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system lifetime from adjusted convolution of inter-arrival cumulative distribution

functions

σF Standard deviation of the inter-arrival time distribution of valid shocks

σG Standard deviation of the inter-arrival time distribution of positive interventions
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c0 Cost of initial installation of a system

cp1 Cost of maintenance in Stage 1

cp2 Cost of maintenance in Stage 2

cf Cost of failure replacement

cI Cost of inspection

C Overall cost

CT Cycle time

tu The u-th inspection interval

vu Time at the u-th inspection

Cu Overall cost after the u-th inspection

CTu Cycle time at the u-th inspection

D(t) Cumulative damage to the system at time t

B(t) Time dependent boundary threshold, a system fails as soon as cumulative damage

D(t) crosses B(t)

N(t) Number of shocks to the system at time t

κ The rate of self-healing

d The distance by which when D(t) comes closer to B(t), an alarm goes off signalling

that the system is at risk

γ Survival probabilities

Γ(s) The incomplete gamma function for parameter s

t∗γ(d) Survival percentiles after an alarm is set off indicating that the system is at risk

cop Cost due to operation of the system

crev Revenue earned by the system

If Indicator whether a system is healable or non-healable
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ABBREVIATIONS

CDF Cumulative Distribution Function

PDF Probability Density Function

PMF Probability Mass Function

IID Independent and Identically Distributed

HPP Homogeneous Poisson Process

MSUT Mean System Up Time

MSDT Mean System Down Time

CPUT Cost Per Unit Time

VS Valid Shock

PI Positive Intervention

PM Preventive Maintenance

CM Corrective Maintenance

FT Failure Time

RL Residual Lifetime
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ABSTRACT

Recent years have seen a growth in research on system reliability and maintenance. Various

studies in the scientific fields of reliability engineering, quality and productivity analyses, risk

assessment, software reliability, and probabilistic machine learning are being undertaken in

the present era. The dependency of human life on technology has made it more important to

maintain such systems and maximize their potential. In this dissertation, some methodologies

are presented that maximize certain measures of system reliability, explain the underlying

stochastic behavior of certain systems, and prevent the risk of system failure.

An overview of the dissertation is provided in Chapter  1 , where we briefly discuss some

useful definitions and concepts in probability theory and stochastic processes and present

some mathematical results required in later chapters. Thereafter, we present the motivation

and outline of each subsequent chapter.

In Chapter  2 we compute the limiting average availability of a one-unit repairable system

subject to repair facilities and spare units. Formulas for finding the limiting average availability

of a repairable system exist only for some special cases: (1) either the lifetime or the repair-

time is exponential; or (2) there is one spare unit and one repair facility. In contrast, we

consider a more general setting involving several spare units and several repair facilities;

and we allow arbitrary life- and repair-time distributions. Under periodic monitoring, which

essentially discretizes the time variable, we compute the limiting average availability. The

discretization approach closely approximates the existing results in the special cases; and

demonstrates as anticipated that the limiting average availability increases with additional

spare unit and/or repair facility.

In Chapter  3 , the system experiences two types of sporadic impact: valid shocks that cause

damage instantaneously and positive interventions that induce partial healing. Whereas each

shock inflicts a fixed magnitude of damage, the accumulated effect of k positive interventions

nullifies the damaging effect of one shock. The system is said to be in Stage 1, when it can

possibly heal, until the net count of impacts (valid shocks registered minus valid shocks

nullified) reaches a threshold m1. The system then enters Stage 2, where no further healing

is possible. The system fails when the net count of valid shocks reaches another threshold
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m2 (> m1). The inter-arrival times between successive valid shocks and those between

successive positive interventions are independent and follow arbitrary distributions. Thus,

we remove the restrictive assumption of an exponential distribution, often found in the

literature. We find the distributions of the sojourn time in Stage 1 and the failure time of

the system. Finally, we find the optimal values of the choice variables that minimize the

expected maintenance cost per unit time for three different maintenance policies.

In Chapter  4 the above defined Stage 1 is further subdivided into two parts: In the early

part, called Stage 1A, healing happens faster than in the later stage, called Stage 1B. The

system stays in Stage 1A until the net count of impacts reaches a predetermined threshold

mA; then the system enters Stage 1B and stays there until the net count reaches another

predetermined threshold m1 (> mA). Subsequently, the system enters Stage 2 where it

can no longer heal. The system fails when the net count of valid shocks reaches another

predetermined higher threshold m2 (> m1). All other assumptions are the same as those

in Chapter  3 . We calculate the percentage improvement in the lifetime of the system due

to the subdivision of Stage 1. Finally, we make optimal choices to minimize the expected

maintenance cost per unit time for two maintenance policies.

Next, we eliminate the restrictive assumption that all valid shocks and all positive

interventions have equal magnitude, and the boundary threshold is a preset constant value.

In Chapter  5 , we study a system that experiences damaging external shocks of random

magnitude at stochastic intervals, continuous degradation, and self-healing. The system

fails if cumulative damage exceeds a time-dependent threshold. We develop a preventive

maintenance policy to replace the system such that its lifetime is utilized prudently. Further,

we consider three variations on the healing pattern: (1) shocks heal for a fixed finite duration

τ ; (2) a fixed proportion of shocks are non-healable (that is, τ = 0); (3) there are two

types of shocks—self healable shocks heal for a finite duration, and non-healable shocks. We

implement a proposed preventive maintenance policy and compare the optimal replacement

times in these new cases with those in the original case, where all shocks heal indefinitely.

Finally, in Chapter  6 , we present a summary of the dissertation with conclusions and

future research potential.

18



1. INTRODUCTION

Reliability theory has become an important field of study in the last few decades because

of advancement of technology and the dependence of human life on it. There is an ever

increasing need for reliable systems and to study their functioning. By definition, a set of

things that work together as part of a mechanism or an interconnected network is called a

system. It can be biological, environmental, economic, or industrial. Research on reliable

systems often spans across various disciplines including, but not limited to, engineering,

statistics, applied probability, economics, medical science, warfare, actuaries, and survival

analysis. In this dissertation, we look at industrial systems and explore some concepts in

industrial statistics. A major part of reliability analysis is studying life distributions and

system failure. Great emphasis is placed on studies of the system lifetime and on the measures

taken to maximize benefits from a system while monitoring the system’s condition. In the

next three sections of this chapter, we discuss some useful results in probability theory and

stochastic processes (Section  1.1 ); some useful mathematical results and concepts (Section

 1.2 ); and some concepts in reliability theory (Section  1.3 ), which lay the foundation for the

upcoming chapters and will be referred to time and again. Subsequently, in Section  1.4 

we briefly discuss the main essence of each chapter and the motivation behind the current

research.

1.1 Concepts in probability theory and stochastic processes

Let us discuss some basic concepts in probability theory which are necessary in the

upcoming chapters. The definitions in this section are taken mainly from  Ross et al.  ( 1996 )

and  Ross ( 2014 ).

For a discrete random variable X, the probability mass function (PMF) is defined as

p(x) = P (X = x), where p(x) ≥ 0 for at most a countable number of values of x such that for

all values x1, x2, x3, · · · assumed by X,
∑∞

i=1 p(xi) = 1. The cumulative distribution function

(CDF) is defined as F (x) =
∑

i|xi≤x p(xi).

For a continuous random variable X, the probability density function (PDF) is a non-

negative function f(x) such that P (X ∈ B) =
∫
B
f(x)dx, where x ∈ R and B is a set of
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real numbers. The set {x : f(x) > 0} is known as the support of the distribution. In

particular,
∫∞
−∞ f(x)dx = 1. The CDF F (x) for a continuous random variable X is defined as

F (x) = P (X ∈ (−∞, x]) =
∫ x

−∞ f(u)du. By the fundamental theorem of calculus, we have
d
dx
F (x) = f(x).

For a discrete random variable X with PMF p(x) for x ∈ S, where S is a countable set,

the expected value or mean of the random variable is E[X] =
∑
x

x p(x), and for a continuous

random variable X with PDF f(x) for x ∈ R, E[X] =
∫∞
−∞ x f(x) dx, provided the right

hand side is finite.

A convolution of two CDFs F1 and F2 is defined as the CDF F such that for all x ∈ R,

F (x) =
∫∞
−∞ F1(x− y)dF2(y) and is written as F = F1 ∗ F2 ( Chung ,  2001 ) [Page 152]. For

CDFs F1, F2, . . . , Fn of n independent continuous random variables X1, X2, . . . , Xn; the CDF

of Z = X1 +X2 + · · ·+Xn can be represented as F = F1 ∗ F2 ∗ · · · ∗ Fn. In particular, the

PDF of Z is

fZ(z) =

∫ ∞

−∞
· · ·

∫ ∞

−∞︸ ︷︷ ︸
n−1 times

fX1(z − x2 − · · · − xn)fX2(x2) . . . fXn(xn) dx2 dx3 . . . dxn (1.1.1)

In reliability theory, probability distributions with positive support (i.e; B ⊆ R+) are

especially useful. Some such notable distributions are mentioned below. We also mention the

form of their expectations, as these will be useful in Chapters  2 - 5 .

• Exponential distribution For some β > 0, the PDF of an exponentially distributed

random variable X is given by

f(x) = β exp{−βx}1{x ≥ 0} (1.1.2)

where 1{x ∈ A} is the indicator function that takes the value 1 when x ∈ A and zero

otherwise. The value β is called the rate parameter of the exponential distribution. The

expectation of an exponential distribution is E[X] = 1/β. In the upcoming chapters,

an exponential distribution with rate β is denoted as exponential(β).
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• Gamma distribution For some α > 0, β > 0, a random variable X is said to be

gamma distributed if the PDF is given by

f(x) =
exp{−x/β} xα−1

Γ(α)βα
1{x ≥ 0} (1.1.3)

The parameter α is called the shape parameter, and β is called the scale parameter. The

quantity Γ(α) =
∫∞
0

exp(−x)xα−1dx is called the gamma function. The expectation of

a gamma distribution is E[X] = αβ. In the upcoming chapters, a gamma distribution

with shape parameter α and scale parameter β is denoted as gamma(α, β).

• Weibull distribution For some α > 0, β > 0, a random variable X is said to follow a

Weibull distribution if the PDF is given by

f(x) =
α

β

(
x

β

)α−1

exp{−(x/β)α}1{x ≥ 0} (1.1.4)

The parameter α is called the shape parameter and β is called the scale parameter.

The expectation of a Weibull distribution is E[X] = β Γ(1 + 1/α). In the upcoming

chapters, a Weibull distribution with shape parameter α and scale parameter β is

denoted as Weibull(α, β).

• Log-normal distribution For mean parameter µ ∈ R and the scale parameter σ > 0,

the PDF of a log-normal distribution is

f(x) =
1

xσ
√
2π

exp

{
−(ln(x)− µ)2

2σ2

}
1{x ≥ 0} (1.1.5)

The expectation of a log-normal distribution is E[X] = exp(µ+ σ2/2) In the upcoming

chapters, a log-normal distribution with mean parameter µ and scale parameter σ is

denoted as lognormal(µ, σ).
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• Inverse-Gaussian distribution For mean µ > 0 and shape parameter β > 0, the

PDF of an inverse-Gaussian distribution is

f(x) =

√
β

2πx3
exp

{
−β(x− µ)2

2µ2x

}
1{x ≥ 0} (1.1.6)

The expectation of an inverse-Gaussian distribution is E[X] = µ. In the upcoming

chapters, an inverse-Gaussian distribution with mean parameter µ and shape parameter

β is denoted as inverse-Gaussian(µ, β).

Although there are many other important parametric life-distributions such as logistic,

generalized gamma, Gompertz, Pareto, generalized inverse-Gaussian among others, in the

upcoming chapters we will frequently refer to the above mentioned distributions. Figure

 1.1 shows the density curves of the exponential, Weibull, gamma, log-normal and inverse

Gaussian distributions with choice of parameters such that each has mean 1. These choices

will be frequently referenced in Chapters  2 - 5 . For any distribution, its parameter(s) can be

estimated from the data using one or more techniques such as the method of moments, the

maximum likelihood method, etc.

Next, let us discuss some ideas of stochastic processes that will be useful in this dissertation.

The concepts below are cited from  Ross et al. ( 1996 ) and  Ross ( 2014 ).

A stochastic process X = {X(t), t ∈ T} is a collection of random variables. The set T

is called the index set of the process and for each t ∈ T , X(t) is a random variable called

the state of the process at time t. The collection of all possible states of a stochastic process

is called state space. For countable T , we call the stochastic process X(t) a discrete-time

stochastic process and for continuum T , it is called a continuous-time stochastic process. A

realization X of a stochastic process is called a sample path.
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Figure 1.1. Densities of various distributions mentioned above each with mean 1.

Two processes {Xt}t∈T and {Yt}t∈T are said to be stochastically independent if for all n ∈ N,

and for all t1, t2, . . . , tn ∈ T , the random vectors (X(t1), . . . , X(tn)) and (Y (t1), . . . , Y (tn))

are independent, or their joint CDF can be expressed as

FXt1 ,...,Xtn ,Yt1 ,...,Ytn
(x1, . . . , xn, y1, . . . , yn)

= FXt1 ,...,Xtn
(x1, . . . , xn)× FYt1 ,...,Ytn

(y1, . . . , yn) ∀ x1, . . . , xn, y1, . . . , yn; ∀ n ∈ N (1.1.7)

There can be different types of stochastic processes. If for all n ∈ N, and for times

t1 < t2 < · · · < tn, P (X(tn) ≤ x|X(t1), . . . , X(tn−1)) = P (X(tn) ≤ x|X(tn−1)), then the

stochastic process X is called a Markov process, and for such a process, the future probabilities

are determined by the most recent values and not by the previous values.

A discrete-time stochastic process that takes on a finite or countable number of possible

values can be expressed as {Xn, n = 0, 1, 2, . . . }. If Xn = i, the process is said to be in state
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i with a fixed probability Pij that it will next be in state j. If P (Xn+1 = j|Xn = i,Xn−1 =

in−1, · · · , X1 = i1, X0 = i0) = Pij for all states i0, i1, . . . , in−1, i, j and all n ≥ 0, then such

a stochastic process is said to be a Markov chain where the probability of moving from

state i in the n-th step to state j in the (n + 1)-st step only depends on the fact that the

process was in state i in the n-th step. The conditional distribution of any future state

Xn+1 is independent of past states X0, X1, . . . , Xn−1 and depends only on the current state

Xn. In other words, a continuous-time Markov chain is also called a Markov process. The

Pij’s are called state transition probabilities and have the properties Pij ≥ 0 for all i, j ≥ 0;

and
∑∞

j=0 Pij = 1, i = 0, 1, · · · . The one-step transition probabilities Pij for all observed

states i = 0, 1, 2, . . . and j = 0, 1, 2 . . . are represented by the following transition probability

matrix.

P =



P00 P01 P02 . . .

P10 P11 P12 . . .
... ... ...

Pi0 Pi1 Pi2 . . .
... ... ... . . .


(1.1.8)

The n-step transition probabilities P n
ij that a stochastic process which in the k-th transition

(k = 0, 1, 2, . . . ) is in state i will be in state j after n additional transitions is given by

P n
ij = P (Xn+k = j|Xk = i), n ≥ 0; i, j ≥ 0 and is calculated by raising P to the n-th power

and taking the (i, j)-th element.

A stochastic process {N(t), t ≥ 0} is said to be a counting process if integer-valued N(t)

represents the total number of events that have occurred up to time t, where N(t) ≥ 0; for

s < t,N(s) ≤ N(t); and N(t)−N(s) equals the number of events that occurred in the interval

(s, t]. The arrival of an external impetus into a system is often characterized by counting

processes. A common counting process is the Poisson process (also known as homogeneous

poisson process (HPP)). The counting process {N(t), t ≥ 0} is said to be a Poisson process

with rate β (> 0) if the number of events in any interval of length t is Poisson distributed

with mean βt, that is, for all s, t ≥ 0,

P (N(t+ s)−N(s) = n) = exp{−βt}(βt)
n

n!
, n = 0, 1, . . . (1.1.9)
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In particular, E[N(t)] = βt. Let the time to the first event be denoted by T1 and that

between the first and the second event be denoted by T2. For time t, no event of the Poisson

process occurs in the interval [0, t], then P (T1 > t) = P (N(t) = 0) = exp{−βt}. That is,

T1 follows an exponential distribution with rate β. Therefore, an important property of

a Poisson process is that the inter-arrival time distribution of events in such a process is

exponential. Next, note that

P (T2 > t|T1 = s) = P (0 events in (s, s+ t]|T1 = s)

= P (0 events in (s, s+ t])

= P (T2 > t) (1.1.10)

which is free of s. Therefore, P (T2 > t) = E[P (T2 > t|T1)] = exp{−βt}. Among continuous

probability distributions, the above observed property is uniquely owned by the exponential

distribution. It is called the lack of memory or memorylessness property and is the reason for

the widespread use of exponential distribution in reliability models. Thus, for the exponential

distribution, the waiting time for the next event at any moment does not depend on how long

the system has been in the current state; rather, it depends on when we observe the system.

A state is called an absorbing state if once the system enters that state, it never leaves.

The state j is said to be accessible from the state i if P n
ij > 0 for some n > 0. If, moreover,

state i is accessible from state j, states i and j are said to communicate with each other. A

Markov chain is said to be irreducible if all states communicate with each other. Let fij

denote the probability that starting in state i the system ever goes to state j. The state i is

said to be recurrent if fii = 1 and transient if fii < 1. When it is possible to eventually get

from every state to every other state with a positive probability, a Markov chain is called a

ergodic or irreducible Markov chain.

