285 research outputs found

    Dynamic Multigrain Parallelization on the Cell Broadband Engine

    Get PDF
    This paper addresses the problem of orchestrating and scheduling parallelism at multiple levels of granularity on heterogeneous multicore processors. We present policies and mechanisms for adaptive exploitation and scheduling of multiple layers of parallelism on the Cell Broadband Engine. Our policies combine event-driven task scheduling with malleable loop-level parallelism, which is exposed from the runtime system whenever task-level parallelism leaves cores idle. We present a runtime system for scheduling applications with layered parallelism on Cell and investigate its potential with RAxML, a computational biology application which infers large phylogenetic trees, using the Maximum Likelihood (ML) method. Our experiments show that the Cell benefits significantly from dynamic parallelization methods, that selectively exploit the layers of parallelism in the system, in response to workload characteristics. Our runtime environment outperforms naive parallelization and scheduling based on MPI and Linux by up to a factor of 2.6. We are able to execute RAxML on one Cell four times faster than on a dual-processor system with Hyperthreaded Xeon processors, and 5--10\% faster than on a single-processor system with a dual-core, quad-thread IBM Power5 processor

    RELEASE: A High-level Paradigm for Reliable Large-scale Server Software

    Get PDF
    Erlang is a functional language with a much-emulated model for building reliable distributed systems. This paper outlines the RELEASE project, and describes the progress in the first six months. The project aim is to scale the Erlang’s radical concurrency-oriented programming paradigm to build reliable general-purpose software, such as server-based systems, on massively parallel machines. Currently Erlang has inherently scalable computation and reliability models, but in practice scalability is constrained by aspects of the language and virtual machine. We are working at three levels to address these challenges: evolving the Erlang virtual machine so that it can work effectively on large scale multicore systems; evolving the language to Scalable Distributed (SD) Erlang; developing a scalable Erlang infrastructure to integrate multiple, heterogeneous clusters. We are also developing state of the art tools that allow programmers to understand the behaviour of massively parallel SD Erlang programs. We will demonstrate the effectiveness of the RELEASE approach using demonstrators and two large case studies on a Blue Gene

    ACOTES project: Advanced compiler technologies for embedded streaming

    Get PDF
    Streaming applications are built of data-driven, computational components, consuming and producing unbounded data streams. Streaming oriented systems have become dominant in a wide range of domains, including embedded applications and DSPs. However, programming efficiently for streaming architectures is a challenging task, having to carefully partition the computation and map it to processes in a way that best matches the underlying streaming architecture, taking into account the distributed resources (memory, processing, real-time requirements) and communication overheads (processing and delay). These challenges have led to a number of suggested solutions, whose goal is to improve the programmer’s productivity in developing applications that process massive streams of data on programmable, parallel embedded architectures. StreamIt is one such example. Another more recent approach is that developed by the ACOTES project (Advanced Compiler Technologies for Embedded Streaming). The ACOTES approach for streaming applications consists of compiler-assisted mapping of streaming tasks to highly parallel systems in order to maximize cost-effectiveness, both in terms of energy and in terms of design effort. The analysis and transformation techniques automate large parts of the partitioning and mapping process, based on the properties of the application domain, on the quantitative information about the target systems, and on programmer directives. This paper presents the outcomes of the ACOTES project, a 3-year collaborative work of industrial (NXP, ST, IBM, Silicon Hive, NOKIA) and academic (UPC, INRIA, MINES ParisTech) partners, and advocates the use of Advanced Compiler Technologies that we developed to support Embedded Streaming.Peer ReviewedPostprint (published version

    Effective data parallel computing on multicore processors

    Get PDF
    The rise of chip multiprocessing or the integration of multiple general purpose processing cores on a single chip (multicores), has impacted all computing platforms including high performance, servers, desktops, mobile, and embedded processors. Programmers can no longer expect continued increases in software performance without developing parallel, memory hierarchy friendly software that can effectively exploit the chip level multiprocessing paradigm of multicores. The goal of this dissertation is to demonstrate a design process for data parallel problems that starts with a sequential algorithm and ends with a high performance implementation on a multicore platform. Our design process combines theoretical algorithm analysis with practical optimization techniques. Our target multicores are quad-core processors from Intel and the eight-SPE IBM Cell B.E. Target applications include Matrix Multiplications (MM), Finite Difference Time Domain (FDTD), LU Decomposition (LUD), and Power Flow Solver based on Gauss-Seidel (PFS-GS) algorithms. These applications are popular computation methods in science and engineering problems and are characterized by unit-stride (MM, LUD, and PFS-GS) or 2-point stencil (FDTD) memory access pattern. The main contributions of this dissertation include a cache- and space-efficient algorithm model, integrated data pre-fetching and caching strategies, and in-core optimization techniques. Our multicore efficient implementations of the above described applications outperform nai¨ve parallel implementations by at least 2x and scales well with problem size and with the number of processing cores

