication [46]-[47] in the ESPACENET project, which

is developing evolvable networks of intelligent and secure integrated and

distributed reconfigurable system-on-chip sensor nodes for aerospacebased

monitoring and diagnostics. The ESPACENET project involves the development of

pico-size satellites (spacecraft) so that a networked group of them could

functionally replace a micro-sized to large satellite. In order to achieve this, each

node (i.e. each single pico-satellite) should support several communication

standards. It has been shown that the most suitable standards are the IEEE 802.11

(WiFi) for short ranges and 802.16 (WiMAX) for longer ranges between the

various nodes or cluster heads. Longer intermediate distance ranges are common in

space applications. In a network, there are two levels. The nodes are the lowest

level and the cluster heads manage groups of nodes. The pico-node is a platform

characterised by limited area and power use. In order to integrate the WiMAX

standard and all of its options, the design should prioritise minimal power

consumption and size. In space applications, power and weight (size) need careful

consideration in order to keep them to the minimum. Moreover, the design has to

Chapter 3: Multi-Rate Convolution Encoder

59

accommodate all the standard modes, which need to be controlled by a node

controller or processor. In this chapter two modules of the physical layer of a

WiMAX transmitter are considered, which are the convolution encoder and

puncturing configuration. These modules have been chosen due to their presence in

almost all digital mobile radios, for example WiFi (802.11). These modules are

used here to investigate the addition of reconfigurability and flexibility and the

overheads associated with this.

In research as well as commercial products for wireless communication systems,

the architecture used for the implementation of the convolution encoder and the

puncturing configuration is based on their co-location as subsequent units. The

fixed convolution encoder with a rate of 1/2 is followed by the puncturing

configuration for other higher rates which are supported, shown in Figure 3-1.

Generally, the design and/or implementation is based on a separate subsequent

units [52]-[55]. Another study presents the programmable convolution encoder as

based on the same architecture as shown in Figure 3-1, but the convolution encoder

could provide a rate of 1/3 in addition to 1/2 [53].

In this chapter, a novel architecture is introduced which provides full integration of

the convolution encoder and the puncturing configuration into a single IP

(intellectual property) or module. As mentioned earlier, the WiMAX standard is

used because it sets the most stringent requirements and is the most challenging of

current standards. The challenge here is to identify the best architecture for

reconfigurable integration. In the present research, the convolution encoder

constraint length (k) is fixed at seven in order to allow the architecture to be

flexible for various rates, while the targeted architecture could be used for other

constraint lengths. The constraint length k of a convolutional encoder is the

Convolution

Encoder

rate 1/2

Puncturing

Unit

Figure 3-1 Convolution encoder and puncturing configuration as separate units in the
transmitter of a wireless communication system

Chapter 3: Multi-Rate Convolution Encoder

60

maximum number of symbols in a single output stream that can be affected by any

input symbol, which reflects the number of memory units used [48]. Furthermore,

k=7 is the most commonly used length, especially for receiver decoders in wireless

systems. This is mainly because the decoder for the convolution is usually a Viterbi

decoder, and constraint length of seven turns out to be the most suitable in terms of

memory usage, efficiency and success in recovering transmitted information. For

example, in one study [56] convolution encoder and Viterbi decoder were

implemented on an Altera FPGA for the rate ½ and k=7 the authors implemented.

The other constraint lengths are three, five and nine, which are not commonly

found in realisations. The novel concepts presented here for the length constraint of

seven will also be applicable to other constraint lengths, since the solution proposed

is scalable. The flexibility arises here from having the convolution encoder being

able to execute multiple rates instead of being fixed to a specific rate.

In the next section, convolution and puncturing are briefly explained. Section 3.3

shows the technique implemented in this study to achieve concatenation between

both units. Section 3.5 explains the novel architecture, which results from

integrating various combinations of all supported rates. Finally, the design and

implementation results and the conclusions are presented.

3.2 Convolution Encoder and Puncturing

Configuration

3.2.1 Convolution Encoder

A convolution coder is an error-correcting coder that processes information serially

and continuously. The output symbols of a convolution encoder depend on the

inputs as well as the previous inputs or outputs, which means that memory is

required in which to save some of the history [48]. Convolution decoding is usually

carried out using the Viterbi algorithm.

The convolution coder encodes each m-bit information symbol into an n-bit

symbol, where m/n is the code rate (n ≥ m) and this transformation is a function of

Chapter 3: Multi-Rate Convolution Encoder

61

the last k information symbols, where k is the constraint length of the code or the

memory required depth.

The binary convolution encoder for the WiMAX standard [44] is derived from a

rate of 1/2 and constraint length k=7 [39]. The encoder uses the generator

polynomials in Equations (3-1) and (3-2) to obtain the coded output. The generator

polynomials are usually provided by the standard, and in this case WiMAX

equations are used. The encoder is designed using delay units (registers) as shown

in Figure 3-2. The number of delay units used is equal to the constraint length -1.

G1 = 171OCTANT For Y1 (3-1)

G2 = 133OCTANT For Y2 (3-2)

The encoder input is a continuous bit stream represented by X and the output by Y;

and as the rate used is 1/2, then there will be two outputs Y1 and Y2, with a two-

modulo2 adder (exclusive-OR) as shown in Figure 3-2.

Table 3-1 WiMAX puncture pattern configuration and resulting convolution code

serialization

Rate

Puncturing codes and patterns

Y1 Y2 Y1Y2

1/2 1 1 Y1
1
Y2

1

2/3 10 11 Y1
1
Y2

1
Y2

2

3/4 101 110 Y1
1
Y2

1
Y2

2
Y1

3

5/6 10101 11010 Y1
1
Y2

1
Y2

2
Y1

3
Y2

4
Y1

5

7/8 1000101 1111010 Y1
1
Y2

1
Y2

2
Y2

3
Y2

4
Y1

5
Y2

6
Y1

7

Figure 3-2. Convolution encoder (rate=1/2, k=7)

Chapter 3: Multi-Rate Convolution Encoder

62

3.2.2 Puncturing Configuration

Puncturing is the process of systematically deleting, or not sending, some of the

output bits of a low-rate encoder [48]. As stated in the WiMAX standard, it is

required that the puncturing configuration adjusts the rate of 1/2 to higher rates by

omitting some bits, as illustrated in Table 3-1 (where 1 indicates bit to be

transmitted, while 0 indicates skipping). Y1Y2 is the resulting serial output with the

assigned rates. The superscript numbers represent their sequence in time; for

example, 1 indicates the first bit to exit the unit.

3.3 Technique for the Parallelization Punctured

Convolution Encoder

Parallelization is usually a way of speeding up processing, increasing frequency

rate or throughput. Benjamin [49] introduced a method of basically converting the

convolution encoder with a normal 1/2 rate followed by a puncturing for the

desired rate into a single parallel punctured convolution encoder in parallel form.

The idea presented by Benjamin with the example of a rate of 3/4 is shown in

Figure 3-3.

Delay

Unit

Delay

Unit

Delay

Unit

Delay

Unit

Delay

Unit

Delay

Unit

X(n)

X(n+1)

X(n+2)

Y1(n)

Y2(n)

Y2(n+1)

Y1(n+2)

+

+

+

+

Figure 3-3. Parallel punctured convolution encoder [49]

Chapter 3: Multi-Rate Convolution Encoder

63

In Figure 3-3 X(n), X(n+1) and X(n+2) are the input bits in a parallel form, which

need to be coded by the convolution encoder and then punctured to fit the rate of

3/4. X(n) is the first bit to enter, followed by X(n+1), then X(n+2). For the above

unit to work properly all the three inputs must enter simultaneously, and thus a

serial to parallel converter is required to provide those inputs. The output

polynomial expressions are derived as:

Y1(n) = X(n)  X(n-1)  X(n-2)  X(n-3)  X(n-6) (3-3)

Y2(n) = X(n)  X(n-2)  X(n-3)  X(n-5)  X(n-6) (3-4)

Y2(n+1) = X(n+1)  X(n-1)  X(n-2)  X(n-4)  X(n-5) (3-5)

Y1(n+2) = X(n+2)  X(n+1)  X(n)  X(n-1)  X(n-4) (3-6)

Where n = 0, 3, 6 ... etc

Based on the above principle, diagrams and polynomial expressions for the

different rates have been derived and are presented below. For the rate of 1/2 in

Figure 3-2, the resulting polynomial expressions are:

Y1(n) = X(n)  X(n-1)  X(n-2)  X(n-3)  X(n-6) (3-7)

Y2(n) = X(n)  X(n-2)  X(n-3)  X(n-5)  X(n-6) (3-8)

Where n = 0, 1, 2 ... etc.

Meanwhile for a rate 2/3, the extracted design is shown in Figure 3-4, and the

resulting polynomial expressions are:

Y1(n) = X(n)  X(n-1)  X(n-2)  X(n-3)  X(n-6) (3-9)

Y2(n) = X(n)  X(n-2)  X(n-3)  X(n-5)  X(n-6) (3-10)

Y2(n+1) = X(n+1)  X(n-1)  X(n-2)  X(n-4)  X(n-5) (3-11)

Where n = 0, 2, 4 ... etc.

Chapter 3: Multi-Rate Convolution Encoder

64

Using the same procedure, polynomial expressions and designs for rates of 5/6 and

7/8 can be derived as demonstrated in Figure 3-5 and Figure 3-6 respectively.

For a rate of 5/6, the resulting polynomials are:

Delay

Unit

Delay

Unit

Delay

Unit

Delay

Unit

Delay

Unit

Delay

Unit

X(n)

X(n+1)

X(n+2)

X(n+3)

X(n+4)

Y1(n)

Y2(n)

Y2(n+1)

Y1(n+2)

Y2(n+3)

Y1(n+4)

+

+

+

+

+

+

Figure 3-5. Punctured convolution encoder for the rate 5/6

Delay

Unit

Delay

Unit

Delay

Unit

Delay

Unit

Delay

Unit

Delay

Unit

+

+

+

X(n+1)

X(n)

Y1(n)

Y2(n)

Y2(n+1)

Figure 3-4. Punctured convolution encoder for the rate 2/3

Chapter 3: Multi-Rate Convolution Encoder

65

Y1(n) = X(n)  X(n1) + X(n2) + X(n3) + X(n6) (3-12)

Y2(n) = X(n)  X(n2) + X(n3) + X(n5) + X(n6) (3-13)

Y2(n+1) = X(n+1)  X(n1) + X(n2) + X(n4) + X(n5) (3-14)

Y1(n+2) = X(n+2)  X(n+1)  X(n)  X(n1) X(n4) (3-15)

Y2(n+3) = X(n+3)  X(n+1)  X(n)  X(n2) X(n3) (3-16)

Y1(n+4) = X(n+4)  X(n+3)  X(n+2)  X(n+1)  X(n2) (3-17)

n = 0, 5, 10 ... etc.

Polynomial expressions for the rate of 7/8 are:

Y1(n) = X(n)  X(n1)  X(n2)  X(n3)  X(n6) (3-18)

Y2(n) = X(n)  X(n2)  X(n3)  X(n5)  X(n6) (3-19)

Delay

Unit

Delay

Unit

Delay

Unit

Delay

Unit

Delay

Unit

Delay

Unit

X(n)

X(n+1)

X(n+2)

X(n+3)

X(n+4)

X(n+5)

X(n+6)

Y1(n)

Y2(n)

Y2(n+1)

Y2(n+2)

Y2(n+3)

Y1(n+4)

Y2(n+5)

Y1(n+6)
+

+

+

+

+

+

+

+

Figure 3-6. Punctured convolution encoder for rate 7/8

Chapter 3: Multi-Rate Convolution Encoder

66

Y2(n+1) = X(n+1)  X(n1)  X(n2)  X(n4)  X(n5) (3-20)

Y2(n+2) = X(n+2)  X(n)  X(n1) X(n3)  X(n4) (3-21)

Y2(n+3) = X(n+3)  X(n+1)  X(n)  X(n2) X(n3) (3-22)

Y1(n+4) = X(n+4)  X(n+3)  X(n+2)  X(n+1)  X(n2) (3-23)

Y2(n+5) = X(n+5)  X(n+3)  X(n+2)  X(n)  X(n1) (3-24)

Where n = 0, 6, 12 ... etc.

3.4 Reconfigurable concatenated convolution-

puncturing architecture

According to WiMAX standard, support is required for all rates mentioned earlier in

Table 3-1. In general, two possible architectures can be used to design the system

supporting all these rates.

The first architecture is based on using a convolution encoder rate of 1/2 followed

by a puncturing unit as shown in Figure 3-7. Each of the rest of the rates should

have its own puncturing unit. Here each puncturing unit is considered as a separate

IP core or module [50]. It is noted that, in this architecture, each puncturing unit

needs its own parallel to dual converter in order to have the ability to maintain the

ongoing data stream.

Convolution Encoder

Rate 1/2

Puncturing Unit

For rate 2/3

Parallel to Dual

converter

Convolution Encoder

Rate 1/2

Puncturing Unit

For rate 7/8

Parallel to Dual

converter

8

3/4

5/6

3

Figure 3-7. First conventional approach for implementing punctured convolutional
encoder for different rates

Chapter 3: Multi-Rate Convolution Encoder

67

The second possible architecture is an optimised version of the first. Now, instead

of having separate parallel paths, it uses a single convolution encoder followed by a

de-multiplexer to switch to the desired rate, as illustrated in Figure 3-8.

Both architectures have a timing issue, since time management and synchronisation

will be sophisticated due to the different time spans required by each puncturing

unit and the different data sizes that they handle. This leads to the need for the

inputs to be buffered. A buffer is required and in this case the introduction of a

FIFO (first-in first-out memory) or a memory buffer may be useful. The FIFO

requires two different clocks for writing and reading; but this will increase the

design complexity, area and power consumption.

In order to overcome the drawbacks of classical optimisations and to achieve a

multi-rate convolution encoder, a novel architecture is introduced here which is far

more optimised and fully integrated compared to the architectures mentioned

earlier.

The novel proposed architecture is based on employing the parallel convolution

with puncturing mentioned earlier in section 3.3 with the full integration of all the

rates. The proposed architecture presented in Figure 3-9 comprises four units: the

reconfigurable convolution unit, a reconfigurable serial to parallel unit, a

reconfigurable parallel to dual channel unit (whose output is two parallel bits) and a

Convolution

Encoder

Rate = 1/2

Puncturing unit

for Rate: 2/3

Puncturing unit

for rate 3/4

Puncturing unit

for Rate: 5/6

Puncturing unit

for rate 7/8

By Pass for Rate 1/2

D
e

m
u

x

Control unit

Figure 3-8. Second conventional approach for implementing punctured convolution
encoder for different rates

Chapter 3: Multi-Rate Convolution Encoder

68

configuration controller unit. This architecture provides punctured convolutionally

encoded data for all the rates in a continuous manner; in addition, it avoids the need

for dual clocks.

The architecture has been designed and verified by simulating all possible rates and

verifying the resulting outputs.

In this architecture, all rates have been integrated, including the original

convolution encoder rate of 1/2. All the rates are based on six delay units only

Delay

Unit

x(nx(n))

x(n+6)x(n+6)

x(nx(n--1)1)

x(nx(n--2)2)

x(nx(n--3)3)

x(nx(n--5)5)

2

x(nx(n))

x(n+6)x(n+6)

x(nx(n--1)1)

x(nx(n--2)2)

x(nx(n--3)3)

x(nx(n--5)5)

2

x(nx(n--1)1)

x(n+5)x(n+5)

x(nx(n--2)2)

x(nx(n--3)3)

x(nx(n--4)4)

x(nx(n--6)6)

2

x(nx(n--1)1)

x(n+5)x(n+5)

x(nx(n--2)2)

x(nx(n--3)3)

x(nx(n--4)4)

x(nx(n--6)6)

2

22

x(nx(n--2)2)

x(n+1)x(n+1)

x(n+3)x(n+3)

x(nx(n--3)3)

x(nx(n--1)1)

x(nx(n--2)2)

x(nx(n--4)4)

22

x(nx(n--2)2)

x(n+1)x(n+1)

x(n+3)x(n+3)

x(nx(n--3)3)

x(nx(n--1)1)

x(nx(n--2)2)

x(nx(n--4)4)

22

x(nx(n--3)3)

x(nx(n--2)2)

x(n+2)x(n+2)

x(nx(n--4)4)

x(nx(n--1)1)

x(nx(n--3)3)

x(nx(n--5)5)

22

x(nx(n--3)3)

x(nx(n--2)2)

x(n+2)x(n+2)

x(nx(n--4)4)

x(nx(n--1)1)

x(nx(n--3)3)

x(nx(n--5)5)

22

x(nx(n--4)4)

x(nx(n--3)3)

x(n+3)x(n+3)

x(n+1)x(n+1)

x(nx(n--5)5)

x(nx(n--6)6)

x(nx(n--2)2)

22

x(nx(n--4)4)

x(nx(n--3)3)

x(n+3)x(n+3)

x(n+1)x(n+1)

x(nx(n--5)5)

x(nx(n--6)6)

x(nx(n--2)2)

22

x(nx(n--5)5)

x(nx(n--3)3)

x(nx(n--2)2)

x(n+4)x(n+4)

x(nx(n--6)6)

x(nx(n--5)5)

x(nx(n--1)1)

x(nx(n--3)3)

22

x(nx(n--5)5)

x(nx(n--3)3)

x(nx(n--2)2)

x(n+4)x(n+4)

x(nx(n--6)6)

x(nx(n--5)5)

x(nx(n--1)1)

x(nx(n--3)3)

Delay

Unit

Delay

Unit

Delay

Unit

Delay

Unit

Delay

Unit

Figure 3-10 Reconfigurable interconnections for the convolution-puncturing core
(delay units are implemented as registers)

Reconfigurable

Serial to Parallel

Reconfigurable

Convolution-

Puncturing Core

Reconfigurable

Parallel to Dual

channel

Configuration Control

1,2,3,5,7

bits
2,3,4,6,8

bits

Enable

Reset

Clock

Configuration

Word

(3 bits)

Input Data

Data output

[Dual

Channel]

(2 bits)

Data Ready

Figure 3-9 Proposed top-level architecture for low power reconfigurable concatenated
convolution-puncturing module for 802.16

Chapter 3: Multi-Rate Convolution Encoder

69

(with the number of registers, k = 7), while the number of modulo-2 additions

(exclusive-OR) is the same as the number of output bits for each rate. This new

convolution puncturing architecture uses only six registers along with

reconfigurable interconnections, while existing architectures require at least 30

registers.

The interconnection network between the registers and modulo two adders is to be

configured using multiplexers and de-multiplexers, as illustrated in Figure 3-10.

The reconfigurable core shown in Figure 3-10 represents the reconfigurable

interconnection network between the registers (for clarity, the modulo two adders

and their connections are not shown). The configuration controller provides the

necessary control signals.

As shown in Figure 3-9, the input to the configuration controller is a 3-bit

configuration word that configures the whole architecture based on the selected

rate.

Table 3-2 shows the configuration words used in the architecture and their

associated rates. In addition, the table lists the 19-bits internal configuration words

that result from an embedded decoder in the configuration control unit.

Configuration words provide the required signals for all units in the architecture in

order to configure or program the interconnections for each selected rate. The

D Q

clk

D Q

clk

D Q

clk

D Q

clk

D Q

clk

D
Q

c
lk

D
Q

c
lk

D
Q

c
lk

D
Q

c
lk

D
Q

c
lk

D Q

clk

D Q

clk

D
Q

c
lk

D
Q

c
lk

P
_
7

/8

P
_
7

/8

P
_

5
/6

, 7
/8

P
_
5

/6
, 7

/8

P
_

3
/4

, 5
/6

7
/8

P
_

2
/3

, 3
/4

 5
/6

, 7
/8

S_1/2, 2/3

3/4, 5/6

7/8

P
_
1

/2
, 2

/3

3
/4

, 5
/6

7
/8

S
_

7
/8

S
_

2
/3

, 3
/4

 5
/6

, 7
/8

S
_
3

/4
, 5

/6

7
/8

S
_

5
/6

, 7
/8

S
_

7
/8

S
_

5
/6

, 7
/8

Data in

To Reconfigurable Convolution Puncturing

Figure 3-11: Reconfigurable serial to parallel

Chapter 3: Multi-Rate Convolution Encoder

70

system can be reconfigured or reprogrammed in real-time to switch between the

rates.

The reconfigurable serial to parallel converter (RSPC) unit converts the serial input

stream into parallel output in order to feed the convolution puncturing encoder. The

width of output parallel bits varies according to the selected rate and is assigned by

the configuration word. The width varies from two parallel bits in the case of a rate

of 2/3 to 7 bits for a rate of 7/8. It is worth noting that, for rate 1/2, this unit is

bypassed and the incoming bit stream enters directly to the convolution puncturing

encoder unit.

The RSPC is based on a shift register and parallel registers as per Figure 3-11. The

enabling of these registers depends on the assigned rate. All enabling signals are

controlled by an embedded controller (not shown in Figure 3-11). It decides when

to enable each register to support the continuous operability of the whole unit and

avoiding the usage of additional memory or the need for data holding.

The reconfigurable parallel to dual channel (RPDC) unit’s output provides the

inverse function for serial to parallel. The operation of this unit is specified by the

selected rate and the control signals. For a rate of 1/2, the controller will adjust the

output from the core to bypass this unit.

3.5 Results

The reconfigurable architecture design achieved for the multi-rate convolution

encoder is the result of several design iterations. The target was to accommodate all

required rates and to verify the correctness of all data. The final architecture

iteration is the one discussed in section 3.4. The architecture has been simulated

Table 3-2: External and internal configuration words

Rate
Configuration words

External Internal (using decoder)

1/2 000 000_0000_0000_0000_0000

2/3 001 001_0101_0100_0011_0101

3/4 010 010_0110_1001_0111_1001

5/6 100 011_0111_1011_1010_1110

7/8 110 100_1111_1010_1111_1111

Chapter 3: Multi-Rate Convolution Encoder

71

and synthesised using UMC 180 nm CMOS technology. The design proves its

workability for different data rates, as shown by the results obtained which are

listed in Table 3-3

The resulting area and estimated power consumption is a good indication of the

capability of the designed architecture. The results have been obtained after

applying power reduction techniques, such as the gated clock technique, to

minimise the switching activity [51]. As expected, the rate of 1/2 provides the

lowest power consumption and this is clearly due to the automatic disabling of the

reconfigurable serial to parallel and parallel to dual modules.

Table 3-4 presents the resulting throughputs obtained by the architecture. The first

row shows the results for the core unit only (the concatenated convolution

puncturing), while the second row shows the throughput for the whole module

including the serial to parallel and parallel to dual converters. It was difficult to find

any published data regarding the power consumption for convolution encoders or

puncturing configurations in order to establish comparisons; however, the first

flexible dynamically reconfigurable fabric that provides multi-rate support for

convolution coders is introduced here.

3.6 Conclusion

A novel reconfigurable architecture that provides a punctured convolutional coder

Table 3-3. Area and estimated power for all supported rates

Rate 1/2 2/3 3/4 5/6 7/8

Power (W) 157 185 407 327 302.9

Area (mm
2
) 0.012

Table 3-4. Throughput for all supported rates for the core unit and whole module

Rate 1/2 2/3 3/4 5/6 7/8

 Throughput in Mbps (Delay in ns)

Core only 200 (10) 300 (10) 400 (10) 600 (10) 800 (10)

Core+RSPC+RPDC
[whole module]

66 (30) 33 (60) 28 (70) 20 (100) 15.4 (130)

Chapter 3: Multi-Rate Convolution Encoder

72

has been introduced in this chapter. This architecture can be used in wireless

communication system incorporating both convolution and puncturing. The

convolution-punctured multi-rate architecture has achieved superior throughput

between 200 and 800 Mbps. Although the main element of the architecture is the

core, which provides the concatenated convolution-punctured code, the

reconfigurable input and output interfaces were added to broaden the usability of

this fabric. The main advantage of this architecture is that a single clock cycle is

sufficient to provide the parallel convolution punctured code for its parallel inputs,

which can be used to maximise the throughput of the whole transmitter system.

This work demonstrates an example of dynamically reconfigurable architecture for

a module within the communication systems. The proposed architecture is capable

of dynamically reconfiguring the module rate through the programming code.

73

Chapter 4

4 RECONFIGURABLE INTERLEAVER ON

DYNAMICALLY CELL-BASED

ARCHITECTURE AND AS A FABRIC

4.1 Introduction

In this chapter, a novel reconfigurable block interleaver/de-interleaver is

introduced. The block interleaver and de-interleaver are part of the IEEE 802.16

WIMAX transceiver.

The interleaver is widely used in wireless communication systems, such as IEEE

802.11 and 802.16 [44], and also in coders such as turbo coding [58]. The

interleaver is one of the main modules of turbo codes [60].

This chapter focuses on the design and implementation of the interleaver /de-

interleaver for the WiMAX transceiver. This work is part of the ESPACENET

project [46], in which WiMAX has been selected as the preferred communication

standard for communication between sensor nodes and cluster heads in space pico-

satellite networks. The same concepts and strategies for WiMAX and its usage

apply to both mobile devices and pico-satellites. Both have constraint in common,

which are mainly size and power.

Integrity in digital devices is an important current challenge in minimising size

(area) and reducing power consumption (to give longer battery life). This can be

achieved using various strategies. Most published strategies are implementations of

novel architectures and/or use advanced technologies with lower voltage supplied

or which consume less energy.

Chapter 4: Reconfigurable Interleaver

74

The interleaver has been designed into a reconfigurable fabric architecture and a

dynamically reconfigurable instruction cell-based architecture (RICA).

4.2 Interleaver/De-interleaver

The interleaver is a module in communications system which increases the

reliability of transmitted signals by rearranging the in order into various

subcarriers. In addition, it ensures that the coded bits are distributed in such a way

as to prevent low reliability in the long run. Meanwhile the de-interleaver performs

the opposite functions in the receiver, by gathering the distributed coded bits back

so that they are adjacent, in order to recreate the same originally transmitted codes.

Figure 4-1 illustrates the interleaver’s position in the transmitter subsequent to the

convolution encoder, and the de-interleaver’s place in the receiver next to the de-

mapper.

The interleaver is defined by a two-step permutation. The first ensures that adjacent

coded bits are mapped onto nonadjacent sub-carriers, while the second permutation

ensures that adjacent coded bits are mapped alternately onto less or more

significant bits of the constellation, thus avoiding long runs of bits of low reliability

[44]. The interleaving in the OFDM WiMAX is based on the data block size used,

and the interleaving should correspond to the number of coded bits per allocated

sub-channel per OFDM symbol ‎[44]. Table 4-1 presents the various interleaving

block sizes that correspond to the number of sub-channels. The interleaving is

carried out through two stages or permutations.

Convolution

Encoder
Interleaver Mapper IFFT

FFTDe-mapper
De-

interleaver

Viterbi

decoder

(a) Transmitter

(b) Receiver

Figure 4-1. The interleaver and de-interleaver in OFDM WiMAX baseband

Chapter 4: Reconfigurable Interleaver

75

In the transmitter, all encoded data bits will be interleaved by the block interleaver

and the size of the block is determined by the parameter Ncbps. This represents the

number of coded bits per allocated sub-channel per OFDM symbol, and the values

are presented in Table 4-1. In digital modulation, an analog carrier signal is

modulated by a digital bit stream. The modifications to the carrier signal are chosen

from a finite number of alternative modulation symbols. The PSK (phase shift

keying) modulation technique is based on using a finite number of phases. For

example, BPSK (binary phase shift keying) uses two phases, while QPSK

(quadrature phase shift keying) uses four phases. On the other hand, quadrature

amplitude modulation (QAM) uses a combination of amplitude and phase. For

example, 16-QAM uses four different amplitudes and four different phases, while

64-QAM uses eight different amplitudes and eight different phases [45].

It is obvious from Table 4-1 that, in order to function as an interleaver, various

block sizes from 12 up to 1152 bits need to be handled. In order to achieve

flexibility in the communication transceiver system a reconfigurable interleaver is

necessary to switch between the different data blocks based on the mode of

operation.

The interleaver’s parameters are determined by specific equations that are

responsible for the scrambling of the coded bits. When dealing with a standard, the

specific interleaving equations are provided in order to give identical interleaver

and de-interleaver functions globally in devices.

From the WiMAX standard [44], specific parameters are defined for the

interleaver: Ncpc and s. Ncpc is the number of coded bits per subcarrier, while s is

Table 4-1 Block sizes of bit interleaver for WiMAX [44]

Ncbps*

Number of sub-channels

1 2 4 8 16

BPSK 12 24 48 96 192

QPSK 24 48 96 192 384

16-QAM 48 96 192 384 768

64-QAM 72 144 288 576 1152

* Ncbps: coded bits per OFDM symbol

Chapter 4: Reconfigurable Interleaver

76

defined by Equation (4-1). The values of both Ncpc and the calculated values of s

are presented in Table 4-2.

s = ceil(Ncpc/2)

(4-1)

The parameters for an interleaver of block size Ncbps bits are:

k: index of the coded bit before the first permutation;

mk: index of that coded bit after the first permutation; and

jk: index after the second permutation.

