
OS Paradigms Adaptation to Fit New Architectures 


 This work is supported by the European Commission in the context of the SARC Integrated Project (EU contract 27648-

FP6), the HiPEAC European Network of Excellence and the Ministry of Science and Technology of Spain and the

European Union (FEDER) under contract TIN2007-60625.

Xavier Joglar
Universitat Politècnica de Catalunya

Jordi Girona 1-3
Barcelona, Spain

xjoglar@ac.upc.edu

Judit Planas
Universitat Politècnica de Catalunya

Jordi Girona 1-3
Barcelona, Spain

juditp@ac.upc.edu

Marisa Gil
Universitat Politècnica de Catalunya

Jordi Girona 1-3
Barcelona, Spain

marisa@ac.upc.edu

ABSTRACT

Future architectures and computer systems will be

heterogeneous multi-core models, which will improve their

performance, resource utilization and energy consumption.

Differences between cores mean different binary formats

and specific concerns when dealing with applications. The

OS also needs to manage the appropriate information to

schedule resources to achieve the optimal performance.

In this paper we present a first approach in Linux to allow

the application to give information to the OS in order to

perform the best resource scheduling for the code

characteristics (where it has to run). Based on the

continuation model of the Mach microkernel and the device

drivers of Unix-Linux system, the kernel can continue the

execution flow from one core to another (i.e. from PPE to

SPE in the Cell BE case). In this way, the OS can

anticipate costly actions (for example, loading code or

data) or reserve resources depending on task needs.

To reach our target, we adapt the operating system as well

as modify the application binary to divide its code parts

depending on their characteristics and where they have to

run.

Experimental work has been done for x86 with MMX

extension ISA as well as for PPC and Cell BE.

Keywords

Heterogeneous multi-core, OS loader, fat binary.

1. INTRODUCTION
Current technology trends move to new processors with

specialized cores, like Cell BE [6] or the Intel Exoskeleton

[11] with specific processor elements such as those which

are GPU-based [7], or other accelerator elements, including

DSP and FPGA units. In this scenario, programs must be

redesigned in order to fully exploit this heterogeneity and

improve their performance.

In this way, they can be built from components that work

better in specific engines in a more energy-saving way.

These specific cores are also suitable to execute specific

parts of a program to improve its overall throughput.

From this preliminary point, some aspects must be analyzed

and modified. In a first stage, programming and compiling

parallel applications should be heterogeneity-aware,

deciding and building the appropriate executing stream.

Then, a specific management task must be done by the

linker and the loader to compose and load the final

executable binary, interpreting its new information and

performing the appropriate actions. Finally, the operating

system must manage, at runtime, the physical resources.

To take advantage of these specialized units, the OS must

be able to schedule the code parts onto the most appropriate

unit depending on the code requirements as well as the

available execution units [5]. In this work, programmers

can help the OS to manage the system resources more

efficiently by giving some hints about the application

behaviour. For example, if the programmer knows that a

function or a loop has special characteristics, he can mark

the code properly. That is why it is necessary to add some

additional information in the executables and make the

operating system able to manage and understand the given

information.

Some requirements to achieve this OS improvement are:

 Having the application code portions in the binary (or

bit stream map) corresponding to the platform where it

has to run.

 Having a “fat binary” executable file containing the

different binary parts of code [11].

 Allowing threads to run sequentially cross-ISA (i.e.

from one unit to one of a different type) [9].

 Providing the OS with the requisite information to

schedule a thread in the appropriate engine (depending

on the ISA, processor affinity or system load).

The main contributions included in this paper are:

 An extensible runtime fully compatible with both

current and new architectures.

 A new loader to manage new binary format.

 New OS objects to hold application heterogeneity

information.

The rest of the document is organised in the following way:

in the next section, we describe the environment and

introduce a brief idea of our target. In the third section we

explain the modifications at application level as well as the

API implemented to make the interaction between the user

and operating system level easier. In section four we

present the OS adaptations to be able to manage, store and

use the new information. In section five we discuss our

results and in section six, about the conclusions and future

work. Finally, in section seven we give the references where

readers can find more information related to our work.

