1,015 research outputs found

    Reliability and Condition-Based Maintenance Analysis of Deteriorating Systems Subject to Generalized Mixed Shock Model

    Get PDF
    For successful commercialization of evolving devices (e.g., micro-electro-mechanical systems, and biomedical devices), there must be new research focusing on reliability models and analysis tools that can assist manufacturing and maintenance of these devices. These advanced systems may experience multiple failure processes that compete against each other. Two major failure processes are identified to be deteriorating or degradation processes (e.g., wear, fatigue, erosion, corrosion) and random shocks. When these failure processes are dependent, it is a challenging problem to predict reliability of complex systems. This research aims to develop reliability models by exploring new aspects of dependency between competing risks of degradation-based and shock-based failure considering a generalized mixed shock model, and to develop new and effective condition-based maintenance policies based on the developed reliability models. In this research, different aspects of dependency are explored to accurately estimate the reliability of complex systems. When the degradation rate is accelerated as a result of withstanding a particular shock pattern, we develop reliability models with a changing degradation rate for four different shock patterns. When the hard failure threshold reduces due to changes in degradation, we investigate reliability models considering the dependence of the hard failure threshold on the degradation level for two different scenarios. More generally, when the degradation rate and the hard failure threshold can simultaneously transition multiple times, we propose a rich reliability model for a new generalized mixed shock model that is a combination of extreme shock model, δ-shock model and run shock model. This general assumption reflects complex behaviors associated with modern systems and structures that experience multiple sources of external shocks. Based on the developed reliability models, we introduce new condition-based maintenance strategies by including various maintenance actions (e.g., corrective replacement, preventive replacement, and imperfect repair) to minimize the expected long-run average maintenance cost rate. The decisions for maintenance actions are made based on the health condition of systems that can be observed through periodic inspection. The reliability and maintenance models developed in this research can provide timely and effective tools for decision-makers in manufacturing to economically optimize operational decisions for improving reliability, quality and productivity.Industrial Engineering, Department o

    Optimal Periodic Inspection of a Stochastically Degrading System

    Get PDF
    This thesis develops and analyzes a procedure to determine the optimal inspection interval that maximizes the limiting average availability of a stochastically degrading component operating in a randomly evolving environment. The component is inspected periodically, and if the total observed cumulative degradation exceeds a fixed threshold value, the component is instantly replaced with a new, statistically identical component. Degradation is due to a combination of continuous wear caused by the component\u27s random operating environment, as well as damage due to randomly occurring shocks of random magnitude. In order to compute an optimal inspection interval and corresponding limiting average availability, a nonlinear program is formulated and solved using a direct search algorithm in conjunction with numerical Laplace transform inversion. Techniques are developed to significantly decrease the time required to compute the approximate optimal solutions. The mathematical programming formulation and solution techniques are illustrated through a series of increasingly complex example problems

    Maintenance policy for two-stage deteriorating mode system based on cumulative damage model

    Get PDF
    For the system degradation process undergoing a sudden change, optimal maintenance policies were developed using the cumulative damage model and two-stage degradation modeling. Single shock damage value and the number of shock times are assumed to be normal distribution and homogeneous Poisson process, respectively. On this basis, average long-run cost rate of a renewal cycle was modeled with considering the probabilities of corrective, preventive and continuous monitoring, respectively. In order to develop an optimal policy, four types of maintenance policies (i.e., global, time-depended, adaptive and simplified adaptive policies) were analyzed with different alarm thresholds and inter-inspection time. Influence analysis of different parameters for maintenance policy was given, where different maintenance policies were compared in terms of average long-run cost rate. In addition, the impacts of degradation model parameters (i.e., change-point distribution, shock strength, shock frequency) on the average long-run cost rate were analyzed. Finally, maintenance policy for gearbox degradation experiment was analyzed in case study

    Performance deterioration modeling and optimal preventive maintenance strategy under scheduled servicing subject to mission time

    Get PDF
    AbstractServicing is applied periodically in practice with the aim of restoring the system state and prolonging the lifetime. It is generally seen as an imperfect maintenance action which has a chief influence on the maintenance strategy. In order to model the maintenance effect of servicing, this study analyzes the deterioration characteristics of system under scheduled servicing. And then the deterioration model is established from the failure mechanism by compound Poisson process. On the basis of the system damage value and failure mechanism, the failure rate refresh factor is proposed to describe the maintenance effect of servicing. A maintenance strategy is developed which combines the benefits of scheduled servicing and preventive maintenance. Then the optimization model is given to determine the optimal servicing period and preventive maintenance time, with an objective to minimize the system expected life-cycle cost per unit time and a constraint on system survival probability for the duration of mission time. Subject to mission time, it can control the ability of accomplishing the mission at any time so as to ensure the high dependability. An example of water pump rotor relating to scheduled servicing is introduced to illustrate the failure rate refresh factor and the proposed maintenance strategy. Compared with traditional methods, the numerical results show that the failure rate refresh factor can describe the maintenance effect of servicing more intuitively and objectively. It also demonstrates that this maintenance strategy can prolong the lifetime, reduce the total lifetime maintenance cost and guarantee the dependability of system

    A complex multi-state k-out-of-n: G system with preventive maintenance and loss of units