The first permutation is calculated using Equation (4-2):

 (4-2)

The second permutation takes place through Equation (4-3)

(4-3)

The de-interleaver performs the inverse operation and is also defined by two

permutations. The parameters for a received block of Ncbps bits are:

j: index of a received bit before the first permutation;

mj: index of that bit after the first permutation; and

kj: index of that bit after the second permutation, just prior to delivering the

block to the decoder.

The de-interleaver’s first and second permutation are found by Equations (4-4) and

(4-5) respectively:

Table 4-2 Value of the s parameter in the interleaver/de-interleaver equations

 BPSK QPSK 16-QAM 64-QAM

Ncpc 1 2 4 6

s 0 1 2 3

Chapter 4: Reconfigurable Interleaver

77

(4-4)

(4-5)

It is clear from the above equations that the interleaver and deinterleaver execute

the same functions but in the opposite manner. The first permutation in the de-

interleaver is the inverse of the second permutation in the interleaver and vice

versa. As they are identical from a computational point of view, the interleaver will

be the focus of this work, and any results obtained will be the same for the de-

interleaver.

4.3 Reconfigurable Interleaver

An interleaver is generally implemented in a receiver for a fixed predefined coded

data block size. In order to allow scalability in communication systems, integrated

modules should be able to process all types of data defined by the standards. In

other words, the interleaver should be capable of dealing with all block sizes in that

specific system. This will allow the receiver to be capable of dealing with all

modulation types thereafter.

Traditionally the block interleaver is based on a LUT ROM (read-only memory)

storing the interleaving sequence. The obvious drawback of this method is that the

memory locations are the sum of all supported block sizes, which requires a

significantly large memory size. However, its clear advantage is the simplicity of

the architecture. One multi mode interleaver architecture has been introduced [58]

which is based on having a matrix memory or two-dimensional memory, where

data is written as rows and read out as columns. The authors realised the design

using an 802.11 block interleaver where only four different block sizes were

supported. In the case of WiMAX, the interleaver has to deal with various block

Chapter 4: Reconfigurable Interleaver

78

sizes from 12 up to 1152 bits of coded data, as mentioned earlier in Table 4-1,

which means that twelve different block sizes need to be supported. Overall, there

are twenty different modes based on the block size and the associated modulation

or constellation type. In order for the interleaver to have this capability, it has to be

reconfigurable. Using a configuration word, the interleaver should be able to self-

reconfigure toward the desired block size. This is the approach used in this work.

4.4 Reconfigurable Interleaver Fabric

A reconfigurable interleaver fabric is introduced here as a solution which allows

the incorporation of all data block sizes. This allows the communication system to

be capable of using all modulation techniques and the various block sizes needed

by the communication system.

As mentioned earlier in Table 4-1, the interleaver has to deal with various block

sizes. It can be noted in the table that the same block size can have different

numbers of sub-channels and an altered modulation, as illustrated by the markings

in Table 4-3. This means that the interleaver should not only deal with different

data block sizes, but also the same data block size which has different interleaving

parameters. A conventional notion for solving such a problem is to use parallel

fixed interleavers. Based on the desired modulation and number of sub-channels,

Table 4-3 Block sizes of bit interleaver for Wimax. Circle marks show similar block sizes
with different modulations and Ncbps [1]

Ncbps*

Number of Sub-channels

1 2 4 8 16

BPSK 12 24 48 96 192

QPSK 24 48 96 192 384

16-QAM 48 96 192 384 768

64-QAM 72 144 288 576 1152

* Ncbps: coded bits per OFDM symbol

Chapter 4: Reconfigurable Interleaver

79

the result would be twenty different interleavers.

A further optimised version of the architecture can be obtained through the reuse of

the same interleavers block sizes leading to only twelve parallel interleavers.

Reconfiguration can provide the solution to give a single interleaver capable of

carrying out these functions in an optimised approach. In order to configure the

interleaver for the various modes, a configuration word is necessary. As there are

twenty different combinations, a 5-bit configuration word would be sufficient as

shown in Table 4-4. In addition, to provide a seamless interface with other modules

in the system, the use of reconfigurable serial to parallel and parallel to serial

converters may be appropriate in order to allow a common interface of 2 bits for

the input and output of the interleaver. A block diagram for the architecture is

presented in Figure 4-2.

Table 4-4 External configuration word for interleaver/de-interleaver

Modulation

type

No. of sub-

channels
Block size

Configuration

word (bits)

1 BPSK 1 12 00001

2 BPSK 2 24 00010

3 QPSK 1 24 10010

4 BPSK 4 48 00011

5 QPSK 2 48 01011

6 16-QAM 1 48 10011

7 64-QAM 1 72 00100

8 BPSK 8 96 00101

9 QPSK 4 96 01101

10 16-QAM 2 96 10101

11 64-QAM 2 144 00110

12 BPSK 16 192 00111

13 QPSK 8 192 01111

14 16-QAM 4 192 10111

15 64-QAM 4 288 01000

16 QPSK 16 384 01001

17 16-QAM 8 384 11001

18 64-QAM 8 576 01110

19 16-QAM 16 768 10000

20 64-QAM 16 1152 01100

Chapter 4: Reconfigurable Interleaver

80

In Table 4-4 it should be noted that the configuration words assigned are not in the

form of the usual ascending or descending code. The optimisation of the

configuration word used is an essential aspect of reconfigurable architectures.

Configuration in general adds an overhead to the system. Thus, it must be

optimised efficiently in order to minimise the overall system overhead. In addition,

Reconfigurable

Serial to

Parallel

Interleaver

Core

Reconfigurable

Parallel to Dual

channel

Reconfiguration Controller

12 up to

1152 bits

Enable

Reset

Clock

Configuration

Word

(5 bits)

Input Data

2 bits

Data output

[Dual Channel]

(2 bits)

Data

Ready
ReadyReady

12 up to

1152 bits

(4 bits) (5 bits) (4 bits)

Figure 4-2: Proposed reconfigurable interleaver

Table 4-5 Internal configuration word: 4 bit

 Internal configuration

word

Coded data Block

Size

1 0001 12

2 0010 24

3 0011 48

4 0100 72

5 0101 96

6 0110 144

7 0111 192

8 1000 288

9 1001 384

10 1010 576

11 1011 768

12 1100 1152

Chapter 4: Reconfigurable Interleaver

81

optimizing the number of bits used will reduce switching activity, thus maintaining

the minimum dynamic power consumption.

The code words in Table 4-4 have been arrived at after several types of assessment.

Those codes have been specifically chosen in order to eliminate the usage of a

decoder to generate the internal configuration words (4 bits) presented in Figure 4-

2. The internal configuration words listed in Table 4-5 are used to configure the

serial to parallel and parallel to serial converters. In other words, the external

configuration words are oriented to block size.

It is worth mentioning that the configuration word 11111 has been reserved as a

software reset for the entire interleaver. The interleaver is based on two shuffling

stages, and therefore a Matlab model has been designed and programmed in order

to solve and simulate the two main equations (4-4) and (4-5) of the interleaver.

Some of the Matlab models are presented in Appendix A. It is concluded that it will

be too complicated and unrealistic to implement the equations themselves the

Interleaver fabric. A more practical approach is to create an array of input indexes

and the resulting indexes for each case. These indexes result from Matlab

calculations for the combined permutation stages. Thus, the interleaver core is

configured through the configuration word, knowing the coded data block size,

number of associated sub-channels and the modulation used and then placing them

in to the pre-calculated indexes.

From Figure 4-2, the reconfiguration controller is a straightforward controller to

pass the specific configuration bits to specific units. The Interleaver core is based

on having a single array of registers (memory locations) of a size of 1,152 bits,

which is the maximum data block size required. In contrast, a traditional realisation

would need at least 4,836 bits [58].

Figure 4-3. WIMAX interleaver for QPSK modulation

Chapter 4: Reconfigurable Interleaver

82

4.5 Interleaver on a Dynamically Reconfigurable

Processor

The majority of VLSI architectures employ a pipelined data path to gain timing

advantages. The concept used in pipeline acceleration is to reconfigure pipelines or

parts of pipelines onto a reconfigurable architecture. The reconfiguration allows

one stage of the pipeline path to be configured in every cycle, while concurrently

executing all other stages. The reconfiguration is usually conducted at run time

(dynamic) in which the time for reconfiguration is kept as short as possible. For the

interleaver design here, the reconfigurable instruction cell array (RICA) as

Figure 4-4 Architecture Cells dynamic power in µW for interleaver 576 64-QAM with two

design methods and their optimisations

Figure 4-5. Architecture’s execution time in µs for interleaver 576 64-QAM with two design

methods and their optimisations

Chapter 4: Reconfigurable Interleaver

83

discussed in section 2.4.21 is used for the realisation.

The interleaver is based on two shuffling stages as shown in by the two de-

Interleaver main equations (4-4) and (4-5). Two implementation methods are used

here to design the interleaver into the RICA. The first is the direct implementation

of the equations on the reconfigurable architecture (RICA), and this is called

Method 1. This method benefits from the fact that the architecture is C-

programmable. The other method is similar to the design of the reconfigurable

fabric in hard-coded implementation, and this is called Method 2. The hard-code

implementation is based on calculating the new bit positions offline using Matlab

and storing these values in an array which will be used on the RICA to reorder the

input data blocks.

A series of optimisations has been carried out using both methods with different

block sizes. The optimisations include partial loop unfolding (LUF), full loop

unfolding (FLUF) and parallelism extraction. Both methods have to be designed in

the C language and compiled by the processor compiler, optimising the assembly

code and analysing the resulting code and the associated performance report.

Figure 4-5 and Figure 4-4 show the execution time and dynamic power

consumption respectively for interleaver 576 64-QAM. The maximum optimisation

in the figures indicates the optimum results for the designated method.

Figure 4-6. Architecture cells dynamic power in µW for interleaver 768 16-QAM with two
design methods and their optimisations

Chapter 4: Reconfigurable Interleaver

84

Figure 4-6 and Figure 4-7 show the resulting execution time and dynamic power

for respectively the design of the 768 16-QAM block interleaver on RICA.

From Figure 4-5 to Figure 4-7, it is clear that both methods achieved almost the

same performance. From the analysis of the results of the two implementation

methods for the Interleaver, the two methods merged into one giving the same

results after the full optimisation implemented. Therefore, it turns to merge to the

same concept of the second method. This explains why the maximum optimisation

in both methods gave approximately the same results.

4.6 Results and analysis

In this chapter, the reconfigurable block interleaver has been designed for fabric

and dynamic reconfigurable architecture realisations. Various optimisations and

approaches have been discussed and the results have been presented. In this

section, only the best results for all designs are presented.

For the reconfigurable fabric, and as expected, the best throughput and execution

time were achieved in comparison with the RICA architecture. For example, for the

interleaver 576 bit 64-QAM, the throughput achieved on the reconfigurable fabric

(ASIC) is 99.8 Mbps (5.77 µs) compared with 83 Mbps (6.94 µs) for the

Figure 4-7. Architecture’s execution time in µs for interleaver 768 16-QAM with two design

methods and their optimisations

Chapter 4: Reconfigurable Interleaver

85

reconfigurable architecture. This means that the reconfigurable architecture

overhead compared to ASIC is around 16.8% of the execution time or throughput.

From a power consumption standpoint for the same interleaver, the RICA’s

Figure 4-8. Reconfigurable interleaver execution time in µs for the various modes on the

dynamically reconfigurable architecture RICA

Figure 4-9. Reconfigurable interleaver dynamic power consumption in µW for the various
modes on the dynamically reconfigurable architecture RICA

Chapter 4: Reconfigurable Interleaver

86

dynamic power consumption is in the range of 1.11 mW
1
. It is expected that the

ASIC would be superior in power consumption; however, the power achieved is

around 50.15 mW. The reason for this high value is that the ASIC library uses

registers (up to 5760) instead of RAM memory, which negatively affects the value

achieved and this is clearly not representative of real ASIC performance.

The focus of this work is the dynamically reconfigurable interleaver that would

support all block sizes with adequate performance. Figure 4-8 presents the

execution times of all the block sizes for the interleaver on RICA. As expected, the

execution time is proportional to the block size executed, with the highest being the

1152 block size.

Figure 4-9 presents the dynamic power consumption for all block sizes. It is

expected that the power consumption will increase slightly with the size of the

block of data, and it almost stabilises around 1110µW, which is as expected. This

represents the full utilisation of the processor’s resources. In a previous study, an

ASIC chip was designed for a full baseband processor for 802.11a [61]. The

interleaver and de-interleaver are less sophisticated in 802.11a due to the limited

block sizes supported. The authors reported that the power consumption of the

1 Memory access and interconnection power are not included

Figure 4-10. Reconfigurable interleaver “steps” count for the various modes on the

dynamically reconfigurable architecture RICA

Chapter 4: Reconfigurable Interleaver

87

interleaver and de-Interleaver was 13 and 21 mW respectively. This compares to

the RICA reconfigurable interleaver which gives ultra-low power consumption at

1.1 mW.

Furthermore, the designed interleaver/de-interleaver reconfigurable fabric area is

0.529 mm
2
, while in a previous study [61] the areas reported were 0.501 mm

2
 for

the interleaver and 1.786 mm
2
 for the de-interleaver.

Figure 4-10 shows the numbers of steps used for each block size on RICA. A step

is the number of reconfigurations required to accomplish the full interleaving or de-

Interleaving process. As anticipated, the number of steps is proportional to the

block size processed.

4.7 Conclusion

A novel reconfigurable interleaver has been presented in this chapter. The target

application was the 802.16 standard with its sophisticated block size requirements.

The interleaver has been researched and designed into a reconfigurable fabric

architecture and a dynamically reconfigurable instruction cell-based architecture

(RICA). The interleaver throughput as a reconfigurable fabric exceeds the standard

requirement (up to 70Mbps), having a throughput of 99.8 Mbps at 576 block size

for 64-QAM modulation. Meanwhile on RICA the throughput as well as the

dynamic power consumption were superior to the fabric realisation and other ASIC

realisations. These results are a good step forward towards a fully reconfigurable

baseband telecommunications system. Moreover, the results are a promising step in

integrating all WIMAX modules on a dynamically reconfigurable architecture.

88

Chapter 5

5 DYNAMICALLY PROGRAMMABLE

REED SOLOMON PROCESSOR

5.1 INTRODUCTION

With the rapid progress of communication technologies, various communication

standards have emerged [61]-[63]. Quality of service (QoS) is one of the most

important factors in mobile communication networks. Reductions in delays,

including those due to processing time and error correction, are proposed to achieve

higher levels of QoS [64]. Reed-Solomon coding is one of the most important

schemes for error detection and correction. The Reed-Solomon codes are named

after their originators [65] and are widely used in digital communication systems.

There is a great demand for present and future devices to integrate various

applications and communication standards in the same device. Such integration can

be accomplished by, for example, having GSM, WiFi and WiMAX communication

capabilities on the same unit in addition to video reception through DVB-H. This is

a tough challenge for battery-powered handheld devices. Achieving this level of

integration will require an ultra-low-power platform with a less complex design

flow that provides a shorter time-to-market. Well-known platforms are the ASIC

and FPGA. ASIC technology faces several limitations, such as lack of flexibility

and relatively slow time-to-market. On the other hand, FPGAs have high flexibility

but are not suitable for handheld devices due to their high-energy consumption.

Hence, the development of implementation methods has targeted systems based on

digital signal processors (DSP) [62].

This chapter presents a low-power reconfigurable Reed Solomon (RS) processor

which can support various communication standards such as WIMAX [44] and

Chapter 5: Programmable Reed Solomon Processor

89

DVB-H [73]. The proposed reconfigurable RS processor is intended to be

programmable for different communication standards.

Reed Solomon codes are constructed and decoded using a type of finite field

arithmetic which is known as the Galois Field (GF) in honour of its inventor. A

finite field of q elements is usually denoted as GF(q) [66]. RS code is constructed

in GF, which has its own calculation theorem. Special calculation elements are

needed for the implementation of its coding and decoding, such as the GF

multiplier and GF adder. For the GF multiplier to be implemented on FPGAs, it a

large number of adders and shifters or look-up tables on normal fine-grained

hardware platforms may be required. This may lead to excessive delays [66]-[67]

as well as high energy consumption. Some DSP processors, such as the TI C64x,

already have their own embedded GF multipliers, but their high-energy

consumption cannot be ignored in mobile communication systems. Moreover, an

architecture that supports multi-standard wireless communication systems should

support programmability. Thus, a real time programmable Reed Solomon coding

processor is investigated here.

In this chapter, the endeavour is to design an architecture that is capable of

supporting the computational requirements of Reed Solomon coding, while also

maintaining flexibility and the capability for integration with other systems. The

processor architecture is based on the reconfigurable cell-based array architecture

approach [35]. The RS processor is based on an array of heterogeneous cells, each

of which supports a primitive operation such as addition, multiplication, shift, logic

operation, write memory, read memory, multiplexing and so on.

The chapter is organised as follows. Section 5.2 introduces the RS algorithms,

while section 5.3 presents the novel processor architecture. Section 5.4 addresses

the RS codec implementation and Section 5.5 presents a novel Galois Field

multiplication cell design and implementation. Section 5.6 then discusses the

implementation and optimisations of the novel RS processor, and the results and

comparisons are given in Section 5.7, while the chapter’s conclusions are listed in

section 5.8.

Chapter 5: Programmable Reed Solomon Processor

90

5.2 RECONFIGURABLE RS-CODEC

ALGORITHMS

RS codes are based on adding redundancy symbols to data that will in turn allow

the encoder to code a block of data and the decoder to correct up to (t) error

symbols. The number of redundancy symbols added is equal to 2t. The

implementation of the RS coder is based on GF (Galois Field) polynomials and

exponential representations of the field elements. The number of elements in a

finite field must be in the form of p
m

, where p is a prime integer and m is a positive

integer. A primitive element is a root of a primitive polynomial p(x).

The order of an element  in GF(q) is the smallest positive integer m such that 
m

= 1. GF(q) always contains at least one element, called a primitive element, that has

the order (q - 1). Let  be the primitive in GF(q). Since (q - 1) consecutive powers

of , {1, , 
2
 , . . . , 

q-2
} must be distinct, and they are the (q - 1) nonzero

elements of GF(q). The ‘exponential representation’ of the nonzero elements in the

field provides an obvious means for describing the multiplication operation: 
x
 • 

y

= 
(x+y)

. A primitive element is a root of a primitive polynomial p(x). The

exponential representation for the nonzero elements of GF(q) is given by the

reduced modulo of the primitive polynomial to obtain a ‘polynomial

representation,’ which is used in the addition operation [66].

The addition operation is to be carried out using the ‘polynomial representation’ of

the field elements. This polynomial representation is obtained by having the

nonzero elements of GF(q) in exponential form as the reduced modulo of the

primitive polynomial [66]. For the RS decoder, the chosen algorithm is composed

of the Berlekamp Massey algorithm (BMA), the Forney algorithm and the Chien

search. A detailed description of the encoder/decoder algorithms has been given

elsewhere [66] and [81].

The RS codes have several parameters to be programmed targeting several

applications, especially multi-standard wireless communication. The present

approach was targeted the RS encoder for the GF(2
8
), where the symbol width is

Chapter 5: Programmable Reed Solomon Processor

91

fixed to 8-bits in order to minimise power consumption and maximise throughput.

GF(2
8
) is also common to all of the applications mentioned earlier. The

programmable parameters n and k are the key in the encoding process, in addition

to the primitive polynomial used. There can be sixteen different fields defined over

GF(2
8
) through 16 primitive polynomials, where the default primitive polynomial is

x
8
+x

4
+x

3
+x

2
+1 = 285decimal, while the other 15

th
 are (decimal values): 299, 301,

333, 351, 355, 357, 361, 369, 391, 397, 425, 451, 463, 487 and 501.

5.3 RECONFIGURABLE RS PROCESSOR

The aim in this work is to design a low power architecture that is capable of

supporting the computational requirements of the RS codec. In order to cater for

these requirements, the processor used is based on the reconfigurable instruction

cell architecture (RICA) [35]. Thereafter the processor is specifically tailored to be

reconfigurable for the RS codec, so that it can be easily configured and

programmed real-time in a dynamic manner. The processor is DSP-like, hence

keeping the advantage of DSPs of high-level programmability. Despite being DSP-

like, it is an ultra-low-power architecture due to the ability to dynamically

reconfigure highly optimised data paths at given instants in time.

The RS processor cells are flexible enough to work with 32, 16 and 8-bit data

types. Compared with the field programmable gate array (FPGA), the RS processor

can be dynamically reconfigured so that unallocated cells can be eliminated

(disconnected) at each step; thus, the energy consumption can be limited rather than

using the majority of available transistors to provide flexibility as in the FPGA.

The processor is based on an array of heterogeneous cells as shown in Figure 5-1.

Each cell supports a certain operation. Various operations are included in the

processor, such as addition, multiplication, shift, logic, write memory, read

memory and multiplexing. These cells are based on 32-bit operands interacting

with a distributed memory of 16 banks with an 8-bit memory bank width. The 32-

Chapter 5: Programmable Reed Solomon Processor

92

bit architecture is used as this provides a greater capability for implementing

parallelism in the 8-bit based Reed Solomon algorithm.

The processor has a reconfigurable data-path that implies non-fixed cycles, but is

based on a ‘step’ concept. A ‘step’ is a combination of instructions, or physically a

single datapath interconnection configuration for a group of cells in the processor.

Step size is determined by the resources available in the processor, a conditional

branch (Jump) and the length of the critical path. The step concept allows the

maximum exploitation of parallelism for the implemented application instead of

having fixed data-paths as in traditional processors.

RS codes are defined by two main parameters: the number of overall symbols after

encoding (n) and the number of data symbols before encoding (k). the number of

data symbols that can be corrected is t, which equals (n-k)/2.

The encoder in the present work uses the GF(256) with a symbol width of 8 bits.

For the purpose of research, validation and comparison, two different RS block

Figure 5-1 Reed-Solomon processor based on dynamically reconfigurable
heterogeneous cell array.

Chapter 5: Programmable Reed Solomon Processor

93

sizes (255,239 and 204,188) which are used in WiMAX and DVB-H respectively

are targeted.

This includes the famous RS(255,239), as well as other combinations, such as the

RS(204,188) for DVB (Digital Video Broadcasting).

5.4 RS Encoder and Decoder Implementation on

Novel RS Processor

5.4.1 RS Encoding and Novel Design

For the ASIC and FPGA, the classic implementation of RS is based on the use of

linear feedback shift registers (LFSRs). Figure 5-2 (a) shows the ASIC/FPGA-

based classical architecture for an RS encoder. Figure 5-2 (b) presents a novel

design modification for the RS encoder that includes parallel parity symbol outputs.

In classical implementations, the system requires an additional 2t clock cycles to

generate the calculated parity symbols after the k clock cycles used for parity

calculation, resulting in a total number of clock cycles of (k+2t). However, with the

new design the number of clock cycle is reduced to only k, since the parity bits are

output in parallel without the need for additional clock cycles. This implementation

strategy increases the throughput of the whole communication system by n-k-1

times. Moreover, power savings are achieved due to the reduction in the number of

clock cycles used, as indicated below.

Time reduction = 1- [k / (2t + k)] • 100% per data block,

For example, for the RS(255,239), the time reduction is 6.3%, while for

the RS(204,188) it is 7.8%

Chapter 5: Programmable Reed Solomon Processor

94

The complex part of the LFSR implementation is the GF multiplier. The

multiplication process changes radically when the primitive polynomial is changed.

For the efficient implementation of the real-time programmable RS encoder on a C-

programmable architecture, a hardware algorithmic technique has been

implemented. Various optimisation techniques need to be applied to the

architecture in order to achieve the best possible results. This approach is named a

‘hardware-approach’ since it resembles ASIC/FPGA implementations and is based

on the novel architecture shown in Figure 5-2 (b). An advantage of applying this

approach is the reduction of processing time by 7.8% which will result in a

reduction in the total number of operations and memory accesses required.

Moreover, the omission of the modulus function is an additional advantage. There

is a drawback associated with the implementation using this approach, which is the

need for a new cell type to be added to the processor: a GF multiplier.

Figure 5-2. Reed-Solomon encoder using linear feedback shift register with n-k stages:
(a) classical RS encoder architecture; (b) novel design of parallel parity output

Chapter 5: Programmable Reed Solomon Processor

95

5.4.2 RS Decoder on RS Processor

The RS decoding algorithm can be divided into five main steps, as illustrated in

Figure 5-13.

5.4.2.1 Syndrome computation

in syndrome computation the syndrome polynomial)(xS is calculated, which is

denoted as


t

i

i

i xS
2

1

. By definition,)(i

i RS  , where)(xR is the received codeword

(in polynomial form) and i are the roots of the codeword-generating polynomial

for i=1, 2 … 2t [76].

S(1) S(2) ….. S(2t)

Received

Data

(1) (2) (2)t

GF addition

GF multiplication

D D D

Figure 5-4. Syndrome computation architecture

Syndrome

Calculator &

Forney computation

Berlekamp-Messey

Algorithm

Chien Search
Forney’s

computation

Error correction

R(x)

C(x)
Corrected

received data

Error

locations

Error

locator

polynomial

Error

Magnitudes

Erasure

positions

polynomialReceived

data

Figure 5-3. Reed Solomon decoder main algorithms

Chapter 5: Programmable Reed Solomon Processor

96

The algorithm can be expressed as

2 (1)

0 1 2 1

i i n i

i nS R R R R   

     (5-1)

Horner’s rule is a method for reducing the number of multiplications in polynomial

computation [76]. According to this rule, the expression of syndrome computation

can be written in a nested multiplication form:

 1 2 3 0((()))i i i

i n n nS R R R R       

(5-2)

The syndrome computation architecture is shown in Figure 5-4. It employs a

recursive construction with GF adders and GF multipliers.

5.4.2.2 Forney computation

If erasures exist, an erasure position polynomial as in Equation (5-3) would be

generated, in which eranum is the number of erasures, and i means the positions of

the erasures which have occurred. In this case, the syndrome polynomial should be

updated as in Equation (5-4)

1

() (1)
era

i

num

i

x x




  

(5-3)

2'() () ()mod tS x S x x x 
(5-4)

5.4.2.3 Key equation calculation

If the syndrome polynomial)(xS is non-zero, mean errors or erasures are detected.

Key Equation (5-5) is generated in order to obtain the error location polynomial

)(x and the error value polynomial)(x

2() () ()mod tS x x x x  (5-5)

For this nonlinear Key equation, t2 simultaneous equations need to be computed

[66]-[78]. Two main algorithms can be utilised: Euclid’s algorithm and the

Berlekamp Massey algorithm (BMA) [79]. In this work, the BMA is employed

because it is considered to entail less hardware complexity [80]. This is due to its

nature as an algorithm that will find the shortest linear feedback shift register

(LFSR) for a given binary output sequence. After t2 iterations of BMA, the error

Chapter 5: Programmable Reed Solomon Processor

97

location polynomial)(x can be obtained. If any erasure occurs, the erasure

information should be added into)(x .

5.4.2.4 Chien search

A Chien search concerns finding the roots)1(tll  of the error location

polynomial)(x [76][79]. The basic idea of the Chien search is to evaluate the

error location polynomial with 255 possible roots of GF and to check if the result is

zero. If it is, this indicates that a root has been found [81]. With the Chien search,

both the location and number of errors can be obtained.

5.4.2.5 Error evaluation polynomial

The error evaluation polynomial is calculated from the syndrome and the error

polynomial. It can be expressed by Equation (5-6).

() () ()mod n kx S x x x   (5-6)

5.4.2.6 Forney algorithm

The Forney algorithm in Equation (5-7) is used to compute the error values from

the error location polynomial and error value polynomial:

() / '(),l le x x x   

(5-7)

where)(' x is the odd term of)(x .

5.4.2.7 Error correction

After the roots of both)(x and)(x have been calculated, the data received can

be corrected by a simple XOR operation of the error value and the received symbol

at the corresponding error position.

5.4.2.8 Single instruction multiple data (SIMD)

The key optimisation target is to maximise step size and minimise the resources

and memory access used. In the RS (255,239) decoder design, the maximum

numbers of GF adders and multipliers required by each functional block have been

calculated and are shown in Table 5-1.

Chapter 5: Programmable Reed Solomon Processor

98

5.5 Galois Field Multiplier Cell for RS Processor

As discussed above, there is a need for a GF multiplier (GFMUL) custom cell to be

designed and implemented within the processor in order to support the RS encoder

and decoder optimised algorithms and to enhance their performance on the

architecture.