2. OUR APPROACH
As mentioned above, hardware performance can be limited

by its software resource management. So as hardware

evolves, software has to evolve too, and vice versa. We

thought that adapting the executable format to distribute

application execution into different processor units would

be an exciting chance to improve system performance.

Our proposal is to include additional information into the

binary file so that the operating system can understand it

and manage system resources as efficiently as possible [8].

We looked for a simple and portable format through

different architectures. We considered that the best option

would be to modify the ELF format [10] to make the

transformation of the conventional ELF files easier.

We call our new extension Heterogeneous ELF (HELF) and

we use the ELF sections to store the information that the

operating system needs. HELF extension philosophy is

based on the idea of embedding different binaries compiled

for different ISAs in a single binary file.

The CESOF
1
 extension used for Cell BE programs also

allows different-ISA binary in a single ELF-format file.

CESOF embeds compiled code for both the PPE and SPE

in a single file. It uses several ELF sections to include the

embedded SPE executable image with additional PPE

symbol information.

The two main differences between HELF and CESOF are:

1
 More information related to CESOF (such as diagrams or

code examples) can be found in [2].

 The type of the new sections created for each piece of

code compiled for a different ISA: CESOF creates

read-only data sections and we create text sections
2
.

 CESOF is focused on Cell BE; we want HELF to be

adaptable to as many heterogeneous platforms as

possible.

Programming models using the ELF format for

heterogeneous multi-core are:

 The Cell Superscalar (CellSs) [1]: provides a simple,

flexible programming model that can take advantage

of the performance benefits from the Cell. CellSs is

built from two principal components: the CellSs

compiler and a runtime library. The compiler is a

source-to-source translator that takes in an annotated

C source file and produces a pair of source files, one

for each Cell processor type (PPU and SPU). The

runtime constructs a data dependency graph to

schedule independent annotated functions to execute

on different SPUs in parallel. CellSs uses CESOF.

 The EXO-CHI for the Intel Exoskeleton [11]: uses

accelerator elements in a heterogeneous multi-

threaded execution model and provides the tools

needed to exploit the system performance and reduce

power consumption.

The loader must be able to identify HELF files and classify

the different parts of code depending on the information

added by the programmer or, automatically, by the compiler

to the ELF sections. In this way, the operating system will

schedule them in the appropriate processor.

To achieve this, we have to consider three aspects:

1. How to adapt binary code in order to split it into

different chunks of execution code
3
.

2. How to modify the Linux loader in order to

understand and load heterogeneous binaries.

3. Which new data structures have to be added to the

kernel to store the new information needed.

For the moment, we are not focusing on data sharing, so

some changes might be necessary to adapt our proposal to

non shared-memory architectures.

When a code has to continue its execution in a specific

core, for reasons such as being compiled for a special ISA

or to obtain better performance in an accelerator, the only

information that has to be provided is where it continues (an

2
 For now, we are just considering self-contained functions,

so that we do not concern about data.
3
 This is a programming and compiler concern, so we will

not explain the details of this adaptation in this document.

address) and which input data it needs (the parameters).

This is the same as what the explicit continuation model

does [3].

We have implemented new library calls to specify the entry

point and the unit identifier. Based on this information, the

system is able to get the required data and prepare the

loading and running environment in the new unit.

In the next sections we explain the application and the

operating system adaptation to allow that.

3. THE APPLICATION SIDE
In this section we present our proposal at the application

level. In particular, we explain the way to modify the source

code of an application in order to reflect its heterogeneity,

and the way its characteristics are reflected in the binary.

We also show an example application to compare the

original and the adapted version.

From the application point of view, we need to adapt binary

files to mark the different code personalities.

The point of HELF executables is that the code has been

classified according to its characteristics. The method we

use to differentiate between these divisions is to create one

section for each different piece of code, so that code and

data inside a section are homogeneous and with a specific

engine profile
4
.

In this way, the operating system will detect these new

sections and take the appropriate actions to exploit the

heterogeneity of the hardware resources and so improve the

application performance.