For an irreducible ergodic Markov chain, lim
n→∞

P n
ij exists and is independent of i. Then

letting πj = lim
n→∞

P n
ij, for j ≥ 0; πj is the unique non-negative solution of

πj =
∞∑
i=0

πiPij, for j ≥ 0, and
∞∑
j=0

πj = 1 (1.1.11)
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Therefore, πj represents the long-run proportion of time that the Markov chain is in state

j. Such a πj is called a steady state probability and π = (π1, π2, . . . ) is called the stationary

distribution of the Markov chain.

Let Sn =
∑n

i=1 Xi, n ≥ 1 denote the arrival time of the n-th event, also called the waiting

time of the n-th event. The n-th event occurs before or at time t if and only if the number

of events occuring by time t is at least n; that is, N(t) ≥ n ⇔ Sn ≤ t. If the sequence of

non-negative random variables {X1, X2, . . . , Xn} is independent and identically distributed

with mean 1/β, then the resulting counting process {N(t), t ≥ 0} is a Poisson process with

rate β (see Proposition 2.2.1,  Ross et al. ( 1996 )) and is a renewal process. Essentially, in a

renewal process, the time between the first and second events has the same distribution as

the time until the first event, and these times are independent of each other. The occurrence

of an event indicates a renewal. We say that a cycle is completed every time a renewal occurs,

and the expected time to complete a cycle is called expected cycle time.

If a process can be in any one of the states 1, 2, . . . , N and at each time it enters state i

it remains there for a random amount of time having mean µi and then makes a transition

into state j with probability Pij, it is called a semi-Markov process because the probability

distribution of the future state depends only on the current state (and not on the history

of states visited so far); and the system stays in any state for a random duration whose

distribution depends on the current state and the immediately next state. The time spent in

a given state i is commonly termed sojourn time. Here, µi is the mean sojourn time in state

i.

For a semi-Markov process, the long-run probability that a system will be found in state i,

denoted by θi is independent of the initial state, and according to Proposition 4.8.1 of  Ross

et al. ( 1996 ) and the theorem that follows,

θi =
πiµi∑N
j=1 πjµj

(1.1.12)

where the denominator
∑N

j=1 πjµj is the expected cycle time.
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1.2 Some useful mathematical results and concepts

Now, let us briefly present some mathematical concepts that will be useful in obtaining

certain results in the following chapters.

• Laplace transformation For continuous random variable X that has a density

function denoted by f with the positive half line as support, the Laplace transformation

of f exists and is given by L(f, s) =
∫∞
0

exp{−sx}f(x) dx.

• Wald’s first identity ( Wald ,  1944 ) Let {Xn, n ∈ N} be a sequence of independent

and identically distributed random variables and let N ≥ 0 be an integer-value random

variable independent of the sequence {Xn, n ∈ N}. Suppose that N and Xn’ have finite

expectations. Then, for the random sum SN :=
∑N

n=1Xn, the following holds.

E[SN ] = E[N ] × E[X1] (1.2.1)

• Kullback-Leibler Divergence (KLD) measure For continuous random variables

X and Y with CDF F and G, respectively, and the corresponding PDFs f(x) and g(x)

for x ∈ R, the Kullback-Leibler divergence (KLD) of f and g is defined as

DKL(F ||G) =

∫ ∞

−∞
f(x) log

(
f(x)

g(x)

)
dx (1.2.2)

Note that equation (  1.2.2 ) is not symmetric in f and g. Here F is called the reference

CDF, and the divergence measure gives an idea of how similar the two distributions

are and hence is a measure of the goodness of fit of the two distributions. Therefore,

the KLD is a test statistic which can be used to test the hypothesis H0 : F = G vs

H1 : F 6= G. If the parametric forms of the distributions F and G are unknown, the

hypothesis can be tested using a simulated p-value as follows: Observations on F and G

are randomly generated N times (where N is preferably large), the KLD is calculated

each time and then the proportion of time the KLD values exceed the observed KLD is

the simulated p-value. A similar approach has been described to calculate a simulated

p-value for composite null models in  Robins et al. ( 2000 ).
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1.3 Relevant concepts in reliability theory

In this section, we present some relevant definitions and concepts in reliability theory

that will be used in the upcoming chapters.

The ability of an item to perform a required function under given environmental and

operational conditions and for a specified period of time is defined as its reliability ( Hoyland

and Rausand  ,  2009 ). The reliability function, denoted by R(t) is theoretically defined as the

probability of success (or being in the functional state) at time t. Mathematically, if T is

a random variable that denotes time, then R(t) = P (T ≥ t) = 1− F (t), where F (t) is the

CDF of the random variable T at time t. Note that R(t) ∈ [0, 1] and is also commonly known

as the survival function at time t. The reliability of a system is described by its ability to

function under specified conditions for a given period of time. The opposite of being in a

functioning state is called failure. The duration for which a system operates without failure

is defined as system lifetime. Figure  1.2 shows the survival (or reliability function) curves for

the choices of probability distributions mentioned in Section  1.1 each with mean 1.

A system is said to be repairable when we can renew or replace either the entire system or

its components so that the system becomes functional again. Each component of a system is

commonly termed a unit. After repair or replacement, a unit can sometimes regain its original

form (such a repair is called a perfect repair and it renders the unit as good as new) or can

be restored to a diminished quality than its previous state (such a repair is called imperfect

repair). When a system works at its full potential without failure, we call the system is in an

“up” state and, on the other hand, if the system is not in the working condition, we refer

to that as a “down” state. Hence, the average time the system is in the up state is called

the mean system up time (MSUT), and the average time that the system is in the down

state is called the mean system down time (MSDT). Ideally, we want to minimize MSDT to

maximize the lifetime of the system. Therefore, a system needs to be monitored to detect

any failure or potential failure at a future time.

There are various monitoring policies that can either take place continuously (continuous

monitoring) or at some specific intervals of time (periodic monitoring). Repair and replacement

are essential maintenance operations that aim at maximizing the lifetime of a system.
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Figure 1.2. The reliability function R(t) over time t for various lifetime
distributions mentioned in Section  1.1 each with mean 1.

Typically, there are two types of maintenance operations in reliability theory: corrective

maintenance (CM) and preventive maintenance (PM). In CM operations, components are

repaired and then reattached to the system so that the system is restored to satisfactory

operation in the shortest possible time. It includes diagnosis of the problem, repair and/or

replacement of faulty components, and verification of the repair action. Sometimes spare units

are used so that the system is not idle or down while repair is ongoing at the given moment,

and once the repair is complete and the spare component fails, the repaired component is

reattached to the system. If spare units may fail while kept as spare, they are said to be in

hot standby and otherwise in cold standby. In this research, we will only consider the case

where the spares are kept in cold standby. The time between such failure of a unit and the

beginning of a maintenance action or between failure of a spare unit and reattachment of the

repaired unit can be either sufficiently long during which the system will be once again in a

down state, or it may be instantaneous. In Chapter  2 we will mostly encounter a CM.
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For preventive maintenance (PM), the system is regularly inspected to detect any kind

of depreciation and risk of failure. If a system is replaced because of an alarm that, with

a high probability, it might fail within the next t units of time, then the time at which the

replacement occurs is called replacement time, and the lifetime unused as a result of early

replacement is defined as the residual lifetime. We will see such an example of time-based

preventive maintenance in Chapter  5 . The time taken for a unit to undergo repair is called

repair time, which is a random variable, and similar to lifetime distributions, repair-time

distributions also have positive supports. Often, the exponential distribution is the commonly

used repair-time distribution due to its lack of memory property, which ensures that the

probability of a repair continuing after a certain additional time depends on the observation

epoch rather than how long the repair has been going on.

An important measure of the reliability of a system is the ability to perform its required

function at a specified time or over a specified period of time and is defined as availability.

The availability of the system at time t is A(t) = P (item is functioning at time t). The mean

value of the instantaneous availability function over the period (0, T ] is called the average

availability and is denoted by A(T ) = 1
T

∫ T

0
A(t)dt. The long-run probability that the system

is functioning is called limiting availability, which is denoted by A(∞) = lim
t→∞

A(t), provided

that the limit exists. Oftentimes, under continuous life- and repair-time distributions and

continuous monitoring, the limiting availability exists; and equals limiting average availability,

or the limiting proportion of time the system is up; and is given by

Aav = lim
t→∞

A(T ) =
MSUT

MSUT +MSDT
(1.3.1)

When a down system returns to a working state, we say that a renewal happens. The

average time between successive renewals is called the expected cycle time (ECT). This

type of renewal process is known as an alternating renewal process because the state of the

component(s) of the system alternates between a functioning state and a repair state. If a

system is observed at certain intervals, at each observation epoch, the system is found to be

in a certain state, and one can find probabilities of transitioning from one state to another

due to failure or repair. This leads to the calculation of the long-term probability that a
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system is in a given state using the renewal theorem (see equation (  1.1.12 )). For further

reference, see  Barlow and Proschan ( 1996 );  Marshall and Olkin ( 2007 );  Hoyland and Rausand  

( 2009 ).

Sometimes, a working system can be affected by external impacts. Such examples in an

industrial system can be sudden power failures, inventory shortages, delay in repair, internal

mechanical faults, etc. Such impacts are widely studied in the literature and are commonly

known as “shocks”. As a result of a shock, a system can either fail instantaneously upon

which repair and replacement actions need to be taken, or it can accumulate some damage

(for example, damage in an electric circuit due to sudden voltage changes) that cumulatively

makes the system weak and prone to eventual failure. Sometimes, systems may recover from

the damages by maintenance operations or naturally by themselves. This phenomenon is

called “healing”. In our research, we have widely considered the type of healing that occurs

naturally without the need for any impetus. Such healing is defined as self-healing. While

in Chapters  3 and  4 we consider a type of self-healing where the net count of some of the

damaging impacts is nullified by the healing effect; in Chapter  5 we consider continuous

self-healing where healing is according to a continuous function of time.

Now, let us look at the factors that cause the system to slowly deteriorate in its working

conditions and eventually fail; see  Gorjian et al.  ( 2010 ). Over time, the fault tolerance capacity

of the system deteriorates, which is called degradation. Degradation can be categorized as a

diminishing boundary strength for tolerating the accumulation of damage in a system. We

use a non-increasing function of time t, denoted by B(t) as the decreasing boundary threshold

due to degradation in Chapter  5 . Age is another important factor that causes a system

to eventually lose its potential to function in the same way as compared to when it was

younger. During such situations, before the system deteriorates further, an age-replacement

is undertaken (  Nakagawa ,  2006 ). The effect of age on a system is incorporated in Chapters  3 

and  4 .

To determine the optimal time for a preventive maintenance action, we need to math-

ematically formulate a model that describes the associated costs and risks. Usually, it is

assumed that if the unit fails before a certain time, a corrective action will occur, and if it
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does not fail by that time, a preventive action may be taken. Thus, the optimal replacement

time can be found by minimizing the cost per unit time (CPUT ) that is given by

CPUT =
Total expected replacement cost per cycle

Expected cycle time (1.3.2)

The various associated costs are initial costs to install a system, cost of maintenance per unit

time, revenue earned from the system per unit time (it is a negative cost), cost of inspection,

cost of failure replacement, etc.

1.4 Outline of the dissertation

Let us now talk about the chapter-wise description of the current work. Each chapter has

its own detailed introduction and literature review sections.

The availability of a maintained system is an important measure of reliability that

results in improving its functionality, quality, efficiency, and ease of use. Heavy industries

such as power plants, metal casting, chemical production, space administration, etc. rely

on expensive technology for production and maintenance. The failure of such systems is

detrimental to industry and may lead to economic and logistic challenges. Therefore, the

system should be actively maintained by setting up a few repair facilities, and also storing

another auxiliary spare unit to serve as replacement when a system/damaged unit needs to

be repaired. There arise many logistical issues to address. For example, the system must be

continuously monitored to detect failure and immediately switch the operation to the spare

unit. Additionally, one must determine the optimal number of repair facilities to be created

and the optimal number of spare units to be reserved so that the overall availability of the

system is not compromised and the total cost is managed.

In Chapter  2 , we examine a one-unit repairable system with identical spare and repair

units in cold standby. If the system is continuously monitored and the repair time Y

distribution is exponential, let Yk|i(1 ≤ k ≤ i) denote the time when k out of i failed units

are repaired. Due to the lack of memory property of the exponential distribution, the

successive differences Y1|i; · · · ; (Yk+1|i − Yk|i); · · · ; (Yi|i − Yi−1|i) have independent exponential

distributions with parameters iβ; · · · ; (i− k)β; · · · ; β, respectively. Equivalently, Yk|i is the k-
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th order statistics among i IID exponential(β) random variables. The PMF of Ni, the number

of repairs completed during the lifetime of the current operating unit, can be calculated

using the Laplace transform technique. However, when the repair time distribution is other

than exponential, the lack of memory property does not apply and the successive differences

Y1|i; · · · ; (Yk+1|i−Yk|i); · · · ; (Yi|i−Yi−1|i) are not independent exponential distributions ( Sarkar

and Li  ,  2006 ). Therefore, except in the situation of having one spare and one repair facility,

it is necessary to keep track of the time to repair all failed units at all times. Thus,

identifying an embedded discrete-time Markov chain becomes difficult, and deriving the

limiting average availability requires a different technique. Therefore, in Chapter  2 we

introduce a computational technique such that we can incorporate non-exponential repair

time distributions.

In Chapters  3 and  4 , we look at systems which are exposed to external impacts. Here, we

are not limited to a one-unit system. It can be any type of system commonly found in the

reliability literature. We particularly categorize impacts according to their attributes with

respect to the deterioration in the state of the system. Impacts that have a damaging effect

are called valid shocks (VS), and those that may have a positive impact on the system that

leads to healing are called positive interventions (PI).

The literature discusses various types of shock model, as described in ( Nakagawa ,  2007 ;

 Zhao et al. ,  2018b ;  Gong et al. ,  2020 ):

• In a cumulative shock model, the system is considered to have failed when the cumulative

magnitude of the shocks exceeds a given threshold.

• In an extreme shock model, the system fails as soon as a massive catastrophic shock

occurs.

• In a run shock model, the system is considered failed when there is a series of shocks

whose magnitude is greater than a threshold.

• In a δ-shock model the system fails when the time lag between two adjacent shocks is

less than a given critical value δ.
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• In a mixed shock model two different shock models can be combined: For example, the

system fails as soon as the cumulative magnitude of the shocks exceeds a critical level

or r consecutive critical shocks occur, whichever occurs first.

In the current research, we are particularly interested in the cumulative shock model. We

consider that the damaging and healing-inducing impacts arrive independently, and these

define the corresponding stochastic paths. The system fails when cumulative damage at a

given time t exceeds a fixed predetermined threshold. While in Chapter  3 we divide the

lifetime of the system into two stages based on its age and healing ability, in Chapter  4 

the healable stage is further divided into substages. Note that the arrival of VS and PI are

according to independent point processes. The number of VS is a discrete random variable

with a given PMF, which we can obtain from the observed data, and the inter-arrival processes

of the VS and PI are stochastically independent. We present two approaches to describe

the underlying stochastic process and compute the distributions of healable stage duration

and the system lifetime. In Chapters  3 and  4 also, we remove the restrictive assumption on

the inter-arrival time distributions. In the literature, either shocks/impacts are explicitly

assumed to have exponential inter-arrival times, or even if they mention non-exponential

inter-arrival times, the illustrations involve exponential examples only. We generalize the

inter-arrival time distribution to be arbitrary. We also find optimal policies to replace the

system before its failure by minimizing the costs per unit of time. This approach of using

cost per unit time or sometimes revenue per unit time is a common optimization technique.

A major restriction of the setup in Chapters  3 and  4 is that we have limited ourselves

to counts of shocks and not their magnitude. We consider equal magnitude of VS, a fixed

threshold value, and a restrictive healing ability where healing is defined as nullification of

the effect of one VS. Therefore, in Chapter  5 we consider a more comprehensive stochastic

model of a system. In this chapter, we consider the varying magnitudes of shocks and their

varying behavior. We also consider that the system is experiencing internal degradation

( Gorjian et al.  ,  2010 ). We look into cases where (i) some shocks can heal up to a specific

duration, (ii) some shocks are healable while others are not, and (iii) there are two types of

shocks: healable shocks heal up to a fixed duration τ and non-healable shocks lead to sudden
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degradation of the system. Here, we design a new time-based replacement policy to replace

the system before it fails, while maximizing the lifetime and minimizing costs per unit time.

In this dissertation, we have defined phenomena such as accumulated system damage,

self-healing behavior, and system degradation by some particular mathematical models with

certain choices of parameters and hyperparameters. The following excerpt from  Hoyland and

Rausand ( 2009 ) [Page 12] justifies the importance of building mathematical models to study

the reliability of the system.

A mathematical model is necessary in order to be able to bring in data and

use mathematical and statistical methods to estimate reliability, safety, or risk

parameters. For such models, two conflicting interests always apply:

• The model should be sufficiently simple to be handled by available mathemat-

ical and statistical methods.

• The model should be sufficiently “realistic” such that the deduced results are

of practical relevance.

The choices of parameters that are used to define the systems in this dissertation are not

exclusive and may be modified as the practitioner deems appropriate.

