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ABSTRACT 

Future architectures and computer systems will be 

heterogeneous multi-core models, which will improve their 

performance, resource utilization and energy consumption. 

Differences between cores mean different binary formats 

and specific concerns when dealing with applications. The 

OS also needs to manage the appropriate information to 

schedule resources to achieve the optimal performance. 

In this paper we present a first approach in Linux to allow 

the application to give information to the OS in order to 

perform the best resource scheduling for the code 

characteristics (where it has to run). Based on the 

continuation model of the Mach microkernel and the device 

drivers of Unix-Linux system, the kernel can continue the 

execution flow from one core to another (i.e. from PPE to 

SPE in the Cell BE case). In this way, the OS can 

anticipate costly actions (for example, loading code or 

data) or reserve resources depending on task needs. 

To reach our target, we adapt the operating system as well 

as modify the application binary to divide its code parts 

depending on their characteristics and where they have to 

run. 

Experimental work has been done for x86 with MMX 

extension ISA as well as for PPC and Cell BE. 
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1. INTRODUCTION 
Current technology trends move to new processors with 

specialized cores, like Cell BE [6] or the Intel Exoskeleton 

[11] with specific processor elements such as those which 

are GPU-based [7], or other accelerator elements, including 

DSP and FPGA units. In this scenario, programs must be 

redesigned in order to fully exploit this heterogeneity and 

improve their performance.  

In this way, they can be built from components that work 

better in specific engines in a more energy-saving way. 

These specific cores are also suitable to execute specific 

parts of a program to improve its overall throughput. 

From this preliminary point, some aspects must be analyzed 

and modified. In a first stage, programming and compiling 

parallel applications should be heterogeneity-aware, 

deciding and building the appropriate executing stream. 

Then, a specific management task must be done by the 

linker and the loader to compose and load the final 

executable binary, interpreting its new information and 

performing the appropriate actions. Finally, the operating 

system must manage, at runtime, the physical resources. 

To take advantage of these specialized units, the OS must 

be able to schedule the code parts onto the most appropriate 

unit depending on the code requirements as well as the 

available execution units [5]. In this work, programmers 

can help the OS to manage the system resources more 

efficiently by giving some hints about the application 

behaviour. For example, if the programmer knows that a 

function or a loop has special characteristics, he can mark 

the code properly. That is why it is necessary to add some 

additional information in the executables and make the 

operating system able to manage and understand the given 

information. 

Some requirements to achieve this OS improvement are: 

 Having the application code portions in the binary (or 

bit stream map) corresponding to the platform where it 

has to run. 

 Having a “fat binary” executable file containing the 

different binary parts of code [11]. 

 Allowing threads to run sequentially cross-ISA (i.e. 

from one unit to one of a different type) [9]. 

 Providing the OS with the requisite information to 

schedule a thread in the appropriate engine (depending 

on the ISA, processor affinity or system load). 



The main contributions included in this paper are: 

 An extensible runtime fully compatible with both 

current and new architectures. 

 A new loader to manage new binary format. 

 New OS objects to hold application heterogeneity 

information. 

The rest of the document is organised in the following way: 

in the next section, we describe the environment and 

introduce a brief idea of our target. In the third section we 

explain the modifications at application level as well as the 

API implemented to make the interaction between the user 

and operating system level easier. In section four we 

present the OS adaptations to be able to manage, store and 

use the new information. In section five we discuss our 

results and in section six, about the conclusions and future 

work. Finally, in section seven we give the references where 

readers can find more information related to our work. 

2. OUR APPROACH 
As mentioned above, hardware performance can be limited 

by its software resource management. So as hardware 

evolves, software has to evolve too, and vice versa. We 

thought that adapting the executable format to distribute 

application execution into different processor units would 

be an exciting chance to improve system performance. 

Our proposal is to include additional information into the 

binary file so that the operating system can understand it 

and manage system resources as efficiently as possible [8]. 

We looked for a simple and portable format through 

different architectures. We considered that the best option 

would be to modify the ELF format [10] to make the 

transformation of the conventional ELF files easier. 

We call our new extension Heterogeneous ELF (HELF) and 

we use the ELF sections to store the information that the 

operating system needs. HELF extension philosophy is 

based on the idea of embedding different binaries compiled 

for different ISAs in a single binary file.  

The CESOF
1
 extension used for Cell BE programs also 

allows different-ISA binary in a single ELF-format file. 