In order to implement the cell in a programmable RS processor, the cell itself has to

be programmable. The objective here is to focus on the RS coding for the GF(2
8
),

where the symbol width is fixed at 8-bits so as to minimise the energy consumed

and to maximise throughput. Moreover, GF(2
8
) is common to all of the applications

Figure 5-5. The internal architecture of a single GF multiplier for 8-bit data width

Table 5-1 Number of additions and multiplications in the Reed-Solomon decoder

Block Additions Multiplications

Syndrome computation 4080 4080

Forney computation Number of erasures Number of erasures

Key equation

calculation

16 iterations, depending

on the number of errors

and erasures

16 iterations, depending

on the number of errors

and erasures

Chien search 4335 4335

Forney algorithm
depending on the number

of errors and erasures

depending on the number

of errors and erasures

Error correction 8 0
NB. Calculations are based on the RS (255,239)

Chapter 5: Programmable Reed Solomon Processor

99

mentioned earlier in Section 5.1. There are up to sixteen different fields defined

over GF(2
8
) by sixteen different primitive polynomials. Programmability here from

an algorithmic point of view can be divided into two types: real-time and offline.

Real-time programmability is used for switching between the different primitive

polynomials used; while offline programmability refers to when the values of n and

k need to be changed.

A combinatorial GF multiplier is designed, as this will suit the RS cell-based

processor. The cell function is modelled and verified in Matlab. Then it has been

designed, simulated and verified in both pre- and post-routing using Cadence VLSI

Figure 5-6. A novel 8 bit GFMUL cell with four embedded GF multipliers maximising the
throughput by applying the SIMD technique (a) GF multiplier cell layout, (b) GF multiplier

internal structure

Chapter 5: Programmable Reed Solomon Processor

100

design EDA tool set using the UMC 0.18µm (UMCL18U250D2_2.4) CMOS

technology library (which is the same technology as that used for the processor).

This enables the performance and characteristics of the new cell to be tested,

verified and extracted. Thereafter, the cell and its characteristics were embedded

within the overall processor model. The necessary adjustments have been added to

the processor compiler in order to add the GFMUL into the processor instruction

set as a new added instruction that will invoke a GFMUL custom cell instead of

initiating a series of shift and logic instructions or cells.

Figure 5-5 shows the internal architecture of the 8-bit multiplier, with ‘pp’ as the

primitive polynomial reconfigurable input. The RS Processor is 32-bit based; and

this is why it is preferred to make use of full data-bus width. Hence, instead of

having only an 8-bit-based cell, a novel 4 x 8-bit-based GFMUL cell has been

designed. The cell is based on four concatenated 8-bit GF multipliers, as shown in

Figure 5-6. This optimisation enabled a cell area reduction of approximately 23%

with an associated reduction in energy consumption since only a single remainder

calculation unit is needed instead of four in the case of four independent GF

multipliers, as shown in Figure 5-5. In addition, this allows the single instruction

multiple data (SIMD) technique to be applied in the implementation of the

algorithms, in order to maximise throughput and resource utilisation, due to the

concurrent use of the four multipliers within the cell. The results for the novel cell

are presented below in Section 5.7.1.

5.6 RS Processor Implementations and

Optimisations

5.6.1 Architecture Specific Optimisations

The RS processor is based on the dynamically reconfigurable architecture paradigm

as presented in Figure 5-10 (b). The processor executes the codes in ‘steps’ instead

of using a single instruction at a time. At each step, the instructions are loaded into

Chapter 5: Programmable Reed Solomon Processor

101

the processor’s ‘configuration controller’, which introduces configuration latency.

The architecture is structured to support only one ‘Jump’ instruction per step.

Following the Jump, a new configuration will take place to reconfigure the

processor cells and interconnections and load a new set of inputs based on the

algorithm and the sequences of its instructions. If an algorithm fully or partially

generates or includes more than one Jump, then the code in between will be placed

in separate steps. The main reason for optimisation is to maximise processor

utilisation by reducing the number of steps as well as the length of the critical

paths. If the entire algorithm can be placed in a single step, then the configuration

latency will be almost eliminated. If Figure 5-10 (b) is considered as a stand-alone

case, and assuming that the entire algorithm has been encapsulated in a single step,

then the processor will run on a single configuration, and the only ongoing changes

will be in the data handled through input and output ports. This is the ultimate goal

in optimising processor performance, since this can be expected to provide the best

performance.

In initial implementations, the configuration time and performance results are not

usually the best that might be achieved, since long critical paths and huge

computational resources are required. There is a trade-off between configuration

time, step size and the number of cells in the processor. In general, maximising the

resource utilisation is a common target, as this leads to better performance by

increasing processor throughput and eliminating redundant cell resources.

Memory access delay is another key performance parameter which needs to be

monitored. This parameter can be a major bottleneck for performance in embedded

systems [75]. Memory access optimisation can be achieved in three steps: a)

algorithm-level optimisation by modifying the algorithm in order to optimise and

limit the need for frequent memory access; b) increasing ‘local register’ cells that

can hold intermediate calculated results; and c) applying pipelining and using

register files. Conversely, there is a trade-off when using registers, since their

excessive usage can have an adverse effect on throughput and, most importantly,

on the power consumption. Parallelism and pipelining are explained further below.

Chapter 5: Programmable Reed Solomon Processor

102

5.6.1.1 Parallelism

The RS processor can execute both dependent and independent instructions in the

same processor step, so that parallelism is utilised. For the encoder, 16 redundant

code-words can be calculated in parallel to enhance performance. For the decoder,

syndrome computation, the Chien search, error evaluation and the Forney

algorithm can be implemented in parallel as well, which leads to a throughput

enhancement 25%, and 23.3% reduction in the energy consumption memory access

5.6.1.2 Kernel and pipeline

The RS processor is specifically optimised to execute large steps that loop back

onto themselves (termed ‘kernels’) [35]. In a kernel, the processor can fetch and

store the complete set of configuration instructions only once, instead of fetching

the same instructions repeatedly, so that configuration latency and energy

consumption are greatly reduced. A software pipelining technique can be utilised

for kernels to give for further performance improvements. The kernel step will be

automatically pipelined into multiple stages with a special mark-up added in the

software code.

In this case, the critical path of the kernel will be shortened. Therefore, the overall

execution time will be reduced and hence throughput will be improved. This

pipelining technique is especially efficient for the decoder. After building the

kernels and pipelining, the critical path has been shortened, and thus the

processor’s performance has been improved.

GF

Multiplier

4*8-bit

multiplica-

tion

R(i) R(i) R(i) R(i)

(1)

(2)

(3)

(4)

S(1)~~S(4)

GF

Multiplier

4*8-bit

multiplica-

tion

R(i) R(i) R(i) R(i)

(13)

(14)

(15)

(16)

S(13)~~S(16)

…..

Figure 5-7. SIMD architecture for syndrome computation

Chapter 5: Programmable Reed Solomon Processor

103

5.6.1.3 Dedicated GF MUL and SIMD

It is obvious that the syndrome computation and Chien search require the most

resources. In Reed-Solomon code, the width of a symbol codeword is 8-bits. The

Single instruction multiple data (SIMD) is employed here to give the maximum

usage of the processor’s resources.

For example, in syndrome computation, all the terms of)(xS are independent.

With the SIMD technique, the received four 8-bit data and four 8-bit i can be

combined together to form two 32-bit operands. Thus the four multiply operations

can be calculated with a single 4 x 8-bit GF multiplier. The output)(xS can also be

segregated into four 8-bit operands. Figure 5-7 illustrates the architecture of

syndrome computation with the built-in SIMD technique. Compared with the

classical one method without SIMD shown in at Figure 5-4, the number of GF

multiplications are reduced by 75%, and the memory access energy is reduced by

48%.

Figure 5-8 Reed Solomon decoder (a) classical software approach of RS decoder; (b)

new approach with GF multiplier cell

Chapter 5: Programmable Reed Solomon Processor

104

5.6.1.4 Architectural approach to RS decoding

The RS decoder requires more GF multiplications than the encoder. Figure 5-8 (a)

illustrates the architecture of a classical software RS decoding implementation

which uses a LUT (look up table) to utilise the GF multiplication. With the use of

the LUT, enormous numbers of memory accesses will be introduced into the

application, which will lead to bring considerably increased execution time and

energy consumption. Therefore, a GF multiplication cell is essential for both the

RS encoder and decoder.

Figure 5-8 (b) illustrates the new RS decoder approach with the GF multiplier cell.

Compared with the classical software approach, the architecture with the GF

multiplier cell is less complex, and the large arrays that were used for holding the

GF elements are eliminated. By reducing the number of memory access operations,

the GF multiplier custom cell will greatly improve performance in terms of

reducing the execution time and energy consumption.

5.6.1.5 Targeted processor’s architecture

As explained earlier, the RS processor is based on the RICA paradigm. Hence it is

worth explaining here in greater detail the layout of the architecture and its modes

of operations. The processor is C-programmable and based on heterogeneous cell

Compiler

Schedular

Netlist

Step 0 Step 1 Step 2
...

Simulator/Emulator Placement and Routing

Profile
Execution

Trace

Memory

Dump

Configuration

Bits

C code

Machine Description

File (MDF)

Assembly code

Figure 5-9 RICA architecture tool flow

Chapter 5: Programmable Reed Solomon Processor

105

arrays. Figure 5-10 demonstrates the three main operation modes of the processor.

Figure 5-10 (a) represents the initial configuration mode, where the configuration

controller is active in loading and configuring the cells and their interconnections,

and the dark-coloured cells in this illustration represent active cells. Figure 5-10 (b)

represents the main working operational mode of the processor, where actual RS

encoding/decoding takes place. Here it can be noted that the input and output ports

are active, indicating continuous data streams coming in to and going out from the

processor. Finally, Figure 5-10 (c) shows the processor have completed the main

function and now ready to be configured for the following operation, which could

be another algorithm. Processors based on the RICA paradigm have a dedicated

tool flow developed for them which comprises a compiler, scheduler, placement

and routing, and emulator, as illustrated in Figure 5-11. The compiler transfers the

high level C code into assembly language format, which is based on the

instructions in the processor cells. Information for the processor cells is provided

by the machine description file (MDF) which holds the functions and capabilities

of those cells. The assembly file generated will be passed to the scheduler, which in

turn will produce a netlist of a series of steps to configure the processor

dynamically. The scheduler takes into account the resources from the MDF file,

such as cells, interconnections and timing constants, in addition to the optimisation.

Chapter 5: Programmable Reed Solomon Processor

106

Figure 5-10 Programmable Reed Solomon processor architecture based on

heterogeneous cell array (dark coloured cells represent active cells in a certain
configuration). The three cases are: (a) initial configuration; (b) intermediate

configuration, in which certain cells are configured to code/decode data from/to
input/output ports; and (c) final configuration, flushing remaining data out, and

preparing for the subsequent configuration.

Chapter 5: Programmable Reed Solomon Processor

107

5.6.2 RS Encoder Implementation and Optimisation

For the efficient implementation of a real time RS encoder on the processor, the

encoder has been implemented based on the data-flow graph presented in Figure 5-

11. This implementation is based on generating the whole Galois Field required

through its primitive polynomial, and records these in two separate arrays: one for

polynomial representation and the other for exponential representation. The GF

multiplication is carried out by calculating the exponentials of the two operands.

The generator polynomial is generated and stored in an array, while the calculation

of the encoder parity symbols takes place using the LFSR (linear feedback shift

register), as demonstrated in Figure 5-2 (a). The throughput obtained in realising

Figure 5-11 Reconfigurable RS encoder data-flow graph

Results before optimisation RS(255,239):

One time execution
*
 of RS encoder = 335.83 msec

Step count = 13,751

Dynamic energy
#
 = 5.67 mJ

Throughput = 6.1 Mbps

* One time execution = one complete coded block of data

Represent all energy except interconnections energy

Chapter 5: Programmable Reed Solomon Processor

108

this approach is, however, far from the target of at least 70Mbps (which is the

optimum requirement for WIMAX). This can be seen from the performance

summary report below.

By analysing the resulting performance report and intermediate files, it is

concluded that the obtained low throughput is due to the excessive use of read/write

operations from/to data memory. In order to overcome this problem, several

optimisation techniques, as mentioned earlier, were applied. The maximum

throughput achieved then increased to 10.1Mbps, as can be seen from the report

results below.

The optimisation techniques applied resulted in an enhancement of 40% in the

Results after optimization RS(255,239):

One time execution of RS encoder = 202.486 sec

Step count = 6,042

Dynamic energy: 4.7 J

Throughput: 10.1 Mbps

Figure 5-12 Reconfigurable RS encoder modified data-flow graph using GFMUL cell

Chapter 5: Programmable Reed Solomon Processor

109

throughput and a reduction 17% of in the dynamic energy. As the required

throughput (70Mbps) was not reached, the algorithm has been further investigated,

leading to the implementation of the algorithm using a hardware-inspired technique

in order to reduce the memory access overhead.

Figure 5-12 presents the proposed modified data flow graph, which provides some

advantages, such as greater reductions in the total number of operations and the

number of memory accesses required, in addition to the elimination of the modulus

cell/function. On the other hand, the modified flow-graph requires a new cell, the

Galois Field multiplier (GFMUL), to be added to the processor. The cell developed

supports run time reconfiguration for the GF primitive polynomials. This cell and

its design have been discussed in detail in Section 5.5.

5.6.3 RS Decoder Implementation and Optimisation

The Reed-Solomon decoder architecture and the interaction of its various functions

are illustrated in Figure 5-13. The decoder has been implemented based on the

techniques of the data-flow graph shown in Figure 5-11, which has two arrays: the

polynomial and exponential representations. The results obtained are similar to

Figure 5-13. Reed-Solomon decoder algorithm design

Chapter 5: Programmable Reed Solomon Processor

110

those for the encoder and a follow-up implementation of the decoder was then

conducted using the same techniques of the modified data-flow graph (Figure 5-12)

with the aid of the GFMUL cell. Compared with the data-flow graph, the

architecture with the GFMUL cell is less complex, and the large arrays required for

storing the GF elements are no longer necessary. Considering the memory

optimisation mentioned earlier, there would be four memory read/write operations

per GF multiplication in the data-flow graph technique, as well as other operations

such as modulo-2 adder, logic, modulus, and so on. By reducing the number of

memory access operations and using the GF multiplier cell in the modified data

flow graph approach, the performance improves significantly in increasing

throughput and decreasing energy consumption. The usage of the GFMUL cell

leads to a reduction in memory access energy of 72.4%, which represents a

significant performance improvement. Parallelism is another important

optimisation technique in maximising resource utilisation. Every functional block

of the RS decoder has been examined to decide whether parallelism in the code can

be utilised to increase performance. For example, syndrome computation requires

4080 8-bit adders and 4080 8-bit multipliers. As the elements of)(xS are all

independent, it can be computed with 16 parallel data paths with recursive

multiplication and addition [76]. In addition, the performance of the parallel

architecture can be further improved by employing the SIMD technique, as

explained earlier. The architecture of the Forney computation’s depends on the

number of erasures in the received codeword. There are no efficient parallel

architecture techniques that could be utilised for all cases of the Forney

computation, because the number of additions and multiplications differ according

to every symbol frame. The Berlekamp-Massey algorithm is based on iteration, and

all calculations are computed in sequence depending on the number of errors and

erasures, so that no parallel optimisation could be implemented. The Chien search

is used to evaluate the error location polynomial with all 255 possible roots, so that

parallel implementation is possible here since they are all independent. The error

evaluation polynomial makes use of the syndrome and error polynomial. It has an

architecture similar to that of syndrome computation, so that all of its 16 elements

Chapter 5: Programmable Reed Solomon Processor

111

could be computed in parallel in 16 paths, and in addition, the SIMD technique

could be employed. The Forney algorithm determines the actual error and erasure

value from the error location and value polynomials, and for the calculation of each

symbol parallelism could be implemented. Error correction can be easily

implemented in parallel simply with a GF adder (XOR - logic cell). With all the

parallelism optimisations described, the processing time and memory access energy

consumption are reduced further by nearly 25% and 23.3% respectively.

5.7 Performance, Comparison Analysis and

Results

5.7.1 GF Multiplier Cell

The results in terms of area and calculation delay for the implemented GFMUL as

either a single multiplier or the proposed novel concatenated four multipliers are

presented in Table 5-2. The multiplier is combinatorial, hence its key parameter is

delay time along with power consumption. In Table 5-2, two implementations have

been highlighted: firstly a single 8-bit multiplier entitled the ‘One programmable 8-

bit GFMul cell;. and the second with four 8-bit multipliers entitled ‘Four

programmable 8-bit GFMul cell.’ Both are programmable, and the results for the

single multiplier have been listed to allow comparison with other studies while the

cell with four multipliers is the main cell integrated within the processor. It is clear

how the maximum delay has been kept to a minimum at 3.88 ns. These results were

Table 5-2 Implementation results for the GF multiplier cell
(180nm Technology)

GF(2
8
) Area (µm

2
) Max delay (ns)

One programmable 8-bit GFMul cell 6,265.40 3.34

Four programmable 8-bit GFMul cell 19,345.10 3.88

Chapter 5: Programmable Reed Solomon Processor

112

obtained post-layout and have been modelled within the RICA development

environment in order to give accurate modelling of the RS coding. The GF

multiplier has been developed as an extension of the instruction set for the

Sandblaster Micro-architecture [69]. By comparing the results for the developed

GFMUL with [69], the GFMUL multiplier proposed here achieves an area

reduction of 45%. On the other hand, the Sandblaster multiplier delay is half of that

obtained with the GFMUL; however, the GFMUL is programmable whilst the

Sandblaster multiplier is not. The difference in delay is considered an acceptable

overhead given the advantages in flexibility and does not affect the performance or

functionality of the either multiplier or the whole processor. In addition, the 45%

reduction in area will be accompanied by a reduction in power consumption,

leading to the possibility of attaining an ultra-low-power processor design.

5.7.2 RS Codec Processor

The performance results for the processor are obtained from the RICA software

tool flow based on the accurate modelling of a fabricated processor. For the RS

(204,188), the encoder throughput reached 202 Mbps, while for the RS (255,239)

the encoder throughput reached 200 Mbps. This is a significant improvement over

the intermediate results reported earlier; moreover, it exceeds the application

specifications. The following are the results for the RS encoder:

Figure 5-14 Memory usage for RS decoding on RS processor

Chapter 5: Programmable Reed Solomon Processor

113

Figure 5-15 Throughput of RS decoding on RS processor

-Results after optimisation RS(255,239):

Throughput: 199.9 Mbps

Memory usage = 359 bytes

-Results after optimisation RS(204,188):

Throughput: 202.5 Mbps

Memory usage = 308 bytes

For the RS decoding, the results obtained after the series of optimisations can be

represented graphically. Decoding results are usually represented by best, average

and worst case results. The best case is when there are no errors, the average case is

when there are four errors to be detected and corrected, and the worst case is when

Table 5-3 Performance comparison of the novel RS processor and StarCore 140 for
RS(255,239)

 RS Encoder:

Processor RS Processor* StarCore 140 [70]

Cycles count 257 6359

Time (µs) 10.202 264.96

Throughput (Mbps) 199.9 7.26

 RS Decoder:

Processor RS Processor* StarCore 140 [70]

 Best

case

Average

case

Worst

case

Average

case

Worst

case

Cycles count 1423 3,245 4,463 14,298 14,428

Time (µs) 22.174 68.105 90.376 264.778 267.185

Throughput (Mbps) 73 29.95 22.57 7.70 7.64
*RS Processor chip is based on 180nm CMOS technology

Chapter 5: Programmable Reed Solomon Processor

114

there are eight errors to be detected and corrected. Figure 5-14 illustrates the

memory usage with different numbers of errors. The result show a considerable

improvement of an 85.6% reduction in worst case for memory usage compared to

previous work [70], and hence the memory access energy will be reduced. The

decoder throughput with different numbers of errors is illustrated in Figure 5-15.

The results show an overall advantage compared with [71] and moreover the

proposed processor offers considerable lower energy consumption than FPGA

implementations.

After applying all of the optimisation techniques discussed above in deploying the

GFMul and applying the SIMD technique, the results were enhanced significantly.

The encoder throughput increased from 10 to 200 Mbps, while decoder throughput

from 2 to 92 Mbps in the ‘best case’ for the RS(255,239), where the best, average

and worst cases are shown in Table 5-3. This represents a significant improvement,

and these results also prove that the reconfigurable RS processor introduced here

can accommodate the demanding standards and applications expected in the future.

The methodology used for StarCore 140 RS encoder/decoder implementation [70]

performs the additions in binary representation and multiplications in exponential

representation, where conversions between the two representations are

accomplished with the aid of look-up tables. Table 5-3 shows the superiority of the

novel processor over the StarCore processor for all parameters. It is worth

Figure 5-16 Energy consumption for the RS decoder on RICA

Chapter 5: Programmable Reed Solomon Processor

115

mentioning that the StarCore is a dedicated industrial DSP for communication

applications. The energy consumption is demonstrated in Figure 5-16 for the cases

of both the RS(255,239) and RS(204,188). In [71] the maximum throughput

achieved for the RS decoding is up to 15Mbps for RS(255,239), while in the

proposed RS processor throughput reaches 92.5Mbps and moreover it offers

considerable lower power consumption than the FPGA implementation.

5.8 Conclusion

A novel RS encoder architecture with parallel parity output has been introduced in

this chapter. A novel high-speed and low-power 32-bit GF multiplier cell

embedded within the novel low power processor for programmable Reed Solomon

coding has been introduced along with its design, optimisation and implementation.

The real-time programmable RS encoder and decoder processor supports several

communication standards such as WiMAX and DVB-H. In addition, the processor

can be used in a wireless local area network IEEE 802.11 to improve its range [67].

There are other possible applications for RS codes, such as deep space

communication [68]. A number of approaches and optimisation techniques have

been implemented in order to enhance the performance of the processor. The

processor achieves high throughput and provides significant improvements in

performance and energy consumption.

The GF multiplier cell leads to a reduction of 72.4% in memory access energy,

which improves the processor’s performance. Different design approaches and

optimisation techniques have been applied in order to enhance the processor’s

throughput and to reduce its energy consumption. The throughput achieved is up to

200 Mbps and 92 Mbps for the encoder and decoder respectively. Associated

dynamic energy consumption is in the range of 0.34 to 0.6 µJ, leading to the

conclusion that this is a design suitable for present and future handheld devices.

116

Chapter 6

6 GPS DIGITAL MATCHED FILTERS

USING DYNAMICALLY

RECONFIGURABLE ARCHITECTURE

6.1 INTRODUCTION

The first GPS (global positioning system) was declared fully operational in 1995,

with 24 satellites in orbit. Its importance to civilian users was recognised

immediately and in 2000 the ‘selective availability’ function was discontinued,

allowing users to receive non-degraded signals. This accelerated the system’s

adoption in civilian applications on land, in the sea and in the air and led to a

revolution in personal navigation devices. Today, GPS applications are embedded

in various gadgets such as mobile phones. This has allowed an extended range of

applications ranging from sat-nav devices to social networking applications.

The GPS utilises a constellation of satellites in medium Earth orbit which provide

positioning, navigation and timing information to compatible receivers on Earth

[83]. Signal acquisition or correlation is by far the most computationally

demanding module of a GPS receiver. In addition the correlator has strict time

constraints and should be able to continuously execute the real-time correlation

process. Thus the correlator is a key to achieving low-power GPS receivers [84].

This research work focuses on developing a novel correlation engine through the

design and implementation of various GPS correlation architectures exploiting the

RICA processing paradigm. Performance evaluations are conducted in terms of

time, energy and memory usage.

Chapter 6: GPS Correlation Engine

117

Two main types of correlator architecture have been introduced in the literature.

The first performs the direct correlation of the locally generated code replica with

the sequence received in the time-domain. The second utilises frequency-domain

techniques relying on the DFT (discrete Fourier transform) and FFT (fast Fourier

transform). The FFT can reduce the computational complexity of the correlator, but

still requires complex algorithms which are not easy to implement and are power-

hungry. Furthermore, this approach approximates some calculations to reduce the

overall noise tolerance of the correlator. For these reasons, the present research

focuses exclusively on time-domain architectures.

This chapter is organised as follows: correlation architectures are presented in

section 6.2, while section 6.3 describes the engine architecture developed in this

work. Section 6.4 details various matched filter algorithms and their

implementation on the architecture and the optimised correlator engine designs.

The results are analysed in section 6.5 and conclusions are presented in section 6.6.

6.2 Correlation Architectures

A matching filter is an important basic building block in wireless communication

systems such as the GPS, WLAN, CDMA and WiMAX. It is used in signal

acquisition and tracking, and requires a significant amount of system resources.

The design of the matching filter is a crucial factor in system performance in terms

of rapid signal acquisition and tolerance of interference. Acquisition is the most

time-consuming function of a GPS receiver and various acquisition algorithms

have been developed in order to speed up computation [84]. A number of

algorithms can be used for correlation. As mentioned earlier, the focus here is on

time domain correlation, of which four main types are discussed.

The correlation algorithm multiplies the incoming signal with all possible

coarse/acquisition code (C/A code) combinations and then integrates and sums the

results. This means that the receiver is not affected by possible phase differences

between the locally generated and the actual carrier frequencies. The correct phase

Chapter 6: GPS Correlation Engine

118

is found once the correlator output exceeds a predefined threshold. These

parameters can then be passed on to the tracking circuit.

The GPS C/A code sequences belong to a family of pseudo-random noise (PRN)

codes discovered by R. Gold in 1967 [85]. They are also known as ‘Gold’ codes

and their most important characteristic is their correlational properties. Cross-

correlating two different 1023-bit Gold codes (C1, C2) can be represented as in

Equation (6-1).

𝑅(𝑘) = 𝐶1(𝑖) ∙ 𝐶2(𝑖 + 𝑘) ≈ 0

1022

𝑖=0

(6-1)

where k is the phase-shift of C2 relative to C1. It is known that the C/A codes are

almost uncorrelated with each other at any phase difference. If C1=C2, then the

auto-correlation result of the above equation reaches a peak value of 1023, when C1

and C2 have the same phase (k=0).

The signal received by the RF front-end and quantised by the A/D converter is a

combination of the signals transmitted by all visible satellites. If N satellites are

visible at a specific moment, then the received signal S(t) is the summation of all

visible satellite signals as in Equation (6-2).

S(t) = S1(t) + S2(t) + ... + SN(t) (6-2)

The acquisition algorithm must identify whether or not a specific satellite is

currently visible and find the carrier frequency of the signal and phase of the C/A

code. The carrier frequency of the transmitted signal is already known, but since

the satellite is continuously moving, and possibly the receiver is too, the carrier

frequency of the received signal will differ from its nominal value by a small

Doppler shift. Furthermore, the code phase will be random and the purpose of

acquisition is to locate the beginning of the C/A code in the received signal.

Each GPS satellite is located its own unique code sequence. The C/A codes used

are a chain of 1,023 bits within a period of 1ms. The GPS receivers generate the

same code sequences internally. These are compared with the received signal from

Chapter 6: GPS Correlation Engine

119

the satellites. If correlation is not achieved, then the local code will be shifted by

one bit and compared again. This process is repeated until a match occurs, while

the number of shifts will be represented as a delay value to be used in further

calculations in the GPS receiver. If all 1,023 bits have been tried without successful

correlation, then an offset to the phase value need to take place in the receiver using

the frequency oscillator, and the previous process has to be repeated. The next

section discusses various matched filter algorithms and their adoption for GPS

correlation in the proposed processing engine.

6.2.1 Serial Search Correlation

The simplest and most conventional algorithm to implement is the serial search

correlator. Figure 6-1 presents its architecture. It is used in the commercial

Zarlink's GP2021 correlator implementation [86], and is a relatively simple

algorithm to implement which has minimal hardware requirements. Its main

drawback is the extensive period required to perform acquisition. The signal

samples are multiplied consecutively with the locally generated C/A code samples

and then the results are integrated.

It can be seen that the only hardware parts required are a multiplier, an adder and

an accumulation register. To perform complete acquisition using this architecture

would require 1,023 multiplications and 1,022 additions for each phase, since the

length of a full C/A code is 1,023 bits. Therefore, for the 1,023 phases, it would

require in total:

1,0231,023 = 1,046,529 multiplications and 1,0231,022 = 1,045,506 additions.

Figure 6-1 Serial search correlation

Chapter 6: GPS Correlation Engine

120

In the GPS, each complete C/A code has a period of 1 ms (1  1.023MHz), and

hence the serial search correlator requires 1.023 seconds to complete the

acquisition of 1,023 phases.

6.2.2 Conventional Digital Matched Filter

The conventional digital matched filter (CDMF) correlator presented in Figure 6-2

uses a tapped delay line to correlate the incoming signal with the locally generated

code replica [87]. Its main advantage is that a full 1023 phase search can be

completed in the time required for one 1023-bit C/A code sequence to be received

(1 ms). On the other hand, it requires an additional 1023-register buffer to store the

incoming signal samples. The buffer must be initially filled before any correlation

results can be obtained, so a further 1 ms should be added to the total acquisition

period. Its computational complexity is the same as that of the serial search method,

as it requires the same number of additions/multiplications to complete a 1,023-

phase acquisition.

The algorithm operates by storing successive incoming signal samples in the shift

registers (buffer), and calculates the correlation of phase i when the buffer becomes

full. As a new data sample is received, it is shifted-in the buffer while at the same

time the oldest stored sample is shifted-out. Then the correlation of phase i+1 is

calculated. Since the majority of incoming data samples are kept in memory, the

Figure 6-2 Conventional digital matched filter (CDMF)

Chapter 6: GPS Correlation Engine

121

correlation results for subsequent code phases can be calculated quickly, requiring

977 ns for each phase.