The execution flow of a HELF file is the same as that of the

ELF, until the magic number is checked. At this point,

because we have provided a new magic number for our

files, if the file is a HELF executable, our loader is called

instead of the ELF version.

In the next subsections we explain the different steps that an

application follows from its source code until it is executed.

Also, we introduce the user library we have implemented in

order to take advantage of the new OS capabilities we have

added.

3.1 Source code
It could be very useful for programmers to use some kind of

library or compiler directive in order to decide exactly

which chunks of source code they want to divide and where

they want to execute each section (for example, specifying

the kind of engine if it is possible). One possibility is the

use of #pragma [1] and [4].

4
 Although it is also possible to have FPGA byte stream

sections.

We will use as an example a matrix multiplication

implemented for the Cell BE. The structure of the original

code is shown in Figure 1. The PPE creates and initializes

the matrices, sends them to the SPE and waits for the

results. The SPE receive the matrixes, performs the

computation and sends back the results and performance to

the PPE. Finally, the PPE verifies the results and prints out

the performance reached. The matrix sizes and the number

of SPEs to use are configurable by command line

parameters.

3.2 HELF Library
The basic function of the HELF Library is to allow the

programmer to manage the application execution and its

behaviour, using the new system calls we have

implemented, so that the thread that calls our library will

itself execute the function given, in a different core.

The library is fully compatible with other libraries such as

Pthreads or OpenMP, so it offers parallelism support as

well as heterogeneity.

When an executing thread needs to jump from one

execution unit to another, some data and code management

must be done in order to prepare the execution environment

in the second unit (code and data must be loaded into the

unit’s local memory). The helf_execute() function manages

these tasks following the execution sequentially across the

different ISAs. Figure 2 shows modifications in the matrix

multiplication example to use our library and execute the

matrix calculation in the SPE units.

#pragma spe

double spe_matrix_multiplication () {

 receive_data_from_ppe ();

 calculate_matrix_multiplication ();

 send_results_to_ppe ();

 return performance

}

Figure 1: Structure of the original matrix multiplication code.

The top box corresponds to the PPE code and the bottom box,

to the SPE code.

int main(int argc, char *argv[]) {

 evaluate_args (argc, argv);

 allocate_and_init_matrixes ();

 for all num_SPEs_used {

 create_new_execution_context ();

 load_spe_matrix_multiplication_code ();

 create_thread_and_start_execution_on_SPE ();

 }

 send_data_to_all_threads ();

 wait_for_all_threads ();

 receive_performance_from_all_threads ();

 print_performance ();

 return 0;

}

Similarly, some OS management must be done to return

from the executed function. This is done by the helf_exit()

function.

Table 1 shows the specification of the new functions and

their description.

Function name helf_execute

Parameters - Pointer to the function to be executed.

- Pointer to a structure containing the

parameters of the function.

- Pointer to the address where the value

returned by the function must be stored.

- Integer representing the architecture

where the function must be executed.

Description This function must be called when a

thread wants to jump from one execution

unit to another which does not

understand the ISA of the first.

Function name helf_exit

Parameters - Pointer to the address where the return

value is stored.

- Integer representing the architecture

where the function has been executed.

Description This function must be called when the

thread wants to return to the point where

helf_execute() was invoked. It is usually

called at the end of the function that has

been executed by helf_execute().

3.3 Compiler and linker

The compiler must be adapted to be able to separate the

code specified by the programmer inside the #pragma

directive into the different sections. In the case of using a

library, this compiler work would be avoided.

The linker must group all the object files generated by the

compiler in a single binary file (there can be more than one

object file, depending on the number of source code files

and the way they are compiled) and resolve code symbols.

Following the matrix multiplication example, the HELF

structure would look like Figure 3: the functions are divided

into two different sections: .text and .text.spe. The name of

text sections created starts with “.text” followed by a string

which is extracted from the #pragma indications (see

Figure 1), with a “.” between them. We use this name to

specify the ISA of the compiled code. The main section

(.text) will contain the main function and all other functions

that are not marked with the #pragma directive.

If we executed this binary in a conventional operating

system we would obtain the same behaviour and would gain

nothing from this division because the ELF loader treats all

text sections equally: we need a loader able to manage this

kind of binary and this is explained in section 4.1.

