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ABSTRACT 

In this study, a multi-state k-out-of-n: G system subject to multiple events is modelled 

through a Markovian Arrival Process with marked arrivals. The system is composed 

initially of n units and is active when at least k units are operational. Each unit is multi-

state, each of which is classified as minor or major according to the level of degradation 

presented. Each operational unit may undergo internal repairable or non-repairable failures, 

external shocks and/or random inspections. An external shock can provoke extreme failure, 

while cumulative external damage can deteriorate internal performance. This situation can 

produce repairable and non-repairable failures. When a repairable failure occurs the unit is 

sent to a repair facility for corrective repair. If the failure is non-repairable, the unit is 

removed. When the system has insufficient units with which to operate, it is restarted.  

Preventive maintenance is employed in response to random inspection. The system is 

modelled in an algorithmic and computational form. Several interesting measures of 

performance are considered. Costs and rewards are included in the system. All measures 

are obtained for transient and stationary regimes. A numerical example is analysed to 

determine whether preventive maintenance is profitable, financially and in terms of 

performance.  

1. Introduction 

Redundant systems present considerable research interest as a means of improving 

reliability and of avoiding possible catastrophic failure provoking severe damage and major 

financial losses. In the reliability literature, various types of redundant systems have been 

proposed, including cold, warm and hot, as well as the k-out-of-n: F and G system. In a 

cold standby system, the redundant units are not subject to failure before being put into full 
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operation; in a warm one, the units can fail at any time but at different rates; and in hot 

standby, all units can fail at any time, with an identical pattern of behaviour. These 

redundant systems can be applied in many different fields. For instance, in industrial 

engineering, any facility that requires a reliable electrical supply must have generating sets 

available, capable of supplying electricity in case of need.  The k-out-of-n: G is an n-system 

which is active if at least k units are operational. This system was introduced by Birnbaum 

et al. (1961) and it is applied in various fields, such as electronic, industrial and military 

systems to model telecommunications, oil pipelines, vacuum systems in accelerators, 

computer networks and space relay stations. A generalised k-out-of-n with parallel modules 

was developed by Cui and Xie (2005). Li and Zuo (2008) extended these systems for 

modelling complex engineering systems with weighted k-out-of-n systems. Recently, 

Balakrishnan et al. (2018) extends known results in the literature concerning comparisons 

of k-out-of-n systems in the exponential model to the Weibull model. Kumar and Ram 

(2017) have investigated the simultaneous effect of k-out-of-n: G/F and parallel redundancy 

in a complex industrial system by using Markov processes from a classical point of view. 

Redundant systems were introduced as a means of extending the lifetime of reliability 

systems and of avoiding the considerable losses of system failure. Reliability systems can 

also be improved by the application of appropriate maintenance policies, such as preventive 

maintenance, which is widely recommended as an effective way to minimise system 

downtime, prevent system failures and increase the benefit derived from the system. A 

maintained system where each component is repaired independently of the others according 

to an exponential distribution is developed by Papastavridis and Koutras (1992). Standard 

and advanced problems of maintenance policies for reliability models have been discussed 

by Nakagawa (2005). A reliability model and a maintenance policy for a k-out-of-n system, 

in which all components have the same properties and experience two dependent/correlated 

failure processes, is developed in  Song et al. (2012). Coit et al. (2015) describe a new k-

out-of-n system reliability model, appropriate when the minimum number of required 

components changes dynamically in response to failures, to maximize the utility of the 

available collection of functioning components. In this field, Chalabi et al. (2016) presented 

an optimised grouping strategy of preventive maintenance actions for multi-unit series 

production systems. This proposal had two main aims: to maximise the availability of 

resources and to minimise the impact of their cost on the total cost of the product. Recently, 

Julanto-Endharta and Young-Yun (2017) develop a preventive maintenance policy, based 

on the system critical condition which is related to the number of working components, for 

a circular consecutive-k- ot-of-n: F system.  

The literature also contains several interesting studies based on dynamic grouping 

strategies.  With a view to improving performance, replacement policies are also of interest 

in the field of reliability studies. Thus, Ahmadi (2014) described an inspection and 

replacement strategy for a deteriorating complex multi-component manufacturing system 
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undergoing damage processes and imperfect repair. On the other hand, Park and Yoo 

(2004) considered three different replacement policies for a group of identical units in 

which minimal repair was always considered. Among other outcomes, the expected cost 

rate under each policy was derived. A paper by Yoo (2011) proposed a maintenance policy 

based on deriving the failure count, the expected cost rate function and the optimum value. 

In another approach, Barron and Yechiali (2017) used a Markovian model to analyse a 

redundant deteriorating repairable system. This study considered state-dependent operating 

costs, repair costs dependent on the extent of the repair, and failure penalty costs. Dynamic 

programming showed that a generalised control-limit policy is optimal for the expected 

total discounted criterion for both cold and warm standby systems. 

A significant research advance for k-out-of-n systems is their generalisation to multi-

state k-out-of-n system reliability when components have different levels of performance or 

degradation. Multi-state systems (MSS) are of particular importance in ensuring reliability. 

Under traditional reliability theory, systems are considered in terms of binary models 

composed of only two states: up (performing) or down (failure). However, many real-life 

systems contain multiple components with different levels of performance. Lisnianski et al. 

(2010) provides a comprehensive presentation of MSS reliability theory. Modern 

mathematical methods for MSS reliability analysis and applications are given by Lisnianski 

et al. (2018). Levintin (2013) introduces a new general model, named the multi-state 

vector-k-out-of-n system. Lisnianski and Frenkel (2012) considered Markov processes in 

the analysis of multi-state systems, highlighting the benefits of their application. A k-out-

of-n: G system with multi-state components was modelled by using matrix analytic 

methods in Ruiz-Castro and Li (2011).   

With respect to applicability, serious calculation difficulties can arise when complex 

multi-state systems must be modelled. In order to obtain expressions in a well structured 

way, algorithms must be developed and the results implemented computationally and then 

applied. One way of analysing multi-state systems is to consider a Markovian environment, 

incorporating a phase-type (PH) distribution. Phase-type distributions were introduced and 

described in detail by Neuts (1975, 1981). A probability distribution is a phase-type 

distribution if and only if it is the distribution of the time until absorption in an irreducible 

finite Markov process with one state being absorbent and the other transient. Many well-

known continuous probability distributions are PH distributed, including the exponential, 

hyperexponential, Erlang, mixture of Erlang and Coxian among others. One of the main 

properties of PH distributions is that they comprise a dense class within the set of non-

negative probability distributions. Neuts (1975) pointed out that all discrete distributions 

with finite support are PH distributed. These types of distributions have also been used to 

model multi-state systems. Barron et al. (2004) developed an R-out-of-N system where each 

component was subject to repairable failure and the embedded distributions were phase-

type. Matrix algorithmic methods were used and several reliability measures (availability) 
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were built, using Markov renewal and semi-regenerative processes. This approach was later 

extended by Barron et al. (2006) to the situation in which multiple repairpersons were 

available. In addition, phase-type distributions were also introduced in this context by 

Barron (2015), who analysed a multi-component repairable cold standby system with 

multiple costs, such as downtime cost when failed components are not repaired or replaced, 

and fixed and replacement costs associated with the maintenance facility. Three classes of 

group replacement policies (m-failure, T-age and (m, T, τ)) were considered. Barron (2018) 

also extended this approach to include an R-out-of-N repairable system in which the 

lifetimes of the units followed a phase-type (PH) distribution, and derived the expected 

discounted costs under these three classes of group maintenance policies. For each one, a 

replacement and downtime cost was determined, using matrix-geometric methods.  

In this study, in addition to PH distributions, an important role is played by Markovian 

Arrival Processes (MAPs). In a MAP, the number of events in an underlying Markov chain 

are counted. MAPs were introduced by Neuts (1979) and a description in detail is given by 

He (2014). A special case of this is the Marked Markovian Arrival Process (MMAP), in 

which several types of arrivals are counted. This counting process can be seen in He and 

Neuts (1998). In all cases, the arrival rates of events can be customised for different 

situations, which highlights the inherent versatility of this class of process. MMAPs can be 

applied to model multi-state devices subject to multiple events with a dependence 

relationship. With PH processes and MAPs, the main results of multi-state complex 

systems can be expressed in a matrix-algebraic form. Multiple redundant systems have 

been modelled by considering discrete phase-type distributions and MAPs (Ruiz-Castro, 

2016a; Ruiz-Castro, 2016b; Ruiz-Castro and Dawabsha, 2019).  