CESOF embeds compiled code for both the PPE and SPE 

in a single file. It uses several ELF sections to include the 

embedded SPE executable image with additional PPE 

symbol information.  

The two main differences between HELF and CESOF are: 

                                                                 

1
 More information related to CESOF (such as diagrams or 

code examples) can be found in [2]. 

 The type of the new sections created for each piece of 

code compiled for a different ISA: CESOF creates 

read-only data sections and we create text sections
2
. 

 CESOF is focused on Cell BE; we want HELF to be 

adaptable to as many heterogeneous platforms as 

possible. 

Programming models using the ELF format for 

heterogeneous multi-core are: 

 The Cell Superscalar (CellSs) [1]: provides a simple, 

flexible programming model that can take advantage 

of the performance benefits from the Cell. CellSs is 

built from two principal components: the CellSs 

compiler and a runtime library. The compiler is a 

source-to-source translator that takes in an annotated 

C source file and produces a pair of source files, one 

for each Cell processor type (PPU and SPU). The 

runtime constructs a data dependency graph to 

schedule independent annotated functions to execute 

on different SPUs in parallel. CellSs uses CESOF.  

 The EXO-CHI for the Intel Exoskeleton [11]: uses 

accelerator elements in a heterogeneous multi-

threaded execution model and provides the tools 

needed to exploit the system performance and reduce 

power consumption. 

The loader must be able to identify HELF files and classify 

the different parts of code depending on the information 

added by the programmer or, automatically, by the compiler 

to the ELF sections. In this way, the operating system will 

schedule them in the appropriate processor.  

To achieve this, we have to consider three aspects: 

1. How to adapt binary code in order to split it into 

different chunks of execution code
3
. 

2. How to modify the Linux loader in order to 

understand and load heterogeneous binaries. 

3. Which new data structures have to be added to the 

kernel to store the new information needed. 

For the moment, we are not focusing on data sharing, so 

some changes might be necessary to adapt our proposal to 

non shared-memory architectures. 

When a code has to continue its execution in a specific 

core, for reasons such as being compiled for a special ISA 

or to obtain better performance in an accelerator, the only 

information that has to be provided is where it continues (an 

                                                                 

2
 For now, we are just considering self-contained functions, 

so that we do not concern about data. 
3
 This is a programming and compiler concern, so we will 

not explain the details of this adaptation in this document. 



address) and which input data it needs (the parameters). 

This is the same as what the explicit continuation model 

does [3]. 

We have implemented new library calls to specify the entry 

point and the unit identifier. Based on this information, the 

system is able to get the required data and prepare the 

loading and running environment in the new unit. 

In the next sections we explain the application and the 

operating system adaptation to allow that.  

3. THE APPLICATION SIDE 
In this section we present our proposal at the application 

level. In particular, we explain the way to modify the source 

code of an application in order to reflect its heterogeneity, 

and the way its characteristics are reflected in the binary. 

We also show an example application to compare the 

original and the adapted version. 

From the application point of view, we need to adapt binary 

files to mark the different code personalities. 

The point of HELF executables is that the code has been 

classified according to its characteristics. The method we 

use to differentiate between these divisions is to create one 

section for each different piece of code, so that code and 

data inside a section are homogeneous and with a specific 

engine profile
4
. 

In this way, the operating system will detect these new 

sections and take the appropriate actions to exploit the 

heterogeneity of the hardware resources and so improve the 

application performance. 

The execution flow of a HELF file is the same as that of the 

ELF, until the magic number is checked. At this point, 

because we have provided a new magic number for our 

files, if the file is a HELF executable, our loader is called 

instead of the ELF version. 

In the next subsections we explain the different steps that an 

application follows from its source code until it is executed. 

Also, we introduce the user library we have implemented in 

order to take advantage of the new OS capabilities we have 

added. 

3.1 Source code 
It could be very useful for programmers to use some kind of 

library or compiler directive in order to decide exactly 

which chunks of source code they want to divide and where 

they want to execute each section (for example, specifying 

the kind of engine if it is possible). One possibility is the 

use of #pragma [1] and [4]. 

                                                                 

4
 Although it is also possible to have FPGA byte stream 

sections. 

We will use as an example a matrix multiplication 

implemented for the Cell BE. The structure of the original 

code is shown in Figure 1. The PPE creates and initializes 

the matrices, sends them to the SPE and waits for the 

results. The SPE receive the matrixes, performs the 

computation and sends back the results and performance to 

the PPE. Finally, the PPE verifies the results and prints out 

the performance reached. The matrix sizes and the number 

of SPEs to use are configurable by command line 

parameters. 