6.2.3 Differential Digital Matched Filter

A differential digital matched filter (DDMF) correlator improves on the CDMF by

eliminating most of the multiplications and reducing the number of additions by 1/2

[88] and [89].

The sample values of the local code replica will be either +1 or -1. If these values

are incremented by +1, then they will become +2 or 0. Statistically, approximately

half of the code values will be -1 (or 0 after incrementing); so their multiplication

and addition can be eliminated.

After adding +1 to the values of the code replica, their expression becomes

 and therefore the correlation result will be:

𝑅𝑒𝑠𝑢𝑙𝑡 𝑖 = 𝑀𝑛−1𝑆𝑛−1 + 𝑀𝑛−2𝑆𝑛−2 + ⋯ + 𝑀1𝑆1 + 𝑀0𝑆0 − 𝑆𝑢𝑚(𝑖) (6-3)

where

(6-4)

Figure 6-3 Differential digital matched filter (DDMF)

Chapter 6: GPS Correlation Engine

122

From Equation (6-4) Sum(i) is the sum of all of the values stored in the buffer-

register S in the current phase iteration i. It can be calculated by adding the most

recent signal value shifted-in to Sum(i-1) and subtracting the most recent signal

value shifted-out as illustrated in Figure 6-3. Thereafter, the signal samples

corresponding to the non-zero values of the code replica need only to be multiplied

once by 2 after they have been summed together. Thus the DDMF effectively cuts

in half the computational load compared to the CDMF algorithm.

6.2.4 Segment Processing Digital Matched Filter

The segment processing digital matched filter (SPDMF) algorithm optimises the

DDMF by eliminating some of its computational redundancy [90]. Its architecture

is illustrated in Figure 6-4. By examining the correlation results of two consecutive

iterations i and i+1 using the DDMF algorithm, Sum00(i) is the sum of all the S

values that are multiplied by ‘0’ on the first (i) and second (i+1) iterations, while

Sum01(i) is the sum of S values that are multiplied by ‘0’ on the first and ‘1’ on the

second iteration, and so on. The advantage of this method is that Sum01(i), Sum10(i),

Figure 6-4 Segment processing digital matched filter (SPDMF) with K=2

Chapter 6: GPS Correlation Engine

123

Sum11(i) only need to be calculated once, and can then be use to produce two

consecutive correlation results. Furthermore, the limitation processing the

correlation results only in groups of two no longer applies, and it can be increased.

It has been shown [90] that the algorithm reaches its maximum performance when

groups of 8 or 9 are used, in which case the SPDMF becomes 3 times more

efficient than DDMF. But the benefits should be noticeable even for groups of 3

phases. While this method effectively eliminates some computational redundancy,

additional hardware is required in the form of extra registers and controls.

6.2.5 Algorithmic Comparison

The computational requirements of the algorithms mentioned above are

summarised in Table 6-1. In all cases it is assumed that acquisition is performed on

1 ms or 1023 bits of C/A input signal samples, searching for 1023 code-phases.

Furthermore, the SPDMF is assumed to process data in groups of 3 (K=3). All the

equations used for calculating computational complexity can be found elsewhere

[90]. Clearly the SPDMF algorithm, with just 357,027 additions needed to

complete acquisition, compares favourably with the other architectures.

6.3 Engine Architecture

The processor proposed in this research is based on the reconfigurable instruction

cell array (RICA) paradigm. The RICA paradigm is based on a variable set of

Table 6-1 Comparison of theoretical computational complexity for various correlation
algorithms

Correlation algorithm Additions Multiplications
Time required to complete

acquisition

Serial Search 1,045,506 1,046,529 1,023ms

CDMF 1,045,506 1,046,529 1ms*

DDMF 525,311 1 1ms*

SPDMF(K=3) 357,027 1 1ms*

 *There is an additional 1ms for register preloading

Chapter 6: GPS Correlation Engine

124

heterogeneous cells connected through a reconfigurable interconnection network

[35] and [91]-[92]. In general, the cells perform primitive operations, such as

addition, multiplication, shifting, logic, and multiplexing, and in addition other

cells control handling and branch operations. The contribution and number of cells

could be tailored depending on the application or set of applications required to run

on the processor engine.

In order to have a specific engine for processing GPS correlations in general,

several aspects should be considered. These include the exploitation of various

correlation algorithms, the analysis of their requirements and subsequent

optimisations. The engine’s prime design consideration is minimum energy

consumption, while still meeting the correlation requirements of the GPS in terms

of processing capability and time constraints.

A correlation engine is proposed in this study based on the RICA paradigm. The

engine inherits various capabilities and advantages that are characteristic of the

architecture [90]. The engine is digital signal processor (DSP)-like, hence retaining

the advantage of the DSP in terms of high level programmability. In addition, the

engine has a reconfigurable data-path which implies that it does not have fixed

cycles, but is based on a ‘step’ concept. A ‘step’ is a combination of instructions

that run simultaneously on a single configuration, or physically a single data-path

interconnection configuration for a group of cells in the processor. Steps are

determined by the resources available in the processor, conditional branches

(jumps) and the critical path length. The step concept allows the maximum

exploitation of correlation parallelism. In general, the higher the utilisation of

architectural cells, the lower the number of steps required for the application and

vice versa. In addition, optimal performance is usually obtained through reducing

the number of steps, and this is achieved by applying various optimisations to the

correlation algorithms or the engine architecture. The engine has been designed in

order to be capable of efficiently processing the correlation algorithms mentioned

earlier. After analysis of the above correlation techniques, it was decided that the

engine design would include the following cells: 64 adders, 13 logics, 20 shifts and

32 constants, this is in addition to the engine memory and control cells which are

Chapter 6: GPS Correlation Engine

125

responsible for the dynamic configuration aspects of the processor and managing

the execution of ‘steps’.

6.4 Analysis and Optimisations

The design, optimisation and analysis in this work was carried out in three tiers.

The first is based on implementing various correlation algorithms on a first

processing engine. The types and quantities of engine cells have been optimised in

order to save power consumption while a sufficient degree of parallelism is

exploited for processing the various correlation techniques. It is worth mentioning

here that the correlation algorithms and techniques are optimised to fit the specific

engine architecture. In the second tier further optimisations are applied to the

correlation algorithms based on the findings from the first tier. In the third tier the

engine architecture is optimised in order to obtain optimal performance and the

lowest energy consumption.

The aim of optimisation is to achieve minimum engine size and maximum engine

utilisation for the target requirements. This can guarantee the achievement of lower

energy consumption with the efficient implementation of the algorithm.

6.4.1 Tier 1: Correlation Implementation

Here the correlation techniques and algorithms mentioned earlier are implemented

on the proposed novel correlation engine.

1) Serial search correlator implementation

A serial search correlator has been designed, programmed in the C-language and

implemented on the correlation engine. Several optimisation techniques are applied

in order to exploit the resources of the processor and to extract the algorithm

parallelism. Such optimisations include loop unrolling and step size maximisation

to increase the degree of parallel execution by the engine.

Chapter 6: GPS Correlation Engine

126

The correlation time obtained for a complete search process is equal to 94ms for

1023 phases, with each phase consisting of 1023 samples. This implies that the

time required for each frame is equal to 91.88 µs, while the real-time requirement is

1ms. Due to the serial nature is of this engine and the fact that it is fully dependent

on the received signal speed, it is impossible to achieve any improvements beyond

the 1023 ms required for a full correlation. This means that the engine satisfies the

algorithm’s requirements in theory; however, it is slow and time consuming to wait

for 1.023 s to fix a single satellite signal. Present and future applications require

GPS receivers with quicker correlations and shorter times to the first fix.

2) Conventional digital matched filter implementation

The CDMF is a parallel search correlator that requires shift registers. After

applying similar optimisations to the serial search, a total correlation time of 88.6

ms has obtained. By analysing the generated assembly codes, intermediate files,

and resulting kernels, it was apparent that the implementation of the algorithm

resulted in the excessive use of the processor memory, which led to increased

numbers of steps. It is worth mentioning that there is a restriction on the usage of

the processor memory to a maximum of four memory read or write operations in

any single ‘step’. This means that, with excessive memory usage, the number of

steps will increase significantly. This leads to a reduction in the processor’s

utilisation of resources and increases the correlation time.

In order to enhance these results, a number of techniques were exploited. These

include the merging of some of the steps and a reduction in memory access by

maximising the usage of the local registers available in the processor. In addition,

the C/A replica code required in the correlation process is generated in real-time by

a C/A code generator embedded in the processor; here, an experimental procedure

was conducted in order to have the C/A replica code hard-coded. The correlation

time achieved after optimisation with hard-coded C/A code is 47.8 ms, and 29 ms

with the C/A code generator. In general, the hard-coded technique provides better

performance; however, in this case it incurs a penalty through increasing memory

access activity in the processor. This is due to the location of hard coded data being

in the processer memory which must be recalled back whenever required. On the

Chapter 6: GPS Correlation Engine

127

other hand, the generator inputs results directly into the processor registers without

any interaction with the processor memory. The resulting architecture is

approximately 3 times faster than that with the serial search, but is still far from

meeting the requirements of the system.

3) Differential digital matched filter implementation

Using the same optimisation techniques described earlier, the correlation time

achieved is 13.6ms. Furthermore, it is clear that the DDMF correlator algorithm

outperforms the CDMF. Moreover, in implementation and after further

optimisation, the DDMF outperforms CDMF to give a reduction in the correlation

time of almost 50%. However, this is still far from achieving the requirement of

1ms or less.

4) Segment processing digital matched filter implementation

The SPDMF correlator with K=3 has been designed and implemented on the

selected engine after similar optimisations as mentioned earlier. The result achieved

is 57.6 ms. The SPDMF algorithm outperforms CDMF and DDMF in terms of

computational complexity, while it lags behind in terms of implementation. The

main reason for this result, almost double the CDMF timing is that the control part

of the architecture has been increased in size in order to cater for the three

simultaneous correlation processes.

6.4.2 Tier 2: Architecture Optimisations

After analysing the results obtained in Tier 1, and further exploring the

architecture, it is clear that better results are required in order to overcome the time

constraints. Modification to the correlation algorithms is considered in order to fit

there optimally on the processor. A modified a modified architectural design for the

digital matched filter algorithms mentioned earlier is proposed. The design is based

on minimising memory access the switching activity via applying the circular

buffering techniques by eliminating shifting the shifting of the data received [93].

This will take place by allocating sufficient memory locations for in the processor

Chapter 6: GPS Correlation Engine

128

memory two complete data frames (blocks) of total size 2n. In addition, a unit is

introduced to distribut the incoming signals to their correct fixed locations in the

memory. In the following subsections, the proposed optimised designs are

introduced along with the results associated with their implementation on the

engine.

1) Modified Conventional Digital Matched Filter

The modified CDMF design is shown in Figure 6-5. As mentioned earlier, the

allocated memory size is 2n, from M0 to M2n-1. A distribution switch is used to

distribute/write the incoming signals into the correct memory locations. Then there

is the slider control, which is linked to the distribution switch in order to

continuously adapt to the addresses of the most recently received signals. After

applying the same optimisation techniques mentioned earlier, the correlation time

was reduced to 14.8 ms, representing a significant improvement. The MCDMF

achieved a reduction of 51% in the correlation time compared to CDMF. Although

the MCDMF architecture is designed to target the specific proposed engine, it

could also reduce power consumption in ASIC or FPGA implementations.

Figure 6-5 Modified conventional digital matched filter (MCDMF) architecture

Chapter 6: GPS Correlation Engine

129

2) Modified differential digital matched filter: The MDDMF architecture design is

illustrated in Figure 6-6. One extra unit has been added, which is the ‘C value

checker’ (not shown in the diagram). If C/A code=0, then all subsequent operations

will be eliminated (bypassed) in order to reduce computation, and hence reducing

the correlation time. The MDDMF achieves time of 9.7ms, which represents a 29%

reduction in correlation time compared to the DDMF.

3) Modified segment processing digital matched filter:

The MSPDMF has been implemented for K=3 in a similar fashion to the SPDMF in

Section 6.4.1. Figure 6-7 illustrates the MSPDMF with K=2, which reduces the

diagram’s complexity and improves clarity. The resulting correlation time is

36.6ms, representing a reduction of 36% compared to the SPDMF.

6.4.3 Tier 3: Engine Optimisation

Despite the use of the various optimisation techniques discussed and applied earlier

and the novel correlation architectures introduced, the engine utilisation did not

Figure 6-6 Modified differential digital matched filter (MDDMF) architecture

Chapter 6: GPS Correlation Engine

130

increase to such high values as expected. The continuous read and write operations

from and to the memory is the main reason for this. The engine has a limitation of

using up to 4 simultaneous read or write operation per step, each being 32-bit. The

processor is also a 32-bit-based as mentioned in previous chapters. Hence not all of

the 32-bits in each variable, register and memory location were fully utilised in

previous implementations.

The utilisation could be improved through applying vector operations that are

supported within each of the architecture’s cells. In addition, by using logic and

shift operations, various information bits can be packed together and unpacked.

This would add extra bitwise functions and operations such as logic, shift and

compare to the design. In this research work, this optimisation process is termed

bitwise optimisation. One of the optimisation techniques applied is use the XNOR

to carry out multiplication operations instead of multipliers cells.

Furthermore, calculations have shown that a hard-coded technique will be

beneficial in the bitwise approach. If the C/A code generated is stored in the

memory through continuous write operations, then another readout operation of the

Figure 6-7. Modified segment processing digital matched filter (MSPDMF) architecture

for K=2

Chapter 6: GPS Correlation Engine

131

1023 codes needs to take place afterwards to pack the code bits together. This will

introduce enormous overheads. The hard-coded C/A code replica is completely

packed offline, which will clearly enhance performance. Applying this approach

would result in great reductions to the size of the memory locations required by the

MCDMF correlator, and hence the numbers of read/write operations will be

dramatically reduced, which will enhance the correlation speed.

In order to further reduce the correlation time, a new technique has been

implemented which will maximise the utilisation of processor cells. This is

achieved by maximising the usage of local register cells (REG) which hold

intermediate and temporary data. In order to facilitate this, the C/A packed codes

located in the memory will be read once and moved to the local registers at the start

of the correlation program. This will reduce the total number of steps required and

hence will speed up the correlation process.

By applying all of the above mentioned optimisation techniques, the MCDMF;s

1023 correlations were processed in only 0.3 ms which is a great improvement to a

level far below the 1 ms constraint. From the analysis of the resulting assembly

code and other intermediate files, further modifications were still possible,

however. These include the need to increase the number of specific cell types.

Hence, the number of adders has increased from 64 to 95, logic cells from 13 to 33,

shift operations from 20 to 64 and constant cells (REG and CONST) from 32 to 81.

The latest modifications have resulted in the 1023 correlations taking place in only

100s which represents a 5-fold improvement. Details of these results and the

associated performance levels are presented in section 6.5.

6.5 Performance Analysis

In this section, comparisons are presented of all of the architectures implemented.

To give fair comparisons, the same input signals and C/A codes were used with all

engines and architectures, and the architectures have been separated into two

classes: those without packed data; and those with packed data, in which bitwise

optimisation was applied.

Chapter 6: GPS Correlation Engine

132

Table 6-2 presents the data obtained from the various designed and simulated

correlation architectures. Figure 6-8 presents a chart summarizing the correlation

times obtained for various correlator algorithms and architectures presented in this

work. It is clear that the novel ‘Modified’ architectures has accomplished better

correlation processing times than the others. From Figure 6-8, it is clear that the

MDDMF provides the fastest correlation, even though it did not reach the target of

1 ms. The dynamic energy consumption of the cells which is a major factor in the

processor’s overall energy consumption, is illustrated in Figure 6-9. The MSPDMF

achieved the lowest energy consumption for data memory access, while dynamic

energy consumption of the DDMF cells was the lowest.

Table 6-2 Comparison of results for digital matched filter correlator architectures
(without packed data)

 CDMF M-CDMF DDMF M-DDMF SPDMF M-SPDMF

Correlation time (ms) 29.05 14.80 13.63 11.77 57.67 36.61

Data memory access
energy (µJ)

27.22 13.63 13.59 2.75 19.84 5.75

Program memory access
energy (µJ)

208.50 191.21 5.62 8.62 28.84 19.78

Cells dynamic energy (µJ) 32.14 16.37 15.08 13.02 63.82 40.51

Dynamic energy* 306.45 245.09 53.13 33.22 145.43 98.74

Step count 1,097,079 573,308 732,778 300,332 2,180,029 991,648

Memory usage (Bytes) 3,163 3,203 2,076 3,433 5,425 5,445

* Interconnections energy is not included

Figure 6-8 Comparison of resulting Correlation times (ms) for the matching filter
architectures

Chapter 6: GPS Correlation Engine

133

Figure 6-9 Comparison of cell dynamic energy (J) for various matched filter
architectures

Figure 6-10 Comparison of data memory access energy (J) for various matched
filter architectures

Figure 6-11 Comparison of total energy
*
 (J) for various matched filter architectures

*
interconnections energy is not included

Chapter 6: GPS Correlation Engine

134

Figure 6-12 Comparison of total step count for various matched filter architectures

Figure 6-13 Comparison of memory usage (bytes) for various matched filter architectures

Figure 6-14 Comparison of program memory access energy (J) for various matched
filter architectures

Chapter 6: GPS Correlation Engine

135

Furthermore, the MCDMF has been implemented with a data packing approach

(bitwise optimisation). The engine was modified by changing the types and

numbers of embedded cells. The optimised architecture has accomplished the

correlation process in only 62 μs. This is a considerable improvment over the 11 ms

reached earlier and presented in Table 6-2. This is due to the increased number of

cells introduced, accompanied by achieving the maximum optimisation of the

processor. This has been accomplished by embedding the correlation process in a

single ‘step’. The complete process includes the initial configuration of the cells

and their connections, which is then followed by the correlation step that will be

rerun through a loop by changing the parameters every jump. The full results are

Table 6-3 Comparison of results for digital matched filter correlator architectures (with
packed data)

 CDMF M-CDMF DDMF M-DDMF SPDMF M-SPDMF

Correlation time (µs) 62.8 62.31 69.47 67.77 76.14 73.23

Data memory access
energy (nJ)

6.40 4.91 9.93 5.34 13.47 5.78

Program memory access
energy (nJ)

2.79 1.81 5.91 2.51 9.03 3.21

Cells dynamic energy (µJ) 1.09 0.57 2.95 0.29 4.81 0.67

Dynamic energy* (µJ) 1.21 0.65 3.25 0.71 5.29 0.77

Step count 1087 1074 1121 1096 1155 1118

memory usage (Bytes) 568 444 876 696 1184 948

* Interconnections energy is not included

62.8 62.31

69.47 67.77

76.14
73.23

0

10

20

30

40

50

60

70

80

CDMF M-CDMF DDMF M-DDMF SPDMF M-SPDMF

C
o
rr
e
la
ti
o
n
 T
im
e
 µ
s

Figure 6-15 Comparison of correlation time (µs) with packed data results for matching
filter architectures

Chapter 6: GPS Correlation Engine

136

listed in Table 6-3.

 This eliminates the need for further architectural reconfiguration during the

correlation process. In the dynamic reconfigurable architecture, this is the

maximum optimisation that could be achieved. Figure 6-15 illustrates the

correlation times obtained for all the correlation architectures after data packing

optimisation/technique. It is clear that the MCDMF obtained the best results of

62.31µs, the fastest correlation execution time. This is mainly due to the fact that,

Figure 6-16 Comparison of data and Program memory access energy (J) for various
matched filter architectures with packed data optimisation

Figure 6-17 Comparison of cells and total dynamic energy (J) for various matched filter
architectures with packed data optimisation

Chapter 6: GPS Correlation Engine

137

at this stage, when the whole algorithm is capsulated in a single configuration, all

other architectures have overheads that are supposed to optimise the correlation.

Moreover, since the data is packed, any processing of it will result in overheads, as

reflected in the superiority of the M-CDMF over the other architectures.

Since the correlation time has been massively reduced, all the associated

improvements follow suit and, in particular, energy consumption. Figure 6-16

illustrates the memory access energy for data and program, while Figure 6-17

Figure 6-18 Comparison of total step count for various matched filter architectures with

packed data optimisation

Figure 6-19 Comparison of memory usage (bytes) for various matched filter

architectures with packed data optimisation

Chapter 6: GPS Correlation Engine

138

illustrates the full dynamic energy consumption of all of the architectures. Finally,

the step count and memory usage are illustrated in Figure 6-18 and Figure 6-19

respectively.

6.6 Conclusion

In this work, a novel correlation engine has been presented which is based on a

dynamically programmable platform targeting the computationally intensive

correlation function used in GPS-based positioning. Various optimisation

techniques have been exploited in order to achieve the best performance on the

platform. In addition, the modified correlation architectures MCDMF, MDDMF

and MSPDMF have been introduced. They have demonstrated efficiency in terms

of correlation time and energy consumption. Furthermore, the bitwise optimisation

technique has been applied to digital matched filters, which demonstrate the

maximum utilisation of the architecture leading to high correlation speed of 62 μs

for 1023 phase search correlations. Comparisons of the achieved results and

associated architectural configurations have been presented. This work represents a

promising step towards high speed, ultra-low-energy GPS receivers.

139

Chapter 7

7 GPS MULTI-CHANNEL CORRELATION

USING THE DYNAMICALLY

RECONFIGURABLE PLATFORM

7.1 Introduction

Modern GPS correlators or correlation processors which are based on fixed architectures

are capable of handling, on average, a 12-channel parallel correlation. In Chapter 6 a

novel GPS correlation engine has been introduced. Its structure is based on a

dynamically reconfigurable platform, and it has been concluded that the engine is

capable of executing a complete GPS single channel correlation in 62 s.

This chapter focuses on studying the capability of the designed engine for handling

multi-channel correlations, and whether or not there will be a need to modify the engine

design.

This chapter is organised into seven sections. Section 7.2 discusses the GPS correlator

engine. This following by a detailed analysis of Engine 2. Multi-channel GPS

correlation is introduced in section 7.4, and Section 7.5 discusses the results which are

following by a conclusion section.

7.2 GPS Engine Correlator Capability Review

The focus of the previous chapter was to discuss the novel implementation of a GPS

correlator processor based on a dynamic reconfiguration platform. Various optimisation

Chapter 7: GPS Multi-Channel Correlation

140

techniques have been implemented in order to conclude with the possibility of

implementing an architecture which can achieve a correlation time of 62 s for a 1023

samples in a GPS channel. Even though such a high-speed correlation has been

achieved, applying this for a single channel in practical implementation is not the whole

story, because the engine still has to wait for 1023 samples or a complete 1 ms in order

to fully receive all of the GPS samples for the dedicated channel. This means that the

engine is running for only 62 s out of the 1 ms available time for a complete frame.

This represents just 6.2% of the time while the other 93.8% of the time is spent in

sleeping or idle mode. In other words, in order to benefit from such a novel high speed

correlation engine, multiple GPS channels in parallel or multi-correlations must be

handled. In the remainder of this chapter, the engine which runs for a single correlation,

which is the outcome of the previous chapter, is hereafter named ‘Engine 1’.

7.3 GPS correlation ‘Engine 2’

Table 7-1 lists the main existing industrial correlator processors and their associated

numbers of channels. It is clear that a 12-channel correlator is the average acceptable

standard in modern industrial dedicated GPS correlation processors. The research work

in this chapter focuses on designing a correlator engine to process 12 or more GPS

channels in parallel. This requires a modification to ‘Engine 1’ in order to adjust it so as

to be capable of dealing with multiple channels in parallel. It is clear that ‘Engine 1’ is

capable of executing the correlation process, but only for a single channel. In order to

Table 7-1 Industrial correlator processors and associated correlation channels

GPS correlation Engine Number of correlation channels Ref

Zarlink GP1020 6 CH correlator [94]

Zarlink GP2021 12 CH correlator [86]

Zarlink GP4020 12 CH correlator [95]

Atmel ATR0620 16 CH correlator [96]

ST STA2062 32 CH correlator [97]

Atheros AR1511 8 CH correlator [100]

ST STA8058 16 CH correlator [101]

LOCOSYS LS20030 Up to 66 correlator [102]

Chapter 7: GPS Multi-Channel Correlation

141

accomplish precise processing for 12 channels within the limit of 1ms, extra cells,

functionalities and optimisations are required. ‘Engine 2’ is based on updating ‘Engine

1’ with additional routines, mainly logic functions; hence, the necessity to increase the

number of logic cells in the engine. In order to maintain the sample processing stream,

and to overcome the overheads imposed due to the extra cells needed and to maintain the

processing speed of 62s, the amount of samples processed has been reduced. A

reduction of almost 20% of the amount of data processed per run has been implemented.

The number of samples has been optimised to be between 816 to 852 samples instead of

1023 per run. This is the number of samples that will be processed in a 62 s time frame.

However the design is for 12 complete 1023 samples for 12 different GPS channels to be

completed in 1ms.

Figure 7-1 demonstrates the data allocation in the ‘Engine 2’ design for processing the

12 correlation channels in parallel. The design is based on sampling and processing the

first 68 samples (signals) of each of the 12 channels. The samples have been divided into

15 segments (1 to 15): 68 samples per channel for the first fourteen and 71 samples per

channel for the 15
th

 segment. This allows the 1023 samples/channel or the complete

frame to be completed. After trying different designs, this arrangement has proven to be

the most optimised in terms of processing time, energy consumption and engine size,

Figure 7-1 ‘Engine 2’ is capable of providing 12 GPS correlation channels

Chapter 7: GPS Multi-Channel Correlation

142

where the latter refers to the number of cells involved in the design of the engine. Engine

2 has been simulated successfully, and it has been proven that the novel dynamic

reconfigurable GPS correlation engine is capable of efficiently processing 12 correlation

channels.

7.4 Multi-Channel Correlation Solution

Having achieved 12 channel correlations to match the industrial norm for 12 parallel

correlations is a good step forward. However, it is not enough. Achieving the 12-channel

correlation on a dynamically reconfigurable engine is a novel contribution of this

research, an important part of which is the results and discussion that follow. It was

desired to design the engine for more than the 12 channels in order to exploit the

dynamic reconfiguration platform to the limit and to see how far it can go in terms of

number of the parallel correlations that could be implemented and the associated

overheads imposed.

This will allow a clear understanding of the platform and its dynamics and the balance

between various design factors of area and energy when there is a clear constraint on

processing time.

In most industrial correlators at present, the maximum available capacity is for 32

parallel channels, although some have gone beyound 50. In order to exceed this, ‘Engine

3’ was designed. This is capable of processing 72 channels in parallel, and has been

achieved by the integration of six 12 channel correlators in parallel, as illustrated in the

dataflow and time processing diagram shown in Figure 7-2. This has been achieved

through the integration of 6 ‘Engine 2’ cores resulting in 6x12 = 72 parallel correlations.

Based on the same concept ‘Engine 4 was then designed by the integration of two

‘Engine 3’ cores resulting in 2 x 6x12 = 144 parallel correlations. The processing time

and dataflow diagram for ‘Engine 4’ are presented in Figure 7-3. Similarly ‘Engine 5’

was designed based on the integration of two ‘Engine 4’ cores, as demonstrated in

Figure 7-4, resulting in the capacity to handle 288 parallel GPS channel correlations.

Chapter 7: GPS Multi-Channel Correlation

143

Reaching such enormous number of correlations, two questions arise. Firstly, is it

useful? And secondly what are the overheads involved? The answer to the first question

is given here, while will the second is postponed until the following section which

discusses the overheads involved.

On average there are likely to be 8 to 12 satellites available on the horizon at any one

time to receive data from. The main focus in this research is the possibility to achieve

the shortest Time to First Fix or the quickest achievement of a location. This is of

interest from a research point of view as well as industrial or commercial motivations. It

is well known that the minimum number of satellites required to get a location fix is

basically four; however, in order to speed up the search process, and due to the fact that

there is a possibility of having up to 12 satellites on the horizon of GPS receivers could

be upgraded to handle many more channel correlations. The more correlations available

on the receiver, the faster it can achieve an earlier time-to-first-fix, as the extra

Figure 7-2 ‘Engine 3’ is capable of providing 72 GPS correlation channels

Chapter 7: GPS Multi-Channel Correlation

144

correlators allow a speedier search of the satellites and quick correlations of the signal in

the search domain.

7.5 Analysisof Results and Discussion

As discussed in chapter 6, the designed GPS Engines which are based on dynamically

reconfigurable platform and constructed of various cell types and numbers.

Figure 7-3 ‘Engine 4’ is capable of providing 144 GPS correlation channels

Chapter 7: GPS Multi-Channel Correlation

145

Figure 7-5 presents results of the single correlation processing time on the various

engines. It would be anticipated that there should not be any different, and that it should

remain below 63 s as is the case for “Engine 1”. However, the obtained results

demonstrate that processing time increased with the increase in the number of the

embedded engines. With details analysis it appear to be obvious that due to the increase

of the number of cells, the associated delay in signals, processing and step time has to

increase. “Engine 5” is by far the most complex engine, hence the longest processing

time per correlation of 69.47 s. Similarly, the various comparison parameters show the

same trend. Figure 7-6 demonstrates clearly the memory usage trend among the various

engines, while Figure 7-7 represents the total dynamic energy for the various engines.