A common assumption in reliability studies is that when a non-repairable failure occurs 

the unit affected will be replaced with negligible delay. However, this is not always the 

case and it may not even be the optimal option. Another possibility that has been 

considered is that in redundant systems whenever a unit undergoes a non-repairable failure 

it is removed and no further action is taken, providing the system still has enough units to 

continue functioning. Various such redundant systems have been modelled, assuming a 

tolerable loss of units. Ruiz-Castro and Fernández-Villodre (2012) studied a warm standby 

system with loss of units. A general cold standby system with loss of units is modelled by 

Ruiz-Castro (2015). Recently, this modelling has been extended and optimized by 

including several types of failures and multiple repairpersons by using Markovian Arrival 

Processes by Ruiz-Castro et al. (2018). 

In the present study, we consider a k-out-of-n: G system with multi-state components 

and loss of units, evolving in discrete time. This system is developed in a matrix 

algorithmic form. The embedded lifetimes in the system are PH distributed, and a 

Markovian arrival process with marked arrivals is assumed. The following potential events 

are considered: internal failures (repairable or otherwise), inspections and external shocks. 
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An external shock can produce extreme failure (non-repairable), cumulative damage and/or 

degraded performance, whether or not a failure occurs. Such a shock may affect one or 

more operational units. When a unit undergoes a repairable failure, it is sent to the repair 

facility for corrective repair. Internal and cumulative external damage is composed of 

various phases, and classed as minor or major according to the degree of damage produced. 

When a random inspection is performed, all operational units in the system are inspected 

and if major damage (internal or cumulative external damage) is observed the unit is sent to 

the repair facility for preventive maintenance. A system presenting the above-described 

features is described as complex due to the dependence between events and the complexity 

of the model, and because it cannot be broken down into a group of series and parallel 

systems. The general complex system is developed in a matrix, algorithmic and 

computational form and several interesting measures are incorporated in the transient and 

stationary regimes. A comparative analysis was performed between a system with and 

without preventive maintenance in order to determine the profitability of the latter. 

The model presented can be applied to real-life systems in fields such as civil, industrial 

and computer engineering, computer and communication systems, and power transmission 

and distribution systems. Thus, a car with a V8 engine that works if only four cylinders are 

firing can be modelled by a 4-out-of-8: G system. Another case would be that of a 

communications system with n transmitters, which may pass through multiple performance 

stages; here, the average message load may be such that at least k transmitters must be 

operational at all times or critical messages may be lost. Thus, the transmission subsystem 

would function as a k-out-of-n: G system. 

The paper is organised as follows. The system and the assumptions made are introduced 

in Section 2. The system is modelled in detail in in Section 3, from the state space up to the 

Markovian Arrival Process. The transient distribution is built in Section 4. Section 5 is 

focused on the stationary distribution and on interesting measures associated with the 

system. Costs and rewards are addressed in Section 6. A numerical example, comparing 

two similar systems, with and without preventive maintenance, is shown in Section 7. The 

main conclusions drawn are presented in Section 8.   

 

2. The system 

A complex multi-state k-out-of-n: G system that evolves in discrete time is considered. 

Initially, this system is composed of n units and it is active when at least k units are 

operational. Each unit is multi-state and its internal behaviour is partitioned into minor and 

major degradation stages. The units are subject to internal failure, external shocks and 

random inspections. Internal failure is provoked by wear and may be either repairable or 

non-repairable. When an internal failure occurs, the unit is sent to the repair facility for 

corrective repair. If the failure is non-repairable, the unit is removed provided the number 
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of units remaining is enough for the system to function. The system is reinitialised when 

the number of units falls to less than k, i.e. when the number of units is insufficient for the 

system to work. When the system has fewer than k operational units, it does not work and 

the units outside the repair facility are stopped while the non-operational units are repaired. 

In this case, the operational units are not subject to internal failure but they are exposed to 

external shocks.  

External shock can produce three different types of events; aggravated internal 

degradation, cumulative external damage and extreme failure. The first type can produce an 

internal failure, repairable or otherwise, the second provokes cumulative damage (multiple 

external damage stages) and the unit undergoes a non-repairable failure if a given threshold 

is exceeded. Finally, if a unit undergoes extreme failure it must be removed. 

Preventive maintenance is introduced in conjunction with random inspections. 

Periodical inspection is a particular case of the latter. When an inspection takes place, all 

operational units are observed and if the level of internal degradation and/or external 

cumulative damage warrants it, the unit is sent to the repair facility for preventive 

maintenance. The system verifies the following assumptions. 

Assumptions 

1. The lifetime of each unit follows a discrete-time phase-type distribution with 

representation  ,α T  of order m (number of internal operational stages).  

2. Each unit can undergo a repairable or non-repairable failure due to internal wear out. We 

assume two absorbing states, one for each kind of failure. The probability of failure 

depends on the internal operational stage. Thus, the probability of repairable failure or non-

repairable is given by the column vectors 0

rT  and 0

nrT , repectively. Clearly, the total 

absorbing vector produced by any transient state is given by 0 0 0

r nr   T e Te T T
1
.  

3. External shocks that produce events on the operational units occur according to a phase 

type renewal process. The time between two consecutive events is PH distributed with 

representation (, L) of order t.  

4. One external shock can produce, in each operational unit, external cumulative damage, 

aggravation of the internal degradation where a repairable or non-repairable failure can 

occur, or an extreme failure (non-repairable failure). 

4.1. External damage of each operational unit can pass through an indeterminate 

number of external degradation stages. The number of external degradation states is 

equal to d, and these are partitioned in minors (the first d1 states) and major stages 

(states d1+1,...,d). If the external degradation state is i, then the external shock changes 

                                                 
1
 Throughout the paper e denotes a column vector of ones with appropriate order 
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this one to state j with probability dij. These probabilities are contained in the matrix Q. 

A cumulative external damage threshold is reached from the external damage states 

after an external shock through the probability column vector Q
0
. If it occurs then the 

unit undergoes a non-repairable failure. Initially, previously to an external shock, the 

unit is in external degradation state 1 (no damage due to external shock). The initial 

distribution for external damage when one unit occupies the online place initially is  

= (1,0,...,0)1xd. 

4.2. One external shock can also produce modification in the internal degradation state. 

If the internal degradation state is i, then the external shock changes this one to state j 

with probability wij. These probabilities are given in the matrix W. An internal failure, 

repairable or not, can occur due to this fact from any performance state with a 

probability column vector 0

rW  and 0

nrW  respectively. In this case

0 0 0

r nr   W e We W W . 

4.3. One external shock can produce an extreme failure (non-repairable failure) in each 

unit. Each one occurs with a probability equal to 0
. 

5. When a non-repairable failure occurs, the unit is removed. The number of units in the 

system is always greater than or equal to k. If the number of units after non-repairable 

failures is less than k, then the system is reinitialized. 

6. While there are operational units, random inspections can occur. The time between two 

consecutive inspections is PH distributed with representation (, M) of order . 

7. The corrective repair time for any unit is PH distributed with representation (
1
, S1) of 

order z1. 

8. The preventive maintenance time is PH distributed with representation   (
2
, S2) of order 

z2. 

9. Each operational unit and the unit under repair can undergo events at the same time. The 

priority of event over the same unit is the following; non-repairable failure, repairable 

failure and major inspection.  

10. If the number of units in the system is greater than or equal to k, then the system is 

operational only if at least k units are operational. Otherwise, the system is stopped, in 
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which case the repairperson continue operating and external shocks and inspection can 

happen.  

11. Unit quality after a repair is as good as new. 

12. The times involved in the model are independent. 

Table 1 shows the main parameters and variables addressed in modelling the system. 

 Distribution/

probability 

vector 

Order 

Lifetime each unit  ,α T  m 

Transition probability of internal repairable failure 0

rT  m x 1 

Transition probability of internal non-repairable failure 0

nrT  m x 1 

Time between external shocks (, L) t 

Transition probability of external damage Q d 

Transition probability to the cumulative external threshold 

damage 

Q
0
 d x 1 

Initial distribution for the external damage  1 x d 

Transition probability of internal modification after external 

shock 
W m 

Transition probability of internal repairable failure after 

external shock 

0

rW  m x 1 

Transition probability of internal non-repairable failure after 

external shock 

0

nrW  m x 1 

Transition probability of internal failure after external shock 0
W  m x 1 

Extreme failure due to external shock 0
 scalar 

Time between consecutive inspections (, M)  
Corrective repair time (

1
, S1) z1 

Preventive maintenance time (
2
, S2) z2 

Table 1. Main parameters and variables in the model 

 

Figures 1 and 2 illustrate the behaviour of the system. Figure 1 shows the behaviour of a 

unit which is subject to internal failure, external shock and inspection, and the time phases 

until each of these events occur. The consequences of these events – corrective repair, 

degradation or extreme failure, and preventive maintenance, respectively – are also shown. 

