10,057 research outputs found

    Implementation challenges of annotated 3D models in collaborative design environments

    Full text link
    Recent studies in the area of collaborative design have proposed the use of 3D annotations as a tool to make design information explicitly available within the 3D model, so that different stakeholders can share information throughout the product lifecycle. Annotation practices defined by the latest digital definition standards have formalized the presentation of information and facilitated the implementation of annotation tools in CAD systems. In this paper, we review the latest studies in annotation methods and technologies and explore their expected benefits in the context of collaborative design. Next, we analyze the implementation challenges of different annotation approaches, focusing specifically on design intent annotations. An analysis of the literature suggests that the use of annotations has a positive effect on collaborative design communication as long as proper implementation practices, tools, and user interaction mechanisms are in placeCamba, J.; Contero, M.; Salvador Herranz, GM. (2014). Implementation challenges of annotated 3D models in collaborative design environments. Lecture Notes in Computer Science. 8683:222-229. doi:10.1007/978-3-319-10831-5_332222298683Katzenbach, J.R., Smith, D.K.: The Discipline of Teams. Harvard Business Review 71(2), 111–120 (2005)Campion, M.A., Medsker, G.J., Higgs, A.C.: Relations between Work Group Characteristics and Effectiveness: Implications for Designing Effective Work Groups. Personnel Psychology 46, 823–850 (1993)Chudoba, K.M., Wynn, E., Lu, M., Watson-Manheim, M.B.: How Virtual Are We? Measuring Virtuality and Understanding its Impact in a Global Organization. Information Systems Journal 15, 279–306 (2005)Lahti, H., Seitamaa-Hakkarainen, P., Hakkarainen, K.: Collaboration Patterns in Computer Supported Collaborative Designing. Design Studies 25, 351–371 (2004)Chang, K.H., Silva, J., Bryant, I.: Concurrent Design and Manufacturing for Mechanical Systems. Concurrent Engineering 7, 290–308 (1999)Jackson, C., Buxton, M.: The Design Reuse Benchmark Report: Seizing the Opportunity to Shorten Product Development. Aberdeen Group, Boston (2007)Lang, S., Dickinson, J., Buchal, R.O.: Cognitive Factors in Distributed Design. Computers in Industry 48, 89–98 (2002)Alemanni, M., Destefanis, F., Vezzetti, E.: Model-Based Definition Design in the Product Lifecycle Management Scenario. International Journal of Advanced Manufacturing Technology 52(1-4), 1–14 (2011)ASME: ASME Y14.41-2012 Digital Product Definition Data Practices. The American Society of Mechanical Engineers, New York (2012)ISO: ISO 16792:2006 Technical Product Documentation – Digital Product Definition Data Practices. Organisation Internationale de Normalisation, Genève, Suisse (2006)Bracewell, R.H., Wallace, K.M.: A Tool for Capturing Design Rationale. In:14th International Conference on Engineering Design, Design Society, Stockholm, Sweden (2003)Boujut, J.F., Dugdale, J.: Design of a 3D Annotation Tool for Supporting Evaluation Activities in Engineering Design. Cooperative Systems Design, COOP 6, 1–8 (2006)Alducin-Quintero, G., Rojo, A., Plata, F., Hernández, A., Contero, M.: 3D Model Annotation as a Tool for Improving Design Intent Communication: A Case Study on its Impact in the Engineering Change Process. In: ASME International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, Chicago, Illinois (2012)Sandberg, S., Näsström, M.: A Proposed Method to Preserve Knowledge and Information by Use of Knowledge Enabled Engineering. In: ASME International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, Las Vegas, Nevada (2007)Dorribo-Camba, J., Alducin-Quintero, G., Perona, P., Contero, M.: Enhancing Model Reuse through 3D Annotations: A Theoretical Proposal for an Annotation-Centered Design Intent and Design Rationale Communication. In: ASME International Mechanical Engineering Congress & Exposition, San Diego, California (2013)Ding, L., Ball, A., Patel, M., Matthews, J., Mullineux, G.: Strategies for the Collaborative Use of CAD Product Models. In: 17th International Conference on Engineering Design, vol. 8, pp. 123–134 (2009)Davies, D., McMahon, C.A.: Multiple Viewpoint Design