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  ABSTRACT 
 

 

Mobile devices have become a dominant tool in our daily lives. Business and 

personal usage has escalated tremendously since the emergence of smartphoness 

and tablets. The combination of powerful processing in mobile devices, such as 

smartphoness and the Internet, have established a new era for communications 

systems. This has put further pressure on the performance and efficiency of 

telecommunications systems in delivering the aspirations of users. Mobile device 

users no longer want devices that merely perform phone calls and messaging. 

Rather, they look for further interactive applications such as video streaming, 

navigation and real time social interaction. Such applications require a new set of 

hardware and standards. The WiFi (IEEE 802.11) standard has been at the forefront 

of reliable and high-speed internet access telecommunications. This is due to its 

high signal quality (quality of service) and speed (throughput). However, its limited 

availability and short range highlights the need for further protocols, in particular 

when far away from access points or base stations. This led to the emergence of 3G 

followed by 4G and the upcoming 5G standard that, if fully realised, will provide 

another dimension in “anywhere, anytime internet connectivity.” On the other 

hand, the WiMAX (IEEE 802.16) standard promises to exceed the WiFi signal 

coverage range. The coverage range could be extended to kilometres at least with a 

better or similar WiFi signal level.  

This thesis considers a dynamically reconfigurable architecture that is capable of 

processing various modules within telecommunications systems. Forward error 

correction, coder and navigation modules are deployed in a unified low power 

communication platform. These modules have been selected since they are among 

those with the highest demand in terms of processing power, strict processing time 

or throughput. The modules are mainly realised within WiFi and WiMAX systems 

in addition to global positioning systems (GPS). The idea behind the selection of 

these modules is to investigate the possibility of designing an architecture capable 
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of processing various systems and dynamically reconfiguring between them. The 

GPS system is a power-hungry application and, at the same time, it is not needed 

all of the time. Hence, one key idea presented in this thesis is to effectively exploit 

the dynamic reconfiguration capability so as to reconfigure the architecture (GPS) 

when it is not needed in order to process another needed application or function 

such as WiFi or WiMAX. This will allow lower energy consumption and the 

optimum usage of the hardware available on the device. 

This work investigates the major current coarse-grain reconfigurable architectures. 

A novel multi-rate convolution encoder is then designed and realised as a 

reconfigurable fabric. This demonstrates the ability to adapt the algorithms 

involved to meet various requirements. A throughput of between 200 and 800 

Mbps has been achieved for the rates 1/2 to 7/8, which is a great achievement for 

the proposed novel architecture. A reconfigurable interleaver is designed as a 

standalone fabric and on a dynamically reconfigurable processor. High throughputs 

exceeding 90 Mbps are achieved for the various supported block sizes. The Reed 

Solomon coder is the next challenging system to be designed into a dynamically 

reconfigurable processor. A novel Galois Field multiplier is designed and 

integrated into the developed Reed Solomon reconfigurable processor. As a result 

of this work, throughputs of 200Mbps and 93Mbps respectively for RS encoding 

and decoding are achieved. A GPS correlation module is also investigated in this 

work. This is the main part of the GPS receiver responsible for continuously 

tracking GPS satellites and extracting messages from them. The challenging aspect 

of this part is its real-time nature and the associated critical time constraints. This 

work resulted in a novel dynamically reconfigurable multi-channel GPS correlator 

with up to 72 simultaneous channels. 

This work is a contribution towards a global unified processing platform that is 

capable of processing communication-related operations efficiently and 

dynamically with minimum energy consumption.  
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Chapter 1 

1 INTRODUCTION 

 

 

1.1 Motivation 

 

Telecommunications systems are integrated into almost every consumer device. 

They can be found in cars, wristwatches and, lately, in spectacles. The most 

obvious example is mobile devices and, in particular, Smartphones. Consumers 

expect their smartphone to be compact and condensed with functions. Its most 

important features are the telecommunications functions. Communication protocols 

range widely from WiMAX (IEEE 802.16) and WiFi (IEEE 802.11) to 3G, 4G and 

the upcoming 5G. In addition, there are essential communication systems such as 

GPS (Global Positioning System) for location services. All these functions require 

dedicated processors with high performance.  

Power consumption is a key challenge in mobile devices. It has been widely 

observed that the smartphones suffer from shorter battery life. This is mainly due to 

the all-time connectivity to the internet and all active communication services with 

classic processors. Therefore, the main motivation of this work is to try to reduce 

the energy consumption on such devices. A two-fold approach has been chosen: 

firstly, using a reconfigurable architecture for the realisation of a communication 

system; and secondly, making this architecture dynamically reconfigurable. The 

dynamism will not only allow functions to be reprogrammable but the architecture 

will also be dynamically reconfigurable in order to process another function. This 

work includes the design of key functions of communication systems into 

dynamically reconfigurable processor in order to reduce power consumption. 

Furthermore, the processor could switch or reconfigure from one communication 

system to another. This will create savings in area and power consumption and 
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enable the use of dynamically reconfigurable or programmable baseband 

processors.  

Key functions within the communication systems of WiFi, WiMAX and GPS have 

been identified as challenging in terms of processing time, power or resources. 

Furthermore, they are certainly challenging in terms of the various modes, options 

or configurations that such functions or modules are required to support. Hence, the 

following modules or functions have been considered in this work. Firstly, 

convolution, puncturing and de-puncturing are co-located modules that have to 

support multiple rates in WiFi as well as WiMAX systems. Secondly, interleaver 

and de-interleaver have multiple block sizes; and finally, Reed Solomon encoder 

and decoder have different block sizes and various primitive polynomials as well as 

correction capabilities and the associated challenges. All the above-mentioned 

functions are constrained in throughput for the transmitter part to be up to at least 

70Mbps. In addition, the GPS correlation function is challenging in terms of both 

processing and time constraints. Figure 1-1 presents general block diagram of the 

 
 

Figure 1-1 General block diagrams of WiMAX/WiFi transmitter and receiver in addition to 
GPS receiver. The hashed blocks are the subject of this thesis 
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WiFi and WiMAX transmitter and receiver along with the GPS receiver. The 

hashed blocks are the ones being considered and studied in this work. 

1.2 Contribution 

 

The main contribution of this work is to design reconfigurable processors that 

could be exploited to implement various telecommunications functions using 

dynamically reconfigurable architectures.  

A novel reconfigurable architecture that provides a multi-rate punctured 

convolution coder is introduced (Chapter 3). This architecture incorporates both 

convolution and puncturing and can be used in wire/wireless communication 

systems. The convolution-punctured multi-rate architecture has achieved a superior 

throughput of 100 Mbps for all the required rates. Although the main architecture is 

the core, which provides the concatenated convolution-punctured code, 

reconfigurable input and output interfaces were designed and added to broaden the 

usability of this reconfigurable fabric. The main advantage of this architecture is 

that a single clock cycle is sufficient to provide the parallel convolution punctured 

code for its parallel inputs, which can be used to maximise the throughput of the 

whole transmitter system. 

A novel reconfigurable interleaver is also presented (Chapter 4). The target 

application was the WiMAX standard with its sophisticated block size system. The 

interleaver has been researched and designed with a reconfigurable fabric 

architecture and dynamically reconfigurable instruction cell-based architecture 

(RICA). The interleaver throughput as a reconfigurable fabric satisfies the standard 

requirements, while on RICA the throughput as well as the dynamic power 

consumption are superior to the fabric realisation and other ASIC realisations. 

These results are a step forward toward a fully reconfigurable baseband 

telecommunications system. Moreover, the results represent a promising step 

toward integrating the whole WIMAX system on a dynamically reconfigurable 

architecture. 
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A novel Reed Solomon (RS) encoder architecture with parallel parity output is also 

introduced (Chapter 5). A novel high-speed and low-power 4x8-bit Galois Field 

(GF) multiplier cell is embedded within the novel low-power processor. A 

programmable Reed Solomon coding processor is introduced along with its design, 

optimisation and implementation. The real-time programmable RS encoder and 

decoder processor supports several communication standards, such as WiMAX and 

DVB-H. A number of approaches and optimisation techniques have been 

implemented in order to enhance the processor performance. The processor 

achieves high throughput and provides significant improvements in performance 

and energy consumption. The novel dedicated GF multiplier cell leads to a 

reduction in memory access energy of 72.4%, which improves the overall 

performance of the processor. Different design approaches and optimisation 

techniques have been applied in order to improve the processor throughput and 

reduce its energy consumption. The throughputs achieved are up to 200 Mbps and 

92 Mbps for the encoder and decoder respectively. The associated dynamic energy 

consumption is in the range of 0.34 to 0.6µJ, demonstrating a design suitable for 

present and future telecommunications systems. 

Furthermore, a novel engine is presented based on the dynamically programmable 

platform (RICA) targeting the computationally intensive correlation function used 

in GPS-based positioning (Chapter 6). Various optimisation techniques have been 

exploited in order to achieve the best performance on the platform. In addition, 

modified correlation architectures are introduced, which demonstrate superiority in 

terms of correlation time and energy consumption. Furthermore, the bitwise 

optimisation technique has been applied for digital matched filters, which 

demonstrate the maximum utilisation of the architecture leading to a higher 

correlation speed of 62 μs for 1023 phase search correlations. Comparisons of the 

achieved results and other relevant architectural configurations are presented, 

showing that this work is a promising step towards high-speed, ultra-low-energy 

GPS receivers. 
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A novel optimised multi-correlation processor is then introduced (Chapter 7). It is 

concluded that, for the practical realisation of the multi-correlation engine, “Engine 

2” and “Engine 3” provide the optimum solutions where 12 and 72 parallel 

correlation channels respectively are being calculated. Moreover, a compromise 

could be achieved through having an engine of three instead of six embedded 

“Engine 2”, which is the case in “Engine 3A”. The new “Engine 3A” would 

provide 36 parallel correlations. This work represents a step forward in the area of 

dynamically reconfigurable architectures and correlation systems. 

 

The contributions above taken together show how a dynamically reconfigurable 

architecture can be used to dynamically reconfigure a device to perform the desired 

function at any given time. For example, if the WiFi system is on and then the 

mobile device moves out of the WiFi signal range, the processor will dynamically 

reconfigure the device to work as a WiMAX system. Then if the present location 

needs to be known, dynamic reconfiguration can get GPS positioning information 

before switching back to WiMAX or another function. These possibilities clearly 

show the potential power of dynamic reconfiguration for the next generation of 

mobile devices. In particular, this can be very effective for miniature systems such 

as wearable devices.  

1.3 Structure 

 

The structure of this thesis is as follows: 

 Chapter 2 presents a review of research work in the area of reconfigurable 

architectures with a focus on their suitability for telecommunications 

systems 

 Chapter 3 describes the reconfigurable architecture introduced so far that 

provide multi-rate punctured convolution coders. 

 Chapter 4 presents a novel reconfigurable interleaver and its design as a 

reconfigurable fabric and on a dynamically reconfigurable architecture. 
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 Chapter 5 discuses the novel high-speed and low-power 4x8-bit Galois 

Field (GF) multiplier cell embedded within the novel low-power processor 

for programmable Reed Solomon coding, along with its design, 

optimisation and implementation. 

 Chapter 6 presents a novel engine based on the dynamically programmable 

platform targeting the computationally intensive correlation functions used 

in GPS-based positioning systems. 

 Chapter 7 discusses the multi-engine correlation and introduces the novel 

optimised multi-correlation processor. 

 Chapter 8 gives a summary of and the conclusions drawn from the work. 

 Appendix A contains the Matlab codes focusing mainly on the interleaver. 

 Appendix B contains the Verilog code for the interleaver, GF cell and RS 

coder. 

 

1.4 Summary of Contribution 

 

 Proposed multi-rate punctured convolution coder with 100 Mbps 

throughput (Chapter 3). 

 WiMAX interleaver reconfigurable fabric and WiMAX interleaver on 

dynamically reconfigurable architecture (Chapter 4). 

 Proposed RS encoder architecture with parallel parity output (Chapter 5). 

 Novel high-speed and low-power 32 bit GF multiplier cell (Chapter 5). 

 Novel real-time low power processor for programmable Reed Solomon 

codec (Chapter 5). 

 Modified matched filter designs (Chapter 6). 

 Novel GPS correlation engine (Chapter 6). 

 Multi-correlation GPS engine for 12 and up to 72 parallel correlations 

(Chapter 7) 
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Chapter 2 
 

2 RECONFIGURABLE ARCHITECTURES 

 

 

 

2.1 Introduction 

 

The development of mobile devices has challenged hardware designers to come up 

with suitable architectures. Challenges such as power consumption, flexibility, 

processing power and area are likely to lead to the need for a reconfigurable 

architecture to cater for the growing demands made of mobile devices and to suit 

the needs of the next generation of devices. Parallelism and multifunction in real-

time will be the minimum required characteristics of the architectures of such 

devices. This chapter reviews the currently available reconfigurable architectures. 

The focus here is on coarse-grain reconfigurable architectures, with particular 

attention to those which support dynamic reconfiguration with low-power 

consumption. The capacity for dynamic reconfiguration will be a key factor in 

defining the most suitable architecture for future generations of mobile devices. 

This chapter describes existing reconfigurable platforms. Their principles of 

operation, architectures and structures are discussed highlighting their advantages 

and disadvantages. Various coarse-grain reconfigurable architectures are discussed 

along with their improvement with time. Finally the key characteristics which are 

required for a reconfigurable architecture to be suitable for telecommunication 

systems are identified and these are then the subjects of the following chapters in 

this work. A comparison is given of for the various architectures discussed in terms 

of suitability for telecommunications applications. The selected architecture will be 

the subject pursued in this work.  
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2.2 Background 

 

The origins of reconfigurable computing date back to the 1960s, the concepts 

proposed by Gerald Estrin [1]. The first FPGA (field programmable gate array) was 

introduced by Carter et al [2]. Before the 1980s, software programmed 

microprocessors were the only available resource for providing flexibility. The 

emergence of the FPGA changed this situation. Configuration bits changes the 

hardware realisation in FPGA as software instructions is programming the 

processor. This led to another definition of reconfigurable computing, as a system 

incorporating programmable logic to customise existing hardware. Programmable 

logic is connected by flexible interconnects which can be changed periodically to 

execute different implementations on the same hardware, thus providing an ASIC 

(application-specific integrated circuit) solution with post-fabrication 

programmability. 

The FPGA consists of two main components, which are logic blocks and 

interconnections or switches as illustrated in Figure 2-1. The programmable logic 

blocks can be programmed along with the interconnections or switched array to 

perform a certain logic function. The programmable logic block of one of the 

leading FPGA manufacturers, Xilinx consists of a 3-input look-up table (LUT), a 

multiplexer and a flip-flop in its basic building block [3]. Nowadays, Xilinx’s 

series seven includes more complicated FPGAs with embedded processors, large 

 
 

Figure 2-1 FPGA building block - Xilinx 
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memory blocks and even transceivers along with various interface protocols [4]. 

The FPGA is a fine-grain reconfigurable architecture where it is based on a single 

bit operation. FPGAs require a high volume of configuration data, and the mapping 

functions are difficult and require specific skills. 

The FPGA has various advantages, such as quick prototyping, speedy development 

and clear basic blocks. However, it is obvious that it has various drawbacks, such 

as being fine-granular. This property means that configuration data are 

complicated, which as a consequence leads to the need for a large configuration 

memory. This in turn increases the power consumption, area and design 

complexity. 

Architectures that use FPGA-based coprocessor along with a general purpose 

processor are capable in processing complex algorithms [5]-[7]. However, this type 

of configuration has two main drawbacks. Firstly, a wider datapath requires a large 

area and longer delays occur due to the small width of the programmable logic 

block and secondly FPGAs have lower logic density and are slower than a custom 

ASIC [8]. 

In coarse-grain architectures, the datapath ranges from 2 to 32 bits or more. The 

selection of the datapath width is a trade-off between flexibility, efficiency and 

programmability. The main advantage of a reconfigurable processor or functional 

unit is the ability to customise hardware for the requirements a specific algorithm 

or function. 

2.3 General, DSP, Fine and Coarse Processors 

 

Multiprocessors or multi-core systems are increasingly introduced in personal 

computing and smart mobile devices. There have been several approaches to the 

enhancement of general-purpose architectures in order to increase performance, 

such as the SIMD (single instruction, multiple data), MIMD (multiple instructions, 

multiple data) and VLIW (very long instruction word) methods.  
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Reconfigurable computation can enable increased computational performance and 

lower energy consumption. Configurable computing combines the performance of 

application-specific hardware with the reprogrammability of general-purpose 

computers [9]. The FPGA may have advantages in reconfigurable computing; 

however, it is based on a single bit which limits its capabilities compared to ASIC. 

Such limitations can include low arithmetic density, reduced clock speeds, and low 

internal RAM density and bandwidth, as well as the cost of higher reconfiguration 

times. This is in addition to the large power consumption and large area, which are 

crucial parameters in today’s and tomorrow’s compact designs [10]. 

Figure 2-2 presents a distribution of the computation architectures in relation to 

flexibility, area, power consumption and performance. It is clear that ASIC is best 

in terms of performance and having the lowest power consumption and area, while 

on the other hand the general purpose processor has the highest flexibility but also 

suffers having being the highest power consumption, lowest performance and 

largest area. The focus in this chart is the highlighted dotted rectangle at the bottom 

right-hand side, where low power consumption and area are the main 

characteristics. From the point of view of flexibility within this zone, then the 

coarse-grain reconfigurable architecture gives the best of both worlds in terms of 

power consumption, flexibility, area and function diversity. This would appear to 

be the privileged space for architectures that could satisfy the requirements of 
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Figure 2-2 Computation architecture characteristics 
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mobile communication systems. 

From the point of view of functional diversity microprocessors or general purpose 

processors can achieve more functions than FPGA and other reconfigurable 

architectures. On the other hand, a reconfigurable architecture can achieve higher 

performance than processors on highly repetitive computing tasks with limited 

functional diversity [5]. 

The rapid increase in demand for computation load has resulted in a number of 

accelerator styles. These can take the form of specialised extended instruction-

specific processors, custom hardware, intense kernel codes, and reconfigurable 

computing. Such accelerators can be implemented as independent processors, co-

processors or customised IP [10]. 

Wireless applications need processing modules that simultaneously demonstrate 

high computational performance, ultra-low-power consumption and a high degree 

of flexibility and adaptability. Reconfigurability is a necessity in the presence of 

multiple and evolving standards in dynamic conditions. The computing challenges 

for mobile devices are area, power and computing power efficiency. 

To increase computing power, approaches such as larger processors, dedicated 

fabrics with application-specific cores, and reconfigurable computing have been 

considered. Most computationally complex applications spend 90% of their 

execution time on only 10% of their code [19]. 

 

2.3.1 Reconfigurable Computing Classes 

As mentioned earlier, a key interest in discussing reconfigurable architectures is 

their capacity for reconfiguration and their flexibility. From the literature, it is clear 

that there are different types of reconfiguration. In partial reconfiguration (PR) only 

a part of the reconfigurable fabric is reconfigured and there are two types, static and 

dynamic. The meaning of static partial reconfiguration (SPR) is clear from its 

name; however, dynamic partial reconfiguration (DPR) usually requires an external 

configuration control module. An improvement upon DPR is dynamic partial self-

reconfiguration (DPSR), which does not require an external configuration control 
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module. Various reconfigurable architectures are discussed in the following 

sections. 

2.4 Coarse Grain Reconfigurable Architectures 

Reconfigurable architectures are discussed in this section and their suitability for 

communication systems is considered. 

2.4.1 CRISP: A Coarse-Grained Reconfigurable Instruction Set 
Processor 

Francisco et al. [13] presented a coarse-grain reconfigurable processor named 

CRISP, which consists of a processor and a reconfigurable logic. Thus it is based 

on the concept of a co-processor for the reconfiguration part or as an add-on 

functional unit. The architecture is illustrated in Figure 2-3. The reconfiguration 

functional unit is activated through a special reconfigurable instruction from the 

main processor. The architecture targets multimedia applications, with performance 

 
 

Figure 2-3 CRISP architecture construction of processor and a reconfigurable functional 
unit [13] 
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claimed by the authors to be 2.5 times that of a RISC processor with an 18% energy 

overhead [13]. 

This architecture operates on 8 to 32 bits. The reconfigurable logic in this 

architecture consists of reconfigurable slices. Each slice contains several processing 

elements (PEs), a register file, a programmable interconnect and a small 

configuration memory. The internal elements of the single reconfigurable slice are 

shown in Figure 2-3. Each PE can be an ALU (arithmetic logic unit), a shifter, 

multiplier or memory unit. The interconnection used in this architecture is a full 

crossbar. 

The CRISP architecture is novel in that its reconfigurable part is based on two 

levels or layers, the slice and PE layers. From one point of view, this appears to be 

incompatible to other mainstream reconfigurable architectures where usually the 

first layer is the PE and underneath it can be another layer. However, from a power 

savings point of view it is an interesting concept, since the inactive slice will be 

turned off completely along with all embedded PEs. From the programmability, 

mapping and computation distribution points of view, it appears that it is quite 

complex to realise functions on this architecture. The slices appear to be integrated 

reconfigurable processors where, by default, the results of all PEs have to be 

written into the register file of the slice prior to interaction with the outer world 

such as other slices, memory or the main processor. The authors claim that the 

interconnections could be configured in such a way as to allow direct interactions 

between PEs within different slices [5] and [13]. The realisation of this will be 

complex from a mapping point of view and costly in terms of configuration time. In 

conclusion, the architecture is appealing for its power saving ability when unused 

 
 

Figure 2-4 Reconfigurable slice internal structure [13] 
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slices are disabled and its ability to execute loops with multi-integrated 

configurations. The cost arising from the latter is degraded performance if the 

number of configurations would surpasses configuration cache limitations. 

 

2.4.2 Systolic Ring Architecture 

The systolic ring architecture is a coarse-grained arithmetic block which includes a 

custom RISC (reduced instruction set computing) processor [14]. The role of the 

processor here is to dynamically configure the architecture and control dataflow at 

the operative layer. The architecture is divided into operation and configuration 

layers, as illustrated in Figure 2-5. The operation layer is the reconfiguration part 

where the processing elements reside, while the configuration layer consists of 

RAM that holds the configuration information which resembles a FPGA. The RAM 

contents change every clock cycle. 

The PE of this architecture is called the Dnode (data node). It consists of an ALU, 

datapath components and a few registers. It is configured using micro instruction 

code. Figure 2-6 demonstrates the PE or Dnode architecture. Each Dnode has two 

execution modes, normal and standalone. In normal mode, the Dnode is in 

operation where it follows the micro-instruction code. The stand-alone mode allows 

the Dnode to take up to six clock cycles to process data or instructions located 

internally in its own seven registers. 

This architecture is called a “ring” due to the fact that the Dnodes are arranged in a 

ring style or pipelined systolic structure. Each two adjacent Dnodes create a layer 

and can interact with neighbouring layers through the switches shown in Figure 2-

7. The length of the structure is the number of layers, and its width is the number of 

Dnodes per layer. 

In this architecture the datapath (dataflow) is separated from data feedback or 

Dnode results. Data feedback passes through isolated dedicated pipelines through 

the switches as seen in Figure 2-7. Its designers claim that this technique of 

separation dramatically reduces routing problems and supports the architecture 

scalability [14]. It is clear that this architecture imitates the FPGA in having 
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operational CLBs and a configuration layer which is usually a large SRAM. This 

architecture is a clear step forward for coarse-grain reconfiguration and its 

interconnection principle is interesting. However, mapping would be a complicated 

task given the complex ring structure used for the connections. Most importantly, 

the usage of RAM will clearly increase area and power consumption of the 

architecture. Also the architecture is clearly complex from an implementation point 

of view, due to the need for an embedded RISC processor within the architecture 

just to drive the configuration, while the whole architecture has to interface with an 

external processor in order to act as a co-processor as illustrated in Figure 2-5. 

2.4.3 MATRIX Architecture 

 

The MATRIX (multiple ALU architecture with reconfigurable interconnect 

experiment) architecture is built according to an application-specific methodology, 

aiming to be suitable for general purpose applications [15]-[16].  

 
 

Figure 2-5 The Ring architecture layout [14] 
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Figure 2-6 Dnode architecture [14] 

 

 

 

 
 

Figure 2-7 Ring style for Dnode interconnections [14] 
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The architecture is composed of an array of identical 8-bit basic functional units 

and a configuration network. The basic functional units (or processing elements) in 

this architecture include the following three main components as shown in Figure 

2-8: 256 x 8-bit memory; an 8-bit ALU and multiply unit, and a control logic. 

A multiply operation takes two operating cycles. The architecture is by default 

pipelined due to the existence of a pipeline register at the input port of each 

function unit. 

The interconnection used in this architecture is almost a crossbar style 

interconnection network. It has the capability of connecting nearest neighbours. 

Also it has four bypass connections and global lines. Global lines imply the usage 

of the four interconnect lines. Nearest neighbour interconnections can allow a 

single processing element to have direct connections with up to 12 neighbouring 

PEs as shown in Figure 2-9. 

One key aspect of this architecture is the port programmability of the basic function 

unit. The port configuration can be a holder of the input values of the ALU and this 

is termed static value mode. Meanwhile, in the static source mode, the word hold in 

the port is used to select the network bus from which data can be received. Another 

mode for the port configuration is the dynamic source mode where the port 

configuration word is ignored and the associated floating port controls the input 

source on a cycle-by-cycle basis.  

 
 

Figure 2-8 MATRIX Processing element (functional unit) [15] 
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Another attractive point in this architecture is its ability to be configured in order to 

operate VLIW, SIMD, MIMD, MSIMD or hybrids of these. Moreover, the 

architecture datapath can be wired up in an application specific manner.  

The architecture’s authors claimed that no specific applications are targeted and 

that the architecture can be a general purpose one [16]. 

 

2.4.4 Cell Matrix and vCell Matrix Architectures 

The vCell Matrix architecture [19] is based on a commercially available 

architecture named the cell matrix architecture [16]. The vCell architecture 

promises a simpler and faster reconfiguration mechanism compared with the cell 

matrix. Both architectures consist of two-dimensional homogeneous cell arrays. 

The PE in the Cell matrix architecture is called a Cell and is illustrated in Figure 2-

10, while the PE of the vCell matrix architecture is called the vCell and its structure 

is illustrated in Figure 2-11. 

 

 
 

Figure 2-9 MATRIX nearest neighbour interconnect [15] 
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Figure 2-10 PE structure for the Cell matrix architecture [16] 

 

 
 

Figure 2-11 PE structure for the vCell matrix architecture [19] 

 

 

 
 

Figure 2-12 Two-dimensional array structure for the vCell matrix architecture [19] 
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Each vCell has four input and four output data ports of 1-bit each distributed on its 

four sides (DA-D). In addition, the vCell has two configuration control ports, one 

input and one output, named CIN and COUT. When the input configuration control 

port is activated, it allows the vCell to store the configuration data through the data 

ports into its internal LUT. The output configuration control port allows the vCell 

to control the mode of operation of its neighbouring cells. Each cell is connected to 

its nearest neighbour to the north, south, east and west, as illustrated in Figure 2-12. 

In the Cell matrix architecture, the reconfiguration process is distributed, so that 

any cell can initiate the reconfiguration process by configuring its nearest 

neighbours; hence it supports dynamic partial self-reconfiguration (DPSR). The 

array structure of the Cell matrix architecture is illustrated in Figure 2-13, where 

each cell is capable of configuring its nearest neighbour. The cell needs to be 

configured first as a data bus in order to pass configuration data to the furthest cell. 

In this architecture, the configuration mechanism allows great flexibility; however, 

it requires a complex and sophisticated configuration algorithm.  

Conversely, in the vCell matrix architecture, each vCell can configure only its 

eastern neighbour, as shown in Figure 2-12. In addition, the vCell cannot initiate 

the configuration process by itself. It has only two configuration ports, CIN west 

and COUT east, whereas the Cell has eight configuration ports covering all the sides 

 
 

Figure 2-13 Two-dimensional array structure for the Cell Matrix architecture [19] 
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of the cell. The reduction in the number of configuration ports in the vCell 

significantly reduces the architecture’s configuration flexibility as compared with 

that of the Cell architecture. Despite this drawback, the reduced number of 

configuration ports has the advantages of a simpler configuration mechanism and a 

smaller LUT within each individual vCell. The Cell matrix architecture is intended 

for a wide range of applications, being general purpose. The vCell matrix 

architecture, however, is suitable for applications that require a regular datapath 

and a simple control path, and thus mainly DSP applications. 

 

2.4.5 Pleiades Architecture 

The Pleiades processor architecture is based on the combination of a main 

processor coupled with an array of heterogeneous computational units of various 

granulates [17]. The PEs here are heterogeneous computational units and are 

named satellite processors. In addition to the satellite-processors, the architecture 

includes a reconfigurable interconnect network. The architecture’s layout is 

presented in Figure 2-14. 

The processor runs on data intensive loops called “kernels.” Synchronisation 

between the satellite processors achieved is by a data-driven communication 

protocol in relation to the kernels. 

The architecture operates direct memory read/write. The mesh structure has a two-

level hierarchical reconfigurable interconnect network. The architecture address 

generator can handle addressing issues in addition to nested loops with loop 

counters. It controls the dataflow threads from initiation until end. 

Because the system is realised on a data-driven principle, synchronisation between 

the processing elements employs a two-phase self-timed handshaking protocol 

consisting of request and acknowledge signals. This is realised in asynchronous 

fashion. 

The architecture data-links consist of a 16-bit fixed-width data word in addition to 

2-bit control signals, while the configuration bus is 32bit. 
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The hierarchical network architecture has sufficient connection flexibility for 

targeted applications and in addition it cuts the interconnect energy to a seventh of 

that of traditional crossbar network implementations [17]. This is achieved by 

having a universal switch box associated with each mesh level; in addition to cross-

level interconnect switches so that only few buses are therefore required. 

Targeted applications for this architecture are wireless devices and related 

baseband applications.  

2.4.6 OneChip Architecture 

 

The OneChip processor architecture is based on the combination of a fixed-logic 

processor core with large reconfigurable logic resources. This is illustrated in 

Figure 2-15, and the idea is to offer large reconfigurable resources with the core 

processor. This is the classic processor and co-processor co-located approach. The 

main drawbacks of the processor and co-processor approach are the limitations on 

processor-coprocessor bandwidth and the rigidity in control and interaction of the 

coprocessor [5]. 

The OneChip architecture consists of the integration of a 32-bit core RISC 

processor surrounded by the reconfigurable logic resources which are tightly 

integrated into the processor pipeline. In this architecture there are two distinctive 

 
 

Figure 2-14 Pleiades processor reconfigurable architecture layout [17] 



Chapter 2: Reconfigurable Architectures 

 

23 

PEs, the basic functional unit (BFU) and the programmable functional unit (PFU). 

The BFU is responsible for basic functions, mainly arithmetic and logic operations; 

while PFU is more complex and can perform various functions in combinational or 

sequential form and in addition, it can work as glue logic whenever required. 

It is worth mentioning that the OneChip architecture is an advanced version of the 

PRISC architecture [6]. The key difference is that the PRISC PFU only supports 

small combinational operations and is limited to one clock cycle operation. This 

leads applications of PRISC to be limited to bit-level applications. On the other 

hand, the OneChip architecture targets DSP applications. 

2.4.7   Chimaera Architecture 

 

The Chimaera architecture is based on the integration of reconfigurable logic into 

 
 

Figure 2-15 OneChip architecture layout 

 

 
Figure 2-16 Chimaera architecture layout [7] 
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the host processor itself [7]. This allows direct access to the processor’s register file 

and enables a set of new operands.  

In addition, reconfigurable logic is always slower than the processor’s own 

functional units when it comes to standard arithmetic computation. In the Chimaera 

architecture, the designers have integrated the advantages of the reconfigurable 

logic along with those of the processor. The processor is responsible for executing 

the bulk of the functionality while the most critical computation kernels are 

accelerated using the reconfigurable logic. Figure 2-16 represents the Chimaera 

architecture layout with the reconfigurable logic at its heart. The architecture 

comprises a microprocessor with an embedded reconfigurable functional unit, 

which is described as a miniaturised FPGA array. The reconfigurable logic in this 

architecture is considered to be a cache for reconfigurable functional unit 

instructions. This architecture can be classified as fine-grained, due to its 

reconfigurable fabric being 1-bit based. An interesting aspect of this architecture is 

its instruction decoder, which supports multi-output functions and the efficient 

implementation of complex operations. Another interesting aspect is the 

availability of partial run-time reconfiguration, where the reconfigurable functional 

unit functions as an operation cache holding necessary instructions for the current 

operations. Many applications could potentially use the Chimaera, since the aim is 

for it to be a general purpose.  

2.4.8 REMARC Architecture 

 

REMARC stands for reconfigurable multimedia array coprocessor, and this 

architecture is a reconfigurable coprocessor coupled with a main RISC processor. 

The coprocessor includes a global control unit along with 64 programmable logic 

blocks or nano-processors, which are the PEs in this architecture [8]. 

The main processor has three coprocessors memory management and exception 

handling; a floating point processor; and the REMARC co-processor.  
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Figure 2-17 shows the architecture layout while Figure 2-18 illustrates its internal 

construction of an 8x8 array of nano-processors and the global control unit. Each 

nano-processor has: 32 entry instruction RAM, a 16-bit ALU; 16-bit entry data 

RAM; 13x16-bit data registers; 4x16-bit data input registers; 1 instruction register; 

and a 16-bit data-out register. 

 
 

Figure 2-17 REMARC architecture layout [8] 

 

 

 
 

Figure 2-18 REMARC architecture internal structure [8] 
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Each nano-processor can communicate to the four adjacent nano-processors to the 

north, south, east and west. In addition, it can communicate with the processors in 

the same row and column through the 32-bit horizontal bus (HBUS) and the 

vertical bus (VBUS). The eight 32-bit VBUSes are also used for communication 

between the main the control unit and the nano-processors. 

The nano-processors receive the program counter value from the global control 

unit, since it does not have its own program counter. Moreover, the function of the 

global control unit is to control the nano-processors and data transfer between the 

main processor and the nano-processors. 

The REMARC architecture is a VLIW processor as its instructions consist of 64 

operations. Its datapath is 16-bit and its targets multimedia applications such as 

image processing and video compression [8]. 

2.4.9 RaPiD Architecture 

 

The reconfigurable Pipelined Datapath (RaPiD) is a coarse-grained FPGA 

architecture which is designed for computing intensive, repetitive tasks where 

configuration supports computation pipelines [9]. 

The architecture consists of an application-specific datapath and the program for 

controlling it. The interconnections are based on a linear array, in nearest neighbour 

style. The processor’s functional units are placed in a linear array and formed of 

identical cells. 

RaPiD-I is a prototype developed by the University of Washington, in which the 

cells or PEs consist of an integer multiplier, two integer ALUs, six general-purpose 

registers and three small local memories. The cells are interconnected with a series 

of buses as demonstrated in Figure 2-19. The inputs and outputs of the cells have 

multiplexers and de-multiplexers respectively to identify the specific buses to 

receive and send data. 

RaPiD-I operates on 16-bit data. The datapath has registers which are used to store 

constant or intermediate values; however, these registers are costly in terms of area 

and utilisation. The control signals in this architecture are divided into static and 

dynamic signals. The former are used for initialisation and pipeline construction, 
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while the latter are used for scheduling computation information and are 

changeable in every cycle. 

Around 34% of the cell control signals in the RaPiD-I are dynamic while the rest 

are static signals, giving a total of 230 control signals per cell. 

The RaPiD is not suited for non-highly repetitive algorithms or those whose control 

flow is strongly dependent on data, such as in error correction, image processing or 

data encoding. 

 
 

Figure 2-19 RaPiD-I basic cell structure [9] 

 

 

 
 

Figure 2-20 Garp architecture block diagram [18] 
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2.4.10   Garp Architecture 

 

The Garp architecture is based on a combination of reconfigurable hardware with a 

standard MIPS processor [18]. This means that the Garp is reconfigurable 

architecture as a co-processor for executing certain parts of the code which are 

slower when running on the MIPS. A block diagram is presented in Figure 2-20. 

The Garp’s reconfigurable array is used to speed up functions, loops or subroutines 

that would be slower if run on the main processor. The reconfigurable array is fully 

controlled by the program running on the main processor. 

The main processor instruction set has been extended for Garp. The processing 

element in the reconfigurable array is called a “block.” The block is a logic unit 

which resembles the FPGA; however, at the start of the array row the first block is 

a control unit as illustrated in Figure 2-21. The array has a restricted 24 columns, 

while the number of rows is application-specific with a minimum of 32. The 

architecture’s datapath is 2 bits, and thus to give a 16-bit operations at least eight 

logic blocks will be required. Usually these blocks are combined in a linear style in 

the same row. 

The array has four vertical buses for interaction with the memory for the reception 

or transmission of data. In addition, these buses are used for array reconfiguration. 

There is an additional wiring network for data transfer between the different blocks. 

An innovative feature within this architecture is the availability of cache units 

within the array blocks, which hold recently used configurations in order to 

minimise costly memory access and allow faster switching between 

reconfigurations. 

 

The Garp architecture has two clocks, one for the main processor and another for 

the reconfigurable array. The control block at the end of each row works as the 

interface control between the array and the main processor or main memory, and it 

can even interrupt the main processor. Each block requires 64 configuration bits in 

order to be fully configured. The configuration of the whole array is a lengthy and 

costly process in terms of energy and waiting time without execution. The latter is 
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assumed by the architecture’s authors to be 50µs in order to complete the 

configuration load. An interesting aspect of this architecture is the ability of the 

 
 

Figure 2-21 Garp array organisation [18] 
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array to be partially reconfigured if only partial usage of the array is required. The 

architecture’s minimum configuration is for a single row. 

2.4.11   SRGA Architecture 

 

The self-reconfigurable gate array (SRGA) architecture  consists of an array of 

processing elements [11]. The processing element consists of a logic cell and 

memory block. The logic cell contains a 16-bit LUT and a flip-flop. The memory 

block can store one or several configuration contexts as well as data for the logic. 

Processing elements are connected to their four nearest neighbours in addition to 

the mesh of the tree network. With this network context switching and memory 

access operations can be performed in a single clock cycle. Each PE has two 

switches a row switch and a column switch, as demonstrated in Figure 2-23. 