The last unit to enter the repair facility determines the type of task the repairperson must 

perform. If a unit undergoes a non-repairable failure, it is removed. Figure 2 shows the 

system when there are l operational units (distinguishing between minor and major stages 

of degradation) with a units in the repair facility.  
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Figure 1. Behaviour of one unit of the complex system 
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Figure 2. Behaviour of units and the repair facility 

3. The model 

The modelling of the complex system described above is not easy. In this section the state-

space is given, several auxiliary matrices are built and several matrix functions are 

developed for the operational units. Examples are given.  

3.1. The state-space 

The system described in the section above is governed by a vector Markov process with a 

state space U that composed of three levels of macro-states. It is given by

 1, , ,n n kU U U U . The first level of macro-states, l
U , describes the situation when 

there are l units in the system. Each macro-state l
U  contains the macro-states l

aU ,  l units in 

the system and a of them in the repair facility (second level). Finally, the third level of 

macro-states contain the specific order of the units in the repair facility. Therefore, 



11 

 

 1, , ,n n kU U U U  where  0 1, , ,l l l l

lU U U U   ;   l = k,…, n (first level). The second 

level is given by  

  1 2

0 ,0; , , , , , ; 1,..., ; 1,...,l ll j j t     U v v v  with

  , ; 1,..., ; 1,...,h h h h hi u i m u d  v ,    

 
1 , , ; 1, 2 and 1, ,

a

l l

a x x yx y a  U U  for a =1,…, l 

where h
v  contains the phases of the internal degradation level ( hi ) and the cumulative 

external damage ( hu ) associated to the h-th operational unit. The elements 1 2, , , ax x x  

indicates the type of failure ordered in queue in the repair facility (xy =1, the y-th unit in 

queue is for corrective repair; xy =2, the y-th unit in queue is for preventive maintenance). 

The third level are given by  

  
1 1

1 2

, , , ; , , , , , , ; 1,..., ; 1,..., ; 1,...,
a

l l a

x x xl a j r j t r z      U v v v , a = 1,…,l1, 

  
1 1

1 2

, , , ; , , , , , ; 1,..., ; 1,...,
a

l l a

x x xl a j r j t r z  U v v v , a = l. 

The parameter j indicates the phase of the external shock time and   the phase of the 

inspection time. Finally, the corrective repair or the preventive maintenance phase of the 

unit that is being repaired is given by r.  

Throughout the paper, the order of these macro-states will be used in the modelling of 

the system. The order of the macro-state l

aU  is given by l

ao  and it is equal to 

    

 

   

 

1

1 2

1

1 2

; 0

2 ;

2 ;

l

l al a

a

a

m d t a

o m d t z z a l

t z z a l




 



    


       
    


                   for a = 1,…, l. 

Clearly, the order of the macro-state l
U  is given by 

0

l
l l

s

s

o o


 . 

Therefore, the phases of the macro-state l

aU  are the ones which occupy in the state space U 

the order        

1

1 1 1 0
1 0 1 0

1:
n a n a

l u l u l

a s sl n a l n a
u l s u l s

I I o I o I o I o


     
     

       . 

3.2. Types of events and operational conditions 

Each operational unit can undergo different types of events. These ones are partitioned as 
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 O: No events 

 br, bnr, bmr : br repairable failures, bnr non-repairable failures and bmr major 

inspections occur. The system is not restarted after this number of non-repairable 

failures. 

 NS: Non-repairable failures occur such that the system is reinitialized.  

Four important conditions are given according to the situation of the system. For this, we 

assume that the system is composed of l units with a of them in the repair facility at a 

certain time.  

Condition OP: The system is operational 

The system is operational when the number of operational units is greater or equal to k          

( l a k  ). 

Condition NOP: The system is not operational. 

The system is non-operational when the number of operational units is less to k                     

( 1l a k   ) 

Condition R: The system is reinitialized 

The system is reinitialized when the number of units that undergo a non-repairable failure 

(bnr) is greater than lk ( 1nrb l k   ) at a certain time. It is clear that the number of non-

repairable failures, the number of repairable failures (br) and the number of major 

inspections (bmr) always verify r nr mrb b b l a    . 

Condition NR: The system is not reinitialized 

When the number of non-repairable failures is less or equal to lk then the system is not 

reinitialized (  and nr r nr mrb l k b b b l a      ). 

rep indicates if one repair is produced (=1) or not (=0) 

3.3. Auxiliary matrices 

Several auxiliary matrices are defined to ease the modelling of this complex system. This 

section is focused on the modelling of the operational units.  

3.3.1. Inspection 

The following matrices will be considered when one inspection occurs. The matrix Ul and 

Vl, for l =1,2, are square matrices of order n and d respectively, whose element (s, t) is 

given by, 
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  1

1

1 ; 1
,

0 ; otherwise

s t n
U s t

  
 


 ,   1

2

1 ;
,

0 ; otherwise

s t n
U s t

 
 


, 

  1

1

1 ; 1
,

0 ; otherwise

s t d
V s t

  
 


 ,   1

2

1 ;
,

0 ; otherwise

s t d
V s t

 
 


. 

The matrices U and V will be taken into account when one inspection occurs and the 

internal degradation level and cumulative external damage are observed respectively. The 

subscripts 1 and 2 are associated with minor or major damages, respectively.  

3.3.2. Operational units 

Different functions are defined to model the behaviour of the operational units. The 

modelling of the shock and inspection is given in first place and later functions for the 

operational units are given. 

Shocks and inspection 

The matrix behaviour of external shocks and random inspections will depend on whether 

the system after events is reinitialized or not. External events occur independently to the 

performance of the system. If the system is reinitialized then the inspection time is also 

reinitialized although an inspection does not occur. The matrix function  ,rf shock insp   

give the matrix transition probability for external shocks and inspections. The variable 

shock and insp are equal to 1 and 0 if they occurs or not respectively. Under condition R it 

is  

 
0

0

0 0

; 0, 0

; 0, 1
,

; 1, 0

; 1, 1.

r

shock insp

shock insp
f shock insp

shock insp

shock insp

  


  
 

  
   

L Meη

L M η

L γ Meη

L γ M η

 

The case when the system is not reinitialized after events (NR) is given in Appendix A. 

Operational Units 

The following functions have been defined to model the behaviour of the internal 

degradation level and the external cumulative damage taking into account the phases of the 

operational units. 

1. Function C 

Transition matrix for the operational units when the system is composed of l units, 

of which a are in the repair facility, when bnr non-repairable failures, br repairable 

failures and bmr major inspections occur, in a specific failure order ( 1, , rb

r rk k  is the 

ordinal of the repairable failures, 1 , , mrb

mr mrk k  the ordinal of major inspections and 
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1 , , nrb

nr nrk k   is the ordinal of the non-repairable failures). The parameters shock and 

insp indicates if one external shock and one inspection occurs or not. This situation 

is described as  1 1 1, , , , , , ; , , , , , , , ,nr mrr b bb

r nr mr r r nr nr mr mrC l a b b b shock insp k k k k k k . The 

subscript will indicate the conditions OP, NOP, R and NR. 

2. Function d  

Transition matrix for the operational units when the system is composed of l units, 

of which a are in the repair facility, when bnr non-repairable failures, br repairable 

failures and bmr major inspections occur, where the failure order is not established. 

The parameter rep indicates if one repair is finished at this time. This situation is 

described as  , , , , ,r nr mrd l a rep b b b . The subscript of this function will indicate the 

conditions OP, NOP, R and NR. 

The case OP and R is describe next. The rest functions are further developed in Appendix 

A. 

3.3.3. Functions C and d under OP and NR 

 

In this section, we describe the transition matrix, considering each of the phases associated 

with the behaviour of the operational units. We then consider the particular case in which 

the system is operational (OP) and not restarted after transition (NR). 

To describe one situation, we assume that one external shock is not produced (L) but one 

inspection takes place ( 0
M ). If all operational units undergo an event and one repairing is 

not produced, then the inspection time is not reinitialized. Therefore, 

       0

 and 0  or  and 1
0,1

r nr mr r nr mr r nr mr
nr b b b l a rep b b b l a b b b l a rep

f I I
             

  L M η . 

In this situation, each unit of the system can undergo an internal failure, a non-repairable 

failure, a major inspection and no event. Given that an external shock is not produced in 

this case, then the failures are only possible from internal degradation.  