That is why the data memory access energy followed the same upward trend in

consistency with the other parameters as presented in Figure 7-8.

Figure 7-4 ‘Engine 5’ core based on two ‘Engine 4’ cores or twenty four ‘Engine 2’ cores
for providing 288 GPS correlations

Chapter 7: GPS Multi-Channel Correlation

146

58

60

62

64

66

68

70

Engine 2 Engine 3 Engine 4 Engine 5

Si
n
gl
e
 c
o
rr
e
la
ti
o
n
 t
im
e
 (µ
s)

Figure 7-5 Variation in the single correlation results between the different multi-correlation
engines

0

100

200

300

400

500

600

700

800

900

1000

Engine 2 Engine 3 Engine 4 Engine 5

M
e
m
o
ry
 u
sa
ge
 (b
yt
e
s)

Figure 7-6 Memory usage for the different multi-correlation engines

0

0.5

1

1.5

2

2.5

3

3.5

Engine 2 Engine 3 Engine 4 Engine 5

To
ta
l D
yn
am
ic
 e
n
e
rg
y
 (
µ
J)

Figure 7-7 Total dynamic energy for the different multi-correlation engines

Chapter 7: GPS Multi-Channel Correlation

147

0

0.002

0.004

0.006

0.008

0.01

0.012

Engine 2 Engine 3 Engine 4 Engine 5

D
at

a
m

e
m

o
ry

 a
cc

e
ss

 e
n

e
rg

y
(µ

J)

Figure 7-8 Data memory access energy for the different multi-correlation engines

Figure 7-9 Number of core cells used in each engine

Chapter 7: GPS Multi-Channel Correlation

148

Table 7-2 shows the key cell types and their numbers, and Figure 7-9 indicates the

number of core cells associated with each engine.

From Table 7-2, cells can be divided into two categories in respect of their usage within

the engines. Category 1 includes cells necessary to facilitate the concatenation of the 12

parallel correlations, i.e. from ‘Engine 1’ to ‘Engine 2’. Those cells are ‘Logic’ and

‘Shift’ cells, and from ‘Engine 2’ upwards there is no need to increase their numbers.

This is as expected, since those cells are responsible for the necessary work in handling

and manipulating data in the various correlation steps inside the engines for the multiple

channels.

Category 2 cells represent the core parts of the engines or the correlation process. Those

are mainly, ‘Add’, ‘Comp’ and ‘Const’ cells.

The overheads associated with the increased number of correlation channels will be

reflected in the extra numbers of cells used which will be physically integrated into the

GPS correlation processor. In order to analyse this relationship, a normalised chart is

given in Figure 7-10. Normalisation is necessary here due to the vast variations in the

number of cells of different types, used as shown in Table 7-2.

In Figure 7-10 the numbers of the two different categories of cell clearly demonstrate

two different trends. In addition, the dashed line shows that a logarithmic relationship is

almost consistent for the ‘Add’, ‘Comp’ and ‘Const’ cells. However, Figure 7-11

represents the normalised number of correlations associated with each engine, and that

the correlation curve on the chart shows that the relationship in fact is almost linear with

the increase in the number of ‘Engine 2’ integrated into Engines 3, 4 and 5.

Table 7-2 Summary of key cell numbers used in each engine

 CONST REG ADD LOGIC SHIFT COMP

Engine 1 32 160 64 13 20 60

Engine 2 81 160 95 33 64 65

Engine 3 200 160 186 33 64 188

Engine 4 391 256 357 33 64 363

Engine 5 814 256 732 33 64 746

Chapter 7: GPS Multi-Channel Correlation

149

Figure 7-10 Normalised cell numbers per correlation engine

Figure 7-11 Normalised number of cells used per engine and the associated normalised
number of correlations

Chapter 7: GPS Multi-Channel Correlation

150

In order to estimate the resulting overheads, the focus is clearly on the category 2 cells,

‘Add’, ‘Comp’ and ‘Const’. A key parameter assisting in the calculations of overhead is

the number of parallel correlations and, most importantly, the number of embedded

‘Engine 2’ in engines 3 to 5. This is summarised in Table 7-3. As ‘Engine 2’ is the basic

core for the other engines, Figure 7-12 represents the calculated cell cost per added

‘Engine 2’. The cost is represented by the extra number of cells added, which has been

calculated using equation (7-1).

Table 7-3 Summary of the number of correlations and embedded ‘Engine 2’s’ in each

engine

 Correlations Number of embedded ‘Engine 2’

Engine 1 1 n/a

Engine 2 12 1

Engine 3 72 6

Engine 4 144 12

Engine 5 288 24

15

20

25

30

35

40

Engine 3 Engine 4 Engine 5

C
e
ll
 c
o
st
 p
e
r
"E
n
gi
n
e
 2
"
a
d
d
ed

CONST ADD COMP

Figure 7-12 Cost of adding “Engine 2” to the various engines

Chapter 7: GPS Multi-Channel Correlation

151

𝐶𝑒𝑙𝑙 𝑥 𝑐𝑜𝑠𝑡 𝑝𝑒𝑟 𝑎𝑑𝑑𝑒𝑑 “𝐸𝑛𝑔𝑖𝑛𝑒 2”

=
(𝐶𝑒𝑙𝑙 𝑥 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑓𝑜𝑟 𝐸𝑛𝑔𝑖𝑛𝑒 𝑀 − 𝐶𝑒𝑙𝑙 𝑥 𝑛𝑢𝑚𝑏𝑒𝑟𝑠 𝑓𝑜𝑟 "𝐸𝑛𝑔𝑖𝑛𝑒 2")

(𝐸𝑚𝑏𝑒𝑑𝑑𝑒𝑑 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 "𝐸𝑛𝑔𝑖𝑛𝑒 2" 𝑖𝑛 𝐸𝑛𝑔𝑖𝑛𝑒 𝑀) − 1

(7-1)

where x is cell type and M is from 3 to 5.

By implementing this equation (7-1) and using the data from Table 7-3, it is obvious that

the cost escalates for category 2 cells, as illustrated in Figure 7-12. As the number of

integrated correlations increase, the engine complexity increases and therefore the

implementation area will increase due to the increase in integrated cell numbers. There

is a clear trade-off between the number of correlations required and the area and power

consumption which are proportional to the increase in cell number.

7.6 Conclusions

It is concluded that, for practical realisations of a multi-correlation engine, ‘Engine 2’

and ‘Engine 3’ provide the optimal solutions where 12 and 72 correlations respectively

are calculated. Moreover, a compromise could be achieved by having an engine with

three embedded ‘Engine 2’ instead of six, which is the case in ‘Engine 3A’. This new

engine would provide 36 parallel correlations. Designing and simulating ‘Engine 3A’

which supports 36 parallel correlations resulted in an engine with the following cells:

Comp 111, Const 126, Add 128, Reg 154, Logic 33 and Shift 64. Moreover, the engine

is based on three embedded ‘Engine 2’ correlators. This represents a step forward in the

area of dynamically reconfigurable architectures and correlation systems.

152

Chapter 8

8 SUMMARY AND FUTURE WORK

8.1 Intoduction

The aim of this thesis has been to investigate an efficient reconfigurable

architecture for telecommunication systems in general and baseband in particular.

The key blocks investigated for reconfigurable performance evaluations are the

convolution coder, Interleaver, Reed Solomon encoder and decoder, and GPS

correlator.

The main aim was to introduce a reconfigurable architecture capable of handling

intensive processing tasks whilst using the lowest possible power consumption.

This chapter is organised into four sections. The first section summarises the

contents of the thesis and identifies the contributions made. The second section

draws conclusions from the work presented in this thesis. Concluding remarks are

provided in the third section, and the final section outlines areas for future

investigation.

8.2 Summary of Thesis and Contribution

This thesis has investigated the possibility of realising various communication

systems (baseband in particular) on a dynamically reconfigurable architecture.

Chapter 8: Summary and Future Work

153

Chapter 2 discussed the various reconfigurable architectures, with a focus on

coarse-grain reconfigurable architecture. In order to design a reconfigurable

architecture to suit the challenges of communication systems, it has to have many

crucial characteristics. Its primary feature should be low power consumption. In

order to sustain low power consumption, the use of heterogeneous PEs is the best

approach. PEs can be tailored specifically to the system’s needs, resulting in the

highest utilisation which then means lower power consumption and smaller area.

It appears from the above that the most promising architectures for

telecommunications systems are the MOVE and RICA. These are very different

architectures; however, they are alike in that their PEs are heterogeneous, they are

standalone systems which do not need external processor for control and are C-

language programmable.

However, the RICA appears to be superior in power consumption, since the

processor has been built with low power being its central principles and is

dynamically reconfigurable, while the MOVE designers only began to address

power savings at a later stage.

Chapter 3 introduced a novel reconfigurable architecture that provides a multi-rate

punctured convolution coder. This architecture can be used in wired and wireless

communication systems, and it incorporates both convolution and puncturing.

The convolution-punctured multi-rate architecture has achieved a superior

throughput of 100 Mbps for all the required rates. Although the main architecture is

the core that provides the concatenated convolution-punctured code, the

reconfigurable input and output interface designs were added to broaden the

usability of this reconfigurable fabric. The main advantage of this architecture is

that a single clock cycle is enough to provide the parallel convolution-punctured

code for its parallel inputs, which can be used to maximise the throughput of the

whole transmitter system.

Chapter 4 introduced a novel reconfigurable interleaver. The target application was

the WiMAX standard with its sophisticated block size systems. The Interleaver has

Chapter 8: Summary and Future Work

154

been researched and designed into a reconfigurable fabric architecture and with a

dynamically reconfigurable instruction cell-based architecture (RICA). The

interleaver’s throughput as a reconfigurable fabric satisfies the standard

requirement, while on RICA the throughput as well as the dynamic power

consumption were superior to the fabric realisation and other ASIC realisations.

These results are a good step forward towards a fully reconfigurable baseband

telecommunications system. Moreover, the results are a promising step towards

integrating the whole WIMAX on a dynamically reconfigurable (RICA)

architecture.

Chapter 5 introduced a novel Reed Solomon encoder architecture with parallel

parity output. A novel high speed and low power 32-bit Galois Field (GF)

multiplier cell was embedded within the novel low-power processor for

programmable Reed Solomon coding, and its design, optimisation and

implementation have been introduced. The real-time programmable RS encoder

and decoder processor supports several communication standards such as WiMAX

and DVB-H. A number of approaches and optimisation techniques have been

implemented in order to enhance the performance of the processor. The processor

achieves high throughput and provides significant improvements in performance

and energy consumption.

The novel GF multiplier cell leads to a reduction in memory access energy of

72.4%, which in turn improves the processor performance. Different design

approaches and optimisation techniques have been applied in order to enhance the

processor throughput and reduce its energy consumption. The throughputs achieved

are up to 200 Mbps and 92 Mbps for the encoder and decoder respectively. The

associated dynamic energy consumption is in the range of 0.34 to 1.17µJ, which

represents a design suitable for present and future mobile devices.

Chapter 6 introduced a novel engine based on a dynamically programmable

platform targeting the computationally intensive correlation function used in GPS-

based positioning. Various optimisation techniques have been exploited in order to

Chapter 8: Summary and Future Work

155

achieve the best performance. In addition, modified MCDMF, MDDMF and

MSPDMF correlation architectures have been introduced, which demonstrate

efficiency in terms of correlation time and energy consumption. Furthermore, the

bitwise optimisation technique has been applied to digital matched filters that

demonstrate the maximum utilisation of the architecture, leading to a high

correlation speed of 62 μs for 1023 phase search correlations. Comparisons of the

results achieved and related architectural configurations have been presented. This

work is a promising step towards high-speed, ultra-low-energy-GPS receivers.

Chapter 7 presented a novel optimised multi correlation processor. It is concluded

that for the practical realisation of the multi-correlation engine, the ‘Engine 2’ and

‘Engine 3’ designs provide the optimum solutions, where 12 and 72 correlations

respectively can be calculated. Moreover, a compromise could be achieved by

having an engine with three embedded ‘Engine 2’ instead of six, which is the case

in ‘Engine 3A’. This new engine would provide 36 parallel correlations. Designing

and simulating ‘Engine 3A’ which supports 36 parallel correlations resulted in an

engine with the following numbers of cells: Comp 111, Const 126, Add 128, Reg

154, Logic 33 and Shift 64. Moreover, the engine is based on three embedded

‘Engine 2’ correlators. This work represents a step forward in the area of

dynamically reconfigurable architectures and correlation systems.

The main achievement of this work is the development of a multi-correlator

module for the GPS system. This is in addition to the RS codec reconfigurable

processor. Moreover, the GF Mul reconfigurable cell, reconfigurable convolution

and interleaver which have been developed are important for reconfigurable

telecommunication systems.

All of the above give a clear picture of how to realise the full potential of a

dynamically reconfigurable architecture targeting full telecommunications

baseband system.

Chapter 8: Summary and Future Work

156

8.3 FUTURE WORK

This work can be combined with existing research on reconfigurable digital signal

processing blocks in order to produce an overall reconfigurable baseband

transceiver.

A full transceiver of WiMAX or WiFi would be the logical step forward for

defining the best reconfigurable architecture suitable for telecommunications

systems. Further algorithms and processor-specific optimisations are expected to be

necessary in conducting further research in this area. Figure 8-1 demonstrate’s a

conceptual design of how completely reconfigurable baseband telecommunication

architecture could be. In this diagram, the architecture is reconfigurable between

802.11 and 802.16 or WiFi and WiMAX systems; this is inspired by the Espacenet

project mentioned in earlier chapters. A development of a reconfigurable mapper,

pulse shaping, randomiser and modulation would be necessary for future work to

achieve fully reconfigurable baseband system.

This would be the first stage in a larger project, and would need to be followed by

further stages in order to create a universal reconfigurable architecture for

telecommunications, which would be capable if carrying out any communication

Figure 8-1 Fully reconfigurable baseband architecture

Chapter 8: Summary and Future Work

157

protocol needed. This will allow future universal, adaptable mobile devices where

the system will automatically reconfigure the architecture necessary for the

communication protocol needed in particular locations or situations. This will have

an enormous influence on device size and performance. Moreover, this will greatly

increase battery life and reduce the production costs of devices.

The first step to proceed forward with this research work for the GPS receiver is the

design and fabrication of an Engine 2 processor. In addition, further work should

follow with either of Engines three, three-A or four. This will provide rich data for

more in-depth analysis of processor performance, and its benefits and overheads.

Clearly, this work will not only affect the progress of research into dynamically

reconfigurable architectures, but will influence the implementation of navigation

processors. This is due to the anticipation of better performance and lower power

consumption to be achieved with the new processors. Furthermore, the

development of a complete GPS receiver would be a logical research step to

follow; hence, this will lead to challenges in the integration and data handling

capability of the new processor.

158

REFERENCES

[1] G. Estrin, B. Bussel, R. Turn, and J. Bibb, Parallel processing in a

restructurable computer system, IEEE Transactions on Electronic

Computers, vol.EC-12, no.6, pp.747-755, Dec 1963.

[2] W. Carter, K Duong, R H Freeman, H Hsieh, J Y Ja, J E Mahoney, L T

Ngo, er al., A user programmable reconfigurable gate array, CICC

Proceedings, May 1986, pp. 233-235, 1986.

[3] FPGA - Field Programmable Gate Array, available:

http://www.fpgacentral.com/pld-types/fpga-field-programmable-gate-array,

accessed on 23/3/2013.

[4] The Industry’s Breakthrough 7 Series FPGA Families, available at

http://www.xilinx.com/products/silicon-devices/fpga/index.htm, accessed

on 23/3/2013.

[5] R.D. Wittig and P. Chow, OneChip: an FPGA processor with

reconfigurable logic, Proceedings of the IEEE Symposium on FPGAs for

Custom Computing Machines, pp.126-135, 17-19 Apr 1996.

[6] R. Razdan, M.D. Smith, A high-performance microarchitecture with

hardware-programmable functional units, Proceedings of the 27th Annual

International Symposium on Microarchitecture (MICRO-27), pp.172-180,

30 Nov-2 Dec 1994.

[7] S. Hauck, T.W. Fry, M.M. Hosler, J.P. Kao, The Chimaera reconfigurable

functional unit, IEEE Transactions on Very Large Scale Integration (VLSI)

Systems, vol.12, no.2, pp.206-217, Feb. 2004.

[8] T. Miyamori and K. Olukotun, REMARC: Reconfigurable Multimedia

Array Coprocessor, IEICE Transactions on Information and Systems, vol.

E82-D, pp. 389-397, 1998.

[9] C. Ebeling, and D.C. Cronquist, and P. Franklin, RaPiD - Reconfigurable

pipelined datapath, Lecture Notes in Computer Science: Field-

Programmable Logic Smart Applications, New Paradigms and Compilers,

Vol. 1142, pp. 126-135, 1996

http://www.fpgacentral.com/pld-types/fpga-field-programmable-gate-array
http://www.xilinx.com/products/silicon-devices/fpga/index.htm

References

159

[10] A. Marshall, T. Stansfield, I. Kostarnov, J. Vuillemin, B. Hutchings, A

reconfigurable arithmetic array for multimedia applications, Proceedings of

ACM/SIGDA seventh international symposium on Field programmable gate

arrays, pp. 135-143, 1999.

[11] R.P.S. Sidhu, S. Wadhwa, A. Mei, V.K. Prasanna, A Self-Reconfigurable

Gate Array Architecture, Proceedings of The Roadmap to Reconfigurable

Computing, 10th International Workshop on Field-Programmable Logic

and Applications, Springer-Verlag, pp. 106-120, 2000.

[12] R. David, D. Chillet, S. Pillement, O. Sentieys, DART: a dynamically

reconfigurable architecture dealing with future mobile telecommunications

constraints, Proceedings Parallel and Distributed Processing International

Symposium, pp. 8, 15-19 April 2001.

[13] F. Barat, M. Jayapala, T. Vander, et. al., Low Power Coarse-Grained

Reconfigurable Instruction Set Processor, In Field Programmable Logic

and Application, Vol. 2778, pp. 230-239, 2003.

[14] G. Sassatelli, G. Cambon, J. Galy, L. Torres, A dynamically reconfigurable

architecture for embedded systems, 12th International Workshop on Rapid

System Prototyping, pp.32-37, 2001.

[15] E. Mirsky, A. DeHon, MATRIX: a reconfigurable computing architecture

with configurable instruction distribution and deployable resources, IEEE

Symposium on FPGAs for Custom Computing Machines, pp. 157-166, 17-

19 Apr 1996.

[16] L.J.K. Durbeck and N.J. Macias, The Cell Matrix: an architecture for

nanocomputing, Nanotechnology Journal, Vol. 12, Issue 3, pp. 217-230,

2001.

[17] H. Zhang, V. Prabhu, V. George, M. Wan, M. Benes, A. Abnous, J.M.

Rabaey, A 1 V heterogeneous reconfigurable processor IC for baseband

wireless applications, IEEE International Solid-State Circuits Conference,

pp.68-69, 9-9 Feb. 2000.

[18] J.R. Hauser, J. Wawrzynek, Garp: a MIPS processor with a reconfigurable

coprocessor, The 5th Annual IEEE Symposium Proceedings on Field-

Programmable Custom Computing Machines, pp.12-21, 16-18 Apr 1997.

[19] J. Becker, T. Pionteck, C. Habermann, M. Glesner, Design and

implementation of a coarse-grained dynamically reconfigurable hardware

References

160

architecture, IEEE Computer Society Workshop on VLSI, pp.41-46, May

2001.

[20] D.C. Chen and J.M. Rabaey, PADDI: Programmable Arithmetic Devices

for Digital Signal Processing, IEEE VLSI Signal Processing, vol. IV, pp.

240-249, IEEE Press, Nov. 1990.

[21] D.C. Chen and J.M. Rabaey, A Reconfigurable Multiprocessor IC for Rapid

Prototyping of Real Time Data Paths, IEEE Journal of Solid State Circuits,

Vol. 27, No. 12, pp. 1895-1992.

[22] P. Hilfinger, A high-level language and silicon compiler for digital signal

processing, IEEE Custom Integrated Circuits Conferences proceedings, pp.

240-243, May 1985.

[23] J. A. Hennessy, D. L. Patterson, Computer Architecture: A Quantitative

Approach, Morgan Kauffmann Publishers, 1990.

[24] D. Kesler, S. Dautovic, R. Struharik, Design and verification of dynamically

reconfigurable architecture, IEEE 10th Jubilee International Symposium on

Intelligent Systems and Informatics (SISY), pp.413-418, 20-22 Sept. 2012.

[25] H. Singh, Lee Ming-Hau, Lu Guangming, F.J. Kurdahi, N. Bagherzadeh,

E.M. Chaves Filho, MorphoSys: an integrated reconfigurable system for

data-parallel and computation-intensive applications, IEEE Transactions on

Computers, vol.49, no.5, pp.465-481, May 2000.

[26] S.C. Goldstein, H. Schmit, M. Moe, M. Budiu, S. Cadambi, R.R. Taylor, R.

Laufer, PipeRench: a coprocessor for streaming multimedia acceleration,

Proceedings of the 26th International Symposium on Computer

Architecture, pp.28-39, 1999.

[27] R. Hartenstein, M. Herz, T. Hoffmann, U. Nageldinger, On Reconfigurable

Co-Processing Units, Proceedings of Reconfigurable Architectures

Workshop (RAW98), held in conjunction with 12th International Parallel

Processing Symposium (IPPS-98) and 9th Symposium on Parallel and

Distributed Processing (SPDP-98), Orlando, Florida, USA, March 30,

1998.

[28] R.W. Hartenstein, M. Herz, T. Hoffmann, U. Nageldinger, Using the

KressArray for reconfigurable computing, Proceeding of SPIE,

Configurable Computing: Technology and Applications, vol. 3526, Boston,

USA, 1998.

References

161

[29] R.W. Hartenstein, R. Kress, A datapath synthesis system for the

reconfigurable datapath architecture, Design Automation Conference, 1995.

Proceedings of the ASP-DAC '95/CHDL '95/VLSI '95., IFIP International

Conference on Hardware Description Languages. IFIP International

Conference on Very Large Scale , pp.479-484, 29 Aug-1 Sep 1995.

[30] H. Corporaal, Design of transport triggered architectures, Proceedings of

Fourth Great Lakes Symposium on Design Automation of High

Performance VLSI Systems, GLSV '94, pp.130-135, Mar 1994.

[31] J. Heikkinen, J. Sertamo, T. Rautiainen, J.Takala, Design of transport

triggered architecture processor for discrete cosine transform, 15th Annual

IEEE International ASIC/SOC Conference, pp.87-91, 25-28 Sept. 2002.

[32] P. Hamalainen,; J. Heikkinen, M. Hannikainen, T.D. Hamalainen, Design of

transport triggered architecture processors for wireless encryption, 8th

Euromicro Conference on Digital System Design Proceedings, pp.144-152,

30 Aug.-3 Sept. 2005.

[33] J. Heikkinen, J. Takala, A. Cilio, and H. Corporaal, On Efficiency of

Transport Triggered Architectures in DSP Applications, Advances in

Systems Engineering, Signal Processing and Communications, pp. 25-29,

WSES Press, New York, NY, USA, 2002.

[34] H. Yifan, S. Dongrui, B. Mesman, H. Corporaal, MOVE-Pro: A low power

and high code density TTA architecture, International Conference on

Embedded Computer Systems (SAMOS), pp.294-301, 18-21 July 2011.

[35] S. Khawam, I. Nousias, M. Milward, Yi Ying, M. Muir, T. Arslan, The

Reconfigurable Instruction Cell Array, IEEE Transactions on Very Large

Scale Integration (VLSI) Systems, Vol 16, pp 75-85, Jan. 2008.

[36] A. Major, Yi Ying, I.Nousias, M. Milward, S. Khawam, T. Arslan, H.264

Decoder Implementation on a Dynamically Reconfigurable Instruction Cell

Based Architecture, IEEE International SOC Conference, pp.49-52, 24-27

Sept. 2006.

[37] Z. Wang, A.T. Erdogan, T. Arslan, “A SDR Platform for Mobile Wi-Fi/3G

UMTS System on a Dynamic Reconfigurable Architecture, 2009 European

Signal Processing Conference (EUSIPCO-2009), August 24-28, 2009.

[38] I. Nousias, S. Khawam, M. Milward, M. Muir, T. Arslan, A Multi-objective

GA based Physical Placement Algorithm for Heterogeneous Dynamically

Reconfigurable Arrays, 17th International Conference on Field

References

162

Programmable Logic and Applications (FPL 2007), pp. 497-500,

Amsterdam, Netherlands, 27-29 August 2007.

[39] Z. Wang, T. Arslan, A.T. Erdogan, Implementation of Hardware Encryption

Engine for Wireless Communication on a Reconfigurable Instruction Cell

Architecture, 4th IEEE International Symposium on Electronic Design, Test

and Applications (DELTA 2008), pp.148-152, 23-25 Jan. 2008.

[40] T. Hirao, Kim Dahoo, I. Hida, T. Asai, M. Motomura, A restricted

dynamically reconfigurable architecture for low power processors, 2013

International Conference on Reconfigurable Computing and FPGAs

(ReConFig), pp.1-7, Dec. 2013.

[41] O. Atak, A. Atalar, BilRC: An Execution Triggered Coarse Grained

Reconfigurable Architecture, IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, vol.21, no.7, pp.1285-1298, July 2013.

[42] R.W. Brodersen, J.M. Rabaey, Evolution of Microsystem Design,

Proceedings of the 15th European Solid-State Circuits Conference

ESSCIRC '89, pp. 208-217, 20-22 Sept. 1989.

[43] R. Hartenstein, Coarse grain reconfigurable architectures, In Proceedings of

the 2001 Asia and South Pacific Design Automation Conference (ASP-DAC

'01), pp. 564-570, 2001.

[44] IEEE Std 802.16-2004, IEEE Standard for Local and metropolitan area

networks Part 16: Air Interface for fixed broadband wireless access systems.

[45] Digital Modulation in Communications Systems - An Introduction,

Application Note 1298, http://cp.literature.agilent.com/litweb/pdf/5965-

7160E.pdf, accessed on 15/09/2014.

[46] ESPACENET. Available: http://www.e-spacenet.net/, accessed on

23/3/2013.

[47] T. Arslan, N. Haridas,; E. Yang, A.T. Erdogan, N. Barton, A.J. Walton, J.S.

Thompson, A. Stoica, T. Vladimirova, K.D. McDonald-Maier, W.G.J.

Howells, ESPACENET: A Framework of Evolvable and Reconfigurable

Sensor Networks for Aerospace–Based Monitoring and Diagnostics, First

NASA/ESA Conference on Adaptive hardware and systems, pp. 323–329.

15-18 June 2006.

[48] R. H. Morelos-Zaragoza, The Art of Error Correcting Coding, Wiley, 2002.

http://www.e-spacenet.net/

References

163

[49] B. Tang, Parallel punctured convolutional encoder, European patent no. EP

1176727 A2, 2002.

[50] Xilinx LogiCORE IP: Convolutional Encoder v9.0, Xilinx, Inc., San Jose,

CA, April 2014, Available:

http://www.xilinx.com/support/documentation/ip_documentation/convoluti

on/v9_0/pg026_convolution.pdf.

[51] A.P. Chandrakasan, R.W. Brodersen, Minimising power consumption in

digital CMOS circuits, Proceedings of the IEEE, Vol. 83, Issue 4, pp. 498-

523, April 1995.

[52] T. Matsumoto, F. Adachi, BER analysis of convolution coded QDPSK, in

digital mobile radio, IEEE Transactions on Vehicular Technology, Vol. 40,

No. 2, MAY 1991.

[53] M.J. Meeuwsen, O. Sattari, B.M. Baas, A Full-Rate Software

Implementation of an IEEE 802.11a Compliant Digital Baseband

Transmitter, In Proceedings IEEE Workshop on Signal Processing Systems,

2004, October 2004.

[54] K. Chang and G.E. Sobelman, FPGA-Based Design of a Pulsed-OFDM

System, Proceedings, IEEE Asia Pacific Conference on Circuits and

Systems, pp. 1130-1133, 2006.

[55] K. Chang, G.E. Sobelman, E. Saberinia and A.H. Tewfik, Transmitter

Architecture for Pulsed OFDM, IEEE Asia Pacific Conference Proceedings

on Circuits and Systems, pp. 693-696, 2004.

[56] B. Soreng, S. Kumar, Efficient implementation of Convolution Encoder and

Viterbi Decoder, 2013 International Conference on Circuits, Power and

Computing Technologies (ICCPCT), pp. 1270-1273, 20-21 March 2013.

[57] Datasheet, The CS3310 Programmable Convolution Encoder, Amphion

Semiconductor Ltd., Available:

http://www.digchip.com/datasheets/download_datasheet.php?id=240961&p

art-number=CS3310. Retrieved: 21-06-2014.