To summarize, the main focus of this dissertation is to incorporate different approaches

to model systems which are supported by several spare units and/or repair facilities and

are exposed to external stress factors such as shocks having a deteriorating impact, which

sometimes can heal. In all the approaches that we take, we essentially figure out how the

system lifetime can be used to its utmost capacity. We illustrate our findings by considering

various choices of the necessary parameters that define the system. Each chapter has separate

sections that show detailed computational results to support our conclusions.
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2. COMPUTING LIMITING AVERAGE AVAILABILITY OF A

REPAIRABLE SYSTEM THROUGH DISCRETIZATION

Content in the following chapter was previously published by Reliability Engineering &

Systems Safety. 2020, January:  doi.org/10.1016/j.ress.2019.106616 .

Debolina Chatterjee and Jyotirmoy Sarkar are co-authors of the published work.

2.1 Introduction

We recall a well-studied model of a repairable system and some known results under

that model. However, several restrictive assumptions in this otherwise attractive model

severely limit its applicability. Here, we remove these restrictive assumptions by devising a

discretization approach, which reduces the burden of monitoring the system continuously,

reproduces the results in the known special cases, and extends to the most general setting.

2.1.1 Formulation of the problem

Consider a continuously monitored one-unit repairable system supported by several

identical spare units and several identical repair facilities. Initially, one unit is put on

operation; and all spare units remain on cold standby (that is, spare units cannot fail). Upon

failure of the operating unit, instantaneously a spare unit, if available, is put on operation

(this is called instantaneous installation to operation) and the failed unit is sent to a repair

facility (this is called instantaneous commencement of repair). Repair takes a random amount

of time; and after repair the unit is restored back to a level equivalent to a new unit (this is

called the perfect repair policy), which becomes a spare unit. We assume that lifetimes and

repair-times are stochastically independent. The system fails (and enters a down state) when

the operating unit fails and there is no spare unit on standby to take over the operation.

Thereafter, when at least one of the repairs is completed, the repaired unit is immediately

put into operation; and the system is revived.

The most important measure of success of a repairable system is the long run probability

that the system is functioning, or the limiting availability of the system. Oftentimes,
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under continuous life- and repair-time distributions and continuous monitoring, the limiting

availability exists; and then it equals the limiting average availability, or the limiting proportion

of time the system is up; and is given by

Aav =
MSUT

MSUT +MSDT
(2.1.1)

where MSUT denotes the mean system up time, and MSDT denotes the mean system down

time.

In the very special case of exponential lifetime and exponential repair-time distributions

with means µ and ν, respectively,  Barlow and Proschan ( 1996 ) [Page 206], provided the

limiting average availability for the case of one repair facility (r = 1) and either no or one

spare unit (s = 0 or s = 1). More specifically,

Aav(r = 1, s = 0) =
µ

µ+ ν
=

1/ν

1/ν + 1/µ
(2.1.2)

since, in this case, in equation ( 2.1.1 ) MSUT equals the mean time to failure and MSDT

equals the mean time to repair; and

Aav(r = 1, s = 1) =
µ(µ+ ν)

µ2 + µν + ν2
=

1/ν

1/ν + 1/µ− 1/(µ+ ν)
(2.1.3)

2.1.2 Availability in some other models

Allowing arbitrary distributions for the lifetime X and the repair-time Y ,  Sen and

Bhattacharjee ( 1984 ) [Page 283], derived the limiting average availability of a one-unit system

supported by one repair facility and one spare unit as

Aav(r = 1, s = 1) =
E[X]

E[max{X,Y }] (2.1.4)

Indeed, when equation (  2.1.4 ) is specialized to exponential life- and repair-time distributions,

one can recover equation (  2.1.3 ).
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In  Sarkar and Chaudhuri ( 1999 ), for a maintained system under continuous monitoring

and perfect repair policy, the instantaneous availability is determined using the Fourier

transform technique. Here repair-time is restricted to exponential, but lifetime is allowed

to be either gamma or exponential. Further, using the same technique but incorporating

several imperfect repairs before a replacement or a perfect repair, the availability is obtained

for exponential lifetime and repair-time distributions (with possibly different parameters) in

 Biswas and Sarkar  ( 2000 ).

Assuming periodic inspection, in  Sarkar and Sarkar  ( 2000 ), the system availability is

determined when repair is perfect, lifetime is either gamma or exponential and repair-time is

constant. The work is extended in  Biswas et al. ( 2003 ) by allowing an imperfect repair policy

and a random repair-time (specifically, exponential). Further in  Sarkar and Sarkar ( 2001 ), a

periodically inspected system supported by a spare unit and maintained with perfect repair

or upgrade is considered; and both the instantaneous availability and the limiting average

availability are determined for arbitrary lifetime, degenerate upgrade time and exponential

repair-time. The paper  Cui and Xie ( 2005 ) adds to the results of  Sarkar and Sarkar  ( 2000 )

by assuming that the periodic inspections take place at fixed time points after repair or

replacement in case of failure.

Allowing arbitrary continuous lifetime, but restricting to exponential repair-times only,

 Sarkar and Li ( 2006 ) derived the limiting average availability of a one-unit system under

continuous monitoring when there are s ≥ 1 spare units and r ≥ 1 repair facilities, by

studying the embedded Markov chain (tracked at selected observation times), which is said

to be in State i where (i = 0, 1, ..., s, s+ 1), if there are i failed units undergoing or awaiting

repair by that observation time.

Apart from a one-unit system, availability has been studied also for a k-out-of-N system.

For example, the authors of  de Smidt-Destombes et al. ( 2004 ) study the interactions among

several control variables such as preventive maintenance policy, spare part inventories, and

repair capacity while they affect the system availability. They present an exact as well as an

approximate method to develop a trade-off among these control variables. These authors

also advocate in  de Smidt-Destombes et al.  ( 2007 ) a block replacement policy in which all

failed and degraded components are repaired by a single repair shop while spare units take
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over the operation. They provide two approximate methods to analyze the relationship

between system availability and control variables. In both papers, they assume the component

lifetimes and repair-times are exponentially distributed.

For a k-out-of-N : G system,  Wu et al. ( 2014 ) and  Wu et al. ( 2018 ) allow the repair-time

to have a general distribution, but assume the lifetime to be exponential. The former paper

considered one repairman with a single vacation, while the latter considered a replaceable

repair equipment that may fail during the repair period and then be replaced by a new

one. Both papers used the supplementary variable technique and the Laplace transform to

calculate the availability. The supplementary variable technique is implemented in  Wang

et al. ( 2019 ) to derive state equations by defining the system state space and sojourn time in

each state to calculate the availability of the system.

2.1.3 Overcoming the challenge

Let us highlight a serious drawback in the models mentioned above to set the stage

for our current research. Although not realistic, researchers often assume exponential life-

or repair-time distribution to simplify mathematical derivations. They exploit the lack of

memory property of the exponential distribution to ensure that the successive differences

between life- or repair-times are independent exponential variables (with different rates), and

thereby they obtain closed form expressions for the limiting average availability.

Can we make the model more realistic by allowing arbitrary lifetime and arbitrary repair-

time distributions for any number of spare units and repair facilities? The challenge of

obtaining the limiting average availability under this general setting is expressed in  Sarkar

and Li  ( 2006 ) as follows:

When repair-time distribution is other than exponential, except for the case of

(r = 1, s = 1), one must keep track of the time on repair of all failed units at

all times. Therefore, there is no hope of identifying an embedded discrete-time

Markov chain, and the derivation of the limiting average availability will require

a technique different from the one presented in this paper.
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Some recent papers allow arbitrary life- and repair-time distributions: In  Levitin et al.  

( 2015 ), the authors studied single-component repairable systems supporting different levels of

workloads. They provide a numerical algorithm to evaluate the probability that the system

will perform a specified amount of work within a specified mission time, and the associated

conditional expected cost. The paper  Levitin et al.  ( 2017 ) models dynamic performance of

multi-state series parallel systems with repairable elements that can function at different load

levels and employs a universal generating function technique to assess system performance.

Here the instantaneous availability is evaluated at different load levels. Further, in  Levitin

et al.  ( 2019 ), the authors proposed a discrete-state continuous-time stochastic process to

evaluate instantaneous availability for a common bus performance sharing (CBPS) system.

The technique involves integration with respect to the joint distribution of (Tj, Xj) (where Tj

denotes the detection time of the failure of the j-th component and Xj denotes the operation

time).

The current chapter responds to the challenge posed in  Sarkar and Li  ( 2006 ) by adopting

a discretization approach: We inspect the system only at discrete time points; and we

intervene only when during inspection we find a unit has failed or the failed system is ready

for revival because at least one repair has been completed. In particular, if a repair has

been completed, but the operating unit has not failed, we do not intervene at all! Thus,

this approach essentially discretizes the time variable. Moreover, it relaxes the burden of

monitoring the system continuously to monitoring it periodically (at inspection times only);

hence, it is logistically preferable.

In Section  2.2 , we revisit the case of (r = 1, s = 1); model the stochastic process through

discretization as a semi-Markov process; derive the limiting average availability; and exhibit

its closeness to the analytic result equation ( 2.1.4 ) of  Sen and Bhattacharjee ( 1984 ). In

Section  2.3 , we extend the discretization method to the case of (r = 2, s = 1); that is, we

permit a second repair facility. Finally, Section  2.4 concludes the chapter with a summary.

2.2 Discretization approach for (r = 1, s = 1)

We assume the following:
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(A1) Lifetimes of the units are independent and identically distributed (IID) continuous

random variables with arbitrary cumulative distribution function (CDF) F on a positive

support.

(A2) Repair-times are IID continuous random variables with arbitrary CDF G on a positive

support.

(A3) Lifetimes and repair-times are stochastically independent.

(A4) Repair is perfect; that is, a repaired unit is as good as new.

(A5) The system is under periodic monitoring; that is, it is inspected at regular intervals.

(A6) Interventions are made only at observation epochs when an operating unit is found to

have failed or when the down system is ready for revival because at least one failed

unit has been repaired.

(A7) Whenever at inspection a unit is found to have failed, it is sent to the repair facility.

Repair commences instantaneously if the facility is free. Otherwise, the failed unit

awaits repair until the facility is free.

(A8) Installation to operation happens immediately when a failed unit is sent to repair (at

an inspection epoch) and there is a spare unit (as a result of an already completed

repair), or when the failed system is ready for revival at an inspection epoch because

one of the failed units has been repaired.

2.2.1 States of the system

Figure  2.1 depicts the states of the system (with explanations below), transition between

them and the random variables determining such transitions. We label the states of the

system to indicate the number of failed units:

(S0) State 0 means there is no failed unit.

(S1) State 1 means there is one failed unit.
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(S2) State 2 means there are two failed units. Additionally, we must use a second index to

indicate how long the repair on the first failed unit has been going on when the system

enters State 2, because that will determine how long the system will stay in State 2.

This second index splits State 2 into sub-states: We say the system is in State (2, k) for

k = 1, 2, . . . , N − 1, if repair on the first failed unit has been going on for a duration

k∆ when the other unit was detected to have failed. This is because we monitor the

system only at epochs that are multiples of ∆ from the start (or from system revival).

Note that by the time the system is detected to have failed, repair on the first failed

Figure 2.1. The state transition diagram for the (r = 1, s = 1) case. A
rectangle denotes an up state, and an oval denotes a down state. The status of
each unit is denoted as follows: P for operation; S for standby; R for repair
(with subscript indicating for how many inspection periods the repair has been
going on); and W for waiting for repair.

unit has been going on for a positive duration. Hence, there is no State (2, 0). Also,

repair is surely completed in N∆ duration. Hence, there is no State (2, N).

Let F and G denote the CDFs of the discretized lifetime and repair-time X and Y

respectively. Let p and q denote the corresponding probability mass functions (PMFs)

calculated by taking successive differences pk = F (k∆)− F ((k − 1)∆) and qk = G(k∆)−

G((k−1)∆) respectively, for k = 1, 2, . . . , N . Let R denote the CDF of max{X,Y } calculated
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by taking product R(k∆) = F (k∆)G(k∆), and let r denote the corresponding PMF of

max{X,Y } obtained by successive differences rk = R(k∆)−R((k−1)∆) for k = 1, 2, . . . , N .

We describe the transition probabilities between states of the system:

• At time t = 0, the system is in State 0, where one unit begins to operate and the

other spare unit is on cold standby. The system goes from State 0 to State 1 when the

operating unit is detected to have failed, repair starts on it and the spare unit is put

on operation instantaneously. Hence,

P0→1 = 1 (2.2.1)

The system never returns to State 0.

• From State 1, after an intervention, the system can go to two places:

(i) If repair on the failed unit is completed before the operating unit is detected to

have failed, then we do not record this transition at all. Instead, we wait until the

operating unit is detected to have failed at epoch k∆. Then we interchange the

roles of the two units; and say that the the system has re-entered State 1. This

happens with probability

P1→1 =
N∑
k=1

pk G(k∆) (2.2.2)

(ii) On the other hand, if the operating unit is detected to have failed at epoch k∆,

before the repair on the previously failed unit is completed, then the system goes

to State (2,k) with probability

P1→(2,k) = pk{1−G(k∆)} (2.2.3)

In this case, the freshly failed unit awaits repair to commence on it only after

the repair on the previously failed unit is found to be completed at an inspection
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epoch. While the system is in State 2 (that is, in any of the States (2,k)), no unit

is operating; and the system is down.

• From State (2,k) the system surely goes to State 1 when the ongoing repair on the first

failed unit is found to be completed at an inspection time and the repair on the second

failed unit begins. This happens with probability

P(2,k)→1 = 1 (2.2.4)

In the proposed discretization approach, we split the repair-time into N (to be determined

momentarily) intervals each of length ∆; and observe the system at epochs k∆ for k =

1, 2, . . . , N . For all practical purposes, we assume that repair is completed only at epochs

k∆, since those are the observation epochs (and possible installation epochs).

We choose N large enough so that the probability that the larger of lifetime and repair-

time (hence, either lifetime or repair-time) exceeds N∆ is very small (preferably under 0.001,

say); that is, {1−R(N∆)} ≈ 0.001.

The continuous-time stochastic process, after discretization, can be described as a Semi-

Markov Process since the probability distribution of the future state depends only on the

current state (and not on the history of states visited so far); and the system stays in any state

for a random duration whose distribution depends on the current state and the immediately

next state.

Moreover, from the above discussion of transitions and associated probabilities, we note

that the embedded discrete-time Markov chain is irreducible (that is, all states communicate

with one another); and since the state space is finite, the chain is recurrent.

Using the theory of semi-Markov processes (see  Ross et al.  ( 1996 )), we can find the

limiting proportion of time the system spends in each state. First, we find the stationary

probabilities {πj, j ∈ S} of the discrete-time Markov chain by solving the following state

equations:

πj =
∑
i∈S

πiPij, for all j ∈ S; and
∑
j∈S

πj = 1 (2.2.5)
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where Pij denotes the transition probability from State i ∈ S to State j ∈ S and the transition

probability matrix P , which is of dimension (N + 1)× (N + 1), is as follows:

P =

0 1 (2, 1) . . . (2, N − 1)



P0,0 P0,1 P0,(2,1) · · · P0,(2,N−1) 0

P1,0 P1,1 P1,(2,1) · · · P1,(2,N−1) 1

P(2,1),0 P(2,1),1 P(2,1),(2,1) · · · P(2,1),(2,N−1) (2, 1)
... ... ... . . . ... ...

P(2,N−1),0 P(2,N−1),1 P(2,N−1),(2,1) · · · P(2,N−1),(2,N−1) (2, N − 1)

=



0 1 0 · · · 0

0 ∗ ∗ · · · ∗

0 1 0 · · · 0
... ... ... . . . ...

0 1 0 · · · 0


(2.2.6)

In the P -matrix above, the row and the column labels stand for the corresponding states.

Note that although the transition matrix P is (N + 1) × (N + 1), it has non-zero entries

(denoted by *) only in the second row corresponding to transition out of State 1 and in the

second column corresponding to transition into State 1. Therefore, it is straight-forward to

solve equation (  2.2.5 ).

Second, we find the expected sojourn time in each state; that is, the expected time the

system stays in that state before it moves to a new state. If a unit is found to have failed at

inspection time k∆, it must have failed during the interval ((k− 1)∆, k∆]. For simplicity, we

assume that it has failed at the midpoint of the interval; that is, it was operating for the

initial ∆/2 period in the interval and was in failed state during the last ∆/2 period (but

was undetected). Although this is a rather crude assumption, it serves our purpose as far as

computation of limiting average availability is concerned.

The expected sojourn times µ0 and µ1 in State 0 and State 1 respectively, both equal

E[X] −∆/2 =
∑N

k=1 pk k∆−∆/2, since we do not record a repair until after the operating
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unit fails. We subtract ∆/2 from the expected discretized lifetime to account for the fact that

the system is actually down during the last ∆/2 duration within each State 0 and State 1.

The expected sojourn time µ(2,k) in any State (2, k) (a down state), is the expected

additional repair-time, given that the previously failed item has been undergoing repair for

k∆ time. For k = 1, 2, . . . , N , we have,

µ(2,k) = E[Y |Y > k] =
N−k∑
j=1

qj+k j∆

1−G(k∆)
(2.2.7)

There is no need to make a further adjustment of ∆/2 in equation (  2.2.7 ) as the system

is down the whole time while in State (2,k).