In the repairable case, it occurs and the external damage stage does not change. The unit 

goes to the repair facility ( 0

r T e ). Analogously it occurs for the non-repairable case. It 

happens ( 0

nr T e ) and it is removed with reinitializing. 

In this case, the inspection is produced. If only the internal degradation level (

 0

2 1 U e T Ve ) is major or the cumulative external damage state observed is major (

 0

2 e T V e ), then the unit goes to the repair facility.  

Finally, if no shock occurs and inspection, and the unit continues working then it is because 

there is no failure and in both cases minor damage ( 1 1U T V ). 

Then, weather all operational units (la) are considered and the failure order is established 

then 

 

 1 1 1

_ , , , , , 0, 1; , , , , , , , ,nr mrr b bb

op nr r nr mr r r nr nr mr mrC l a b b b shock insp k k k k k k                                

                                                       2 21 l a     ,   
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where 

 
   

0 1

0 1

2

0 0 1

2 1 2

1 1

; , ,

; , ,

; , ,

; otherwise,

r

nr

mr

b

r r r

b

nr nr nr

b

mr mr

k k

k k

k k

   


  
   

      




T e

T e

U e T V e e T V e

U T V

 

for  = 1,…,la. 

Example 1. Assume a 3out-of5 multi-state system with l = 4 units in which three units 

are operational (la = 3). Assume then that the first unit undergoes a non-repairable failure, 

that the second has a major inspection and that the third presents a repairable failure             

( 1 1 11, 3, 2nr r mrk k k   ). The necessary repair is performed. If the operational phases and 

external damage are considered for all units, then 

 

   
_

0 0 0 0

2 1 2

4,1,1,1,1, 0, 1;3,1,2

.

op nr

nr r

C shock insp 

          
 

T e U e T V e e T V e T e
 

In this case, the absence of external shock and the performance of the inspection are 

included as 

   

   
_

0 0 0 0 0

2 1 2

4,1,1,1,1, 0, 1;3,1,2 0,1

.

op nr nr

nr r

C shock insp f  

            
 

T e U e T V e e T V e T e L M η
 

When all operational units (la) are considered and the type of failure is not established, all 

combinations must be taken into account. In this case, 

 _ , , , , ,op nr r nr mrd l a rep b b b  

 

   
_

0 0 0 0

2 1 2 1 1

5,1,1,1,1, 0, 1;4,1,2

.

op nr

nr r

C shock insp 

            
 

T e U e T V e e T V e U T V T e
 

1 1 1 1

1 1

1

1 1

1 11 1

1,..., 1,...,

1,..., 1,...,
1,..., 1,...,

nr mr

b b b b br nr nr mr mr
nr mrr nr nr mr mr

u ub bu unr mr
nr r mr rnr r mr r

v b vmrr r mr nr mr nr

r r

nr nr

l a b l a bl a l a

k kk k k k k

k k k kk k k k
u b u b k k k k

u b u b
v b v b

 

      

    

  
   

 
 

    

 

      

1 2 1 1

1 21 1

0 0 1 1 1

1 1 1

_

0 1

, , , , , , ; , , , , , , , ,

,

r r

br
r r r r

nr mrr

l a b l a b l a

shock insp k k k k

b bb

op nr r nr mr r r nr nr mr mr

nrrep rep

C l a b b b shock insp k k k k k k

I I f shock insp



      

      

 
   

    

α ω
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Example 2. We assume the example 1 where the system undergoes a non-repairable 

failure, one major inspection and one repairable failure, without shock but with inspection. 

The order of event is not established and we assume that one repairing occurs. If the 

operational phases and external damage are considered for all units then it is  

   

   

 

_ _

_ _

_ _

4,1,1,1,1, 0, 1;1,2,3 4,1,1,1,1, 0, 1;1,3,2

4,1,1,1,1, 0, 1;2,1,3 4,1,1,1,1, 0, 1;2,3,1

4,1,1,1,1, 0, 1;3,1,2 4,1,1,1

op nr op nr

op nr op nr

op nr op nr

C shock insp C shock insp

C shock insp C shock insp

C shock insp C

     

     

       ,1, 0, 1;3,2,1 0,1nrshock insp f  

 

   

   

   

   

   

 

0 0 0 0

2 1 2

0 0 0 0

2 1 2

0 0 0 0

2 1 2

0 0 0 0

2 1 2

0 0 0 0

2 1 2

0

2 1

r nr

r nr

nr r

r nr

nr r

            

          
 

          
 

          
 

          
 

   

T e T e U e T V e e T V e

T e U e T V e e T V e T e

T e T e U e T V e e T V e

U e T V e e T V e T e T e

T e U e T V e e T V e T e

U e T V e e 0 0 0 0

2 nr r
          

T V e T e T e L M η

 

3.4. The Markovian arrival process with marked arrivals 

The system is modelled by a MMAP by considering the different types of events described 

in Section 3.2. The representation is given by 

  , ,
, ; , , 0, , ; ;1 ,nr r mrb b bO NS

nr r mr nr nr r mrb b b n b l k b b b n      D D D . 

The matrix D
Y
 contains the transition probabilities when event Y occurs, and is composed 

of three matrix block levels The third level corresponds to the transitions from the macro-

state U
l
 to U

q
 with q ≤ l or q = 0. This transition is given by the matrix , ,Y l q

R . These matrix 

blocks are composed of the matrices , ,Y l q

ijB  which correspond to the transitions between the 

macro-states from l

iU  to either q

jU or 1k

hE (level 2) under Y.  

The matrix D
Y
 contains the transition probabilities when event Y occurs, and is 

composed of three matrix block levels. The matrices , ,Y l q

ijB  are composed of matrix blocks 

corresponding to the transition from the macro-states 
1

, ,

, , i

Y l q

x xU  to 
1

, ,

, , q

Y l q

x xU . The matrix block 

 , ,

1 1, , ; , ,Y l q

ij j is s x xB  contains the transition probabilities described above where the type 
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of repair in the repair facility is ordered for the case before and after transition. These 

blocks are built by considering the auxiliary matrices defined in section 3.3.1 and 

developed in Appendix A (level 1).  

Next, the case br, bnr, bmr at least one event occurs and the system is not reinitialized, is 

described in detail. The rest is given in an algorithmic form in Appendix B. 

3.4.1. Matrix 
, ,nr r mrb b b

D  

The matrix block , ,nr r mrb b b
D  contains the transitions when bnr non-repairable, br repairable 

and bmr major inspections occur. At least, one event must have happened, 1  bnr + br + bmr 

 n. This matrix block has a matrix block order equal to (nk+1) x (nk+1), the system is 

composed with at least k units, 

 
   

, , , , ; ,

1   1

nr r mr nr r mr nrb b b b b b l l b

n k x n k



   
D R . 

The matrices 
, , ; ,nr r mr nrb b b l l b

R are different to matrix zero when the number of non-repairable 

failures does not provoke a restarting of the system ( nrb l k  ) and the number of 

operational units are greater or equal to the sum of events ( r nr mrl b b b   ). 

Therefore, for  max , , ,nr r nr mrl k b b b b n      

 
   

, , ; , , , ; ,

1 1

nr r mr nr nr r mr nr

nr

b b b l l b b b b l l b

ij
l x l b

 

  
R B , 

where the only elements different to matrix zero are when the number of operational units 

are greater or equal to the sum of events ( nr r mri l b b b    ). Also, the number of units in 

the repair facility after transition is the previous number plus the number of repairable 

failures and major inspections. If there is a unit being repaired then this one must be 

subtracted if the repair is finished. Then,   

1, ; 0

; 0

r mr r mr

r mr

b b i b b i i
j

b b i

     
 

 
. 

The auxiliary matrices described in Section 3.2.2 are used next. If initially there is zero 

units in the repair facility, then the system is always operational and then  

 , 0, 0; .

00 _ ,0,0, ,0,0nr r mr nrb b b l l b

op nr nrd l b
  

B . 
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Under OP condition,  

 the transition from zero units in the repair facility will happen up to the number of 

major inspections and repairable failures. The repairable failure (if any) begins the 

repair (it has priority versus major inspection) 

For br >0 or/and bmr >0 

    1, , ; .

0, 1 _, , ,0, , , ; 1;  1, ,

2;  1, ,

nr r mr nr

nr mr

b b b l l b s

b b j op nr nr r mr y r

y r

s s d l b b b s y b

s y b j



    

  

B β

 

 the transition from one unit in the repair facility to zero is due to the corrective repair or 

preventive maintenance finishes and only non-repairable failures are possible. 