We assume that these first three steps (source code marks,

compiler and linker) are already done and this is our

starting point. After that, some operating system

modifications are necessary in order to:

 Allow the introduction of information in the operating

system per-process data structures

 Maintain information consistency among all the

system processes

Table 1: Description of helf_execute() and helf_exit()

functions

Figure 2: HELF library call adaptation of the matrix

multiplication code to calculate the multiplication in the SPE

units. The SPE function must call the helf_exit() library

function at the end, to return the execution, as explained in

Table 1.

int main(int argc, char *argv[]) {

 evaluate_args (argc, argv);

 allocate_and_init_matrixes ();

 for all num_SPEs_used {

 helf_execute (&spe_matrix_multiplication, NULL, &performance, SPE);

 }

 send_data_to_all_threads ();

 wait_for_all_threads ();

 receive_performance_from_all_threads ();

 print_performance ();

 return 0;

}

Figure 3: HELF structure of the example

ELF Header

Program Header Table

.text

.data

Section Header Table

…

.text.spe

.rodata

4. THE OS SIDE
In this section, we will explain the modifications at

operating system level to identify and treat the additional

information kept in this new executable format.

4.1 HELF Loader

When the file we want to execute is loaded, the part of the

HELF header which contains the magic number is

compared with the new magic number. If they are different

(i.e. the file isn’t a HELF), the operation finishes its

execution, returning an error. If it is a HELF, it continues

with the binary loading.

The task_struct structure now has three new fields in order

to manage and store the additional information related to

HELF binaries (shown in Figure 4):

 helf_process indicates whether the process represented

by this task_struct is a HELF process or not.

 stream_code_array contains an array of nodes. Each

node structure represents a different section of the

HELF binary and contains some useful information,

such as the kind of section it represents, its size, its

starting address and pointers to operations for

managing it. The array size should be sufficient to

meet all system needs.

 hthread_info contains all the information necessary to

maintain the state of the thread before jumping to

another execution unit (basically, CPU registers).

Values for a task_struct corresponding to a non HELF

process would be zero for the helf_process field and invalid

for each element of the array and the hthread_info.

Two important fields in the node are the pointers to the

operations that perform the jump between execution units.

These operations are architecture-specific. Depending on

the ISA section, the loader initializes these pointers to the

specific ISA functions.

Following the matrix multiplication example presented

previously, the structures created would be filled with the

information contained in the HELF binary. The field

helf_process would value 1 (this is a HELF process), and

the first position in the stream_code_array would contain

pointers to operations for managing the section .text.spe.

4.2 Execution
In the previous section we explained the interface offered

by the HELF user library, and how the applications must be

adapted to fit our model. In this subsection we focus on the

back interaction between the library and the operating

system.

The two library functions presented invoke two system

calls. These system calls will search for the node that

represents the architecture where we want to jump to or

return to. If this node exists, the open or close functions

stored in the node fields will respectively be invoked.

This method is similar to that of the Linux device driver,

where a structure stores all the operations that manage each

device.

Figure 5 shows the different steps followed by the operating

system when an application calls the HELF Library and its

effects from the application point of view. Each colour

represents the execution unit of a different ISA.

OS control functions are executed in the general purpose

elements, so, from the point of view of the execution

element (or thread), we can say that heterogeneity always

performs in a sequential way: the main processor forks in a

new thread (by means of OpenMP, Pthreads or any other

thread library) and this new thread is responsible for

loading and executing code in a different engine).

Figure 4: New task_struct to represent a heterogeneous

process with detail of a node structure.

 task_struct

 .

 .

 .

helf_process

state

pid

hthread_info

stream_code_array

 node

state

section_type

size

address

open

close

Application side

helf_exit()

-Save execution context
-Load and prepare function
parameters
-Load function code
-Activate core 2 and
transfer control

-Restore execution context

-Save return value
-Activate core 1 and transfer
control

Operating system side

Core
type 1

Core

type 2

helf_execute(&func, …)

func ()

The system provides some information related to every

HELF process that is being executed. In particular,

information about HELF sections in memory for each

process can be read through the /proc file system. Figure 6

shows the information extracted from /proc for the program

in Figure 1.