Self-reconfiguration in this architecture is mainly used to allow each logic cell to 

modify its own configuration at run time. Therefore, instead of having an external 

or centralised reconfiguration controller, this architecture has a distributed 

reconfiguration capability integrated within each PE. This gives the device fast 

memory access and context switching. 

To achieve self-configuration, a very complex interconnection network is required 

which consists of a logic interconnection network and a memory interconnection 

network, in addition to the switching network at each node. 

 
 

Figure 2-22 Garp program flowchart [18] 
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2.4.12   CHESS Architecture 

 

The CHESS architecture was developed by Hewlett-Packard (HP) laboratories 

targeting multimedia applications. This architecture is intended to be an ASIC IP or 

a unit of the processor datapath [10]. 

The PE in this architecture is a 4-bit ALU with a set of 16 primary instructions. The 

instructions can be constant and stored within the configuration word or dynamic 

and generated through an external circuitry feeding into the instruction input of the 

ALU or PE. 

The datapath of this architecture is 4-bit, allowing much flexibility and a wider 

range of datapath applications compared with 1-bit architectures (FPGA). 

The architecture has a switch box which has a dual functions based on the mode of 

operation. First it may act as a cross-point switch, allowing 64 connections by 

connecting vertical and horizontal buses. Secondly, it may be a RAM of 16 words x 

4 bits using the 64-bits configuration. 

The architecture’s layout has PEs arranged as a chessboard in a symmetrical 

fashion. This increases neighbourhood connectivity, and also reduces the routing 

network complexity due to the maximisation of the number of neighbours in close 

 
 

Figure 2-23 SRGA architecture interconnect mesh [11] 
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proximity to each other, as illustrated in Figure 2-24. This proximity allows each 

ALU to have input and output buses on all four sides, enabling data transmission 

and reception from any of the eight surrounding ALUs. In addition, the architecture 

provides embedded evenly distributed block RAMs of 256W x 8-bits per 16 ALUs. 

The pipelining support increases throughput and efficiency of the architecture. 

There are two registers or buffers for each switchbox, and this is particularly 

helpful for long connections in order to avoid limiting the clock speeds of the entire 

architecture. Each PE has 100 configuration bits, which allows fast reconfiguration.  

The architecture does not support partial reconfiguration; however, it has the usual 

offline reconfiguration in addition to the ability to alter changes in functionality at 

runtime through feeding instructions into the ALU in a cycle-by-cycle approach. 

One of this architecture’s advantages is the capability of the switch boxes to act as 

memory (RAM) of a reasonable size. In other architectures, the conventional 

technique is to use the PE’s own configuration bit as a memory, and this is usually 

small and thus limits the architecture’s capability. 

 
 

Figure 2-24 CHESS architecture layout and neighbouring interconnections [10] 
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The PE or ALU can be combined with an adjacent switch box to provide a 16W x 

4-bit memory. In this architecture the routing scheme is large since it uses 50% of 

the array area; however, this is less than in most FPGAs. 

2.4.13   DART Architecture 

 

The DART architecture is intended to be a reconfigurable architecture for 

telecommunications applications. The authors claimed that the architecture can 

handle complex processing tasks of third generation telecommunications systems in 

an efficient and low-power manner [12]. The architecture can be broken down into 

independent processing units named clusters. Those clusters can work 

independently or in cooperation with other clusters, as illustrated in Figure 2-25. 

The top level or cluster level architecture shows the main controller that is 

responsible for distributing tasks to specific clusters to execute. Then each cluster 

has its own embedded controller to manage the internal processing of the task 

allocated to it.  

This architecture uses a hierarchical interconnect network, which is more suitable, 

smaller and less complex than a global interconnect network. 

Figure 2-26 shows the interesting feature of the DART architecture that it has two 

PE types inside each cluster; a reconfigurable datapath (DPR) and an FPGA core.  

 
 

Figure 2-25 DART system level architecture 
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Each cluster consists of one FPGA core and six arithmetic processing primitives 

(DPR). Each DPR has four functional units of two ALUs and two multipliers. The 

functional units are dynamically reconfigurable. As illustrated in Figure 2-26, there 

is an interconnection between the DPRs, so they can be configured to work 

together or work independently (in parallel). 

In this architecture, there are three modes of reconfiguration. In dynamic 

reconfiguration mode, the interconnections within the cluster are reconfigured 

according to the calculation pattern. In hardware reconfiguration mode, this is the 

kernel configuration and it take four cycles and requires a large amount of data; this 

is the regular ongoing configuration process. Software reconfiguration mode 

concerns only the functionality of operators and is used for irregular processing 

where the DPR configuration needs to be changed. 

This is clearly a very interesting architecture on various levels: firstly in its 

combination of FPGA and reconfigurable processing elements; secondly for the 

reconfiguration modes available, including dynamic reconfiguration; and thirdly 

given that its area of application is in the same domain as that addressed in this 

thesis. 

2.4.14   DReAM Architecture 

 

The DReAM (dynamically reconfigurable hardware architecture for mobile 

communication systems) is a coarse-grained architecture dedicated for wireless 

 
 

Figure 2-26 DART cluster construction [12] 
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communication applications [19]. This architecture has been designed to work 

within a system or system-on-chip, which means that the architecture would require 

a DSP, memory, controllers, and so on. The architecture has been developed at the 

Darmstadt University of Technology. 

As illustrated in Figure 2-27, the DReAM architecture consists of an array of 

reconfigurable processing units (RPUs) interconnected through local and global 

connections. In addition, there are dedicated input and output ports at the borders of 

the architecture for data and control interfaces. Within the array, each RPU is able 

to connect directly to its nearest four neighbours through the local communication 

network. Moreover, within the array each four processing units share one 

configuration memory unit. 

 
 

Figure 2-27 DReAM architecture structure 
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The RPU is able to execute data-flow arithmetic, data manipulations and finite state 

machines for the control-flow. Each RPU contains two reconfigurable arithmetic 

processing units, one spreading datapath unit, two dual-port RAMs and one 

communication protocol controller. An interesting aspect of this architecture is the 

dedication of a specific unit the spreading datapath unit to processing correlation 

operations for the communication standards quadrature phase shift keying (QPSK) 

and bi-phase shift keying (BPSK) required for code division multiple access 

(CDMA) systems. The correlation process is based on generating PN codes within 

the unit, which require a PN-code generator. This makes the architecture suitable 

for the communication applications targeted. However, having such dedicated and 

fixed units in every RPU within the array, despite the fact that it may be neither 

used nor required, represents a waste of resources in terms of area and power. 

The RPU is the processing element in this architecture and the architecture’s 

datapath is 8-bit based. Despite this 8-bit limitation, the PRU unit is capable of 

addressing a higher number of operands through the manipulation of the RAM as a 

LUT. 

The architecture is built on a hierarchical concept where the global communication 

unit is the controller for the whole architecture as illustrated in Figure 2-28. The 

 
 

Figure 2-28 DReAM hierarchy control for dynamic reconfiguration [19] 

 



Chapter 2: Reconfigurable Architectures 

 

37 

designers claimed that they used this approach as it offers a trade-off between area 

and configuration performance. However, the hierarchical concept not only adds 

complexity to both the system and its control, but it also increases its area and 

power consumption. It is possible for the dynamic reconfiguration in this 

architecture to occur in different scenarios, including during run-time by 

conducting partial reconfiguration. 

2.4.15   PADDI Architecture 

 

PADDI stands for programmable arithmetic devices for high speed digital signal 

processing architecture. The PADDI architecture was first introduced in 1990 [20]. 

The architecture targets the rapid prototyping of high-speed data paths for real-time 

digital signal processing applications. 

The PADDI architecture contains a cluster of eight EXUs or processing elements 

[21]. The interconnection between the EXUs is a crossbar-based network termed a 

switch, which is dynamically reconfigurable, as shown in Figure 2-29. 

EXUs can be configured into two modes, 16 or 32-bit wide. Each EXU contains 

two register files each of which contains six registers. Registers are used for 

temporary data buffering, and the register files have dual ports for simultaneous 

read and write operations. Figure 2-30 represents the internal architecture of the 

EXU or processing element. 
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Each EXU needs a 53-bits control word. The Nanostore holds words of 8 bits 

necessary for controlling the eight EXU units. A global controller is responsible for 

feeding or loading the instruction word into each Nano-unit. The programming for 

this processor takes place using a high-level data flow language, “Silage” [22]. 

 
 

Figure 2-29 PADDI architecture structure [20] 

 

 

 
 

Figure 2-30 PADDI EXU architecture [20] 



Chapter 2: Reconfigurable Architectures 

 

39 

2.4.16   MorphoSys Architecture 

 

MorphoSys is a reconfigurable architecture developed at the University of 

California targeting computation-intensive and high-throughput applications [25]. 

The architecture comprises a reconfigurable array, core processor and memory 

interface as illustrated in Figure 2-31. The reconfigurable array acts as a SIMD 

coprocessor and is responsible for exploiting the parallelism available in the 

application’s algorithm. 

The key component in this architecture is the reconfigurable cell array. The array 

consists of 8 x 8 reconfigurable cells (RCs), each of which consists of an ALU, a 

multiplier, a shifter and a register file and it is configured by a 32-bit context word 

stored within the array context memory. Each RC is connected to all of its 

neighbours in the same quadrant in both row and column directions in addition to 

the interconnection between the neighbouring quadrants as shown in Figure 2-32. 

All eight RCs in the same column or row are configured by the same context word; 

however, each operates on different data. 

Dynamic reconfiguration is supported in this architecture and takes place through 

having context data loaded into an inactive part of the context memory without 

 
 

Figure 2-31 MorphoSys architecture layout [25] 
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interrupting the array operation. Interconnectivity here within the array is based on 

the use of a 2D mesh and hierarchical bus network. 

the MorphoSys system can operate on 8 or 16-bit data, despite the fact that the 

architecture’s RISC processor is 32-bit. 

This architecture has some clear features and advantages that have been highlighted 

earlier; however, there are also some drawbacks. The extensive use of multilevel 

memories has a significant effect on the processing times and power consumption. 

Moreover, the processing element or RC is complex and sophisticated which 

implies a significant effect on the architecture’s area and power consumption. In 

addition, all RC units in a single row or column have the same functionality. 

Although one of the reasons for this was to is try to limit the interconnectivity 

overheads; however, this dramatically limits the architecture capabilities and 

flexibility and leads to a reduction in the range of applications that can be executed. 

2.4.17   PipeRench Architecture 

 

The PipeRench architecture use pipeline reconfiguration as its c main concept [26]. 

The architecture is composed of a set of pipeline stages, rows or stripes, as 

illustrated in Figure 2-33. Each stripe consists of processing elements up to N and 

 
 

Figure 2-32 MorphoSys 8x8 reconfigurable cell array and row-column connectivity 
between each reconfigurable cell (RC) [25] 
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an interconnect network. Each processing element contains registers and ALUs. 

The ALU is based on a look-up-table, and. PEs can interact with each other within 

the same stripe but not adjacent ones.  

This architecture has two types of interconnections: a local network where all PEs 

within the same stripe can share some data and have local transfer; and a global 

network where a PE in a stripe can read data from the output register of the above 

stripe. Each PE is 8-bits based while the whole stripe totals 128-bit in width. This 

means that there are 16 PEs per stripe.  

The architecture’s principle of operation in having two levels of configuration for 

the PE and the stripe is novel. However, it is too hardware-oriented and overly 

focused on the pipeline approach. This limits the applications that this architecture 

can handle. Moreover, it appears that the implementation of such an architecture 

will be costly in terms of area, power and performance. 

2.4.18   rDPA Architecture 

 

The processing elements in the reconfigurable datapath architecture (rDPA) are 

called datapath units (DPU) [27]-[29]. The rDPA is reconfigurable in-circuit and is 

scalable to large array sizes. The architecture has an added controller called the 

 
 

Figure 2-33 PipeRench architecture layout [26] 
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reconfigurable ALU (rALU) which allows the architecture to be data-driven. The 

rALU provides the architecture with the capability for the parallel and pipeline 

computation of complex expressions. 

The rDPA architecture consists of an array of reconfigurable processing elements 

or DPUs, as illustrated in Figure 2-34. The number of DPUs within the array can be 

up to 128. The elements are connected using a mesh type interconnect network. 

The architecture has two interconnection levels: global interconnection through 

longer lines and local interconnection through shorter lines.  

As illustrated in Figure 2-34, the rALU consists of an rDPA control unit, an rDPA 

address generation unit and a register file. A data-driven reconfigurable ALU is the 

result of having rALU with rDPA within the architecture. The register file has 64 x 

32-bit registers used for holding intermediate data in order to reduce the multiple 

reading of data from the memory. The execution of the whole architecture is data-

driven, including the configuration process. The rDPA control unit holds the 

 
 

Figure 2-34 rDPA architecture with ALU controller [27] 
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instructions sets and delivers instructions to the designated DPU within the rDPA. 

The architecture is uses a single I/O bus to connect all datapath units using 

multiplexing; however, the designers hinted that the architecture would benefit 

from two buses to speed up I/O operations [27]. 

2.4.19   KressArray Architecture 

 

The KressArray architecture or KressArray-III is a 32-bit-based coarse-grain 

architecture [27]-[29]. The processing elements of this architecture are called 

reconfigurable datapath units or rDPUs. Figure 2-35 represents the structure of the 

architecture’s layout with its interconnection network. Local interconnections are 

used to feed data directly to the designated PE or rDPU or to read the resulting 

data. In addition, they can be used to pass intermediate results from one rDPU to 

another. The hierarchical interconnects allows this flexibility. The architecture has 

nine PEs and 32-bit duplex connections in four directions, north, east, west and 

south (NEWS). The direction of the dataflow through the connection is 

programmable. 

An interesting feature in this architecture is its capability to allow the rDPU to be 

reconfigurable as a router. Usually architectures have dedicated switches to 

 
 

Figure 2-35 KressArray architecture [27] 
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reconfigure interconnections, and these switches act as routers. This is a 

compromise from the architectural design point of view, since having a complete 

rDPU acting like a router is a waste of valuable computation resources. However, 

the authors claimed that the rDPU can be split into a partial router (routing only 

limited number of connections; usually one) and a processing element. They 

suggest that, in partial mode, the processing capabilities remain intact and the PE 

can fully utilise them. Nevertheless; is unclear weather or not what has been 

proposed by the authors really is a full integration between the PE and the switch in 

the single unit called the rDPU. This may have implications for the area, power 

consumption and flexibility of the system, and could complicate the programming 

of the system as well.  

Another interesting feature of this architecture is that the configuration memory 

consists of four independent layers. In addition, the register file within each rDPU 

has four configuration layers, as illustrated in Figure 2-36, to hold the four 

complete configuration sets. All rDPUs within the architecture simultaneously 

 
 

Figure 2-36 rDPU four configuration layers 
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change the actual configuration memory layer. The aim of these layers is to 

minimise or eliminate the reconfiguration time of the array, since there will be only 

one active configuration layer at any given time while the others are idle. The 

system can reprogram those layers, given that the configuration data and 

configuration control buses are independent. The elimination of reconfiguration 

time is a great step forward towards real-time reconfiguration.  

A key drawback of having four layers is the need for four times the size of the 

configuration memory and registers, which will reflect negatively on the 

architecture area and, most importantly, power consumption. It is worth noting that 

the KressArray architecture is meant to be a co-processor or accelerator. Moreover, 

this architecture has a strong tool set that supports various optimisations for the 

algorithms implemented in seeking the best performance level. 

2.4.20   MOVE Architecture 

 

Any thorough review of reconfigurable architectures would usually consider some 

or all of those discussed above. However, transport-triggered architectures (TTAs) 

are usually missing from such studies. However, this is such an important type of 

architecture that it must be taken into consideration. Arguably, the TTA may or 

may not be considered to be a truly reconfigurable architecture; however, from the 

point of view of performance and flexibility it is significant and deserves to be 

considered among the reconfigurable architectures rather than as a general-purpose 

processor.  

The transport-triggered programming paradigm was developed at the Delft 

University of Technology [30]-[32]. The paradigm was changed from ‘operation 

triggered’ to ‘transport triggered’, and the realisation of this paradigm is an 

architecture called the MOVE32INT. The key feature and main principle in this 

architecture is the reduction of the instruction set to only one operand, which is the 

‘MOVE’ function; hence, the name of the architecture. 

Figure 2-37 shows the architecture’s structure where the focus is the transport 

network and the processing elements or the functional units (FU) are distributed 

along the network. There are sockets that define the connection between FU and 
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the network which can be either input or output from the function unit. The 

functions of the FU can range from being a single operation unit (operand), to a 

complete ALU, and it can also accommodate internal pipelining. Each FU has a 

register at its output named the result register. An interesting aspect here is that the 

FUs in general are heterogeneous and designed to fit targeted areas of application 

or can be narrowed down to suit a specific algorithm. 

It is worth mentioning that there is a clear separation in this architecture between 

operations and transport. 

As can be seen from Figure 2-38, there are four types of registers within the 

architecture: ‘O’ is the operand register; ‘T’ is the trigger register, ‘R’ is the result 

register and finally ‘r’ is the general purpose register.  

Operations within the FU will kick-start once the trigger register T is loaded. The 

cycle time of this architecture is determined by data transport. 

The MOVE32INT is a 32-bit-based processor, which uses Harvard architecture 

with separate data and address paths to memory. The processor is capable of four 

concurrent data transports per clock.  

It is clear that this architecture is conceptually interesting, allowing high enough 

flexibility for it to be a programmable processor. Despite all of its interesting 

features, however the architecture has a key drawback which is the complicated 

process of code compilation. When the MOVE was compared with VLIW in DSP 

applications [33], it was noted that MOVE has a much lower code density resulting 

in a larger code size. This is clearly one of the main drawbacks of the architecture. 

 
 

Figure 2-37 Move architecture structure [30] 
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Another upgraded processor has been developed to overcome some of these 

drawbacks, namely the MOVE-Pro [34]. This new processor is based on the TTA 

architectural concept; however, it is built with power savings as a major driver 

along with increasing code density. 

Move-Pro promises significant dynamic power savings through the reduction of the 

number of accesses needed to the register file. Key changes from the earlier 

processor are the addition of jump and branch instructions to the instruction set. 

The authors concluded that the new processor achieves 80% savings in register file 

access and a total of 11% reduction in power consumption compared to the older 

version [34]. 

Despite the two processor versions, TTA has some clear advantages such as 

modularity, flexibility and scalability. TTA architectures may have a future as a 

reconfigurable architectures; however, this would require more time and effort 

from the developers. Instead of trying to compare it with RISC processor, it may be 

worth looking further into moving the TTA architecture into the reconfigurable 

architecture arena. 

 
 

Figure 2-38 MOVE32INT block diagram [31] 
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2.4.21   RICA Architecture 

 

The reconfigurable instruction cell array (RICA) architecture was developed at the 

University of Edinburgh [35]. This architecture is based on having an array of 

customizable instruction cells or processing elements. A unique feature is that the 

architecture’s processing elements or instruction cells are heterogeneous. Table 2-1 

lists the different types of instruction cells. 

 

The main concept behind the RICA is the processor, which is able to handle the 

control and dataflow aspects of applications. This handling is flexible, maximises 

utilisation, and supports parallel processing and low-power consumption. Thus, the 

RICA architecture is characterised by a high performance high parallelism and has 

a processor with low power consumption and small area. It is highly flexible being 

coarse-grain and scalable which allows it to be adapted to the application required 

by using the most suitable combination of types and numbers of instruction cells. 

From a programming point of view, this processor has the key advantage of DSP 

processors of being programmable using the ANSI-C programming language and 

its tool flow can be designed using GNU C-compilers, which is familiar to 

programmers. Therefore the architecture will not need a skilled hardware engineer 

with experience in HDL languages, but on the contrary C-programmers will be able 

Table 2-1 Main types of instruction cells types in the RICA architecture 

 
Instruction Cell Operations executed 

ADD Addition/subtraction 

COMP Compare two values 

DIV Signed/unsigned divisions 

I/O REG Register with access to I/O ports 

JUMP Branches/ step end 

LOGIC Logic operations (AND, OR, XOR, etc.) 

MEM Data memory READ/WRITE functions 

MUL Signed/unsigned multiplications 

MUX Multiplexer/simple branching 

REG Register 

RRC Reconfiguration rate controller 

SHIFT Shift logic operation 
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to efficiently use and program this processor, thus saving time and resources. When 

the algorithm program is compiled, the resulting assembly code is then sliced into 

blocks of instructions, and each block is executed in a single step. The step size is 

defined by the resources available within the architecture and the number of 

read/write operations included. Therefore, the algorithm will be executed in steps, 

which allows the architecture to be dynamically adaptable to each step. Each step 

can have a different critical path, where the clock that controls the program counter 

and memory is reconfigurable. The programmable clock allows the architecture to 

provide optimum performance, by providing the maximum performance level for 

each step, so that maximum performance or throughput for the whole application is 

guaranteed. The JUMP instruction is used as a trigger for the architecture to load 

the next configuration or step. If the step contains a full loop of instructions, this 

means that the processor will avoid any reconfigurations. Only the data will be 

loaded from the memory or registers, giving the processor a great advantage over 

other architectures. Figure 2-39 illustrates how a single C-code instruction is 

compiled and mapped on the architecture cells. This allocation or mapping changes 

with every code or set of codes.  

Various applications have been implemented on the RICA and customised versions 

show high performance with significantly lower power consumption [36]-[39]. 

There are two features which the RICA and TTA architectures have in common, 

discussed earlier in section 2.4.20. Firstly, both are architectures based on 

heterogeneous processing elements. The RICA has heterogeneous instruction cells 

while the TTA architecture has heterogeneous functional units. Secondly, both are 

claimed to be processors or processor-like architectures with Harvard-like 

structures. In other words, both can run independently without the need for an 

external processor to fetch instructions or synchronise operations. However, the 

drawbacks of the TTA discussed earlier, including its complex register file 

structure, do not apply to the RICA. Moreover, the RICA is designed from the 

ground up based on two key features, which are low power consumption and an 

architecture which is easy to program. 
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Figure 2-39 Dynamic allocation of instruction cells into processing steps, scheduled 
within the GCC tool chain 
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2.4.22   CDDS Variable Datapath Architecture 

 

A control-flow driven data-flow switching (CDDS) variable data architecture has 

been introduced at by Hokkaido University, which is characterised by flexibility 

and low energy consumption as cited by the authors [40]. The authors achieved the 

balance between performance and power consumption was achieved by limitating 

the scope of dynamic reconfiguration. This architecture is aimed at control-

intensive programs, and its datapath is divided into static and dynamic sections. 

Only the dynamic part is allowed to be dynamically reconfigurable at run time. 

Figure 2-40 illustrate the split in dynamic reconfiguration the architecture datapath. 

The architecture is designed to work mainly as an accelerator beside the main 

processor. 

The PEs in this architecture are ALU which are asymmetric to those of the main 

processor in the whole system, in order to streamline the architecture’s 

programming and mapping. 

 
 

Figure 2-40 CDDS architecture’s reconfigurable datapath separated into static and 
dynamic parts [40] 
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This architecture is similar to RICA in that the key parameter for switching the 

dynamic reconfiguration is the branch, which in this case matches the RICA jump 

instruction. 

The architecture has a clear novelty in restricting dynamic reconfiguration and 

memory access during execution for the static portions or PEs, while this is allowed 

for switching. This approach may have clear advantages in terms of power 

consumption; however, it has limitations in terms of being suitable for a restricted 

range of applications and needing a larger area in order to cater for the multiple 

branch options on the array so as to proceed with reconfiguration. This architecture 

is still in its early days, and may evolve when significant algorithms are 

implemented with it. 

2.4.23   BilRC Architecture 

 

The PEs of a execution-triggered coarse-grain reconfigurable architecture entitled 

BilRC [41] are inspired by the FPGA. The PEs in BilRC are of three types: ALU, 

memory and multiplier. The PEs are realised in columns of the same type as 

illustrated in Figure 2-41.  

 
 

Figure 2-41 PE column based structure in BilRC [41] 
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The applications this architecture is intended for span in a wide range, from signal 

processing to telecommunications. However it is clear that PEs the distribution of 

PEs will change depending on the application domain targeted. An interesting 

aspect of this architecture is that the authors used the MUX instruction for 

transportation within the architecture, which is similar to the MOVE instruction in 

the MOVE32int architecture. 

Key points of this architecture are that it is static and not dynamically reconfigured; 

moreover, it is programmed through a special language developed by the authors 

called LRC. Despite the high reported performance compared to FPGAs and 

dedicated DSPs, no comparison of power consumption was mentioned. This may 

be expected to be addressed in future publications. 

 

2.5   Comparison and discussion 

 

Reconfigurable architectures can be classified based on various criteria, including 

datapath width, type of PE interconnection, reconfiguration model, programming 

language, placement and routing. 
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One classification can be based on the control/arithmetic ratio. Brodersen and et.al. 

[42] categorised architectures based on the amount of sharing operations on an 

arithmetic unit. As seen in Figure 2-42, all operations in the micro-processor of the 

general purpose ALU are all operation time-multiplexed; hence, it is a control-

driven architecture. On the other hand, a systolic array, for example, has each 

operation represented by separate hardware with minimal control. The best 

outcome would be the right balance between control and datapath for a given 

application and throughput. 

For a reconfigurable architecture to be capable of carrying out the tasks of 

telecommunications system efficiently, various criteria would need to be satisfied. 

Datapath width or granularity is one of the key features of such architectures, and 

should be between 8 to 32 bits. This range would be suitable for 

telecommunications applications today and in the near future. It is anticipated that 

64 bits would be desirable for future systems. Furthermore, it is desirable for 

reconfigurable architecture to have heterogeneous rather than  homogenous PEs, 

for two reasons. Firstly, this will allow enough flexibility to accommodate the 

challenging functions of telecommunications systems. Secondly, it will most 

probably involve lower power consumption due to the high utilisation of the 

 
 

Figure 2-42 Classification based on control/arithmetic ratio [42] 
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resources in the architecture. Another key aspect to consider is the ability of the 

reconfigurable architecture to work as a standalone unit and not just as a co-

processor or an extra functional unit for a main processor. This is the key for 

telecommunications systems, from the point of view of efficiency, optimisation and 

power consumption. 

Various efforts have been made to compare reconfigurable architectures and in 

particular the coarse-grain architectures [43]. The present study focuses on 

reconfigurable architectures suitable for telecommunications systems. 

A comprehensive comparison of the various architecture is provided in Table 2-2. 

Here the approach used with each processor can be clearly identified in terms of 

datapath width, and level of supported reconfiguration in terms of whether it 

Table 2-2 Comparison of studies of reconfigurable architectures 
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BilRC Heterogeneous 16-bit Static General Standalone 

CDDS Homogeneous 32-bit Dynamic DSP Coprocessor 

CHESS Homogeneous 4-bit Static Multimedia. Coprocessor 

Chimaera Homogeneous 16-bit Static DSP Coprocessor 

CRISP Heterogeneous 8-bit Static Multimedia. Coprocessor 

DART Homogeneous 8-bit Dynamic Telecomm. Coprocessor 

DREAM Homogeneous 8-bit Dynamic Telecomm. Coprocessor 

Garp Homogeneous 2-bit Static DSP Coprocessor 

KressArray Homogeneous 32-bit Static General Coprocessor 

MATRIX Homogeneous 8-bit Dynamic General Coprocessor 

Morphosys Homogeneous 8-bit Dynamic General Coprocessor 

MOVE Heterogeneous 32-bit Static DSP Standalone 

OneChip Heterogeneous 32-bit Static DSP Coprocessor 

PADDI Homogeneous 16-bit Dynamic DSP Coprocessor 

PipeRench Homogeneous 8-bit Static DSP Coprocessor 

Pleiades Homogeneous 8-bit Static Telecomm. Coprocessor 

RaPiD Homogeneous 16-bit Static DSP Coprocessor 

rDPA Homogeneous 32-bit Dynamic Telecom Standalone 

REMARC Homogeneous 16-bit Static DSP Coprocessor 

RICA Heterogeneous 32-bit Dynamic DSP Standalone 

SRGA Homogeneous 2-bit Dynamic General Coprocessor 

Systolic Ring Homogeneous 8-bit Static General Coprocessor 

vCell Matrix Homogeneous 4-bit Static General Coprocessor 
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supports dynamic reconfiguration or is limited to static reconfiguration. In addition, 

it should be noted whether the architecture is capable of being standalone or if it 

requires an external processor. Moreover, key differentiation among PEs in an 

architecture is whether they are homogeneous or heterogeneous. The architectures 

considered were built in targeting specific applications, which are also indicated in 

table 2-2. 

Most of the reconfigurable architectures are designed to act as co-processors, 

except for the RICA, MOVE, BilRC and rDPA. Another important criterion is the 

nature of the reconfigurable cells or PEs. Most of the architectures are based on 

homogeneous PEs, except for the RICA, CRISP, Pleiades, OneChip, MOVE and 

BilRC architectures which have heterogeneous PEs. Dynamic configuration is 

another key feature that is most desirable for telecommunications systems, as 

highlighted earlier. Several applications are highlighted in table 2-2 which support 

dynamic reconfiguration, either partially or fully. 

2.6   Conclusion 

 

A reconfigurable architecture which can meet the challenging requirement of 

communications systems has to have many crucial characteristics. Primarily it has 

to operate with low power consumption. In order to sustain this, the use of 

heterogeneous PEs is the best approach. PEs can be customised specifically to the 

system’s needs, resulting in the highest utilisation, which will lead to lower power 

consumption and smaller area.  

It appears from Table 2-2 that the most suitable architectures for 

telecommunications systems are the MOVE, BilRC and RICA. BilRC is 

disregarded here since it uses a new nonstandard programming language.  

The MOVE and RICA are very different architectures; however, they are similar in 

that the PEs used are being heterogeneous, both are standalone and do not need 

external processors  for control, and are programmable using C-language. 

However, the RICA appears to be superior in terms of power consumption, the 

processor has been built with low power use as its core principle. The MOVE 
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designers only started to address power savings at a later stage, whereupon they 

deviated from having MOVE as the only instruction and added the two additional 

instructions - JUMP and BRANCH. In addition, the RICA is fully dynamically 

reconfigurable, which is a key feature lacking in MOVE. Hence, the RICA is the 

architecture chosen as the paradigm upon which the reconfigurable architectures in 

this work is built. 
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Chapter 3 

3 MULTIRATE CONVOLUTION 

ENCODER 

 

 

3.1 Introduction 

The integration of a number of digital devices into a single device is of great 

interest in the present decade. In order to achieve this, a design of miniaturised 

devices with reduced power consumption accompanied with a degree of flexibility 

is the key to success. The recent IEEE 802.16 (also known as WiMAX) standard 

promises ultra long communication ranges over kilometers for wireless systems 

[44]. The communication distance supported by WiMAX is suitable for sensor 

node and cluster head communication [46]-[47] in the ESPACENET project, which 

is developing evolvable networks of intelligent and secure integrated and 

distributed reconfigurable system-on-chip sensor nodes for aerospacebased 

monitoring and diagnostics. The ESPACENET project involves the development of 

pico-size satellites (spacecraft) so that a networked group of them could 

functionally replace a micro-sized to large satellite. In order to achieve this, each 

node (i.e. each single pico-satellite) should support several communication 

standards. It has been shown that the most suitable standards are the IEEE 802.11 

(WiFi) for short ranges and 802.16 (WiMAX) for longer ranges between the 

various nodes or cluster heads. Longer intermediate distance ranges are common in 

space applications. In a network, there are two levels. The nodes are the lowest 

level and the cluster heads manage groups of nodes. The pico-node is a platform 

characterised by limited area and power use. In order to integrate the WiMAX 

standard and all of its options, the design should prioritise minimal power 

consumption and size. In space applications, power and weight (size) need careful 

consideration in order to keep them to the minimum. Moreover, the design has to 
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accommodate all the standard modes, which need to be controlled by a node 

controller or processor. In this chapter two modules of the physical layer of a 

WiMAX transmitter are considered, which are the convolution encoder and 

puncturing configuration. These modules have been chosen due to their presence in 

almost all digital mobile radios, for example WiFi (802.11). These modules are 

used here to investigate the addition of reconfigurability and flexibility and the 

overheads associated with this. 

In research as well as commercial products for wireless communication systems, 

the architecture used for the implementation of the convolution encoder and the 

puncturing configuration is based on their co-location as subsequent units. The 

fixed convolution encoder with a rate of 1/2 is followed by the puncturing 

configuration for other higher rates which are supported, shown in Figure 3-1. 

Generally, the design and/or implementation is based on a separate subsequent 

units [52]-[55]. Another study presents the programmable convolution encoder as 

based on the same architecture as shown in Figure 3-1, but the convolution encoder 

could provide a rate of 1/3 in addition to 1/2 [53].  

In this chapter, a novel architecture is introduced which provides full integration of 

the convolution encoder and the puncturing configuration into a single IP 

(intellectual property) or module. As mentioned earlier, the WiMAX standard is 

used because it sets the most stringent requirements and is the most challenging of 

current standards. The challenge here is to identify the best architecture for 

reconfigurable integration. In the present research, the convolution encoder 

constraint length (k) is fixed at seven in order to allow the architecture to be 

flexible for various rates, while the targeted architecture could be used for other 

constraint lengths. The constraint length k of a convolutional encoder is the 

Convolution 

Encoder 

rate 1/2 

Puncturing

Unit

 
 

Figure 3-1 Convolution encoder and puncturing configuration as separate units in the 
transmitter of a wireless communication system 
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maximum number of symbols in a single output stream that can be affected by any 

input symbol, which reflects the number of memory units used [48]. Furthermore, 

k=7 is the most commonly used length, especially for receiver decoders in wireless 

systems. This is mainly because the decoder for the convolution is usually a Viterbi 

decoder, and constraint length of seven turns out to be the most suitable in terms of 

memory usage, efficiency and success in recovering transmitted information. For 

example, in one study [56] convolution encoder and Viterbi decoder were 

implemented on an Altera FPGA for the rate ½ and k=7 the authors implemented. 

The other constraint lengths are three, five and nine, which are not commonly 

found in realisations. The novel concepts presented here for the length constraint of 

seven will also be applicable to other constraint lengths, since the solution proposed 

is scalable. The flexibility arises here from having the convolution encoder being 

able to execute multiple rates instead of being fixed to a specific rate. 

In the next section, convolution and puncturing are briefly explained. Section 3.3 

shows the technique implemented in this study to achieve concatenation between 

both units. Section 3.5 explains the novel architecture, which results from 

integrating various combinations of all supported rates. Finally, the design and 

implementation results and the conclusions are presented. 

3.2 Convolution Encoder and Puncturing 

Configuration 

 

3.2.1 Convolution Encoder 

A convolution coder is an error-correcting coder that processes information serially 

and continuously. The output symbols of a convolution encoder depend on the 

inputs as well as the previous inputs or outputs, which means that memory is 

required in which to save some of the history [48]. Convolution decoding is usually 

carried out using the Viterbi algorithm. 

The convolution coder encodes each m-bit information symbol into an n-bit 

symbol, where m/n is the code rate (n ≥ m) and this transformation is a function of 
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the last k information symbols, where k is the constraint length of the code or the 

memory required depth. 

The binary convolution encoder for the WiMAX standard [44] is derived from a 

rate of 1/2 and constraint length k=7 [39]. The encoder uses the generator 

polynomials in Equations (3-1) and (3-2) to obtain the coded output. The generator 

polynomials are usually provided by the standard, and in this case WiMAX 

equations are used. The encoder is designed using delay units (registers) as shown 

in Figure 3-2. The number of delay units used is equal to the constraint length -1. 

 

G1 = 171OCTANT  For Y1 (3-1) 

G2 = 133OCTANT  For Y2 (3-2) 

 

The encoder input is a continuous bit stream represented by X and the output by Y; 

and as the rate used is 1/2, then there will be two outputs Y1 and Y2, with a two-

modulo2 adder (exclusive-OR) as shown in Figure 3-2. 

 
Table 3-1 WiMAX puncture pattern configuration and resulting convolution code 

serialization 

 
 

Rate 

Puncturing codes and patterns 

Y1 Y2 Y1Y2 

1/2 1 1 Y1
1
Y2

1
 

2/3 10 11 Y1
1
Y2

1
Y2

2
 

3/4 101 110 Y1
1
Y2

1
Y2

2
Y1

3
 

5/6 10101 11010 Y1
1
Y2

1 
Y2

2
Y1

3
Y2

4
Y1

5
 

7/8 1000101 1111010 Y1
1
Y2

1
Y2

2
Y2

3
Y2

4
Y1

5
Y2

6
Y1

7
 

 

 
 

Figure 3-2. Convolution encoder (rate=1/2, k=7) 
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3.2.2 Puncturing Configuration 

Puncturing is the process of systematically deleting, or not sending, some of the 

output bits of a low-rate encoder [48]. As stated in the WiMAX standard, it is 

required that the puncturing configuration adjusts the rate of 1/2 to higher rates by 

omitting some bits, as illustrated in Table 3-1 (where 1 indicates bit to be 

transmitted, while 0 indicates skipping). Y1Y2 is the resulting serial output with the 

assigned rates. The superscript numbers represent their sequence in time; for 

example, 1 indicates the first bit to exit the unit. 

3.3 Technique for the Parallelization Punctured 

Convolution Encoder  

Parallelization is usually a way of speeding up processing, increasing frequency 

rate or throughput. Benjamin [49] introduced a method of basically converting the 

convolution encoder with a normal 1/2 rate followed by a puncturing for the 

desired rate into a single parallel punctured convolution encoder in parallel form. 

The idea presented by Benjamin with the example of a rate of 3/4 is shown in 

Figure 3-3. 
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X(n+1)
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Y1(n)
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Y2(n+1)

Y1(n+2)

+

+

+
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Figure 3-3. Parallel punctured convolution encoder [49] 
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In Figure 3-3 X(n), X(n+1) and X(n+2) are the input bits in a parallel form, which 

need to be coded by the convolution encoder and then punctured to fit the rate of 

3/4. X(n) is the first bit to enter, followed by X(n+1), then X(n+2). For the above 

unit to work properly all the three inputs must enter simultaneously, and thus a 

serial to parallel converter is required to provide those inputs. The output 

polynomial expressions are derived as: 

 

Y1(n) = X(n)  X(n-1)  X(n-2)  X(n-3)  X(n-6) (3-3) 

Y2(n) = X(n)  X(n-2)  X(n-3)  X(n-5)  X(n-6) (3-4) 

Y2(n+1) = X(n+1)  X(n-1)  X(n-2)  X(n-4)  X(n-5) (3-5) 

Y1(n+2) = X(n+2)  X(n+1)  X(n)    X(n-1)  X(n-4) (3-6) 

Where n = 0, 3, 6 ... etc  

 

Based on the above principle, diagrams and polynomial expressions for the 

different rates have been derived and are presented below. For the rate of 1/2 in 

Figure 3-2, the resulting polynomial expressions are: 

Y1(n) = X(n)  X(n-1)  X(n-2)  X(n-3)  X(n-6) (3-7) 

Y2(n) = X(n)  X(n-2)  X(n-3)  X(n-5)  X(n-6) (3-8) 

Where n = 0, 1, 2 ... etc.  