 

 

3.2 HELF Library 
The basic function of the HELF Library is to allow the 

programmer to manage the application execution and its 

behaviour, using the new system calls we have 

implemented, so that the thread that calls our library will 

itself execute the function given, in a different core. 

The library is fully compatible with other libraries such as 

Pthreads or OpenMP, so it offers parallelism support as 

well as heterogeneity. 

When an executing thread needs to jump from one 

execution unit to another, some data and code management 

must be done in order to prepare the execution environment 

in the second unit (code and data must be loaded into the 

unit’s local memory). The helf_execute() function manages 

these tasks following the execution sequentially across the 

different ISAs. Figure 2 shows modifications in the matrix 

multiplication example to use our library and execute the 

matrix calculation in the SPE units. 

#pragma spe 

double spe_matrix_multiplication () { 

    receive_data_from_ppe (); 

    calculate_matrix_multiplication (); 

    send_results_to_ppe (); 

    return performance 

} 

Figure 1: Structure of the original matrix multiplication code. 

The top box corresponds to the PPE code and the bottom box, 

to the SPE code. 

int main(int argc, char *argv[]) { 

    evaluate_args (argc, argv); 

    allocate_and_init_matrixes (); 

    for all num_SPEs_used { 

         create_new_execution_context (); 

         load_spe_matrix_multiplication_code (); 

         create_thread_and_start_execution_on_SPE (); 

    } 

    send_data_to_all_threads (); 

    wait_for_all_threads (); 

    receive_performance_from_all_threads (); 

   print_performance (); 

    return 0; 

} 



 

 

Similarly, some OS management must be done to return 

from the executed function. This is done by the helf_exit() 

function. 

Table 1 shows the specification of the new functions and 

their description. 

Function name helf_execute 

Parameters - Pointer to the function to be executed. 

- Pointer to a structure containing the 

parameters of the function. 

- Pointer to the address where the value 

returned by the function must be stored. 

- Integer representing the architecture 

where the function must be executed. 

Description This function must be called when a 

thread wants to jump from one execution 

unit to another which does not 

understand the ISA of the first. 
 

Function name helf_exit 

Parameters - Pointer to the address where the return 

value is stored. 

- Integer representing the architecture 

where the function has been executed. 

Description This function must be called when the 

thread wants to return to the point where 

helf_execute() was invoked. It is usually 

called at the end of the function that has 

been executed by helf_execute(). 

 

 

3.3 Compiler and linker 

The compiler must be adapted to be able to separate the 

code specified by the programmer inside the #pragma 

directive into the different sections. In the case of using a 

library, this compiler work would be avoided. 

The linker must group all the object files generated by the 

compiler in a single binary file (there can be more than one 

object file, depending on the number of source code files 

and the way they are compiled) and resolve code symbols.  

 

Following the matrix multiplication example, the HELF 

structure would look like Figure 3: the functions are divided 

into two different sections: .text and .text.spe. The name of 

text sections created starts with “.text” followed by a string 

which is extracted from the #pragma indications (see 

Figure 1), with a “.” between them. We use this name to 

specify the ISA of the compiled code. The main section 

(.text) will contain the main function and all other functions 

that are not marked with the #pragma directive. 

If we executed this binary in a conventional operating 

system we would obtain the same behaviour and would gain 

nothing from this division because the ELF loader treats all 

text sections equally: we need a loader able to manage this 

kind of binary and this is explained in section 4.1. 

We assume that these first three steps (source code marks, 

compiler and linker) are already done and this is our 

starting point. After that, some operating system 

modifications are necessary in order to: 

 Allow the introduction of information in the operating 

system per-process data structures 

 Maintain information consistency among all the 

system processes 

Table 1: Description of helf_execute() and helf_exit() 

functions  

Figure 2: HELF library call adaptation of the matrix 

multiplication code to calculate the multiplication in the SPE 

units. The SPE function must call the helf_exit() library 

function at the end, to return the execution, as explained in 

Table 1. 

int main(int argc, char *argv[]) { 

    evaluate_args (argc, argv); 

    allocate_and_init_matrixes (); 

    for all num_SPEs_used { 

         helf_execute (&spe_matrix_multiplication, NULL, &performance, SPE); 

    } 

    send_data_to_all_threads (); 

    wait_for_all_threads (); 

    receive_performance_from_all_threads (); 

   print_performance (); 

    return 0; 

} 

 

Figure 3: HELF structure of the example 

ELF Header 

Program Header Table 

 

.text 

.data 

Section Header Table 

… 
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.rodata 



4. THE OS SIDE  
In this section, we will explain the modifications at 

operating system level to identify and treat the additional 

information kept in this new executable format. 