5. MEASUREMENTS AND RESULTS
In this section we explain the tests we have run. At first, our

project was only implemented for the x86 architecture. But

as the project went on, we started migrating our

implementation to the Cell BEA. Currently, our proposal

can run on both architectures, so we have measured it on

these test platforms:

 Intel Core 2 Duo processor at 1.86 GHz, with 2

GB of memory.

 PlayStation 3 Cell BE.

Both platforms use our modified kernel, based on version

2.6.24.3. The operating system is Fedora Core 8.

We have performed four different tests to evaluate different

aspects of our proposal:

 Measured the binary loading time to evaluate the

overhead introduced at kernel level.

 Counted the increment of source lines of code

(SLOC) in the kernel, to be able to judge its

portability to other platforms.

 Tested the Scimark2 benchmark in the Intel Core 2

Duo and the PowerPC (the PPE part of the Cell

BE) architectures.

 Tested an implementation of a matrix

multiplication in the Cell BE architecture, using

both the PPE and the SPEs.

5.1 Measuring the kernel overhead
The first part of the tests consists of measuring the overhead

introduced at kernel level. We generate three versions of

the same application:

 ELF: The application with no changes (standard

compilation and execution).

 HELF 0: The binary’s magic number is changed, so

the operating system treats it as a different kind of

binary, but the information contained and its structure

is the same as the ELF version. We call it HELF 0

because it has no information about heterogeneity.

 HELF 6: This version has six new sections,

representing different ISAs. The loader will find extra

information and it will have to save it in the process’

task_struct.

Taking the ELF version as the base, there is no overhead

introduced for the HELF 0 version tests and a few

microseconds for the HELF 6 version tests, which is

negligible.

5.2 Source lines of code
The second thing we want to measure is the number of

source lines of code (SLOC) we have added to the Linux

kernel.

The approximate number of source lines of code added is

detailed below:

 HELF Loader: 750 lines.

 Specific architecture functions: 100 lines.

 Auxiliary functions invoked in different kernel

functions: 50 lines.

Figure 6: Information read from /proc/helf when an

application is running on the system.

$> cat /proc/helf

Information about HELF processes:

PID: 22266

 HELF Sections: 1

 Section #1:

 type: ppe

 size: 0x73d B

 address: 0x08048a9c

Figure 5: Cross-ISA execution flow of an application using

the HELF Library to jump from one core to another.

 New system calls: 60 lines.

 Data structure and constants definitions: 50 lines.

As we can see, most of the new lines belong to the new

loader (75%). Approximately, the 2.6 Linux kernel has 5.2

million SLOC, so our proposal represents an increment of

0.02%.

5.3 Scimark2
In this section we present the tests we have made, based on

the Scimark2 benchmark5 for two different homogeneous

architectures: x86 and PowerPC (the Cell BE PPE

element).

Firstly, we compared the size (in bytes) of the files between

the original benchmark and the adapted version. In

particular, we compare the object files generated at

compilation time, as well as the executable file. The results

are shown in Table 2.

File
PowerPC x86

Original HELF % Original HELF %

FFT.o 4020 4020 0 2568 2568 0

LU.o 2332 2332 0 1564 1564 0

Montecarlo.o 1624 1624 0 1192 1192 0

Random.o 3628 3628 0 2296 2296 0

SOR.o 1764 1764 0 1188 1188 0

SparseCompRow.o 1440 1440 0 943 943 0

Stopwatch.o 2136 2136 0 1504 1504 0

array.o 1928 1928 0 1452 1452 0

kernel.o 5008 5844 +17 3956 4372 +11

scimark2.o 4444 5492 +23 3704 4240 +14

scimark2 26799 28000 +5 16369 17189 +5

As we can see in the table, the size of the executable file

(scimark2) is increased by only a 5%, which we consider

acceptable, and the size of its object file (scimark2.o) is

increased considerably. The size of the kernel.o object is

also increased slightly, and the size of the other files is

unchanged, as there is no need to modify them in order to

adapt the application to our project.