   
1

, 0, 0; . 0

10 1 _ 1,1,1, ,0,0 ; 1,2nr r mr nrb b b l l b

op nr nr xx d l b x
  

  B S . 

 if initially the repair facility is not empty (i >0) and the unit being repaired does not 

finish it, then  

   

 

1

, , ; .

, 1 1 _, , | , , , ,0, , , ; , 1, ,

1;  1, , if 0

2;  1, ,

nr r mr nr

r mr r mr

b b b l l b

i i b b i b b i op nr nr r mr x y y

y r r

y r r mr

s s x x d l i b b b x s y i

s y i i b b

s y i b i b b



       

    

     

B S

 

 if initially the repair facility is not empty (i >0), also after transition there are units (i =1 

and (br >0 or bmr >0) or i >1) and the unit being repaired finishes, then 

    1

1

, , ; . 0

, 1 1 1 1 _, , | , , , ,1, , ,nr r mr nr

r mr r mr

b b b l l b x

i i b b i b b i op nr nr r mr xs s x x d l i b b b


        B S β  for

 

, 1, , ,

1;  1, , if 0 ,

2;  1, , .

y y

y r r

y r r mr

x s y i

s y i i b b

s y i b i b b

 

    

     

 

A similar reasoning can be carried out under option NOP. 

4. Transition probability matrix and transient distribution 

The complex system is modelled through a Markovian Arrival Process with marked arrivals 

as described in Section 3.4. It is well known that, in this case, the transition probability 

matrix associated to the Markov chain is given by 

, ,0

0    0        0

nr nr mr

nr r mr

nr r r

n b n b bn
b b bNS

b b b

  

  

    P D D D  . 
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The initial distribution of the system is [ , ]
n

st      θ α ω α ω γ η 0  where 

   
1

*
01, |st



   
  

γ 0 e L L γ I  is the stationary distribution of the Markov chain associated 

to the external shock with generator 
0L L γ  and A

*
 denotes the matrix A without the first 

column. 

The transient distribution can be expressed by considering the macro-states defined in 

Section 3.1. This one is given through the vector 


p . 

 1 1 1
0 1 0 1 1 0 1

, , , , , , , , , , , ,n n n n n n k k k
n n kU U U U U U U U U

         
  



p p p p p p p p p p ,  

where  l l
a a

U I

 p θP  is the probability of being in the macro-state l

aU  at time . 

5. Measures in transient and stationary regime 

 

Availability, reliability, mean times, conditional probability of failure and mean number of 

events are interesting measures of reliability, and are studied in transient and stationary 

regimes.  

The long-run distribution, , is obtained by matrix-analytic methods. This distribution 

has been calculated for the macro-states U
l
. The stationary probability of being in this 

macro-state is denoted by l
U
π , thus  1, , ,n n k

U U U
π π π π . The transition probability 

matrix can be expressed according to these macro-states. Let R
s,l

 be the matrix block in P 

associated to the transition from U
s
 to U

l
. The stationary distribution verifies πP π  

jointly to the normalisation condition. This equation by considering the matrix blocks is 

,
n s

n
s n

s k

U U
π π R ,      ,

l s

n
s l

s l

U U
π π R ;  l = k, ..., n1,     1s

n

s k

 U
π e . 

The solution is given by l n

l

U U
π π R  ;   l = k,..., n1 where 

   
1

1
, , ,

2
1

n
l n l s s l l l

l n
s l

I




 
 

 
   
 

R R R R I R  ;    l = k,...,n1. 

The vector n
U
π  is obtained from the first balance equation and the normalization 

condition. This is equal to 

 

1
*

1 1
, ,1,n

n n
s s s n n n

s k s k


 

 

    
       
     

 U
π 0 e R e I R R R  , 

where the matrix A
*
 is a matrix A without the first column.  

The vector l
U
π  can be partitioned by considering the macro-state 

l

aU . It is expressed as 

 
0

, ,l l l
l


U U U
π π π . 
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One of the most significant measures in reliability is the availability. The availability is the 

probability that the system is operational at a certain time . This is expressed according to 

the macro-states as 

 
0

l
a

n l k

U
l k a

A


 

p e
 . 

This value in stationary regime is 

0

l
a

n l k

U
l k a

A


 

π e . 

The reliability function is the probability of a given (harmful) event not taking place by a 

certain time. Two different reliability functions are defined: the distribution of the time up 

to first non-operational time and up to first restarting time. 

An event is defined as the first time that the system is non-operational because fewer 

than k units are operational. The distribution time of this event is PH distributed with 

representation  * *,θ P  where 
* *,θ P  are ,θ P  restricted to the macro-states l

aU  under the 

condition OP. The mean time up to first time that the system is not operational is 

 
1

* *


θ I P e . 

Given that the units in the system can undergo non-repairable failure (in which case they 

are removed), it is interesting to analyse the time elapsed until the first time that the system 

must be restarted. The distribution time of this event is PH distributed with representation 

 ',θ P  where '
P  is  

, ,'

0 0 0

nr nr mr

nr r mr

nr r mr

n b n b bn
b b bO

b b b

D
  

  

   P D . 

In analysing system behaviour, it is important to study the mean time in each macro-state 

associated with the system in question. The mean time in the macro-state l

aU  up to a certain 

time  is given by 

                                                          ,

0

l
a

m

l a U
m

 p e


  .                                                     (1) 

In the stationary regime it is 
, l

a
l a U
 π e .                                                                             (2) 

This value can be interpreted as the proportional time in this macro-state up to this time. 
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Clearly, from this measure the mean time in the macro-state l
U  is 

                                                           ,

0

l

l l a

a

   


 .                                                      (3) 

The proportional time in the macro-state l
U  is ,

0

l

l l a

a

 


 .                                              (4) 

The system developed in this work is subject to multiple events. The probability of an event 

occurring before time  is given by the conditional probability of the event. The conditional 

probability of a non-repairable failure occurring before time , requiring the system to be 

restarted, is 

  1 NS

NSCONPRO     θ P D e . 

In the stationary case it id given by NS

NSCONPRO  πD e .  

The conditional probability of happening nrb  non-repairable failures, rb  repairable failures 

and  mrb major inspection at time  is given by 

  , ,1

, ,
nr r mr

nr r mr

b b b

b b bCONPRO     θ P D e , 

and the stationary value is 
, ,

, ,
nr r mr

nr r mr

b b b

b b bCONPRO  πD e .  

Over time the system passes through several situations: operational, with the repairperson 

idle or with the repairperson busy. Accordingly, it is of interest to determine the mean time 

in which the system will be in each these situations, up to a given time. 

The k-out-of-n system is operational when at least k units are operational. The mean time 

that que system is operational up to a certain time  is given by 

                                                            ,

0

n l k

op l a

l k a



 

    .                                               (5) 

The proportional time that the system is operational (stationary regime) is    

                                                                  ,

0

n l k

op l a

l k a



 

  .                                                 (6) 

Another question of interest is to analyse the mean time elapsed while the repairperson is 

idle (busy) up to time . These mean times are respectively  
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                                      ,0

n

idle l

l k

   


    ,      ,

1

n l

busy l a

l k a 

    .                          (7) 

The proportional time that the repairperson is idle and busy (stationary regime) respectively 

is ,0

n

idle l

l k

 


  and ,

1

n l

busy l a

l k a 

  .                                                                                (8) 

Finally, multiple events can occur up to a certain time. The system modelled in this work is 

subject to different types of events given in section 3.2. For each one the mean number up 

to a certain time and in stationary regime is calculated. Table 2 shows these measures. 

 Up to time  Stationary case 

Mean 

number of 

repairable 

failures 

  , ,1

1 0 0 0

nr nr r

nr r mr

nr r mr

n b n b bn
b b brep u

r

u b b b

b



  



   

      p D e

(9) 

, ,

0 0 0

nr nr r

nr r mr

nr r mr

n b n b bn
b b brep

r

b b b

b
  

  

     π D e

(10) 

Mean 

number of 

major 

inspections 

  , ,1

1 0 0 0

nr nr r

nr r mr

nr r mr

n b n b bn
b b bmajor u

mr

u b b b

b



  



   

      p D e

(11) 

, ,

0 0 0

nr nr r

nr r mr

nr r mr

n b n b bn
b b bmajor

mr

b b b

b
  

  

     π D e

(12) 

Mean 

number of 

new systems 

  1

1

newsystems u NS

u



 



   p D e  

(13) 

 
newsystems NS   π D e  

 (14) 

Table 2. Mean number of events up to a given time, in the stationary case 

 

6. Costs and rewards 

Costs and rewards are associated with the system according to its operational phase. For 

each unit of time elapsed during which the system is operational, a reward equal to B is 

produced. However, a cost equal to R per unit of time for the repairperson must also be 

taken into account. When the system is not operational, a loss equal to C per unit of down 

time is provoked. The model incorporates a cost vector reflecting the state space of the 

system. 