Next, using Corollary to Proposition 4.8.1 of  Ross et al.  ( 1996 ), the limiting probabil-

ity that the stochastic process will be found in State j (where j runs over all N States

1, (2, 1), (2, 2), . . . (2, N − 1)) is independent of the initial state and is given by

θj =
πjµj∑N
i=1 πiµi

(2.2.8)

The denominator
∑N

i=1 πiµi in equation (  2.2.8 ) is called the expected cycle time; and it is

the expected time between successive renewals (or entry into State 1). Having calculated all

θj’s, we define θ2 = θ(2,1) + · · · + θ(2,N−1) = 1 − θ1, since State 2 is the aggregate of States

(2, 1), (2, 2), . . . , (2, N − 1).

Since the system is up in States 0 and 1, and down in State 2, but the system never

returns to States 0, the limiting average availability of the system is given by

Aav = 1− θ2 = θ1 (2.2.9)

2.2.2 Computation and comparison

We want to compare the limiting average availability computed by equation (  2.2.9 )

under discretization approach to the value computed by equation (  2.1.4 ) under continuous

monitoring. As a test case, let us assume a Weibull(shape=3, scale=1.12) lifetime distribution
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with mean lifetime 1, and a Weibull(shape=2, scale=2) repair-time distribution with mean

repair-time 1.77.

Under discretization approach, since F (12)G(12) < 0.001, we decompose the time range

(0, 12] into N = 120 intervals of length ∆ = 0.1 each. We construct the CDFs of discretized

life- and repair-times, F and G, from the above mentioned Weibull distributions evaluated

at k∆ for k = 1, 2, . . . , 120. We construct the PMFs p, q, r as defined above by successive

differences.

Using equations (  2.2.1 -  2.2.4 ), we construct the transition probability matrix P , which

in this case is of dimension 121× 121. Recall from above that P has non-zero entries only in

row 2 and column 2. Below we partially display the second row rounding each entry to 3

decimal places; all other entries of the second column are 1.

P =

0 1 (2, 1) (2, 2) (2, 3) (2, 4) . . . (2, N − 1)



0 1 0 0 0 0 · · · 0 0

0 .252 .001 .005 .013 .024 · · · ∗ 1

0 1 0 0 0 0 · · · 0 (2, 1)
... ... ... ... ... ... . . . ... ...

0 1 0 0 0 0 · · · 0 (2, N − 2)

0 1 0 0 0 0 · · · 0 (2, N − 1)

(2.2.10)

Next, we calculate the stationary probabilities using equation ( 2.2.5 ):

We find π0 = 0, π1 = 0.572; and for State (2, k)’s (for k = 1, 2, . . . , N−1), the stationary proba-

bilities, rounded to 4 decimal places, are: {π(2,1), π(2,2), . . . , π(2,N−1)} = {0.0004, 0.0028, 0.0075,

0.0140, 0.0218, 0.0300, 0.0375, 0.0433, 0.0464, 0.0465, 0.0435, 0.0381, 0.0311, 0.0237, 0.0167,

0.0110, 0.0066, 0.0037, 0.0019, 0.0009, 0.0004, 0.0001, 0.0001, 0, 0, 0, · · · , 0}.

Lastly, the expected sojourn times in State 0 and State 1 are both obtained from

E[X] − ∆/2 =
∑N

k=1 pk k∆ − ∆/2 as µ0 = µ1 = 10.0014. Likewise, for State (2, k)’s

(for k = 1, 2, . . . , N − 1), we get the expected sojourn times (rounded to 4 decimal places) as

{µ(2,1), µ(2,2), · · · , µ(2,N−2), µ(2,N−1)} = {17.2677, 16.3901, 15.5837, · · · , 1.4000, 1.000}.
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Therefore, θ0 = 0 and θj’s for j = 1, (2, 1), . . . , (2, N − 1) are calculated using equation

( 2.2.8 ). In particular, θ2 = 0.4665872, and the expected cycle time
∑N

i=1 πiµi = 10.72444.

Moreover, using equation (  2.2.9 ), the limiting availability to be θ1 = 1− θ2 = 0.5334128.

Two comments follow:

(1) The exact analytic result, given in equation ( 2.1.4 ), yields the limiting availability to be

0.5334131. Thus, our discretization approach closely approximates the analytic result

previously derived by  Sen and Bhattacharjee ( 1984 ).

(2) For the case (r = 1, s = 1), the limiting average availability is 0.53341, while for

the case (r = 1, s = 0), using equation ( 2.1.1 ), the limiting average availability is

only 1/2.77 = 0.361. Thus, there is a significant increase (47.76%) in Aav with the

introduction of a spare unit.

For (r = 1, s = 1), having established the test case of Weibull life- and Weibull repair-times,

we carry out a more comprehensive study of various combinations of life- and repair-time

distributions, always ensuring mean lifetime=1 and mean repair-time=1.77. We report

in Table  2.1 the limiting average availability using both the analytical formula and the

discretization approach. We extend the time range to (0, 20] so that F (20)G(20) < 0.001,

but we keep ∆ = 0.1, implying that there are 201 states.

Highlighted in the table is the special case when both life- and repair-time distributions

are exponential. The analytic result for this case is already given in  Barlow and Proschan 

( 1996 )[Page 206],  Sen and Bhattacharjee ( 1984 )[Page 283] and  Sarkar and Li ( 2006 )(Corollary

2.2). Here we demonstrate that the result of the discretization approach (0.46971) closely ap-

proximates the analytic result (0.46926). The slight discrepancy is due to crudely subtracting

∆/2 from the expected sojourn times of the system up states; State 0 and State 1.

To increase limiting average availability we have allowed a spare unit to take over the

operation when the main unit has failed and is under repair. Of course, when there is only one

repair facility (that is, r = 1), then when the system is down only the first failed unit is under

repair while the other failed unit is awaiting repair. In order to improve the limiting average

availability of the system, one strategy is to introduce one more repair facility to expedite

the repair of the second failed unit. However, when there are multiple repair facilities, no
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Table 2.1. Availability under different life- and repair-time distributions for
the (r = 1, s = 1) case. The top entry of each cell is the availability computed
through discretization and the bottom entry using equation (  2.1.4 ).

``````````````̀Lifetime
Repair-time (1/1.77)

Exponential
(2, 0.855)
Gamma

(2, 2)
Weibull

Weibull (3, 1.12) 0.49341 0.52055 0.53341
0.49335 0.52055 0.53341

Gamma (2, 0.5) 0.48172 0.50413 0.51515
0.48167 0.50413 0.51515

Inverse-Gauss (1 , 1) 0.47221 0.49058 0.49867
0.47215 0.49057 0.49904

Exponential (1) 0.46971 0.48787 0.49677
0.46926 0.48746 0.49638

Lognormal (-0.5 , 1) 0.46263 0.47865 0.48946
0.46452 0.48062 0.48902

analytic result exists in the literature to allow both life- and repair-time distributions to

be arbitrary. The close agreement between the values obtained from equations (  2.1.4 ) and

( 2.2.9 ) gives us confidence to proceed with the discretization approach in case r > 1.

2.3 Discretization approach for (r = 2, s = 1)

Having justified the discretization approach when (r = 1, s = 1), we proceed to

apply it to the case of a second repair facility, where no analytic result is available. Here,

(r = 2, s = 1); that is, there are one operating unit, one identical spare unit and two identical

repair facilities.

2.3.1 States of the system

Figure  2.2 shows the states of the system (with explanations below), transitions between

them and the random variables determining the transitions.
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Figure 2.2. The state transition diagram for the (r = 2, s = 1) case. The
notations are the same as in Figure  2.1 .

Initially, the system is in State 0, where one unit begins to operate and the other unit is

on cold standby. We write the state-space of the system in two different notation—using one

or two indices—depending on the level of details required for the analysis:

S = {0; 1; 2+; 1+} = {0; (1, 0); (2, 1), . . . , (2, N − 1); (1, 1), . . . , (1, N − 1)}

where the first index i denotes how many units have been detected to have failed and are

under repair, and the second index j tells us how long the repair on the first failed unit has

been going on when the repair on the second failed unit just starts.

Let us explain the state space notation in terms of several examples:

• State 1 = (1, 0) means that one unit has been detected to have failed; it has been placed

on repair just now, so that its repair duration so far is 0; and the other unit has just

been placed on operation.

• Note that there is no State (2, 0) because by the time failure on the second unit is

detected, the repair on the first failed unit has already started and it has been going on

for a positive multiple of ∆. Also, there is no State (2, N) because if repair has been
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going on for duration N∆, it must have been completed. Likewise, there is no State

(1, N).

• State (2, 5) (provided, of course, N > 5) means that the system just entered State 2

(that is, both units are known to have failed); repair on the first failed unit has been

going on for 5∆ periods; and repair on the second failed unit has just started.

• State (1, 7) (provided, of course, N > 7) means that repair on the only failed unit has

been going on for 7∆ periods when the other unit is just put on operation (hence, there

is only one failed unit).

Recall that we only record those inspection epochs when a failure is detected or when a

down system is ready for revival because at least one unit has been repaired. In particular,

we do not record epochs when a repair is completed, but the other unit is still operating.

Next, let us write down the recorded transitions between states and the associated

transition probabilities. Recall that we monitor the system only at epochs ∆, 2∆, 3∆, . . .. As

in the case of (r = 1, s = 1), we assume that X is the discretized lifetime with CDF F and

PMF p; and Y is the discretized repair-time having CDF G and PMF q. Also, we choose N

such that the larger of life- and repair-times exceeds N∆ with probability at most 0.001.

• From State 0, the system surely goes to State 1=(1,0) after a random lifetime having

PMF p. Therefore,

P0→(1,0) = 1 (2.3.1)

• From State 1=(1,0), if the operating unit is still functioning at epoch k∆, we do nothing.

But if the operating unit is found to have failed at epoch k∆, then it must have failed in

the interval ((k−1)∆, k∆], which happens with probability pk = F (k∆)−F ((k−1)∆).

There are two distinct cases to consider:

(i) Repair is already completed by epoch k∆ (that is, repair is finished sometime

during (0, k∆]), which happens with probability P (Y ≤ k∆)=G(k∆). In this

case, interchange the roles of the two units—the repaired unit takes over the
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operation and the failed unit is put on repair. Hence, the system re-enters State

1=(1,0). Hence,

P(1,0)→(1,0) =
N∑
k=1

pk G(k∆) (2.3.2)

(ii) Repair is not completed by epoch k∆, which happens with probability P (Y ≤

k∆) = G(k∆). In this case, the system goes down, since both units have failed

and there is no other spare unit to take over operation. More specifically, the

system enters State (2, k). Hence,

P(1,0)→(2,k) = pk {1−G(k∆)} (2.3.3)

• When the system enters State (2, k), we continue to observe the system at regular

intervals of ∆, labeling those epochs as (k + 1)∆, (k + 2)∆, . . .. Two distinct cases are

possible:

(i) Both failed units are repaired during the same time interval, say, ((k+j−1)∆, (k+

j)∆], where j = 1, 2, . . . , N − k. To find the probability of this case happening,

add over all j the product of two independent probabilities: Given that the repair

of the first failed unit was not completed by time k∆, the conditional probability

that it is completed during ((k + j − 1)∆, (k + j)∆] is qk+j

1−G(k∆)
. The probability

that the second failed unit on which repair started at epoch k∆ is repaired during

the same time interval as the first failed unit is qj. Finally, note that in this case,

one of the repaired units (it does not matter which one, since the two units are

identical) is put on operation and the other becomes a standby spare; that is, the

system enters State 0. Therefore,

P(2,k)→0 =
N−k∑
j=1

qj
qk+j

1−G(k∆)
(2.3.4)

(ii) One of the repairs is completed, but not the other. In this case, the repaired unit

is put on operation; and the repair on the other unit, which has been going on for
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l∆ time, continues on, causing the system to enter State (1, l). The meaning of l is

explained below in two sub-cases depending on which repair is completed—repair

on the first failed unit, or repair on the second failed unit.

(a) Suppose that the first failed unit, on which the repair has been going on for k∆

time, is repaired earlier; and it happens during interval ((k+ l−1)∆, (k+ l)∆].

The conditional probability of this event is qk+l

1−G(k∆)
. The probability that the

second failed unit, on which repair had started freshly at epoch k∆, will not

be repaired within the additional l∆ duration is P (Y > l∆) = 1−G(l∆).

(b) Suppose that the second failed unit, on which repair started at epoch k∆,

gets repaired earlier; and it happens during interval ((l − 1)∆, l∆], which has

probability ql−k. Then the conditional probability that the first failed unit

will not be repaired by epoch l∆, given that the repair was not completed by

epoch k∆, is 1−G(l∆)
1−G(k∆)

.

Combining the two sub-cases (a) and (b), we have

P(2,k)→(1,l) = [qk+l + ql−k]
{
1−G(l∆)

1−G(k∆)

}
(2.3.5)

where we interpret qt = 0, unless 1 ≤ t ≤ N .

• From State (1,l), the system can go to one of two directions:

(i) If repair is completed before the operating unit fails, we do not record that

transition; instead, we wait until the operating unit fails, say during interval

((j − 1)∆, j∆] (for j = 1, 2, . . . , N), with probability pj, and the system goes

to State (1,0). The conditional probability that repair is completed before this

additional time j∆, given that the repair was not completed by time l∆, is
G((l+j)∆)−G(l∆)

1−G(l∆)
. Hence,

P(1,l)→(1,0) =
N∑
j=1

pj

{
G((l + j)∆)−G(l∆)

1−G(l∆)

}
(2.3.6)

where we interpret G(t∆) = 1, whenever t ≥ N .
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(ii) If the operating unit fails during interval ((k − l − 1)∆, (k − l)∆], which happens

with probability pk−l, before repair of the failed unit is completed, then the system

goes down and enters State (2, k), where k > l. Given that the ongoing repair is

not completed by time l∆, the conditional probability that the repair will not be

completed in additional time (k − l)∆ (that is, by epoch k∆) is 1−G(k∆)
1−G(l∆)

. Hence,

for k > l,

P(1,l)→(2,k) = pk−l

{
1−G(k∆)

1−G(l∆)

}
(2.3.7)

Considering all the above state transition, the transition probability matrix P is of dimension

2N × 2N and has the following structure:

P =

0 1 (2, 1) . . . (2, N − 1) (1, 1) . . . (1, N − 1)



0 1 0 · · · 0 0 · · · 0 0

0 ∗ ∗ · · · ∗ 0 · · · 0 1

∗ 0 0 · · · 0 ∗ · · · ∗ (2, 1)
... ... ... . . . ... ... . . . ... ...

∗ 0 0 · · · 0 ∗ · · · ∗ (2, N − 1)

0 ∗ ∗ · · · ∗ 0 · · · 0 (1, 1)
... ... ... . . . ... ... . . . ... ...

0 ∗ ∗ · · · ∗ 0 · · · 0 (1, N − 1)

(2.3.8)

The row and column labels in above matrix represent the corresponding states. As in the

case of (r = 1, s = 1), here also the continuous-time stochastic process, after discretization, is

a semi-Markov process. Hence, the analysis follows along similar lines.

First, we find the stationary probabilities {πj, j ∈ S} of the discrete-time Markov chain

by solving the state equations that are similar in structure to equation (  2.2.5 ), but involve

many more states.

Second, we find the expected sojourn time in each state. In fact, the expected sojourn times

µ0, µ(1,0) and µ(1,l) in States 0, (1, 0), (1, l), for 1 ≤ l ≤ N − 1, are all equal to E[X] −∆/2 =∑N
k=1 pk k∆−∆/2. [The subtraction of ∆/2 accounts for the system being down during the

last ∆/2 duration within each state 0, (1, 0), (1, l).] The expected sojourn time µ(2,k) in State
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(2, k) (a down state) is the expected value of the minimum of the two repair-times Y0 and

Yk having CDFs G(j) and G(k+j)−G(k)
1−G(k)

for 0 ≤ j ≤ N (with G(t) = 1 for t > N) respectively.

Using Problem 1.1 of  Ross et al. ( 1996 ), this expectation can be found as the sum of the

survival function evaluated at non-negative integers. That is, for k = 1, 2, . . . , N , we have

µ(2,k) = E[min{Y0, Yk}] =
N∑
j=0

P (Y0 ≥ j, Yk ≥ j)

=
N−k∑
j=0

[1−G(j∆)][1−G((k + j)∆)]
1−G(k∆)

(2.3.9)

Here, there is no need to make an additional adjustment of ∆/2 as the system is down

throughout the time it is in State (2,k).

Next, using Corollary to Proposition 4.8.1 of  Ross et al.  ( 1996 ), the limiting probability

that the stochastic process will be found in State j is independent of the initial state and is

given by expressions of the form equation ( 2.2.8 ), but with many more states. Let us define

State 1+ as aggregate of States (1, 1), (1, 2), . . . , (1, N − 1) and State 2 as aggregate of States

(2, 1), (2, 2), . . . , (2, N − 1).

Having calculated all θj’s, we define θ2 = θ(2,1) + · · ·+ θ(2,N−1). Since the system is up in

States 0, 1, 1+, and down in State 2, all states being recurrent, the limiting average availability

of the system is given by

Aav = 1− θ2. (2.3.10)

2.3.2 Computations and comparison

We compute the limiting average availability for various life- and repair-time distribu-

tions, always choosing mean lifetime 1 and mean repair-time 1.77. We have truncated all

distributions to have support [0, 12], which we have partitioned into 120 equal sub-intervals;

that is, we choose ∆ = 0.1. Consequently, there are 240 states in the state space S.
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The transition probability matrix P is 240× 240, whose entries, using equations (  2.3.1 -

 2.3.7 ) and rounded to 4 decimal places, are partially displayed:

P =

0 1 (2, 1) . . . (2, N − 1) (1, 1) . . . (1, N − 1)



0 1 0 · · · 0 0 · · · 0 0

0 0.2517 0.0007 · · · ∗ 0 · · · 0 1

0.3213 0 0 · · · 0 0.0075 · · · ∗ (2, 1)
... ... ... . . . ... ... . . . ... ...

0.0025 0 0 · · · 0 0.9975 · · · 0 (2, N − 1)

0 0.2875 ∗ · · · ∗ 0 · · · 0 (1, 1)
... ... ... . . . ... ... . . . ... ...

0 0.9997 0 · · · 0.0003 0 · · · 0 (1, N − 1)

(2.3.11)

The stationary probabilities are obtained by using equation (  2.2.5 ). They are π0 = 0.010,

π(1,0) = 0.265, and {π(2,1), π(2,2), π(2,3), . . . , π(2,N−2), π(2,N−1)} = {0.0002, 0.0013, 0.0035, . . . , 0, 0}.

The expected sojourn times in State 0, State (1, 0) and State (1, l) for l = 1, 2, . . . , N − 1

are all equal to 10.0016. Using equation (  2.3.9 ), {µ(2,1), µ(2,2), µ(2,3) . . . , µ(2,N−2), µ(2,N−1)} =

{12.549, 12.093, 11.665, · · · , 1.399, 1}.

Next, using equation ( 2.2.8 ), we see that the limiting probabilities that the stochastic

process will stay in a State j, for j ∈ S are respectively θ0 = 0.0106, θ(1,0) = 0.2794,

θ1+ = 0.3764 and θ2 = 0.4666. Also, the expected cycle time is 9.493. Finally, using equation

( 2.3.10 ), the limiting average availability is obtained as 0.66650.

Furthermore, in Table  2.2 , we display the limiting average availability calculated for the

same set of life- and repair-times as in the case (r = 1, s = 1) and the percentage improvement

when (r = 2, s = 1). Table  2.2 exhibits about 25-35% increase in limiting average availability

when a second repair facility is included in the presence of one spare unit.

56



Table 2.2. We compare the limiting average availability between cases
(r = 1, s = 1) and (r = 2, s = 1). The top entry in each cell is the computed
availability for (r = 2, s = 1); and the bottom entry is the percentage increase
in availability compared to the (r = 1, s = 1) case given in Table  2.1 .