4.1 HELF Loader 

When the file we want to execute is loaded, the part of the 

HELF header which contains the magic number is 

compared with the new magic number. If they are different 

(i.e. the file isn’t a HELF), the operation finishes its 

execution, returning an error. If it is a HELF, it continues 

with the binary loading. 

 

The task_struct structure now has three new fields in order 

to manage and store the additional information related to 

HELF binaries (shown in Figure 4): 

 helf_process indicates whether the process represented 

by this task_struct is a HELF process or not. 

 stream_code_array contains an array of nodes. Each 

node structure represents a different section of the 

HELF binary and contains some useful information, 

such as the kind of section it represents, its size, its 

starting address and pointers to operations for 

managing it. The array size should be sufficient to 

meet all system needs. 

 hthread_info contains all the information necessary to 

maintain the state of the thread before jumping to 

another execution unit (basically, CPU registers). 

Values for a task_struct corresponding to a non HELF 

process would be zero for the helf_process field and invalid 

for each element of the array and the hthread_info. 

Two important fields in the node are the pointers to the 

operations that perform the jump between execution units. 

These operations are architecture-specific. Depending on 

the ISA section, the loader initializes these pointers to the 

specific ISA functions.  

Following the matrix multiplication example presented 

previously, the structures created would be filled with the 

information contained in the HELF binary. The field 

helf_process would value 1 (this is a HELF process), and 

the first position in the stream_code_array would contain 

pointers to operations for managing the section .text.spe. 

4.2 Execution 
In the previous section we explained the interface offered 

by the HELF user library, and how the applications must be 

adapted to fit our model. In this subsection we focus on the 

back interaction between the library and the operating 

system. 

The two library functions presented invoke two system 

calls. These system calls will search for the node that 

represents the architecture where we want to jump to or 

return to. If this node exists, the open or close functions 

stored in the node fields will respectively be invoked. 

This method is similar to that of the Linux device driver, 

where a structure stores all the operations that manage each 

device. 

Figure 5 shows the different steps followed by the operating 

system when an application calls the HELF Library and its 

effects from the application point of view. Each colour 

represents the execution unit of a different ISA. 

OS control functions are executed in the general purpose 

elements, so, from the point of view of the execution 

element (or thread), we can say that heterogeneity always 

performs in a sequential way: the main processor forks in a 

new thread (by means of OpenMP, Pthreads or any other 

thread library) and this new thread is responsible for 

loading and executing code in a different engine). 

 

 

 

 

 

Figure 4: New task_struct to represent a heterogeneous 

process with detail of a node structure. 
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The system provides some information related to every 

HELF process that is being executed. In particular, 

information about HELF sections in memory for each 

process can be read through the /proc file system. Figure 6 

shows the information extracted from /proc for the program 

in Figure 1. 

 

 

5. MEASUREMENTS AND RESULTS 
In this section we explain the tests we have run. At first, our 

project was only implemented for the x86 architecture. But 

as the project went on, we started migrating our 

implementation to the Cell BEA. Currently, our proposal 

can run on both architectures, so we have measured it on 

these test platforms: 

 Intel Core 2 Duo processor at 1.86 GHz, with 2 

GB of memory.  

 PlayStation 3 Cell BE. 

Both platforms use our modified kernel, based on version 

2.6.24.3. The operating system is Fedora Core 8. 

We have performed four different tests to evaluate different 

aspects of our proposal: 

 Measured the binary loading time to evaluate the 

overhead introduced at kernel level. 

 Counted the increment of source lines of code 

(SLOC) in the kernel, to be able to judge its 

portability to other platforms. 

 Tested the Scimark2 benchmark in the Intel Core 2 

Duo and the PowerPC (the PPE part of the Cell 

BE) architectures. 

 Tested an implementation of a matrix 

multiplication in the Cell BE architecture, using 

both the PPE and the SPEs. 