  

Meanwhile for a rate 2/3, the extracted design is shown in Figure 3-4, and the 

resulting polynomial expressions are: 

 

Y1(n) = X(n)  X(n-1)  X(n-2)  X(n-3)  X(n-6) (3-9) 

Y2(n) = X(n)  X(n-2)  X(n-3)  X(n-5)  X(n-6) (3-10) 

Y2(n+1) = X(n+1)  X(n-1)  X(n-2)  X(n-4)  X(n-5) (3-11) 

Where n = 0, 2, 4 ... etc.  
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Using the same procedure, polynomial expressions and designs for rates of 5/6 and 

7/8 can be derived as demonstrated in Figure 3-5 and Figure 3-6 respectively. 

 

For a rate of 5/6, the resulting polynomials are: 
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Figure 3-5. Punctured convolution encoder for the rate 5/6 
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Figure 3-4. Punctured convolution encoder for the rate 2/3 
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Y1(n) = X(n)  X(n1) + X(n2) + X(n3) + X(n6) (3-12) 

Y2(n) = X(n)  X(n2) + X(n3) + X(n5) + X(n6) (3-13) 

Y2(n+1) = X(n+1)  X(n1) + X(n2) + X(n4) + X(n5) (3-14) 

Y1(n+2) = X(n+2)  X(n+1)  X(n)  X(n1) X(n4) (3-15) 

Y2(n+3) = X(n+3)  X(n+1)  X(n)  X(n2) X(n3) (3-16) 

Y1(n+4) = X(n+4)  X(n+3)  X(n+2)  X(n+1)  X(n2) (3-17) 

n = 0, 5, 10 ... etc.  

Polynomial expressions for the rate of 7/8 are: 

 

Y1(n)     = X(n)      X(n1)  X(n2)  X(n3)  X(n6) (3-18) 

Y2(n)     = X(n)      X(n2)  X(n3)  X(n5)  X(n6) (3-19) 
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Figure 3-6. Punctured convolution encoder for rate 7/8 
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Y2(n+1) = X(n+1)  X(n1)  X(n2)  X(n4)  X(n5) (3-20) 

Y2(n+2) = X(n+2)  X(n)      X(n1) X(n3)  X(n4) (3-21) 

Y2(n+3) = X(n+3)  X(n+1)  X(n)      X(n2) X(n3) (3-22) 

Y1(n+4) = X(n+4)  X(n+3)  X(n+2)  X(n+1)  X(n2) (3-23) 

Y2(n+5) = X(n+5)  X(n+3)  X(n+2)  X(n)      X(n1) (3-24) 

Where n = 0, 6, 12 ... etc.  

 

3.4 Reconfigurable concatenated convolution-

puncturing architecture 

According to WiMAX standard, support is required for all rates mentioned earlier in  

Table 3-1. In general, two possible architectures can be used to design the system 

supporting all these rates.  

The first architecture is based on using a convolution encoder rate of 1/2 followed 

by a puncturing unit as shown in Figure 3-7. Each of the rest of the rates should 

have its own puncturing unit. Here each puncturing unit is considered as a separate 

IP core or module [50]. It is noted that, in this architecture, each puncturing unit 

needs its own parallel to dual converter in order to have the ability to maintain the 

ongoing data stream.  

 

Convolution Encoder

Rate 1/2

Puncturing Unit

For rate 2/3

Parallel to Dual 

converter

Convolution Encoder

Rate 1/2

Puncturing Unit

For rate 7/8

Parallel to Dual 
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Figure 3-7. First conventional approach for implementing punctured convolutional 
encoder for different rates 
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The second possible architecture is an optimised version of the first. Now, instead 

of having separate parallel paths, it uses a single convolution encoder followed by a 

de-multiplexer to switch to the desired rate, as illustrated in Figure 3-8.  

Both architectures have a timing issue, since time management and synchronisation 

will be sophisticated due to the different time spans required by each puncturing 

unit and the different data sizes that they handle. This leads to the need for the 

inputs to be buffered. A buffer is required and in this case the introduction of a 

FIFO (first-in first-out memory) or a memory buffer may be useful. The FIFO 

requires two different clocks for writing and reading; but this will increase the 

design complexity, area and power consumption. 

In order to overcome the drawbacks of classical optimisations and to achieve a 

multi-rate convolution encoder, a novel architecture is introduced here which is far 

more optimised and fully integrated compared to the architectures mentioned 

earlier.  

The novel proposed architecture is based on employing the parallel convolution 

with puncturing mentioned earlier in section 3.3 with the full integration of all the 

rates. The proposed architecture presented in Figure 3-9 comprises four units: the 

reconfigurable convolution unit, a reconfigurable serial to parallel unit, a 

reconfigurable parallel to dual channel unit (whose output is two parallel bits) and a 
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Figure 3-8. Second conventional approach for implementing punctured convolution 
encoder for different rates 
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configuration controller unit. This architecture provides punctured convolutionally 

encoded data for all the rates in a continuous manner; in addition, it avoids the need 

for dual clocks. 

The architecture has been designed and verified by simulating all possible rates and 

verifying the resulting outputs.  

In this architecture, all rates have been integrated, including the original 

convolution encoder rate of 1/2. All the rates are based on six delay units only 
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Figure 3-10 Reconfigurable interconnections for the convolution-puncturing core 
(delay units are implemented as registers) 
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Figure 3-9 Proposed top-level architecture for low power reconfigurable concatenated 
convolution-puncturing module for 802.16 
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(with the number of registers, k = 7), while the number of modulo-2 additions 

(exclusive-OR) is the same as the number of output bits for each rate. This new 

convolution puncturing architecture uses only six registers along with 

reconfigurable interconnections, while existing architectures require at least 30 

registers. 

The interconnection network between the registers and modulo two adders is to be 

configured using multiplexers and de-multiplexers, as illustrated in Figure 3-10. 

The reconfigurable core shown in Figure 3-10 represents the reconfigurable 

interconnection network between the registers (for clarity, the modulo two adders 

and their connections are not shown). The configuration controller provides the 

necessary control signals. 

 

As shown in Figure 3-9, the input to the configuration controller is a 3-bit 

configuration word that configures the whole architecture based on the selected 

rate.  

Table 3-2 shows the configuration words used in the architecture and their 

associated rates. In addition, the table lists the 19-bits internal configuration words 

that result from an embedded decoder in the configuration control unit. 

Configuration words provide the required signals for all units in the architecture in 

order to configure or program the interconnections for each selected rate. The 
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Figure 3-11: Reconfigurable serial to parallel 
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system can be reconfigured or reprogrammed in real-time to switch between the 

rates.  

The reconfigurable serial to parallel converter (RSPC) unit converts the serial input 

stream into parallel output in order to feed the convolution puncturing encoder. The 

width of output parallel bits varies according to the selected rate and is assigned by 

the configuration word. The width varies from two parallel bits in the case of a rate 

of 2/3 to 7 bits for a rate of 7/8. It is worth noting that, for rate 1/2, this unit is 

bypassed and the incoming bit stream enters directly to the convolution puncturing 

encoder unit. 

The RSPC is based on a shift register and parallel registers as per Figure 3-11. The 

enabling of these registers depends on the assigned rate. All enabling signals are 

controlled by an embedded controller (not shown in Figure 3-11). It decides when 

to enable each register to support the continuous operability of the whole unit and 

avoiding the usage of additional memory or the need for data holding. 

The reconfigurable parallel to dual channel (RPDC) unit’s output provides the 

inverse function for serial to parallel. The operation of this unit is specified by the 

selected rate and the control signals. For a rate of 1/2, the controller will adjust the 

output from the core to bypass this unit. 

3.5 Results 

The reconfigurable architecture design achieved for the multi-rate convolution 

encoder is the result of several design iterations. The target was to accommodate all 

required rates and to verify the correctness of all data. The final architecture 

iteration is the one discussed in section 3.4. The architecture has been simulated 

 
Table 3-2: External and internal configuration words 

Rate 
Configuration words 

External Internal (using decoder) 

1/2 000 000_0000_0000_0000_0000 

2/3 001 001_0101_0100_0011_0101 

3/4 010 010_0110_1001_0111_1001 

5/6 100 011_0111_1011_1010_1110 

7/8 110 100_1111_1010_1111_1111 
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and synthesised using UMC 180 nm CMOS technology. The design proves its 

workability for different data rates, as shown by the results obtained which are 

listed in Table 3-3 

The resulting area and estimated power consumption is a good indication of the 

capability of the designed architecture. The results have been obtained after 

applying power reduction techniques, such as the gated clock technique, to 

minimise the switching activity [51]. As expected, the rate of 1/2 provides the 

lowest power consumption and this is clearly due to the automatic disabling of the 

reconfigurable serial to parallel and parallel to dual modules.  

Table 3-4 presents the resulting throughputs obtained by the architecture. The first 

row shows the results for the core unit only (the concatenated convolution 

puncturing), while the second row shows the throughput for the whole module 

including the serial to parallel and parallel to dual converters. It was difficult to find 

any published data regarding the power consumption for convolution encoders or 

puncturing configurations in order to establish comparisons; however, the first 

flexible dynamically reconfigurable fabric that provides multi-rate support for 

convolution coders is introduced here. 

3.6 Conclusion 

A novel reconfigurable architecture that provides a punctured convolutional coder 

Table 3-3. Area and estimated power for all supported rates 
 

Rate 1/2 2/3 3/4 5/6 7/8 

Power (W) 157 185 407 327 302.9 

Area (mm
2
) 0.012 

 

Table 3-4. Throughput for all supported rates for the core unit and whole module 

 
Rate 1/2 2/3 3/4 5/6 7/8 

 Throughput in Mbps (Delay in ns)  

Core only 200 (10) 300 (10) 400 (10) 600 (10) 800 (10) 

Core+RSPC+RPDC 
[whole module] 

66 (30) 33 (60) 28 (70) 20 (100) 15.4 (130) 
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has been introduced in this chapter. This architecture can be used in wireless 

communication system incorporating both convolution and puncturing. The 

convolution-punctured multi-rate architecture has achieved superior throughput 

between 200 and 800 Mbps. Although the main element of the architecture is the 

core, which provides the concatenated convolution-punctured code, the 

reconfigurable input and output interfaces were added to broaden the usability of 

this fabric. The main advantage of this architecture is that a single clock cycle is 

sufficient to provide the parallel convolution punctured code for its parallel inputs, 

which can be used to maximise the throughput of the whole transmitter system. 

This work demonstrates an example of dynamically reconfigurable architecture for 

a module within the communication systems. The proposed architecture is capable 

of dynamically reconfiguring the module rate through the programming code.  
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Chapter 4 

4 RECONFIGURABLE INTERLEAVER ON 

DYNAMICALLY CELL-BASED 

ARCHITECTURE AND AS A FABRIC 

 

 

4.1 Introduction 

 

In this chapter, a novel reconfigurable block interleaver/de-interleaver is 

introduced. The block interleaver and de-interleaver are part of the IEEE 802.16 

WIMAX transceiver.  

The interleaver is widely used in wireless communication systems, such as IEEE 

802.11 and 802.16 [44], and also in coders such as turbo coding [58]. The 

interleaver is one of the main modules of turbo codes [60].  

This chapter focuses on the design and implementation of the interleaver /de-

interleaver for the WiMAX transceiver. This work is part of the ESPACENET 

project [46], in which WiMAX has been selected as the preferred communication 

standard for communication between sensor nodes and cluster heads in space pico-

satellite networks. The same concepts and strategies for WiMAX and its usage 

apply to both mobile devices and  pico-satellites. Both have constraint in common, 

which are mainly size and power. 

Integrity in digital devices is an important current challenge in minimising size 

(area) and reducing power consumption (to give longer battery life). This can be 

achieved using various strategies. Most published strategies are implementations of 

novel architectures and/or use advanced technologies with lower voltage supplied 

or which consume less energy.  
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The interleaver has been designed into a reconfigurable fabric architecture and a 

dynamically reconfigurable instruction cell-based architecture (RICA).  

4.2 Interleaver/De-interleaver 

 

The interleaver is a module in communications system which increases the 

reliability of transmitted signals by rearranging the in order into various 

subcarriers. In addition, it ensures that the coded bits are distributed in such a way 

as to prevent low reliability in the long run. Meanwhile the de-interleaver performs 

the opposite functions in the receiver, by gathering the distributed coded bits back 

so that they are adjacent, in order to recreate the same originally transmitted codes. 

Figure 4-1 illustrates the interleaver’s position in the transmitter subsequent to the 

convolution encoder, and the de-interleaver’s place in the receiver next to the de-

mapper. 

The interleaver is defined by a two-step permutation. The first ensures that adjacent 

coded bits are mapped onto nonadjacent sub-carriers, while the second permutation 

ensures that adjacent coded bits are mapped alternately onto less or more 

significant bits of the constellation, thus avoiding long runs of bits of low reliability 

[44]. The interleaving in the OFDM WiMAX is based on the data block size used, 

and the interleaving should correspond to the number of coded bits per allocated 

sub-channel per OFDM symbol ‎[44]. Table 4-1 presents the various interleaving 

block sizes that correspond to the number of sub-channels. The interleaving is 

carried out through two stages or permutations.  

Convolution 

Encoder
Interleaver Mapper IFFT

FFTDe-mapper
De-

interleaver

Viterbi 

decoder

(a) Transmitter

(b) Receiver  
 

Figure 4-1. The interleaver and de-interleaver in OFDM WiMAX baseband 
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In the transmitter, all encoded data bits will be interleaved by the block interleaver 

and the size of the block is determined by the parameter Ncbps. This represents the 

number of coded bits per allocated sub-channel per OFDM symbol, and the values 

are presented in Table 4-1. In digital modulation, an analog carrier signal is 

modulated by a digital bit stream. The modifications to the carrier signal are chosen 

from a finite number of alternative modulation symbols. The PSK (phase shift 

keying) modulation technique is based on using a finite number of phases. For 

example, BPSK (binary phase shift keying) uses two phases, while QPSK 

(quadrature phase shift keying) uses four phases. On the other hand, quadrature 

amplitude modulation (QAM) uses a combination of amplitude and phase. For 

example, 16-QAM uses four different amplitudes and four different phases, while 

64-QAM uses eight different amplitudes and eight different phases [45]. 

It is obvious from Table 4-1 that, in order to function as an interleaver, various 

block sizes from 12 up to 1152 bits need to be handled. In order to achieve 

flexibility in the communication transceiver system a reconfigurable interleaver is 

necessary to switch between the different data blocks based on the mode of 

operation. 

The interleaver’s parameters are determined by specific equations that are 

responsible for the scrambling of the coded bits. When dealing with a standard, the 

specific interleaving equations are provided in order to give identical interleaver 

and de-interleaver functions globally in devices.  

From the WiMAX standard [44], specific parameters are defined for the 

interleaver: Ncpc and s. Ncpc is the number of coded bits per subcarrier, while s is 

 
Table 4-1 Block sizes of bit interleaver for WiMAX [44] 

 

 

Ncbps* 

Number of sub-channels 

1 2 4 8 16 

BPSK 12 24 48 96 192 

QPSK 24 48 96 192 384 

16-QAM 48 96 192 384 768 

64-QAM 72 144 288 576 1152 

* Ncbps: coded bits per OFDM symbol 
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defined by Equation (4-1). The values of both Ncpc and the calculated values of s 

are presented in Table 4-2.  

 

s = ceil(Ncpc/2) 

(4-1) 

 

The parameters for an interleaver of block size Ncbps bits are:  

k: index of the coded bit before the first permutation;  

mk: index of that coded bit after the first permutation; and  

jk: index after the second permutation. 

The first permutation is calculated using Equation (4-2): 

 

 (4-2) 

  

The second permutation takes place through Equation (4-3) 

 
(4-3) 

  

 

The de-interleaver performs the inverse operation and is also defined by two 

permutations. The parameters for a received block of Ncbps bits are: 

j: index of a received bit before the first permutation;  

mj: index of that bit after the first permutation; and  

kj: index of that bit after the second permutation, just prior to delivering the 

block to the decoder. 

The de-interleaver’s first and second permutation are found by Equations (4-4) and 

(4-5) respectively: 

Table 4-2 Value of the s parameter in the interleaver/de-interleaver equations 

 

 BPSK QPSK 16-QAM 64-QAM 

Ncpc 1 2 4 6 

s 0 1 2 3 
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(4-4) 

  

 
(4-5) 

  

 

It is clear from the above equations that the interleaver and deinterleaver execute 

the same functions but in the opposite manner. The first permutation in the de-

interleaver is the inverse of the second permutation in the interleaver and vice 

versa. As they are identical from a computational point of view, the interleaver will 

be the focus of this work, and any results obtained will be the same for the de-

interleaver. 

 

4.3 Reconfigurable Interleaver 

 

An interleaver is generally implemented in a receiver for a fixed predefined coded 

data block size. In order to allow scalability in communication systems, integrated 

modules should be able to process all types of data defined by the standards. In 

other words, the interleaver should be capable of dealing with all block sizes in that 

specific system. This will allow the receiver to be capable of dealing with all 

modulation types thereafter.  

Traditionally the block interleaver is based on a LUT ROM (read-only memory) 

storing the interleaving sequence. The obvious drawback of this method is that the 

memory locations are the sum of all supported block sizes, which requires a 

significantly large memory size. However, its clear advantage is the simplicity of 

the architecture. One multi mode interleaver architecture has been introduced [58] 

which is based on having a matrix memory or two-dimensional memory, where 

data is written as rows and read out as columns. The authors realised the design 

using an 802.11 block interleaver where only four different block sizes were 

supported. In the case of WiMAX, the interleaver has to deal with various block 
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sizes from 12 up to 1152 bits of coded data, as mentioned earlier in Table 4-1, 

which means that twelve different block sizes need to be supported. Overall, there 

are twenty different modes based on the block size and the associated modulation 

or constellation type. In order for the interleaver to have this capability, it has to be 

reconfigurable. Using a configuration word, the interleaver should be able to self-

reconfigure toward the desired block size. This is the approach used in this work. 

 

4.4 Reconfigurable Interleaver Fabric 

 

A reconfigurable interleaver fabric is introduced here as a solution which allows 

the incorporation of all data block sizes. This allows the communication system to 

be capable of using all modulation techniques and the various block sizes needed 

by the communication system. 

As mentioned earlier in Table 4-1, the interleaver has to deal with various block 

sizes. It can be noted in the table that the same block size can have different 

numbers of sub-channels and an altered modulation, as illustrated by the markings 

in Table 4-3. This means that the interleaver should not only deal with different 

data block sizes, but also the same data block size which has different interleaving 

parameters. A conventional notion for solving such a problem is to use parallel 

fixed interleavers. Based on the desired modulation and number of sub-channels, 

Table 4-3 Block sizes of bit interleaver for Wimax. Circle marks show similar block sizes 
with different modulations and Ncbps [1] 

 

 

Ncbps* 

Number of Sub-channels 

1 2 4 8 16 

BPSK 12 24 48 96 192 

QPSK 24 48 96 192 384 

16-QAM 48 96 192 384 768 

64-QAM 72 144 288 576 1152 

* Ncbps: coded bits per OFDM symbol 
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the result would be twenty different interleavers.  

A further optimised version of the architecture can be obtained through the reuse of 

the same interleavers block sizes leading to only twelve parallel interleavers. 

Reconfiguration can provide the solution to give a single interleaver capable of 

carrying out these functions in an optimised approach. In order to configure the 

interleaver for the various modes, a configuration word is necessary. As there are 

twenty different combinations, a 5-bit configuration word would be sufficient as 

shown in Table 4-4. In addition, to provide a seamless interface with other modules 

in the system, the use of reconfigurable serial to parallel and parallel to serial 

converters may be appropriate in order to allow a common interface of 2 bits for 

the input and output of the interleaver. A block diagram for the architecture is 

presented in Figure 4-2. 

Table 4-4 External configuration word for interleaver/de-interleaver 

 

 
Modulation 

type 

No. of sub-

channels 
Block size 

Configuration 

word (bits) 

1 BPSK 1 12 00001 

2 BPSK 2 24 00010 

3 QPSK 1 24 10010 

4 BPSK 4 48 00011 

5 QPSK 2 48 01011 

6 16-QAM 1 48 10011 

7 64-QAM 1 72 00100 

8 BPSK 8 96 00101 

9 QPSK 4 96 01101 

10 16-QAM 2 96 10101 

11 64-QAM 2 144 00110 

12 BPSK 16 192 00111 

13 QPSK 8 192 01111 

14 16-QAM 4 192 10111 

15 64-QAM 4 288 01000 

16 QPSK 16 384 01001 

17 16-QAM 8 384 11001 

18 64-QAM 8 576 01110 

19 16-QAM 16 768 10000 

20 64-QAM 16 1152 01100 
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In Table 4-4 it should be noted that the configuration words assigned are not in the 

form of the usual ascending or descending code. The optimisation of the 

configuration word used is an essential aspect of reconfigurable architectures.  

Configuration in general adds an overhead to the system. Thus, it must be 

optimised efficiently in order to minimise the overall system overhead. In addition, 

Reconfigurable

Serial to 

Parallel

Interleaver

Core

Reconfigurable 

Parallel to Dual 

channel

Reconfiguration Controller

12 up to 

1152 bits

Enable

Reset

Clock

Configuration 

Word

(5 bits)

Input Data

2 bits

Data output

[Dual Channel]

(2 bits)

Data 

Ready
ReadyReady

12 up to 

1152 bits

(4 bits) (5 bits) (4 bits)

 
 

Figure 4-2: Proposed reconfigurable interleaver 

 

Table 4-5 Internal configuration word: 4 bit 

 

 Internal configuration 

word 

Coded data Block 

Size 

1 0001 12 

2 0010 24 

3 0011 48 

4 0100 72 

5 0101 96 

6 0110 144 

7 0111 192 

8 1000 288 

9 1001 384 

10 1010 576 

11 1011 768 

12 1100 1152 
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optimizing the number of bits used will reduce switching activity, thus maintaining 

the minimum dynamic power consumption.  

The code words in Table 4-4 have been arrived at after several types of assessment. 

Those codes have been specifically chosen in order to eliminate the usage of a 

decoder to generate the internal configuration words (4 bits) presented in Figure 4-

2. The internal configuration words listed in Table 4-5 are used to configure the 

serial to parallel and parallel to serial converters. In other words, the external 

configuration words are oriented to block size. 

It is worth mentioning that the configuration word 11111 has been reserved as a 

software reset for the entire interleaver. The interleaver is based on two shuffling 

stages, and therefore a Matlab model has been designed and programmed in order 

to solve and simulate the two main equations (4-4) and (4-5) of the interleaver. 

Some of the Matlab models are presented in Appendix A. It is concluded that it will 

be too complicated and unrealistic to implement the equations themselves the 

Interleaver fabric. A more practical approach is to create an array of input indexes 

and the resulting indexes for each case. These indexes result from Matlab 

calculations for the combined permutation stages. Thus, the interleaver core is 

configured through the configuration word, knowing the coded data block size, 

number of associated sub-channels and the modulation used and then placing them 

in to the pre-calculated indexes.  

From Figure 4-2, the reconfiguration controller is a straightforward controller to 

pass the specific configuration bits to specific units. The Interleaver core is based 

on having a single array of registers (memory locations) of a size of 1,152 bits, 

which is the maximum data block size required. In contrast, a traditional realisation 

would need at least 4,836 bits [58]. 

 
 

Figure 4-3. WIMAX interleaver for QPSK modulation 
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4.5 Interleaver on a Dynamically Reconfigurable 

Processor 

 

The majority of VLSI architectures employ a pipelined data path to gain timing 

advantages. The concept used in pipeline acceleration is to reconfigure pipelines or 

parts of pipelines onto a reconfigurable architecture. The reconfiguration allows 

one stage of the pipeline path to be configured in every cycle, while concurrently 

executing all other stages. The reconfiguration is usually conducted at run time 

(dynamic) in which the time for reconfiguration is kept as short as possible. For the 

interleaver design here, the reconfigurable instruction cell array (RICA) as 

 
Figure 4-4 Architecture Cells dynamic power in µW for interleaver 576 64-QAM with two 

design methods and their optimisations 

 

 

 

 
 
Figure 4-5. Architecture’s execution time in µs for interleaver 576 64-QAM with two design 

methods and their optimisations 
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discussed in section 2.4.21 is used for the realisation.  

The interleaver is based on two shuffling stages as shown in by the two de-

Interleaver main equations (4-4) and (4-5). Two implementation methods are used 

here to design the interleaver into the RICA. The first is the direct implementation 

of the equations on the reconfigurable architecture (RICA), and this is called 

Method 1. This method benefits from the fact that the architecture is C-

programmable. The other method is similar to the design of the reconfigurable 

fabric in hard-coded implementation, and this is called Method 2. The hard-code 

implementation is based on calculating the new bit positions offline using Matlab 

and storing these values in an array which will be used on the RICA to reorder the 

input data blocks. 

A series of optimisations has been carried out using both methods with different 

block sizes. The optimisations include partial loop unfolding (LUF), full loop 

unfolding (FLUF) and parallelism extraction. Both methods have to be designed in 

the C language and compiled by the processor compiler, optimising the assembly 

code and analysing the resulting code and the associated performance report. 

Figure 4-5 and Figure 4-4 show the execution time and dynamic power 

consumption respectively for interleaver 576 64-QAM. The maximum optimisation 

in the figures indicates the optimum results for the designated method. 

 
 

Figure 4-6. Architecture cells dynamic power in µW for interleaver 768 16-QAM with two 
design methods and their optimisations 

 

 

 



Chapter 4: Reconfigurable Interleaver 

 

84 

 

Figure 4-6 and Figure 4-7 show the resulting execution time and dynamic power 

for respectively the design of the 768 16-QAM block interleaver on RICA.  

From Figure 4-5 to Figure 4-7, it is clear that both methods achieved almost the 

same performance. From the analysis of the results of the two implementation 

methods for the Interleaver, the two methods merged into one giving the same 

results after the full optimisation implemented. Therefore, it turns to merge to the 

same concept of the second method. This explains why the maximum optimisation 

in both methods gave approximately the same results. 

 

4.6 Results and analysis 

 

In this chapter, the reconfigurable block interleaver has been designed for fabric 

and dynamic reconfigurable architecture realisations. Various optimisations and 

approaches have been discussed and the results have been presented. In this 

section, only the best results for all designs are presented. 

For the reconfigurable fabric, and as expected, the best throughput and execution 

time were achieved in comparison with the RICA architecture. For example, for the 

interleaver 576 bit 64-QAM, the throughput achieved on the reconfigurable fabric 

(ASIC) is 99.8 Mbps (5.77 µs) compared with 83 Mbps (6.94 µs) for the 

 
Figure 4-7. Architecture’s execution time in µs for interleaver 768 16-QAM with two design 

methods and their optimisations 
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reconfigurable architecture. This means that the reconfigurable architecture 

overhead compared to ASIC is around 16.8% of the execution time or throughput.  

From a power consumption standpoint for the same interleaver, the RICA’s 

 
Figure 4-8. Reconfigurable interleaver execution time in µs for the various modes on the 

dynamically reconfigurable architecture RICA 

 

 
 

Figure 4-9. Reconfigurable interleaver dynamic power consumption in µW for the various 
modes on the dynamically reconfigurable architecture RICA 
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dynamic power consumption is in the range of 1.11 mW
1
. It is expected that the 

ASIC would be superior in power consumption; however, the power achieved is 

around 50.15 mW. The reason for this high value is that the ASIC library uses 

registers (up to 5760) instead of RAM memory, which negatively affects the value 

achieved and this is clearly not representative of real ASIC performance. 

The focus of this work is the dynamically reconfigurable interleaver that would 

support all block sizes with adequate performance. Figure 4-8 presents the 

execution times of all the block sizes for the interleaver on RICA. As expected, the 

execution time is proportional to the block size executed, with the highest being the 

1152 block size. 

Figure 4-9 presents the dynamic power consumption for all block sizes. It is 

expected that the power consumption will increase slightly with the size of the 

block of data, and it almost stabilises around 1110µW, which is as expected. This 

represents the full utilisation of the processor’s resources. In a previous study, an 

ASIC chip was designed for a full baseband processor for 802.11a [61]. The 

interleaver and de-interleaver are less sophisticated in 802.11a due to the limited 

block sizes supported. The authors reported that the power consumption of the 

                                                 
1 Memory access and interconnection power are not included 

 
Figure 4-10. Reconfigurable interleaver “steps” count for the various modes on the 

dynamically reconfigurable architecture RICA 
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interleaver and de-Interleaver was 13 and 21 mW respectively. This compares to 

the RICA reconfigurable interleaver which gives ultra-low power consumption at 

1.1 mW.  

Furthermore, the designed interleaver/de-interleaver reconfigurable fabric area is 

0.529 mm
2
, while in a previous study [61] the areas reported were 0.501 mm

2
 for 

the interleaver and 1.786 mm
2
 for the de-interleaver.  

Figure 4-10 shows the numbers of steps used for each block size on RICA. A step 

is the number of reconfigurations required to accomplish the full interleaving or de-

Interleaving process. As anticipated, the number of steps is proportional to the 

block size processed. 

 

4.7 Conclusion 

 

A novel reconfigurable interleaver has been presented in this chapter. The target 

application was the 802.16 standard with its sophisticated block size requirements. 

The interleaver has been researched and designed into a reconfigurable fabric 

architecture and a dynamically reconfigurable instruction cell-based architecture 

(RICA). The interleaver throughput as a reconfigurable fabric exceeds the standard 

requirement (up to 70Mbps), having a throughput of 99.8 Mbps at 576 block size 

for 64-QAM modulation. Meanwhile on RICA the throughput as well as the 

dynamic power consumption were superior to the fabric realisation and other ASIC 

realisations. These results are a good step forward towards a fully reconfigurable 

baseband telecommunications system. Moreover, the results are a promising step in 

integrating all WIMAX modules on a dynamically reconfigurable architecture. 
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Chapter 5 

5 DYNAMICALLY PROGRAMMABLE 

REED SOLOMON PROCESSOR 

 

 

5.1 INTRODUCTION 

 

With the rapid progress of communication technologies, various communication 

standards have emerged [61]-[63]. Quality of service (QoS) is one of the most 

important factors in mobile communication networks. Reductions in delays, 

including those due to processing time and error correction, are proposed to achieve 

higher levels of QoS [64]. Reed-Solomon coding is one of the most important 

schemes for error detection and correction. The Reed-Solomon codes are named 

after their originators [65] and are widely used in digital communication systems. 

There is a great demand for present and future devices to integrate various 

applications and communication standards in the same device. Such integration can 

be accomplished by, for example, having GSM, WiFi and WiMAX communication 

capabilities on the same unit in addition to video reception through DVB-H. This is 

a tough challenge for battery-powered handheld devices. Achieving this level of 

integration will require an ultra-low-power platform with a less complex design 

flow that provides a shorter time-to-market. Well-known platforms are the ASIC 

and FPGA. ASIC technology faces several limitations, such as lack of flexibility 

and relatively slow time-to-market. On the other hand, FPGAs have high flexibility 

but are not suitable for handheld devices due to their high-energy consumption. 

Hence, the development of implementation methods has targeted systems based on 

digital signal processors (DSP) [62].  

This chapter presents a low-power reconfigurable Reed Solomon (RS) processor 

which can support various communication standards such as WIMAX [44] and 
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DVB-H [73]. The proposed reconfigurable RS processor is intended to be 

programmable for different communication standards.  

Reed Solomon codes are constructed and decoded using a type of finite field 

arithmetic which is known as the Galois Field (GF) in honour of its inventor. A 

finite field of q elements is usually denoted as GF(q) [66]. RS code is constructed 

in GF, which has its own calculation theorem. Special calculation elements are 

needed for the implementation of its coding and decoding, such as the GF 

multiplier and GF adder. For the GF multiplier to be implemented on FPGAs, it a 

large number of adders and shifters or look-up tables on normal fine-grained 

hardware platforms may be required. This may lead to excessive delays [66]-[67] 

as well as high energy consumption. Some DSP processors, such as the TI C64x, 

already have their own embedded GF multipliers, but their high-energy 

consumption cannot be ignored in mobile communication systems. Moreover, an 

architecture that supports multi-standard wireless communication systems should 

support programmability. Thus, a real time programmable Reed Solomon coding 

processor is investigated here. 

In this chapter, the endeavour is to design an architecture that is capable of 

supporting the computational requirements of Reed Solomon coding, while also 

maintaining flexibility and the capability for integration with other systems. The 

processor architecture is based on the reconfigurable cell-based array architecture 

approach [35]. The RS processor is based on an array of heterogeneous cells, each 

of which supports a primitive operation such as addition, multiplication, shift, logic 

operation, write memory, read memory, multiplexing and so on. 

The chapter is organised as follows. Section 5.2 introduces the RS algorithms, 

while section 5.3 presents the novel processor architecture. Section 5.4 addresses 

the RS codec implementation and Section 5.5 presents a novel Galois Field 

multiplication cell design and implementation. Section 5.6 then discusses the 

implementation and optimisations of the novel RS processor, and the results and 

comparisons are given in Section 5.7, while the chapter’s conclusions are listed in 

section 5.8. 
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5.2 RECONFIGURABLE RS-CODEC 

ALGORITHMS 

 

RS codes are based on adding redundancy symbols to data that will in turn allow 

the encoder to code a block of data and the decoder to correct up to (t) error 

symbols. The number of redundancy symbols added is equal to 2t. The 

implementation of the RS coder is based on GF (Galois Field) polynomials and 

exponential representations of the field elements. The number of elements in a 

finite field must be in the form of p
m

, where p is a prime integer and m is a positive 

integer. A primitive element is a root of a primitive polynomial p(x).  

The order of an element  in GF(q) is the smallest positive integer m such that 
m

 

= 1. GF(q) always contains at least one element, called a primitive element, that has 

the order (q - 1). Let  be the primitive in GF(q). Since (q - 1) consecutive powers 

of , {1, , 
2
 , . . . , 

q-2
} must be distinct, and they are the (q - 1) nonzero 

elements of GF(q). The ‘exponential representation’ of the nonzero elements in the 

field provides an obvious means for describing the multiplication operation: 
x
 • 

y
 

= 
(x+y)

. A primitive element is a root of a primitive polynomial p(x). The 

exponential representation for the nonzero elements of GF(q) is given by the 

reduced modulo of the primitive polynomial to obtain a ‘polynomial 

representation,’ which is used in the addition operation [66]. 

The addition operation is to be carried out using the ‘polynomial representation’ of 

the field elements. This polynomial representation is obtained by having the 

nonzero elements of GF(q) in exponential form as the reduced modulo of the 

primitive polynomial [66]. For the RS decoder, the chosen algorithm is composed 

of the Berlekamp Massey algorithm (BMA), the Forney algorithm and the Chien 

search. A detailed description of the encoder/decoder algorithms has been given 

elsewhere [66] and [81]. 

The RS codes have several parameters to be programmed targeting several 

applications, especially multi-standard wireless communication. The present 

approach was targeted the RS encoder for the GF(2
8
), where the symbol width is 



Chapter 5: Programmable Reed Solomon Processor 

 

91 

fixed to 8-bits in order to minimise power consumption and maximise throughput. 

GF(2
8
) is also common to all of the applications mentioned earlier. The 

programmable parameters n and k are the key in the encoding process, in addition 

to the primitive polynomial used. There can be sixteen different fields defined over 

GF(2
8
) through 16 primitive polynomials, where the default primitive polynomial is 

x
8
+x

4
+x

3
+x

2
+1 = 285decimal, while the other 15

th
 are (decimal values): 299, 301, 

333, 351, 355, 357, 361, 369, 391, 397, 425, 451, 463, 487 and 501. 

 

5.3 RECONFIGURABLE RS PROCESSOR 

 

The aim in this work is to design a low power architecture that is capable of 

supporting the computational requirements of the RS codec. In order to cater for 

these requirements, the processor used is based on the reconfigurable instruction 

cell architecture (RICA) [35]. Thereafter the processor is specifically tailored to be 

reconfigurable for the RS codec, so that it can be easily configured and 

programmed real-time in a dynamic manner. The processor is DSP-like, hence 

keeping the advantage of DSPs of high-level programmability. Despite being DSP-

like, it is an ultra-low-power architecture due to the ability to dynamically 

reconfigure highly optimised data paths at given instants in time.  

The RS processor cells are flexible enough to work with 32, 16 and 8-bit data 

types. Compared with the field programmable gate array (FPGA), the RS processor 

can be dynamically reconfigured so that unallocated cells can be eliminated 

(disconnected) at each step; thus, the energy consumption can be limited rather than 

using the majority of available transistors to provide flexibility as in the FPGA. 

The processor is based on an array of heterogeneous cells as shown in Figure 5-1. 

Each cell supports a certain operation. Various operations are included in the 

processor, such as addition, multiplication, shift, logic, write memory, read 

memory and multiplexing. These cells are based on 32-bit operands interacting 

with a distributed memory of 16 banks with an 8-bit memory bank width. The 32-



Chapter 5: Programmable Reed Solomon Processor 

 

92 

bit architecture is used as this provides a greater capability for implementing 

parallelism in the 8-bit based Reed Solomon algorithm.  

The processor has a reconfigurable data-path that implies non-fixed cycles, but is 

based on a ‘step’ concept. A ‘step’ is a combination of instructions, or physically a 

single datapath interconnection configuration for a group of cells in the processor. 

Step size is determined by the resources available in the processor, a conditional 

branch (Jump) and the length of the critical path. The step concept allows the 

maximum exploitation of parallelism for the implemented application instead of 

having fixed data-paths as in traditional processors. 