[58] E. Tell and D. Liu, A Hardware Architecture for a Multi Mode Block

Interleaver, Proceedings of the International Conference on Circuits and

Systems for Communications (ICCSC), Moscow, Russia, June 2004.

References

164

[59] C. Berrou, S. Evans and G. Battail, Turbo block codes, Proceedings of

Seminar on Turbo Coding, Lund, Sweden, pp.1-7, Aug. 1996.

[60] O.Y. Takeshita,; Costello, D.J., Jr., New deterministic Interleaver designs

for turbo codes, IEEE Transactions on Information Theory, vol.46, no.6,

pp.1988-2006, Sep 2000.

[61] A. Troya, K. Maharatna, M. Krstic, E. Grass, U. Jagdhold, R. Kraemer,

Low-Power VLSI Implementation of the Inner Receiver for OFDM-Based

WLAN Systems, IEEE Transactions on Circuits and Systems, vol.55, no.2,

pp.672-686, March 2008.

[62] R. Machauer, A. Wiesler, and F. Jondral, Comparison of UTRA-FDD
and CDMA200 with intra- and intercell interface, Proceedings IEEE 6th

International Symposium on Spread Spectrum Techniques and Applications

(ISSSTA ’00), vol. 2, pp.652–656, NJ, USA, September 2000.

[63] J. Glosser, J. Moreno,M.Mudsill, et al., Trends in compilable DSP

architecture, Proceedings of Workshop on Signal Processing Systems (SiPS

2000), October 2000, USA, pp. 181–199.

[64] Y.S. Kavian, A.Falahati, A. Khayatzadeh, M. Naderi, High Speed Reed-

Solomon Decoder with Pipeline Architecture, Wireless and Optical

Communications Networks, 2005, WOCN 2005, Second IFIP International

Conference, Mar 2005, pp.415-419.

[65] I. Reed and G. Solomon, Polynomial codes over certain Finite Fields,

Journal of the Society for Industrial and Applied Mathematics, Vol. 8, No.

2, pp. 300-304, June 1960.

[66] S.B. Wicker and V.K. Bhargava, Reed-Solomon Codes and Their

Applications, IEEE Press, September 1999.

[67] R. Riemann and K. Winstein, Improving 802.11 Range with Forward Error

Correction, MIT Computer Science and Artificial Intelligence Laboratory

Technical Report, Feb 2005.

[68] J.L. Massey, Deep Space Communications and Coding: A Match Made in

Heaven, in Advanced Methods for Satellite and Deep Space

Communications, J. Hagenauer (ed.), Lecture Notes in Control and

Information Sciences, Volume 182, Berlin: Springer-Verlag, 1992.

References

165

[69] M.S. Schulte, M.J. Iancu, D. Iancu, A. Glossner, J. Instruction set

extensions for Reed-Solomon encoding and decoding, 16th IEEE

International Conference on Application-Specific Systems, Architecture, pp.

364- 369, July 2005.

[70] D. Taipale, I.E. Scheiwe and T.M. Redheendran, Reed-Solomon Decoding

on the StarCore Processor, Tech. Rep. AN1841/D, Motorola

Semiconductors, Denver, Colombia, USA, May 2000.

[71] W.J. Gross, F.R. Kschischang, P.G. Gulak, An FPGA Interpolation

Processor for Soft-Decision Reed-Solomon Decoding, 12th Annual IEEE

Symposium on Field-Programmable Custom Computing Machines

(FCCM'04), pp. 310-311, 2004.

[72] J. Glossner, J. Moreno, M. Moudgill, J. Derby, E. Hokenek, D. Meltzer, U.

Shvadron, M. Ware, Trends in compilable DSP architecture, Proceeding

Workshop on Signal Processing Systems (SiPS 2000), USA, pp. 181-199,

October 2000.

[73] Implementation guidelines for DVB handheld services (draft TR 102 377

V1.3.1), DVB Document A092, July 2005.

[74] A.O. El-Rayis, Xin Zhao, T. Arslan, A.T. Erdogan, Dynamically

programmable Reed Solomon processor with embedded Galois Field

multiplier, International Conference on FPT 2008, pp.269-272, 8-10 Dec.

2008.

[75] J. Kim, T. Kim, Memory Access Optimisation Through Combined Code

Scheduling, Memory Allocation, and Array Binging in Embedded System

Design, Proceeding of 42nd Design Automation Conference 2005, pp.105-

110, Jun 2005.

[76] Weisstein, http://mathworld.wolfram.com/HornersRule.html accessed on

8th Sep 2014.

[77] M.H. Jing, T.K. Truong, Y.H. Chen and Y.C. Luo, The Design of RS

Decoder with a Small Core for Portable Communication, Proceedings of

IEEE Asia-Pacific Conference on Circuits and Systems 2004, Vol. 2,

pp.1069-1072, Dec 2004.

[78] B. Skalr, Digital Communications: Fundamentals and Applications, Second

Edition, Prentice-Hall, 2001, ISBN 0-13-084788-7.

References

166

[79] Y.S. Kavian, A. Falahati, A. Khayatzadeh, M. Naderi, High Speed Reed-

Solomon Decoder with Pipeline Architecture, Second IFIP International

Conference on Wireless and Optical Communications Networks (WOCN)

2005, pp.415-419, Mar 2005.

[80] S.S. Lee and M.K. Song, An Efficient Recursive Cell Architecture of

Modified Euclid’s Algorithm for Decoding Reed-Solomon Codes, IEEE

Transactions on Consumer Electronics, Vol. 48, Issue 4, pp. 845-849, Nov

2002.

[81] A.C. Dam, M.G.J. Lammertink, K.C. Rovers, J. Slagman, et al,

Hardware/Software Co-design Applied to Reed-Solomon Decoding for the

DMB Standard, 9
th

 EURPMICRO Conference on Digital System Design:

Architectures, Methods and Tools, pp.447-455, 2006.

[82] W.J. Gross, F. R. Kschischang, P.G. Gulak, An FPGA Interpolation

Processor for Soft-Decision Reed-Solomon Decoding, 12th Annual IEEE

Symposium on Field-Programmable Custom Computing Machines

(FCCM'04), pp. 310-311, 2004.

[83] J.B.Y Tsui, Fundamentals of Global Positioning System Receivers A

Software Approach, ISBN 0-471-38154-31, Wiley 2000.

[84] L. Winternitz, M. Moreau, G.J. Boegner, Navigator GPS Receiver for Fast

Acquisition and Weak Signal Space Applications, ION GNSS, Long Beach,

CA, September 21-24, 2004.

[85] R. Gold, Optimal binary sequences for spread spectrum multiplexing, IEEE

Transactions on Information Theory, vol. 13, pp. 619-621, October 1967.

[86] Zarlink Semiconductor, GP2021 GPS 12-Channel Correlator, datasheet,

August 2005.

[87] M. Lieu and T. Chiueh, A low-power digital matched filter for direct-

sequence spread-spectrum signal acquisition, IEEE Journal of Solid-State

Circuits, vol. 36, no. 6, pp.933-943, June 2001.

[88] W.C. Lin, K.C. Liu, and C.K. Wang, Differential matched filter architecture

for spread spectrum communication system, Electronics Letters, Volume

32, Issue 17, pp. 1539 – 1540, Aug. 1996.

References

167

[89] X. Guo, J. Chen, Y. Qiu A new architecture of matched-filter employing

coefficient recode technique for spread spectrum communication systems,

5
th

 International Conference on ASIC, Vol. 2, pp. 800-803, Oct. 2003.

[90] X. Guan, J. Chen, A new algorithm of digital matched filter with a segment

processing method, 6th International Conference on ASIC ASICON, vol.1,

pp. 240-243, Oct. 2005.

[91] T. Arslan, M. Millward, S. Khawam, I. Nousias, Y. Ying, Reconfigurable

Instruction Cell Array , Patent EP1877927, 2008.

[92] A. El-Rayis, T. Arslan, A.T. Erdogan, Addressing Future Space Challenges

using Reconfigurable Instruction Cell Based Architectures, NASA/ESA

Conference on Adaptive Hardware and Systems, pp.199-203, 22-25 June

2008.

[93] S.A. White, Applications of distributed arithmetic to digital signal

processing: A tutorial review, IEEE ASSP Magazine, Vo1 6, No.3, pp.4-19,

July 1989.

[94] Zarlink GP1020 Available: http://ulp.zarlink.com/zarlink/gp1020-datasheet-

jan1997.pdf, accessed on 15-09-2014.

[95] Zarlink GP4020, Available:

http://pdf.datasheetcatalog.com/datasheet/zarlinksemiconductor/zarlink_GP

4020_MAY_02.pdf, accessed on 15-09-2014.

[96] ATMEL ATR0620, Available:

http://pdf.datasheetcatalog.com/datasheet/atmel/doc4574.pdf, accessed on

15-09-2014.

[97] STA8058, TESEO™. high performance GPS multichip module (MCM)

http://www.st.com/st-web-

ui/static/active/en/resource/technical/document/data_brief/CD00174947.pdf

, accessed on 14-09-2014.

[98] Datasheet of GPS smart antenna module, LS20030~3

https://cdn.sparkfun.com/datasheets/GPS/LS20030~3_datasheet_v1.3.pdf

accessed on 14-09-2014.

[99] ST STA2062, Available:

http://www.st.com/web/en/resource/technical/document/data_brief/CD0017

2700.pdf, accessed on 15-09-2014.

References

168

[100] Atheros AR1511, Available:

https://wikidevi.com/files/Atheros/specsheets/AR1511.pdf, accessed on 15-

09-2014.

[101] ST STA8058 High performance GPS multichip module, Sep 2013,

Available: http://www.st.com/st-web-

ui/static/active/en/resource/technical/document/data_brief/CD00174947.pdf

, accessed on 15-09-2014.

[102] LOCOSYS, Datasheet of GPS smart antenna module LS20030,

https://cdn.sparkfun.com/datasheets/GPS/LS20030~3_datasheet_v1.3.pdf,

accessed on 15-09-2014.

169

APPENDIX A: MATLAB MODELS

A.1 Interleaver Model:

% %aa=
hex_2_dec('3A5EE7AE499E6F1C6FC128BCBDAB57CDBCCDE3A792CA92C24DBC8D7832FBBFDF23ED8A941627A

565CF7D167A45B809CC');

% %bb= dec_2_bin(aa);
% m =

('898407646983235129903369408620228549208237089767538283785779873984348065286651305271483786817872270

2216228486253004');
% %m is 115 digit decimal

% %m

=('00111010010111101110011110101110010010011001111001101111000111000110111111000001001010001011110010
1111011010101101010111110011011011110011001101111000111010011110010010110010101001001011000010010011

0110111100100011010111100000110010111110111011111111011111001000111110110110001010100101000001011000

10011110100101011001011100111101111101000101100111101001000101101110000000100111001100');
% %m is 384 binary digit

Ncbps=384;
%Ncbps = 115;

% QPSK, rate 3/4

% Ncpc: number of coded bits per subcarrier
% PICKUP ONLY ONE VALUE:

%1 - BPSK

%Ncpc = 1;
%2 - QPSK

Ncpc = 2;

%4 - 16QAM
%Ncpc = 4;

%6 - 64QAM

%Ncpc = 6;

% %*********************Interleaver for OFDM WIMAX******************

%

% % k= 0: (Ncbps-1);

%
% %first permutation:

% % m(k) = (Ncbps/12)* kmod12 + floor(k/12) k=0,, Ncbps-1

% for k = 1:(Ncbps-1)
% kk = k-1;

% ff = mod(kk,12);

% % k = 0:(Ncbps-1);
% m(k) = (Ncbps*ff/12) + floor(kk/12);

% end

%
% %Second permutation:

% % jk = s.floor(mk /s) + (mk + Ncbps - FLOOR(12*mk/Ncpbs))mod(S)

% % k=0,, Ncbps-1
% % s = ceil(Ncpc/2);

%
% s = ceil (Ncpc/2);

%

% for k = 1:(Ncbps)
% %kk = k-1;

% x = m(k)+ Ncbps - floor(12* m(k)/Ncbps);

Appendix A: Matlab Models

170

% mm = mod(x, s);

% j(k)= s * floor(m(k)/s) + mm;
% end

%

% d_o = j;
%

% xxx = dec_2_hex(j);

%************************De-Interleaver OFDM WIMAX ******************

% data_h =
('77FA4F174E3EE670E8CD3F7690C42CDBF9B7FB436CF19ABDED0A1CD81BEC9B3015BADA31F550497D56EDB4

88CC72FC5C');

% data_d = hex_2_dec(data_h);

%first permutation:
%m(j) = s * floor (j/s) + (j+floor(12 * j/Ncbps))mod(s)

%j=0,1, Ncbps-1

s = ceil (Ncpc/2);

for j = 1:(Ncbps)
 jj = j-1;

 jk = jj + floor(12 * jj /Ncbps);

 jf = mod(jk,s);
 % k = 0:(Ncbps-1);

 m1(j) = (s * floor(jj/s)) + jf;
end

%Second permutation:
%k(j) = 12 * m(j) - (Ncbps - 1) * floor(12 * m(j)/Ncbps);

for j = 1:(Ncbps)
 k1(j) = 12 * m1(j) - (Ncbps - 1) * floor(12 * m1(j)/Ncbps);

end

A.2 16-QAM Interleaver Model:

clear

%clc

%aa=

hex_2_dec('3A5EE7AE499E6F1C6FC128BCBDAB57CDBCCDE3A792CA92C24DBC8D7832FBBFDF23ED8A941627A

565CF7D167A45B809CC');

%

% EEC6A1CB7E04736CBC6195D3 :

zzz =

('111011101100011010100001110010110111111000000100011100110110110010111100011000011001010111010011');
% B7C4EF0E4C76CFDC7069B3CE

% DBE0E5B7B54E887DA4AE3130

% EEC6A1CB7E04736CBC6195D3B7C4EF0E4C76CFDC7069B3CEDBE0E5B7B54E887DA4AE3130

%bb= dec_2_bin(aa);
%m =

('898407646983235129903369408620228549208237089767538283785779873984348065286651305271483786817872270

2216228486253004');
%m is 115 digit decimal

%m

=('00111010010111101110011110101110010010011001111001101111000111000110111111000001001010001011110010

1111011010101101010111110011011011110011001101111000111010011110010010110010101001001011000010010011

0110111100100011010111100000110010111110111011111111011111001000111110110110001010100101000001011000
10011110100101011001011100111101111101000101100111101001000101101110000000100111001100');

%m is 384 binary digit

Appendix A: Matlab Models

171

%Ncbps = 384; % QPSK 16 subchannel

%Ncbps = 192; % BPSK 16 subchannel

%Ncbps = 768; % 16-QAM 16 subchannel
Ncbps = 96; % 16-QAM 2 subchannel

%!!!!!Ncbps = 115;

% 16-QAM, rate 3/4 2 subchannel

% Ncpc: number of coded bits per subcarrier

% PICKUP ONLY ONE VALUE:

%1 - BPSK
%Ncpc = 1;

%2 - QPSK

%Ncpc = 2;
%4 - 16QAM

Ncpc = 4;

%6 - 64QAM
%Ncpc = 6;

%for z = 14:40
z = 12;

display(z);

% k= 0: (Ncbps-1);

%first permutation:
% m(k) = (Ncbps/12)* kmod12 + floor(k/12) k=0,, Ncbps-1

for k = 0:(Ncbps-1)
 %kk = k-1;

 %ff = mod(kk,z);

 % k = 0:(Ncbps-1);
 m(k+1) = (Ncbps/z)*mod(k,z) + floor(k/z);

end

%display (m)

%Second permutation:
% jk = s.floor(mk /s) + (mk + Ncbps - FLOOR(12*mk/Ncpbs))mod(S)

% k=0,, Ncbps-1

% s = ceil(Ncpc/2);

s = ceil (Ncpc/2);

for k = 0:(Ncbps-1)

 %kk = k-1;

% display(k)
 % x = m(k)+ Ncbps - floor(z* m(k)/Ncbps);

 % mm = mod((m(k)+ Ncbps - floor(z* m(k)/Ncbps)), s);

 j(k+1)= s * floor(m(k+1)/s) + mod((m(k+1)+ Ncbps - floor(z* (m(k+1)/Ncbps))), s);
% display(j(k))

end

%display(j)

d_o = j;

j = j+1;

for i = 1:Ncbps

 def= j(i);
 gom(i) = zzz(def);

end

%gom;

sprintf('The input is :');

in = bin_2_hex(zzz);
display(in)

sprintf('\n The ouput is :');

out = bin_2_hex(gom);

Appendix A: Matlab Models

172

display(out)

%end

%xxx = dec_2_hex(j);

A.3 QPSK Interleaver Model:

%aa=

hex_2_dec('3A5EE7AE499E6F1C6FC128BCBDAB57CDBCCDE3A792CA92C24DBC8D7832FBBFDF23ED8A941627A

565CF7D167A45B809CC');
%bb= dec_2_bin(aa);

%m =

('898407646983235129903369408620228549208237089767538283785779873984348065286651305271483786817872270
2216228486253004');

%m is 115 digit decimal

%m
=('00111010010111101110011110101110010010011001111001101111000111000110111111000001001010001011110010

1111011010101101010111110011011011110011001101111000111010011110010010110010101001001011000010010011

0110111100100011010111100000110010111110111011111111011111001000111110110110001010100101000001011000
10011110100101011001011100111101111101000101100111101001000101101110000000100111001100');

%m is 384 binary digit

Ncbps=384;

%!!!!!Ncbps = 115;

% QPSK, rate 3/4

% Ncpc: number of coded bits per subcarrier

% PICKUP ONLY ONE VALUE:

%1 - BPSK
%Ncpc = 1;

%2 - QPSK

Ncpc = 2;
%4 - 16QAM

%Ncpc = 4;

%6 - 64QAM
%Ncpc = 6;

x = 32;

% reading data input file
%A = fread(fid, 2)

% k= 0: (Ncbps-1);

%first permutation:
% m(k) = (Ncbps/12)* kmod12 + floor(k/12) k=0,, Ncbps-1

for k = 1:(Ncbps)

 %kk= k-1;
 % ff = mod((k-1),12);

 % k = 0:(Ncbps-1);

 m(k) = (Ncbps/x)* mod((k-1),x) + floor((k-1)/x);

end

%display (m)
%Second permutation:

% jk = s.floor(mk /s) + (mk + Ncbps - FLOOR(12*mk/Ncpbs))mod(S)

% k=0,, Ncbps-1
% s = ceil(Ncpc/2);

Appendix A: Matlab Models

173

s = ceil (Ncpc/2);

for k = 1:(Ncbps)

 %kk = k-1;
% display(k)

 % x = m(k)+ Ncbps - floor(12* m(k)/Ncbps);

 % mm = mod(x, s);
 j(k)= s * floor(m(k)/s) + mod((m(k)+ Ncbps - floor(x* m(k)/Ncbps)), s);

 % display(j(k))

end

display(j)

d_o = j;

%xxx = dec_2_hex(j);

174

APPENDIX B: VERILOG DESIGNS

B.1 Interleaver Design:

//--

//

// Title : Reconfigurable De-Interleaver

// Design : Reconfig_deinterleaver

// Author : Ahmed El-Rayis

// Company : The University of Edinburgh

//

//---

//

// Description : Top Level

//

//---

`timescale 1ns / 1ps

`define size 1152

`define inter_conf_bits 4

`define conf_bits 5

module top_reconfig_deinterleaver (clk,data_in,en,rst,config_bits,data_out,ready_leaver) ;

// ---- User defined diagram parameters --- //

parameter size=`size;

parameter inter_conf_bits = `inter_conf_bits;

parameter conf_bits = `conf_bits;

// ------------ Port declarations --------- //

input clk;

wire clk;

input data_in;

wire data_in;

input en;

wire en;

input rst;

wire rst;

input [conf_bits-1:0] config_bits;

wire [conf_bits-1:0] config_bits;

output data_out;

wire data_out;

output ready_leaver;

wire ready_leaver;

// ----------- Signal declarations -------- //

wire en_rg1;

wire en_sr2;

wire rg1_ready;

wire rg2_ready;

wire sr1_ready;

wire [inter_conf_bits-1:0] rg1_config;

wire [size-1:0] rg1_to_rg2;

wire [conf_bits-1:0] rg2_config;

wire [size-1:0] rg2_to_sr2;

wire [inter_conf_bits-1:0] sr1_config;

wire [size-1:0] sr1_to_rg1;

wire [inter_conf_bits-1:0] sr2_config;

// -------- Component instantiations -------//

reconfig_controller U_reconfig_controller

(

 .config_bits(config_bits[conf_bits-1:0]),

 .en(en),

 .en_rg1(en_rg1),

 .rg1_config(rg1_config[inter_conf_bits-1:0]),

 .rg2_config(rg2_config[conf_bits-1:0]),

 .rst(rst),

 .sr1_config(sr1_config[inter_conf_bits-1:0]),

 .sr2_config(sr2_config[inter_conf_bits-1:0])

Appendix B: Verilog Designs

175

);

RG1 U_RG1

(

 .clk(clk),

 .rg1_config(rg1_config[inter_conf_bits-1:0]),

 .rg1_ready(rg1_ready),

 .rg1_to_rg2(rg1_to_rg2[size-1:0]),

 .rst(rst),

 .sr1_ready(sr1_ready),

 .sr1_to_rg1(sr1_to_rg1[size-1:0])

);

RG2 U_RG2

(

 .clk(clk),

 .en_sr2(en_sr2),

 .rg1_ready(rg1_ready),

 .rg1_to_rg2(rg1_to_rg2[size-1:0]),

 .rg2_config(rg2_config[conf_bits-1:0]),

 .rg2_ready(rg2_ready),

 .rg2_to_sr2(rg2_to_sr2[size-1:0]),

 .rst(rst)

);

shift_register_in U_shift_register_in

(

 .clk(clk),

 .data_in(data_in),

 .en_rg1(en_rg1),

 .rst(rst),

 .sr1_config(sr1_config[inter_conf_bits-1:0]),

 .sr1_ready(sr1_ready),

 .sr1_to_rg1(sr1_to_rg1[size-1:0])

);

SRout U_SRout

(

 .clk(clk),

 .data_out(data_out),

 .en_sr2(en_sr2),

 .ready_leaver(ready_leaver),

 .rg2_ready(rg2_ready),

 .rg2_to_sr2(rg2_to_sr2[size-1:0]),

 .rst(rst),

 .sr2_config(sr2_config[inter_conf_bits-1:0])

);

endmodule

//--

//

// Title : SRout

// Design : Reconfig_deinterleaver

// Author : Ahmed El-Rayis

// Company : The University of Edinburgh

//

//---

//

// File : d:\My_Designs\Deinterleaver\Reconfig_deinterleaver\src\SRout.v

// Generated : Thu Nov 23 12:56:41 2006

// From : interface description file

// By : Itf2Vhdl ver. 1.20

//

//---

//

// Description :

//

//--

// History :

// Version Date Changes

// 0.01 23 Nov 2006 Initial

// 0.11 27 Nov 2006 adding a soft reset "11111"

//

//

//---

`timescale 1ps / 1ps

// Code Block Size (bits)

// 1 0001 12

// 2 0010 24

// 3 0011 48

// 4 0100 72

// 5 0101 96

// 6 0110 144

// 7 0111 192 new

// 8 1000 288

// 9 1001 384

// 14 1110 576

// 0 0000 768

Appendix B: Verilog Designs

176

// 12 1100 1152

// 15 1111 soft_reset

module SRout (data_out ,rst ,clk ,ready_leaver, en_sr2 ,rg2_to_sr2 ,sr2_config ,rg2_ready);

parameter size = 1152; //max size

parameter inter_conf_bits = 4; //internal coniguration bits

input rst ; //reset

wire rst ;

input clk ; //main clock

wire clk ;

input [size-1:0] rg2_to_sr2 ;//incoming parallel data after shuffling

wire [size-1:0] rg2_to_sr2 ;

input [inter_conf_bits-1:0] sr2_config ; //config word coming from the controller

wire [inter_conf_bits-1:0] sr2_config ;

input rg2_ready ; //incoming data is valid to copy

wire rg2_ready ;

input en_sr2; //switching ON NOTICE: data will start to go out, put

wire en_sr2; //not valid without ready Interleaver Activated

output data_out ;

reg data_out ;

output ready_leaver ;

reg ready_leaver ;

reg [size:0] temp_reg; //total = size+1

reg [10:0] count_in ;

always @ (posedge clk)//or negedge rst_n

begin

 if ((rst == 1'b1)||(sr2_config == 4'b1111))

 begin

 temp_reg = 'b0;

 data_out = 'b0;

 ready_leaver = 'b0;

 count_in = 11'b000_0000_0001; //now count-up

 end

 else

 begin

 if (en_sr2 == 1'b1) // to begin added initial o/p of RG2

 begin

 ready_leaver = 1'b1;

 if (sr2_config == 4'b0001) //Block Size: 12 [BPSK 1 subchannel] #######

 begin

 //temp_reg[size/96:0] = {temp_reg[(size/96)-1:0],data_in};

 data_out = temp_reg[size/96];//MSB is the 1st output bit

 if ((count_in != 11'b000_0000_1100) && (rg2_ready == 1'b0))

 begin

 count_in = count_in + 1;

 temp_reg[size/96:0] = {temp_reg[(size/96)-1:0], temp_reg[size/96]};

 end

 else

 begin

 temp_reg[(size/96)-1:0] = rg2_to_sr2[(size/96)-1:0];

 count_in = 11'b000_0000_0001;

 //data_out = tmp[384]; //MSB is the 1st output bit

 //sr1_ready = 1'b1;

 end

 end

 else if (sr2_config == 4'b1001)//Block Size:384 [QPSK 16 or 16QAM 8 -subch] #######

 begin

 data_out = temp_reg[size/3]; //MSB is the 1st output bit

 if ((count_in != 11'b001_1000_0000) && (rg2_ready == 1'b0))

 begin

 count_in = count_in + 1;

 temp_reg[size/3:0] = {temp_reg[(size/3)-1:0], temp_reg[size/3]}; //

 end

 else

 begin

 temp_reg[(size/3)-1:0] = rg2_to_sr2[(size/3)-1:0];

 count_in = 11'b000_0000_0001;

 end

 end

 else if (sr2_config == 4'b0000)//Block Size:768 [16-QAM 16 subchannel] #######

 begin

 data_out = temp_reg[size/1.5]; //MSB is the 1st output bit

 if ((count_in != 11'b011_0000_0000) && (rg2_ready == 1'b0))

 begin

 count_in = count_in + 1;

 temp_reg[size/1.5:0] = {temp_reg[(size/1.5)-1:0], temp_reg[size/1.5]}; //

 end

 else

 begin

 temp_reg[(size/1.5)-1:0] = rg2_to_sr2[(size/1.5)-1:0];

 count_in = 11'b000_0000_0001;

 end

 end

 else if (sr2_config == 4'b1100)//Block Size:1152 [64-QAM 16subchannel] #######

 begin

 data_out = temp_reg[size]; //MSB is the 1st output bit

Appendix B: Verilog Designs

177

 if ((count_in != 11'b000_0000_0001)&& (rg2_ready == 1'b0))

 begin

 count_in = count_in + 1;

 temp_reg[size:0] = {temp_reg[size-1:0], temp_reg[size]}; //

 end

 else

 begin

 temp_reg[size-1:0] = rg2_to_sr2[size-1:0];

 count_in = 11'b000_0000_0001;

 end

 end

 end

 else ready_leaver = 1'b0;

 end

end

endmodule

//--

//

// Title : TOP_tb

// Design : Deinterleaver

// Author : Ahmed El-Rayis

// Company : The University of Edinburgh

//

//---

//

// Description : testbench for reconfigurable de-Interleaver

//

//---

`timescale 1 ns / 1 ps

//

////// External Configuration bits ///

//

// Configuration Word Block Size Modulation Type No. of Subchannels

// Value Configuration Word Block Size Modulation Type No. of Subchannels

//1 1 00001 12 BPSK 1

//2 2 00010 24 BPSK 2

//3 18 10010 24 QPSK 1

//4 3 00011 48 BPSK 4

//5 11 01011 48 QPSK 2

//6 19 10011 48 16-QAM 1

//7 4 00100 72 64-QAM 1

//8 5 00101 96 BPSK 8

//9 13 01101 96 QPSK 4 new

//10 21 10101 96 16-QAM 2

//11 6 00110 144 64-QAM 2

//12 7 00111 192 BPSK 16

//13 15 01111 192 QPSK 8

//14 23 10111 192 16-QAM 4

//15 8 01000 288 64-QAM 4

//16 9 01001 384 QPSK 16

//17 25 11001 384 16-QAM 8

//18 14 01110 576 64-QAM 8

//19 18 10000 768 16-QAM 16

//20 12 01100 1152 64-QAM 16

//21 31 11111 soft_reset soft_reset

`define size 1152

`define inter_conf_bits 4

`define conf_bits 5

module top_tb ();

parameter period = 30; // Set clock period to 100ns

parameter delay = 50;

parameter width = 16;

parameter tap = 73;

parameter length = 1000; //16 short 16000 long

parameter size =`size;

parameter inter_conf_bits = `inter_conf_bits;

parameter conf_bits = `conf_bits;

 reg inputdata[0:767]; //767

 reg out_expected[0:767]; //767

// reg y_expected[199:0];//20 inputs

 reg clk;

 reg rst, data_in;//, clk; ,

 reg en; // enable

 reg [4:0] config_bits;

 wire data_out;

 wire ready_leaver;

 integer i ,j ,f1;