Secondly, we measured the application performance. The

application itself gives us information about its throughput

(MFlops). The benchmark provides two different options:

small cache-contained data structures and large data

structures (which typically do not fit in cache). In these tests

we were not concerned about the runtime memory usage or

5 This benchmark can be found at http://math.nist.gov/scimark2/

management. That is why we have chosen the small cache-

contained version. We test a sequential and a parallel

execution (using the Pthread library).

The throughput results for the sequential execution are

shown in Table 3, and the execution times are shown in

Chart 1.

Function
PowerPC x86

Original HELF Original HELF

FFT 28,86 29,07 138,87 138,43

SOR 108,11 108,21 474,62 465,45

MonteCarlo 9,28 9,33 46,60 46,74

Sparse matmult 34,47 34,92 190,18 190,62

LU 47,49 47,44 249,52 250,98

Although the overall throughputs are higher in the HELF

execution, the differences are generally insignificant, except

in the case of the SOR function.

The execution in the x86 architecture is slightly faster (this

may be due to the different amount of memory), and both

HELF benchmarks run a few seconds faster than the

original versions.

The throughput results for parallel execution are shown in

Table 4, and the execution times are shown in Chart 2.

Table 2: Comparison of the file sizes between the original

and the adapted compilation for both architectures:

PowerPC and x86.
Chart 1: Sequential execution time (in seconds) obtained with

the original and the adapted benchmark for both

architectures: PowerPC (Cell PPE unit) and x86.

Table 3: Throughput results for the sequential execution

obtained with the original and the adapted benchmark for

both architectures: PowerPC and x86.

http://math.nist.gov/scimark2/

Function
PowerPC x86

Original HELF Original HELF

FFT 4,60 4,10 38,08 30,36

SOR 20,61 22,51 99,09 108,86

MonteCarlo 1,42 1,62 12,12 14,12

Sparse matmult 7,47 6,86 37,83 56,99

LU 7,62 7,83 73,01 68,44

As with the sequential execution, the overall throughput

obtained is greater in the case of the HELF benchmark in

both architectures, except in some particular cases where

the original throughput is a little higher. In this case, the

throughput differences are greater than those obtained in the

sequential execution.

In the parallel execution case, the execution times are very

similar and much lower than the sequential execution (as

happens in many applications when they are parallelised).

The time execution of the HELF version in the Cell

architecture is lower than that of the original version and

the opposite case happens in the x86 architecture. Even

though, the time difference between the HELF and original

benchmarks is greater in the case of the Cell architecture.

5.4 Matrix multiplication on the Cell BE
This last test is performed in the Cell BE platform, using

both PPE and SPE ISAs. We measured the performance

(this matrix multiplication calculates its throughput in

GFlops) and time consumption of the original application (a

simple matrix multiplication, compiled as an ELF binary)

and an adapted version using the HELF library (compiled

as a HELF binary).

The matrices size is 3200x3200 floats, and the application

was tested using one SPE and four SPEs.

 The throughput results for the execution using one

SPE are exactly the same in the original version and in

the HELF version (25,37 GFlops of 25,60 GFlops

theoretical peak).

 Like the previous test, the throughput using four SPEs

is also the same in the original and in the HELF

version (100,97 GFlops of 102,40 GFlops theorical

peak).

The execution times for both tests are shown in Chart 3.

As we can see in the chart below, the execution time of the

HELF versions is slightly longer than that of the original

versions (a few milliseconds), because the operating

system side is not completely implemented and we use

parts of libspe library, combined with our implementation.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we present a new method for managing

heterogeneous binaries. We have based our proposal on the

continuation model of the Mach microkernel and the device

drivers of Unix-Linux system.

At application level, we modify the application’s source

code by inserting new information about the heterogeneity

of its different code parts. We have implemented a library

that helps the programmer to manage the application

execution, and allows a thread to continue execution of

different functions in different cores, jumping from one to

another.

Heterogeneity is orthogonal with parallelism, so that our

library is fully compatible with other libraries such as

Pthreads, OpenMP or libspe.