RS codes are defined by two main parameters: the number of overall symbols after 

encoding (n) and the number of data symbols before encoding (k). the number of 

data symbols that can be corrected is t, which equals (n-k)/2.  

The encoder in the present work uses the GF(256) with a symbol width of 8 bits. 

For the purpose of research, validation and comparison, two different RS block 

 
 

Figure 5-1 Reed-Solomon processor based on dynamically reconfigurable 
heterogeneous cell array. 
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sizes (255,239 and 204,188) which are used in WiMAX and DVB-H respectively 

are targeted.  

This includes the famous RS(255,239), as well as other combinations, such as the 

RS(204,188) for DVB (Digital Video Broadcasting). 

 

5.4 RS Encoder and Decoder Implementation on 

Novel RS Processor 

 

5.4.1 RS Encoding and Novel Design 

For the ASIC and FPGA, the classic implementation of RS is based on the use of 

linear feedback shift registers (LFSRs). Figure 5-2 (a) shows the ASIC/FPGA-

based classical architecture for an RS encoder. Figure 5-2 (b) presents a novel 

design modification for the RS encoder that includes parallel parity symbol outputs. 

In classical implementations, the system requires an additional 2t clock cycles to 

generate the calculated parity symbols after the k clock cycles used for parity 

calculation, resulting in a total number of clock cycles of (k+2t). However, with the 

new design the number of clock cycle is reduced to only k, since the parity bits are 

output in parallel without the need for additional clock cycles. This implementation 

strategy increases the throughput of the whole communication system by n-k-1 

times. Moreover, power savings are achieved due to the reduction in the number of 

clock cycles used, as indicated below. 

 

Time reduction = 1- [k / (2t + k)] • 100% per data block,  

For example, for the RS(255,239), the time reduction is 6.3%, while for 

the RS(204,188) it is 7.8% 
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The complex part of the LFSR implementation is the GF multiplier. The 

multiplication process changes radically when the primitive polynomial is changed. 

For the efficient implementation of the real-time programmable RS encoder on a C-

programmable architecture, a hardware algorithmic technique has been 

implemented. Various optimisation techniques need to be applied to the 

architecture in order to achieve the best possible results. This approach is named a 

‘hardware-approach’ since it resembles ASIC/FPGA implementations and is based 

on the novel architecture shown in Figure 5-2 (b). An advantage of applying this 

approach is the reduction of processing time by 7.8% which will result in a 

reduction in the total number of operations and memory accesses required. 

Moreover, the omission of the modulus function is an additional advantage. There 

is a drawback associated with the implementation using this approach, which is the 

need for a new cell type to be added to the processor: a GF multiplier. 

 

 

 
 

Figure 5-2. Reed-Solomon encoder using linear feedback shift register with n-k stages: 
(a) classical RS encoder architecture; (b) novel design of parallel parity output 
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5.4.2 RS Decoder on RS Processor 

The RS decoding algorithm can be divided into five main steps, as illustrated in 

Figure 5-13. 

5.4.2.1 Syndrome computation 

in syndrome computation the syndrome polynomial )(xS  is calculated, which is 

denoted as


t

i

i

i xS
2

1

. By definition, )( i

i RS  , where )(xR  is the received codeword 

(in polynomial form) and i are the roots of the codeword-generating polynomial 

for i=1, 2 … 2t [76].  

S(1) S(2) ….. S(2t)

Received 

Data

(1) (2) (2 )t

GF addition

GF multiplication

D D D

 
 

Figure 5-4. Syndrome computation architecture 
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Figure 5-3. Reed Solomon decoder main algorithms 
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The algorithm can be expressed as 

2 ( 1)

0 1 2 1

i i n i

i nS R R R R   

      (5-1) 

Horner’s rule is a method for reducing the number of multiplications in polynomial 

computation [76]. According to this rule, the expression of syndrome computation 

can be written in a nested multiplication form:  

 1 2 3 0( (( ) ) )i i i

i n n nS R R R R       
 

(5-2) 

The syndrome computation architecture is shown in Figure 5-4. It employs a 

recursive construction with GF adders and GF multipliers. 

 

5.4.2.2 Forney computation 

If erasures exist, an erasure position polynomial as in Equation (5-3) would be 

generated, in which eranum  is the number of erasures, and i means the positions of 

the erasures which have occurred. In this case, the syndrome polynomial should be 

updated as in Equation (5-4) 

1

( ) (1 )
era

i

num

i

x x




  
 

(5-3) 

2'( ) ( ) ( )mod tS x S x x x   
(5-4) 

 

5.4.2.3 Key equation calculation 

If the syndrome polynomial )(xS is non-zero, mean errors or erasures are detected. 

Key Equation (5-5) is generated in order to obtain the error location polynomial 

)(x  and the error value polynomial )(x  

2( ) ( ) ( )mod tS x x x x   (5-5) 

For this nonlinear Key equation, t2 simultaneous equations need to be computed 

[66]-[78]. Two main algorithms can be utilised: Euclid’s algorithm and the 

Berlekamp Massey algorithm (BMA) [79]. In this work, the BMA is employed 

because it is considered to entail less hardware complexity [80]. This is due to its 

nature as an algorithm that will find the shortest linear feedback shift register 

(LFSR) for a given binary output sequence. After t2 iterations of BMA, the error 



Chapter 5: Programmable Reed Solomon Processor 

 

97 

location polynomial )(x  can be obtained. If any erasure occurs, the erasure 

information should be added into )(x . 

5.4.2.4 Chien search  

A Chien search concerns finding the roots )1( tll   of the error location 

polynomial )(x  [76][79]. The basic idea of the Chien search is to evaluate the 

error location polynomial with 255 possible roots of GF and to check if the result is 

zero. If it is, this indicates that a root has been found [81]. With the Chien search, 

both the location and number of errors can be obtained.  

5.4.2.5 Error evaluation polynomial 

The error evaluation polynomial is calculated from the syndrome and the error 

polynomial. It can be expressed by Equation (5-6). 

( ) ( ) ( )mod n kx S x x x    (5-6) 

5.4.2.6 Forney algorithm  

The Forney algorithm in Equation (5-7) is used to compute the error values from 

the error location polynomial and error value polynomial:  

( ) / '( ),l le x x x   
 

(5-7) 

where )(' x is the odd term of )(x . 

5.4.2.7 Error correction  

After the roots of both )(x and )(x have been calculated, the data received can 

be corrected by a simple XOR operation of the error value and the received symbol 

at the corresponding error position. 

 

5.4.2.8 Single instruction multiple data (SIMD) 

The key optimisation target is to maximise step size and minimise the resources 

and memory access used. In the RS (255,239) decoder design, the maximum 

numbers of GF adders and multipliers required by each functional block have been 

calculated and are shown in Table 5-1.  
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5.5 Galois Field Multiplier Cell for RS Processor 

 

As discussed above, there is a need for a GF multiplier (GFMUL) custom cell to be 

designed and implemented within the processor in order to support the RS encoder 

and decoder optimised algorithms and to enhance their performance on the 

architecture. 

In order to implement the cell in a programmable RS processor, the cell itself has to 

be programmable. The objective here is to focus on the RS coding for the GF(2
8
), 

where the symbol width is fixed at 8-bits so as to minimise the energy consumed 

and to maximise throughput. Moreover, GF(2
8
) is common to all of the applications 

 
 

Figure 5-5. The internal architecture of a single GF multiplier for 8-bit data width 

Table 5-1 Number of additions and multiplications in the Reed-Solomon decoder 

 

Block Additions Multiplications 

Syndrome computation 4080 4080 

Forney computation Number of erasures Number of erasures 

Key equation 

calculation 

16 iterations, depending 

on the number of errors 

and erasures 

16 iterations, depending 

on the number of errors 

and erasures 

Chien search 4335 4335 

Forney algorithm 
depending on the number 

of errors and erasures 

depending on the number 

of errors and erasures 

Error correction 8 0 
NB. Calculations are based on the RS (255,239) 
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mentioned earlier in Section 5.1. There are up to sixteen different fields defined 

over GF(2
8
) by sixteen different primitive polynomials. Programmability here from 

an algorithmic point of view can be divided into two types: real-time and offline. 

Real-time programmability is used for switching between the different primitive 

polynomials used; while offline programmability refers to when the values of n and 

k need to be changed.  

A combinatorial GF multiplier is designed, as this will suit the RS cell-based 

processor. The cell function is modelled and verified in Matlab. Then it has been 

designed, simulated and verified in both pre- and post-routing using Cadence VLSI 

 
 

Figure 5-6. A novel 8 bit GFMUL cell with four embedded GF multipliers maximising the 
throughput by applying the SIMD technique (a) GF multiplier cell layout, (b) GF multiplier 

internal structure 
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design EDA tool set using the UMC 0.18µm (UMCL18U250D2_2.4) CMOS 

technology library (which is the same technology as that used for the processor).  

This enables the performance and characteristics of the new cell to be tested, 

verified and extracted. Thereafter, the cell and its characteristics were embedded 

within the overall processor model. The necessary adjustments have been added to 

the processor compiler in order to add the GFMUL into the processor instruction 

set as a new added instruction that will invoke a GFMUL custom cell instead of 

initiating a series of shift and logic instructions or cells. 

Figure 5-5 shows the internal architecture of the 8-bit multiplier, with ‘pp’ as the 

primitive polynomial reconfigurable input. The RS Processor is 32-bit based; and 

this is why it is preferred to make use of full data-bus width. Hence, instead of 

having only an 8-bit-based cell, a novel 4 x 8-bit-based GFMUL cell has been 

designed. The cell is based on four concatenated 8-bit GF multipliers, as shown in 

Figure 5-6. This optimisation enabled a cell area reduction of approximately 23% 

with an associated reduction in energy consumption since only a single remainder 

calculation unit is needed instead of four in the case of four independent GF 

multipliers, as shown in Figure 5-5. In addition, this allows the single instruction 

multiple data (SIMD) technique to be applied in the implementation of the 

algorithms, in order to maximise throughput and resource utilisation, due to the 

concurrent use of the four multipliers within the cell. The results for the novel cell 

are presented below in Section 5.7.1. 

 

5.6 RS Processor Implementations and 

Optimisations 

 

5.6.1 Architecture Specific Optimisations  

The RS processor is based on the dynamically reconfigurable architecture paradigm 

as presented in Figure 5-10 (b). The processor executes the codes in ‘steps’ instead 

of using a single instruction at a time. At each step, the instructions are loaded into 
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the processor’s ‘configuration controller’, which introduces configuration latency. 

The architecture is structured to support only one ‘Jump’ instruction per step. 

Following the Jump, a new configuration will take place to reconfigure the 

processor cells and interconnections and load a new set of inputs based on the 

algorithm and the sequences of its instructions. If an algorithm fully or partially 

generates or includes more than one Jump, then the code in between will be placed 

in separate steps. The main reason for optimisation is to maximise processor 

utilisation by reducing the number of steps as well as the length of the critical 

paths. If the entire algorithm can be placed in a single step, then the configuration 

latency will be almost eliminated. If Figure 5-10 (b) is considered as a stand-alone 

case, and assuming that the entire algorithm has been encapsulated in a single step, 

then the processor will run on a single configuration, and the only ongoing changes 

will be in the data handled through input and output ports. This is the ultimate goal 

in optimising processor performance, since this can be expected to provide the best 

performance.  

In initial implementations, the configuration time and performance results are not 

usually the best that might be achieved, since long critical paths and huge 

computational resources are required. There is a trade-off between configuration 

time, step size and the number of cells in the processor. In general, maximising the 

resource utilisation is a common target, as this leads to better performance by 

increasing processor throughput and eliminating redundant cell resources.  

Memory access delay is another key performance parameter which needs to be 

monitored. This parameter can be a major bottleneck for performance in embedded 

systems [75]. Memory access optimisation can be achieved in three steps: a) 

algorithm-level optimisation by modifying the algorithm in order to optimise and 

limit the need for frequent memory access; b) increasing ‘local register’ cells that 

can hold intermediate calculated results; and c) applying pipelining and using 

register files. Conversely, there is a trade-off when using registers, since their 

excessive usage can have an adverse effect on throughput and, most importantly, 

on the power consumption. Parallelism and pipelining are explained further below. 
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5.6.1.1 Parallelism 

The RS processor can execute both dependent and independent instructions in the 

same processor step, so that parallelism is utilised. For the encoder, 16 redundant 

code-words can be calculated in parallel to enhance performance. For the decoder, 

syndrome computation, the Chien search, error evaluation and the Forney 

algorithm can be implemented in parallel as well, which leads to a throughput 

enhancement 25%, and 23.3% reduction in the energy consumption memory access 

5.6.1.2 Kernel and pipeline 

The RS processor is specifically optimised to execute large steps that loop back 

onto themselves (termed ‘kernels’) [35]. In a kernel, the processor can fetch and 

store the complete set of configuration instructions only once, instead of fetching 

the same instructions repeatedly, so that configuration latency and energy 

consumption are greatly reduced. A software pipelining technique can be utilised 

for kernels to give for further performance improvements. The kernel step will be 

automatically pipelined into multiple stages with a special mark-up added in the 

software code.  

In this case, the critical path of the kernel will be shortened. Therefore, the overall 

execution time will be reduced and hence throughput will be improved. This 

pipelining technique is especially efficient for the decoder. After building the 

kernels and pipelining, the critical path has been shortened, and thus the 

processor’s performance has been improved. 
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Figure 5-7. SIMD architecture for syndrome computation 
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5.6.1.3 Dedicated GF MUL and SIMD 

It is obvious that the syndrome computation and Chien search require the most 

resources. In Reed-Solomon code, the width of a symbol codeword is 8-bits. The 

Single instruction multiple data (SIMD) is employed here to give the maximum 

usage of the processor’s resources.  

For example, in syndrome computation, all the terms of )(xS  are independent. 

With the SIMD technique, the received four 8-bit data and four 8-bit i  can be 

combined together to form two 32-bit operands. Thus the four multiply operations 

can be calculated with a single 4 x 8-bit GF multiplier. The output )(xS  can also be 

segregated into four 8-bit operands. Figure 5-7 illustrates the architecture of 

syndrome computation with the built-in SIMD technique. Compared with the 

classical one method without SIMD shown in at Figure 5-4, the number of GF 

multiplications are reduced by 75%, and the memory access energy is reduced by 

48%.  

 

 

 
 

 
Figure 5-8 Reed Solomon decoder (a) classical software approach of RS decoder; (b) 

new approach with GF multiplier cell 
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5.6.1.4 Architectural approach to RS decoding  

The RS decoder requires more GF multiplications than the encoder. Figure 5-8 (a) 

illustrates the architecture of a classical software RS decoding implementation 

which uses a LUT (look up table) to utilise the GF multiplication. With the use of 

the LUT, enormous numbers of memory accesses will be introduced into the 

application, which will lead to bring considerably increased execution time and 

energy consumption. Therefore, a GF multiplication cell is essential for both the 

RS encoder and decoder. 

Figure 5-8 (b) illustrates the new RS decoder approach with the GF multiplier cell. 

Compared with the classical software approach, the architecture with the GF 

multiplier cell is less complex, and the large arrays that were used for holding the 

GF elements are eliminated. By reducing the number of memory access operations, 

the GF multiplier custom cell will greatly improve performance in terms of 

reducing the execution time and energy consumption.  

5.6.1.5 Targeted processor’s architecture  

As explained earlier, the RS processor is based on the RICA paradigm. Hence it is 

worth explaining here in greater detail the layout of the architecture and its modes 

of operations. The processor is C-programmable and based on heterogeneous cell 
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Figure 5-9 RICA architecture tool flow 
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arrays. Figure 5-10 demonstrates the three main operation modes of the processor. 

Figure 5-10 (a) represents the initial configuration mode, where the configuration 

controller is active in loading and configuring the cells and their interconnections, 

and the dark-coloured cells in this illustration represent active cells. Figure 5-10 (b) 

represents the main working operational mode of the processor, where actual RS 

encoding/decoding takes place. Here it can be noted that the input and output ports 

are active, indicating continuous data streams coming in to and going out from the 

processor. Finally, Figure 5-10 (c) shows the processor have completed the main 

function and now ready to be configured for the following operation, which could 

be another algorithm. Processors based on the RICA paradigm have a dedicated 

tool flow developed for them which comprises a compiler, scheduler, placement 

and routing, and emulator, as illustrated in Figure 5-11. The compiler transfers the 

high level C code into assembly language format, which is based on the 

instructions in the processor cells. Information for the processor cells is provided 

by the machine description file (MDF) which holds the functions and capabilities 

of those cells. The assembly file generated will be passed to the scheduler, which in 

turn will produce a netlist of a series of steps to configure the processor 

dynamically. The scheduler takes into account the resources from the MDF file, 

such as cells, interconnections and timing constants, in addition to the optimisation. 
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Figure 5-10 Programmable Reed Solomon processor architecture based on 

heterogeneous cell array (dark coloured cells represent active cells in a certain 
configuration). The three cases are: (a) initial configuration; (b) intermediate 

configuration, in which certain cells are configured to code/decode data from/to 
input/output ports; and (c) final configuration, flushing remaining data out, and 

preparing for the subsequent configuration. 
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5.6.2 RS Encoder Implementation and Optimisation  

 

For the efficient implementation of a real time RS encoder on the processor, the 

encoder has been implemented based on the data-flow graph presented in Figure 5-

11. This implementation is based on generating the whole Galois Field required 

through its primitive polynomial, and records these in two separate arrays: one for 

polynomial representation and the other for exponential representation. The GF 

multiplication is carried out by calculating the exponentials of the two operands. 

The generator polynomial is generated and stored in an array, while the calculation 

of the encoder parity symbols takes place using the LFSR (linear feedback shift 

register), as demonstrated in Figure 5-2 (a). The throughput obtained in realising 

 
 

 
Figure 5-11 Reconfigurable RS encoder data-flow graph 

 

Results before optimisation RS(255,239): 

One time execution
*
 of RS encoder = 335.83 msec 

Step count = 13,751 

Dynamic energy
#
 = 5.67 mJ 

Throughput = 6.1 Mbps 

 
* One time execution = one complete coded block of data 

# Represent all energy except interconnections energy 
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this approach is, however, far from the target of at least 70Mbps (which is the 

optimum requirement for WIMAX). This can be seen from the performance 

summary report below. 

By analysing the resulting performance report and intermediate files, it is 

concluded that the obtained low throughput is due to the excessive use of read/write 

operations from/to data memory. In order to overcome this problem, several 

optimisation techniques, as mentioned earlier, were applied. The maximum 

throughput achieved then increased to 10.1Mbps, as can be seen from the report 

results below. 

 

The optimisation techniques applied resulted in an enhancement of 40% in the 

Results after optimization RS(255,239): 

One time execution of RS encoder = 202.486 sec 

Step count = 6,042 

Dynamic energy: 4.7 J 

Throughput: 10.1 Mbps 

 
 

Figure 5-12 Reconfigurable RS encoder modified data-flow graph using GFMUL cell 
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throughput and a reduction 17% of in the dynamic energy. As the required 

throughput (70Mbps) was not reached, the algorithm has been further investigated, 

leading to the implementation of the algorithm using a hardware-inspired technique 

in order to reduce the memory access overhead.  

Figure 5-12 presents the proposed modified data flow graph, which provides some 

advantages, such as greater reductions in the total number of operations and the 

number of memory accesses required, in addition to the elimination of the modulus 

cell/function. On the other hand, the modified flow-graph requires a new cell, the 

Galois Field multiplier (GFMUL), to be added to the processor. The cell developed 

supports run time reconfiguration for the GF primitive polynomials. This cell and 

its design have been discussed in detail in Section 5.5. 

 

5.6.3 RS Decoder Implementation and Optimisation  

The Reed-Solomon decoder architecture and the interaction of its various functions 

are illustrated in Figure 5-13. The decoder has been implemented based on the 

techniques of the data-flow graph shown in Figure 5-11, which has two arrays: the 

polynomial and exponential representations. The results obtained are similar to 

 
 

Figure 5-13. Reed-Solomon decoder algorithm design 
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those for the encoder and a follow-up implementation of the decoder was then 

conducted using the same techniques of the modified data-flow graph (Figure 5-12) 

with the aid of the GFMUL cell. Compared with the data-flow graph, the 

architecture with the GFMUL cell is less complex, and the large arrays required for 

storing the GF elements are no longer necessary. Considering the memory 

optimisation mentioned earlier, there would be four memory read/write operations 

per GF multiplication in the data-flow graph technique, as well as other operations 

such as modulo-2 adder, logic, modulus, and so on. By reducing the number of 

memory access operations and using the GF multiplier cell in the modified data 

flow graph approach, the performance improves significantly in increasing 

throughput and decreasing energy consumption. The usage of the GFMUL cell 

leads to a reduction in memory access energy of 72.4%, which represents a 

significant performance improvement. Parallelism is another important 

optimisation technique in maximising resource utilisation. Every functional block 

of the RS decoder has been examined to decide whether parallelism in the code can 

be utilised to increase performance. For example, syndrome computation requires 

4080 8-bit adders and 4080 8-bit multipliers. As the elements of )(xS  are all 

independent, it can be computed with 16 parallel data paths with recursive 

multiplication and addition [76]. In addition, the performance of the parallel 

architecture can be further improved by employing the SIMD technique, as 

explained earlier. The architecture of the Forney computation’s depends on the 

number of erasures in the received codeword. There are no efficient parallel 

architecture techniques that could be utilised for all cases of the Forney 

computation, because the number of additions and multiplications differ according 

to every symbol frame. The Berlekamp-Massey algorithm is based on iteration, and 

all calculations are computed in sequence depending on the number of errors and 

erasures, so that no parallel optimisation could be implemented. The Chien search 

is used to evaluate the error location polynomial with all 255 possible roots, so that 

parallel implementation is possible here since they are all independent. The error 

evaluation polynomial makes use of the syndrome and error polynomial. It has an 

architecture similar to that of syndrome computation, so that all of its 16 elements 
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could be computed in parallel in 16 paths, and in addition, the SIMD technique 

could be employed. The Forney algorithm determines the actual error and erasure 

value from the error location and value polynomials, and for the calculation of each 

symbol parallelism could be implemented. Error correction can be easily 

implemented in parallel simply with a GF adder (XOR - logic cell). With all the 

parallelism optimisations described, the processing time and memory access energy 

consumption are reduced further by nearly 25% and 23.3% respectively. 

 

5.7 Performance, Comparison Analysis and 

Results 

 

5.7.1 GF Multiplier Cell 

The results in terms of area and calculation delay for the implemented GFMUL as 

either a single multiplier or the proposed novel concatenated four multipliers are 

presented in Table 5-2. The multiplier is combinatorial, hence its key parameter is 

delay time along with power consumption. In Table 5-2, two implementations have 

been highlighted: firstly a single 8-bit multiplier entitled the ‘One programmable 8-

bit GFMul cell;. and the second with four 8-bit multipliers entitled ‘Four 

programmable 8-bit GFMul cell.’ Both are programmable, and the results for the 

single multiplier have been listed to allow comparison with other studies while the 

cell with four multipliers is the main cell integrated within the processor. It is clear 

how the maximum delay has been kept to a minimum at 3.88 ns. These results were 

Table 5-2 Implementation results for the GF multiplier cell  
(180nm Technology) 

 

GF(2
8
) Area (µm

2
) Max delay (ns) 

One programmable 8-bit GFMul cell 6,265.40 3.34 

Four programmable 8-bit GFMul cell 19,345.10 3.88 
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obtained post-layout and have been modelled within the RICA development 

environment in order to give accurate modelling of the RS coding. The GF 

multiplier has been developed as an extension of the instruction set for the 

Sandblaster Micro-architecture [69]. By comparing the results for the developed 

GFMUL with [69], the GFMUL multiplier proposed here achieves an area 

reduction of 45%. On the other hand, the Sandblaster multiplier delay is half of that 

obtained with the GFMUL; however, the GFMUL is programmable whilst the 

Sandblaster multiplier is not. The difference in delay is considered an acceptable 

overhead given the advantages in flexibility and does not affect the performance or 

functionality of the either multiplier or the whole processor. In addition, the 45% 

reduction in area will be accompanied by a reduction in power consumption, 

leading to the possibility of attaining an ultra-low-power processor design. 

 

5.7.2 RS Codec Processor 

The performance results for the processor are obtained from the RICA software 

tool flow based on the accurate modelling of a fabricated processor. For the RS 

(204,188), the encoder throughput reached 202 Mbps, while for the RS (255,239) 

the encoder throughput reached 200 Mbps. This is a significant improvement over 

the intermediate results reported earlier; moreover, it exceeds the application 

specifications. The following are the results for the RS encoder: 

 
Figure 5-14 Memory usage for RS decoding on RS processor 
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Figure 5-15 Throughput of RS decoding on RS processor 

 

-Results after optimisation RS(255,239): 

Throughput: 199.9 Mbps 

Memory usage = 359 bytes 

 

-Results after optimisation RS(204,188): 

Throughput: 202.5 Mbps 

Memory usage = 308 bytes 

For the RS decoding, the results obtained after the series of optimisations can be 

represented graphically. Decoding results are usually represented by best, average 

and worst case results. The best case is when there are no errors, the average case is 

when there are four errors to be detected and corrected, and the worst case is when 

Table 5-3 Performance comparison of the novel RS processor and StarCore 140 for 
RS(255,239) 

 

 RS Encoder: 

Processor RS Processor* StarCore 140 [70] 

Cycles count 257 6359 

Time (µs) 10.202 264.96 

Throughput (Mbps) 199.9 7.26 

 RS Decoder: 

Processor RS Processor* StarCore 140 [70] 

 Best   

case 

Average 

case 

Worst 

case 

Average 

case 

Worst 

case 

Cycles count 1423 3,245 4,463 14,298 14,428 

Time (µs) 22.174 68.105 90.376 264.778 267.185 

Throughput (Mbps) 73 29.95 22.57 7.70 7.64 
*RS Processor chip is based on 180nm CMOS technology 
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there are eight errors to be detected and corrected. Figure 5-14 illustrates the 

memory usage with different numbers of errors. The result show a considerable 

improvement of an 85.6% reduction in worst case for memory usage compared to 

previous work [70], and hence the memory access energy will be reduced. The 

decoder throughput with different numbers of errors is illustrated in Figure 5-15. 

The results show an overall advantage compared with [71] and moreover the 

proposed processor offers considerable lower energy consumption than FPGA 

implementations.  

 

After applying all of the optimisation techniques discussed above in deploying the 

GFMul and applying the SIMD technique, the results were enhanced significantly. 

The encoder throughput increased from 10 to 200 Mbps, while decoder throughput 

from 2 to 92 Mbps in the ‘best case’ for the RS(255,239), where the best, average 

and worst cases are shown in Table 5-3. This represents a significant improvement, 

and these results also prove that the reconfigurable RS processor introduced here 

can accommodate the demanding standards and applications expected in the future.  

 

 

The methodology used for StarCore 140 RS encoder/decoder implementation [70] 

performs the additions in binary representation and multiplications in exponential 

representation, where conversions between the two representations are 

accomplished with the aid of look-up tables. Table 5-3 shows the superiority of the 

novel processor over the StarCore processor for all parameters. It is worth 

 
 

Figure 5-16 Energy consumption for the RS decoder on RICA 
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mentioning that the StarCore is a dedicated industrial DSP for communication 

applications. The energy consumption is demonstrated in Figure 5-16 for the cases 

of both the RS(255,239) and RS(204,188). In [71] the maximum throughput 

achieved for the RS decoding is up to 15Mbps for RS(255,239), while in the 

proposed RS processor throughput reaches 92.5Mbps and moreover it offers 

considerable lower power consumption than the FPGA implementation. 

5.8 Conclusion 

 

A novel RS encoder architecture with parallel parity output has been introduced in 

this chapter. A novel high-speed and low-power 32-bit GF multiplier cell 

embedded within the novel low power processor for programmable Reed Solomon 

coding has been introduced along with its design, optimisation and implementation. 

The real-time programmable RS encoder and decoder processor supports several 

communication standards such as WiMAX and DVB-H. In addition, the processor 

can be used in a wireless local area network IEEE 802.11 to improve its range [67]. 

There are other possible applications for RS codes, such as deep space 

communication [68]. A number of approaches and optimisation techniques have 

been implemented in order to enhance the performance of the processor. The 

processor achieves high throughput and provides significant improvements in 

performance and energy consumption.  

The GF multiplier cell leads to a reduction of 72.4% in memory access energy, 

which improves the processor’s performance. Different design approaches and 

optimisation techniques have been applied in order to enhance the processor’s 

throughput and to reduce its energy consumption. The throughput achieved is up to 

200 Mbps and 92 Mbps for the encoder and decoder respectively. Associated 

dynamic energy consumption is in the range of 0.34 to 0.6 µJ, leading to the 

conclusion that this is a design suitable for present and future handheld devices. 
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Chapter 6 
 

6 GPS DIGITAL MATCHED FILTERS 

USING DYNAMICALLY 

RECONFIGURABLE ARCHITECTURE 

 

 

6.1 INTRODUCTION 

 

The first GPS (global positioning system) was declared fully operational in 1995, 

with 24 satellites in orbit. Its importance to civilian users was recognised 

immediately and in 2000 the ‘selective availability’ function was discontinued, 

allowing users to receive non-degraded signals. This accelerated the system’s 

adoption in civilian applications on land, in the sea and in the air and led to a 

revolution in personal navigation devices. Today, GPS applications are embedded 

in various gadgets such as mobile phones. This has allowed an extended range of 

applications ranging from sat-nav devices to social networking applications.  

The GPS utilises a constellation of satellites in medium Earth orbit which provide 

positioning, navigation and timing information to compatible receivers on Earth 

[83]. Signal acquisition or correlation is by far the most computationally 

demanding module of a GPS receiver. In addition the correlator has strict time 

constraints and should be able to continuously execute the real-time correlation 

process. Thus the correlator is a key to achieving low-power GPS receivers [84]. 

This research work focuses on developing a novel correlation engine through the 

design and implementation of various GPS correlation architectures exploiting the 

RICA processing paradigm. Performance evaluations are conducted in terms of 

time, energy and memory usage.  
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Two main types of correlator architecture have been introduced in the literature. 

The first performs the direct correlation of the locally generated code replica with 

the sequence received in the time-domain. The second utilises frequency-domain 

techniques relying on the DFT (discrete Fourier transform) and FFT (fast Fourier 

transform). The FFT can reduce the computational complexity of the correlator, but 

still requires complex algorithms which are not easy to implement and are power-

hungry. Furthermore, this approach approximates some calculations to reduce the 

overall noise tolerance of the correlator. For these reasons, the present research 

focuses exclusively on time-domain architectures. 

This chapter is organised as follows: correlation architectures are presented in 

section 6.2, while section 6.3 describes the engine architecture developed in this 

work. Section 6.4 details various matched filter algorithms and their 

implementation on the architecture and the optimised correlator engine designs. 

The results are analysed in section 6.5 and conclusions are presented in section 6.6. 

 

6.2 Correlation Architectures 

 

A matching filter is an important basic building block in wireless communication 

systems such as the GPS, WLAN, CDMA and WiMAX. It is used in signal 

acquisition and tracking, and requires a significant amount of system resources. 

The design of the matching filter is a crucial factor in system performance in terms 

of rapid signal acquisition and tolerance of interference. Acquisition is the most 

time-consuming function of a GPS receiver and various acquisition algorithms 

have been developed in order to speed up computation [84]. A number of 

algorithms can be used for correlation. As mentioned earlier, the focus here is on 

time domain correlation, of which four main types are discussed.  

The correlation algorithm multiplies the incoming signal with all possible 

coarse/acquisition code (C/A code) combinations and then integrates and sums the 

results. This means that the receiver is not affected by possible phase differences 

between the locally generated and the actual carrier frequencies. The correct phase 
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is found once the correlator output exceeds a predefined threshold. These 

parameters can then be passed on to the tracking circuit. 

The GPS C/A code sequences belong to a family of pseudo-random noise (PRN) 

codes discovered by R. Gold in 1967 [85]. They are also known as ‘Gold’ codes 

and their most important characteristic is their correlational properties. Cross-

correlating two different 1023-bit Gold codes (C1, C2) can be represented as in 

Equation (6-1). 

 

𝑅(𝑘) =  𝐶1(𝑖) ∙ 𝐶2(𝑖 + 𝑘) ≈ 0

1022

𝑖=0

 
 

(6-1) 

 

where k is the phase-shift of C2 relative to C1. It is known that the C/A codes are 

almost uncorrelated with each other at any phase difference. If C1=C2, then the 

auto-correlation result of the above equation reaches a peak value of 1023, when C1 

and C2 have the same phase (k=0). 

The signal received by the RF front-end and quantised by the A/D converter is a 

combination of the signals transmitted by all visible satellites. If N satellites are 

visible at a specific moment, then the received signal S(t) is the summation of all 

visible satellite signals as in Equation (6-2). 

 

S(t) = S1(t) + S2(t) + ... + SN(t) (6-2) 

 

The acquisition algorithm must identify whether or not a specific satellite is 

currently visible and find the carrier frequency of the signal and phase of the C/A 

code. The carrier frequency of the transmitted signal is already known, but since 

the satellite is continuously moving, and possibly the receiver is too, the carrier 

frequency of the received signal will differ from its nominal value by a small 

Doppler shift. Furthermore, the code phase will be random and the purpose of 

acquisition is to locate the beginning of the C/A code in the received signal. 

Each GPS satellite is located its own unique code sequence. The C/A codes used 

are a chain of 1,023 bits within a period of 1ms. The GPS receivers generate the 

same code sequences internally. These are compared with the received signal from 
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the satellites. If correlation is not achieved, then the local code will be shifted by 

one bit and compared again. This process is repeated until a match occurs, while 

the number of shifts will be represented as a delay value to be used in further 

calculations in the GPS receiver. If all 1,023 bits have been tried without successful 

correlation, then an offset to the phase value need to take place in the receiver using 

the frequency oscillator, and the previous process has to be repeated. The next 

section discusses various matched filter algorithms and their adoption for GPS 

correlation in the proposed processing engine. 

6.2.1 Serial Search Correlation 

 

The simplest and most conventional algorithm to implement is the serial search 

correlator. Figure 6-1 presents its architecture. It is used in the commercial 

Zarlink's GP2021 correlator implementation [86], and is a relatively simple 

algorithm to implement which has minimal hardware requirements. Its main 

drawback is the extensive period required to perform acquisition. The signal 

samples are multiplied consecutively with the locally generated C/A code samples 

and then the results are integrated. 

It can be seen that the only hardware parts required are a multiplier, an adder and 

an accumulation register. To perform complete acquisition using this architecture 

would require 1,023 multiplications and 1,022 additions for each phase, since the 

length of a full C/A code is 1,023 bits. Therefore, for the 1,023 phases, it would 

require in total: 

1,0231,023 = 1,046,529 multiplications and 1,0231,022 = 1,045,506 additions. 

 
 

 
Figure 6-1 Serial search correlation 
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In the GPS, each complete C/A code has a period of 1 ms (1  1.023MHz), and 

hence the serial search correlator requires 1.023 seconds to complete the 

acquisition of 1,023 phases. 

 

6.2.2 Conventional Digital Matched Filter 

The conventional digital matched filter (CDMF) correlator presented in Figure 6-2 

uses a tapped delay line to correlate the incoming signal with the locally generated 

code replica [87]. Its main advantage is that a full 1023 phase search can be 

completed in the time required for one 1023-bit C/A code sequence to be received 

(1 ms). On the other hand, it requires an additional 1023-register buffer to store the 

incoming signal samples. The buffer must be initially filled before any correlation 

results can be obtained, so a further 1 ms should be added to the total acquisition 

period. Its computational complexity is the same as that of the serial search method, 

as it requires the same number of additions/multiplications to complete a 1,023-

phase acquisition. 

The algorithm operates by storing successive incoming signal samples in the shift 

registers (buffer), and calculates the correlation of phase i when the buffer becomes 

full. As a new data sample is received, it is shifted-in the buffer while at the same 

time the oldest stored sample is shifted-out. Then the correlation of phase i+1 is 

calculated. Since the majority of incoming data samples are kept in memory, the 

 

 
 

Figure 6-2 Conventional digital matched filter (CDMF) 
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correlation results for subsequent code phases can be calculated quickly, requiring 

977 ns for each phase. 

 

6.2.3 Differential Digital Matched Filter 

A differential digital matched filter (DDMF) correlator improves on the CDMF by 

eliminating most of the multiplications and reducing the number of additions by 1/2 

[88] and [89].  

The sample values of the local code replica will be either +1 or -1. If these values 

are incremented by +1, then they will become +2 or 0. Statistically, approximately 

half of the code values will be -1 (or 0 after incrementing); so their multiplication 

and addition can be eliminated. 

After adding +1 to the values of the code replica, their expression becomes 

 and therefore the correlation result will be: 

 

𝑅𝑒𝑠𝑢𝑙𝑡 𝑖 = 𝑀𝑛−1𝑆𝑛−1 + 𝑀𝑛−2𝑆𝑛−2 + ⋯ + 𝑀1𝑆1 + 𝑀0𝑆0 − 𝑆𝑢𝑚(𝑖)  (6-3) 

where  

 

(6-4) 

 

 

 
 

 
Figure 6-3 Differential digital matched filter (DDMF) 
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From Equation (6-4) Sum(i) is the sum of all of the values stored in the buffer-

register S in the current phase iteration i. It can be calculated by adding the most 

recent signal value shifted-in to Sum(i-1) and subtracting the most recent signal 

value shifted-out as illustrated in Figure 6-3. Thereafter, the signal samples 

corresponding to the non-zero values of the code replica need only to be multiplied 

once by 2 after they have been summed together. Thus the DDMF effectively cuts 

in half the computational load compared to the CDMF algorithm. 

 

6.2.4 Segment Processing Digital Matched Filter 

The segment processing digital matched filter (SPDMF) algorithm optimises the 

DDMF by eliminating some of its computational redundancy [90]. Its architecture 

is illustrated in Figure 6-4. By examining the correlation results of two consecutive 

iterations i and i+1 using the DDMF algorithm, Sum00(i) is the sum of all the S 

values that are multiplied by ‘0’ on the first (i) and second (i+1) iterations, while 

Sum01(i) is the sum of S values that are multiplied by ‘0’ on the first and ‘1’ on the 

second iteration, and so on. The advantage of this method is that Sum01(i), Sum10(i), 

 
 

 
Figure 6-4 Segment processing digital matched filter (SPDMF) with K=2 
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Sum11(i) only need to be calculated once, and can then be use to produce two 

consecutive correlation results. Furthermore, the limitation processing the 

correlation results only in groups of two no longer applies, and it can be increased. 