Appendix B: Verilog Designs

178

 initial

 fork

 clk <= 0;

 forever #(period/2) clk = !clk; // creates clock of period "period"

 join

 top_reconfig_deinterleaver deleaver_top(

 .clk(clk),

 .data_in(data_in),

 .en(en),

 .rst(rst),

 .config_bits(config_bits),

 .data_out(data_out),

 .ready_leaver(ready_leaver)) ;

 initial

 begin

// enable <= 1'b1;

 // cnt = 0;

 i = 0; j = 0;

 // enable <=1;

 #0 rst = 1'b1;

 #1 en = 1'b0;

 #(delay) rst = 1'b1;

 #(period) rst = 1'b0;

 #1 config_bits = 5'b01001;// 384 QPSK 16

 #(period) en = 1'b1;

// #(period) enable = 1;

 assign data_in = inputdata[i]; //by me

 #(period*tap*length)

 $finish;

 end // initial begin

/*

initial

 begin

 $dumpfile("simulation.rtl.vcd");

 $dumpvars;

 end

*/

// always @(posedge clk)

 initial

 begin

 // assign enable =1'b1;

//// $readmemh("deinterleaverqpsk16.dat", inputdata);

//// $readmemh("deinterleaverqpsk16_out.dat", out_expected);

// $readmemh("outputy.dat", y_expected);

// f1 = $fopen("deinterleaverqpsk16_real_o.dat");

// f2 = $fopen("routput.y.dat");

//// $display("Deinterleaver dataNo. Time Result Expt PASS/FAIL");

 end

 always @(posedge clk)

 begin

 // $display("clock");

 if ((rst == 1'b0) && (en == 1'b1))

 begin

 //j <= j + 1; //$display("clock ****");

 if ((i != 'd800) && (ready_leaver == 1'b1))

 begin

 i <= i+1; //1

 // $display("reset and enable");

 if (data_out == out_expected[i]) //&& (data_out [0]== out_expected[i+1]))

 begin

 $fwrite(f1, "%b %b PASS\n", data_out, out_expected[i]);//, out_expected[i+1]);

 $display("Ahmed %d : %d %b %b PASS OK\n", i, $time, data_out, out_expected[i]);//, out_expected[i+1]);

 end

 else

 begin

 $fwrite(f1, "%b %b FAIL\n", data_out, out_expected[i]);//, out_expected[i+1]);

 $display("failure %d : %d %b %b FAIL X x\n", i, $time, data_out, out_expected[i]);//, out_expected[i+1]);

 end

 // if (y == y_expected[i])

 // begin

 // $fwrite(f2, "%b %b PASS\n", y, y_expected[i]);

 // $display("Ahmed Y %d : %d %b %b PASS OK ", i, $time, y, y_expected[i]);

 // end

 // else

 // begin

 // $fwrite(f2, "%b %b FAIL\n", y, y_expected[i]);

 // $display("failed Y %d : %d %b %b FAIL X y", i, $time, y, y_expected[i]);

 end

Appendix B: Verilog Designs

179

 end

 end

//assign datain = inputdata[i];

//end

//endmodule // stimulus

endmodule

//--

//

// Title : reconfig_controller

// Design : Reconfig_deinterleaver

// Author : Ahmed El-Rayis

// Company : The University of Edinburgh

//

//---

// History :

// Version Date Changes

// 0.01 24 Nov 2006 Initial

// 0.11 27 Nov 2006 adding a code which will begin used as a soft reset "11111"

//---

//

////// External Configuration bits ///

//

// Configuration Word Block Size Modulation Type No. of Subchannels

// Value Configuration Word Block Size Modulation Type No. of Subchannels

//1 1 00001 12 BPSK 1

//2 2 00010 24 BPSK 2

//3 18 10010 24 QPSK 1

//4 3 00011 48 BPSK 4

//5 11 01011 48 QPSK 2

//6 19 10011 48 16-QAM 1

//7 4 00100 72 64-QAM 1

//8 5 00101 96 BPSK 8

//9 13 01101 96 QPSK 4 new

//10 21 10101 96 16-QAM 2

//11 6 00110 144 64-QAM 2

//12 7 00111 192 BPSK 16

//13 15 01111 192 QPSK 8

//14 23 10111 192 16-QAM 4

//15 8 01000 288 64-QAM 4

//16 9 01001 384 QPSK 16

//17 25 11001 384 16-QAM 8

//18 14 01110 576 64-QAM 8

//19 18 10000 768 16-QAM 16

//20 12 01100 1152 64-QAM 16

//21 31 11111 soft_reset soft_reset

// 1 00001 12 BPSK 1

// 2 00010 24 BPSK 2

// 3 00011 24 QPSK 1

// 4 00100 48 BPSK 4

// 5 00101 48 QPSK 2 old

// 6 00110 48 16-QAM 1

// 7 00111 72 64-QAM 1

// 8 01000 96 BPSK 8

// 9 01001 96 QPSK 4

// 10 01010 96 16-QAM 2

// 11 01011 144 64-QAM 2

// 12 01100 192 BPSK 16

// 13 01101 192 QPSK 8

// 14 01110 192 16-QAM 4

// 15 01111 288 64-QAM 4

// 16 10000 384 QPSK 16

// 17 10001 384 16-QAM 8

// 18 10010 576 64-QAM 8

// 19 10011 768 16-QAM 16

// 20 10100 1152 64-QAM 16

//

/// Internal Config Table ///

//

// Code Block Size (bits)

// 1 0001 12

// 2 0010 24

// 3 0011 48

// 4 0100 72

// 5 0101 96

// 6 0110 144

// 7 0111 192 new

// 8 1000 288

// 9 1001 384

Appendix B: Verilog Designs

180

// 14 1110 576

// 0 0000 768

// 12 1100 1152

// 15 1111 soft_reset

// Code Block Size (bits)

// 1 0001 12

// 2 0010 24

// 3 0011 48

// 4 0100 72

// 5 0101 96 old

// 6 0110 144

// 7 0111 192

// 8 1000 288

// 9 1001 384

// 10 1010 576

// 11 1011 768

// 12 1100 1152

`timescale 1ps / 1ps

`define size 1152

`define inter_conf_bits 4

`define conf_bits 5

module reconfig_controller (rg2_config ,rst ,sr1_config ,en ,en_rg1 ,sr2_config ,rg1_config ,config_bits);

parameter conf_bits = `conf_bits; // external coniguration bits

parameter inter_conf_bits = `inter_conf_bits; //internal coniguration bits

input rst ;

wire rst ;

input en ;

wire en ;

input [conf_bits-1:0] config_bits ;

wire [conf_bits-1:0] config_bits ;

output [conf_bits-1:0] rg2_config ;

reg [conf_bits-1:0] rg2_config ;

output [inter_conf_bits-1:0] sr1_config ;

reg [inter_conf_bits-1:0] sr1_config ;

output [inter_conf_bits-1:0] sr2_config ;

reg [inter_conf_bits-1:0] sr2_config ;

output [inter_conf_bits-1:0] rg1_config ;

reg [inter_conf_bits-1:0] rg1_config ;

output en_rg1 ;

reg en_rg1 ;

always @ (rst or en or config_bits) //

 if (rst == 1'b1) //reset

 begin

 en_rg1 <= 'b0;

 sr1_config <= 'b0;

 rg1_config <= 'b0;

 sr2_config <= 'b0;

 rg2_config <= 'b0;

 end

 else

 begin

 if (en == 1'b1) //enable shift register => enable for Interleaver

 en_rg1 = 1'b1;

 if (config_bits==5'b0_0001) //00001 12 BPSK 1

 begin

 sr1_config = config_bits[inter_conf_bits-1:0]; //0001

 rg1_config = config_bits[inter_conf_bits-1:0]; //

 sr2_config = config_bits[inter_conf_bits-1:0]; //

 rg2_config = config_bits;

 end

 else if (config_bits==5'b0_0010)// 00010 24 BPSK 2

 begin

 sr1_config = config_bits[inter_conf_bits-1:0]; //0010

 rg1_config = config_bits[inter_conf_bits-1:0]; //

 sr2_config = config_bits[inter_conf_bits-1:0]; //

 rg2_config = config_bits;

 end

 else if (config_bits==5'b1_0010)//10010 24 QPSK 1

 begin

 sr1_config = config_bits[inter_conf_bits-1:0]; //0010

 rg1_config = config_bits[inter_conf_bits-1:0]; //

 sr2_config = config_bits[inter_conf_bits-1:0]; //

 rg2_config = config_bits;

 end

 else if (config_bits==5'b0_0011)//00011 0011 48 BPSK 4

 begin

 sr1_config = config_bits[inter_conf_bits-1:0]; //0010

 rg1_config = config_bits[inter_conf_bits-1:0]; //

Appendix B: Verilog Designs

181

 sr2_config = config_bits[inter_conf_bits-1:0]; //

 rg2_config = config_bits;

 end

 else if (config_bits==5'b0_1011)//01011 0011 48 QPSK 2

 begin

 sr1_config = {! config_bits[inter_conf_bits-1], config_bits[inter_conf_bits-2:0]}; //0011

 rg1_config = {! config_bits[inter_conf_bits-1], config_bits[inter_conf_bits-2:0]}; //

 sr2_config = {! config_bits[inter_conf_bits-1], config_bits[inter_conf_bits-2:0]}; //

 rg2_config = config_bits;

 end

 else if (config_bits==5'b1_0011)//10011 0011 48 16-QAM 1

 begin

 sr1_config = config_bits[inter_conf_bits-1:0]; //0010

 rg1_config = config_bits[inter_conf_bits-1:0]; //

 sr2_config = config_bits[inter_conf_bits-1:0]; //

 rg2_config = config_bits;

 end

 else if (config_bits==5'b0_0011)//00100 0100 72 64-QAM 1

 begin

 sr1_config = config_bits[inter_conf_bits-1:0]; //0100

 rg1_config = config_bits[inter_conf_bits-1:0]; //

 sr2_config = config_bits[inter_conf_bits-1:0]; //

 rg2_config = config_bits;

 end

 else if (config_bits==5'b0_0101)//00101 0101 96 BPSK 8

 begin

 sr1_config = config_bits[inter_conf_bits-1:0]; //0101

 rg1_config = config_bits[inter_conf_bits-1:0]; //

 sr2_config = config_bits[inter_conf_bits-1:0]; //

 rg2_config = config_bits;

 end

 else if (config_bits==5'b0_1101)//01101 0101 96 QPSK 4

 begin

 sr1_config = {! config_bits[inter_conf_bits-1], config_bits[inter_conf_bits-2:0]}; //0101

 rg1_config = {! config_bits[inter_conf_bits-1], config_bits[inter_conf_bits-2:0]}; //

 sr2_config = {! config_bits[inter_conf_bits-1], config_bits[inter_conf_bits-2:0]}; //

 rg2_config = config_bits;

 end

 else if (config_bits==5'b1_0101)//10101 0101 96 16-QAM 2

 begin

 sr1_config = config_bits[inter_conf_bits-1:0]; //0101

 rg1_config = config_bits[inter_conf_bits-1:0]; //

 sr2_config = config_bits[inter_conf_bits-1:0]; //

 rg2_config = config_bits;

 end

 else if (config_bits==5'b0_0110)//00110 0110 144 64-QAM 2

 begin

 sr1_config = config_bits[inter_conf_bits-1:0]; //0110

 rg1_config = config_bits[inter_conf_bits-1:0]; //

 sr2_config = config_bits[inter_conf_bits-1:0]; //

 rg2_config = config_bits;

 end

 else if (config_bits==5'b0_0111)//00111 0111 192 BPSK 16

 begin

 sr1_config = config_bits[inter_conf_bits-1:0]; //0111

 rg1_config = config_bits[inter_conf_bits-1:0]; //

 sr2_config = config_bits[inter_conf_bits-1:0]; //

 rg2_config = config_bits;

 end

 else if (config_bits==5'b0_1111)//01111 0111 192 QPSK 8

 begin

 sr1_config = {! config_bits[inter_conf_bits-1], config_bits[inter_conf_bits-2:0]}; //0111

 rg1_config = {! config_bits[inter_conf_bits-1], config_bits[inter_conf_bits-2:0]}; //

 sr2_config = {! config_bits[inter_conf_bits-1], config_bits[inter_conf_bits-2:0]}; //

 rg2_config = config_bits;

 end

 else if (config_bits==5'b1_0111)//10111 0111 192 16-QAM 4

 begin

 sr1_config = config_bits[inter_conf_bits-1:0]; //0111

 rg1_config = config_bits[inter_conf_bits-1:0]; //

 sr2_config = config_bits[inter_conf_bits-1:0]; //

 rg2_config = config_bits;

 end

 else if (config_bits==5'b1_0101)//01000 1000 288 64-QAM 4

 begin

 sr1_config = config_bits[inter_conf_bits-1:0]; //1000

 rg1_config = config_bits[inter_conf_bits-1:0]; //

 sr2_config = config_bits[inter_conf_bits-1:0]; //

 rg2_config = config_bits;

 end

 else if (config_bits==5'b0_1001)//01001 1001 384 QPSK 16

Appendix B: Verilog Designs

182

 begin

 sr1_config = config_bits[inter_conf_bits-1:0]; //1001

 rg1_config = config_bits[inter_conf_bits-1:0]; //

 sr2_config = config_bits[inter_conf_bits-1:0]; //

 rg2_config = config_bits;

 end

 else if (config_bits==5'b1_1001)//11001 1001 384 16-QAM 8

 begin

 sr1_config = config_bits[inter_conf_bits-1:0]; //1001

 rg1_config = config_bits[inter_conf_bits-1:0]; //

 sr2_config = config_bits[inter_conf_bits-1:0]; //

 rg2_config = config_bits;

 end

 else if (config_bits==5'b0_1110)//01110 1110 576 64-QAM 8

 begin

 sr1_config = config_bits[inter_conf_bits-1:0]; //1110

 rg1_config = config_bits[inter_conf_bits-1:0]; //

 sr2_config = config_bits[inter_conf_bits-1:0]; //

 rg2_config = config_bits;

 end

 else if (config_bits==5'b1_0000)// 0000 768 16-QAM 16

 begin

 sr1_config = config_bits[inter_conf_bits-1:0]; //0000

 rg1_config = config_bits[inter_conf_bits-1:0]; //

 sr2_config = config_bits[inter_conf_bits-1:0]; //

 rg2_config = config_bits;

 end

 else if (config_bits==5'b0_1100)//01100 1152 64-QAM 16

 begin

 sr1_config = config_bits[inter_conf_bits-1:0]; //1100

 rg1_config = config_bits[inter_conf_bits-1:0]; //

 sr2_config = config_bits[inter_conf_bits-1:0]; //

 rg2_config = config_bits;

 end

 else if (config_bits==5'b1_1111)//11111 ----- soft_Reset -----

 begin

 sr1_config = config_bits[inter_conf_bits-1:0]; //1100

 rg1_config = config_bits[inter_conf_bits-1:0]; //

 sr2_config = config_bits[inter_conf_bits-1:0]; //

 rg2_config = config_bits;

 end

 end

endmodule

//--

//

// Title : RG1

// Design : Reconfig_deinterleaver

// Author : Ahmed El-Rayis

// Company : The University of Edinburgh

//

//---

//

// Description : Asynchron Latch

//

//---

// Code Block Size (bits)

// 1 0001 12

// 2 0010 24

// 3 0011 48

// 4 0100 72

// 5 0101 96

// 6 0110 144

// 7 0111 192 new

// 8 1000 288

// 9 1001 384

// 14 1110 576

// 0 0000 768

// 12 1100 1152

// 15 1111 soft_reset

// Code Block Size (bits)

// 1 0001 12

// 2 0010 24

// 3 0011 48

// 4 0100 72

// 5 0101 96

// 6 0110 144

// 7 0111 192

// 8 1000 288

// 9 1001 384

// 10 1010 576

Appendix B: Verilog Designs

183

// 11 1011 768

// 12 1100 1152

`timescale 1ps / 1ps

`define size 1152

`define inter_conf_bits 4

module RG1 (rst ,sr1_to_rg1 ,sr1_ready ,clk ,rg1_config ,rg1_to_rg2 ,rg1_ready);

parameter size = `size; //max size

parameter inter_conf_bits = `inter_conf_bits; //internal coniguration bits

input rst ; //reset

wire rst ;

input [size-1:0] sr1_to_rg1 ; //input parallel block

wire [size-1:0] sr1_to_rg1 ;

input sr1_ready ; //valid input data indicator

wire sr1_ready ;

input clk ; //main clock

wire clk ;

input [inter_conf_bits-1:0] rg1_config ; //configuration word to define block size used

wire [inter_conf_bits-1:0] rg1_config ;

output [size-1:0] rg1_to_rg2 ; //buffer or latch data to begin used for the next RG2

reg [size-1:0] rg1_to_rg2 ;

output rg1_ready; //latched data is ready

reg rg1_ready;

//}} End of automatically maintained section

always @ (rst or sr1_ready or rg1_config) //sr1_to_rg1 or

 if ((rst == 1'b1) ||(rg1_config == 4'b1111)) //reset

 begin

 rg1_to_rg2 <= 96'h0;

 rg1_ready <= 1'b0;

 end

 else if (sr1_ready == 1'b1)

 begin

 if (rg1_config == 4'b0001) //Block Size: 12 [BPSK 1 subchannel] #######

 begin

 rg1_to_rg2[(size/96)-1:0] <= sr1_to_rg1[(size/96)-1:0];

 rg1_ready <= 1'b1;

 end

 else if (rg1_config == 4'b1001)//Block Size:384 [QPSK 16 or 16QAM 8 -subch] #######

 begin

 rg1_to_rg2[(size/3)-1:0] <= sr1_to_rg1[(size/3)-1:0];

 rg1_ready <= 1'b1;

 end

 else if (rg1_config == 4'b0000)//Block Size:768 [16-QAM 16 subchannel] #######

 begin

 rg1_to_rg2[(size/1.5)-1:0] <= sr1_to_rg1[(size/1.5)-1:0];

 rg1_ready <= 1'b1;

 end

 else if (rg1_config == 4'b1100)//Block Size:1152 [64-QAM 16subchannel] #######

 begin

 rg1_to_rg2[(size)-1:0] <= sr1_to_rg1[(size)-1:0];

 rg1_ready <= 1'b1;

 end

 end

 else rg1_ready <= 1'b0;

endmodule

//--

//--

//

// Title : SRin

// Design : Reconfig_deinterleaver

// Author : Ahmed El-Rayis

// Company : The University of Edinburgh

//

//---

//

// Description : Input Shift Register

// counter have been changed for up count for HW reduction reason

//---

`timescale 1ns / 1ps

// Code Block Size (bits)

// 1 0001 12

// 2 0010 24

// 3 0011 48

// 4 0100 72

// 5 0101 96

// 6 0110 144

// 7 0111 192 new

// 8 1000 288

// 9 1001 384

// 14 1110 576

// 0 0000 768

// 12 1100 1152

Appendix B: Verilog Designs

184

// 15 1111 soft_reset

// Code Block Size (bits)

// 1 0001 12

// 2 0010 24

// 3 0011 48

// 4 0100 72

// 5 0101 96 O L D

// 6 0110 144

// 7 0111 192

// 8 1000 288

// 9 1001 384

// 10 1010 576

// 11 1011 768

// 12 1100 1152

`define size 1152

`define inter_conf_bits 4

module shift_register_in (data_in ,sr1_to_rg1 ,rst ,clk ,en_rg1 ,sr1_config ,sr1_ready);

parameter size = `size; //max size

parameter inter_conf_bits = `inter_conf_bits; //internal coniguration bits

input data_in ; //input stream

wire data_in ;

input rst ; //reset

wire rst ;

input clk ; //main clock

wire clk ;

input en_rg1 ; //enable from the controller

wire en_rg1 ;

input [inter_conf_bits-1:0] sr1_config ; // configuration bits to define the block size ONLY!!

wire [inter_conf_bits-1:0] sr1_config ;

output [size-1:0] sr1_to_rg1 ; // parallel data block to begin sent to reg1

reg [size-1:0] sr1_to_rg1 ;

output sr1_ready ; // indicator for output data avaliability

reg sr1_ready;

reg [size:0] temp_reg; //total = size+1

reg [10:0] count_in ; //internal counter

always @ (posedge clk)//or posedge rst

begin

 if ((rst == 1'b1) || (sr1_config == 4'b1111)) //1111 is soft reset

 begin

 temp_reg = 'b0;

 sr1_to_rg1 = 'b0;

 sr1_ready = 'b0;

 count_in = 11'b000_0000_0001; //now count-up

 end

 else

 begin

 if (en_rg1 == 1'b1)

 begin

 if (sr1_config == 4'b0001) //Block Size: 12 [BPSK 1 subchannel] #######

 begin

 temp_reg[size/96:0] = {temp_reg[(size/96)-1:0],data_in};

 if (count_in != 11'b000_0000_1100)

 begin

 count_in = count_in + 1;

 sr1_ready = 1'b0;

 end

 else

 begin

 sr1_to_rg1 = temp_reg[(size/96)-1:0];

 count_in = 11'b000_0000_0001;

 sr1_ready = 1'b1;

 end

 end

 else if (sr1_config == 4'b1001)//Block Size:384 [QPSK 16 or 16QAM 8 -subch] #######

 begin

 temp_reg[size/3:0] = {temp_reg[((size/3)-1):0],data_in};

 if (count_in != 11'b001_1000_0000)

 begin

 count_in = count_in + 1;

 sr1_ready = 1'b0;

 end

 else

 begin

 sr1_to_rg1 = temp_reg[((size/3)-1):0];

 count_in = 11'b000_0000_0001;

 sr1_ready = 1'b1;

 end

 end

 else if (sr1_config == 4'b0000)//Block Size:768 [16-QAM 16 subchannel] #######

Appendix B: Verilog Designs

185

 begin

 temp_reg[size/1.5] = {temp_reg[(size/1.5)-1:0],data_in};

 if (count_in != 11'b011_0000_0000)

 begin

 count_in = count_in + 1;

 sr1_ready = 1'b0;

 end

 else

 begin

 sr1_to_rg1 = temp_reg[(size/1.5)-1:0];

 count_in = 11'b000_0000_0001;

 sr1_ready = 1'b1;

 end

 end

 else if (sr1_config == 4'b1100)//Block Size:1152 [64-QAM 16subchannel] #######

 begin

 temp_reg = {temp_reg[size-1:0],data_in};

 if (count_in != 11'b000_0000_0001)

 begin

 count_in = count_in + 1;

 sr1_ready = 1'b0;

 end

 else

 begin

 sr1_to_rg1 = temp_reg[size-1:0];

 count_in = 11'b100_1000_0000;

 sr1_ready = 1'b1;

 end

 end

 end

 else sr1_ready = 1'b0;

 end

end

endmodule

//--

//

// Title : SRin

// Design : Reconfig_deinterleaver

// Author : Ahmed El-Rayis

// Company : The University of Edinburgh

//

//---

//

// Description : Input Shift Register

// counter have been changed for up count for HW reduction reason

//---

`timescale 1ns / 1ps

// Code Block Size (bits)

// 1 0001 12

// 2 0010 24

// 3 0011 48

// 4 0100 72

// 5 0101 96

// 6 0110 144

// 7 0111 192 new

// 8 1000 288

// 9 1001 384

// 14 1110 576

// 0 0000 768

// 12 1100 1152

// 15 1111 soft_reset

// Code Block Size (bits)

// 1 0001 12

// 2 0010 24

// 3 0011 48

// 4 0100 72

// 5 0101 96 O L D

// 6 0110 144

// 7 0111 192

// 8 1000 288

// 9 1001 384

// 10 1010 576

// 11 1011 768

// 12 1100 1152

`define size 1152

`define inter_conf_bits 4

module SRin (data_in ,sr1_to_rg1 ,rst ,clk ,en_rg1 ,sr1_config ,sr1_ready);

parameter size = `size; //max size

parameter inter_conf_bits = `inter_conf_bits; //internal coniguration bits

input data_in ; //input stream

wire data_in ;

input rst ; //reset

Appendix B: Verilog Designs

186

wire rst ;

input clk ; //main clock

wire clk ;

input en_rg1 ; //enable from the controller

wire en_rg1 ;

input [inter_conf_bits-1:0] sr1_config ; // configuration bits to define the block size ONLY!!

wire [inter_conf_bits-1:0] sr1_config ;

output [size-1:0] sr1_to_rg1 ; // parallel data block to begin sent to reg1

reg [size-1:0] sr1_to_rg1 ;

output sr1_ready ; // indicator for output data avaliability

reg sr1_ready;

reg [size:0] temp_reg; //total = size+1

reg [10:0] count_in ; //internal counter

always @ (posedge clk)//or posedge rst

begin

 if ((rst == 1'b1) || (sr1_config == 4'b1111)) //1111 is soft reset

 begin

 temp_reg = 'b0;

 sr1_to_rg1 = 'b0;

 sr1_ready = 'b0;

 count_in = 11'b000_0000_0001; //now count-up

 end

 else

 begin

 if (en_rg1 == 1'b1)

 begin

 if (sr1_config == 4'b0001) //Block Size: 12 [BPSK 1 subchannel] #######

 begin

 temp_reg[size/96:0] = {temp_reg[(size/96)-1:0],data_in};

 if (count_in != 11'b000_0000_1100)

 begin

 count_in = count_in + 1;

 sr1_ready = 1'b0;

 end

 else

 begin

 sr1_to_rg1 = temp_reg[(size/96)-1:0];

 count_in = 11'b000_0000_0001;

 sr1_ready = 1'b1;

 end

 end

 else if (sr1_config == 4'b1001)//Block Size:384 [QPSK 16 or 16QAM 8 -subch] #######

 begin

 temp_reg[size/3:0] = {temp_reg[((size/3)-1):0],data_in};

 if (count_in != 11'b001_1000_0000)

 begin

 count_in = count_in + 1;

 sr1_ready = 1'b0;

 end

 else

 begin

 sr1_to_rg1 = temp_reg[((size/3)-1):0];

 count_in = 11'b000_0000_0001;

 sr1_ready = 1'b1;

 end

 end

 else if (sr1_config == 4'b0000)//Block Size:768 [16-QAM 16 subchannel] #######

 begin

 temp_reg[size/1.5] = {temp_reg[(size/1.5)-1:0],data_in};

 if (count_in != 11'b011_0000_0000)

 begin

 count_in = count_in + 1;

 sr1_ready = 1'b0;

 end

 else

 begin

 sr1_to_rg1 = temp_reg[(size/1.5)-1:0];

 count_in = 11'b000_0000_0001;

 sr1_ready = 1'b1;

 end

 end

 else if (sr1_config == 4'b1100)//Block Size:1152 [64-QAM 16subchannel] #######

 begin

 temp_reg = {temp_reg[size-1:0],data_in};

 if (count_in != 11'b000_0000_0001)

 begin

 count_in = count_in + 1;

 sr1_ready = 1'b0;

 end

 else

 begin

 sr1_to_rg1 = temp_reg[size-1:0];

 count_in = 11'b100_1000_0000;

 sr1_ready = 1'b1;

 end

 end

Appendix B: Verilog Designs

187

 end

 else sr1_ready = 1'b0;

 end

end

endmodule

B.2 GF Reconfigurable Multiplier Design

//--

//

// Title : GFmul_core

// Design : GFpmul

// Author : Ahmed El-Rayis

// Company : The University of Edinburgh

//

//---

//

// File : d:\My_Designs\ReedSolomon\GFpmul\src\GFmul_core.v

//

//---

//

// Description : GF mul with programmable polynomial for gf(2^8)