``````````````̀Life-time
Repair-time (1/1.77)

Exponential
(2, 0.855)
Gamma

(2 , 2)
Weibull

Weibull (3, 1.12) 0.65807 0.66392 0.66650
33.37 27.54 24.94

Gamma (2, 0.5) 0.64764 0.65057 0.65171
34.44 29.05 26.51

Inverse-Gauss (1 , 1) 0.63903 0.63992 0.63943
35.33 30.44 28.23

Exponential (1) 0.63676 0.63718 0.63693
35.56 30.61 28.21

Lognormal (-0.5 , 1) 0.63024 0.63009 0.62537
36.23 31.64 29.88

2.4 Summary

Recall from Section  2.2 that our discretization approach closely approximates the analytic

result for the (r = 1, s = 1) case. Also, from Section  2.3 we note that for the (r = 2, s = 1)

case under exponential life- and exponential repair-times, the analytic result of  Sarkar and

Li ( 2006 ), yields a limiting average availability of 0.63871, while our discretization approach

using equation (  2.2.9 ) gives a limiting average availability of 0.63676. Hence, we claim that

the discretization approach works reasonably well; and it can be used to compute the limiting

average availability for any life- and repair-time distributions. We also find that as we

increase an additional spare unit from (r = 1, s = 0) to (r = 1, s = 1) or as we add an

additional repair facility from (r = 1, s = 1) to (r = 2, s = 1) there is a significant increase in

the limiting average availability of the system. We anticipate a further increase in limiting

average availability when r and s are increased, but that will also lead to increase in the

number of states and become computationally burdensome. Nevertheless, the discretization

approach presented in this chapter can yield the limiting average availability under any

arbitrary continuous life- and repair-time distributions for other systems as well.
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3. OPTIMAL REPLACEMENT POLICIES FOR SYSTEMS

UNDER SPORADIC SHOCKS AND HEALING IMPETUS

Content in the following chapter was previously published by Quality Technology and

Quantitative Management. 2022, April:  doi.org/10.1080/16843703.2022.2051846 .

Debolina Chatterjee and Jyotirmoy Sarkar are co-authors of the published work.

3.1 Introduction

Shocks are sudden external stimuli that cause changes to the normal functioning of

a system. In the last two decades, shock models have been studied quite extensively by

researchers across different domains. The threat posed by shocks to a system and the

associated costs have motivated researchers to find optimal solutions to problems of choosing

monitoring intervals, applying preventive repairs, and timing system replacement. The

primary purpose in this chapter is to incorporate arbitrary inter-arrival distributions of shocks

and healing impetus in describing the evolution of a system and in deciding optimally when

to replace a system. Let us review some existing papers in shock model literature which can

be broadly classified based on arrival times of shocks, types of shocks, aging and degradation,

amount of damage inflicted by the shocks, and healing. We also mention papers that discuss

different maintenance policies and give real life examples.

The arrival process of the shocks play an important role in reliability studies of a system.

Most common choices are homogeneous Poisson process (HPP) ( Rafiee et al.  ,  2015 ), non-

homogeneous Poisson process (NHPP) (  Sheu and Chien  ,  2004 ;  Chien and Sheu  ,  2006 ;  Chien

et al.  ,  2006 ), compound Poisson process (  Wang et al.  ,  2017 ), and “phase-type” distribution

( Zhao et al. ,  2018a ;  Eryilmaz and Kan  ,  2019 ).

Shocks can differ in types.  Eryilmaz and Kan  ( 2019 ) assumes two types of shocks that

arrive with certain probabilities: “fatal” shocks cause significant damage, but “non-fatal”

shocks do not destroy any component. Similarly,  Chien and Sheu  ( 2006 ) and  Chien et al.  

( 2006 ) consider type I (minor) and type II (catastrophic) shocks.
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Some papers consider system aging and degradation according to some well-defined

processes such as the Weiner process in  Cui et al.  ( 2016 );  Kong et al.  ( 2017 );  Dong et al.  

( 2020a );  Jia et al. ( 2020 );  Gao et al. ( 2020 );  Huang et al. ( 2021 ); linear degradation in  Rafiee

et al. ( 2015 ); and gamma process in  Wang et al. ( 2017 ).

Some shock models include a change point where the system behavior changes depending

on the degradation process, the count of shocks and the cumulative load from the shocks.

Accordingly, the lifetime is split into stages.  Gao et al.  ( 2020 ) incorporates two types of

phase change patterns (PCPs): PCP I occurs where the number of shocks reaches a threshold

(prefixed); and PCP II occurs when the cumulative load of shocks reaches a specified threshold.

 Zhao et al.  ( 2019 ) divides the component states into stages according to the degree of damage.

The concept of “self healing” is mentioned in  Cui et al.  ( 2018 ) and  Shen et al.  ( 2018 ).

The former paper derives bounds for reliability for systems experiencing shocks that arrive

according to some stochastic process, are classified into different types, and inflict different

magnitude of damage. In the latter paper, external shocks of varying intensities arrive

according to a Poisson process, and once the system has accumulated enough damage, it

loses its self healing ability.  Zhao et al.  ( 2018b ) study a two-stage mixture shock model where

all shocks inflict equal damage and self-healing occurs only in Stage 1. Other notable work

on self-healing include  Dong et al. ( 2020a ) and  Dong et al. ( 2020b ).

Several maintenance policies are studied to determine the optimal replacement rule. The

paper  Rafiee et al.  ( 2015 ) finds optimal inspection intervals that minimize the long run

average cost of system maintenance.  Dong et al.  ( 2020b ) uses Nelder-Mead downhill simplex

method to find the optimal age to replace the system by minimizing the long run average

cost per unit time. Here the system is also able to self-heal from external shocks. In  Tekin

and Eryilmaz  ( 2019 ), the system is replaced either on failure or at the optimal replacement

time (determined by minimizing the long-run average cost), whichever happens first.

Some applications of shock models in real life are provided in  Usynin and Hines ( 2007 );

 Lafont et al. ( 2012 );  Keedy and Feng ( 2013 );  Bhuyan and Dewanji ( 2017 ).

Taking a cue from the above-mentioned papers, we consider two types of impacts: “valid

shocks” (VS) that cause equal damage; and “positive interventions” (PI) whose accumulation

triggers a healing effect. The main objective of this chapter is to remove the restrictive
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assumption on the inter-arrival time distributions. The above-mentioned papers either

explicitly assume shocks/impacts have exponential inter-arrival times, or even if they mention

non-exponential inter-arrival times, they illustrate their methodologies with only exponential

examples. In this chapter, we generalize the inter-arrival time distribution to be arbitrary.

Whenever we can count the number of VS and PI, we can compute the distribution of Stage 1

duration and the system lifetime. We also allow system aging, which causes loss of healing

capability in Stage 2. Furthermore, we study three replacement policies, adapted from those

of  Zhao et al. ( 2018b ), each of which optimize the average cost per unit time to operate the

system under different scenarios.

This chapter is organized as follows: Section  3.2 describes the evolution of the system under

shock and healing, together with a real life example; Section  3.3 illustrates two approaches to

compute the distributions of Stage 1 duration and lifetime, and displays the results; Section

 3.4 describes the maintenance policies, and finally Section  3.5 summarizes the main findings

of this research.

3.2 The system set up and assumptions

We consider a system that is exposed to external impacts which can be broadly classified

into two types: impacts which cause damage to the system are called valid shocks (VS) and

those which do not cause any damage, rather induce a healing effect, sufficient accumulation

of which nullifies the damage due to one VS, are called positive interventions (PI). We assume

arbitrary inter-arrival times of VS and PI such that the system can experience long enough

lifetime before it fails or becomes severely damaged requiring replacement. We assume each

VS causes an equal amount of damage; and likewise each PI contributes equally towards

healing.

Let {Xi; i ∈ N} denote the inter-arrival times of VS; and let them be independent

and identically distributed (IID) with an arbitrary distribution function F . Similarly, let

{Yj; j ∈ N} denote the inter-arrival times of PI; and let them be IID with another distribution

function G. Further, assume that the arrival process of PI is stochastically independent of

the arrival process of the VS.
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The PIs help the system heal from the damages inflicted by the VS. The accrual of k

cumulative PIs nullifies the damage caused by one VS, thereby reducing the net number of

VS by one. Here, the net number of VS equals the number of VS that have arrived minus the

number of VS that have been nullified by PIs. Unlike in  Zhao et al. ( 2018b ), we subscribe to

the notion that the healing effect of an already occurred PI is not eliminated by the arrival

of a VS. The effect lingers on, and k cumulative PIs (whether or not interrupted by a VS in

the interim) nullify one VS.

However, we must not forget that the system is also aging: It is not practical to assume

that the healing effect will go on forever. Therefore, we divide the system lifetime into two

stages. In Stage 1, the system retains the capacity to heal. After the net number of VS

reaches a given (prefixed) threshold m1, we say the system has endured sufficient amount

of damage so that it has lost its capacity to heal, and as such the system has transitioned

into Stage 2. The epoch when the system transitions from Stage 1 to Stage 2, is called the

change point for the system. In Stage 2, even if the PIs keep coming, they do not heal the

system. Therefore, in this stage, the net count of VS only keeps on increasing as the VSs

arrive. When it reaches another prefixed threshold m2 (> m1), the system fails, and requires

replacement. We denote the sojourn time in Stage 1 by T1, and time to system failure as T2,

implying that the sojourn time in Stage 2 is T2 − T1. These notions are illustrated in Figure

 3.1 .

In  Zhao et al.  ( 2018b ), the shocks that do not cause significant damage and the time-lag

from the previous shock exceeds the threshold δ are called “δ-invalid” shocks and a running

trail of k consecutive δ-invalid shocks can trigger a self-healing behavior. But, in this chapter,

we have considered that healing occurs when the cumulative effect of k PIs nullify one valid

shock. Furthermore, the PIs need not be δ-invalid. Thus, although our initial set-up is quite

similar to that of  Zhao et al. ( 2018b ), our motivation and focus are quite different.

A practical example

The model described in this chapter applies to a practical maintenance problem, borrowed

from  Usynin and Hines ( 2007 ). Consider an Electronic Power Supply System made up of k

components, numbered 1, 2, · · · , k. Sudden changes in temperature or abrupt vibrations are

considered valid shocks that inflict cracks in printable circuit board causing equal amount
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Figure 3.1. The arrival of VS (denoted by N) and PI (denoted by ◦) illustrate
the net count of VS, and hence the stages. The change point defines transition
from Stage 1 to Stage 2. Here, k = 3, m1 = 5 and m2 = 10. To understand
when a healing occurs, count the PI’s: Don’t start counting until the first VS
arrives. Stop counting PI if the net number of VS drops to 0. Resume counting
once the next VS arrives. When the count reaches k = 3 a healing occurs.
Here, N1 = 8, N2 = 13.

of “damage” to all k components. The VSs arrive according to a process with independent

inter-arrival times distributed as F . On an ad-hoc basis, at random intervals inspections are

carried out on these components cyclically; and the damage imposed by one VS is eliminated

through repair. Consequently, when k repairs are completed cumulatively, the damage caused

by one VS is nullified, and the net count of VS drops by one. If at any point, the net count

of VS drops to zero, either no more inspection is made or those inspections do not affect the

system. Only when another VS arrives, we resume the healing process. When the net count

of VS for any component reaches m1, healing stops and the system enters Stage 2.
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3.3 Theoretical analysis: Distributions of T1 and T2

We present two approaches to describe the underlying stochastic process and compute

the distributions of Stage 1 duration T1 and system lifetime T2.

3.3.1 The counting process

The following steps describe how the sporadic impacts are categorized as VS and PI, and

how the net number of shocks is determined.

(A1) Generate a random sample from F yielding the inter-arrival times between successive

VS. Similarly, we generate a random sample from G yielding the inter-arrival times

between PI. We allow F and G to have arbitrary distributions.

(A2) Label VS as type 1 impact and PI as type 0 impact.

(A3) Concatenate the arrival times (cumulative sums of inter-arrival times) of the VS and

the PI to form a vector of time points. Similarly, we concatenate type 1 and type 0

impacts into a vector of indicators.

(A4) Create a data frame consisting of two variables: a vector of arrival times of VS and PI,

and a vector of indicators of types.

(A5) Sort the data frame with respect to arrival time, and carry along the indicators.

(A6) Start counting the net number of shocks as soon as the first VS arrives. The net count

increases by one whenever a VS arrives. As soon as k PI accumulate, the net count

decreases by one.

(A7) Stage 1 ends as soon as the net count reaches m1. This epoch is called T1, when the

system experiences a change point and enters stage 2.

(A8) In Stage 2, there is no more healing. Therefore, the net count keeps on increasing as

the VS arrive. Stage 2 ends and the system fails when the total number of shocks

reaches m2. This epoch is called T2.
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(A9) The goal is to find the distributions of Stage 1 duration T1 and system lifetime T2. To

do so, first we find the distributions of the total number of VSs N1, N2 that the system

receives in Stage 1 and throughout its lifetime, respectively. Since N2 = N1 +m2 −m1,

it suffices to find the distribution of N1.

(A10) We also find and record D1, the total number of impacts (VS plus PI) in Stage 1, and

D2, the total number of impacts in Stage 1 and Stage 2 combined.

Next, repeat the above steps for a total of 104 iterations. By summarizing the computed

random variables, one estimates their distributions.

3.3.2 The adjusted convolution process

The net number of shocks at any given time depends on how many VSs and how many

PIs have arrived by that time. When the net count reaches m1, the change point epoch T1

is attained. Let the total number of VSs arriving during (0, T1] be denoted by N1. In this

subsection, we will demonstrate how the distribution of N1 suffices to reconstruct the entire

stochastic process described in Subsection  3.3.1 by obtaining the distributions of T1 and

T2 starting from that of N1. Let Sj =
∑j

i=1 Xi be the arrival time of the j-th VS, and let

Uj =
∑j

i=1 Yi be the arrival time of the j-th PI. Then, the duration of time the system stays

in Stage 1 (T1), can be found from the adjusted convolution described below in five steps.

(B1) The system receives N1 VSs in Stage 1. The arrival time of the (N1 − 1)-st VS is SN1−1

and that of the N1-th VS is SN1 .

(B2) The arrival of which PI caused the last healing in Stage 1? Note that (N1 −m1) VSs

have been nullified using (N1 − m1)k PIs. Letting r denote the number of PI that

arrive whenever the system had no accumulated VS, the last healing happened with

the arrival of the [(N1 −m1)k + r]-th PI.

(B3) After the last healing, the accumulated net VS reaches at most (m1 − 2). Thereafter,

enough (at least two more) VSs came before k more PIs could come, and caused the

end of Stage 1. See Figure  3.2 . That is, between the last healing and the change point
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T1, the number of additional PIs that came is h = 0, 1, 2, . . . , k − 1; and these were not

sufficient to cause another healing.

Figure 3.2. A schematic diagram to explain the arrival time of a PI causing
the last healing in Stage 1. (A VS is denoted by N and a PI by ◦). No healing
occurs in Stage 2.