It has been shown [90] that the algorithm reaches its maximum performance when 

groups of 8 or 9 are used, in which case the SPDMF becomes 3 times more 

efficient than DDMF. But the benefits should be noticeable even for groups of 3 

phases. While this method effectively eliminates some computational redundancy, 

additional hardware is required in the form of extra registers and controls. 

 

6.2.5 Algorithmic Comparison  

The computational requirements of the algorithms mentioned above are 

summarised in Table 6-1. In all cases it is assumed that acquisition is performed on 

1 ms or 1023 bits of C/A input signal samples, searching for 1023 code-phases. 

Furthermore, the SPDMF is assumed to process data in groups of 3 (K=3). All the 

equations used for calculating computational complexity can be found elsewhere 

[90]. Clearly the SPDMF algorithm, with just 357,027 additions needed to 

complete acquisition, compares favourably with the other architectures. 

 

6.3 Engine Architecture 

 

The processor proposed in this research is based on the reconfigurable instruction 

cell array (RICA) paradigm. The RICA paradigm is based on a variable set of 

Table 6-1 Comparison of theoretical computational complexity for various correlation 
algorithms 

 

Correlation algorithm Additions Multiplications 
Time required to complete 

acquisition 

Serial Search 1,045,506 1,046,529 1,023ms 

CDMF 1,045,506 1,046,529 1ms* 

DDMF 525,311 1 1ms* 

SPDMF(K=3) 357,027 1 1ms* 

      *There is an additional 1ms for register preloading 
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heterogeneous cells connected through a reconfigurable interconnection network 

[35] and [91]-[92]. In general, the cells perform primitive operations, such as 

addition, multiplication, shifting, logic, and multiplexing, and in addition other 

cells control handling and branch operations. The contribution and number of cells 

could be tailored depending on the application or set of applications required to run 

on the processor engine. 

In order to have a specific engine for processing GPS correlations in general, 

several aspects should be considered. These include the exploitation of various 

correlation algorithms, the analysis of their requirements and subsequent 

optimisations. The engine’s prime design consideration is minimum energy 

consumption, while still meeting the correlation requirements of the GPS in terms 

of processing capability and time constraints. 

A correlation engine is proposed in this study based on the RICA paradigm. The 

engine inherits various capabilities and advantages that are characteristic of the 

architecture [90]. The engine is digital signal processor (DSP)-like, hence retaining 

the advantage of the DSP in terms of high level programmability. In addition, the 

engine has a reconfigurable data-path which implies that it does not have fixed 

cycles, but is based on a ‘step’ concept. A ‘step’ is a combination of instructions 

that run simultaneously on a single configuration, or physically a single data-path 

interconnection configuration for a group of cells in the processor. Steps are 

determined by the resources available in the processor, conditional branches 

(jumps) and the critical path length. The step concept allows the maximum 

exploitation of correlation parallelism. In general, the higher the utilisation of 

architectural cells, the lower the number of steps required for the application and 

vice versa. In addition, optimal performance is usually obtained through reducing 

the number of steps, and this is achieved by applying various optimisations to the 

correlation algorithms or the engine architecture. The engine has been designed in 

order to be capable of efficiently processing the correlation algorithms mentioned 

earlier. After analysis of the above correlation techniques, it was decided that the 

engine design would include the following cells: 64 adders, 13 logics, 20 shifts and 

32 constants, this is in addition to the engine memory and control cells which are 
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responsible for the dynamic configuration aspects of the processor and managing 

the execution of ‘steps’.  

 

6.4 Analysis and Optimisations 

 

The design, optimisation and analysis in this work was carried out in three tiers. 

The first is based on implementing various correlation algorithms on a first 

processing engine. The types and quantities of engine cells have been optimised in 

order to save power consumption while a sufficient degree of parallelism is 

exploited for processing the various correlation techniques. It is worth mentioning 

here that the correlation algorithms and techniques are optimised to fit the specific 

engine architecture. In the second tier further optimisations are applied to the 

correlation algorithms based on the findings from the first tier. In the third tier the 

engine architecture is optimised in order to obtain optimal performance and the 

lowest energy consumption.  

The aim of optimisation is to achieve minimum engine size and maximum engine 

utilisation for the target requirements. This can guarantee the achievement of lower 

energy consumption with the efficient implementation of the algorithm.  

 

6.4.1 Tier 1: Correlation Implementation  

Here the correlation techniques and algorithms mentioned earlier are implemented 

on the proposed novel correlation engine.  

1) Serial search correlator implementation  

A serial search correlator has been designed, programmed in the C-language and 

implemented on the correlation engine. Several optimisation techniques are applied 

in order to exploit the resources of the processor and to extract the algorithm 

parallelism. Such optimisations include loop unrolling and step size maximisation 

to increase the degree of parallel execution by the engine.  
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The correlation time obtained for a complete search process is equal to 94ms for 

1023 phases, with each phase consisting of 1023 samples. This implies that the 

time required for each frame is equal to 91.88 µs, while the real-time requirement is 

1ms. Due to the serial nature is of this engine and the fact that it is fully dependent 

on the received signal speed, it is impossible to achieve any improvements beyond 

the 1023 ms required for a full correlation. This means that the engine satisfies the 

algorithm’s requirements in theory; however, it is slow and time consuming to wait 

for 1.023 s to fix a single satellite signal. Present and future applications require 

GPS receivers with quicker correlations and shorter times to the first fix.  

2) Conventional digital matched filter implementation  

The CDMF is a parallel search correlator that requires shift registers. After 

applying similar optimisations to the serial search, a total correlation time of 88.6 

ms has obtained. By analysing the generated assembly codes, intermediate files, 

and resulting kernels, it was apparent that the implementation of the algorithm 

resulted in the excessive use of the processor memory, which led to increased 

numbers of steps. It is worth mentioning that there is a restriction on the usage of 

the processor memory to a maximum of four memory read or write operations in 

any single ‘step’. This means that, with excessive memory usage, the number of 

steps will increase significantly. This leads to a reduction in the processor’s 

utilisation of resources and increases the correlation time.  

In order to enhance these results, a number of techniques were exploited. These 

include the merging of some of the steps and a reduction in memory access by 

maximising the usage of the local registers available in the processor. In addition, 

the C/A replica code required in the correlation process is generated in real-time by 

a C/A code generator embedded in the processor; here, an experimental procedure 

was conducted in order to have the C/A replica code hard-coded. The correlation 

time achieved after optimisation with hard-coded C/A code is 47.8 ms, and 29 ms 

with the C/A code generator. In general, the hard-coded technique provides better 

performance; however, in this case it incurs a penalty through increasing memory 

access activity in the processor. This is due to the location of hard coded data being 

in the processer memory which must be recalled back whenever required. On the 
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other hand, the generator inputs results directly into the processor registers without 

any interaction with the processor memory. The resulting architecture is 

approximately 3 times faster than that with the serial search, but is still far from 

meeting the requirements of the system.  

3) Differential digital matched filter implementation  

Using the same optimisation techniques described earlier, the correlation time 

achieved is 13.6ms. Furthermore, it is clear that the DDMF correlator algorithm 

outperforms the CDMF. Moreover, in implementation and after further 

optimisation, the DDMF outperforms CDMF to give a reduction in the correlation 

time of almost 50%. However, this is still far from achieving the requirement of 

1ms or less.  

4) Segment processing digital matched filter implementation  

The SPDMF correlator with K=3 has been designed and implemented on the 

selected engine after similar optimisations as mentioned earlier. The result achieved 

is 57.6 ms. The SPDMF algorithm outperforms CDMF and DDMF in terms of 

computational complexity, while it lags behind in terms of  implementation. The 

main reason for this result, almost double the CDMF timing is that the control part 

of the architecture has been increased in size in order to cater for the three 

simultaneous correlation processes.  

 

6.4.2 Tier 2: Architecture Optimisations  

After analysing the results obtained in Tier 1, and further exploring the 

architecture, it is clear that better results are required in order to overcome the time 

constraints. Modification to the correlation algorithms is considered in order to fit 

there optimally on the processor. A modified a modified architectural design for the 

digital matched filter algorithms mentioned earlier is proposed. The design is based 

on minimising memory access the switching activity via applying the circular 

buffering techniques by eliminating shifting the shifting of the data received [93]. 

This will take place by allocating sufficient memory locations for in the processor 
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memory two complete data frames (blocks) of total size 2n. In addition, a unit is 

introduced to distribut the incoming signals to their correct fixed locations in the 

memory. In the following subsections, the proposed optimised designs are 

introduced along with the results associated with their implementation on the 

engine. 

 

1) Modified Conventional Digital Matched Filter  

The modified CDMF design is shown in Figure 6-5. As mentioned earlier, the 

allocated memory size is 2n, from M0 to M2n-1. A distribution switch is used to 

distribute/write the incoming signals into the correct memory locations. Then there 

is the slider control, which is linked to the distribution switch in order to 

continuously adapt to the addresses of the most recently received signals. After 

applying the same optimisation techniques mentioned earlier, the correlation time 

was reduced to 14.8 ms, representing a significant improvement. The MCDMF 

achieved a reduction of 51% in the correlation time compared to CDMF. Although 

the MCDMF architecture is designed to target the specific proposed engine, it 

could also reduce power consumption in ASIC or FPGA implementations. 

 
 

 
Figure 6-5 Modified conventional digital matched filter (MCDMF) architecture 
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2) Modified differential digital matched filter: The MDDMF architecture design is 

illustrated in Figure 6-6. One extra unit has been added, which is the ‘C value 

checker’ (not shown in the diagram). If C/A code=0, then all subsequent operations 

will be eliminated (bypassed) in order to reduce computation, and hence reducing 

the correlation time. The MDDMF achieves time of 9.7ms, which represents a 29% 

reduction in correlation time compared to the DDMF.  

 

3) Modified segment processing digital matched filter:  

The MSPDMF has been implemented for K=3 in a similar fashion to the SPDMF in 

Section 6.4.1. Figure 6-7 illustrates the MSPDMF with K=2, which reduces the 

diagram’s complexity and improves clarity. The resulting correlation time is 

36.6ms, representing a reduction of 36% compared to the SPDMF.  

6.4.3 Tier 3: Engine Optimisation 

 

Despite the use of the various optimisation techniques discussed and applied earlier 

and the novel correlation architectures introduced, the engine utilisation did not 

 
 

 
Figure 6-6 Modified differential digital matched filter (MDDMF) architecture 
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increase to such high values as expected. The continuous read and write operations 

from and to the memory is the main reason for this. The engine has a limitation of 

using up to 4 simultaneous read or write operation per step, each being 32-bit. The 

processor is also a 32-bit-based as mentioned in previous chapters. Hence not all of 

the 32-bits in each variable, register and memory location were fully utilised in 

previous implementations.  

The utilisation could be improved through applying vector operations that are 

supported within each of the architecture’s cells. In addition, by using logic and 

shift operations, various information bits can be packed together and unpacked. 

This would add extra bitwise functions and operations such as logic, shift and 

compare to the design. In this research work, this optimisation process is termed 

bitwise optimisation. One of the optimisation techniques applied is use the XNOR 

to carry out multiplication operations instead of multipliers cells. 

Furthermore, calculations have shown that a hard-coded technique will be 

beneficial in the bitwise approach. If the C/A code generated is stored in the 

memory through continuous write operations, then another readout operation of the 

 

 
 

 
Figure 6-7. Modified segment processing digital matched filter (MSPDMF) architecture 

for K=2 
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1023 codes needs to take place afterwards to pack the code bits together. This will 

introduce enormous overheads. The hard-coded C/A code replica is completely 

packed offline, which will clearly enhance performance. Applying this approach 

would result in great reductions to the size of the memory locations required by the 

MCDMF correlator, and hence the numbers of read/write operations will be 

dramatically reduced, which will enhance the correlation speed. 

In order to further reduce the correlation time, a new technique has been 

implemented which will maximise the utilisation of processor cells. This is 

achieved by maximising the usage of local register cells (REG) which hold 

intermediate and temporary data. In order to facilitate this, the C/A packed codes 

located in the memory will be read once and moved to the local registers at the start 

of the correlation program. This will reduce the total number of steps required and 

hence will speed up the correlation process. 

By applying all of the above mentioned optimisation techniques, the MCDMF;s 

1023 correlations were processed in only 0.3 ms which is a great improvement to a 

level far below the 1 ms constraint. From the analysis of the resulting assembly 

code and other intermediate files, further modifications were still possible, 

however. These include the need to increase the number of specific cell types. 

Hence, the number of adders has increased from 64 to 95, logic cells from 13 to 33, 

shift operations from 20 to 64 and constant cells (REG and CONST) from 32 to 81. 

The latest modifications have resulted in the 1023 correlations taking place in only 

100s which represents a 5-fold improvement. Details of these results and the 

associated performance levels are presented in section 6.5.  

6.5 Performance Analysis 

 

In this section, comparisons are presented of all of the architectures implemented. 

To give fair comparisons, the same input signals and C/A codes were used with all 

engines and architectures, and the architectures have been separated into two 

classes: those without packed data; and those with packed data, in which bitwise 

optimisation was applied.  
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Table 6-2 presents the data obtained from the various designed and simulated 

correlation architectures. Figure 6-8 presents a chart summarizing the correlation 

times obtained for various correlator algorithms and architectures presented in this 

work. It is clear that the novel ‘Modified’ architectures has accomplished better 

correlation processing times than the others. From Figure 6-8, it is clear that the 

MDDMF provides the fastest correlation, even though it did not reach the target of 

1 ms. The dynamic energy consumption of the cells which is a major factor in the 

processor’s overall energy consumption, is illustrated in Figure 6-9. The MSPDMF 

achieved the lowest energy consumption for data memory access, while dynamic 

energy consumption of the DDMF cells was the lowest.  

Table 6-2 Comparison of results for digital matched filter correlator architectures 
(without packed data) 

 
 CDMF M-CDMF DDMF M-DDMF SPDMF M-SPDMF 

Correlation time (ms) 29.05 14.80 13.63 11.77 57.67 36.61 

Data memory access 
energy (µJ) 

27.22 13.63 13.59 2.75 19.84 5.75 

Program memory access 
energy (µJ) 

208.50 191.21 5.62 8.62 28.84 19.78 

Cells dynamic energy (µJ) 32.14 16.37 15.08 13.02 63.82 40.51 

Dynamic energy* 306.45 245.09 53.13 33.22 145.43 98.74 

Step count 1,097,079 573,308 732,778 300,332 2,180,029 991,648 

Memory usage (Bytes) 3,163 3,203 2,076 3,433 5,425 5,445 

* Interconnections energy is not included 

 
 

Figure 6-8 Comparison of resulting Correlation times (ms) for the matching filter 
architectures  
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Figure 6-9 Comparison of cell dynamic energy (J) for various matched filter 
architectures 

 

 
 

Figure 6-10 Comparison of data memory access energy (J) for various matched 
filter architectures 

 

 
 

Figure 6-11 Comparison of total energy
*
 (J) for various matched filter architectures 

*
interconnections energy is not included 
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Figure 6-12 Comparison of total step count for various matched filter architectures 

 

 

 
Figure 6-13 Comparison of memory usage (bytes) for various matched filter architectures 

 

 

 
 

Figure 6-14 Comparison of program memory access energy (J) for various matched 
filter architectures 

 

 



Chapter 6: GPS Correlation Engine 

135 

Furthermore, the MCDMF has been implemented with a data packing approach 

(bitwise optimisation). The engine was modified by changing the types and 

numbers of embedded cells. The optimised architecture has accomplished the 

correlation process in only 62 μs. This is a considerable improvment over the 11 ms 

reached earlier and presented in Table 6-2. This is due to the increased number of 

cells introduced, accompanied by achieving the maximum optimisation of the 

processor. This has been accomplished by embedding the correlation process in a 

single ‘step’. The complete process includes the initial configuration of the cells 

and their connections, which is then followed by the correlation step that will be 

rerun through a loop by changing the parameters every jump. The full results are 

Table 6-3 Comparison of results for digital matched filter correlator architectures (with 
packed data) 

 
 CDMF M-CDMF DDMF M-DDMF SPDMF M-SPDMF 

Correlation time (µs) 62.8 62.31 69.47 67.77 76.14 73.23 

Data memory access 
energy (nJ) 

6.40 4.91 9.93 5.34 13.47 5.78 

Program memory access 
energy (nJ) 

2.79 1.81 5.91 2.51 9.03 3.21 

Cells dynamic energy (µJ) 1.09 0.57 2.95 0.29 4.81 0.67 

Dynamic energy* (µJ) 1.21 0.65 3.25 0.71 5.29 0.77 

Step count 1087 1074 1121 1096 1155 1118 

memory usage (Bytes) 568 444 876 696 1184 948 

* Interconnections energy is not included 

62.8 62.31

69.47 67.77

76.14
73.23

0

10

20

30

40

50

60

70

80

CDMF M-CDMF DDMF M-DDMF SPDMF M-SPDMF

C
o
rr
e
la
ti
o
n
 T
im
e
  µ
s

 
 

Figure 6-15 Comparison of correlation time (µs) with packed data results for matching 
filter architectures 
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listed in Table 6-3.  

 This eliminates the need for further architectural reconfiguration during the 

correlation process. In the dynamic reconfigurable architecture, this is the 

maximum optimisation that could be achieved. Figure 6-15 illustrates the 

correlation times obtained for all the correlation architectures after data packing 

optimisation/technique. It is clear that the MCDMF obtained the best results of 

62.31µs, the fastest correlation execution time. This is mainly due to the fact that, 

 
 

Figure 6-16 Comparison of data and Program memory access energy (J) for various 
matched filter architectures with packed data optimisation 

 

 
 

Figure 6-17 Comparison of cells and total dynamic energy (J) for various matched filter 
architectures with packed data optimisation 
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at this stage, when the whole algorithm is capsulated in a single configuration, all 

other architectures have overheads that are supposed to optimise the correlation. 

Moreover, since the data is packed, any processing of it will result in overheads, as 

reflected in the superiority of the M-CDMF over the other architectures. 

Since the correlation time has been massively reduced, all the associated 

improvements follow suit and, in particular, energy consumption. Figure 6-16 

illustrates the memory access energy for data and program, while Figure 6-17 

 
Figure 6-18 Comparison of total step count for various matched filter architectures with 

packed data optimisation 

 

 

 
Figure 6-19 Comparison of memory usage (bytes) for various matched filter 

architectures with packed data optimisation 
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illustrates the full dynamic energy consumption of all of the architectures. Finally, 

the step count and memory usage are illustrated in Figure 6-18 and Figure 6-19 

respectively. 

 

6.6 Conclusion 

 

In this work, a novel correlation engine has been presented which is based on a 

dynamically programmable platform targeting the computationally intensive 

correlation function used in GPS-based positioning. Various optimisation 

techniques have been exploited in order to achieve the best performance on the 

platform. In addition, the modified correlation architectures MCDMF, MDDMF 

and MSPDMF have been introduced. They have demonstrated efficiency in terms 

of correlation time and energy consumption. Furthermore, the bitwise optimisation 

technique has been applied to digital matched filters, which demonstrate the 

maximum utilisation of the architecture leading to high correlation speed of 62 μs 

for 1023 phase search correlations. Comparisons of the achieved results and 

associated architectural configurations have been presented. This work represents a 

promising step towards high speed, ultra-low-energy GPS receivers.  
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Chapter 7 
 

7 GPS MULTI-CHANNEL CORRELATION 

USING THE DYNAMICALLY 

RECONFIGURABLE PLATFORM 

 

 

7.1 Introduction 

 

Modern GPS correlators or correlation processors which are based on fixed architectures 

are capable of handling, on average, a 12-channel parallel correlation. In Chapter 6 a 

novel GPS correlation engine has been introduced. Its structure is based on a 

dynamically reconfigurable platform, and it has been concluded that the engine is 

capable of executing a complete GPS single channel correlation in 62 s.  

This chapter focuses on studying the capability of the designed engine for handling 

multi-channel correlations, and whether or not there will be a need to modify the engine 

design. 

This chapter is organised into seven sections. Section 7.2 discusses the GPS correlator 

engine. This following by a detailed analysis of Engine 2. Multi-channel GPS 

correlation is introduced in section 7.4, and Section 7.5 discusses the results which are 

following by a conclusion section. 

 

7.2 GPS Engine Correlator Capability Review 

 

The focus of the previous chapter was to discuss the novel implementation of a GPS 

correlator processor based on a dynamic reconfiguration platform. Various optimisation 



Chapter 7: GPS Multi-Channel Correlation 

140 

techniques have been implemented in order to conclude with the possibility of 

implementing an architecture which can achieve a correlation time of 62 s for a 1023 

samples in a GPS channel. Even though such a high-speed correlation has been 

achieved, applying this for a single channel in practical implementation is not the whole 

story, because the engine still has to wait for 1023 samples or a complete 1 ms in order 

to fully receive all of the GPS samples for the dedicated channel. This means that the 

engine is running for only 62 s out of the 1 ms available time for a complete frame. 

This represents just 6.2% of the time while the other 93.8% of the time is spent in 

sleeping or idle mode. In other words, in order to benefit from such a novel high speed 

correlation engine, multiple GPS channels in parallel or multi-correlations must be 

handled. In the remainder of this chapter, the engine which runs for a single correlation, 

which is the outcome of the previous chapter, is hereafter named ‘Engine 1’. 

7.3 GPS correlation ‘Engine 2’ 

 

Table 7-1 lists the main existing industrial correlator processors and their associated 

numbers of channels. It is clear that a 12-channel correlator is the average acceptable 

standard in modern industrial dedicated GPS correlation processors. The research work 

in this chapter focuses on designing a correlator engine to process 12 or more GPS 

channels in parallel. This requires a modification to ‘Engine 1’ in order to adjust it so as 

to be capable of dealing with multiple channels in parallel. It is clear that ‘Engine 1’ is 

capable of executing the correlation process, but only for a single channel. In order to 

Table 7-1 Industrial correlator processors and associated correlation channels 

 
GPS  correlation Engine Number of correlation channels Ref 

Zarlink GP1020 6 CH correlator [94] 

Zarlink GP2021 12 CH correlator [86] 

Zarlink GP4020 12 CH correlator [95] 

Atmel ATR0620 16 CH correlator [96] 

ST STA2062 32 CH correlator [97] 

Atheros AR1511 8 CH correlator [100] 

ST STA8058 16 CH correlator [101] 

LOCOSYS LS20030 Up to 66 correlator [102] 
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accomplish precise processing for 12 channels within the limit of 1ms, extra cells, 

functionalities and optimisations are required. ‘Engine 2’ is based on updating ‘Engine 

1’ with additional routines, mainly logic functions; hence, the necessity to increase the 

number of logic cells in the engine. In order to maintain the sample processing stream, 

and to overcome the overheads imposed due to the extra cells needed and to maintain the 

processing speed of 62s, the amount of samples processed has been reduced. A 

reduction of almost 20% of the amount of data processed per run has been implemented. 

The number of samples has been optimised to be between 816 to 852 samples instead of 

1023 per run. This is the number of samples that will be processed in a 62 s time frame. 

However the design is for 12 complete 1023 samples for 12 different GPS channels to be 

completed in 1ms.  

 

Figure 7-1 demonstrates the data allocation in the ‘Engine 2’ design for processing the 

12 correlation channels in parallel. The design is based on sampling and processing the 

first 68 samples (signals) of each of the 12 channels. The samples have been divided into 

15 segments (1 to 15): 68 samples per channel for the first fourteen and 71 samples per 

channel for the 15
th

 segment. This allows the 1023 samples/channel or the complete 

frame to be completed. After trying different designs, this arrangement has proven to be 

the most optimised in terms of processing time, energy consumption and engine size, 

 
 

Figure 7-1 ‘Engine 2’ is capable of providing 12 GPS correlation channels  
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where the latter refers to the number of cells involved in the design of the engine. Engine 

2 has been simulated successfully, and it has been proven that the novel dynamic 

reconfigurable GPS correlation engine is capable of efficiently processing 12 correlation 

channels. 

 

7.4 Multi-Channel Correlation Solution 

 

Having achieved 12 channel correlations to match the industrial norm for 12 parallel 

correlations is a good step forward. However, it is not enough. Achieving the 12-channel 

correlation on a dynamically reconfigurable engine is a novel contribution of this 

research, an important part of which is the results and discussion that follow. It was 

desired to design the engine for more than the 12 channels in order to exploit the 

dynamic reconfiguration platform to the limit and to see how far it can go in terms of 

number of  the parallel correlations that could be implemented and the associated 

overheads imposed. 

This will allow a clear understanding of the platform and its dynamics and the balance 

between various design factors of area and energy when there is a clear constraint on 

processing time.  

In most industrial correlators at present, the maximum available capacity is for 32 

parallel channels, although some have gone beyound 50. In order to exceed this, ‘Engine 

3’ was designed. This is capable of processing 72 channels in parallel, and has been 

achieved by the integration of six 12 channel correlators in parallel, as illustrated in the 

dataflow and time processing diagram shown in Figure 7-2. This has been achieved 

through the integration of 6 ‘Engine 2’ cores resulting in 6x12 = 72 parallel correlations. 

Based on the same concept ‘Engine 4 was then designed by the integration of two 

‘Engine 3’ cores resulting in 2 x 6x12 = 144 parallel correlations. The processing time 

and dataflow diagram for ‘Engine 4’ are presented in Figure 7-3. Similarly ‘Engine 5’ 

was designed based on the integration of two ‘Engine 4’ cores, as demonstrated in 

Figure 7-4, resulting in the capacity to handle 288 parallel GPS channel correlations.  



Chapter 7: GPS Multi-Channel Correlation 

143 

Reaching such enormous number of correlations, two questions arise. Firstly, is it 

useful? And secondly what are the overheads involved? The answer to the first question 

is given here, while will the second is postponed until the following section which 

discusses the overheads involved.  

On average there are likely to be 8 to 12 satellites available on the horizon at any one 

time to receive data from. The main focus in this research is the possibility to achieve 

the shortest Time to First Fix or the quickest achievement of a location. This is of 

interest from a research point of view as well as industrial or commercial motivations. It 

is well known that the minimum number of satellites required to get a location fix is 

basically four; however, in order to speed up the search process, and due to the fact that 

there is a possibility of having up to 12 satellites on the horizon of GPS receivers could 

be upgraded to handle many more channel correlations. The more correlations available 

on the receiver, the faster it can achieve an earlier time-to-first-fix, as the extra 

 
 

Figure 7-2 ‘Engine 3’ is capable of providing 72 GPS correlation channels 
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correlators allow a speedier search of the satellites and quick correlations of the signal in 

the search domain.  

7.5 Analysisof Results and Discussion 

 

As discussed in chapter 6, the designed GPS Engines which are based on dynamically 

reconfigurable platform and constructed of various cell types and numbers.  

 
 

 
Figure 7-3 ‘Engine 4’ is capable of providing 144 GPS correlation channels 
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Figure 7-5 presents results of the single correlation processing time on the various 

engines. It would be anticipated that there should not be any different, and that it should 

remain below 63 s as is the case for “Engine 1”. However, the obtained results 

demonstrate that processing time increased with the increase in the number of the 

embedded engines. With details analysis it appear to be obvious that due to the increase 

of the number of cells, the associated delay in signals, processing and step time has to 

increase. “Engine 5” is by far the most complex engine, hence the longest processing 

time per correlation of 69.47 s. Similarly, the various comparison parameters show the 

same trend. Figure 7-6 demonstrates clearly the memory usage trend among the various 

engines, while Figure 7-7 represents the total dynamic energy for the various engines. 

That is why the data memory access energy followed the same upward trend in 

consistency with the other parameters as presented in Figure 7-8. 

 

 

 
 

Figure 7-4 ‘Engine 5’ core based on two ‘Engine 4’ cores or twenty four ‘Engine 2’ cores 
for providing 288 GPS correlations 
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Figure 7-5 Variation in the single correlation results between the different multi-correlation 
engines 
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Figure 7-6 Memory usage for the different multi-correlation engines 
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Figure 7-7 Total dynamic energy for the different multi-correlation engines 
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Figure 7-8 Data memory access energy for the different multi-correlation engines 

 

 

 

 

 
 

Figure 7-9 Number of core cells used in each engine 
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Table 7-2 shows the key cell types and their numbers, and Figure 7-9 indicates the 

number of core cells associated with each engine. 

From Table 7-2, cells can be divided into two categories in respect of their usage within 

the engines. Category 1 includes cells necessary to facilitate the concatenation of the 12 

parallel correlations, i.e. from ‘Engine 1’ to ‘Engine 2’. Those cells are ‘Logic’ and 

‘Shift’ cells, and from ‘Engine 2’ upwards there is no need to increase their numbers. 

This is as expected, since those cells are responsible for the necessary work in handling 

and manipulating data in the various correlation steps inside the engines for the multiple 

channels.  

Category 2 cells represent the core parts of the engines or the correlation process. Those 

are mainly, ‘Add’, ‘Comp’ and ‘Const’ cells. 

The overheads associated with the increased number of correlation channels will be 

reflected in the extra numbers of cells used which will be physically integrated into the 

GPS correlation processor. In order to analyse this relationship, a normalised chart is 

given in Figure 7-10. Normalisation is necessary here due to the vast variations in the 

number of cells of different types, used as shown in Table 7-2. 

 

In Figure 7-10 the numbers of the two different categories of cell clearly demonstrate 

two different trends. In addition, the dashed line shows that a logarithmic relationship is 

almost consistent for the ‘Add’, ‘Comp’ and ‘Const’ cells. However, Figure 7-11 

represents the normalised number of correlations associated with each engine, and that 

the correlation curve on the chart shows that the relationship in fact is almost linear with 

the increase in the number of ‘Engine 2’ integrated into Engines 3, 4 and 5. 

Table 7-2 Summary of key cell numbers used in each engine 

 

 CONST REG ADD LOGIC SHIFT COMP 

Engine 1 32 160 64 13 20 60 

Engine 2 81 160 95 33 64 65 

Engine 3 200 160 186 33 64 188 

Engine 4 391 256 357 33 64 363 

Engine 5 814 256 732 33 64 746 
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Figure 7-10 Normalised cell numbers per correlation engine 

 

 

 

 
 

Figure 7-11 Normalised number of cells used per engine and the associated normalised 
number of correlations 
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In order to estimate the resulting overheads, the focus is clearly on the category 2 cells, 

‘Add’, ‘Comp’ and ‘Const’. A key parameter assisting in the calculations of overhead is 

the number of parallel correlations and, most importantly, the number of embedded 

‘Engine 2’ in engines 3 to 5. This is summarised in Table 7-3. As ‘Engine 2’ is the basic 

core for the other engines, Figure 7-12 represents the calculated cell cost per added 

‘Engine 2’. The cost is represented by the extra number of cells added, which has been 

calculated using equation (7-1). 

 
Table 7-3 Summary of the number of correlations and embedded ‘Engine 2’s’ in each 

engine 

 

 Correlations Number of embedded ‘Engine 2’ 

Engine 1 1 n/a 

Engine 2 12 1 

Engine 3 72 6 

Engine 4 144 12 

Engine 5 288 24 
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Figure 7-12 Cost of adding “Engine 2” to the various engines 
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𝐶𝑒𝑙𝑙 𝑥 𝑐𝑜𝑠𝑡 𝑝𝑒𝑟 𝑎𝑑𝑑𝑒𝑑 “𝐸𝑛𝑔𝑖𝑛𝑒 2”

=  
(𝐶𝑒𝑙𝑙 𝑥 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑓𝑜𝑟 𝐸𝑛𝑔𝑖𝑛𝑒 𝑀 − 𝐶𝑒𝑙𝑙 𝑥 𝑛𝑢𝑚𝑏𝑒𝑟𝑠 𝑓𝑜𝑟 "𝐸𝑛𝑔𝑖𝑛𝑒 2")

(𝐸𝑚𝑏𝑒𝑑𝑑𝑒𝑑 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 "𝐸𝑛𝑔𝑖𝑛𝑒 2" 𝑖𝑛 𝐸𝑛𝑔𝑖𝑛𝑒 𝑀) − 1
 

 

(7-1) 

where x  is cell type and M is from 3 to 5. 

 

By implementing this equation (7-1) and using the data from Table 7-3, it is obvious that 

the cost escalates for category 2 cells, as illustrated in Figure 7-12. As the number of 

integrated correlations increase, the engine complexity increases and therefore the 

implementation area will increase due to the increase in integrated cell numbers. There 

is a clear trade-off between the number of correlations required and the area and power 

consumption which are proportional to the increase in cell number.  

7.6  Conclusions 

 

It is concluded that, for practical realisations of a multi-correlation engine, ‘Engine 2’ 

and ‘Engine 3’ provide the optimal solutions where 12 and 72 correlations respectively 

are calculated. Moreover, a compromise could be achieved by having an engine with 

three embedded ‘Engine 2’ instead of six, which is the case in ‘Engine 3A’. This new 

engine would provide 36 parallel correlations. Designing and simulating ‘Engine 3A’ 

which supports 36 parallel correlations resulted in an engine with the following cells: 

Comp 111, Const 126, Add 128, Reg 154, Logic 33 and Shift 64. Moreover, the engine 

is based on three embedded ‘Engine 2’ correlators. This represents a step forward in the 

area of dynamically reconfigurable architectures and correlation systems. 
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Chapter 8 
 

8 SUMMARY AND FUTURE WORK 

 

 

8.1 Intoduction 

 

The aim of this thesis has been to investigate an efficient reconfigurable 

architecture for telecommunication systems in general and baseband in particular. 

The key blocks investigated for reconfigurable performance evaluations are the 

convolution coder, Interleaver, Reed Solomon encoder and decoder, and GPS 

correlator.  

The main aim was to introduce a reconfigurable architecture capable of handling 

intensive processing tasks whilst using the lowest possible power consumption. 

 

This chapter is organised into four sections. The first section summarises the 

contents of the thesis and identifies the contributions made. The second section 

draws conclusions from the work presented in this thesis. Concluding remarks are 

provided in the third section, and the final section outlines areas for future 

investigation. 

 

8.2 Summary of Thesis and Contribution 

 

This thesis has investigated the possibility of realising various communication 

systems (baseband in particular) on a dynamically reconfigurable architecture. 
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Chapter 2 discussed the various reconfigurable architectures, with a focus on 

coarse-grain reconfigurable architecture. In order to design a reconfigurable 

architecture to suit the challenges of communication systems, it has to have many 

crucial characteristics. Its primary feature should be low power consumption. In 

order to sustain low power consumption, the use of heterogeneous PEs is the best 

approach. PEs can be tailored specifically to the system’s needs, resulting in the 

highest utilisation which then means lower power consumption and smaller area.  

It appears from the above that the most promising architectures for 

telecommunications systems are the MOVE and RICA. These are very different 

architectures; however, they are alike in that their PEs are heterogeneous, they are 

standalone systems which do not need external processor for control and are C-

language programmable. 

However, the RICA appears to be superior in power consumption, since the 

processor has been built with low power being its central principles and is 

dynamically reconfigurable, while the MOVE designers only began to address 

power savings at a later stage. 

 

Chapter 3 introduced a novel reconfigurable architecture that provides a multi-rate 

punctured convolution coder. This architecture can be used in wired and wireless 

communication systems, and it incorporates both convolution and puncturing.  

The convolution-punctured multi-rate architecture has achieved a superior 

throughput of 100 Mbps for all the required rates. Although the main architecture is 

the core that provides the concatenated convolution-punctured code, the 

reconfigurable input and output interface designs were added to broaden the 

usability of this reconfigurable fabric. The main advantage of this architecture is 

that a single clock cycle is enough to provide the parallel convolution-punctured 

code for its parallel inputs, which can be used to maximise the throughput of the 

whole transmitter system. 

 

Chapter 4 introduced a novel reconfigurable interleaver. The target application was 

the WiMAX standard with its sophisticated block size systems. The Interleaver has 
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been researched and designed into a reconfigurable fabric architecture and with a 

dynamically reconfigurable instruction cell-based architecture (RICA). The 

interleaver’s throughput as a reconfigurable fabric satisfies the standard 

requirement, while on RICA the throughput as well as the dynamic power 

consumption were superior to the fabric realisation and other ASIC realisations. 

These results are a good step forward towards a fully reconfigurable baseband 

telecommunications system. Moreover, the results are a promising step towards 

integrating the whole WIMAX on a dynamically reconfigurable (RICA) 

architecture. 

 

Chapter 5 introduced a novel Reed Solomon encoder architecture with parallel 

parity output. A novel high speed and low power 32-bit Galois Field (GF) 

multiplier cell was embedded within the novel low-power processor for 

programmable Reed Solomon coding, and its design, optimisation and 

implementation have been introduced. The real-time programmable RS encoder 

and decoder processor supports several communication standards such as WiMAX 

and DVB-H. A number of approaches and optimisation techniques have been 

implemented in order to enhance the performance of the processor. The processor 

achieves high throughput and provides significant improvements in performance 

and energy consumption.  

The novel GF multiplier cell leads to a reduction in memory access energy of 

72.4%, which in turn improves the processor performance. Different design 

approaches and optimisation techniques have been applied in order to enhance the 

processor throughput and reduce its energy consumption. The throughputs achieved 

are up to 200 Mbps and 92 Mbps for the encoder and decoder respectively. The 

associated dynamic energy consumption is in the range of 0.34 to 1.17µJ, which 

represents a design suitable for present and future mobile devices. 

 

Chapter 6 introduced a novel engine based on a dynamically programmable 

platform targeting the computationally intensive correlation function used in GPS-

based positioning. Various optimisation techniques have been exploited in order to 
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achieve the best performance. In addition, modified MCDMF, MDDMF and 

MSPDMF correlation architectures have been introduced, which demonstrate 

efficiency in terms of correlation time and energy consumption. Furthermore, the 

bitwise optimisation technique has been applied to digital matched filters that 

demonstrate the maximum utilisation of the architecture, leading to a high 

correlation speed of 62 μs for 1023 phase search correlations. Comparisons of the 

results achieved and related architectural configurations have been presented. This 

work is a promising step towards high-speed, ultra-low-energy-GPS receivers. 