5.1 Measuring the kernel overhead  
The first part of the tests consists of measuring the overhead 

introduced at kernel level. We generate three versions of 

the same application: 

 ELF: The application with no changes (standard 

compilation and execution). 

 HELF 0: The binary’s magic number is changed, so 

the operating system treats it as a different kind of 

binary, but the information contained and its structure 

is the same as the ELF version. We call it HELF 0 

because it has no information about heterogeneity. 

 HELF 6: This version has six new sections, 

representing different ISAs. The loader will find extra 

information and it will have to save it in the process’ 

task_struct. 

Taking the ELF version as the base, there is no overhead 

introduced for the HELF 0 version tests and a few 

microseconds for the HELF 6 version tests, which is 

negligible. 

5.2 Source lines of code 
The second thing we want to measure is the number of 

source lines of code (SLOC) we have added to the Linux 

kernel.  

The approximate number of source lines of code added is 

detailed below:  

 HELF Loader: 750 lines.  

 Specific architecture functions: 100 lines. 

 Auxiliary functions invoked in different kernel 

functions: 50 lines. 

Figure 6: Information read from /proc/helf when an 

application is running on the system. 

 

$> cat /proc/helf  

Information about HELF processes: 

PID: 22266 

  HELF Sections: 1 

 
  Section #1: 

    type: ppe 

    size: 0x73d B 

    address: 0x08048a9c 

 

Figure 5: Cross-ISA execution flow of an application using 

the HELF Library to jump from one core to another. 



 New system calls: 60 lines. 

 Data structure and constants definitions: 50 lines. 

As we can see, most of the new lines belong to the new 

loader (75%). Approximately, the 2.6 Linux kernel has 5.2 

million SLOC, so our proposal represents an increment of 

0.02%.  

5.3 Scimark2 
In this section we present the tests we have made, based on 

the Scimark2 benchmark5 for two different homogeneous 

architectures: x86 and PowerPC (the Cell BE PPE 

element).  

Firstly, we compared the size (in bytes) of the files between 

the original benchmark and the adapted version. In 

particular, we compare the object files generated at 

compilation time, as well as the executable file. The results 

are shown in Table 2. 

File 
PowerPC x86 

Original HELF % Original HELF % 

FFT.o 4020 4020 0 2568 2568 0 

LU.o 2332 2332 0 1564 1564 0 

Montecarlo.o 1624 1624 0 1192 1192 0 

Random.o 3628 3628 0 2296 2296 0 

SOR.o 1764 1764 0 1188 1188 0 

SparseCompRow.o 1440 1440 0 943 943 0 

Stopwatch.o 2136 2136 0 1504 1504 0 

array.o 1928 1928 0 1452 1452 0 

kernel.o 5008 5844 +17 3956 4372 +11 

scimark2.o 4444 5492 +23 3704 4240 +14 

scimark2 26799 28000 +5 16369 17189 +5 

 

As we can see in the table, the size of the executable file 

(scimark2) is increased by only a 5%, which we consider 

acceptable, and the size of its object file (scimark2.o) is 

increased considerably. The size of the kernel.o object is 

also increased slightly, and the size of the other files is 

unchanged, as there is no need to modify them in order to 

adapt the application to our project. 

Secondly, we measured the application performance. The 

application itself gives us information about its throughput 

(MFlops). The benchmark provides two different options: 

small cache-contained data structures and large data 

structures (which typically do not fit in cache). In these tests 

we were not concerned about the runtime memory usage or 

                                                                 

5 This benchmark can be found at http://math.nist.gov/scimark2/ 

management. That is why we have chosen the small cache-

contained version. We test a sequential and a parallel 

execution (using the Pthread library). 

The throughput results for the sequential execution are 

shown in Table 3, and the execution times are shown in 

Chart 1. 

Function 
PowerPC x86 

Original HELF Original HELF 

FFT 28,86 29,07 138,87 138,43 

SOR 108,11 108,21 474,62 465,45 

MonteCarlo 9,28 9,33 46,60 46,74 

Sparse matmult 34,47 34,92 190,18 190,62 

LU 47,49 47,44 249,52 250,98 

Although the overall throughputs are higher in the HELF 

execution, the differences are generally insignificant, except 

in the case of the SOR function. 

 

 

The execution in the x86 architecture is slightly faster (this 

may be due to the different amount of memory), and both 

HELF benchmarks run a few seconds faster than the 

original versions. 