(B4) The last healing with the arrival of [(N1 −m1)k + r]-th PI must have happened before

the (N1 − 1)-st VS came. Hence, U(N1−m1)k+r < SN1−1.

Thereafter, until the N1-th VS arrives, fewer than k PI have arrived (for otherwise,

another healing would have happened). Hence, SN1 < U(N1−m1)k+r+k.

Combining the two inequalities, we have

U(N1−m1)k+r < SN1−1 < SN1 < U(N1−m1)k+r+k (3.3.1)

and the sojourn time in Stage 1 is

T1 = SN1 (3.3.2)

(B5) What is the distribution of T1 = SN1?

If T1 and N1 were independent, then we could write T1 ≈ Sj with probability P (N1 = j).

Note that Sj has distribution function given by F ∗F ∗· · ·∗F , the j-fold convolution of F ,
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with E[Sj] = j E[X]. However, T1 and N1 are not independent, which motivates us to

include an adjustment εj to the approximation T1 ≈ Sj+εj with probability P (N1 = j).

Because N1 is a stopping time (that determines the end of Stage 1), Wald’s First

Identity implies that E[T1] = E[N1]E[X]. To ensure the equality in expectation of

the above approximation, we must have E[N1]E[X] ≈ j E[X] + E[εj]. Hence, we take

εj ∝ (j − E[N1])E[X]. In other words, we approximate T1 as

T1 ≈ Sj + λ (j − E[N1])E[X] with probability P (N1 = j) (3.3.3)

for j ≥ m1; where the proportionality constant λ depends on F and G. Note that for

each choice of λ, the means of T1 from the point process described in Subsection  3.3.1 

and its approximation given in equation (  3.3.3 ) are equal. But upon simulation the

mean squared deviations from the mean for the approximation, when compared to that

of T1 from the point process, turns out to be an underestimate when λ = 0 and an

overestimate when λ = 1. Therefore, to match both the mean and the mean squared

deviation from the mean of the point process and the convolution process, we must

choose a λ in the interval (0, 1).

Choosing λ: For different combinations of inter-arrival time distributions F and G, we

document the numerical values of λ, obtained via a grid search (with increment 0.01) to

match the standard deviations of the distributions of T1 obtained from the point process and

the adjusted convolution process. As anticipated, λ is a function of the ratio of standard

deviations of F and G.

In view of the above description of the stochastic process as a convolution with adjustment,

we state the following two results:

Result 3.1. The distribution of sojourn time in Stage 1 is approximately a weighted average

of j-fold convolutions of F shifted by λ (j −E[N1])E[X], where λ ∈ (0, 1), with weights given

by P (N1 = j), for j = m1,m1 + 1, . . . .

Next, we obtain the distribution of the system lifetime. Since the system loses its healing

property in Stage 2, the system lifetime equals the duration of Stage 1 plus (m2 − m1)
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additional inter-arrival times of VS (which is the duration of Stage 2), the system lifetime

equals

T2 = T1 +

N1+m2−m1∑
i=N1+1

Xi = SN2

where N2 = N1+m2−m1. Using the same justification as for equation (  3.3.3 ), we approximate

T2 ≈ Sj+m2−m1 + λ (j − E[N1])E[X] with probability P (N1 = j) (3.3.4)

for j = m1,m1 + 1, . . .. In other words, we have a second result.

Result 3.2. The distribution of time to failure (or system lifetime) T2 is a weighted average

of (j +m2 −m1)-fold convolution of F shifted by λ (j − E[N1])E[X], where λ ∈ (0, 1), with

weights given by P (N1 = j), for j = m1,m1 + 1, . . . .

3.3.3 Simulation results

Let us simulate the arrival process of the VS and the PI. We shall consider various

different inter-arrival time distributions for X and Y satisfying E[X] = 1 and E[Y ] = 2/3.

In each iteration of the point process, we find the net count of VS and PI using description

in Subsection  3.3.1 ; we also find the values of T1, N1, T2 and N2. By repeating such

evaluations 104 times, we get a distribution of these random variables. For the adjusted

convolution process described in Subsection  3.3.2 , we utilize the above probability mass

function (PMF) of N1 together with the conditional probability density function (PDF) of

Sj (for j = m1,m1 + 1, . . . ) constructed based on 100 randomly generated j-th convolution

of F . Thereafter, we shift the j-th conditional PDF by λ (j − E[N1])E[X] and take the

weighted average of these adjusted PDF’s to find the overall PDF of T1 and T2 as described

in Results 1 and 2, respectively, of Subsection  3.3.2 .

We illustrate some useful details for one particular example: Let the F ≡ Weibull (shape

= 2, scale = 2/
√

π) and G ≡ gamma (shape = 2, scale = 1/3) such that E[X] = 1 and

E[Y ] = 2/3. The other cases are similar; hence, omitted. The PMF of N1, estimated from

the point process, is shown in Figure  3.3 .
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Figure 3.3. Probability distribution of N1 is unimodal with E[N1] ≈ 18,
sd(N1) = 3.14, Q1 = 16, Q2 = 18, Q3 = 20, (N1)0.99 = 27, P (N1 > 30) =
0.0017.

Figure  3.4 shows that the point process and the adjusted convolution process yield the

same PDF for T1. One measure of agreement between these two PDF’s is given by the mean

Kullback-Leibler divergence of the adjusted convolution PDF from the point process PDF

measuring 0.0008128, which is very small (simulated p-value 0.999). Hence, we conclude that

the densities arising from the point process and the adjusted convolution process are the

same, supporting Result 1. Similarly, Figure  3.5 shows that the density plots for lifetime

according to the two processes are the same, with a mean Kullback-Leibler divergence of

0.0008826 (simulated p-value 0.996), supporting Result 2. In the lower panels of Figures  3.4 

and  3.5 , we see that the maximum discrepancy between the approximated densities for each

time point is at most 0.00015.

Table  3.1 displays the mean and the standard deviation of the sojourn time T1 in Stage 1

for different combinations of inter-arrival time distributions of VS and PI. As anticipated

(by choosing λ correctly), the mean and the standard deviation from the point process and

the adjusted convolution process are almost the same. The very construction of Table  3.1 
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Figure 3.4. Densities of T1 estimated from a point process (red) and an
adjusted convolution process (black), with their absolute difference being at
most 1.5× 10−4.

demonstrates that we can allow any distribution for the inter-arrival times of VS and PI, as

long as we can identify the type of impetus so that we can track the net counts of VS and

unused PI. Also, from Table  3.1 we can identify a trend in the values of λ as we scan through

the rows and the columns. For a particular choice of F in a row, as we look from left to right

across the columns, we see that λ decreases. A closer look at the corresponding standard

deviations reveals that λ decreases as the standard deviation of G increases. Similarly, for a

fixed choice of G in a particular column, as we go from top to bottom down the rows, we see

that λ increases as the standard deviation of F increases. This led us to believe that λ is

a function of the ratio of the standard deviations of F and G. When we plotted λ against

σF/σG, we noticed a non-linear relationship. Thereafter, we fitted a linear regression of λ

on log(σF/σG) and found an adjusted coefficient of determination of 0.9763. Therefore, we

conjecture that λ ≈ (3/8) + (π/20) log(σF/σG). The search for optimal λ can be restricted

to a small neighborhood of this approximate value.
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Figure 3.5. Densities of T2 estimated from a point process (red) and an
adjusted convolution process (black), with their absolute difference being at
most 1.5× 10−4.

Next, we display a similar Table  3.2 for the system lifetime T2. There is no need to report

the same λ already shown in Table  3.1 . Again, as anticipated, the mean and the standard

deviation from the two processes agree well.

Whereas previous research illustrate only exponential inter-arrival times of VS and PI,

we have incorporated arbitrary inter-arrival times for VS and PI. Thus, we have extended

the application of shock models in reliability maintenance research.

3.4 Preventive maintenance policies

Identifying the distributions of T1 and T2 is an important achievement towards making

optimum decisions during system maintenance. Taking a cue from  Zhao et al.  ( 2018b ), we

consider three maintenance policies. We allow different costs of system maintenance in the

two Stages: But unlike  Zhao et al. ( 2018b ), we consider that the cost of failure replacement

is much higher than that of a preventive replacement in Stage 2, which is higher than that in
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Table 3.1. For various inter-arrival time distributions satisfying E[X] = 1 and
E[Y ] = 2/3, the top entries give mean (standard deviation) of T1 according to
a point process and middle row entries (in italics) give the same quantities
according to an adjusted convolution process. The third row gives the
multiplier λ of the adjustment term.

PPPPPPPPPVS
PI

sd ≈ 0.12
(2, 4

3
√

π
)

Weibull

sd ≈ 0.22
(2, 1

3
)

gamma

sd ≈ 0.29
(2/3)
inv-Gauss

sd ≈ 0.40
(3/2)
exponential

Weibull (2, 2√
π
) 17.96 (4.75) 17.97 (4.96) 17.98 (5.12) 17.93 (5.41)

sd ≈ 0.27
17.95 (4.72) 17.97 (4.96) 17.97 (5.10) 17.93 (5.41)
λ = 0.50 λ = 0.40 λ = 0.35 λ = 0.29

gamma (2, 1
2
) 17.92 (6.06) 17.91 (6.26 ) 17.93 (6.35) 17.85 (6.58)

sd ≈ 0.50
17.92 (6.06) 17.93 (6.25) 17.94 (6.34) 17.86 (6.56)
λ = 0.59 λ = 0.50 λ = 0.46 λ = 0.38

inv-Gauss (1) 17.63 (8.02) 17.61 (8.10) 17.67 (8.25) 17.61 (8.33)

sd ≈ 1.00
17.74 (8.01) 17.71 (8.07) 17.75 (8.21) 17.72 (8.31)
λ = 0.68 λ = 0.61 λ = 0.58 λ = 0.52

exponential (1) 17.85(8.48) 17.87 (8.39) 17.92 (8.58) 17.82 (8.55)

sd ≈ 1.00
17.83 (8.28) 17.87 (8.39) 17.91 (8.58) 17.79 (8.57)
λ = 0.69 λ = 0.63 λ = 0.60 λ = 0.54

Stage 1. Let c0 be the cost of intitial installation of the system, cp1 be the cost of replacement

in Stage 1, cp2 be that of Stage 2, and cf be the cost of failure replacement, satisfying

cp1 ≤ cp2 ≤ cf . This is because we believe that in Stage 1, the system is young, therefore

early replacement would incur a relatively smaller cost; furthermore, if we replace in early

Stage 2, even then we are not utilizing the system lifetime enough and on the other hand,

the system has already aged, which means maintenance/repair at this stage would cost more.

Therefore, we find it logical to consider that replacement cost in Stage 2 is higher than that in

Stage 1. Furthermore, there is an initial cost c0 of setting up a new system. For illustration,

we choose c0 = 100, cp1 = 10, cp2 = 15, cf = 200.

One could also consider differential revenues earned per unit time when the system

operates. However, for the sake of simplicity, we assume that revenue is earned at a constant
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Table 3.2. For various inter-arrival time distributions satisfying E[X] = 1
and E[Y ] = 2/3, the top entries give mean (standard deviation) of system
lifetime T2 according to a point process, and the bottom entries (in italics)
show the same quantities according to an adjusted convolution process.

PPPPPPPPPVS
PI (2, 4

3
√

π
)

Weibull
(2, 1

3
)

gamma
(2/3)
inv-Gauss

(3/2)
exponential

Weibull (2, 2√
π
) 27.94 (5.03) 27.96 (5.24) 27.96 (5.39) 27.92 (5.65)

27.97 (5.06) 27.98 (5.23) 27.99 (5.37) 27.86 (6.95)

gamma (2, 1
2
) 27.91 (6.47) 27.92 (6.67 ) 27.93 (6.73) 27.86 (6.95)

27.91 (6.46) 27.93 (6.63) 27.94 (6.71) 27.85 (6.94)

inv-Gauss (1) 27.57 (8.63) 27.58 (8.73) 27.60 (8.85) 27.54 (8.94)
27.67 (8.64) 27.66 (8.65) 27.69 (8.83) 27.63 (8.93)

exponential (1) 27.86 (8.83) 27.90 (8.97) 27.93 (9.12) 27.82 (9.07)
27.82 (8.90) 27.85 (9.02) 27.88 (9.2) 27.78 (9.16)

rate throughout the lifetime of the system. Thus, we focus on minimizing the maintenance

cost per unit time.

3.4.1 Maintenance policy 1

Suppose that the monitoring equipment can detect the arrival of an impetus, but it cannot

distinguish between a VS and a PI, nor can it identify whether the system has transitioned

from Stage 1 to Stage 2. The system will be replaced when it has failed or has experienced a

specified number of impetus N (the sum of VS and PI).

Within one cycle (between two successive replacements of the system), the total cost of

replacement under Policy 1 is a random variable taking three possible values:

(1) cp1 , if N impetus arrive while the system is still in Stage 1, with an associated probability

of P (D1 > N).

(2) cp2 , if the system has already moved to Stage 2 and the N impetus have arrived before

the system fails, with an associated probability of P (D1 ≤ N < D2).
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(3) cf , if the system has already failed before the arrival of N impetus, with an associated

probability of P (D2 ≤ N).

Hence, the expected cost (C) and the expected cycle time (CT ) under Policy 1 are given by

E[C | Policy 1] = cp1P (D1 > N) + cp2P (D1 ≤ N < D2)

+ cfP (D2 ≤ N) (3.4.1)

and, writing Wj as the arrival time of the j-th impact (either VS or PI), we have

E[CT | Policy 1] = E[min{WN ,WD2}]

= E[WN | D1 > N ] P (D1 > N)

+ E[WN | D1 ≤ N < D2] P (D1 ≤ N < D2)

+ E[WD2 | D2 ≤ N ] P (D2 ≤ N) (3.4.2)

Therefore, the expected cost per unit time is the ratio

E[C | Policy 1]/E[CT | Policy 1] (3.4.3)

which we must minimize by choosing N . Under Policy 1 and the assumed cost structure,

Figure  3.6 shows that the expected cost per unit time is minimized when we choose N = 53.

Moreover, note that for any other choice of N in the vicinity of the optimal value 53, say

between 48 and 55, the expected cost per unit time increases only slightly (no more than 3%).

Such a robustness result allows us to rely on the optimal value even when the inter-arrival

time distributions deviate slightly from the stated ones. Table  3.3 documents the optimal

choices of N for other combinations of inter-arrival times, together with the optimal results

of the other policies.
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Figure 3.6. Under Policy 1 and cost parameters c0 = 100, cp1 = 10, cp2 = 15,
cf = 200, the optimal number of impetus for preventive replacement is N = 53.

3.4.2 Maintenance policy 2

Suppose that the monitoring equipment can identify the stages of the system. If the

system is in Stage 1, we do not replace it at all. After the system enters Stage 2, if the system

is still functioning for an additional t units of time, we replace it immediately at epoch T1 + t;

otherwise, we replace the system immediately if it fails before the additional time t. Note that

once the optimal t is determined, such a policy is logistically more convenient than waiting

to replace the system at a random time when the (N2 − 1)-st VS arrives. Our objective is to

determine an optimum additional time t in Stage 2 when the system should be replaced. To

do so, we minimize the expected cost per unit time, where the expected cost (C) is given by

E[C | Policy 2] = cp2P (T2 > T1 + t) + cfP (T2 ≤ T1 + t) (3.4.4)
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and the expected length of the cycle time (CT ) is

E[CT | Policy 2] = E[min(T2, T1 + t)] = E[T1] + E[min(T2 − T1, t)] (3.4.5)

We wish to minimize the expected cost per unit time

E[C | Policy 2]/E[CT | Policy 2] (3.4.6)

by choosing t. Under Policy 2 and the assumed cost parameters, Figure  3.7 shows that the

expected cost per unit time is minimized when we choose t = 6.55. In fact, we identified this

optimal t value via a grid search between the first and the 99-th percentiles of system lifetime

with an increment of 0.05. This choice suffices because any other choice of t in the interval

[6, 7] increases the cost per unit time only marginally. Table  3.3 documents the optimal

choices of t for other combinations of inter-arrival times.
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Figure 3.7. Using cost parameters c0 = 100, cp1 = 10, cp2 = 15, cf = 200,
the optimal duration in Stage 2 after which preventive replacement must be
scheduled is t = 6.55.
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3.4.3 Maintenance policy 3

Suppose that the system state can be identified and it is possible to detect system failure

immediately when it occurs. However, the system is not under continuous monitoring. Instead,

at a cost of cI per inspection, scheduled inspections will be conducted at inter-inspection

intervals t1 > t2 > t3 > . . ., until the system is found to be in Stage 2, when the system will

be preemptively replaced immediately. Finally, if the system is found to be still in Stage

1 after the completion of a (predetermined) number of inspections u, at time vu =
∑u

i=1 ti,

then it will be replaced at the (u+ 1)-st inspection at time vu+1 = vu + tu+1, whether or not

the system enters Stage 2.