Modelling through Semantic Markup. In: ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Philadelphia, PA, vol. 3, pp. 561–571 (2006)Pena-Mora, F., Sriram, D., Logcher, R.: SHARED-DRIMS: SHARED Design Recommendation-Intent Management System. Enabling Technologies: Infrastructure for Collaborative Enterprises, 213–221 (1993)Iyer, N., Jayanti, S., Lou, K., Kalyanaraman, Y., Ramani, K.: Shape-based Searching for Product Lifecycle Applications. Computer-Aided Design 37(13), 1435–1446 (2005)Li, C., McMahon, C., Newnes, L.: Annotation in Product Lifecycle Management: A Review of Approaches. In: ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, vol. 2, pp. 797–806 (2009)Ding, L., Liu, S.: Markup in Engineering Design: A Discourse. Future Internet 2, 74–95 (2010)Patel, M., Ball, A., Ding, L.: Curation and Preservation of CAD Engineering Models in Product Lifecycle Management. In: Conference on Virtual Systems and Multimedia Dedicated to Digital Heritage, University of Bath, pp. 59–66 (2008)Ding, L., Davies, D., McMahon, C.A.: The Integration of Lightweight Representation and Annotation for Collaborative Design Representation. Research in Engineering Design 20(3), 185–200 (2009)Patel, M., Ball, A., Ding, L.: Strategies for the Curation of CAD Engineering Models. International Journal of Digital Curation 4(1), 84–97 (2009)Ganeshan, R., Garrett, J., Finger, S.: A Framework for Representing Design Intent. Design Studies 15(1), 59–84 (1994)Myers, K., Zumel, N., Garcia, P.: Acquiring Design Rationale Automatically. Artificial Intelligence for Engineering Design, Analysis and Manufacturing 14(2), 115–135 (2000)Kunz, W., Rittel, H.: Issues as Elements of Information Systems. Working paper 131. Center for Planning and Development Research, Berkeley (1970)Shum, S.J.B., Selvin, A.M., Sierhuis, M., Conklin, J., Haley, C.B., Nuseibeh, B.: Hypermedia Support for Argumentation-Based Rationale: 15 Years on from Gibis and Qoc. Rationale Management in Software Engineering, 111–132 (2006)Sung, R., Ritchie, J.M., Rea, H.J., Corney, J.: Automated Design Knowledge Capture and Representation in Single-User CAD Environments. J. of Eng. Design 22(7), 487–503 (2011)Chandrasegaran, S.K., Ramani, K., Sriram, R.D., Horváth, I., Bernard, A., Harik, R.F., Gao, W.: The Evolution, Challenges, and Future of Knowledge Representation in Product Design Systems. Computer-Aided Design 45(2), 204–228 (2013)Ellis, G., Dix, A.: A Taxonomy of Clutter Reduction for Information Visualisation. IEEE Transactions on Visualization and Computer Graphics 13(6), 1216–1223 (2007)Cipriano, G., Gleicher, M.: Text Scaffolds for Effective Surface Labeling. IEEE Transactions on Visualization and Computer Graphics 14(6), 1675–1682 (2008)Stein, T., Décoret, X.: Dynamic Label Placement for Improved Interactive Exploration. In: 6th International Symposium on Non-Photorealistic Animation and Rendering, pp. 15–21 (2008)Götzelmann, T., Hartmann, K., Strothotte, T.: Agent-Based Annotation of Interactive 3D Visualizations. In: Butz, A., Fisher, B., Krüger, A., Olivier, P. (eds.) SG 2006. LNCS, vol. 4073, pp. 24–35. Springer, Heidelberg (2006)Szykman, S., Sriram, R., Regli, W.: The Role of Knowledge in Next-Generation Product Development Systems. J. of Computing and Inf. Science in Engineering 1(1), 3–11 (2001)Aubry, S., Thouvenin, I., Lenne, D., Olive, J.: A Knowledge Model to Read 3D Annotations on a Virtual Mock-up for Collaborative Design. In: 11th International Conference on Computer Supported Cooperative Work in Design, pp. 669–674 (2007)Jung, T., Gross, M.D., Do, E.Y.L.: Sketching Annotations in a 3D Web Environment. In: CHI 2002, Extended Abstracts on Human Factors in Computing Systems, pp. 618–619 (2002)Bilasco, I.M., Gensel, J., Villanova-Oliver, M., Martin, H.: An MPEG-7 Framework Enhancing the Reuse of 3D Models. In: 11th International Conference on 3D Web Technology, Columbia, Maryland (2006)Pittarello, F., De Faveri, A.: Semantic Description of 3D Environments: A Proposal Based on Web Standards. In: 11th International Conference on 3D Web Technology, Columbia, Maryland (2006)Song, H., Guimbretière, F., Hu, C., Lipson, H.: ModelCraft: Capturing Freehand Annotations and Edits on Physical 3D Models. In: 19th Annual ACM Symposium on User Interface Software and Technology, pp. 13–22 (2006