 

Chapter 7 presented a novel optimised multi correlation processor. It is concluded 

that for the practical realisation of the multi-correlation engine, the ‘Engine 2’ and 

‘Engine 3’ designs provide the optimum solutions, where 12 and 72 correlations 

respectively can be calculated. Moreover, a compromise could be achieved by 

having an engine with three embedded ‘Engine 2’ instead of six, which is the case 

in ‘Engine 3A’. This new engine would provide 36 parallel correlations. Designing 

and simulating ‘Engine 3A’ which supports 36 parallel correlations resulted in an 

engine with the following numbers of cells: Comp 111, Const 126, Add 128, Reg 

154, Logic 33 and Shift 64. Moreover, the engine is based on three embedded 

‘Engine 2’ correlators. This work represents a step forward in the area of 

dynamically reconfigurable architectures and correlation systems. 

 

The main achievement of this work is the development of a multi-correlator 

module for the GPS system. This is in addition to the RS codec reconfigurable 

processor. Moreover, the GF Mul reconfigurable cell, reconfigurable convolution 

and interleaver which have been developed are important for reconfigurable 

telecommunication systems. 

All of the above give a clear picture of how to realise the full potential of a 

dynamically reconfigurable architecture targeting full telecommunications 

baseband system.  
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8.3 FUTURE WORK 

 

This work can be combined with existing research on reconfigurable digital signal 

processing blocks in order to produce an overall reconfigurable baseband 

transceiver. 

A full transceiver of WiMAX or WiFi would be the logical step forward for 

defining the best reconfigurable architecture suitable for telecommunications 

systems. Further algorithms and processor-specific optimisations are expected to be 

necessary in conducting further research in this area. Figure 8-1 demonstrate’s a 

conceptual design of how completely reconfigurable baseband telecommunication 

architecture could be. In this diagram, the architecture is reconfigurable between 

802.11 and 802.16 or WiFi and WiMAX systems; this is inspired by the Espacenet 

project mentioned in earlier chapters. A development of a reconfigurable mapper, 

pulse shaping, randomiser and modulation would be necessary for future work to 

achieve fully reconfigurable baseband system.  

 

 

This would be the first stage in a larger project, and would need to be followed by 

further stages in order to create a universal reconfigurable architecture for 

telecommunications, which would be capable if carrying out any communication 

 
 

 
Figure 8-1 Fully reconfigurable baseband architecture 
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protocol needed. This will allow future universal, adaptable mobile devices where 

the system will automatically reconfigure the architecture necessary for the 

communication protocol needed in particular locations or situations. This will have 

an enormous influence on device size and performance. Moreover, this will greatly 

increase battery life and reduce the production costs of devices. 

 

The first step to proceed forward with this research work for the GPS receiver is the 

design and fabrication of an Engine 2 processor. In addition, further work should 

follow with either of Engines three, three-A or four. This will provide rich data for 

more in-depth analysis of processor performance, and its benefits and overheads.  

Clearly, this work will not only affect the progress of research into dynamically 

reconfigurable architectures, but will influence the implementation of navigation 

processors. This is due to the anticipation of better performance and lower power 

consumption to be achieved with the new processors. Furthermore, the 

development of a complete GPS receiver would be a logical research step to 

follow; hence, this will lead to challenges in the integration and data handling 

capability of the new processor. 



 

158 

 

 

REFERENCES 
 

 

[1] G. Estrin, B. Bussel, R. Turn, and J. Bibb, Parallel processing in a 

restructurable computer system, IEEE Transactions on Electronic 

Computers, vol.EC-12, no.6, pp.747-755, Dec 1963. 

[2] W. Carter, K Duong, R H Freeman, H Hsieh, J Y Ja, J E Mahoney, L T 

Ngo, er al., A user programmable reconfigurable gate array, CICC 

Proceedings, May 1986, pp. 233-235, 1986. 

[3] FPGA - Field Programmable Gate Array, available: 

http://www.fpgacentral.com/pld-types/fpga-field-programmable-gate-array, 

accessed on 23/3/2013. 

[4] The Industry’s Breakthrough 7 Series FPGA Families, available at 

http://www.xilinx.com/products/silicon-devices/fpga/index.htm, accessed 

on 23/3/2013. 

[5] R.D. Wittig and P. Chow, OneChip: an FPGA processor with 

reconfigurable logic, Proceedings of the IEEE Symposium on FPGAs for 

Custom Computing Machines, pp.126-135, 17-19 Apr 1996. 

[6] R. Razdan, M.D. Smith, A high-performance microarchitecture with 

hardware-programmable functional units, Proceedings of the 27th Annual 

International Symposium on Microarchitecture (MICRO-27), pp.172-180, 

30 Nov-2 Dec 1994. 

[7] S. Hauck, T.W. Fry, M.M. Hosler, J.P. Kao, The Chimaera reconfigurable 

functional unit, IEEE Transactions on Very Large Scale Integration (VLSI) 

Systems, vol.12, no.2, pp.206-217, Feb. 2004. 

[8] T. Miyamori and K. Olukotun, REMARC: Reconfigurable Multimedia 

Array Coprocessor, IEICE Transactions on Information and Systems, vol. 

E82-D, pp. 389-397, 1998. 

[9] C. Ebeling, and D.C. Cronquist, and P. Franklin, RaPiD - Reconfigurable 

pipelined datapath, Lecture Notes in Computer Science: Field-

Programmable Logic Smart Applications, New Paradigms and Compilers, 

Vol. 1142, pp. 126-135, 1996 

http://www.fpgacentral.com/pld-types/fpga-field-programmable-gate-array
http://www.xilinx.com/products/silicon-devices/fpga/index.htm


References 

 

159 

[10] A. Marshall, T. Stansfield, I. Kostarnov, J. Vuillemin, B. Hutchings, A 

reconfigurable arithmetic array for multimedia applications, Proceedings of 

ACM/SIGDA seventh international symposium on Field programmable gate 

arrays, pp. 135-143, 1999. 

[11] R.P.S. Sidhu, S. Wadhwa, A. Mei, V.K. Prasanna, A Self-Reconfigurable 

Gate Array Architecture, Proceedings of The Roadmap to Reconfigurable 

Computing, 10th International Workshop on Field-Programmable Logic 

and Applications, Springer-Verlag, pp. 106-120, 2000. 

[12] R. David, D. Chillet, S. Pillement, O. Sentieys, DART: a dynamically 

reconfigurable architecture dealing with future mobile telecommunications 

constraints, Proceedings Parallel and Distributed Processing International 

Symposium, pp. 8, 15-19 April 2001. 

[13] F. Barat, M. Jayapala, T. Vander, et. al., Low Power Coarse-Grained 

Reconfigurable Instruction Set Processor, In Field Programmable Logic 

and Application, Vol. 2778, pp. 230-239, 2003. 

[14] G. Sassatelli, G. Cambon, J. Galy, L. Torres, A dynamically reconfigurable 

architecture for embedded systems, 12th International Workshop on Rapid 

System Prototyping, pp.32-37, 2001. 

[15] E. Mirsky, A. DeHon, MATRIX: a reconfigurable computing architecture 

with configurable instruction distribution and deployable resources, IEEE 

Symposium on FPGAs for Custom Computing Machines, pp. 157-166, 17-

19 Apr 1996. 

[16] L.J.K. Durbeck and N.J. Macias, The Cell Matrix: an architecture for 

nanocomputing, Nanotechnology Journal, Vol. 12, Issue 3, pp. 217-230, 

2001. 

[17] H. Zhang, V. Prabhu, V. George, M. Wan, M. Benes, A. Abnous, J.M. 

Rabaey, A 1 V heterogeneous reconfigurable processor IC for baseband 

wireless applications, IEEE International Solid-State Circuits Conference, 

pp.68-69, 9-9 Feb. 2000. 

[18] J.R. Hauser, J. Wawrzynek, Garp: a MIPS processor with a reconfigurable 

coprocessor, The 5th Annual IEEE Symposium Proceedings on Field-

Programmable Custom Computing Machines, pp.12-21, 16-18 Apr 1997. 

[19] J. Becker, T. Pionteck, C. Habermann, M. Glesner, Design and 

implementation of a coarse-grained dynamically reconfigurable hardware 



References 

 

160 

architecture, IEEE Computer Society Workshop on VLSI, pp.41-46, May 

2001. 

[20] D.C. Chen and J.M. Rabaey, PADDI: Programmable Arithmetic Devices 

for Digital Signal Processing, IEEE VLSI Signal Processing, vol. IV, pp. 

240-249, IEEE Press, Nov. 1990. 

[21] D.C. Chen and J.M. Rabaey, A Reconfigurable Multiprocessor IC for Rapid 

Prototyping of Real Time Data Paths, IEEE Journal of Solid State Circuits, 

Vol. 27, No. 12, pp. 1895-1992. 

[22] P. Hilfinger, A high-level language and silicon compiler for digital signal 

processing, IEEE Custom Integrated Circuits Conferences proceedings, pp. 

240-243, May 1985. 

[23] J. A. Hennessy, D. L. Patterson, Computer Architecture: A Quantitative 

Approach, Morgan Kauffmann Publishers, 1990. 

[24] D. Kesler, S. Dautovic, R. Struharik, Design and verification of dynamically 

reconfigurable architecture, IEEE 10th Jubilee International Symposium on 

Intelligent Systems and Informatics (SISY), pp.413-418, 20-22 Sept. 2012. 

[25] H. Singh, Lee Ming-Hau, Lu Guangming, F.J. Kurdahi, N. Bagherzadeh, 

E.M. Chaves Filho, MorphoSys: an integrated reconfigurable system for 

data-parallel and computation-intensive applications, IEEE Transactions on 

Computers, vol.49, no.5, pp.465-481, May 2000. 

[26] S.C. Goldstein, H. Schmit, M. Moe, M. Budiu, S. Cadambi, R.R. Taylor, R. 

Laufer, PipeRench: a coprocessor for streaming multimedia acceleration, 

Proceedings of the 26th International Symposium on Computer 

Architecture, pp.28-39, 1999. 

[27] R. Hartenstein, M. Herz, T. Hoffmann, U. Nageldinger, On Reconfigurable 

Co-Processing Units, Proceedings of Reconfigurable Architectures 

Workshop (RAW98), held in conjunction with 12th International Parallel 

Processing Symposium (IPPS-98) and 9th Symposium on Parallel and 

Distributed Processing (SPDP-98), Orlando, Florida, USA, March 30, 

1998. 

[28] R.W. Hartenstein, M. Herz, T. Hoffmann, U. Nageldinger, Using the 

KressArray for reconfigurable computing, Proceeding of SPIE, 

Configurable Computing: Technology and Applications, vol. 3526, Boston, 

USA, 1998. 



References 

 

161 

[29] R.W. Hartenstein, R. Kress, A datapath synthesis system for the 

reconfigurable datapath architecture, Design Automation Conference, 1995. 

Proceedings of the ASP-DAC '95/CHDL '95/VLSI '95., IFIP International 

Conference on Hardware Description Languages. IFIP International 

Conference on Very Large Scale , pp.479-484, 29 Aug-1 Sep 1995. 

[30] H. Corporaal, Design of transport triggered architectures, Proceedings of 

Fourth Great Lakes Symposium on Design Automation of High 

Performance VLSI Systems, GLSV '94, pp.130-135, Mar 1994. 

[31] J. Heikkinen, J. Sertamo, T. Rautiainen, J.Takala, Design of transport 

triggered architecture processor for discrete cosine transform, 15th Annual 

IEEE International ASIC/SOC Conference, pp.87-91, 25-28 Sept. 2002. 

[32] P. Hamalainen,; J. Heikkinen, M. Hannikainen, T.D. Hamalainen, Design of 

transport triggered architecture processors for wireless encryption, 8th 

Euromicro Conference on Digital System Design Proceedings, pp.144-152, 

30 Aug.-3 Sept. 2005. 

[33] J. Heikkinen, J. Takala, A. Cilio, and H. Corporaal, On Efficiency of 

Transport Triggered Architectures in DSP Applications, Advances in 

Systems Engineering, Signal Processing and Communications, pp. 25-29, 

WSES Press, New York, NY, USA, 2002. 

[34] H. Yifan, S. Dongrui, B. Mesman, H. Corporaal, MOVE-Pro: A low power 

and high code density TTA architecture, International Conference on 

Embedded Computer Systems (SAMOS), pp.294-301, 18-21 July 2011. 

[35] S. Khawam, I. Nousias, M. Milward, Yi Ying, M. Muir, T. Arslan, The 

Reconfigurable Instruction Cell Array, IEEE Transactions on Very Large 

Scale Integration (VLSI) Systems, Vol 16, pp 75-85, Jan. 2008. 

[36] A. Major, Yi Ying, I.Nousias, M. Milward, S. Khawam, T. Arslan, H.264 

Decoder Implementation on a Dynamically Reconfigurable Instruction Cell 

Based Architecture, IEEE International SOC Conference, pp.49-52, 24-27 

Sept. 2006. 

[37] Z. Wang, A.T. Erdogan, T. Arslan, “A SDR Platform for Mobile Wi-Fi/3G 

UMTS System on a Dynamic Reconfigurable Architecture, 2009 European 

Signal Processing Conference (EUSIPCO-2009), August 24-28, 2009. 

[38] I. Nousias, S. Khawam, M. Milward, M. Muir, T. Arslan, A Multi-objective 

GA based Physical Placement Algorithm for Heterogeneous Dynamically 

Reconfigurable Arrays, 17th International Conference on Field 



References 

 

162 

Programmable Logic and Applications (FPL 2007), pp. 497-500, 

Amsterdam, Netherlands, 27-29 August 2007. 

[39] Z. Wang, T. Arslan, A.T. Erdogan, Implementation of Hardware Encryption 

Engine for Wireless Communication on a Reconfigurable Instruction Cell 

Architecture, 4th IEEE International Symposium on Electronic Design, Test 

and Applications (DELTA 2008), pp.148-152, 23-25 Jan. 2008. 

[40] T. Hirao, Kim Dahoo, I. Hida, T. Asai, M. Motomura, A restricted 

dynamically reconfigurable architecture for low power processors, 2013 

International Conference on Reconfigurable Computing and FPGAs 

(ReConFig), pp.1-7, Dec. 2013. 

[41] O. Atak, A. Atalar, BilRC: An Execution Triggered Coarse Grained 

Reconfigurable Architecture, IEEE Transactions on Very Large Scale 

Integration (VLSI) Systems, vol.21, no.7, pp.1285-1298, July 2013. 

[42] R.W. Brodersen, J.M. Rabaey, Evolution of Microsystem Design, 

Proceedings of the 15th European Solid-State Circuits Conference 

ESSCIRC '89, pp. 208-217, 20-22 Sept. 1989. 

[43] R. Hartenstein, Coarse grain reconfigurable architectures, In Proceedings of 

the 2001 Asia and South Pacific Design Automation Conference (ASP-DAC 

'01), pp. 564-570, 2001. 

[44] IEEE Std 802.16-2004, IEEE Standard for Local and metropolitan area 

networks Part 16: Air Interface for fixed broadband wireless access systems. 

[45] Digital Modulation in Communications Systems - An Introduction, 

Application Note 1298, http://cp.literature.agilent.com/litweb/pdf/5965-

7160E.pdf, accessed on 15/09/2014. 

[46] ESPACENET. Available: http://www.e-spacenet.net/, accessed on 

23/3/2013. 

[47] T. Arslan, N. Haridas,; E. Yang, A.T. Erdogan, N. Barton, A.J. Walton, J.S. 

Thompson, A. Stoica, T. Vladimirova, K.D. McDonald-Maier, W.G.J. 

Howells, ESPACENET: A Framework of Evolvable and Reconfigurable 

Sensor Networks for Aerospace–Based Monitoring and Diagnostics, First 

NASA/ESA Conference on Adaptive hardware and systems, pp. 323–329. 

15-18 June 2006. 

[48] R. H. Morelos-Zaragoza, The Art of Error Correcting Coding, Wiley, 2002. 

http://www.e-spacenet.net/


References 

 

163 

[49] B. Tang, Parallel punctured convolutional encoder, European patent no. EP 

1176727 A2, 2002. 

[50] Xilinx LogiCORE IP: Convolutional Encoder v9.0, Xilinx, Inc., San Jose, 

CA, April 2014, Available: 

http://www.xilinx.com/support/documentation/ip_documentation/convoluti

on/v9_0/pg026_convolution.pdf. 

[51] A.P. Chandrakasan, R.W. Brodersen, Minimising power consumption in 

digital CMOS circuits, Proceedings of the IEEE, Vol. 83, Issue 4, pp. 498-

523, April 1995. 

[52] T. Matsumoto, F. Adachi, BER analysis of convolution coded QDPSK, in 

digital mobile radio, IEEE Transactions on Vehicular Technology, Vol. 40, 

No. 2, MAY 1991. 

[53] M.J. Meeuwsen, O. Sattari, B.M. Baas, A Full-Rate Software 

Implementation of an IEEE 802.11a Compliant Digital Baseband 

Transmitter, In Proceedings IEEE Workshop on Signal Processing Systems, 

2004, October 2004. 

[54] K. Chang and G.E. Sobelman, FPGA-Based Design of a Pulsed-OFDM 

System, Proceedings, IEEE Asia Pacific Conference on Circuits and 

Systems, pp. 1130-1133, 2006. 

[55] K. Chang, G.E. Sobelman, E. Saberinia and A.H. Tewfik, Transmitter 

Architecture for Pulsed OFDM, IEEE Asia Pacific Conference Proceedings 

on Circuits and Systems, pp. 693-696, 2004. 

[56] B. Soreng, S. Kumar, Efficient implementation of Convolution Encoder and 

Viterbi Decoder, 2013 International Conference on Circuits, Power and 

Computing Technologies (ICCPCT), pp. 1270-1273, 20-21 March 2013. 

[57] Datasheet, The CS3310 Programmable Convolution Encoder, Amphion 

Semiconductor Ltd., Available: 

http://www.digchip.com/datasheets/download_datasheet.php?id=240961&p

art-number=CS3310. Retrieved: 21-06-2014. 

[58] E. Tell and D. Liu, A Hardware Architecture for a Multi Mode Block 

Interleaver, Proceedings of the International Conference on Circuits and 

Systems for Communications (ICCSC), Moscow, Russia, June 2004. 



References 

 

164 

[59] C. Berrou, S. Evans and G. Battail, Turbo block codes, Proceedings of 

Seminar on Turbo Coding, Lund, Sweden, pp.1-7, Aug. 1996. 

[60] O.Y. Takeshita,; Costello, D.J., Jr., New deterministic Interleaver designs 

for turbo codes, IEEE Transactions on Information Theory, vol.46, no.6, 

pp.1988-2006, Sep 2000. 

[61] A. Troya, K. Maharatna, M. Krstic, E. Grass, U. Jagdhold, R. Kraemer, 

Low-Power VLSI Implementation of the Inner Receiver for OFDM-Based 

WLAN Systems, IEEE Transactions on Circuits and Systems, vol.55, no.2, 

pp.672-686, March 2008. 

[62] R. Machauer, A. Wiesler, and F. Jondral, Comparison of UTRA-FDD 
and CDMA200 with intra- and intercell interface, Proceedings IEEE 6th 

International Symposium on Spread Spectrum Techniques and Applications 

(ISSSTA ’00), vol. 2, pp.652–656, NJ, USA, September 2000. 

[63] J. Glosser, J. Moreno,M.Mudsill, et al., Trends in compilable DSP 

architecture, Proceedings of Workshop on Signal Processing Systems (SiPS 

2000), October 2000, USA, pp. 181–199. 

[64] Y.S. Kavian, A.Falahati, A. Khayatzadeh, M. Naderi, High Speed Reed-

Solomon Decoder with Pipeline Architecture, Wireless and Optical 

Communications Networks, 2005, WOCN 2005, Second IFIP International 

Conference, Mar 2005, pp.415-419. 

[65] I. Reed and G. Solomon, Polynomial codes over certain Finite Fields, 

Journal of the Society for Industrial and Applied Mathematics, Vol. 8, No. 

2, pp. 300-304, June 1960. 

[66] S.B. Wicker and V.K. Bhargava, Reed-Solomon Codes and Their 

Applications, IEEE Press, September 1999. 

[67] R. Riemann and K. Winstein, Improving 802.11 Range with Forward Error 

Correction, MIT Computer Science and Artificial Intelligence Laboratory 

Technical Report, Feb 2005. 

[68] J.L. Massey, Deep Space Communications and Coding: A Match Made in 

Heaven, in Advanced Methods for Satellite and Deep Space 

Communications, J. Hagenauer (ed.), Lecture Notes in Control and 

Information Sciences, Volume 182, Berlin: Springer-Verlag, 1992. 



References 

 

165 

[69] M.S. Schulte, M.J. Iancu, D. Iancu, A. Glossner, J. Instruction set 

extensions for Reed-Solomon encoding and decoding, 16th IEEE 

International Conference on Application-Specific Systems, Architecture, pp. 

364- 369, July 2005. 

[70] D. Taipale, I.E. Scheiwe and T.M. Redheendran, Reed-Solomon Decoding 

on the StarCore Processor, Tech. Rep. AN1841/D, Motorola 

Semiconductors, Denver, Colombia, USA, May 2000. 

[71] W.J. Gross, F.R. Kschischang, P.G. Gulak, An FPGA Interpolation 

Processor for Soft-Decision Reed-Solomon Decoding, 12th Annual IEEE 

Symposium on Field-Programmable Custom Computing Machines 

(FCCM'04), pp. 310-311, 2004. 

[72] J. Glossner, J. Moreno, M. Moudgill, J. Derby, E. Hokenek, D. Meltzer, U. 

Shvadron, M. Ware, Trends in compilable DSP architecture, Proceeding 

Workshop on Signal Processing Systems (SiPS 2000), USA, pp. 181-199, 

October 2000. 

[73]  Implementation guidelines for DVB handheld services (draft TR 102 377 

V1.3.1), DVB Document A092, July 2005. 

[74] A.O. El-Rayis, Xin Zhao, T. Arslan, A.T. Erdogan, Dynamically 

programmable Reed Solomon processor with embedded Galois Field 

multiplier, International Conference on FPT 2008, pp.269-272, 8-10 Dec. 

2008. 

[75]  J. Kim, T. Kim, Memory Access Optimisation Through Combined Code 

Scheduling, Memory Allocation, and Array Binging in Embedded System 

Design, Proceeding of 42nd Design Automation Conference 2005, pp.105-

110, Jun 2005. 

[76] Weisstein, http://mathworld.wolfram.com/HornersRule.html accessed on 

8th Sep 2014. 

[77] M.H. Jing, T.K. Truong, Y.H. Chen and Y.C. Luo, The Design of RS 

Decoder with a Small Core for Portable Communication, Proceedings of 

IEEE Asia-Pacific Conference on Circuits and Systems 2004, Vol. 2, 

pp.1069-1072, Dec 2004. 

[78] B. Skalr, Digital Communications: Fundamentals and Applications, Second 

Edition, Prentice-Hall, 2001, ISBN 0-13-084788-7. 



References 

 

166 

[79] Y.S. Kavian, A. Falahati, A. Khayatzadeh, M. Naderi, High Speed Reed-

Solomon Decoder with Pipeline Architecture, Second IFIP International 

Conference on Wireless and Optical Communications Networks (WOCN) 

2005, pp.415-419, Mar 2005. 

[80] S.S. Lee and M.K. Song, An Efficient Recursive Cell Architecture of 

Modified Euclid’s Algorithm for Decoding Reed-Solomon Codes, IEEE 

Transactions on Consumer Electronics, Vol. 48, Issue 4, pp. 845-849, Nov 

2002. 

[81] A.C. Dam, M.G.J. Lammertink, K.C. Rovers, J. Slagman, et al, 

Hardware/Software Co-design Applied to Reed-Solomon Decoding for the 

DMB Standard, 9
th

 EURPMICRO Conference on Digital System Design: 

Architectures, Methods and Tools, pp.447-455, 2006. 

[82] W.J. Gross, F. R. Kschischang, P.G. Gulak, An FPGA Interpolation 

Processor for Soft-Decision Reed-Solomon Decoding, 12th Annual IEEE 

Symposium on Field-Programmable Custom Computing Machines 

(FCCM'04), pp. 310-311, 2004. 

[83] J.B.Y Tsui, Fundamentals of Global Positioning System Receivers A 

Software Approach, ISBN 0-471-38154-31, Wiley 2000. 

[84] L. Winternitz, M. Moreau, G.J. Boegner, Navigator GPS Receiver for Fast 

Acquisition and Weak Signal Space Applications, ION GNSS, Long Beach, 

CA, September 21-24, 2004. 

[85] R. Gold, Optimal binary sequences for spread spectrum multiplexing, IEEE 

Transactions on Information Theory, vol. 13, pp. 619-621, October 1967. 

[86]  Zarlink Semiconductor, GP2021 GPS 12-Channel Correlator, datasheet, 

August 2005. 

[87]  M. Lieu and T. Chiueh, A low-power digital matched filter for direct-

sequence spread-spectrum signal acquisition, IEEE Journal of Solid-State 

Circuits, vol. 36, no. 6, pp.933-943, June 2001. 

[88] W.C. Lin, K.C. Liu, and C.K. Wang, Differential matched filter architecture 

for spread spectrum communication system, Electronics Letters, Volume 

32, Issue 17, pp. 1539 – 1540, Aug. 1996. 



References 

 

167 

[89] X. Guo, J. Chen, Y. Qiu A new architecture of matched-filter employing 

coefficient recode technique for spread spectrum communication systems, 

5
th

 International Conference on ASIC, Vol. 2, pp. 800-803, Oct. 2003. 

[90]  X. Guan, J. Chen, A new algorithm of digital matched filter with a segment 

processing method, 6th International Conference on ASIC ASICON, vol.1, 

pp. 240-243, Oct. 2005. 

[91] T. Arslan, M. Millward, S. Khawam, I. Nousias, Y. Ying, Reconfigurable 

Instruction Cell Array , Patent EP1877927, 2008. 

[92]  A. El-Rayis, T. Arslan, A.T. Erdogan, Addressing Future Space Challenges 

using Reconfigurable Instruction Cell Based Architectures, NASA/ESA 

Conference on Adaptive Hardware and Systems, pp.199-203, 22-25 June 

2008. 

[93]  S.A. White, Applications of distributed arithmetic to digital signal 

processing: A tutorial review, IEEE ASSP Magazine, Vo1 6, No.3, pp.4-19, 

July 1989. 

[94] Zarlink GP1020 Available: http://ulp.zarlink.com/zarlink/gp1020-datasheet-

jan1997.pdf, accessed on 15-09-2014. 

[95] Zarlink GP4020, Available: 

http://pdf.datasheetcatalog.com/datasheet/zarlinksemiconductor/zarlink_GP

4020_MAY_02.pdf, accessed on 15-09-2014. 

[96] ATMEL ATR0620, Available: 

http://pdf.datasheetcatalog.com/datasheet/atmel/doc4574.pdf, accessed on 

15-09-2014. 

[97] STA8058, TESEO™. high performance GPS multichip module (MCM) 

http://www.st.com/st-web-

ui/static/active/en/resource/technical/document/data_brief/CD00174947.pdf

, accessed on 14-09-2014. 

[98] Datasheet of GPS smart antenna module, LS20030~3 

https://cdn.sparkfun.com/datasheets/GPS/LS20030~3_datasheet_v1.3.pdf 

accessed on 14-09-2014. 

[99] ST STA2062, Available: 

http://www.st.com/web/en/resource/technical/document/data_brief/CD0017

2700.pdf, accessed on 15-09-2014. 



References 

 

168 

[100] Atheros AR1511, Available: 

https://wikidevi.com/files/Atheros/specsheets/AR1511.pdf, accessed on 15-

09-2014. 

[101] ST STA8058 High performance GPS multichip module, Sep 2013, 

Available: http://www.st.com/st-web-

ui/static/active/en/resource/technical/document/data_brief/CD00174947.pdf

, accessed on 15-09-2014. 

[102] LOCOSYS, Datasheet of GPS smart antenna module LS20030, 

https://cdn.sparkfun.com/datasheets/GPS/LS20030~3_datasheet_v1.3.pdf, 

accessed on 15-09-2014. 

 



 

169 

 

 

APPENDIX A: MATLAB MODELS 
 

 

A.1 Interleaver Model: 

 
% %aa= 
hex_2_dec('3A5EE7AE499E6F1C6FC128BCBDAB57CDBCCDE3A792CA92C24DBC8D7832FBBFDF23ED8A941627A

565CF7D167A45B809CC'); 

% %bb= dec_2_bin(aa); 
% m = 

('898407646983235129903369408620228549208237089767538283785779873984348065286651305271483786817872270

2216228486253004'); 
% %m is 115 digit decimal 

% %m 

=('00111010010111101110011110101110010010011001111001101111000111000110111111000001001010001011110010
1111011010101101010111110011011011110011001101111000111010011110010010110010101001001011000010010011

0110111100100011010111100000110010111110111011111111011111001000111110110110001010100101000001011000

10011110100101011001011100111101111101000101100111101001000101101110000000100111001100'); 
% %m is 384 binary digit 

 

Ncbps=384; 
%Ncbps = 115; 

 

% QPSK, rate 3/4 
 

 

% Ncpc: number of coded bits per subcarrier 
%           PICKUP ONLY ONE VALUE: 

%1 - BPSK           

%Ncpc = 1; 
%2 - QPSK 

Ncpc = 2; 

%4 - 16QAM 
%Ncpc = 4; 

%6 - 64QAM 

%Ncpc = 6; 
 

 

% %*********************Interleaver for OFDM WIMAX****************** 

%  

% %  k= 0: (Ncbps-1); 

%  
% %first permutation: 

% % m(k) = (Ncbps/12)* kmod12 + floor(k/12)      k=0, ....., Ncbps-1 

% for k = 1:(Ncbps-1) 
%     kk = k-1; 

%     ff = mod(kk,12); 

%   %  k = 0:(Ncbps-1); 
%     m(k) = (Ncbps*ff/12) + floor(kk/12); 

% end 

%  
% %Second permutation: 

% % jk = s.floor(mk /s) + (mk + Ncbps - FLOOR(12*mk/Ncpbs))mod(S) 

% %                                   k=0, ....., Ncbps-1 
% % s = ceil(Ncpc/2); 

%  
% s = ceil (Ncpc/2); 

%  

% for k = 1:(Ncbps) 
%     %kk = k-1; 

%     x = m(k)+ Ncbps - floor(12* m(k)/Ncbps); 
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%     mm = mod(x, s); 

%     j(k)= s * floor( m(k)/s) + mm; 
% end 

%  

% d_o = j; 
%  

% xxx = dec_2_hex(j); 

 
%************************De-Interleaver OFDM WIMAX ****************** 

 

% data_h = 
('77FA4F174E3EE670E8CD3F7690C42CDBF9B7FB436CF19ABDED0A1CD81BEC9B3015BADA31F550497D56EDB4

88CC72FC5C'); 

% data_d = hex_2_dec(data_h); 
 

 

%first permutation: 
%m(j) = s * floor (j/s) + (j+floor(12 * j/Ncbps))mod(s) 

%j=0,1 ....., Ncbps-1 

 
s = ceil (Ncpc/2); 

 

for j = 1:(Ncbps) 
    jj = j-1; 

    jk = jj + floor(12 * jj /Ncbps); 

    jf = mod(jk,s); 
  %  k = 0:(Ncbps-1); 

    m1(j) = (s * floor(jj/s)) + jf; 
end 

 

%Second permutation: 
%k(j) = 12 * m(j) - (Ncbps - 1) * floor(12 * m(j)/Ncbps); 

 

for j = 1:(Ncbps) 
    k1(j) = 12 * m1(j) - (Ncbps - 1) * floor(12 * m1(j)/Ncbps); 

end 

A.2 16-QAM Interleaver Model: 

 
clear 

%clc 
 

%aa= 

hex_2_dec('3A5EE7AE499E6F1C6FC128BCBDAB57CDBCCDE3A792CA92C24DBC8D7832FBBFDF23ED8A941627A

565CF7D167A45B809CC'); 

%                

 
% EEC6A1CB7E04736CBC6195D3    : 

zzz = 

('111011101100011010100001110010110111111000000100011100110110110010111100011000011001010111010011'); 
% B7C4EF0E4C76CFDC7069B3CE 

% DBE0E5B7B54E887DA4AE3130 

% EEC6A1CB7E04736CBC6195D3B7C4EF0E4C76CFDC7069B3CEDBE0E5B7B54E887DA4AE3130 
 

 

%bb= dec_2_bin(aa); 
%m = 

('898407646983235129903369408620228549208237089767538283785779873984348065286651305271483786817872270

2216228486253004'); 
%m is 115 digit decimal 

%m 

=('00111010010111101110011110101110010010011001111001101111000111000110111111000001001010001011110010

1111011010101101010111110011011011110011001101111000111010011110010010110010101001001011000010010011

0110111100100011010111100000110010111110111011111111011111001000111110110110001010100101000001011000
10011110100101011001011100111101111101000101100111101001000101101110000000100111001100'); 

%m is 384 binary digit 
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%Ncbps = 384;   % QPSK 16 subchannel 

%Ncbps = 192;   % BPSK 16 subchannel 

%Ncbps = 768;   % 16-QAM 16 subchannel 
Ncbps = 96;   %  16-QAM 2 subchannel 

%!!!!!Ncbps = 115; 

 
% 16-QAM, rate 3/4 2 subchannel 

 

 
% Ncpc: number of coded bits per subcarrier 

%           PICKUP ONLY ONE VALUE: 

%1 - BPSK           
%Ncpc = 1; 

%2 - QPSK 

%Ncpc = 2; 
%4 - 16QAM 

Ncpc = 4; 

%6 - 64QAM 
%Ncpc = 6; 

 

%for z = 14:40 
z = 12; 

display(z); 

%  k= 0: (Ncbps-1); 
 

%first permutation: 
% m(k) = (Ncbps/12)* kmod12 + floor(k/12)      k=0, ....., Ncbps-1 

 

for k = 0:(Ncbps-1) 
    %kk = k-1; 

    %ff = mod(kk,z); 

  %  k = 0:(Ncbps-1); 
    m(k+1) = (Ncbps/z)*mod(k,z) + floor(k/z); 

end 

 
%display (m) 

 

%Second permutation: 
% jk = s.floor(mk /s) + (mk + Ncbps - FLOOR(12*mk/Ncpbs))mod(S) 

%                                   k=0, ....., Ncbps-1 

% s = ceil(Ncpc/2); 
 

s = ceil (Ncpc/2); 

 
for k = 0:(Ncbps-1) 

    %kk = k-1; 

%    display(k) 
   % x = m(k)+ Ncbps - floor(z* m(k)/Ncbps); 

   % mm = mod((m(k)+ Ncbps - floor(z* m(k)/Ncbps)), s); 

    j(k+1)= s * floor(m(k+1)/s) + mod((m(k+1)+ Ncbps - floor(z* (m(k+1)/Ncbps))), s); 
%    display(j(k)) 

end 

 
%display(j) 

d_o = j; 

j = j+1; 
 

for i = 1:Ncbps 

    def= j(i); 
    gom(i) = zzz(def); 

end 

 
%gom; 

sprintf('The input is :'); 

in = bin_2_hex(zzz); 
display(in) 

sprintf('\n The ouput is :'); 

out = bin_2_hex(gom); 
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display(out) 

%end 
 

 

 
%xxx = dec_2_hex(j); 

 

 

A.3 QPSK Interleaver Model: 

 

 

 

%aa= 

hex_2_dec('3A5EE7AE499E6F1C6FC128BCBDAB57CDBCCDE3A792CA92C24DBC8D7832FBBFDF23ED8A941627A

565CF7D167A45B809CC'); 
%bb= dec_2_bin(aa); 

%m = 

('898407646983235129903369408620228549208237089767538283785779873984348065286651305271483786817872270
2216228486253004'); 

%m is 115 digit decimal 

%m 
=('00111010010111101110011110101110010010011001111001101111000111000110111111000001001010001011110010

1111011010101101010111110011011011110011001101111000111010011110010010110010101001001011000010010011

0110111100100011010111100000110010111110111011111111011111001000111110110110001010100101000001011000
10011110100101011001011100111101111101000101100111101001000101101110000000100111001100'); 

%m is 384 binary digit 

 
Ncbps=384; 

%!!!!!Ncbps = 115; 

 
% QPSK, rate 3/4 

 

 
% Ncpc: number of coded bits per subcarrier 

%           PICKUP ONLY ONE VALUE: 

%1 - BPSK           
%Ncpc = 1; 

%2 - QPSK 

Ncpc = 2; 
%4 - 16QAM 

%Ncpc = 4; 

%6 - 64QAM 
%Ncpc = 6; 

 

 
x = 32; 

 

% reading data input file 
%A = fread(fid, 2)  

 

 
%  k= 0: (Ncbps-1); 

 

%first permutation: 
% m(k) = (Ncbps/12)* kmod12 + floor(k/12)      k=0, ....., Ncbps-1 

for k = 1:(Ncbps) 

    %kk= k-1; 
  %  ff = mod((k-1),12); 

  %  k = 0:(Ncbps-1); 

    m(k) = (Ncbps/x)* mod((k-1),x) + floor((k-1)/x); 

end 

%display (m) 
%Second permutation: 

% jk = s.floor(mk /s) + (mk + Ncbps - FLOOR(12*mk/Ncpbs))mod(S) 

%                                   k=0, ....., Ncbps-1 
% s = ceil(Ncpc/2); 
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s = ceil (Ncpc/2); 
 

for k = 1:(Ncbps) 

    %kk = k-1; 
%    display(k) 

 %   x = m(k)+ Ncbps - floor(12* m(k)/Ncbps); 

 %   mm = mod(x, s); 
    j(k)= s * floor(m(k)/s) + mod((m(k)+ Ncbps - floor(x* m(k)/Ncbps)), s); 

   % display(j(k)) 

end 
 

display(j) 

d_o = j; 
 

%xxx = dec_2_hex(j); 
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APPENDIX B: VERILOG DESIGNS 
 

 

B.1 Interleaver Design: 

 
//-------------------------------------------------------------------------------------------------- 

// 

// Title       : Reconfigurable De-Interleaver 

// Design      : Reconfig_deinterleaver 

// Author      : Ahmed El-Rayis 

// Company     : The University of Edinburgh 

// 

//------------------------------------------------------------------------------------------------- 