    OS paradigms adaptation to fit new architectures

    Get PDF
    Future architectures and computer systems will be heterogeneous multi-core models, which will improve their performance, resource utilization and energy consumption. Differences between cores mean different binary formats and specific concerns when dealing with applications. The OS also needs to manage the appropriate information to schedule resources to achieve the optimal performance. In this paper we present a first approach in Linux to allow the application to give information to the OS in order to perform the best resource scheduling for the code characteristics (where it has to run). Based on the continuation model of the Mach microkernel and the device drivers of Unix-Linux system, the kernel can continue the execution flow from one core to another (i.e. from PPE to SPE in the Cell BE case). In this way, the OS can anticipate costly actions (for example, loading code or data) or reserve resources depending on task needs. To reach our target, we adapt the operating system as well as modify the application binary to divide its code parts depending on their characteristics and where they have to run. Experimental work has been done for x86 with MMX extension ISA as well as for PPC and Cell BE.Peer ReviewedPostprint (published version

    RELEASE: A High-level Paradigm for Reliable Large-scale Server Software

    Get PDF
    Erlang is a functional language with a much-emulated model for building reliable distributed systems. This paper outlines the RELEASE project, and describes the progress in the rst six months. The project aim is to scale the Erlang's radical concurrency-oriented programming paradigm to build reliable general-purpose software, such as server-based systems, on massively parallel machines. Currently Erlang has inherently scalable computation and reliability models, but in practice scalability is constrained by aspects of the language and virtual machine. We are working at three levels to address these challenges: evolving the Erlang virtual machine so that it can work effectively on large scale multicore systems; evolving the language to Scalable Distributed (SD) Erlang; developing a scalable Erlang infrastructure to integrate multiple, heterogeneous clusters. We are also developing state of the art tools that allow programmers to understand the behaviour of massively parallel SD Erlang programs. We will demonstrate the e ectiveness of the RELEASE approach using demonstrators and two large case studies on a Blue Gene

    CellSs : Scheduling techniques to better exploit memory hierarchy

    Get PDF
    ABSTRACT: Cell Superscalar’s (CellSs) main goal is to provide a simple, flexible and easy programming approach for the Cell Broadband Engine (Cell/B.E.) that automatically exploits the inherent concurrency of the applications at a task level. The CellSs environment is based on a source-to-source compiler that translates annotated C or Fortran code and a runtime library tailored for the Cell/B.E. that takes care of the concurrent execution of the application. The first efforts for task scheduling in CellSs derived from very simple heuristics. This paper presents new scheduling techniques that have been developed for CellSs for the purpose of improving an application’s performance. Additionally, the design of a new scheduling algorithm is detailed and the algorithm evaluated. The CellSs scheduler takes an extension of the memory hierarchy for Cell/B.E. into account, with a cache memory shared between the SPEs. All new scheduling practices have been evaluated showing better behavior of our system

    Applications on emerging paradigms in parallel computing

    Get PDF
    The area of computing is seeing parallelism increasingly being incorporated at various levels: from the lowest levels of vector processing units following Single Instruction Multiple Data (SIMD) processing, Simultaneous Multi-threading (SMT) architectures, and multi/many-cores with thread-level shared memory and SIMT parallelism, to the higher levels of distributed memory parallelism as in supercomputers and clusters, and scaling them to large distributed systems as server farms and clouds. All together these form a large hierarchy of parallelism. Developing high-performance parallel algorithms and efficient software tools, which make use of the available parallelism, is inevitable in order to harness the raw computational power these emerging systems have to offer. In the work presented in this thesis, we develop architecture-aware parallel techniques on such emerging paradigms in parallel computing, specifically, parallelism offered by the emerging multi- and many-core architectures, as well as the emerging area of cloud computing, to target large scientific applications. First, we develop efficient parallel algorithms to compute optimal pairwise alignments of genomic sequences on heterogeneous multi-core processors, and demonstrate them on the IBM Cell Broadband Engine. Then, we develop parallel techniques for scheduling all-pairs computations on heterogeneous systems, including clusters of Cell processors, and NVIDIA graphics processors. We compare the performance of our strategies on Cell, GPU and Intel Nehalem multi-core processors. Further, we apply our algorithms to specific applications taken from the areas of systems biology, fluid dynamics and materials science: pairwise Mutual Information computations for reconstruction of gene regulatory networks; pairwise Lp-norm distance computations for coherent structures discovery in the design of flapping-wing Micro Air Vehicles, and construction of stochastic models for a set of properties of heterogeneous materials. Lastly, in the area of cloud computing, we propose and develop an abstract framework to enable computations in parallel on large tree structures, to facilitate easy development of a class of scientific applications based on trees. Our framework, in the style of Google\u27s MapReduce paradigm, is based on two generic user-defined functions through which a user writes an application. We implement our framework as a generic programming library for a large cluster of homogeneous multi-core processor, and demonstrate its applicability through two applications: all-k-nearest neighbors computations, and Fast Multipole Method (FMM) based simulations
    • …
    corecore