    Developing serious games for cultural heritage: a state-of-the-art review

    Get PDF
    Although the widespread use of gaming for leisure purposes has been well documented, the use of games to support cultural heritage purposes, such as historical teaching and learning, or for enhancing museum visits, has been less well considered. The state-of-the-art in serious game technology is identical to that of the state-of-the-art in entertainment games technology. As a result, the field of serious heritage games concerns itself with recent advances in computer games, real-time computer graphics, virtual and augmented reality and artificial intelligence. On the other hand, the main strengths of serious gaming applications may be generalised as being in the areas of communication, visual expression of information, collaboration mechanisms, interactivity and entertainment. In this report, we will focus on the state-of-the-art with respect to the theories, methods and technologies used in serious heritage games. We provide an overview of existing literature of relevance to the domain, discuss the strengths and weaknesses of the described methods and point out unsolved problems and challenges. In addition, several case studies illustrating the application of methods and technologies used in cultural heritage are presented

    Serious Games in Cultural Heritage

    Get PDF
    Although the widespread use of gaming for leisure purposes has been well documented, the use of games to support cultural heritage purposes, such as historical teaching and learning, or for enhancing museum visits, has been less well considered. The state-of-the-art in serious game technology is identical to that of the state-of-the-art in entertainment games technology. As a result the field of serious heritage games concerns itself with recent advances in computer games, real-time computer graphics, virtual and augmented reality and artificial intelligence. On the other hand, the main strengths of serious gaming applications may be generalised as being in the areas of communication, visual expression of information, collaboration mechanisms, interactivity and entertainment. In this report, we will focus on the state-of-the-art with respect to the theories, methods and technologies used in serious heritage games. We provide an overview of existing literature of relevance to the domain, discuss the strengths and weaknesses of the described methods and point out unsolved problems and challenges. In addition, several case studies illustrating the application of methods and technologies used in cultural heritage are presented

    ANNOTATION MECHANISMS TO MANAGE DESIGN KNOWLEDGE IN COMPLEX PARAMETRIC MODELS AND THEIR EFFECTS ON ALTERATION AND REUSABILITY

    Full text link
    El proyecto de investigación propuesto se enmarca dentro del área de diseño de producto con aplicaciones de modelado sólido CAD/CAM (Computer Aided Design/Computer Aided Manufacturing). Concretamente, se pretende hacer un estudio de las herramientas de anotación asociativas disponibles en las aplicaciones comerciales de modelado CAD con el fin de analizar su uso, viabilidad, eficiencia y efectos en la modificación y reutilización de modelos digitales 3D, así como en la gestión y comunicación del conocimiento técnico vinculado al diseño. La idea principal de esta investigación doctoral es establecer un método para representar y evaluar el conocimiento implícito de los ingenieros de diseño acerca de un modelo digital, así como la integración dinámica de dicho conocimiento en el propio modelo CAD, a través de anotaciones, con el objetivo de poder almacenar y comunicar eficientemente la mayor cantidad de información útil acerca del modelo, y reducir el tiempo y esfuerzo requeridos para su alteración y/o reutilización.Dorribo Camba, J. (2014). ANNOTATION MECHANISMS TO MANAGE DESIGN KNOWLEDGE IN COMPLEX PARAMETRIC MODELS AND THEIR EFFECTS ON ALTERATION AND REUSABILITY [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/45997TESI

    On the integration of model-based feature information in Product Lifecycle Management systems

    Get PDF
    [EN] As CAD models continue to become more critical information sources in the product's lifecycle, it is necessary to develop efficient mechanisms to store, retrieve, and manage larger volumes of increasingly complex data. Because of their unique characteristics, 3D annotations can be used to embed design and manufacturing information directly into a CAD model, which makes models effective vehicles to describe aspects of the geometry or provide additional information that can be connected to a particular geometric element. However, access to this information is often limited, difficult, and even unavailable to external applications. As model complexity and volume of information continue to increase, new and more powerful methods to interrogate these annotations are needed. In this paper, we demonstrate how 3D annotations can be effectively structured and integrated into a Product Lifecycle Management (PLM) system to provide a cohesive view of product-related information in a design environment. We present a strategy to organize and manage annotation information which is stored internally in a CAD model, and make it fully available through the PLM. Our method involves a dual representation of 3D annotations with enhanced data structures that provides shared and easy access to the information. We describe the architecture of a system which includes a software component for the CAD environment and a module that integrates with the PLM server. We validate our approach through a software prototype that uses a parametric modeling application and two commercial PLM packages with distinct data models.This work was supported by the Spanish Ministry of Economy and Competitiveness and the FEDER Funds, through the ANNOTA project (Ref. TIN2013-46036-C3-1-R).Camba, J.; Contero, M.; Company, P.; Pérez Lopez, DC. (2017). On the integration of model-based feature information in Product Lifecycle Management systems. International Journal of Information Management. 37(6):611-621. https://doi.org/10.1016/j.ijinfomgt.2017.06.002S61162137

    Explicit Communication of Geometric Design Intent in CAD: Evaluating Annotated Models in the Context of Reusability

    Get PDF
    CAD model reusability is largely determined by a proper communication of design intent, which is usually expressed implicitly within the model. Recent studies have suggested the use of 3D annotations as a method to embed design information in the model’s geometry and make part of the design knowledge explicitly available. In this paper, we evaluate the effectiveness of this method and analyze its impact in model alteration tasks. Our goal is to determine whether annotated models provide significant benefits when performing activities that require a direct manipulation of the geometry. We present the results of a study that measured user performance in two scenarios. First, we tested whether annotations are helpful when inadequate modeling assumptions can be made by designers. Second, we evaluated annotations as tools to communicate design decisions to select the most appropriate solution to a challenge when multiple options are available. In both cases, results show statistically significant benefits of annotated models, suggesting the use of this technique as a valuable approach to improve design intent communication
    corecore