If inspections start too early or if they occur in quick successions, we will need too many

inspections costing too much and/or not utilize the system long enough at the preventive

replacement time vu+1. On the other hand, if the inspections begin late or if they are further

apart, then we run a high risk of a costly system failure before preventive replacement. To

balance the two extremes, we should not consider the same u number of inspections before

preventive replacement irrespective of how the inspection times are scheduled. To obtain an

optimum u, we have considered the following criteria: First, we allow the inspection times to

be spread out in a geometric series starting with t1 (to be determined) and thereafter taking

ti+1 = αi t1 for i ≥ 1, where we allow a fixed α ∈ (0, 1), since more frequent inspections are

preferred as the system ages. Then, we select u such that

vu =
u∑

i=1

ti = t1
1− αu

1− α
≤ (T1)0.95, (3.4.7)

the 95-th percentile of the Stage 1 sojourn time T1. Thus, for different choices of the starting

time of the first inspection t1, we get different optimal choices of the required number of

inspections (u+ 1). Algorithm  1 computes the cost and the cycle time under Policy 3.
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Algorithm 1: Finding cost and cycle time
Result: cost, cycle time
Initialize:
a = 1; cost = 0; cycle time = 0 ;
while a < u do

if T1 ≤
∑a

i=1 ti < T2 then
cost = c0 + cp2 + (a× cI);
cycle time =

∑a
i=1 ti

break
end
if

∑a
i=1 ti ≥ T2 then

cost = c0 + cf + (a× cI);
cycle time = T2

break
else

a = a+1;
end

end
if a = u then

if
∑a

i=1 ti < T1 then
if

∑a+1
i=1 ti < T1 then

cost = c0 + cp1 + ((a+ 1)× cI) ;
cycle time =

∑a+1
i=1 ti

end
if T1 ≤

∑a+1
i=1 ti < T2 then

cost = c0 + cp2 + ((a+ 1)× cI);
cycle time =

∑a+1
i=1 ti

else
cost =c0 + cf + ((a+ 1)× cI);
cycle time = T2

end
end
if T1 ≤

∑a
i=1 ti < T2 then

cost = c0 + cp2 + (a× cI);
cycle time =

∑a
i=1 ti

else
cost = c0 + cf + (a× cI);
cycle time = T2

end
end
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The expected cost (Cu) under Policy 3 is

E[Cu] = cp1P (vu+1 < T1)

+ cp2{P (vu < T1 ≤ vu+1 < T2) + P (T1 ≤ vu < T2)}

+ cf{P (vu < T1 < T2 ≤ vu+1) + P (vu−1 < T1 < T2 ≤ vu)} (3.4.8)

Similarly, the expected cycle time (CTu) is

E[CTu] = vu+1{P (vu+1 < T1) + P (vu < T1 ≤ vu+1 < T2)}

+ vuP (T1 ≤ vu < T2)}

+ T2{P (vu < T1 < T2 ≤ vu+1) + P (vu−1 < T1 < T2 ≤ vu)} (3.4.9)

We must choose t1 (and the associated u) to minimize the expected cost per unit time

E[Cu]/E[CTu] under Policy 3. In our numerical example, together with cI = 5 and α = 0.95,

we conducted a grid search for t1 over the interval [2.5, 15.5] at increments of 0.05. Figure  3.8 

indicates that the optimal time of first inspection is t1 = 9.3, and the system must be replaced,

even though it has not failed, after the fourth inspection.

3.5 Summary

Having shown the details of the optimal choices for the special case of F ≡ Weibull (shape

= 2, scale = 2/
√

π) and G ≡ gamma (shape = 2, scale = 1/3), for the sake of brevity, in

Table  3.3 we simply document the optimal choices of N , t and t1 (u) for Policy 1, Policy 2 and

Policy 3, respectively, for the different combinations of F and G considered in the previous

illustrations, and the above mentioned choices of the cost parameters. From the table we

see that for Policy 1, the optimal N lies between 48 to 55; for Policy 2, the optimal t is

somewhere between 4 and 7, and for Policy 3, the optimum t1 is between 8 to 10, with the

corresponding number of inspections u roughly 3 or 4.
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Figure 3.8. Using c0 = 100, cp1 = 10, cp2 = 15, cf = 200, cI = 5, and α = 0.95,
the optimal time for the first inspection is t1 = 9.3 and the associated u = 3.

Table 3.3. For various inter-arrival time distributions satisfying E[X] = 1
and E[Y ] = 2/3 and cost parameters c0 = 100, cp1 = 10, cp2 = 15, cf = 200,
cI = 5, and inter-inspection duration factor α = 0.95, the first row gives the
optimal value of N for Policy 1, the second row gives the optimal t for Policy 2
and the third row gives the optimal t1 and the associated u (in parenthesis) for
Policy 3, for every choice of (F,G).

PPPPPPPPPVS
PI

sd ≈ 0.12
(2, 4

3
√

π
)

Weibull

sd ≈ 0.22
(2, 1

3
)

gamma

sd ≈ 0.29
(2/3)
inv-Gauss

sd ≈ 0.40
(3/2)
Exponential

Weibull (2, 2√
π
) N = 54 N = 53 N = 52 N = 50

sd ≈ 0.27
t = 6.40 t = 6.55 t = 6.70 t = 6.55

t1 = 9.20 (3) t1 = 9.30 (3) t1 = 9.30 (3) t1 = 9.75 (3)
gamma (2, 1

2
) N = 52 N = 51 N = 51 N = 49

sd ≈ 0.50
t = 6.05 t = 5.95 t = 5.90 t = 5.85

t1 = 8.85 (3) t1 = 9.60 (3) t1 = 9.60 (3) t1 = 9.35 (3)
inv-Gauss (1) N = 49 N = 50 N = 48 N = 47

sd ≈ 1.00
t = 5.00 t = 5.00 t = 4.90 t = 4.85

t1 = 8.10 (4) t1 = 8.50 (4) t1 = 8.60 (4) t1 = 8.75 (4)
exponential (1) N = 51 N = 48 N = 50 N = 48

sd ≈ 1.00
t = 4.95 t = 4.95 t = 4.65 t = 4.60

t1 = 8.05 (4) t1 = 8.55 (4) t1 = 8.65 (4) t1 = 8.75 (4)
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4. COST MINIMIZATION UNDER SPORADIC SHOCKS AND

HEALING IMPETUS WHEN THE HEALING STAGE IS

SUBDIVIDED

Content in the following chapter was previously published by Society of Statistics, Com-

puter and Applications (SSCA) in the proceedings of their 23rd Annual Conference. 2021,

May:  https://ssca.org.in/media/2_Spl_Proceedings_2021_Jyotirmoy_Sarkar_280521_

Final.pdf  .

Debolina Chatterjee and Jyotirmoy Sarkar are co-authors of the published work.

4.1 Introduction

In machine maintenance and reliability engineering, it is often necessary to study the

impacts of external shocks. In addition to degradation due to aging, system lifetime is affected

by the accumulated damage due to shocks. Because a system failure causes a severe loss, it

is preferable to replace a system before it fails, but only after utilizing its potential life to the

extent possible. Therefore, we seek optimal replacement policies before the system fails.

In Chapter  3 , two types of impacts — valid shocks (VS) and positive interventions (PI)

— are considered, with their inter-arrival times having arbitrary distributions, and the system

lifetime is split into two stages — Stage 1 where it can heal, and Stage 2 where it cannot heal.

However, healing occurs when the cumulative effect of k PIs (not necessarily consecutive)

nullify one VS. Furthermore, the PIs need not be δ-invalid. This continues until the system

reaches a “change point” beyond which it can no longer heal.

The main focus of the current work is to extend the two-stage model by splitting Stage 1

further into two parts. Initially, when the system is young, healing can happen faster; but

later, when the system has aged and has experienced several shocks, healing is slower. In

the earlier part of Stage 1, called Stage 1A, kA PIs nullify the damaging effect of one VS. In

the later part of Stage 1, called Stage 1B, kB (> kA) PIs can heal one VS. The system is in

Stage 1A until the net VS reaches a threshold mA; thereafter, it enters Stage 1B. Next, the
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system reaches the change point and enters Stage 2 when the net VS reaches m1. Therefore,

m1 −mA = mB is the net number of VS allowed in Stage 1B.

Previous research considered either healing or degradation, or they have assumed that

the shocks/impacts have inter-arrival times exponentially distributed. Although some works

mention non-exponential inter-arrival times, they illustrate only exponential examples. As

in Chapter  3 , here we illustrate with several non-exponential inter-arrival time distribution.

As long as we can count the number of VS and PI, we can determine the distributions of

duration of Stage 1 and system lifetime.

Section  4.2 describes the evolution of the system under shocks and healing; Section  4.3 

illustrates two approaches to calculate the distributions of Stage 1 duration and lifetime;

Section  4.4 compares Stage 1 duration and system lifetime between divided versus undivided

Stage 1; Section  4.5 obtains optimal decisions for two maintenance policies; and finally Section

 4.6 summarizes the main findings of this research.

4.2 The system set up

External impacts to the system are of two types: Valid Shocks (VS) that cause damage

to the system and Positive Interventions (PI) that do not have any damaging effect; on the

contrary, the accural of a certain (predetermined) number of PIs nullify the effect of one VS.

This behaviour is what we call “healing”, which means the net number of VS (VS arrived

minus VS nullified by PIs) reduces by one. For simplicity, we assume each VS causes an

equal amount of damage. Hence, leaving for future the study of magnitude of damages, we

focus on counting the net number of VS to the system.

The lifetime of the system is divided into two stages depending on the net VS it receives.

In Stage 1, the system has healing ability as described above and the system remains in this

stage until the net VS reaches a certain predetermined threshold m1. Thereafter, the system

moves to Stage 2 where it can no longer heal; that is, new PIs no longer reduce net VS. The

system fails when the net VS reaches another higher threshold m2. Furthermore, Stage 1 is

subdivided into two parts: Stage 1A requires fewer and Stage 1B requires larger number of

PI’s to nullify one VS.
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The inter-arrival times of VS, denoted by {Xi; i ∈ N} are independently and identically

distributed (IID) with an arbitrary cumulative distribution function (CDF) F . Likewise,

{Yj; j ∈ N}, the inter-arrival times of PIs are IID with another arbitrary CDF G. The arrival

processes of PIs and VS are stochastically independent. Let the duration of system in Stage 1

be denoted as T1 and the system lifetime be denoted as T2. The total number of VS in Stage 1

be N1 and that until failure be N2. Note that m2 −m1 = N2 − N1 since in Stage 2 there

is no healing. Let r denote the number of PIs rendered unused towards healing in Stage 1.

Furthermore, let D1 and D2 denote the total number of impacts (VS+PI) in Stage 1 and

until failure, respectively.
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Figure 4.1. The arrival processes of VS (denoted by N) and PI (denoted by
◦) illustrate the net count of VS, and hence the stages. Here, kA = 2, kB =
4,mA = 3,m1 = 6, and m2 = 10. Do not start counting until the first VS
arrives. Stop counting PI if the net number of VS, drops to 0. Resume counting
once the next VS arrives. The change point T1 defines the transition from
Stage 1 (Stages 1A and 1B combined) to Stage 2.
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4.3 Theoretical analysis: Distributions of T1 and T2

We describe the underlying stochastic process in terms of two approaches: a counting

process approach and a convolution process approach.

4.3.1 The counting process

Given the constant integers kA, kB, mA, m1 (hence, mB = m1−mA) and m2, we describe

a simulation of the system status as follows.

Generate a sequence of inter-arrival times of VS {Xi; i ∈ N} IID with CDF F , and another

sequence of inter-arrival times of PIs {Yj; j ∈ N} IID with CDF G. Take the cumulative sums

of the two sequences, to obtain the arrival times. Sort these arrival times of the impacts (VS

and PI) and associate with each arrival time an indicator 1 to denote VS and 0 to denote

PI. Start counting as soon as the first VS arrives. Ignore all PIs (0) before this moment.

Stage 1A: Count the VS. Arrival of kA PIs nullify one VS. Compute the net VS as the

VS arrived minus VS nullified. If the net VS ever drops to 0, stop counting; resume counting

when again another VS arrives. When net VS reaches mA, the system enters Stage 1B. We

keep record of the total number of VS that arrived in Stage 1A, namely NA.

Stage 1B: In this later part of Stage 1, arrival of a VS increases its count by one, but now

to nullify one VS we need kB PIs (kB > kA). Again, we stop counting if the net count ever

drops down to 0; and resume counting when a new VS arrives. When the net VS reaches m1,

the system enters Stage 2. Let NB denote the total number of VS that arrive Stage 1B, and

let r denote the number of PIs that have arrived in Stage 1.

Stage 2: In this stage, the system does not heal. The VS keeps accumulating one by one

without being nullified since the PIs have no effect. The system fails when the net VS reaches

a threshold m2.

Thus, in one iteration of the simulation, we obtain as outputs the following quantities:

N1 = NA + NB, N2, T1, T2, r, and D1 = N1 + r, which is the total number of impacts in

Stage 1. Next, we repeat the above steps for a total of 104 iterations.

We will approximate the probability mass functions (PMF) of N1 and N2 from the relative

frequencies observed in the simulation. Also, based on the simulation, we will directly
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approximate the probability density function (PDF) of T1 and T2. Alternatively, we will

reconstruct these PDFs using the PMFs of N1 and N2, respectively, through a convolution

process as explained below.

4.3.2 The adjusted convolution process

The underlying stochastic process is described below:

In Stage 1A, (NA −mA) VS have been nullified by the arrival of (NA −mA) ∗ kA PIs.

Similarly in Stage 1B, (NB −mB) VS have been nullified by the arrival of (NB −mB) ∗ kB
PI and there may have arrived h more PIs, where 0 ≤ h ≤ kB − 1, which are insufficient to

nullify another VS. Therefore, in total, the arrival of Q = (NA −mA) ∗ kA + (NB −mB) ∗ kB
PIs has contributed to nullifying (N1 −m1) PIs.

Let us denote Sj =
∑j

i=1 Xi as arrival time of the j-th VS, and Uj =
∑j

i=1 Yi as arrival

time of the j-th PI. We describe how Stage 1 duration T1 depends on the number of VS N1.

(1) The system receives N1 VS in Stage 1. The arrival time of the (N1 − 1)-st VS is SN1−1

and that of the N1-th VS is SN1 .

(2) Let UQ be the arrival time of a PI which causes the (N1 −m1)-th nullification of a VS,

and let UQ+h be the arrival time of the (Q + h)-th PI, which do not nullify any VS

(where h = 1, 2, . . . , k2 − 1), since the count of unused PI has not reached kB yet.

(3) Before the (N1 − 1)-st VS arrives, the Q-th PI has already arrived and Q + h-th PI

must have happened. Hence, UQ+h < SN1−1. Thereafter, until the N1-th VS arrives,

fewer than kB PI have arrived in Stage 1B. Hence, SN1 < UQ+h+k2 . Therefore, the

arrival times satisfy the inequality

UQ+h < SN1−1 < SN1 < UQ+h+k2 (4.3.1)

and the sojourn time in Stage 1 is

T1 = SN1 (4.3.2)
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Note that Sj has a CDF given by F ∗F ∗ · · · ∗F , the j-fold convolution of F . Furthermore,

since N1 is a random stopping time (that determines the end of Stage 1), by Wald’s first

identity, we have E[T1] = E[N1]×E[X]. However, N1 and T1 are not independent. Therefore,

using a second-order approximation (by matching the mean and the mean squared deviation

from the mean), we model

T1 = Sj + λ (j − E[N1])E[X] with probability P (N1 = j) (4.3.3)

for j = m1,m1 + 1, . . .; where λ ∈ [0, 1] depends on F and G. That is, the distribution of T1

is modeled as a weighted average of adjusted j-fold convolutions of F , where the adjustment

equals a suitable fraction of the departure of N1 from its expectation times the expected

inter-arrival time between shocks, with weights given by the probability masses P (N1 = j)

for j = m1,m1 + 1, . . ..

The above explanations justify the following results:

Result 4.1. The distribution of Stage 1 duration is a weighted average of j-fold convolutions

of F shifted by λ (j − E[N1])E[X], where λ ∈ (0, 1) is described below, with weights given by

P (N1 = j), the probability that N1 VS arrive in Stage 1, for j = m1,m1 + 1, . . . .

Description of λ: For several combinations of inter-arrival time distributions F and G,

the fraction λ is numerically obtained via a grid search (with increment 0.01) to match

the standard deviations of the distribution of T1 obtained from the point process and the

convolution process.

The lifetime of the system is equal to the duration of Stage 1 plus (m2 −m1) additional

inter-arrival times of VS (which is the duration of Stage 2), since the system can no longer

heal in Stage 2. Hence, the system lifetime is

T2 = T1 +

N1+m2−m1∑
i=N1+1

Xi = SN2

where N2 = N1 +m2 −m1. Using Result  4.1 , we can describe

T2 = Sj+m2−m1 + λ (j − E[N1])E[X] with probability P (N1 = j) (4.3.4)
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for j = m1,m1 + 1, . . ..

Result 4.2. The distribution of time to failure T2 is a weighted average of (j +m2 −m1)-

fold convolution of F shifted by λ(j − E[N1])E[X], where λ ∈ (0, 1), with weights given by

P (N1 = j), for j = m1,m1 + 1, . . . .

It is noteworthy that the above results are exactly the same as in Chapter  3 . The intuition

behind it is that both the results involve the PMF of N1, the total number of VS in Stages 1A

and 1B combined. Exactly how Stage 1 is subdivided (based on the requirements of healing)

is irrelevant to describe the Stage 1 duration and the lifetime.

4.3.3 Simulation results

We shall consider different inter-arrival time distributions for X and Y satisfying E[X] = 1

and E[Y ] = 2/3. The distribution of sojourn time in Stage 1 is found directly by repeating the

point process 104 times. In Chapter  3 , we had considered k = 3 and m1 = 10 for illustration.