    Get PDF
    In this study, a multi-state k-out-of-n: G system subject to multiple events is modeled through a Markovian Arrival Process with marked arrivals. The system is composed initially of n units and is active when at least k units are operational. Each unit is multi-state, each of which is classified as minor or major according to the level of degradation presented. Each operational unit may undergo internal repairable or non-repairable failures, external shocks and/or random inspections. An external shock can provoke extreme failure, while cumulative external damage can deteriorate internal performance. This situation can produce repairable and non-repairable failures. When a repairable failure occurs the unit is sent to a repair facility for corrective repair. If the failure is non-repairable, the unit is removed. When the system has insufficient units with which to operate, it is restarted. Preventive maintenance is employed in response to random inspection. The system is modeled in an algorithmic and computational form. Several interesting measures of performance are considered. Costs and rewards are included in the system. All measures are obtained for transient and stationary regimes. A numerical example is analyzed to determine whether preventive maintenance is profitable, financially and in terms of performance.Junta de Andalucía (Spain) FQM-307Ministerio de Economía y Competitividad (España) MTM2017-88708-PEuropean Regional Development Fund (ERDF

    Imperfect Maintenance Models, from Theory to Practice

    Get PDF
    The role of maintenance in the industrial environment changed a lot in recent years, and today, it is a key function for long-term profitability in an organization. Many contributions were recently written by researchers on this topic. A lot of models were proposed to optimize maintenance activities while ensuring availability and high-quality requirements. In addition to the well-known classification of maintenance activities—preventive and corrective—in the last decades, a new classification emerged in the literature regarding the degree of system restoration after maintenance actions. Among them, the imperfect maintenance is one of the most studied maintenance types: it is defined as an action after which the system lies in a state somewhere between an “as good as new” state and its pre-maintenance condition “as bad as old.” Most of the industrial companies usually operate with imperfect maintenance actions, even if the awareness in actual industrial context is limited. On the practical definition side, in particular, there are some real situations of imperfect maintenance: three main specific cases were identified, both from literature analysis and from experience. Considering these three implementations of imperfect maintenance actions and the main models proposed in the literature, we illustrate how to identify the most suitable model for each real case

    Optimal Policies in Reliability Modelling of Systems Subject to Sporadic Shocks and Continuous Healing

    Get PDF
    Indiana University-Purdue University Indianapolis (IUPUI)Recent years have seen a growth in research on system reliability and maintenance. Various studies in the scientific fields of reliability engineering, quality and productivity analyses, risk assessment, software reliability, and probabilistic machine learning are being undertaken in the present era. The dependency of human life on technology has made it more important to maintain such systems and maximize their potential. In this dissertation, some methodologies are presented that maximize certain measures of system reliability, explain the underlying stochastic behavior of certain systems, and prevent the risk of system failure. An overview of the dissertation is provided in Chapter 1, where we briefly discuss some useful definitions and concepts in probability theory and stochastic processes and present some mathematical results required in later chapters. Thereafter, we present the motivation and outline of each subsequent chapter. In Chapter 2, we compute the limiting average availability of a one-unit repairable system subject to repair facilities and spare units. Formulas for finding the limiting average availability of a repairable system exist only for some special cases: (1) either the lifetime or the repair-time is exponential; or (2) there is one spare unit and one repair facility. In contrast, we consider a more general setting involving several spare units and several repair facilities; and we allow arbitrary life- and repair-time distributions. Under periodic monitoring, which essentially discretizes the time variable, we compute the limiting average availability. The discretization approach closely approximates the existing results in the special cases; and demonstrates as anticipated that the limiting average availability increases with additional spare unit and/or repair facility. In Chapter 3, the system experiences two types of sporadic impact: valid shocks that cause damage instantaneously and positive interventions that induce partial healing. Whereas each shock inflicts a fixed magnitude of damage, the accumulated effect of k positive interventions nullifies the damaging effect of one shock. The system is said to be in Stage 1, when it can possibly heal, until the net count of impacts (valid shocks registered minus valid shocks nullified) reaches a threshold m1m_1. The system then enters Stage 2, where no further healing is possible. The system fails when the net count of valid shocks reaches another threshold m2(>m1)m_2 (> m_1). The inter-arrival times between successive valid shocks and those between successive positive interventions are independent and follow arbitrary distributions. Thus, we remove the restrictive assumption of an exponential distribution, often found in the literature. We find the distributions of the sojourn time in Stage 1 and the failure time of the system. Finally, we find the optimal values of the choice variables that minimize the expected maintenance cost per unit time for three different maintenance policies. In Chapter 4, the above defined Stage 1 is further subdivided into two parts: In the early part, called Stage 1A, healing happens faster than in the later stage, called Stage 1B. The system stays in Stage 1A until the net count of impacts reaches a predetermined threshold mAm_A; then the system enters Stage 1B and stays there until the net count reaches another predetermined threshold m1(>mA)m_1 (>m_A). Subsequently, the system enters Stage 2 where it can no longer heal. The system fails when the net count of valid shocks reaches another predetermined higher threshold m2(>m1)m_2 (> m_1). All other assumptions are the same as those in Chapter 3. We calculate the percentage improvement in the lifetime of the system due to the subdivision of Stage 1. Finally, we make optimal choices to minimize the expected maintenance cost per unit time for two maintenance policies. Next, we eliminate the restrictive assumption that all valid shocks and all positive interventions have equal magnitude, and the boundary threshold is a preset constant value. In Chapter 5, we study a system that experiences damaging external shocks of random magnitude at stochastic intervals, continuous degradation, and self-healing. The system fails if cumulative damage exceeds a time-dependent threshold. We develop a preventive maintenance policy to replace the system such that its lifetime is utilized prudently. Further, we consider three variations on the healing pattern: (1) shocks heal for a fixed finite duration Ď„\tau; (2) a fixed proportion of shocks are non-healable (that is, Ď„=0\tau=0); (3) there are two types of shocks---self healable shocks heal for a finite duration, and non-healable shocks. We implement a proposed preventive maintenance policy and compare the optimal replacement times in these new cases with those in the original case, where all shocks heal indefinitely. Finally, in Chapter 6, we present a summary of the dissertation with conclusions and future research potential
    • …
    corecore