// 

// Description : Top Level 

// 

//------------------------------------------------------------------------------------------------- 

 

`timescale 1ns / 1ps 

`define  size  1152       

`define inter_conf_bits 4 

`define conf_bits 5 

 

 

 

module top_reconfig_deinterleaver (clk,data_in,en,rst,config_bits,data_out,ready_leaver) ; 

 

// ---- User defined diagram parameters --- // 

 

parameter size=`size; 

 

parameter inter_conf_bits = `inter_conf_bits; 

 

parameter conf_bits = `conf_bits; 

 

 

// ------------ Port declarations --------- // 

input clk; 

wire clk; 

input data_in; 

wire data_in; 

input en; 

wire en; 

input rst; 

wire rst; 

input [conf_bits-1:0] config_bits; 

wire [conf_bits-1:0] config_bits; 

output data_out; 

wire data_out; 

output ready_leaver; 

wire ready_leaver; 

 

// ----------- Signal declarations -------- // 

wire en_rg1; 

wire en_sr2; 

wire rg1_ready; 

wire rg2_ready; 

wire sr1_ready; 

wire [inter_conf_bits-1:0] rg1_config; 

wire [size-1:0] rg1_to_rg2; 

wire [conf_bits-1:0] rg2_config; 

wire [size-1:0] rg2_to_sr2; 

wire [inter_conf_bits-1:0] sr1_config; 

wire [size-1:0] sr1_to_rg1; 

wire [inter_conf_bits-1:0] sr2_config; 

 

// -------- Component instantiations -------// 

 

 

reconfig_controller U_reconfig_controller 

( 

 .config_bits(config_bits[conf_bits-1:0]), 

 .en(en), 

 .en_rg1(en_rg1), 

 .rg1_config(rg1_config[inter_conf_bits-1:0]), 

 .rg2_config(rg2_config[conf_bits-1:0]), 

 .rst(rst), 

 .sr1_config(sr1_config[inter_conf_bits-1:0]), 

 .sr2_config(sr2_config[inter_conf_bits-1:0]) 
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); 

 

 

RG1 U_RG1 

( 

 .clk(clk), 

 .rg1_config(rg1_config[inter_conf_bits-1:0]), 

 .rg1_ready(rg1_ready), 

 .rg1_to_rg2(rg1_to_rg2[size-1:0]), 

 .rst(rst), 

 .sr1_ready(sr1_ready), 

 .sr1_to_rg1(sr1_to_rg1[size-1:0]) 

); 

 

RG2 U_RG2 

( 

 .clk(clk), 

 .en_sr2(en_sr2), 

 .rg1_ready(rg1_ready), 

 .rg1_to_rg2(rg1_to_rg2[size-1:0]), 

 .rg2_config(rg2_config[conf_bits-1:0]), 

 .rg2_ready(rg2_ready), 

 .rg2_to_sr2(rg2_to_sr2[size-1:0]), 

 .rst(rst) 

); 

 

shift_register_in U_shift_register_in 

( 

 .clk(clk), 

 .data_in(data_in), 

 .en_rg1(en_rg1), 

 .rst(rst), 

 .sr1_config(sr1_config[inter_conf_bits-1:0]), 

 .sr1_ready(sr1_ready), 

 .sr1_to_rg1(sr1_to_rg1[size-1:0]) 

); 

 

 

 

SRout U_SRout 

( 

 .clk(clk), 

 .data_out(data_out), 

 .en_sr2(en_sr2), 

 .ready_leaver(ready_leaver), 

 .rg2_ready(rg2_ready), 

 .rg2_to_sr2(rg2_to_sr2[size-1:0]), 

 .rst(rst), 

 .sr2_config(sr2_config[inter_conf_bits-1:0]) 

); 

 

endmodule 

 

//-------------------------------------------------------------------------------------------------- 

// 

// Title       : SRout 

// Design      : Reconfig_deinterleaver 

// Author      : Ahmed El-Rayis 

// Company     : The University of Edinburgh 

// 

//------------------------------------------------------------------------------------------------- 

// 

// File        : d:\My_Designs\Deinterleaver\Reconfig_deinterleaver\src\SRout.v 

// Generated   : Thu Nov 23 12:56:41 2006 

// From        : interface description file 

// By          : Itf2Vhdl ver. 1.20 

// 

//------------------------------------------------------------------------------------------------- 

// 

// Description :  

// 

//------------------------------------------------------------------------------------------------ 

// History    : 

//   Version          Date           Changes 

//     0.01          23 Nov 2006     Initial 

//     0.11          27 Nov 2006     adding a soft reset "11111" 

//     

// 

//------------------------------------------------------------------------------------------------- 

`timescale 1ps / 1ps 

 

//               Code        Block Size (bits) 

//       1        0001        12 

//       2        0010        24 

//       3        0011        48 

//       4        0100        72 

//       5        0101        96 

//       6        0110        144 

//       7        0111        192                    new 

//       8        1000        288 

//       9        1001        384 

//       14        1110        576 

//       0        0000        768 
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//       12        1100        1152      

//       15        1111        soft_reset  

     

module SRout ( data_out ,rst ,clk ,ready_leaver, en_sr2 ,rg2_to_sr2 ,sr2_config ,rg2_ready ); 

 

parameter size = 1152;   //max size  

parameter inter_conf_bits = 4;   //internal  coniguration bits 

 

input rst ;                  //reset 

wire rst ; 

input clk ;                  //main clock 

wire clk ; 

input [size-1:0] rg2_to_sr2 ;//incoming parallel data after shuffling 

wire [size-1:0] rg2_to_sr2 ; 

input [inter_conf_bits-1:0] sr2_config ;     //config word coming from the controller 

wire [inter_conf_bits-1:0] sr2_config ; 

input rg2_ready ;            //incoming data is valid to copy 

wire rg2_ready ; 

input en_sr2;                //switching ON NOTICE: data will start to go out, put 

wire en_sr2;                 //not valid without ready Interleaver Activated 

 

output data_out ; 

reg data_out ; 

output ready_leaver ; 

reg ready_leaver ; 

 

reg [size:0] temp_reg;   //total = size+1 

reg [10:0] count_in ; 

 

always @ (posedge clk)//or negedge rst_n 

begin 

 if ((rst == 1'b1)||(sr2_config == 4'b1111)) 

  begin 

   temp_reg      = 'b0; 

   data_out      = 'b0; 

   ready_leaver  = 'b0; 

   count_in = 11'b000_0000_0001;     //now count-up 

 

  end 

 else  

   begin  

         if (en_sr2 == 1'b1)  // to begin added initial o/p of RG2 

            begin 

                     ready_leaver  = 1'b1; 

                     if (sr2_config == 4'b0001)    //Block Size: 12 [BPSK 1 subchannel]   #######  

                        begin  

                       //temp_reg[size/96:0] =  {temp_reg[(size/96)-1:0],data_in}; 

                      data_out = temp_reg[size/96];//MSB is the 1st output bit 

                            if ((count_in != 11'b000_0000_1100) && (rg2_ready == 1'b0)) 

                                begin 

                                 count_in = count_in + 1;    

                              temp_reg[size/96:0] = {temp_reg[(size/96)-1:0], temp_reg[size/96]};  

                                end 

                      else 

                       begin 

                        temp_reg[(size/96)-1:0] = rg2_to_sr2[(size/96)-1:0]; 

                        count_in    = 11'b000_0000_0001; 

                                    //data_out = tmp[384];       //MSB is the 1st output bit 

                        //sr1_ready   = 1'b1; 

                       end         

                         end                          

                      else if (sr2_config == 4'b1001)//Block Size:384 [QPSK 16 or 16QAM 8 -subch] ####### 

                                begin  

                              data_out = temp_reg[size/3];  //MSB is the 1st output bit 

                              if ((count_in != 11'b001_1000_0000) && (rg2_ready == 1'b0)) 

                                        begin 

                                         count_in = count_in + 1;    

                                      temp_reg[size/3:0] = {temp_reg[(size/3)-1:0], temp_reg[size/3]}; //  

                                        end 

                              else 

                               begin 

                                temp_reg[(size/3)-1:0] = rg2_to_sr2[(size/3)-1:0]; 

                                count_in    = 11'b000_0000_0001; 

                               end         

                                end                          

 

                      else if (sr2_config == 4'b0000)//Block Size:768 [16-QAM 16 subchannel] #######  

                                begin  

                              data_out = temp_reg[size/1.5];  //MSB is the 1st output bit 

                              if ((count_in != 11'b011_0000_0000) && (rg2_ready == 1'b0)) 

                                        begin 

                                         count_in = count_in + 1;    

                                      temp_reg[size/1.5:0] = {temp_reg[(size/1.5)-1:0], temp_reg[size/1.5]}; //  

                                        end 

                              else 

                               begin 

                                temp_reg[(size/1.5)-1:0] = rg2_to_sr2[(size/1.5)-1:0]; 

                                count_in    = 11'b000_0000_0001; 

                               end         

                                end                          

                     else if (sr2_config == 4'b1100)//Block Size:1152 [64-QAM 16subchannel] ####### 

                                begin  

                              data_out = temp_reg[size];  //MSB is the 1st output bit 
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                              if ((count_in != 11'b000_0000_0001)&& (rg2_ready == 1'b0))  

                                        begin 

                                         count_in = count_in + 1;    

                                      temp_reg[size:0] = {temp_reg[size-1:0], temp_reg[size]}; //  

                                        end 

                              else 

                               begin 

                                temp_reg[size-1:0] = rg2_to_sr2[size-1:0]; 

                                count_in    = 11'b000_0000_0001; 

                               end         

                                 end                          

             end       

           else    ready_leaver  = 1'b0; 

                   

                   

    end 

end         

 

endmodule 

 

 

 

 

//-------------------------------------------------------------------------------------------------- 

// 

// Title       : TOP_tb 

// Design      : Deinterleaver 

// Author      : Ahmed El-Rayis 

// Company     : The University of Edinburgh 

// 

//------------------------------------------------------------------------------------------------- 

// 

// Description : testbench for reconfigurable de-Interleaver 

// 

//------------------------------------------------------------------------------------------------- 

`timescale 1 ns / 1 ps 

//////////////////////////////////////////////////////////////////////// 

//////             External Configuration bits                       /// 

//////////////////////////////////////////////////////////////////////// 

// Configuration Word Block Size Modulation Type No. of Subchannels 

// Value Configuration Word Block Size Modulation Type No. of Subchannels 

//1    1     00001             12                 BPSK 1 

//2    2     00010             24                 BPSK 2 

//3    18     10010             24                 QPSK 1 

//4    3     00011             48                 BPSK 4 

//5    11     01011             48                 QPSK 2 

//6    19     10011             48                 16-QAM 1 

//7    4     00100             72                 64-QAM 1 

//8    5     00101             96                 BPSK 8 

//9    13     01101             96                 QPSK 4       new 

//10 21    10101             96                 16-QAM 2 

//11 6    00110             144                 64-QAM 2 

//12 7    00111             192                 BPSK 16 

//13 15    01111             192                 QPSK 8 

//14 23    10111             192                 16-QAM 4 

//15 8    01000             288                 64-QAM 4 

//16 9    01001             384                 QPSK 16 

//17 25    11001             384                 16-QAM 8 

//18 14    01110             576                 64-QAM 8 

//19 18     10000             768                 16-QAM 16 

//20 12     01100            1152                 64-QAM 16 

//21    31      11111              soft_reset                soft_reset 

 

`define  size  1152       

`define inter_conf_bits 4 

`define conf_bits 5 

 

module top_tb (); 

 

 

parameter period = 30;      // Set clock period to 100ns 

parameter delay  =  50; 

parameter width =   16; 

parameter tap    =  73; 

parameter length  = 1000;       //16 short 16000 long 

parameter size    =`size; 

parameter inter_conf_bits  = `inter_conf_bits; 

parameter conf_bits        = `conf_bits; 

 

 

    

   reg        inputdata[0:767]; //767 

   reg        out_expected[0:767];  //767 

//   reg          y_expected[199:0];//20 inputs 

   reg          clk; 

   reg          rst, data_in;//, clk;   ,  

   reg          en;        // enable 

   reg          [4:0] config_bits; 

   wire       data_out; 

   wire       ready_leaver; 

 

   integer        i ,j ,f1; 
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   initial 

      fork 

         clk <= 0; 

         forever #(period/2) clk = !clk;        // creates clock of period "period" 

      join 

  

       

  top_reconfig_deinterleaver deleaver_top( 

          .clk(clk), 

          .data_in(data_in), 

          .en(en), 

          .rst(rst), 

          .config_bits(config_bits), 

          .data_out(data_out), 

          .ready_leaver(ready_leaver)) ; 

           

           

  initial  

      begin 

//                              enable <= 1'b1; 

                              //  cnt = 0; 

                                i = 0; j = 0;   

              //                enable <=1; 

      #0                        rst = 1'b1; 

   #1                        en = 1'b0; 

      #(delay)                  rst = 1'b1; 

      #(period)                 rst = 1'b0; 

      #1                        config_bits = 5'b01001;//         384                 QPSK 16  

      #(period)                 en = 1'b1; 

       

//      #(period)                enable = 1; 

   assign data_in = inputdata[i];     //by me 

 

      #(period*tap*length) 

 

 

                                $finish; 

     end // initial begin 

 

/* 

initial 

      begin 

         $dumpfile("simulation.rtl.vcd"); 

         $dumpvars; 

      end 

*/ 

 

//   always @(posedge clk) 

   initial 

      begin       

 //         assign enable =1'b1; 

////         $readmemh("deinterleaverqpsk16.dat", inputdata); 

////         $readmemh("deinterleaverqpsk16_out.dat", out_expected); 

//         $readmemh("outputy.dat", y_expected); 

//         f1 = $fopen("deinterleaverqpsk16_real_o.dat"); 

//         f2 = $fopen("routput.y.dat");     

////                 $display("Deinterleaver         dataNo.               Time   Result Expt  PASS/FAIL"); 

 

      end 

 

   always @(posedge clk) 

       

      begin 

                       //    $display("clock"); 

 

         if ((rst == 1'b0) && (en == 1'b1)) 

    begin                                

                //j <=  j + 1; //$display("clock ****"); 

                if ((i != 'd800) && (ready_leaver == 1'b1))  

                    begin 

                     i <= i+1;   //1 

                 

                      //  $display("reset and enable"); 

                    if ( data_out == out_expected[i]) //&& (data_out [0]== out_expected[i+1])) 

                       begin 

                         $fwrite(f1, "%b   %b   PASS\n", data_out, out_expected[i]);//, out_expected[i+1]); 

                         $display("Ahmed      %d : %d      %b      %b    PASS   OK\n", i, $time, data_out, out_expected[i]);//, out_expected[i+1]); 

                       end 

                    else 

                       begin 

                         $fwrite(f1, "%b   %b   FAIL\n", data_out, out_expected[i]);//, out_expected[i+1]); 

                         $display("failure    %d : %d      %b      %b   FAIL   X x\n", i, $time, data_out, out_expected[i]);//, out_expected[i+1]); 

                       end 

        //           if ( y == y_expected[i])  

        //               begin 

        //                 $fwrite(f2, "%b   %b   PASS\n", y, y_expected[i]); 

        //                 $display("Ahmed Y     %d : %d      %b      %b   PASS   OK ", i, $time, y, y_expected[i]); 

        //               end 

        //            else 

        //               begin 

        //                 $fwrite(f2, "%b   %b   FAIL\n", y, y_expected[i]); 

        //                 $display("failed Y    %d : %d      %b      %b   FAIL   X y", i, $time, y, y_expected[i]); 

                  end 
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           end 

              end 

             

            

//assign datain = inputdata[i]; 

//end    

//endmodule // stimulus 

 

     

     

     

     

     

endmodule 

 

 

//-------------------------------------------------------------------------------------------------- 

// 

// Title       : reconfig_controller 

// Design      : Reconfig_deinterleaver 

// Author      : Ahmed El-Rayis 

// Company     : The University of Edinburgh 

// 

//------------------------------------------------------------------------------------------------- 

// History    : 

//   Version          Date           Changes 

//     0.01          24 Nov 2006     Initial 

//     0.11          27 Nov 2006     adding a code which will begin used as a soft reset "11111" 

//------------------------------------------------------------------------------------------------- 

 

 

//////////////////////////////////////////////////////////////////////// 

//////             External Configuration bits                       /// 

//////////////////////////////////////////////////////////////////////// 

// Configuration Word Block Size Modulation Type No. of Subchannels 

// Value Configuration Word Block Size Modulation Type No. of Subchannels 

//1    1     00001             12                 BPSK 1 

//2    2     00010             24                 BPSK 2 

//3    18     10010             24                 QPSK 1 

//4    3     00011             48                 BPSK 4 

//5    11     01011             48                 QPSK 2 

//6    19     10011             48                 16-QAM 1 

//7    4     00100             72                 64-QAM 1 

//8    5     00101             96                 BPSK 8 

//9    13     01101             96                 QPSK 4       new 

//10 21    10101             96                 16-QAM 2 

//11 6    00110             144                 64-QAM 2 

//12 7    00111             192                 BPSK 16 

//13 15    01111             192                 QPSK 8 

//14 23    10111             192                 16-QAM 4 

//15 8    01000             288                 64-QAM 4 

//16 9    01001             384                 QPSK 16 

//17 25    11001             384                 16-QAM 8 

//18 14    01110             576                 64-QAM 8 

//19 18     10000             768                 16-QAM 16 

//20 12     01100            1152                 64-QAM 16 

//21    31      11111              soft_reset                soft_reset 

 

//    1         00001              12           BPSK           1 

//    2         00010              24         BPSK         2 

//    3         00011              24         QPSK         1 

//    4         00100              48         BPSK         4 

//    5         00101              48         QPSK         2    old 

//    6         00110              48         16-QAM         1              

//    7         00111              72         64-QAM         1              

//    8         01000              96         BPSK         8              

//    9         01001              96         QPSK         4 

//    10        01010              96         16-QAM         2 

//    11        01011              144         64-QAM         2 

//    12        01100              192         BPSK         16 

//    13        01101              192         QPSK         8 

//    14        01110              192         16-QAM         4 

//    15        01111              288         64-QAM         4 

//    16        10000              384         QPSK         16 

//    17        10001              384         16-QAM         8 

//    18        10010              576         64-QAM         8 

//    19        10011              768         16-QAM         16 

//    20        10100              1152         64-QAM         16 

 

////////////////////////////////////////////// 

///       Internal Config Table            /// 

////////////////////////////////////////////// 

 

//               Code        Block Size (bits) 

//       1        0001        12 

//       2        0010        24 

//       3        0011        48 

//       4        0100        72 

//       5        0101        96 

//       6        0110        144 

//       7        0111        192                    new 

//       8        1000        288 

//       9        1001        384 
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//       14        1110        576 

//       0        0000        768 

//       12        1100        1152      

//       15        1111        soft_reset  

 

 

//             Code      Block Size (bits) 

//        1      0001       12 

//        2      0010       24 

//        3      0011       48 

//        4      0100       72 

//        5      0101       96                     old 

//        6      0110       144 

//        7      0111       192 

//        8      1000       288 

//        9      1001       384 

//        10     1010       576 

//        11     1011       768 

//        12     1100       1152 

 

 

 

`timescale 1ps / 1ps 

`define  size  1152       

`define inter_conf_bits 4 

`define conf_bits 5 

 

 

module reconfig_controller ( rg2_config ,rst ,sr1_config ,en ,en_rg1 ,sr2_config ,rg1_config ,config_bits ); 

 

parameter conf_bits = `conf_bits;   // external coniguration bits 

parameter inter_conf_bits = `inter_conf_bits;   //internal  coniguration bits 

 

input rst ; 

wire rst ; 

input en ; 

wire en ; 

input [conf_bits-1:0] config_bits ; 

wire [conf_bits-1:0] config_bits ; 

 

output [conf_bits-1:0] rg2_config ; 

reg [conf_bits-1:0] rg2_config ; 

output [inter_conf_bits-1:0] sr1_config ; 

reg [inter_conf_bits-1:0] sr1_config ; 

output [inter_conf_bits-1:0] sr2_config ; 

reg [inter_conf_bits-1:0] sr2_config ; 

output [inter_conf_bits-1:0] rg1_config ; 

reg [inter_conf_bits-1:0] rg1_config ; 

output en_rg1 ; 

reg en_rg1 ; 

 

always @ ( rst or en or config_bits)    // 

 if (rst == 1'b1)  //reset 

  begin 

   en_rg1     <=  'b0; 

 

            sr1_config <=  'b0; 

   rg1_config <=  'b0; 

            sr2_config <=  'b0; 

            rg2_config <=  'b0; 

  end 

    else  

        begin 

        if (en == 1'b1)  //enable shift register => enable for Interleaver 

            en_rg1 = 1'b1; 

        if (config_bits==5'b0_0001) //00001              12           BPSK           1 

            begin 

                sr1_config =  config_bits[inter_conf_bits-1:0];   //0001 

       rg1_config =  config_bits[inter_conf_bits-1:0];    // 

                sr2_config =  config_bits[inter_conf_bits-1:0];    // 

             

                rg2_config =  config_bits; 

            end 

        else if (config_bits==5'b0_0010)// 00010              24         BPSK         2 

            begin 

                sr1_config =  config_bits[inter_conf_bits-1:0];   //0010 

       rg1_config =  config_bits[inter_conf_bits-1:0];    // 

                sr2_config =  config_bits[inter_conf_bits-1:0];    // 

             

                rg2_config =  config_bits; 

            end 

        else if (config_bits==5'b1_0010)//10010              24         QPSK         1 

            begin 

                sr1_config =  config_bits[inter_conf_bits-1:0];   //0010 

       rg1_config =  config_bits[inter_conf_bits-1:0];    // 

                sr2_config =  config_bits[inter_conf_bits-1:0];    // 

             

                rg2_config =  config_bits; 

            end 

        else if (config_bits==5'b0_0011)//00011  0011           48                 BPSK 4 

            begin 

                sr1_config =  config_bits[inter_conf_bits-1:0];   //0010 

       rg1_config =  config_bits[inter_conf_bits-1:0];    // 
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                sr2_config =  config_bits[inter_conf_bits-1:0];    // 

             

                rg2_config =  config_bits; 

            end 

        else if (config_bits==5'b0_1011)//01011    0011         48                 QPSK 2 

            begin 

                sr1_config =  {! config_bits[inter_conf_bits-1], config_bits[inter_conf_bits-2:0]};   //0011 

       rg1_config =  {! config_bits[inter_conf_bits-1], config_bits[inter_conf_bits-2:0]};    // 

                sr2_config =  {! config_bits[inter_conf_bits-1], config_bits[inter_conf_bits-2:0]};    // 

             

                rg2_config =  config_bits; 

            end 

        else if (config_bits==5'b1_0011)//10011    0011         48                 16-QAM 1 

            begin 

                sr1_config =  config_bits[inter_conf_bits-1:0];   //0010 

       rg1_config =  config_bits[inter_conf_bits-1:0];    // 

                sr2_config =  config_bits[inter_conf_bits-1:0];    // 

             

                rg2_config =  config_bits; 

            end 

        else if (config_bits==5'b0_0011)//00100   0100          72                 64-QAM 1 

            begin 

                sr1_config =  config_bits[inter_conf_bits-1:0];   //0100 

       rg1_config =  config_bits[inter_conf_bits-1:0];    // 

                sr2_config =  config_bits[inter_conf_bits-1:0];    // 

             

                rg2_config =  config_bits; 

            end 

        else if (config_bits==5'b0_0101)//00101    0101         96                 BPSK 8 

            begin 

                sr1_config =  config_bits[inter_conf_bits-1:0];   //0101 

       rg1_config =  config_bits[inter_conf_bits-1:0];    // 

                sr2_config =  config_bits[inter_conf_bits-1:0];    // 

             

                rg2_config =  config_bits; 

            end 

        else if (config_bits==5'b0_1101)//01101   0101          96                 QPSK 4 

            begin 

                sr1_config =  {! config_bits[inter_conf_bits-1], config_bits[inter_conf_bits-2:0]};   //0101 

       rg1_config =  {! config_bits[inter_conf_bits-1], config_bits[inter_conf_bits-2:0]};    // 

                sr2_config =  {! config_bits[inter_conf_bits-1], config_bits[inter_conf_bits-2:0]};    // 

             

                rg2_config =  config_bits; 

            end 

        else if (config_bits==5'b1_0101)//10101    0101         96                 16-QAM 2 

            begin 

                sr1_config =  config_bits[inter_conf_bits-1:0];   //0101 

       rg1_config =  config_bits[inter_conf_bits-1:0];    // 

                sr2_config =  config_bits[inter_conf_bits-1:0];    // 

             

                rg2_config =  config_bits; 

            end 

        else if (config_bits==5'b0_0110)//00110    0110         144                 64-QAM 2 

            begin 

                sr1_config =  config_bits[inter_conf_bits-1:0];   //0110 

       rg1_config =  config_bits[inter_conf_bits-1:0];    // 

                sr2_config =  config_bits[inter_conf_bits-1:0];    // 

             

                rg2_config =  config_bits; 

            end 

         else if (config_bits==5'b0_0111)//00111    0111         192                 BPSK 16 

            begin 

                sr1_config =  config_bits[inter_conf_bits-1:0];   //0111 

       rg1_config =  config_bits[inter_conf_bits-1:0];    // 

                sr2_config =  config_bits[inter_conf_bits-1:0];    // 

             

                rg2_config =  config_bits; 

            end 

        else if (config_bits==5'b0_1111)//01111     0111        192                 QPSK 8 

            begin 

                sr1_config =  {! config_bits[inter_conf_bits-1], config_bits[inter_conf_bits-2:0]};   //0111 

       rg1_config =  {! config_bits[inter_conf_bits-1], config_bits[inter_conf_bits-2:0]};    // 

                sr2_config =  {! config_bits[inter_conf_bits-1], config_bits[inter_conf_bits-2:0]};    // 

             

                rg2_config =  config_bits; 

            end 

        else if (config_bits==5'b1_0111)//10111     0111        192                 16-QAM 4 

            begin 

                sr1_config =  config_bits[inter_conf_bits-1:0];   //0111 

       rg1_config =  config_bits[inter_conf_bits-1:0];    // 

                sr2_config =  config_bits[inter_conf_bits-1:0];    // 

             

                rg2_config =  config_bits; 

            end 

        else if (config_bits==5'b1_0101)//01000   1000          288                 64-QAM 4 

            begin 

                sr1_config =  config_bits[inter_conf_bits-1:0];   //1000 

       rg1_config =  config_bits[inter_conf_bits-1:0];    // 

                sr2_config =  config_bits[inter_conf_bits-1:0];    // 

             

                rg2_config =  config_bits; 

            end 

        else if (config_bits==5'b0_1001)//01001    1001         384                 QPSK 16 
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            begin 

                sr1_config =  config_bits[inter_conf_bits-1:0];   //1001 

       rg1_config =  config_bits[inter_conf_bits-1:0];    // 

                sr2_config =  config_bits[inter_conf_bits-1:0];    // 

             

                rg2_config =  config_bits; 

            end 

         else if (config_bits==5'b1_1001)//11001  1001           384                 16-QAM 8 

            begin 

                sr1_config =  config_bits[inter_conf_bits-1:0];   //1001 

       rg1_config =  config_bits[inter_conf_bits-1:0];    // 

                sr2_config =  config_bits[inter_conf_bits-1:0];    // 

             

                rg2_config =  config_bits; 

            end 

        else if (config_bits==5'b0_1110)//01110   1110          576                 64-QAM 8 

            begin 

                sr1_config =  config_bits[inter_conf_bits-1:0];   //1110 

       rg1_config =  config_bits[inter_conf_bits-1:0];    // 

                sr2_config =  config_bits[inter_conf_bits-1:0];    // 

             

                rg2_config =  config_bits; 

            end 

        else if (config_bits==5'b1_0000)//    0000         768                 16-QAM 16 

            begin 

                sr1_config =  config_bits[inter_conf_bits-1:0];   //0000 

       rg1_config =  config_bits[inter_conf_bits-1:0];    // 

                sr2_config =  config_bits[inter_conf_bits-1:0];    // 

             

                rg2_config =  config_bits; 

            end 

         else if (config_bits==5'b0_1100)//01100            1152                 64-QAM 16 

            begin 

                sr1_config =  config_bits[inter_conf_bits-1:0];   //1100 

       rg1_config =  config_bits[inter_conf_bits-1:0];    // 

                sr2_config =  config_bits[inter_conf_bits-1:0];    // 

             

                rg2_config =  config_bits; 

            end 

         else if (config_bits==5'b1_1111)//11111       -----     soft_Reset    ----- 

            begin 

                sr1_config =  config_bits[inter_conf_bits-1:0];   //1100 

       rg1_config =  config_bits[inter_conf_bits-1:0];    // 

                sr2_config =  config_bits[inter_conf_bits-1:0];    // 

             

                rg2_config =  config_bits; 

            end 

 

             

         end    

endmodule 

 

 

//-------------------------------------------------------------------------------------------------- 

// 

// Title       : RG1 

// Design      : Reconfig_deinterleaver 

// Author      : Ahmed El-Rayis 

// Company     : The University of Edinburgh 

// 

//------------------------------------------------------------------------------------------------- 

// 

// Description :    Asynchron Latch 

// 

//------------------------------------------------------------------------------------------------- 

 

//               Code        Block Size (bits) 

//       1        0001        12 

//       2        0010        24 

//       3        0011        48 

//       4        0100        72 

//       5        0101        96 

//       6        0110        144 

//       7        0111        192                    new 

//       8        1000        288 

//       9        1001        384 

//       14        1110        576 

//       0        0000        768 

//       12        1100        1152      

//       15        1111        soft_reset  

 

 

//             Code      Block Size (bits) 

//        1      0001       12 

//        2      0010       24 

//        3      0011       48 

//        4      0100       72 

//        5      0101       96 

//        6      0110       144 

//        7      0111       192 

//        8      1000       288 

//        9      1001       384 

//        10     1010       576 
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//        11     1011       768 

//        12     1100       1152 

 

 

`timescale 1ps / 1ps 

 

`define  size  1152 

`define inter_conf_bits 4 

 

 

module RG1 ( rst ,sr1_to_rg1 ,sr1_ready ,clk ,rg1_config ,rg1_to_rg2 ,rg1_ready ); 

 

parameter size = `size;   //max size  

parameter inter_conf_bits = `inter_conf_bits;   //internal  coniguration bits 

     

input rst ;                    //reset 

wire rst ; 

input [size-1:0] sr1_to_rg1 ;  //input parallel block 

wire [size-1:0] sr1_to_rg1 ; 

input sr1_ready ;              //valid input data indicator 

wire sr1_ready ; 

input clk ;                    //main clock 

wire clk ; 

input [inter_conf_bits-1:0] rg1_config ;       //configuration word to define block size used 

wire [inter_conf_bits-1:0] rg1_config ; 

 

output [size-1:0] rg1_to_rg2 ; //buffer or latch data to begin used for the next RG2 

reg [size-1:0] rg1_to_rg2 ; 

output rg1_ready;              //latched data is ready 

reg rg1_ready; 

 

//}} End of automatically maintained section 

always @ ( rst or sr1_ready or rg1_config)    //sr1_to_rg1 or 

 if ((rst == 1'b1) ||(rg1_config == 4'b1111)) //reset 

  begin 

   rg1_to_rg2 <=  96'h0; 

   rg1_ready <=  1'b0; 

  end 

    else if (sr1_ready == 1'b1) 

  begin 

             if (rg1_config == 4'b0001)    //Block Size: 12 [BPSK 1 subchannel]   #######  

                  begin  

                     rg1_to_rg2[(size/96)-1:0] <=  sr1_to_rg1[(size/96)-1:0]; 

                rg1_ready <= 1'b1;  

                  end 

             else if (rg1_config == 4'b1001)//Block Size:384 [QPSK 16 or 16QAM 8 -subch] ####### 

                  begin  

                     rg1_to_rg2[(size/3)-1:0] <=  sr1_to_rg1[(size/3)-1:0]; 

                rg1_ready <= 1'b1;  

                  end 

             else if (rg1_config == 4'b0000)//Block Size:768 [16-QAM 16 subchannel] #######  

                  begin                                                                 

                     rg1_to_rg2[(size/1.5)-1:0] <=  sr1_to_rg1[(size/1.5)-1:0]; 

                rg1_ready <= 1'b1;  

                  end 

             else if (rg1_config == 4'b1100)//Block Size:1152 [64-QAM 16subchannel] ####### 

      begin                                                               

                     rg1_to_rg2[(size)-1:0] <=  sr1_to_rg1[(size)-1:0]; 

                rg1_ready <= 1'b1;  

                  end 

             end 

 else  rg1_ready <=  1'b0; 

endmodule 

 

//-------------------------------------------------------------------------------------------------- 

 

//-------------------------------------------------------------------------------------------------- 

// 

// Title       : SRin 

// Design      : Reconfig_deinterleaver 

// Author      : Ahmed El-Rayis 

// Company     : The University of Edinburgh 

// 

//------------------------------------------------------------------------------------------------- 

// 

// Description :   Input Shift Register 

//                 counter have been changed for up count for HW reduction reason 

//------------------------------------------------------------------------------------------------- 

`timescale 1ns / 1ps 

 

//               Code        Block Size (bits) 

//       1        0001        12 

//       2        0010        24 

//       3        0011        48 

//       4        0100        72 

//       5        0101        96 

//       6        0110        144 

//       7        0111        192                    new 

//       8        1000        288 

//       9        1001        384 

//       14        1110        576 

//       0        0000        768 

//       12        1100        1152      
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//       15        1111        soft_reset  

 

 

//             Code      Block Size (bits) 

//        1      0001       12 

//        2      0010       24 

//        3      0011       48 

//        4      0100       72 

//        5      0101       96          O L D 

//        6      0110       144 

//        7      0111       192 

//        8      1000       288 

//        9      1001       384 

//        10     1010       576 

//        11     1011       768 

//        12     1100       1152 

 

`define  size  1152 

`define inter_conf_bits 4 

 

module shift_register_in ( data_in ,sr1_to_rg1 ,rst ,clk ,en_rg1 ,sr1_config ,sr1_ready ); 

 

parameter size = `size;   //max size  

parameter inter_conf_bits = `inter_conf_bits;   //internal  coniguration bits 

     

     

input data_in ;    //input stream 

wire data_in ; 

input rst ;       //reset 

wire rst ; 

input clk ;       //main clock 

wire clk ; 

input en_rg1 ;    //enable from the controller 

wire en_rg1 ; 

input [inter_conf_bits-1:0] sr1_config ;  // configuration bits to define the block size ONLY!! 

wire [inter_conf_bits-1:0] sr1_config ; 

 

output [size-1:0] sr1_to_rg1 ;    // parallel data block to begin sent to reg1 

reg [size-1:0] sr1_to_rg1 ;  

 

output sr1_ready ;               // indicator for output data avaliability 

reg sr1_ready; 

 

reg [size:0] temp_reg;   //total = size+1 

reg [10:0] count_in ;   //internal counter 

 

always @ (posedge clk)//or posedge rst 

begin 

 if ((rst == 1'b1) || (sr1_config == 4'b1111))   //1111 is soft reset 

  begin 

   temp_reg   = 'b0; 

   sr1_to_rg1 = 'b0; 

   sr1_ready  = 'b0; 

   count_in = 11'b000_0000_0001;     //now count-up 

 

  end 

 else  

   begin  

         if (en_rg1 == 1'b1)  

            begin 

                   if (sr1_config == 4'b0001)    //Block Size: 12 [BPSK 1 subchannel]   #######  

                        begin  

                       temp_reg[size/96:0] =  {temp_reg[(size/96)-1:0],data_in}; 

                      if (count_in != 11'b000_0000_1100)  

                                begin 

                                 count_in = count_in + 1;    

                                    sr1_ready  = 1'b0; 

                                end 

                      else 

                       begin 

                        sr1_to_rg1  = temp_reg[(size/96)-1:0]; 

                        count_in    = 11'b000_0000_0001; 

                        sr1_ready  = 1'b1; 

                       end         

                         end                          

          

                      else if (sr1_config == 4'b1001)//Block Size:384 [QPSK 16 or 16QAM 8 -subch] ####### 

                                begin  

                               temp_reg[size/3:0] =  {temp_reg[((size/3)-1):0],data_in}; 

                              if (count_in != 11'b001_1000_0000)  

                                        begin 

                                         count_in = count_in + 1;    

                                            sr1_ready  = 1'b0; 

                                        end 

                              else 

                               begin 

                                sr1_to_rg1  = temp_reg[((size/3)-1):0]; 

                                count_in    = 11'b000_0000_0001; 

                                sr1_ready  = 1'b1; 

                               end         

                                end                          

 

                      else if (sr1_config == 4'b0000)//Block Size:768 [16-QAM 16 subchannel] #######  
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                                begin  

                               temp_reg[size/1.5] =  {temp_reg[(size/1.5)-1:0],data_in}; 

                              if (count_in != 11'b011_0000_0000)  

                                        begin 

                                         count_in = count_in + 1;    

                                            sr1_ready  = 1'b0; 

                                        end 

                              else 

                               begin 

                                sr1_to_rg1  = temp_reg[(size/1.5)-1:0]; 

                                count_in    = 11'b000_0000_0001; 

                                sr1_ready  = 1'b1; 

                               end         

                                end                          

                     else if (sr1_config == 4'b1100)//Block Size:1152 [64-QAM 16subchannel] ####### 

                                begin  

                               temp_reg =  {temp_reg[size-1:0],data_in}; 

                              if (count_in != 11'b000_0000_0001)  

                                        begin 

                                         count_in = count_in + 1;    

                                            sr1_ready  = 1'b0; 

                                        end 

                              else 

                               begin 

                                sr1_to_rg1  = temp_reg[size-1:0]; 

                                count_in    = 11'b100_1000_0000; 

                                sr1_ready  = 1'b1; 

                               end         

                                end                          

             end       

           else    sr1_ready  = 1'b0; 

    end 

end         

 

endmodule 

 

 

//-------------------------------------------------------------------------------------------------- 

// 

// Title       : SRin 

// Design      : Reconfig_deinterleaver 

// Author      : Ahmed El-Rayis 

// Company     : The University of Edinburgh 

// 

//------------------------------------------------------------------------------------------------- 