//

//---

`timescale 1ps / 1ps

/*

module GFmul_core (a ,b ,c , p);

input [7:0] a ;

wire [7:0] a ;

input [7:0] b ;

wire [7:0] b ;

input [7:0] p;

wire [7:0] p;

output [7:0] c ;

reg [7:0] c ;

reg [14:0] d;

reg [7:0] g8 ;

reg [7:0] g9 ;

reg [7:0] g10 ;

reg [7:0] g11 ;

reg [7:0] g12 ;

reg [7:0] g13 ;

reg [7:0] g14 ;

always @ (a or b or p)// g8, g9, g10, g11, g12, g13, g14

 begin

 // "d" will begin used as the calculation part (multiplication)

 d[0] = a[0]&b[0];

 d[1] = a[0]&b[1] ^ a[1]&b[0];

 d[2] = a[0]&b[2] ^ a[1]&b[1] ^ a[2]&b[0];

 d[3] = a[0]&b[3] ^ a[1]&b[2] ^ a[2]&b[1] ^ a[3]&b[0];

 d[4] = a[0]&b[4] ^ a[1]&b[3] ^ a[2]&b[2] ^ a[3]&b[1] ^ a[4]&b[0];

 d[5] = a[0]&b[5] ^ a[1]&b[4] ^ a[2]&b[3] ^ a[3]&b[2] ^ a[4]&b[1] ^ a[5]&b[0];

 d[6] = a[0]&b[6] ^ a[1]&b[5] ^ a[2]&b[4] ^ a[3]&b[3] ^ a[4]&b[2] ^ a[5]&b[1] ^ a[6]&b[0];

 d[7] = a[0]&b[7] ^ a[1]&b[6] ^ a[2]&b[5] ^ a[3]&b[4] ^ a[4]&b[3] ^ a[5]&b[2] ^ a[6]&b[1] ^ a[7]&b[0];

 d[8] = a[1]&b[7] ^ a[2]&b[6] ^ a[3]&b[5] ^ a[4]&b[4] ^ a[5]&b[3] ^ a[6]&b[2] ^ a[7]&b[1];

 d[9] = a[2]&b[7] ^ a[3]&b[6] ^ a[4]&b[5] ^ a[5]&b[4] ^ a[6]&b[3] ^ a[7]&b[2];

 d[10]= a[3]&b[7] ^ a[4]&b[6] ^ a[5]&b[5] ^ a[6]&b[4] ^ a[7]&b[3];

 d[11]= a[4]&b[7] ^ a[5]&b[6] ^ a[6]&b[5] ^ a[7]&b[4];

 d[12]= a[5]&b[7] ^ a[6]&b[6] ^ a[7]&b[5];

 d[13]= a[6]&b[7] ^ a[7]&b[6];

 d[14]= a[7]&b[7];

 // this part is used to calculate the galois field generated by

 // provided primitive polynomials p

 g8 = p;

 g9[0] = g8[7]&p[0];

 g9[1] = g8[7]&p[1] ^ g8[0];

 g9[2] = g8[7]&p[2] ^ g8[1];

 g9[3] = g8[7]&p[3] ^ g8[2];

 g9[4] = g8[7]&p[4] ^ g8[3];

 g9[5] = g8[7]&p[5] ^ g8[4];

 g9[6] = g8[7]&p[6] ^ g8[5];

 g9[7] = g8[7]&p[7] ^ g8[6];

 g10[0] = g9[7]&p[0];

 g10[1] = g9[7]&p[1] ^ g9[0];

 g10[2] = g9[7]&p[2] ^ g9[1];

 g10[3] = g9[7]&p[3] ^ g9[2];

 g10[4] = g9[7]&p[4] ^ g9[3];

Appendix B: Verilog Designs

188

 g10[5] = g9[7]&p[5] ^ g9[4];

 g10[6] = g9[7]&p[6] ^ g9[5];

 g10[7] = g9[7]&p[7] ^ g9[6];

 g11[0] = g10[7]&p[0];

 g11[1] = g10[7]&p[1] ^ g10[0];

 g11[2] = g10[7]&p[2] ^ g10[1];

 g11[3] = g10[7]&p[3] ^ g10[2];

 g11[4] = g10[7]&p[4] ^ g10[3];

 g11[5] = g10[7]&p[5] ^ g10[4];

 g11[6] = g10[7]&p[6] ^ g10[5];

 g11[7] = g10[7]&p[7] ^ g10[6];

 g12[0] = g11[7]&p[0];

 g12[1] = g11[7]&p[1] ^ g11[0];

 g12[2] = g11[7]&p[2] ^ g11[1];

 g12[3] = g11[7]&p[3] ^ g11[2];

 g12[4] = g11[7]&p[4] ^ g11[3];

 g12[5] = g11[7]&p[5] ^ g11[4];

 g12[6] = g11[7]&p[6] ^ g11[5];

 g12[7] = g11[7]&p[7] ^ g11[6];

 g13[0] = g12[7]&p[0];

 g13[1] = g12[7]&p[1] ^ g12[0];

 g13[2] = g12[7]&p[2] ^ g12[1];

 g13[3] = g12[7]&p[3] ^ g12[2];

 g13[4] = g12[7]&p[4] ^ g12[3];

 g13[5] = g12[7]&p[5] ^ g12[4];

 g13[6] = g12[7]&p[6] ^ g12[5];

 g13[7] = g12[7]&p[7] ^ g12[6];

 g14[0] = g13[7]&p[0];

 g14[1] = g13[7]&p[1] ^ g13[0];

 g14[2] = g13[7]&p[2] ^ g13[1];

 g14[3] = g13[7]&p[3] ^ g13[2];

 g14[4] = g13[7]&p[4] ^ g13[3];

 g14[5] = g13[7]&p[5] ^ g13[4];

 g14[6] = g13[7]&p[6] ^ g13[5];

 g14[7] = g13[7]&p[7] ^ g13[6];

 // this is the programable part based on the primitive polynomial

 c[0] = d[0] ^ d[8]&g8[0] ^ d[9]&g9[0] ^ d[10]&g10[0] ^ d[11]&g11[0] ^ d[12]&g12[0] ^ d[13]&g13[0] ^ d[14]&g14[0];

 c[1] = d[1] ^ d[8]&g8[1] ^ d[9]&g9[1] ^ d[10]&g10[1] ^ d[11]&g11[1] ^ d[12]&g12[1] ^ d[13]&g13[1] ^ d[14]&g14[1];

 c[2] = d[2] ^ d[8]&g8[2] ^ d[9]&g9[2] ^ d[10]&g10[2] ^ d[11]&g11[2] ^ d[12]&g12[2] ^ d[13]&g13[2] ^ d[14]&g14[2];

 c[3] = d[3] ^ d[8]&g8[3] ^ d[9]&g9[3] ^ d[10]&g10[3] ^ d[11]&g11[3] ^ d[12]&g12[3] ^ d[13]&g13[3] ^ d[14]&g14[3];

 c[4] = d[4] ^ d[8]&g8[4] ^ d[9]&g9[4] ^ d[10]&g10[4] ^ d[11]&g11[4] ^ d[12]&g12[4] ^ d[13]&g13[4] ^ d[14]&g14[4];

 c[5] = d[5] ^ d[8]&g8[5] ^ d[9]&g9[5] ^ d[10]&g10[5] ^ d[11]&g11[5] ^ d[12]&g12[5] ^ d[13]&g13[5] ^ d[14]&g14[5];

 c[6] = d[6] ^ d[8]&g8[6] ^ d[9]&g9[6] ^ d[10]&g10[6] ^ d[11]&g11[6] ^ d[12]&g12[6] ^ d[13]&g13[6] ^ d[14]&g14[6];

 c[7] = d[7] ^ d[8]&g8[7] ^ d[9]&g9[7] ^ d[10]&g10[7] ^ d[11]&g11[7] ^ d[12]&g12[7] ^ d[13]&g13[7] ^ d[14]&g14[7];

 end

endmodule

*/

/*

**************** T E S T B E N C H ******************

*/

module test();

reg [7:0] a,b;

reg [7:0] p;

wire [7:0] c;

GFmul_core toplevel (.a(a),.b(b),.p(p),.c(c)); //gfmult (.a(a), .b(b), .c(c))

initial

begin

 $set_toggle_region(toplevel);

 $toggle_start;

 #10

 p = 29;

 a = 99;

 b = 9;

 #10

 $display("*** ");

 $display("**************** T E S T B E N C H ****************** ");

 $display("*** ");

 $display("a used hex = %x, decimal = %d, binary = %b", a, a, a);

 $display("b used hex = %x, decimal = %d, binary = %b", b, b, b);

 $display(" ");

 $display("Polynomial used hex = %x, decimal = %d, binary = %b", p, p, p);

 $display("The calculated results => 92 decimal or 5c hex ");

 $display("Results: hex = %x, decimal = %d ", c, c); // [31:24], c[23:16], c[15:8], c[7:0]);

 $display("mult. 1 : %b or decimal : %d", c[7:0], c[7:0]);

Appendix B: Verilog Designs

189

 //$display("mult. 2 : %b or decimal : %d", c[15:8], c[15:8]);

 //$display("mult. 3 : %b or decimal : %d", c[23:16], c[23:16]);

 //$display("mult. 4 : %b or decimal : %d", c[31:24], c[31:24]);

 $display("*** ");

 #20

 p = 29;

 a = 255;

 b = 238;

 #15

 $display("*** ");

 $display("a used hex = %x, decimal = %d binary = %b", a, a, a);

 $display("b used hex = %x, decimal = %d binary = %b", b, b, b);

 $display(" ");

 $display("Polynomial used hex = %x, decimal = %d, binary = %b", p, p, p);

 $display("The calculated results => decimal: 86 or hex: 56 ");

 $display("Results: hex = %x, decimal = %d ", c, c);//[31:24], c[23:16], c[15:8], c[7:0]);

 $display("mult. 1 : %b or decimal : %d", c, c);

 //$display("mult. 2 : %b or decimal : %d", c[15:8], c[15:8]);

 //$display("mult. 3 : %b or decimal : %d", c[23:16], c[23:16]);

 //$display("mult. 4 : %b or decimal : %d", c[31:24], c[31:24]);

 $display("*** ");

 p = 29;

 a = 255;

 b = 212;

 #10

 $display("*** ");

 $display("a used hex = %x, decimal = %d binary = %b", a, a, a);

 $display("b used hex = %x, decimal = %d binary = %b", b, b, b);

 $display(" ");

 $display("Polynomial used hex = %x, decimal = %d, binary = %b", p, p, p);

 $display("The calculated results => decimal: 195 or hex: C3 ");

 $display("Results: hex = %x, decimal = %d ", c, c);//[31:24], c[23:16], c[15:8], c[7:0]);

 $display("mult. 1 : %b or decimal : %d", c, c);

 //$display("mult. 2 : %b or decimal : %d", c[15:8], c[15:8]);

 //$display("mult. 3 : %b or decimal : %d", c[23:16], c[23:16]);

 //$display("mult. 4 : %b or decimal : %d", c[31:24], c[31:24]);

 $display("*** ");

 p = 29;

 a = 0;

 b = 212;

 #10

 $display("*** ");

 $display("a used hex = %x, decimal = %d binary = %b", a, a, a);

 $display("b used hex = %x, decimal = %d binary = %b", b, b, b);

 $display(" ");

 $display("Polynomial used hex = %x, decimal = %d, binary = %b", p, p, p);

 $display("The calculated results => decimal: 0 or hex: 00 ");

 $display("Results: hex = %x, decimal = %d ", c, c);//[31:24], c[23:16], c[15:8], c[7:0]);

 $display("mult. 1 : %b or decimal : %d", c, c);

 //$display("mult. 2 : %b or decimal : %d", c[15:8], c[15:8]);

 //$display("mult. 3 : %b or decimal : %d", c[23:16], c[23:16]);

 //$display("mult. 4 : %b or decimal : %d", c[31:24], c[31:24]);

 $display("*** ");

 #100

 $toggle_stop;

 $toggle_report("gfmul_saif.out", 1.0e-9, "test.toplevel");

 $finish;

end

endmodule

B.3 RS ENCONDER DESIGN

//--
//

// Title : rs encoder

// Design : GFpmul
// Author : Ahmed El-Rayis

// Company : The University of Edinburgh

//
//---

//

// File : d:\My_Designs\ReedSolomon\GFpmul\src\GFmul_core.v

Appendix B: Verilog Designs

190

//

//---
//

// Description : RS Encoder

// [GF mul with programmable polynomial for gf(2^8)]
//

//---

`timescale 1ps / 1ps

 /*

module rs_encode(datain, enable, p, q0, q1, q2, q3, q4, q5, q6, q7,

 q8, q9, q10, q11, q12, q13, q14, q15, rst, clkin, gin0, gin1, gin2, gin3, gin4, gin5, gin6, gin7, gin8,

gin9, gin10, gin11, gin12, gin13, gin14, gin15);

//input:

input clkin;
input enable;

input rst;

input [7:0] datain;
input [7:0] gin0, gin1, gin2, gin3, gin4, gin5, gin6, gin7, gin8, gin9, gin10,

gin11, gin12, gin13, gin14, gin15;

input [7:0] p; // primitive polynomial

///////////////////

wire [7:0] m3, m4, m5, m6, m7, m8, m9, m10, m11, m12, m13, m14, m15;
wire [7:0] m2;

wire [7:0] m1;
wire [7:0] m0;

wire [7:0] z0;

wire [7:0] z1;
wire [7:0] z2;

wire [7:0] z3, z4, z5, z6, z7, z8, z9, z10, z11, z12, z13, z14, z15;

wire [7:0] bb, fback;
wire clk;

//output:
output [7:0] q0;

output [7:0] q1;

output [7:0] q2;
output [7:0] q3;

output [7:0] q4, q5, q6, q7, q8, q9, q10, q11, q12, q13, q14, q15;

assign clk = clkin & enable;

//

FF b0(z0, q0, rst, clk);

FF b1(z1, q1, rst, clk);
FF b2(z2, q2, rst, clk);

FF b3(z3, q3, rst, clk);

FF b4(z4, q4, rst, clk);

FF b5(z5, q5, rst, clk);

FF b6(z6, q6, rst, clk);
FF b7(z7, q7, rst, clk);

FF b8(z8, q8, rst, clk);
FF b9(z9, q9, rst, clk);

FF b10(z10, q10, rst, clk);

FF b11(z11, q11, rst, clk);

FF b12(z12, q12, rst, clk);

FF b13(z13, q13, rst, clk);
FF b14(z14, q14, rst, clk);

FF b15(z15, q15, rst, clk);

assign bb = 8'b00000000;

assign z0 = m0; //GFADD a0(bb, m0, z0);

GFADD a1(q0, m1, z1);

Appendix B: Verilog Designs

191

GFADD a2(q1, m2, z2);

GFADD a3(q2, m3, z3);
GFADD a4(q3, m4, z4);

GFADD a5(q4, m5, z5);

GFADD a6(q5, m6, z6);
GFADD a7(q6, m7, z7);

GFADD a8(q7, m8, z8);

GFADD a9(q8, m9, z9);
GFADD a10(q9, m10, z10);

GFADD a11(q10, m11, z11);

GFADD a12(q11, m12, z12);
GFADD a13(q12, m13, z13);

GFADD a14(q13, m14, z14);

GFADD a15(q14, m15, z15);

assign fback = q15 ^ datain;

GFmul_core u0 (fback, gin0, m0, p);

GFmul_core u1 (fback, gin1, m1, p);
GFmul_core u2 (fback, gin2, m2, p);

GFmul_core u3 (fback, gin3, m3, p);

GFmul_core u4 (fback, gin4, m4, p);

GFmul_core u5 (fback, gin5, m5, p);

GFmul_core u6 (fback, gin6, m6, p);
GFmul_core u7 (fback, gin7, m7, p);

GFmul_core u8 (fback, gin8, m8, p);

GFmul_core u9 (fback, gin9, m9, p);

GFmul_core u10(fback, gin10, m10, p);
GFmul_core u11(fback, gin11, m11, p);

GFmul_core u12(fback, gin12, m12, p);
GFmul_core u13(fback, gin13, m13, p);

GFmul_core u14(fback, gin14, m14, p);

GFmul_core u15(fback, gin15, m15, p);

endmodule

module GFADD(in1, in2, out);

 input [7:0] in1;
 input [7:0] in2;

 output [7:0] out;

 assign out = in1^in2;
endmodule

module FF(d, q, rst, clk);

 input [7:0] d;

 input clk;
 output [7:0] q;

 reg [7:0] out;

 input rst;
 always @(posedge clk or rst)

 if(rst) out <= 8'b00000000; else

 begin
 out <= #1 d;

 end

 assign q = out;
endmodule

/////////////////////////programmable mul///////////////////////////////////

module GFmul_core (a ,b ,c , p);

input [7:0] a ;

Appendix B: Verilog Designs

192

wire [7:0] a ;

input [7:0] b ;
wire [7:0] b ;

input [7:0] p;

wire [7:0] p;

output [7:0] c ;

reg [7:0] c ;

reg [14:0] d;

reg [7:0] g8 ;

reg [7:0] g9 ;

reg [7:0] g10 ;
reg [7:0] g11 ;

reg [7:0] g12 ;

reg [7:0] g13 ;
reg [7:0] g14 ;

always @ (a or b or p)// g8, g9, g10, g11, g12, g13, g14
 begin

 // "d" will begin used as the calculation part (multiplication)

 d[0] = a[0]&b[0];
 d[1] = a[0]&b[1] ^ a[1]&b[0];

 d[2] = a[0]&b[2] ^ a[1]&b[1] ^ a[2]&b[0];

 d[3] = a[0]&b[3] ^ a[1]&b[2] ^ a[2]&b[1] ^ a[3]&b[0];
 d[4] = a[0]&b[4] ^ a[1]&b[3] ^ a[2]&b[2] ^ a[3]&b[1] ^ a[4]&b[0];

 d[5] = a[0]&b[5] ^ a[1]&b[4] ^ a[2]&b[3] ^ a[3]&b[2] ^ a[4]&b[1] ^ a[5]&b[0];
 d[6] = a[0]&b[6] ^ a[1]&b[5] ^ a[2]&b[4] ^ a[3]&b[3] ^ a[4]&b[2] ^ a[5]&b[1] ^ a[6]&b[0];

 d[7] = a[0]&b[7] ^ a[1]&b[6] ^ a[2]&b[5] ^ a[3]&b[4] ^ a[4]&b[3] ^ a[5]&b[2] ^ a[6]&b[1] ^ a[7]&b[0];

 d[8] = a[1]&b[7] ^ a[2]&b[6] ^ a[3]&b[5] ^ a[4]&b[4] ^ a[5]&b[3] ^ a[6]&b[2] ^ a[7]&b[1];
 d[9] = a[2]&b[7] ^ a[3]&b[6] ^ a[4]&b[5] ^ a[5]&b[4] ^ a[6]&b[3] ^ a[7]&b[2];

 d[10]= a[3]&b[7] ^ a[4]&b[6] ^ a[5]&b[5] ^ a[6]&b[4] ^ a[7]&b[3];

 d[11]= a[4]&b[7] ^ a[5]&b[6] ^ a[6]&b[5] ^ a[7]&b[4];
 d[12]= a[5]&b[7] ^ a[6]&b[6] ^ a[7]&b[5];

 d[13]= a[6]&b[7] ^ a[7]&b[6];

 d[14]= a[7]&b[7];

 // this part is used to calculate the galois field generated by

 // provided primitive polynomials p

 g8 = p;

 g9[0] = g8[7]&p[0];
 g9[1] = g8[7]&p[1] ^ g8[0];

 g9[2] = g8[7]&p[2] ^ g8[1];

 g9[3] = g8[7]&p[3] ^ g8[2];
 g9[4] = g8[7]&p[4] ^ g8[3];

 g9[5] = g8[7]&p[5] ^ g8[4];

 g9[6] = g8[7]&p[6] ^ g8[5];
 g9[7] = g8[7]&p[7] ^ g8[6];

 g10[0] = g9[7]&p[0];
 g10[1] = g9[7]&p[1] ^ g9[0];

 g10[2] = g9[7]&p[2] ^ g9[1];

 g10[3] = g9[7]&p[3] ^ g9[2];
 g10[4] = g9[7]&p[4] ^ g9[3];

 g10[5] = g9[7]&p[5] ^ g9[4];

 g10[6] = g9[7]&p[6] ^ g9[5];
 g10[7] = g9[7]&p[7] ^ g9[6];

 g11[0] = g10[7]&p[0];
 g11[1] = g10[7]&p[1] ^ g10[0];

 g11[2] = g10[7]&p[2] ^ g10[1];

 g11[3] = g10[7]&p[3] ^ g10[2];
 g11[4] = g10[7]&p[4] ^ g10[3];

 g11[5] = g10[7]&p[5] ^ g10[4];

 g11[6] = g10[7]&p[6] ^ g10[5];
 g11[7] = g10[7]&p[7] ^ g10[6];

 g12[0] = g11[7]&p[0];

Appendix B: Verilog Designs

193

 g12[1] = g11[7]&p[1] ^ g11[0];

 g12[2] = g11[7]&p[2] ^ g11[1];
 g12[3] = g11[7]&p[3] ^ g11[2];

 g12[4] = g11[7]&p[4] ^ g11[3];

 g12[5] = g11[7]&p[5] ^ g11[4];
 g12[6] = g11[7]&p[6] ^ g11[5];

 g12[7] = g11[7]&p[7] ^ g11[6];

 g13[0] = g12[7]&p[0];

 g13[1] = g12[7]&p[1] ^ g12[0];

 g13[2] = g12[7]&p[2] ^ g12[1];
 g13[3] = g12[7]&p[3] ^ g12[2];

 g13[4] = g12[7]&p[4] ^ g12[3];

 g13[5] = g12[7]&p[5] ^ g12[4];
 g13[6] = g12[7]&p[6] ^ g12[5];

 g13[7] = g12[7]&p[7] ^ g12[6];

 g14[0] = g13[7]&p[0];

 g14[1] = g13[7]&p[1] ^ g13[0];

 g14[2] = g13[7]&p[2] ^ g13[1];
 g14[3] = g13[7]&p[3] ^ g13[2];

 g14[4] = g13[7]&p[4] ^ g13[3];

 g14[5] = g13[7]&p[5] ^ g13[4];
 g14[6] = g13[7]&p[6] ^ g13[5];

 g14[7] = g13[7]&p[7] ^ g13[6];

 // this is the programable part based on the primitive polynomial

 c[0] = d[0] ^ d[8]&g8[0] ^ d[9]&g9[0] ^ d[10]&g10[0] ^ d[11]&g11[0] ^ d[12]&g12[0] ^ d[13]&g13[0] ^

d[14]&g14[0];

 c[1] = d[1] ^ d[8]&g8[1] ^ d[9]&g9[1] ^ d[10]&g10[1] ^ d[11]&g11[1] ^ d[12]&g12[1] ^ d[13]&g13[1] ^
d[14]&g14[1];

 c[2] = d[2] ^ d[8]&g8[2] ^ d[9]&g9[2] ^ d[10]&g10[2] ^ d[11]&g11[2] ^ d[12]&g12[2] ^ d[13]&g13[2] ^

d[14]&g14[2];
 c[3] = d[3] ^ d[8]&g8[3] ^ d[9]&g9[3] ^ d[10]&g10[3] ^ d[11]&g11[3] ^ d[12]&g12[3] ^ d[13]&g13[3] ^

d[14]&g14[3];

 c[4] = d[4] ^ d[8]&g8[4] ^ d[9]&g9[4] ^ d[10]&g10[4] ^ d[11]&g11[4] ^ d[12]&g12[4] ^ d[13]&g13[4] ^
d[14]&g14[4];

 c[5] = d[5] ^ d[8]&g8[5] ^ d[9]&g9[5] ^ d[10]&g10[5] ^ d[11]&g11[5] ^ d[12]&g12[5] ^ d[13]&g13[5] ^

d[14]&g14[5];
 c[6] = d[6] ^ d[8]&g8[6] ^ d[9]&g9[6] ^ d[10]&g10[6] ^ d[11]&g11[6] ^ d[12]&g12[6] ^ d[13]&g13[6] ^

d[14]&g14[6];

 c[7] = d[7] ^ d[8]&g8[7] ^ d[9]&g9[7] ^ d[10]&g10[7] ^ d[11]&g11[7] ^ d[12]&g12[7] ^ d[13]&g13[7] ^
d[14]&g14[7];

 end
endmodule

 */

/*

**************** T E S T B E N C H ******************
*/

module test();

reg [7:0] inputdata [0:238]; //767

reg [7:0] out_expected[0:15]; //767

reg clk;

Appendix B: Verilog Designs

194

reg rst;

wire [7:0] q0;

wire [7:0] q1;

wire [7:0] q2;
wire [7:0] q3;

wire [7:0] q4, q5, q6, q7, q8, q9, q10, q11, q12, q13, q14, q15;

parameter period = 2; // Set clock period 10nsto 100MHz 2ns 500MHz

parameter delay = 100;
parameter width = 16;

parameter tap = 73;

parameter length = 1000; //16 short 16000 long

reg clkin;
reg enable;

//reg rst;

reg [7:0] datain;
reg [7:0] p; // primitive polynomial

reg [7:0] data_out [0:15];

reg [7:0] gin0, gin1, gin2, gin3, gin4, gin5, gin6, gin7, gin8,
gin9, gin10, gin11, gin12, gin13, gin14, gin15;

integer i ,j ,f1;

rs_encode toplevel (.datain(datain),

 .enable(enable),
 .p(p),

 .q0(q0), .q1(q1), .q2(q2), .q3(q3), .q4(q4), .q5(q5), .q6(q6), .q7(q7),

 .q8(q8), .q9(q9), .q10(q10), .q11(q11), .q12(q12), .q13(q13), .q14(q14), .q15(q15),
 .rst(rst),

 .clkin(clkin), .gin0(gin0), .gin1(gin1), .gin2(gin2), .gin3(gin3), .gin4(gin4), .gin5(gin5),

 .gin6(gin6), .gin7(gin7), .gin8(gin8), .gin9(gin9), .gin10(gin10), .gin11(gin11), .gin12(gin12),
 .gin13(gin13), .gin14(gin14), .gin15(gin15));

 initial

 fork

 clkin <= 0;
 forever #(period/2) clkin = !clkin; // creates clock of period "period"

 join

 // always @(posedge clk)
 initial

 begin

 $readmemb("rs_encoder_input_239.dat", inputdata); //deinterleaver_BPSK1_12ch.dat
 $readmemb("rs_encoder_output_16_calc.dat", out_expected);

 f1 = $fopen("rs_encoder_output_16_real.dat");

 $display(" ***************** R S E n c o d e r with G F M U L - S i n g l e *********");
 end

initial
begin

 $set_toggle_region(toplevel);

 $toggle_start;

 #10

 p = 29;
 gin0 = 'd79 ;

 gin1 = 'd44 ;

 gin2 = 'd81 ;
 gin3 = 'd100;

 gin4 = 'd49 ;

 gin5 = 'd183;
 gin6 = 'd56 ;

 gin7 = 'd17 ;

 gin8 = 'd232;

Appendix B: Verilog Designs

195

 gin9 = 'd187;

 gin10= 'd126;
 gin11= 'd104;

 gin12= 'd31 ;

 gin13= 'd103;
 gin14= 'd52 ;

 gin15= 'd118;

 i = 'b0;
 j = 'b0;

 //datain = 99;
 enable = 0;

 ////////////////////////////////adjust =>

 #10
 #10 rst = 1'b0; i = 0; j = 0;

 #50 enable = 1'b1;

 #(delay) rst = 1'b1;
 #(period) rst = 1'b0;

 #10 // config_bits = 5'b00101;//12//0_1001;// 384 QPSK 16

 #(period) // en = 1'b1; //0_0001 12 BPSK 1
 // assign datain = {inputdata[j]}; //:j+1]; //by me

 //assign data_in = inputdata[
 #600

// #(period*tap*length)
// #(period) enable=1'b0;

 #(period) rst=1'b1;

// #(period)
 $toggle_stop;

 $toggle_report("rsenc_saif.out", 1.0e-9, "test.toplevel");

 $finish;

 end // initial begin

/*

initial
 begin

 $dumpfile("simulation.rtl.vcd");

 $dumpvars;
 end

*/

 always @(posedge clkin)
 begin

 if ((rst == 1'b0) && (enable == 1'b1))

 begin
 if (j <239)

 begin

 datain = {inputdata[j]};
 $display("inputdata[%d] = %d",j, inputdata[j]);

 end

 if ((j == 239))
 begin

 // i <= i+1; //for output data

 $display("*** ");

 $display("**************** T E S T B E N C H ****************** ");

 $display("*** ");
 data_out [15] = q15;

 data_out [14] = q14;

 data_out [13] = q13;
 data_out [12] = q12;

 data_out [11] = q11;

 data_out [10] = q10;

Appendix B: Verilog Designs

196

 data_out [9] = q9;

 data_out [8] = q8;
 data_out [7] = q7;

 data_out [6] = q6;

 data_out [5] = q5;
 data_out [4] = q4;

 data_out [3] = q3;

 data_out [2] = q2;
 data_out [1] = q1;

 data_out [0] = q0;

 end
 if ((i < 'd16) && (j >= 'd239))

 begin

 if ((data_out[i] == out_expected[i]))
 begin

 $fwrite(f1, "%b %b PASS\n", data_out[i], out_expected[i]);

 $display("Ahmed %d-%d : %d O: %b Exp: %b PASS OK\n", i,j, $time, data_out[i],
out_expected[i]);

 end

 else
 begin

 $fwrite(f1, "%b %b FAIL\n", data_out[i], out_expected[i]);

 $display("failure %d-%d : %d O: %b Exp: %b FAIL X x\n", i,j, $time, data_out[i],
out_expected[i]);

 end

 i <= i+1; //for output data
 end

 j <= j + 1; //for input data

 end

 end

endmodule

	PhD coversheet April 2012
	THESIS_A.O.El-Rayis_PhD_2014_FINAL
	acronyms