At operating system level, we add the ability to recognize

new heterogeneous binary extensions and fill each process’

task_struct with the related information in order to schedule

it in the appropriate engine to achieve the optimal

performance. We have implemented the architecture-

Table 4: Throughput results for the parallel execution

obtained with the original and the adapted benchmark for

both architectures: PowerPC and x86.

Chart 2: Parallel execution time (in seconds) obtained

with the original and the adapted benchmark for both

architectures: PowerPC and x86.

Chart 3: Execution time (in seconds) obtained with the

original and the adapted matrix multiplication using one

and four SPEs.

specific operations which perform the thread jump between

different cores.

We have tested our project at kernel level as well as user

level with optimistic results. The tests have been performed

in general purpose processors (the implementation is just a

first approach and by this way the tests are simpler. The

most important result is that the overhead introduced is

negligible, so we might expect a better performance when

executing the application in the appropriate kind of

accelerators.

As future work, more profiling information is needed and

different resource management policies should be tested.

Finally, a deeper study and evaluation about using different

heterogeneous platforms such as GPGPUs or FPGAs is also

part of the ongoing work.

7. ACKNOWLEDGMENTS
We sincerely thank Lluc Alvarez for helping us in adapting

our proposal to the Cell architecture and the anonymous

reviewers for their comments and suggestions. We

gratefully acknowledge the support of the BSC (Barcelona

Supercomputing Centre).

8. REFERENCES
[1] Bellens, P., Perez, J. M., Badia, R. M. and Labarta,

J. 2006. CellSs: a Programming Model for the Cell

BE Architecture. In Proceedings of the 2006

ACM/IEEE conference on Supercomputing.

[2] Chow, A. 2006. Programming the Cell Broadband

Engine. In Embedded Systems Design magazine.

[3] Draves, R. P., Bershad, B. N., Rashid, R.F., Dean,

R.W. 1991. Using Continuations to Implement

Thread Management and Communication in

Operating Systems. Technical Report CMU-CS-91-

115, Carnegie Mellon University. Also appears in

Proceedings of the Thirteenth Symposium on

Operating Systems (SOSP).

[4] Eichenberger, A. E., O'Brien, J. K., O'Brien, K. M.,

Wu, P., Chen, T., Oden, P. H., Prener, D. A.,

Shepherd, J. C., So, B., Sura, Z., Wang, A., Zhang,

T., Zhao, P., Gschwind, M. K., Archambault, R.,

Gao, Y. and Koo, R. 2006. Using advanced

compiler technology to exploit the performance of

the Cell Broadband Engine architecture. IBM

System Journals, vol. 45, no. 1.

[5] Gil, M., Alvarez, L., Joglar, X., Planas, J. and

Martorell, X. 2007. Operating System Support for

Heterogeneous Multicore Architectures. In UPC-

DAC-RR-CAP-2007-40.

[6] Gschwind, M., Erb, D., Manning, S. and Nutter, M.

2007. An Open Source Environment for Cell

Broadband Engine System Software. In Computer,

vol. 40, no. 6, pp. 37-47.

[7] Hester, P. 2007. Multicore and Beyond: Evolving

the x86 Architecture. In Symposium on High

Performance Chips.

[8] Hunt, G. C., Larus, J. R., Tarditi, D. and Wobber,

T. 2005. Broad New OS Research: Challenges and

Opportunities. In Proceedings of Tenth Workshop

on Hot Topics in Operating Systems, Santa Fe,

N.M.

[9] Sondag, T., Krishnamurthy, V. and Rajan, H. 2007.

Predictive Thread-to-Core Assignment on a

Heterogeneous Multi-core Processor. In Fourth

Workshop on Programming Languages and

Operating Systems (PLOS 2007).

[10] Tool Interface Standards (TIS) Committee. 1995.

Executable and Linking Format (ELF)

Specification, version 1.2.

[11] Wang, P., Collins, J., Chinya, G., Jiang, H., Tian,

X., Girkar, M., Pearce, L., Lueh, G., Yakoushkin,

S. and Wang, H. 2007. Accelerator exoskeleton.

Intel Technology Journal, vol. 11, issue 03.