// 

// Description :   Input Shift Register 

//                 counter have been changed for up count for HW reduction reason 

//------------------------------------------------------------------------------------------------- 

`timescale 1ns / 1ps 

 

//               Code        Block Size (bits) 

//       1        0001        12 

//       2        0010        24 

//       3        0011        48 

//       4        0100        72 

//       5        0101        96 

//       6        0110        144 

//       7        0111        192                    new 

//       8        1000        288 

//       9        1001        384 

//       14        1110        576 

//       0        0000        768 

//       12        1100        1152      

//       15        1111        soft_reset  

 

 

//             Code      Block Size (bits) 

//        1      0001       12 

//        2      0010       24 

//        3      0011       48 

//        4      0100       72 

//        5      0101       96          O L D 

//        6      0110       144 

//        7      0111       192 

//        8      1000       288 

//        9      1001       384 

//        10     1010       576 

//        11     1011       768 

//        12     1100       1152 

 

`define  size  1152 

`define inter_conf_bits 4 

 

module SRin ( data_in ,sr1_to_rg1 ,rst ,clk ,en_rg1 ,sr1_config ,sr1_ready ); 

 

parameter size = `size;   //max size  

parameter inter_conf_bits = `inter_conf_bits;   //internal  coniguration bits 

     

     

input data_in ;    //input stream 

wire data_in ; 

input rst ;       //reset 
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wire rst ; 

input clk ;       //main clock 

wire clk ; 

input en_rg1 ;    //enable from the controller 

wire en_rg1 ; 

input [inter_conf_bits-1:0] sr1_config ;  // configuration bits to define the block size ONLY!! 

wire [inter_conf_bits-1:0] sr1_config ; 

 

output [size-1:0] sr1_to_rg1 ;    // parallel data block to begin sent to reg1 

reg [size-1:0] sr1_to_rg1 ;  

 

output sr1_ready ;               // indicator for output data avaliability 

reg sr1_ready; 

 

reg [size:0] temp_reg;   //total = size+1 

reg [10:0] count_in ;   //internal counter 

 

always @ (posedge clk)//or posedge rst 

begin 

 if ((rst == 1'b1) || (sr1_config == 4'b1111))   //1111 is soft reset 

  begin 

   temp_reg   = 'b0; 

   sr1_to_rg1 = 'b0; 

   sr1_ready  = 'b0; 

   count_in = 11'b000_0000_0001;     //now count-up 

 

  end 

 else  

   begin  

         if (en_rg1 == 1'b1)  

            begin 

                   if (sr1_config == 4'b0001)    //Block Size: 12 [BPSK 1 subchannel]   #######  

                        begin  

                       temp_reg[size/96:0] =  {temp_reg[(size/96)-1:0],data_in}; 

                      if (count_in != 11'b000_0000_1100)  

                                begin 

                                 count_in = count_in + 1;    

                                    sr1_ready  = 1'b0; 

                                end 

                      else 

                       begin 

                        sr1_to_rg1  = temp_reg[(size/96)-1:0]; 

                        count_in    = 11'b000_0000_0001; 

                        sr1_ready  = 1'b1; 

                       end         

                         end                          

          

                      else if (sr1_config == 4'b1001)//Block Size:384 [QPSK 16 or 16QAM 8 -subch] ####### 

                                begin  

                               temp_reg[size/3:0] =  {temp_reg[((size/3)-1):0],data_in}; 

                              if (count_in != 11'b001_1000_0000)  

                                        begin 

                                         count_in = count_in + 1;    

                                            sr1_ready  = 1'b0; 

                                        end 

                              else 

                               begin 

                                sr1_to_rg1  = temp_reg[((size/3)-1):0]; 

                                count_in    = 11'b000_0000_0001; 

                                sr1_ready  = 1'b1; 

                               end         

                                end                          

 

                      else if (sr1_config == 4'b0000)//Block Size:768 [16-QAM 16 subchannel] #######  

                                begin  

                               temp_reg[size/1.5] =  {temp_reg[(size/1.5)-1:0],data_in}; 

                              if (count_in != 11'b011_0000_0000)  

                                        begin 

                                         count_in = count_in + 1;    

                                            sr1_ready  = 1'b0; 

                                        end 

                              else 

                               begin 

                                sr1_to_rg1  = temp_reg[(size/1.5)-1:0]; 

                                count_in    = 11'b000_0000_0001; 

                                sr1_ready  = 1'b1; 

                               end         

                                end                          

                     else if (sr1_config == 4'b1100)//Block Size:1152 [64-QAM 16subchannel] ####### 

                                begin  

                               temp_reg =  {temp_reg[size-1:0],data_in}; 

                              if (count_in != 11'b000_0000_0001)  

                                        begin 

                                         count_in = count_in + 1;    

                                            sr1_ready  = 1'b0; 

                                        end 

                              else 

                               begin 

                                sr1_to_rg1  = temp_reg[size-1:0]; 

                                count_in    = 11'b100_1000_0000; 

                                sr1_ready  = 1'b1; 

                               end         

                                end                          
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             end       

           else    sr1_ready  = 1'b0; 

    end 

end         

 

endmodule 

 

B.2 GF Reconfigurable Multiplier Design 

 

//-------------------------------------------------------------------------------------------------- 

// 

// Title       : GFmul_core 

// Design      : GFpmul 

// Author      : Ahmed El-Rayis 

// Company     : The University of Edinburgh 

// 

//------------------------------------------------------------------------------------------------- 

// 

// File        : d:\My_Designs\ReedSolomon\GFpmul\src\GFmul_core.v 

// 

//------------------------------------------------------------------------------------------------- 

// 

// Description : GF mul with programmable polynomial for gf(2^8) 

// 

//------------------------------------------------------------------------------------------------- 

`timescale 1ps / 1ps 

 

/* 

module GFmul_core ( a ,b ,c , p); 

 

input [7:0] a ; 

wire [7:0] a ; 

input [7:0] b ; 

wire [7:0] b ;  

input [7:0] p; 

wire [7:0] p; 

 

output [7:0] c ; 

reg [7:0] c ; 

 

reg [14:0] d;    

 

reg [7:0] g8 ; 

reg [7:0] g9 ; 

reg [7:0] g10 ; 

reg [7:0] g11 ; 

reg [7:0] g12 ; 

reg [7:0] g13 ; 

reg [7:0] g14 ; 

 

always @ (a or b or p)// g8, g9, g10, g11, g12, g13, g14           

    begin 

       //  "d" will begin used as the calculation part (multiplication) 

        d[0] = a[0]&b[0]; 

        d[1] = a[0]&b[1] ^ a[1]&b[0]; 

        d[2] = a[0]&b[2] ^ a[1]&b[1] ^ a[2]&b[0]; 

        d[3] = a[0]&b[3] ^ a[1]&b[2] ^ a[2]&b[1] ^ a[3]&b[0]; 

        d[4] = a[0]&b[4] ^ a[1]&b[3] ^ a[2]&b[2] ^ a[3]&b[1] ^ a[4]&b[0]; 

        d[5] = a[0]&b[5] ^ a[1]&b[4] ^ a[2]&b[3] ^ a[3]&b[2] ^ a[4]&b[1] ^ a[5]&b[0]; 

        d[6] = a[0]&b[6] ^ a[1]&b[5] ^ a[2]&b[4] ^ a[3]&b[3] ^ a[4]&b[2] ^ a[5]&b[1] ^ a[6]&b[0]; 

        d[7] = a[0]&b[7] ^ a[1]&b[6] ^ a[2]&b[5] ^ a[3]&b[4] ^ a[4]&b[3] ^ a[5]&b[2] ^ a[6]&b[1] ^ a[7]&b[0]; 

        d[8] =             a[1]&b[7] ^ a[2]&b[6] ^ a[3]&b[5] ^ a[4]&b[4] ^ a[5]&b[3] ^ a[6]&b[2] ^ a[7]&b[1]; 

        d[9] =                         a[2]&b[7] ^ a[3]&b[6] ^ a[4]&b[5] ^ a[5]&b[4] ^ a[6]&b[3] ^ a[7]&b[2]; 

        d[10]=                                     a[3]&b[7] ^ a[4]&b[6] ^ a[5]&b[5] ^ a[6]&b[4] ^ a[7]&b[3]; 

        d[11]=                                                 a[4]&b[7] ^ a[5]&b[6] ^ a[6]&b[5] ^ a[7]&b[4]; 

        d[12]=                                                             a[5]&b[7] ^ a[6]&b[6] ^ a[7]&b[5]; 

        d[13]=                                                                         a[6]&b[7] ^ a[7]&b[6]; 

        d[14]=                                                                                     a[7]&b[7]; 

         

        // this part is used to calculate the galois field generated by  

        // provided primitive polynomials p 

 

                g8 = p; 

        g9[0] = g8[7]&p[0]; 

        g9[1] = g8[7]&p[1] ^ g8[0]; 

        g9[2] = g8[7]&p[2] ^ g8[1]; 

        g9[3] = g8[7]&p[3] ^ g8[2]; 

        g9[4] = g8[7]&p[4] ^ g8[3]; 

        g9[5] = g8[7]&p[5] ^ g8[4]; 

        g9[6] = g8[7]&p[6] ^ g8[5]; 

        g9[7] = g8[7]&p[7] ^ g8[6]; 

       

        g10[0] = g9[7]&p[0]; 

        g10[1] = g9[7]&p[1] ^ g9[0]; 

        g10[2] = g9[7]&p[2] ^ g9[1]; 

        g10[3] = g9[7]&p[3] ^ g9[2]; 

        g10[4] = g9[7]&p[4] ^ g9[3]; 
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        g10[5] = g9[7]&p[5] ^ g9[4]; 

        g10[6] = g9[7]&p[6] ^ g9[5]; 

        g10[7] = g9[7]&p[7] ^ g9[6]; 

               

        g11[0] = g10[7]&p[0]; 

        g11[1] = g10[7]&p[1] ^ g10[0]; 

        g11[2] = g10[7]&p[2] ^ g10[1]; 

        g11[3] = g10[7]&p[3] ^ g10[2]; 

        g11[4] = g10[7]&p[4] ^ g10[3]; 

        g11[5] = g10[7]&p[5] ^ g10[4]; 

        g11[6] = g10[7]&p[6] ^ g10[5]; 

        g11[7] = g10[7]&p[7] ^ g10[6]; 

                

        g12[0] = g11[7]&p[0]; 

        g12[1] = g11[7]&p[1] ^ g11[0]; 

        g12[2] = g11[7]&p[2] ^ g11[1]; 

        g12[3] = g11[7]&p[3] ^ g11[2]; 

        g12[4] = g11[7]&p[4] ^ g11[3]; 

        g12[5] = g11[7]&p[5] ^ g11[4]; 

        g12[6] = g11[7]&p[6] ^ g11[5]; 

        g12[7] = g11[7]&p[7] ^ g11[6]; 

                

        g13[0] = g12[7]&p[0]; 

        g13[1] = g12[7]&p[1] ^ g12[0]; 

        g13[2] = g12[7]&p[2] ^ g12[1]; 

        g13[3] = g12[7]&p[3] ^ g12[2]; 

        g13[4] = g12[7]&p[4] ^ g12[3]; 

        g13[5] = g12[7]&p[5] ^ g12[4]; 

        g13[6] = g12[7]&p[6] ^ g12[5]; 

        g13[7] = g12[7]&p[7] ^ g12[6]; 

                

        g14[0] = g13[7]&p[0]; 

        g14[1] = g13[7]&p[1] ^ g13[0]; 

        g14[2] = g13[7]&p[2] ^ g13[1]; 

        g14[3] = g13[7]&p[3] ^ g13[2]; 

        g14[4] = g13[7]&p[4] ^ g13[3]; 

        g14[5] = g13[7]&p[5] ^ g13[4]; 

        g14[6] = g13[7]&p[6] ^ g13[5]; 

        g14[7] = g13[7]&p[7] ^ g13[6];   

 

 

 

         

        // this is the programable part based on the primitive polynomial  

         

        c[0] = d[0] ^ d[8]&g8[0] ^ d[9]&g9[0] ^ d[10]&g10[0] ^ d[11]&g11[0] ^ d[12]&g12[0] ^ d[13]&g13[0] ^ d[14]&g14[0]; 

        c[1] = d[1] ^ d[8]&g8[1] ^ d[9]&g9[1] ^ d[10]&g10[1] ^ d[11]&g11[1] ^ d[12]&g12[1] ^ d[13]&g13[1] ^ d[14]&g14[1]; 

        c[2] = d[2] ^ d[8]&g8[2] ^ d[9]&g9[2] ^ d[10]&g10[2] ^ d[11]&g11[2] ^ d[12]&g12[2] ^ d[13]&g13[2] ^ d[14]&g14[2]; 

        c[3] = d[3] ^ d[8]&g8[3] ^ d[9]&g9[3] ^ d[10]&g10[3] ^ d[11]&g11[3] ^ d[12]&g12[3] ^ d[13]&g13[3] ^ d[14]&g14[3]; 

        c[4] = d[4] ^ d[8]&g8[4] ^ d[9]&g9[4] ^ d[10]&g10[4] ^ d[11]&g11[4] ^ d[12]&g12[4] ^ d[13]&g13[4] ^ d[14]&g14[4]; 

        c[5] = d[5] ^ d[8]&g8[5] ^ d[9]&g9[5] ^ d[10]&g10[5] ^ d[11]&g11[5] ^ d[12]&g12[5] ^ d[13]&g13[5] ^ d[14]&g14[5]; 

        c[6] = d[6] ^ d[8]&g8[6] ^ d[9]&g9[6] ^ d[10]&g10[6] ^ d[11]&g11[6] ^ d[12]&g12[6] ^ d[13]&g13[6] ^ d[14]&g14[6]; 

        c[7] = d[7] ^ d[8]&g8[7] ^ d[9]&g9[7] ^ d[10]&g10[7] ^ d[11]&g11[7] ^ d[12]&g12[7] ^ d[13]&g13[7] ^ d[14]&g14[7]; 

         

         

         

 

    end 

endmodule 

 

*/ 

 

/* 

**************** T  E  S  T     B  E  N  C  H  ****************** 

*/ 

module test(); 

reg [7:0] a,b; 

reg [7:0] p; 

wire [7:0] c; 

 

GFmul_core toplevel  (.a(a),.b(b),.p(p),.c(c)); //gfmult (.a(a), .b(b), .c(c))    

 

initial  

begin   

                        $set_toggle_region(toplevel); 

             $toggle_start; 

 

 #10 

 p = 29; 

    a = 99; 

 b = 9; 

     

 #10  

    $display("***************************************************************** "); 

    $display("**************** T  E  S  T     B  E  N  C  H  ****************** "); 

    $display("***************************************************************** "); 

    $display("a used hex = %x, decimal = %d, binary = %b", a, a, a); 

    $display("b used hex = %x, decimal = %d, binary = %b", b, b, b); 

    $display(" "); 

  $display("Polynomial used hex = %x, decimal = %d, binary = %b", p, p, p);  

    $display("The calculated results => 92 decimal or 5c hex "); 

    $display("Results: hex = %x, decimal = %d ", c, c); // [31:24], c[23:16], c[15:8], c[7:0]);  

    $display("mult. 1 : %b or decimal : %d", c[7:0], c[7:0]); 
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    //$display("mult. 2 : %b or decimal : %d", c[15:8], c[15:8]); 

    //$display("mult. 3 : %b or decimal : %d", c[23:16], c[23:16]); 

    //$display("mult. 4 : %b or decimal : %d", c[31:24], c[31:24]);                   

    $display("***************************************************************** "); 

 #20 

      p = 29; 

      a = 255; 

 b = 238; 

  #15  

    $display("***************************************************************** "); 

    $display("a used hex = %x, decimal = %d  binary = %b", a, a, a); 

    $display("b used hex = %x, decimal = %d  binary = %b", b, b, b); 

    $display(" "); 

 $display("Polynomial used hex = %x, decimal = %d, binary = %b", p, p, p);  

    $display("The calculated results => decimal: 86 or hex: 56  "); 

    $display("Results: hex = %x, decimal = %d ", c, c);//[31:24], c[23:16], c[15:8], c[7:0]);  

    $display("mult. 1 : %b or decimal : %d", c, c); 

    //$display("mult. 2 : %b or decimal : %d", c[15:8], c[15:8]); 

    //$display("mult. 3 : %b or decimal : %d", c[23:16], c[23:16]); 

    //$display("mult. 4 : %b or decimal : %d", c[31:24], c[31:24]);                   

    $display("***************************************************************** "); 

 

      p = 29; 

      a = 255; 

 b = 212; 

  #10  

    $display("***************************************************************** "); 

    $display("a used hex = %x, decimal = %d  binary = %b", a, a, a); 

    $display("b used hex = %x, decimal = %d  binary = %b", b, b, b); 

    $display(" "); 

 $display("Polynomial used hex = %x, decimal = %d, binary = %b", p, p, p);  

    $display("The calculated results => decimal: 195 or hex: C3  "); 

    $display("Results: hex = %x, decimal = %d ", c, c);//[31:24], c[23:16], c[15:8], c[7:0]);  

    $display("mult. 1 : %b or decimal : %d", c, c); 

    //$display("mult. 2 : %b or decimal : %d", c[15:8], c[15:8]); 

    //$display("mult. 3 : %b or decimal : %d", c[23:16], c[23:16]); 

    //$display("mult. 4 : %b or decimal : %d", c[31:24], c[31:24]);                   

    $display("***************************************************************** "); 

  

 

      p = 29; 

      a = 0; 

 b = 212; 

  #10  

    $display("***************************************************************** "); 

    $display("a used hex = %x, decimal = %d  binary = %b", a, a, a); 

    $display("b used hex = %x, decimal = %d  binary = %b", b, b, b); 

    $display(" "); 

 $display("Polynomial used hex = %x, decimal = %d, binary = %b", p, p, p);  

    $display("The calculated results => decimal: 0 or hex: 00  "); 

    $display("Results: hex = %x, decimal = %d ", c, c);//[31:24], c[23:16], c[15:8], c[7:0]);  

    $display("mult. 1 : %b or decimal : %d", c, c); 

    //$display("mult. 2 : %b or decimal : %d", c[15:8], c[15:8]); 

    //$display("mult. 3 : %b or decimal : %d", c[23:16], c[23:16]); 

    //$display("mult. 4 : %b or decimal : %d", c[31:24], c[31:24]);                   

    $display("***************************************************************** "); 

  

     

    #100 

           $toggle_stop;  

      $toggle_report("gfmul_saif.out", 1.0e-9, "test.toplevel");  

 

 

 $finish; 

end 

endmodule 

 

 

 

B.3 RS ENCONDER DESIGN 

 
//-------------------------------------------------------------------------------------------------- 
// 

// Title       : rs encoder 

// Design      : GFpmul 
// Author      : Ahmed El-Rayis 

// Company     : The University of Edinburgh 

// 
//------------------------------------------------------------------------------------------------- 

// 

// File        : d:\My_Designs\ReedSolomon\GFpmul\src\GFmul_core.v 
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// 

//------------------------------------------------------------------------------------------------- 
// 

// Description : RS Encoder 

//               [GF mul with programmable polynomial for gf(2^8)] 
// 

//------------------------------------------------------------------------------------------------- 

`timescale 1ps / 1ps 
 

             /* 

 
module rs_encode(datain, enable, p, q0, q1, q2, q3, q4, q5, q6, q7,  

                 q8, q9, q10, q11, q12, q13, q14, q15, rst, clkin, gin0, gin1, gin2, gin3, gin4, gin5, gin6, gin7, gin8,  

gin9, gin10, gin11, gin12, gin13, gin14, gin15); 
 

//input:       

input clkin; 
input enable; 

input rst; 

input [7:0] datain;                            
input [7:0] gin0, gin1, gin2, gin3, gin4, gin5, gin6, gin7, gin8, gin9, gin10,  

gin11, gin12, gin13, gin14, gin15; 

input [7:0] p; // primitive polynomial 
 

/////////////////// 

wire [7:0] m3, m4, m5, m6, m7, m8, m9, m10, m11, m12, m13, m14, m15; 
wire [7:0] m2; 

wire [7:0] m1; 
wire [7:0] m0; 

wire [7:0] z0; 

wire [7:0] z1; 
wire [7:0] z2; 

wire [7:0] z3, z4, z5, z6, z7, z8, z9, z10, z11, z12, z13, z14, z15; 

wire [7:0] bb, fback; 
wire clk; 

 

//output: 
output [7:0] q0; 

output [7:0] q1; 

output [7:0] q2; 
output [7:0] q3; 

output [7:0] q4, q5, q6, q7, q8, q9, q10, q11, q12, q13, q14, q15; 

 
assign clk = clkin & enable; 

 

//////////////////////////////////////////////////////////// 
 

FF b0(z0, q0, rst, clk); 

FF b1(z1, q1, rst, clk); 
FF b2(z2, q2, rst, clk); 

FF b3(z3, q3, rst, clk); 

 
FF b4(z4, q4, rst, clk); 

FF b5(z5, q5, rst, clk); 

FF b6(z6, q6, rst, clk); 
FF b7(z7, q7, rst, clk); 

 

FF b8(z8, q8, rst, clk); 
FF b9(z9, q9, rst, clk); 

FF b10(z10, q10, rst, clk); 

FF b11(z11, q11, rst, clk); 
 

FF b12(z12, q12, rst, clk); 

FF b13(z13, q13, rst, clk); 
FF b14(z14, q14, rst, clk); 

FF b15(z15, q15, rst, clk); 

 
assign bb = 8'b00000000; 

assign z0 = m0; //GFADD a0(bb, m0, z0);  

GFADD a1(q0, m1, z1); 
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GFADD a2(q1, m2, z2); 

GFADD a3(q2, m3, z3); 
GFADD a4(q3, m4, z4); 

GFADD a5(q4, m5, z5); 

GFADD a6(q5, m6, z6); 
GFADD a7(q6, m7, z7); 

GFADD a8(q7, m8, z8); 

GFADD a9(q8, m9, z9); 
GFADD a10(q9, m10, z10); 

GFADD a11(q10, m11, z11); 

GFADD a12(q11, m12, z12); 
GFADD a13(q12, m13, z13); 

GFADD a14(q13, m14, z14); 

GFADD a15(q14, m15, z15); 
 

 

assign fback = q15 ^ datain; 
 

GFmul_core u0 (fback, gin0, m0, p); 

GFmul_core u1 (fback, gin1, m1, p); 
GFmul_core u2 (fback, gin2, m2, p); 

GFmul_core u3 (fback, gin3, m3, p); 

 
GFmul_core u4 (fback, gin4, m4, p); 

GFmul_core u5 (fback, gin5, m5, p); 

GFmul_core u6 (fback, gin6, m6, p); 
GFmul_core u7 (fback, gin7, m7, p); 

 
GFmul_core u8 (fback, gin8, m8, p); 

GFmul_core u9 (fback, gin9, m9, p); 

GFmul_core u10(fback, gin10, m10, p); 
GFmul_core u11(fback, gin11, m11, p); 

 

GFmul_core u12(fback, gin12, m12, p); 
GFmul_core u13(fback, gin13, m13, p); 

GFmul_core u14(fback, gin14, m14, p); 

GFmul_core u15(fback, gin15, m15, p); 
 

endmodule 

 
 

module GFADD(in1, in2, out); 

  input [7:0] in1; 
  input [7:0] in2; 

  output [7:0] out; 

  assign out = in1^in2; 
endmodule 

 

 
module FF(d, q, rst, clk); 

  input [7:0] d; 

  input  clk; 
  output  [7:0] q; 

  reg [7:0] out; 

  input rst; 
  always @(posedge clk or rst) 

     if(rst) out <= 8'b00000000; else 

     begin 
      out <= #1 d; 

     end 

     assign q = out; 
endmodule 

 

 
 

/////////////////////////programmable mul/////////////////////////////////// 

 
module GFmul_core ( a ,b ,c , p); 

 

input [7:0] a ; 
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wire [7:0] a ; 

input [7:0] b ; 
wire [7:0] b ;  

input [7:0] p; 

wire [7:0] p; 
 

output [7:0] c ; 

reg [7:0] c ; 
 

reg [14:0] d;    

 
reg [7:0] g8 ; 

reg [7:0] g9 ; 

reg [7:0] g10 ; 
reg [7:0] g11 ; 

reg [7:0] g12 ; 

reg [7:0] g13 ; 
reg [7:0] g14 ; 

 

always @ (a or b or p)// g8, g9, g10, g11, g12, g13, g14           
    begin 

       //  "d" will begin used as the calculation part (multiplication) 

        d[0] = a[0]&b[0]; 
        d[1] = a[0]&b[1] ^ a[1]&b[0]; 

        d[2] = a[0]&b[2] ^ a[1]&b[1] ^ a[2]&b[0]; 

        d[3] = a[0]&b[3] ^ a[1]&b[2] ^ a[2]&b[1] ^ a[3]&b[0]; 
        d[4] = a[0]&b[4] ^ a[1]&b[3] ^ a[2]&b[2] ^ a[3]&b[1] ^ a[4]&b[0]; 

        d[5] = a[0]&b[5] ^ a[1]&b[4] ^ a[2]&b[3] ^ a[3]&b[2] ^ a[4]&b[1] ^ a[5]&b[0]; 
        d[6] = a[0]&b[6] ^ a[1]&b[5] ^ a[2]&b[4] ^ a[3]&b[3] ^ a[4]&b[2] ^ a[5]&b[1] ^ a[6]&b[0]; 

        d[7] = a[0]&b[7] ^ a[1]&b[6] ^ a[2]&b[5] ^ a[3]&b[4] ^ a[4]&b[3] ^ a[5]&b[2] ^ a[6]&b[1] ^ a[7]&b[0]; 

        d[8] =             a[1]&b[7] ^ a[2]&b[6] ^ a[3]&b[5] ^ a[4]&b[4] ^ a[5]&b[3] ^ a[6]&b[2] ^ a[7]&b[1]; 
        d[9] =                         a[2]&b[7] ^ a[3]&b[6] ^ a[4]&b[5] ^ a[5]&b[4] ^ a[6]&b[3] ^ a[7]&b[2]; 

        d[10]=                                     a[3]&b[7] ^ a[4]&b[6] ^ a[5]&b[5] ^ a[6]&b[4] ^ a[7]&b[3]; 

        d[11]=                                                 a[4]&b[7] ^ a[5]&b[6] ^ a[6]&b[5] ^ a[7]&b[4]; 
        d[12]=                                                             a[5]&b[7] ^ a[6]&b[6] ^ a[7]&b[5]; 

        d[13]=                                                                         a[6]&b[7] ^ a[7]&b[6]; 

        d[14]=                                                                                     a[7]&b[7]; 
         

        // this part is used to calculate the galois field generated by  

        // provided primitive polynomials p 
 

                g8 = p; 

        g9[0] = g8[7]&p[0]; 
        g9[1] = g8[7]&p[1] ^ g8[0]; 

        g9[2] = g8[7]&p[2] ^ g8[1]; 

        g9[3] = g8[7]&p[3] ^ g8[2]; 
        g9[4] = g8[7]&p[4] ^ g8[3]; 

        g9[5] = g8[7]&p[5] ^ g8[4]; 

        g9[6] = g8[7]&p[6] ^ g8[5]; 
        g9[7] = g8[7]&p[7] ^ g8[6]; 

       

        g10[0] = g9[7]&p[0]; 
        g10[1] = g9[7]&p[1] ^ g9[0]; 

        g10[2] = g9[7]&p[2] ^ g9[1]; 

        g10[3] = g9[7]&p[3] ^ g9[2]; 
        g10[4] = g9[7]&p[4] ^ g9[3]; 

        g10[5] = g9[7]&p[5] ^ g9[4]; 

        g10[6] = g9[7]&p[6] ^ g9[5]; 
        g10[7] = g9[7]&p[7] ^ g9[6]; 

               

        g11[0] = g10[7]&p[0]; 
        g11[1] = g10[7]&p[1] ^ g10[0]; 

        g11[2] = g10[7]&p[2] ^ g10[1]; 

        g11[3] = g10[7]&p[3] ^ g10[2]; 
        g11[4] = g10[7]&p[4] ^ g10[3]; 

        g11[5] = g10[7]&p[5] ^ g10[4]; 

        g11[6] = g10[7]&p[6] ^ g10[5]; 
        g11[7] = g10[7]&p[7] ^ g10[6]; 

                

        g12[0] = g11[7]&p[0]; 
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        g12[1] = g11[7]&p[1] ^ g11[0]; 

        g12[2] = g11[7]&p[2] ^ g11[1]; 
        g12[3] = g11[7]&p[3] ^ g11[2]; 

        g12[4] = g11[7]&p[4] ^ g11[3]; 

        g12[5] = g11[7]&p[5] ^ g11[4]; 
        g12[6] = g11[7]&p[6] ^ g11[5]; 

        g12[7] = g11[7]&p[7] ^ g11[6]; 

                
        g13[0] = g12[7]&p[0]; 

        g13[1] = g12[7]&p[1] ^ g12[0]; 

        g13[2] = g12[7]&p[2] ^ g12[1]; 
        g13[3] = g12[7]&p[3] ^ g12[2]; 

        g13[4] = g12[7]&p[4] ^ g12[3]; 

        g13[5] = g12[7]&p[5] ^ g12[4]; 
        g13[6] = g12[7]&p[6] ^ g12[5]; 

        g13[7] = g12[7]&p[7] ^ g12[6]; 

                
        g14[0] = g13[7]&p[0]; 

        g14[1] = g13[7]&p[1] ^ g13[0]; 

        g14[2] = g13[7]&p[2] ^ g13[1]; 
        g14[3] = g13[7]&p[3] ^ g13[2]; 

        g14[4] = g13[7]&p[4] ^ g13[3]; 

        g14[5] = g13[7]&p[5] ^ g13[4]; 
        g14[6] = g13[7]&p[6] ^ g13[5]; 

        g14[7] = g13[7]&p[7] ^ g13[6];   

         
        // this is the programable part based on the primitive polynomial  

         
        c[0] = d[0] ^ d[8]&g8[0] ^ d[9]&g9[0] ^ d[10]&g10[0] ^ d[11]&g11[0] ^ d[12]&g12[0] ^ d[13]&g13[0] ^ 

d[14]&g14[0]; 

        c[1] = d[1] ^ d[8]&g8[1] ^ d[9]&g9[1] ^ d[10]&g10[1] ^ d[11]&g11[1] ^ d[12]&g12[1] ^ d[13]&g13[1] ^ 
d[14]&g14[1]; 

        c[2] = d[2] ^ d[8]&g8[2] ^ d[9]&g9[2] ^ d[10]&g10[2] ^ d[11]&g11[2] ^ d[12]&g12[2] ^ d[13]&g13[2] ^ 

d[14]&g14[2]; 
        c[3] = d[3] ^ d[8]&g8[3] ^ d[9]&g9[3] ^ d[10]&g10[3] ^ d[11]&g11[3] ^ d[12]&g12[3] ^ d[13]&g13[3] ^ 

d[14]&g14[3]; 

        c[4] = d[4] ^ d[8]&g8[4] ^ d[9]&g9[4] ^ d[10]&g10[4] ^ d[11]&g11[4] ^ d[12]&g12[4] ^ d[13]&g13[4] ^ 
d[14]&g14[4]; 

        c[5] = d[5] ^ d[8]&g8[5] ^ d[9]&g9[5] ^ d[10]&g10[5] ^ d[11]&g11[5] ^ d[12]&g12[5] ^ d[13]&g13[5] ^ 

d[14]&g14[5]; 
        c[6] = d[6] ^ d[8]&g8[6] ^ d[9]&g9[6] ^ d[10]&g10[6] ^ d[11]&g11[6] ^ d[12]&g12[6] ^ d[13]&g13[6] ^ 

d[14]&g14[6]; 

        c[7] = d[7] ^ d[8]&g8[7] ^ d[9]&g9[7] ^ d[10]&g10[7] ^ d[11]&g11[7] ^ d[12]&g12[7] ^ d[13]&g13[7] ^ 
d[14]&g14[7]; 

         

         
         

 

    end 
endmodule 

 

 
 

 

 
 

 

   */ 
 

/* 

**************** T  E  S  T     B  E  N  C  H  ****************** 
*/ 

 

 
module test(); 

 

 
reg       [7:0] inputdata [0:238]; //767 

reg       [7:0] out_expected[0:15];  //767 

reg       clk; 
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reg       rst; 

 
wire [7:0] q0; 

wire [7:0] q1; 

wire [7:0] q2; 
wire [7:0] q3; 

wire [7:0] q4, q5, q6, q7, q8, q9, q10, q11, q12, q13, q14, q15; 

 
 

parameter period = 2;      // Set clock period 10nsto 100MHz  2ns  500MHz 

parameter delay  =  100; 
parameter width =   16; 

parameter tap    =  73; 

parameter length  = 1000;       //16 short 16000 long 
 

 

reg clkin; 
reg enable; 

//reg rst; 

reg [7:0] datain; 
reg [7:0] p; // primitive polynomial 

reg [7:0] data_out [0:15]; 

reg [7:0] gin0, gin1, gin2, gin3, gin4, gin5, gin6, gin7, gin8,  
gin9, gin10, gin11, gin12, gin13, gin14, gin15; 

 

integer  i ,j ,f1; 
 

 
 

rs_encode toplevel ( .datain(datain),  

                     .enable(enable),  
                     .p(p),  

                     .q0(q0), .q1(q1), .q2(q2), .q3(q3), .q4(q4), .q5(q5), .q6(q6), .q7(q7),  

                     .q8(q8), .q9(q9), .q10(q10), .q11(q11), .q12(q12), .q13(q13), .q14(q14), .q15(q15),  
                     .rst(rst),  

                     .clkin(clkin), .gin0(gin0), .gin1(gin1), .gin2(gin2), .gin3(gin3), .gin4(gin4), .gin5(gin5), 

                     .gin6(gin6), .gin7(gin7), .gin8(gin8), .gin9(gin9), .gin10(gin10), .gin11(gin11), .gin12(gin12),  
                     .gin13(gin13), .gin14(gin14), .gin15(gin15)); 

 

 
   initial 

      fork 

         clkin <= 0; 
         forever #(period/2) clkin = !clkin;        // creates clock of period "period" 

      join 

        //   always @(posedge clk) 
   initial 

      begin 

         $readmemb("rs_encoder_input_239.dat", inputdata); //deinterleaver_BPSK1_12ch.dat 
         $readmemb("rs_encoder_output_16_calc.dat", out_expected); 

         f1 = $fopen("rs_encoder_output_16_real.dat"); 

        $display(" ***************** R S  E n c o d e r with G F M U L - S i n g l e *********"); 
     end   

 

initial  
begin    

       $set_toggle_region(toplevel); 

       $toggle_start; 
 

     #10 

     p = 29;     
        gin0 = 'd79 ;  

        gin1 = 'd44 ;  

        gin2 = 'd81 ;  
        gin3 = 'd100;  

        gin4 = 'd49 ;  

        gin5 = 'd183;  
        gin6 = 'd56 ;  

        gin7 = 'd17 ;  

        gin8 = 'd232;  
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        gin9 = 'd187;  

        gin10= 'd126;  
        gin11= 'd104;  

        gin12= 'd31 ;  

        gin13= 'd103;  
        gin14= 'd52 ;  

        gin15= 'd118;       

     i = 'b0;  
     j = 'b0;  

     

          //datain = 99; 
      enable = 0;            

       

       
 ////////////////////////////////adjust => 

 

      #10 
      #10                       rst = 1'b0; i = 0; j = 0;   

   #50                       enable = 1'b1; 

      #(delay)                  rst = 1'b1; 
      #(period)                 rst = 1'b0; 

      #10                       // config_bits = 5'b00101;//12//0_1001;//         384 QPSK 16  

      #(period)                 // en = 1'b1;              //0_0001            12  BPSK  1 
     // assign datain = {inputdata[j]};  //:j+1];     //by me   

 

                                    //assign data_in = inputdata[ 
   #600 

//      #(period*tap*length) 
//   #(period) enable=1'b0; 

   #(period) rst=1'b1; 

//   #(period)              
                 $toggle_stop;  

      $toggle_report("rsenc_saif.out", 1.0e-9, "test.toplevel");  

 
       $finish; 

 

    end // initial begin 
 

/* 

initial 
      begin 

         $dumpfile("simulation.rtl.vcd"); 

         $dumpvars; 
      end 

*/ 

 
 

 

   always @(posedge clkin) 
      begin 

         if ((rst == 1'b0) && (enable == 1'b1)) 

    begin 
                if (j <239)   

                    begin 

                        datain = {inputdata[j]};      
                        $display("inputdata[%d] = %d",j, inputdata[j]); 

                    end 

                if ((j == 239))  
                    begin 

                 //  i <= i+1;   //for output data 

                 
                $display("***************************************************************** "); 

                $display("**************** T  E  S  T     B  E  N  C  H  ****************** "); 

                $display("***************************************************************** "); 
                   data_out [15] = q15; 

                   data_out [14] = q14; 

                   data_out [13] = q13; 
                   data_out [12] = q12; 

                   data_out [11] = q11; 

                   data_out [10] = q10; 
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                   data_out [ 9] = q9; 

                   data_out [ 8] = q8; 
                   data_out [ 7] = q7; 

                   data_out [ 6] = q6; 

                   data_out [ 5] = q5; 
                   data_out [ 4] = q4; 

                   data_out [ 3] = q3; 

                   data_out [ 2] = q2; 
                   data_out [ 1] = q1; 

                   data_out [ 0] = q0;  

                 end       
                 if ((i < 'd16) && (j >= 'd239))  

                    begin 

                        if ((data_out[i] == out_expected[i])) 
                           begin 

                             $fwrite(f1, "%b   %b  PASS\n", data_out[i], out_expected[i]); 

                             $display("Ahmed      %d-%d : %d      O: %b      Exp: %b    PASS   OK\n", i,j, $time, data_out[i], 
out_expected[i]); 

                           end 

                        else 
                           begin 

                             $fwrite(f1, "%b   %b  FAIL\n", data_out[i], out_expected[i]); 

                             $display("failure    %d-%d : %d      O: %b      Exp: %b    FAIL   X x\n", i,j, $time, data_out[i], 
out_expected[i]); 

                           end 

                        i <= i+1;   //for output data 
                     end        

                j <=  j + 1; //for input data 
 

           end 

  
 end    

 

endmodule 
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