While the system is operational, each unit has a cost per unit of time depending on the 

operational phase. This is expressed by the column vector c0. Any unit in the repair facility 

can come from a repairable failure or from a major inspection. Different costs for both 

cases depending on the repair phase are included.  The corrective repair and the preventive 

maintenance cost vector, depending on the repair phase, are given by cr and cmp 

respectively.  
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A cost vector associated to the state space has been built according to the macro-states l

aU , 

this column vector is denoted as l

ac  and it is equal to 

 
 

 
     

 

 
     

11
1 21 2

1

1

1

1
1 2

1

0 0

0 0 22

2

2

2

2
2

; 0

; 0;

; 0; 0;

l

l a aa

a

l a

a

a

l a l aa

a

l

d d tmd t

l a

d d t z zmd t z z

l md t
a

md t z z md t

B R a

B R

a l a k

C R a a l a k







 

 









 









      

     

   
  

  

 
         

 

e c e c e e

e c e c e e

e cr
e

e cpmc

e cr
e e

e cpm

 
 

1

1
1 2

1

2

2

2

; .
a

a

a

tt z z
C R a l




















  
       

  

e cr
e e

e cpm

 

 

The operator  is defined as m na b a e e a  being a and b column vectors with 

order n and m respectively. 

The cost vector for the state-space from the macro-states is 

 1 1 1

0 1 0 1 1 0 1, , , , , , , , , , , , 'n n n n n n k k k

n n k

  

c c c c c c c c c c . 

Besides considering the cost vector to add to the net reward obtained over time as the 

system operates, three fixed costs have been considered, according to the events taking 

place. Each time that a repairable failure or major inspection occurs, a fix cost equal to fcr 

or fpm takes place respectively. Each unit has a cost equal to fnu, therefore a full system 

costs nfnu. 

In section 5. the mean number of events up to a certain time is developed. From these 

measures the fix cost due to this measures are easily worked out,  repfcr   , 

 majorfpm    and   1 newsystemsn fnu    . In the last case the initial system is included. 

Thus, the mean net profit up to time  is given by 

                
0

1m rep major newunits

m

fcr fpm n fnu




              p c .               (15) 

The mean net profit ratio up to time  is    / 1    and in the stationary case the mean 

net profit per unit of time is  
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 lim lim
1

rep major newunitsfcr fpm n fnu
 

 
         

 
πc .                 

(16) 

7. Numerical Example 

In this section, we consider a 2-out-of-3: G system. This kind of system is motivated by 

situations such as the following. In a communications system with three transmitters, the 

average message load may be such that at least two must be operational at all times or 

critical messages may be lost. Therefore, a 2-out-of-3 system subject to multiple events is 

assumed. This numerical example illustrates the versatility of the model, modelling and 

analysing, in an algorithmic form, the effect of preventive maintenance applied to a 

complex reliability system such as that described in this paper. When preventive 

maintenance is introduced, new costs are incurred and the performance of the device 

usually improves. The following question then arises: does the performance improvement 

justify the extra cost? Is it profitable from an economic standpoint? A system comparison is 

performed, with and without preventive maintenance. 

Each operational unit passes through three levels of degradation. The first two are minor, 

but the last is major. The system is subject to external shocks, any one of which can 

produce an extreme failure in each unit with a probability equal to 0
=0.05, deteriorated 

internal behaviour, as shown in matrix W, and cumulative damage according to the 

transitions shown in matrix Q. In response to an external shock, the internal degradation 

can change between any two levels. This matrix is 

0.6 0.2 0.1

0 0.6 0.2

0 0 0.6

 
 

  
 
 

W . 

Also, an external shock can provoke an internal repairable or non-repairable failure. The 

probability vectors depending on the internal degradation level are given by 

0 0

0.1 0

0.2 ,    0

0 0.4

r nr

   
   

    
   
   

W W . 

Cumulative damage to the system is composed of three stages, rising to a threshold beyond 

which a non-repairable failure occurs. The two first states are minor external damage (in 

fact, the state 1 is no external damage) and the last one is major external damage. If one 

external shock occurs and one unit is in state 1 then it pass to state 2 or 3 with a probability 

equal to 0.3 or 0.7 respectively. If the cumulative external damage is in state 2 or 3 the unit 
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undergoes a non-repairable failure with a probability 0.4 and 1 respectively at next shock. 

The matrix is given by 

0 0.3 0.7

0 0 0.6

0 0 0

 
 

  
 
 

Q . 

Random inspections over the system takes place. When one inspection occurs the internal 

degradation level and the cumulative external damage of all operational units are inspected. 

The distribution times are given in Table 3. 

 

Internal time distribution External shock time distribution Inspection time 

 1,0,0α  

0.99 0.002 0

0 0.9 0.001

0 0 0.9

 
 

  
 
 

T  

Mean time: 102.02 

 1,0γ  

0.89 0.1

0.1 0.8

 
  
 

L  

 

Mean time: 25 

 1,0η  

0.75 0.1

0.25 0.4

 
  
 

M  

 

Mean time: 5.6 
 

Table 3. Phase-type distributions of the internal behavior, external shock time and inspection time 

 

The units in the repair facility can be there for corrective repair or for preventive 

maintenance. These time distributions are given in Table 4.  

Corrective repair time distribution Preventive maintenance time distribution 

 1 1,0β  

1

0.91 0.01

0 0.8

 
  
 

S  

 

Mean time: 11.67 

 2 1,0β  

2

0.006 0.002

0 0.008

 
  
 

S  

 

Mean time: 1.0081 
Table 4. Phase-type distributions in the repair facility 

 

As it has been mentioned above a comparison between the system with and without 

preventive maintenance is carried out. Firstly the proportional time in each macro-state up 

to a certain time has been calculated for both systems (with and without preventive 

maintenance) in transient and stationary case from (1-4). It is shown in Table 5. 
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  = 50  = 100  = 200  = 500 Stationary 

   3,0 / 1     0.5806  

(0.6082) 

0.4904 

(0.5343) 

0.4186 

(0.4911) 

0.3638 

(0.4649) 

0.3258 

(0.4473) 

   3,1 / 1     0.1583  

(0.1976) 

0.1475 

(0.1897) 

0.1313 

(0.1812) 

0.1167 

(0.1760) 

0.1065 

(0.1726) 

   3,2 / 1     0.0749  

(0.0590) 

0.0773 

(0.0607) 

0.0713 

(0.0595) 

0.0645 

(0.0588) 

0.0596 

(0.0583) 

   3,3 / 1     0.0528  

(0.0020) 

0.0559 

(0.0022) 

0.0520 

(0.0022) 

0.0471 

(0.0022) 

0.0436 

(0.0023) 

   3 / 1     0.8666  

(0.8668) 

0.7711 

(0.7869) 

0.6731 

(0.7341) 

0.5921 

(0.7019) 

0.5354 

(0.6804) 

   2,0 / 1     0.0798  

(0.0689) 

0.1449 

(0.1187) 

0.2143 

(0.1545) 

0.2722 

(0.1766) 

0.3127 

(0.1913) 

   2,1 / 1     0.0305  

(0.0502) 

0.0498  

(0.0764) 

0.0692 

(0.0920) 

0.0851 

(0.1015) 

0.0963 

(0.1078) 

   2,2 / 1     0.0231  

(0.0140) 

0.0342 

(0.0181) 

0.0434 

(0.0193) 

0.0506 

(0.0201) 

0.0556 

(0.0205) 

   2 / 1     0.1334  

(0.1332) 

0.2289 

(0.2131) 

0.3269 

(0.2659) 

0.4079 

(0.2981) 

0.4646 

(0.3196) 
Table 5. Proportional time in each macro-state for the systems with and without preventive maintenance (in 

parenthesis) 

This table shows that the operational time when there are three units in the system is greater 

when no preventive maintenance is performed, but not when there are only two. 

In this study, we calculated the mean operational time and the mean time during which 

the repairperson is busy (idle), both up to a certain time and in the stationary case from (5-

8). We can observe that the mean proportional operational time is 0.8112 for the system 

without preventive maintenance, a 8.89% higher than the case with preventive 

maintenance. The mean proportional time that the repairperson is busy is similar for both 

cases. It is given in Table 6. 