The throughput results for parallel execution are shown in 

Table 4, and the execution times are shown in Chart 2. 

 

 

 

 

 

Table 2: Comparison of the file sizes between the original 

and the adapted compilation for both architectures: 

PowerPC and x86. 
Chart 1: Sequential execution time (in seconds) obtained with 

the original and the adapted benchmark for both 

architectures: PowerPC (Cell PPE unit) and x86. 

 

Table 3: Throughput results for the sequential execution 

obtained with the original and the adapted benchmark for 

both architectures: PowerPC and x86. 

http://math.nist.gov/scimark2/


Function 
PowerPC x86 

Original HELF Original HELF 

FFT 4,60 4,10 38,08 30,36 

SOR 20,61 22,51 99,09 108,86 

MonteCarlo 1,42 1,62 12,12 14,12 

Sparse matmult 7,47 6,86 37,83 56,99 

LU 7,62 7,83 73,01 68,44 

 

As with the sequential execution, the overall throughput 

obtained is greater in the case of the HELF benchmark in 

both architectures, except in some particular cases where 

the original throughput is a little higher. In this case, the 

throughput differences are greater than those obtained in the 

sequential execution. 

 

In the parallel execution case, the execution times are very 

similar and much lower than the sequential execution (as 

happens in many applications when they are parallelised). 

The time execution of the HELF version in the Cell 

architecture is lower than that of the original version and 

the opposite case happens in the x86 architecture. Even 

though, the time difference between the HELF and original 

benchmarks is greater in the case of the Cell architecture. 

5.4 Matrix multiplication on the Cell BE 
This last test is performed in the Cell BE platform, using 

both PPE and SPE ISAs. We measured the performance 

(this matrix multiplication calculates its throughput in 

GFlops) and time consumption of the original application (a 

simple matrix multiplication, compiled as an ELF binary) 

and an adapted version using the HELF library (compiled 

as a HELF binary).  

The matrices size is 3200x3200 floats, and the application 

was tested using one SPE and four SPEs. 

 The throughput results for the execution using one 

SPE are exactly the same in the original version and in 

the HELF version (25,37 GFlops of 25,60 GFlops 

theoretical peak). 

 Like the previous test, the throughput using four SPEs 

is also the same in the original and in the HELF 

version (100,97 GFlops of 102,40 GFlops theorical 

peak).  

The execution times for both tests are shown in Chart 3. 

As we can see in the chart below, the execution time of the 

HELF versions is slightly longer than that of the original 

versions (a few milliseconds), because the operating 

system side is not completely implemented and we use 

parts of libspe library, combined with our implementation. 

 

6. CONCLUSIONS AND FUTURE WORK 
In this paper, we present a new method for managing 

heterogeneous binaries.  We have based our proposal on the 

continuation model of the Mach microkernel and the device 

drivers of Unix-Linux system. 

At application level, we modify the application’s source 

code by inserting new information about the heterogeneity 

of its different code parts. We have implemented a library 

that helps the programmer to manage the application 

execution, and allows a thread to continue execution of 

different functions in different cores, jumping from one to 

another.  

Heterogeneity is orthogonal with parallelism, so that our 

library is fully compatible with other libraries such as 

Pthreads, OpenMP or libspe. 

At operating system level, we add the ability to recognize 

new heterogeneous binary extensions and fill each process’ 

task_struct with the related information in order to schedule 

it in the appropriate engine to achieve the optimal 

performance. We have implemented the architecture-

Table 4: Throughput results for the parallel execution 

obtained with the original and the adapted benchmark for 

both architectures: PowerPC and x86. 

Chart 2: Parallel execution time (in seconds) obtained 

with the original and the adapted benchmark for both 

architectures: PowerPC and x86. 

Chart 3: Execution time (in seconds) obtained with the 

original and the adapted matrix multiplication using one 

and four SPEs. 

 



specific operations which perform the thread jump between 

different cores. 

We have tested our project at kernel level as well as user 

level with optimistic results. The tests have been performed 

in general purpose processors (the implementation is just a 

first approach and by this way the tests are simpler. The 

most important result is that the overhead introduced is 

negligible, so we might expect a better performance when 

executing the application in the appropriate kind of 

accelerators. 

As future work, more profiling information is needed and 

different resource management policies should be tested. 

Finally, a deeper study and evaluation about using different 

heterogeneous platforms such as GPGPUs or FPGAs is also 

part of the ongoing work. 
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