  = 50  = 100  = 200  = 500 Stationary 

   / 1op     0.8186 

(0.8748) 

0.7829 

(0.8426) 

0.7641  

(0.8268) 

0.7527 

(0.8174) 

0.7450 

(0.8112) 

   / 1busy     0.3396  

(0.3228) 

0.3647 

(0.3471) 

0.3671 

(0.3544) 

0.3641  

(0.3586) 

0.3615 

(0.3614) 

   / 1idle     0.6603  

(0.6772) 

0.6353 

(0.6529) 

0.6329  

(0.6456) 

0.6359 

(0.6414) 

0.6385 

(0.6386) 
Table 6. Mean proportional operational time and mean proportional time that the repairperson is busy and idle 

for the systems with and without preventive maintenance (in parenthesis) 
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Our model shows that the system performs better when there is no preventive maintenance. 

Nevertheless, it is interesting to examine the performance cost of this situation. For 

example, how many repairable failures, major inspections and system restarts would occur? 

These questions are illustrated in Table 7 (9-14). In the stationary case, the mean number of 

repairable failures per unit of time is 0.0344 when there is no preventive maintenance, 

which is 17.01% higher than when preventive maintenance is performed. Even more 

important is the number of system restarts, which is 137.5% higher in the absence of 

preventive maintenance.  

  = 50  = 100  = 200  = 500 Stationary 

   / 1rep     0.0350  

(0.0390) 

0.0330 

(0.0368) 

0.0314 

(0.0356) 

0.0302  

(0.0349) 

0.0294 

(0.0344) 

   / 1major     0.0363 0.0352 0.0340 0.0330 0.0323 

   / 1newsystems     0.0035 

(0.0094) 

0.0041 

(0.0112) 

0.0047 

(0.0122) 

0.0052 

(0.0129) 

0.0056 

(0.0133) 
Table 7. Mean proportional number of repairable, major inspections and new systems for the systems with 

and without preventive maintenance (in parenthesis) 

The reliability function for both systems up to first restarting has been plotted by 

considering the section 6.2.2. It is shown in Figure 3. The mean time up to first restarting 

for the model with preventive maintenance is 175.5678 and for the system without 

preventive maintenance is 72.2522. 

 

Figure 3. Reliability function between two consecutive restarting for both systems. 
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Rewards and costs 

The performance and the number of failures have been studied previously. Costs and 

rewards are included next. We assume that while the system is operational a reward per unit 

of time equal to B=10 is produced, the same amount than the lost when the system is not 

operational (C=10).  Also, each unit has a cost while is operational by considering the 

degradation level state given by the column vector c0 = (0.5, 0.7, 0.8)’. 

In corrective repair and preventive maintenance states, the cost varies according to 

whether a unit is being repaired. The latter case is only considered when preventive 

maintenance is scheduled. These costs are given by the column vectors cr= (2, 3)’ and cpm 

= (0.4, 0.6)’ respectively.   

Fixed costs have also introduced. Each time that a repairable failure and a major 

inspection occur a fix cost equal to fcr = 2 and fpm = 0.15 is produced respectively. Finally, 

a new unit cost fnu = 100. 

The mean net profit per unit of time has been studied for both systems by using (15) and 

(16). It is plotted in Figure 4 and some values are given in Table 8. We can observe that, for 

the case without preventive maintenance, the system is always deficit. The situation is 

different for the system with preventive maintenance. In this last case, the system is 

profitable from the time 273. The stationary value is 0.6850 monetary units per unit of time.  

 

Figure 4. Mean net profit per unit of time for both systems 
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  = 50  = 100  = 200  = 500 Stationary 

   / 1    3.2957 

(4.1574) 

 

1.2275 

(2.3966) 

0.2494 

(1.5294) 

0.3121 

(1.0040) 

0.6850 

(0.6520) 

Table 8. Mean net profit per unit of time for the systems with and without preventive maintenance (in 

parenthesis) 

The example shows that preventive maintenance may not improve system performance as 

much as would be desirable, but nevertheless it produces economic benefits. 

Computational times 

One of the main objectives of this study is to model a complex system using a well-

structured algorithmic methodology. The results obtained were determined by this 

standpoint, which enabled computational implementation. The order of the state space 

depends on the number of units reaching a high dimension when many units are considered. 

This order for multiple units presenting similar features, as described in the example, is 

given in Table 9. 

 n=1 n=2 n=3 n=4 n=5 n=6 n=7 n=8 

k=1 44 

(22) 

528 

(224) 

5060 

(2046) 

46200 

(18448) 

417164 

(166070) 

3757248 

(1494672) 

33820820 

(13452094) 

304398600 

(121068896) 

k=2  484 

(202) 

5016 

(2024) 

46156 

(18426) 

417120 

(166048) 

3757204 

(1494650) 

33820776 

(13452072) 

304398556 

(121068874) 

k=3   4532 

(1822) 

45672 

(18224) 

416636 

(165846) 

3756720 

(1494448) 

33820292 

(13451870) 

304398072 

(121068672) 

k=4    41140 

(16402) 

412104 

(164024) 

3752188 

(1492626) 

33815760 

(13450048) 

304393540 

(121066850) 

k=5     370964 

(147622) 

3711048 

(1476224) 

33774620 

(13433646) 

304352400 

(121050448) 

k=6      3340084 

(1328602) 

33403656 

(13286024) 

303981436 

(120902826) 

k=7       30063572 

(11957422) 

300641352 

(119574224) 

k=8        270577780 

(107616802) 

Table 9. Order of the state space for systems with multiple units and similar characteristics, with and without 

(in parenthesis) preventive maintenance 
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Nevertheless, in real life, the availability and reliability of redundant systems are improved 

considerably when only a limited number of units are included. To analyse the utility and 

importance of the algorithms applied to the system, we calculated the computational times 

needed to build the transition probability matrix, the stationary distribution and the different 

measures described in this paper and applied in the numerical example. The computational 

time depends on the processor used and also on whether multiple computers are connected 

in parallel. In the present case, the study was performed with a computer with the following 

characteristics: Intel (R) Core (TM) i5-5257U CPU @ 2.70GHz 2.70 GHz; 8,00 GB of 

RAM; MATLAB. Version 7.12.0.635 (R2011a).   

Given that the computational time required to calculate any measure is a random 

variable, the process was repeated 100 times. The mean and standard deviation values of 

these times (expressed in seconds) are shown in Table 10. 

 Mean time (seconds) Standard deviation 

D 28.2068 

(3.1011) 

2.2907 

(0.0406) 

 15.5850 

(1.1016) 

1.0931 

(0.0411) 

A 0.000069 

(0.000045) 

0.000082 

(0.000052) 

op  0.000136 

(0.000105) 

0.000195 

(0.000096) 

busy  0.000084 

(0.000067) 

0.000164 

(0.000079) 

idle  0.000102 

(0.000067) 

0.000614 

(0.000235) 

rep  0.4290 

(0.0531) 

0.0336 

(0.0076) 

major  0.4251 

 

0.0456 

 

newsystems  0.0135 

(0.0024) 

0.0019 

(0.000955) 

  0.0011 

(0.0011) 

0.000356 

(0.000304) 

Table 10. Computational times for calculating multiples measures associated to the system (case without 

preventive maintenance in parenthesis) 
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As can be seen, the greatest computational times are for the transition probability matrix 

and the stationary distribution. The remaining times are all of less than half a second and in 

many cases are negligible. 

8. Conclusions 

In this paper a multi-state complex k-out-of-n: G system is described and modeled in a 

matrix and algorithmic-computational form. The system is operational when at least k units 

are operational. Several types of events are considered in the modeling; failures, external 

shocks, inspections, corrective repair and preventive maintenance. Both repairable and non-

repairable failures are included in the system, the first one as a consequence of internal 

degradation or after one external shock. If a non-repairable failure occurs, the 

corresponding unit is removed without replacing. When the number of units in the system 

is less than or equal to n − k − 1, the system is replaced by a new one, otherwise it would 

never restart.  

The complex system has been modeled and several interesting reliability measures have 

been built in transient and stationary regime. Costs and rewards are introduced to analyze 

the profitability of the system. A numerical example shows this fact. Phase-type 

distributions and Markovian arrival processes with marked arrivals have been considered in 

the development.  

One of the main problems to be addressed in considering a complex multi-state system 

is that of the number of the phases associated with the model. As the number of units in the 

system increases, the order of the macro-state may become unmanageable. Nevertheless, in 

real problems with redundant systems it is often sufficient to consider a small number of 

units in order to improve the reliability of the system. With the method applied in this 

study, the results obtained from this complex modelling can be expressed in a matrix-

algorithmic and computational form, making it possible to implement the results 

computationally, thus facilitating applicability. The system we propose is highly 

generalisable and is applicable to a large number of simultaneous events. Alternatively, 

smaller cases could be addressed using the same approach. 
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In this study, a computational time analysis was performed for the numerical example 

proposed with a normal computer processor. The order of the macro-state in this example is 

equal to 5016 and the computational time can be considered reasonable. Of course, in other 

circumstances the computational time will depend on the processor used and on whether 

multiple computers in parallel are taken into consideration. 

In future research, the ideas presented in this paper can be extended in several ways. For 

example, different types of replacement policies, when minimal repair is considered, might 

be included. Another possibility could be to consider an indeterminate and variable number 

of repairpersons in the repair facility in a k-out-of-n: G system, a situation that has 

previously been applied in redundant systems such as warm and cold standby systems. 

Each time that a non-repairable failure occurs and the system can continue working, the 

number of repairpersons can be modified, thus enabling us to optimise the model.  
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 _ , , , ,op r r nr mrd l a b b b  

1 1 1 1

1 1
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1 1
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1,..., 1,...,

1,..., 1,...,
1,..., 1,...,

nr mr

b b b b br nr nr mr mr
nr mrr nr nr mr mr

u ub bu unr mr
nr r mr rnr r mr r

v b vmrr r mr nr mr nr

r r

nr nr

l a b l a bl a l a

k kk k k k k

k k k kk k k k
u b u b k k k k

u b u b
v b v b

 

      

    

  
   

 
 

    

 

 

1 2 1 1

1 21 1

0 0 1 1 1

1 1 1

_ , , , , , , ; , , , , , , , ,

,

r r

br
r r r r

nr mrr

l a b l a b l a

shock insp k k k k

b bb

op r r nr mr r r nr nr mr mr

n l a

r

C l a b b b shock insp k k k k k k

f shock insp



      

      

  
      
 

    

α ω α ω

 

 Under condition NOP and NR 

 

 1 1 1

_ , , , , , , ; , , , , , , , ,nr mrr b bb

nop nr r nr mr r r nr nr mr mrC l a b b b shock insp k k k k k k
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2 2

3 3
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Appendix B 

 

Matrix no events: O
D  

Matrix blocks different to zero, 

 
   

, ,

1 1

O O l l

n k x n k   
D R  , k  l  n  

 
   

, , , ,

1 1

O l l O l l

ij l x l 
R B  with i = 0,…, l and  j = max{0,i1},…, i. 

 Under OP and NR 

 , ,

00 _ ,0,0,0,0,0O l l

op nrd lB , 

If i = 0, … , lk and  j = max{0,i1},…, i then 

 

   

 

 

1

2

1

1

, , 0

10 1 _ 1

, , 0

1 1 _

1

_

,1,1,0,0,0 ; 1,2

1, 1
, ; , , ,1,0,0,0 ;

; 2, ,

0,
, ,0,0,0,0 ;

; 1, ,

O l l

op nr x

xO l l

ij j i op nr x

y y

op nr x

y y

x d l x

i j i
s s x x d l i

s x y i

i j i
d l i

s x y i






  
   

   
 

  
  

  

B S

B S β

S

 

 Under NOP and NR 

If i = lk+1, … , l and  j = max{0,i1},…, i then 

   
1

,1,1 0 0

10 1 1; 1,2O

xx x      B α ω L L γ η S  

   
1

,1,1 0

11 1 1 1 1; ; 1,2O

xs x x s    B L L γ S  

For l >1 

   
1

, , 0

10 1 _ 1,1,1,0,0,0 ; 1,2O l l

nop nr xx d l x  B S   
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        2

1

, , 0

, 1 1 1 1 _ 1 1
1

, , ; , , , ,1,0,0,0 ;
1,2; 2,...,

xO l l

i i i i nop nr x i i
y y

i l
s s x x d l i I I

x s y i   



   

  
B S β

        2

1

, , 0 0

, 1 1 1 1 11 1
, , ; , , ; 1, 2; 2,...,

xO l l

l l i i x y yl l
s s x x I I x s y i   

          B α ω L L γ η S β

   
1

, ,

, 1 1 1 _, , ; , , , ,0,0,0,0 ;
1,2; 1,...,

O l l

i i i i nop nr x

y y

i l
s s x x d l i

x s y i


 

  
B S  

   
1

, , 0

, 1 1, , ; , , ; 1,2; 1,...,O l l

l l l l x y ys s x x x s y i     B L L γ S  

Matrix no events: NS
D  

Matrix blocks different to zero, 

For bnr = 1,…, n  

 
   

, ,

1 1

NS NS l n

n k x n k   
D R  for    max , , ,min 1,nr nrl b k b k n    

 
   

, , , ,

0 1 1

NS l n NS l n

i l x l 
R B  with  max 1,0 , ,nr nri l b k l b      

 Under OP and R 

 
1

, ,

0 _2
0 0 0 0

, , , ,
nr nr r

i

nr r mr

l i b l i b bl i
NS l n

i op r nr r mr

rep b b b

d l i b b b
    

   

 
   

 
   B e e   

 Under NOP and R 

 
1

, ,

0 _2
0 0 0 0

, , , ,
nr nr r

i

nr r mr

l i b l i b bl i
NS l n

i nop r nr r mr

rep b b b

d l i b b b
    

   

 
   

 
   B e e   

Matrix no events: 
, ,nr r mrb b b

D  

Matrix blocks different to zero, 

For bnr, br, bmr s.a. 1  bnr + br + bmr  n, 

 
   

, , , , ; ,

1   1

nr r mr nr r mr nrb b b b b b l l b

n k x n k



   
D R  ;  max , , ,nr r nr mrl k b b b b n    . 

For bnr, br, bmr s.a. 1  bnr + br + bmr  l,  
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, , ; , , , ; ,

1 1

nr r mr nr nr r mr nr

nr

b b b l l b b b b l l b

ij
l x l b

 

  
R B  ;   max , nr r mri l k b b b    , nrb l k   and

1, ; 0

; 0

r mr r mr

r mr

b b i b b i i
j

b b i

     
 

 
 

 Under OP and NR 

 , 0, 0; .

00 _ ,0,0, ,0,0nr r mr nrb b b l l b

op nr nrd l b
  

B  

For br >0 or/and bmr >0 

    1, , ; .

0, 1 _, , ,0, , , ; 1;  1, ,

2;  1, ,

nr r mr nr

nr mr

b b b l l b s

b b j op nr nr r mr y r

y r

s s d l b b b s y b

s y b j



    

  

B β

   
1

, 0, 0; . 0

10 1 _ 1,1,1, ,0,0 ; 1,2nr r mr nrb b b l l b

op nr nr xx d l b x
  

  B S  

For i > 0  

   

 

1

, , ; .

, 1 1 _, , | , , , ,0, , , ; , 1, ,

1;  1, , if 0

2;  1, ,

nr r mr nr

r mr r mr

b b b l l b

i i b b i b b i op nr nr r mr x y y

y r r

y r r mr

s s x x d l i b b b x s y i

s y i i b b

s y i b i b b



       

    

     

B S

For (i =1 and (br >0 or bmr >0)) or i >1  

   

 

1

1

, , ; . 0

, 1 1 1 1 _, , | , , , ,1, , , ; , 1, ,

1;  1, , if 0

2;  1, ,

nr r mr nr

r mr r mr

b b b l l b x

i i b b i b b i op nr nr r mr x y y

y r r

y r r mr

s s x x d l i b b b x s y i

s y i i b b

s y i b i b b



          

    

     

B S β

 

 Under NOP and NR 

   
1

, 0, 0; . 0

10 1 _ 1,1,1, ,0,0 ; 1,2nr r mr nrb b b l l b

nop nr nr xx b l b x
  

  B S  

For (i =1 and (br >0 or bmr >0)) or i >1 
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1

, , ; .

, 1 1 _, , | , , , ,0, , , ; , 1, ,

1;  1, , if 0

2;  1, ,

nr r mr nr

r mr r mr

b b b l l b

i i b b i b b i nop nr nr r mr x y y

y r r

y r r mr

s s x x d l i b b b x s y i

s y i i b b

s y i b i b b



       

    

     

B S

   

 

1

1

, , ; . 0

, 1 1 1 1 _, , | , , , ,1, , , ; , 1, ,

1;  1, , if 0

2;  1, ,

nr r mr nr

r mr r mr

b b b l l b x

i i b b i b b i nop nr nr r mr x y y

y r r

y r r mr

s s x x d l i b b b x s y i

s y i i b b

s y i b i b b



          

    

     

B S β

 

 

 