For comparability, here we choose kA = 2, kB = 4 to keep the overall average number of

PIs required to nullify one VS roughly the same, and we choose mA = 5,mB = 5 so that

m1 = 10.

We emphasize that while similar results hold for all combinations of inter-arrival times,

to save space, we will show detailed results for one particular combination of inter-arrival

times: F ≡ Weibull (shape = 2, scale = 2/
√

π) and G ≡ gamma (shape = 2, scale = 1/3),

such that E[X] = 1 and E[Y ] = 2/3. Figure  4.3 shows the simulated PMF of N1.

Figure  4.3 shows the PDF of T1 obtained both directly from the point process and from

the adjusted convolution. One measure of agreement between these two PDF’s is given by the

mean Kullback-Leibler divergence of the adjusted convolution PDF from the point process

PDF measuring 0.001466, which is very small (simulated p-value 0.997). Hence, we conclude

that the densities arising from the point process and the adjusted convolution process are the

same, supporting Result  4.1 .

Similarly, Figure  4.4 shows that the density plots for lifetime according to the two processes

are the same, with a mean Kullback-Leibler divergence of 0.00102 (simulated p-value 0.999),
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Figure 4.2. Probability distribution of N1 is unimodal with mode 17, E[N1] ≈
21, sd(N1) = 6.52, Q1 = 17, Q2 = 20, Q3 = 24, 99-th percentile (N1)0.99 = 36,
P (N1 > 40) = 0.0057.

supporting Result  4.2 . In Figures  4.3 and  4.4 , we see that the maximum discrepancy of the

approximated densities for each time point is at most 0.0003.

Let us now consider all combinations of F and G simultaneously. In the Table  4.1 , we

show the mean and the standard deviations of T1 obtained from the two processes for various

choices of F and G. Similarly, in Table  4.2 , we show the mean and the standard deviations

of T2. We show the corresponding λ’s for each combination of F and G in Table  4.3 .

4.4 Comparison with undivided Stage 1

In Table  4.3 , we compare the means of the Stage 1 duration, showing the percentage

change, between the divided Stage 1 studied here and the undivided Stage 1 studied in

Chapter  3 . We also report the λ’s obtained in the current research and compare them to the

λ’s reported in  3 .
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Figure 4.3. Densities of T1 estimated from a point process (red) and an
adjusted convolution process (black), with their difference being within 3.5×
10−4 of 0.

From Table  4.3 , we identify a trend in the values of λ as we scan the rows and columns.

For a particular choice of F in a row, as we look from left to right across the columns, we

see that λ decreases. A closer look at the corresponding standard deviations reveals that

λ decreases as the standard deviation of G increases. Similarly, for a fixed choice of G in

a particular column, as we go from top to bottom down the rows, we see that λ increases

as the standard deviation of F increases. This led us to believe that λ is a function of the

ratio of the standard deviations of F and G. When we plotted λ against σF/σG, we noticed

a non-linear relationship. Thereafter, we fitted a linear regression of λ on log(σF/σG) with

slope = 0.11833, intercept = 0.20644 and adjusted coefficient of determination of 0.832.

Let us look at the change in λ before and after the subdivision of Stage 1. When the sd

of F is ≈ 0.25 or ≈ 0.50, the λ’s for the divided Stage 1 is about one-half to three-fifths of

the λ’s from the undivided Stage 1; but when the standard deviation of F is ≈ 1, the λ’s for

the divided Stage 1 is about two-thirds of the λ’s from the undivided Stage 1. Thus, there is

a relation between the standard deviation of the VS and the λ’s.
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Figure 4.4. Densities of T2 estimated from a point process (red) and an
adjusted convolution process (black), with their difference being within 2.5×
10−4 of 0.

In Table  4.4 , we compare the means of the lifetimes, showing the percentage change,

between the divided Stage 1 studied here and the undivided Stage 1 studied in Chapter  3 .

4.5 Preventive maintenance policies

System failure being disruptive to the production process and too expensive to recover

from, oftentimes a maintenance engineer must intervene to replace a functioning unit. Clearly

there is a tension between utilizing the remaining lifetime of the system and the prevention of

failure. We consider here two types of preventive maintenance policies. Let cpA be the cost of

replacement in Stage 1A, cpB in Stage 1B, cp2 in Stage 2, and cf after failure. Furthermore, we

assume that the costs of replacement is the same throughout Stage 1, because the healing rate

ought not affect the cost of replacement. We consider cpA = cpB ≤ cp2 << cf with justification

as follows: In Stage 1, the system is young, and so an early replacement will incur a loss; if we

replace in early part of Stage 2, we are not utilizing the system lifetime sufficiently, but the
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Table 4.1. For various inter-arrival time distributions satisfying E[X] = 1
and E[Y ] = 2/3 the top entries give mean (standard deviation) of Stage 1
duration T1 according to a point process, and the bottom entries (in italics)
show the same quantities according to an adjusted convolution process.

PPPPPPPPPVS
PI

sd ≈ 0.12
(2, 4

3
√

π
)

Weibull

sd ≈ 0.22
(2, 1

3
)

Gamma

sd ≈ 0.29
(2/3)
Inv-Gauss

sd ≈ 0.40
(3/2)
Exponential

Weibull (2, 2√
π
) 21.51 (8.12) 21.17 (8.35) 21.01 (8.50) 20.34 (8.39)

sd ≈ 0.27 21.50 (8.15) 21.15 (8.38) 21.01 (8.53) 20.31 (8.39)
Gamma (2, 1

2
) 20.77 (9.13) 20.42 (9.07) 20.43 (9.21) 19.82 (9.05)

sd ≈ 0.50 20.76 (9.12) 20.44 (9.07) 20.43 (9.20) 19.81 (9.01)
Inv-Gauss (1) 19.53 (10.16) 19.26 (10.01) 19.18 (10.11) 18.88 (9.97)
sd ≈ 1.00 19.61 (10.16) (19.36 (10.01) 19.27 (10.07) 18.98 (9.97)

Exponential (1) 19.59 (10.36) 19.41 (10.36) 19.46 (10.59) 18.91 (10.04)
sd ≈ 1.00 19.59 (10.37) 19.37 (10.39) 19.43 (10.58) 18.89 (10.06)

system has already aged, and so maintenance/repair at this stage will cost more. Therefore,

we find it logical to consider that replacement cost in Stage 2 is higher than that in Stage 1.

Finally, a system failure is highly expensive. Furthermore, there is an initial cost c0 of setting

up a new system. For illustration, we choose c0 = 100, cpA = 10, cpB = 10, cp2 = 15, cf = 200.

In Figures  4.5 and  4.6 , we illustrate decision making when F ≡ Weibull (2, 2/
√

π) and G ≡

gamma (2, 1/3), such that E[X] = 1 and E[Y ] = 2/3.

4.5.1 Maintenance policy 1

Suppose that a monitoring equipment can detect the arrival of an impetus, but cannot

distinguish between a VS and a PI, nor can it identify whether the system is in Stage 1 or

Stage 2. The system will be replaced when it has failed or has experienced a specified number

of impetus N (the sum of VS and PI).

Within one cycle (between two successive replacements of the system), the total cost of

replacement under Policy 1 is a random variable taking three possible values:
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Table 4.2. For various inter-arrival time distributions satisfying E[X] = 1
and E[Y ] = 2/3 the top entries give mean (standard deviation) of system
lifetime T2 according to a point process, and the bottom entries (in italics)
show the same quantities according to an adjusted convolution process.

PPPPPPPPPVS
PI

sd ≈ 0.12
(2, 4

3
√

π
)

Weibull

sd ≈ 0.22
(2, 1

3
)

Gamma

sd ≈ 0.29
(2/3)
Inv-Gauss

sd ≈ 0.40
(3/2)
Exponential

Weibull (2, 2√
π
) 31.48 (8.27) 31.14 (8.51) 31.01 (8.65) 30.32 (8.58)

sd ≈ 0.27 31.50 (8.31) 31.15 (8.55) 31.03 (8.69) 30.33 (8.55)
Gamma (2, 1

2
) 30.77 (9.44) 30.44 (9.34) 30.42 (9.48) 29.82 (9.34)

sd ≈ 0.50 30.76 (9.39) 30.45 (9.33) 30.43 (9.47) 29.80 (9.28)
Inv-Gauss (1) 29.45 (10.69) 29.23 (10.53) 29.17 (10.66) 28.83 (10.54)
sd ≈ 1.00 29.55 (10.67) 29.32 (10.51) 29.23 (10.57) 28.91 (10.49)

Exponential (1) 29.62 (10.80) 29.42 (10.82) 29.51 (11.07) 28.95 (10.53)
sd ≈ 1.00 29.57 (10.89) 29.34 (10.88) 29.43 (11.08) 28.90 (10.58)

(1) cp1 , if N impetus arrive while the system is still in Stage 1, with an associated probability

of P (D1 > N).

(2) cp2 , if the system has already moved from Stage 1 to Stage 2 and the N impetus have

arrived before system failure, with an associated probability of P (D1 ≤ N < D2).

(3) cf , if the system has already failed before the arrival of N impetus, with an associated

probability of P (D2 ≤ N).

Hence, the expected cost (C) and the expected cycle time (CT ), under Policy 1, are

E[C | Policy 1] = cp1P (N1 > N) + cp2P (N1 ≤ N < N2)

+ cfP (N2 ≤ N) (4.5.1)
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Table 4.3. For various inter-arrival time distributions satisfying E[X] = 1
and E[Y ] = 2/3, the top entries give the mean duration of T1 for divided
Stage 1 (undivided Stage 1), the middle row gives the % increase in T1 after
subdivision of Stage 1, and the third row gives the multiplier λ of adjusted
convolution for the divided Stage 1 (undivided Stage 1).

PPPPPPPPPVS
PI

sd ≈ 0.12
(2, 4

3
√

π
)

Weibull

sd ≈ 0.22
(2, 1

3
)

Gamma

sd ≈ 0.29
(2/3)
Inv-Gauss

sd ≈ 0.40
(3/2)
Exponential

Weibull (2, 2√
π
) 21.51 (17.96) 21.17 (17.97) 21.01 (17.98) 20.34 (17.93)

sd ≈ 0.27
≈ 19.76% ≈ 17.8% ≈ 16.85% ≈ 13.44%

λ = 0.25(0.50) λ = 0.21(0.40) λ = 0.18(0.35) λ = 0.16(0.29)
Gamma (2, 1

2
) 20.77 (17.92) 20.42 (17.91) 20.43 (17.93) 19.82 (17.85)

sd ≈ 0.50
≈ 15.90% ≈ 14.00% ≈ 13.94% ≈ 11.03%

λ = 0.31(0.59) λ = 0.27(0.50) λ = 0.25(0.46) λ = 0.22(0.38)
Inv-Gauss (1) 19.53 (17.63) 19.26 (17.61) 19.18 (17.67) 18.88 (17.61)

sd ≈ 1.00
≈ 10.78% ≈ 9.37% ≈ 8.55% ≈ 7.21%

λ = 0.43(0.68) λ = 0.40(0.61) λ = 0.37(0.58) λ = 0.36(0.52)
Exponential (1) 19.59 (17.85) 19.41 (17.87) 19.46 (17.92) 18.91 (17.82)

sd ≈ 1.00
≈ 9.75% ≈ 8.62% ≈ 8.59% ≈ 6.12%

λ = 0.45(0.69) λ = 0.43(0.63) λ = 0.39(0.60) λ = 0.37(0.54)

and writing Wj as the arrival time of the j-th impact (either VS or PI), we have

E[CT | Policy 1] = E[min{WN ,WN2}]

= E[WN | N1 > N ] P (N1 > N)

+ E[WN | N1 ≤ N < N2] P (N1 ≤ N < N2)

+ E[WN2 | N2 ≤ N ] P (N2 ≤ N) (4.5.2)

Therefore, the expected cost per unit time is the ratio

E[C | Policy 1]/E[CT | Policy 1] (4.5.3)

which we must minimize by choosing N . For the example considered, Figure  4.5 shows that

the expected cost per unit time is minimized when we choose N = 56. Moreover, note that
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Table 4.4. For various inter-arrival time distributions satisfying E[X] = 1
and E[Y ] = 2/3, the top row gives the mean duration of T2 for divided Stage 1
(undivided Stage 1), the bottom row gives approximate % increase in mean T2

after subdividing Stage 1.

PPPPPPPPPVS
PI

sd ≈ 0.12
(2, 4

3
√

π
)

Weibull

sd ≈ 0.22
(2, 1

3
)

Gamma

sd ≈ 0.29
(2/3)
Inv-Gauss

sd ≈ 0.40
(3/2)
Exponential

Weibull (2, 2√
π
) 31.48 (27.94) 31.14 (27.96) 31.01 (27.96) 30.02 (27.92)

sd ≈ 0.27 ≈ 12.67% ≈ 11.37% ≈ 10.91% ≈ 7.52%
Gamma (2, 1

2
) 30.77 (27.91) 30.44 (27.92) 30.42 (27.93) 29.82 (27.86)

sd ≈ 0.50 ≈ 10.25% ≈ 9.03% ≈ 8.92% ≈ 7.03%
Inv-Gauss (1) 29.45 (27.57) 29.23 (27.58) 29.17 (27.60) 29.83 (27.54)
sd ≈ 1.00 ≈ 6.82% ≈ 5.98% ≈ 5.69% ≈ 8.32%

Exponential (1) 29.62 (27.86) 29.42 (27.90) 29.51 (27.93) 28.95 (27.82)
sd ≈ 1.00 ≈ 6.32% ≈ 5.45% ≈ 5.66% ≈ 4.06%

for any other choice of N in the vicinity of the optimal value 56, say between 50 and 60, the

expected cost per unit time increases only slightly (no more than 3%). Such a robustness

result allows us to rely on the optimal value even when the inter-arrival time distributions

deviate slightly from the stated ones. Table  4.5 documents the optimal choices for other

combinations of inter-arrival times.

4.5.2 Maintenance policy 2

Suppose that the monitoring equipment can identify the stages of the system. If the

system is in Stage 1, we do not replace it at all. After the system enters Stage 2, if the system

is still functioning for an additional t units of time, we replace it immediately at epoch T1 + t;

otherwise, we replace the system immediately on failure during [T1, T1 + t). Our objective is

to determine an optimum additional time t in Stage 2. To do so, we minimize the expected

cost per unit time, where the expected cost (C) is given by

E[C | Policy 2] = cp2P (T2 > T1 + t) + cfP (T2 ≤ T1 + t) (4.5.4)
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Figure 4.5. Under Policy 1 and cost parameters c0 = 100, cpA = 10,cpB = 10,
cp2 = 15, cf = 200, if F ≡ Weibull (2, 2/

√
π) and G ≡ gamma (2, 1/3), then to

minimize the maintenance cost per unit time, the optimal number of impetus
for preventive replacement is N = 56.

and the expected length of the cycle time (CT ) is

E[CT | Policy 2] = E[min(T2, T1 + t)] = E[T1] + E[min(T2 − T1, t)] (4.5.5)

We wish to minimize the expected cost per unit time

E[C | Policy 2]/E[CT | Policy 2] (4.5.6)

by choosing t. Under Policy 2, the assumed cost parameters, and F ≡ Weibull (2, 2/
√

π) and

G ≡ gamma (2, 1/3), Figure  4.6 shows that the expected cost per unit time is minimized at

t = 6.6. In fact, we identified this optimal t value via a grid search between the first and the

99-th percentiles of system lifetime with an increment of 0.05. This choice suffices because

any other choice of t in the interval [6, 7] increases the cost per unit time only marginally.

Table  4.5 documents the optimal choices of t for other combinations of inter-arrival times.
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Figure 4.6. Using cost parameters c0 = 100, cpA = 10,cpB = 10, cp2 = 15,
cf = 200, F ≡ Weibull (2, 2/

√
π) and G ≡ gamma (2, 1/3), to minimize the

maintenance cost per unit time, the optimal duration in Stage 2 after which
preventive replacement must be scheduled is t = 6.6.

The following tables give the summary of the optimal choices of N and t for Policy 1 and

Policy 2, respectively, for different choices of F and G.

We see that for policy 1, the total number of impacts N is only 0-3 impacts more than the

optimal values of N when Stage 1 was not divided. This is because, for our choice of (kA, kB)

and (mA,mB), the average impact throughout the entire undivided Stage 1 is comparable to

that in the undivided Stage 1 case. Hence, there is only a negligible amount of change in

N due to subdivision. Similarly, for policy 2, there is no significant change in t, because it

depends only on the arrival rate of VS in Stage 2 and not at all on the subdivision of Stage 1

to accommodate varying rates of healing.

4.6 Summary

In this chapter, we subdivided Stage 1, where healing is permissible, into two parts:

initially the system heals at a faster rate requiring a few PIs to nullify one VS; but once
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Table 4.5. For various inter-arrival time distributions F and G satisfying
E[X] = 1 and E[Y ] = 2/3, to minimize the maintenance cost per unit time,
the optimal N for Policy 1 is shown in the first row, and the optimal t for
Policy 2 is shown in the second row.

PPPPPPPPPVS
PI

sd ≈ 0.12
(2, 4

3
√

π
)

Weibull

sd ≈ 0.22
(2, 1

3
)

Gamma

sd ≈ 0.29
(2/3)
Inv-Gauss

sd ≈ 0.40
(3/2)
Exponential

Weibull (2, 2√
π
) N = 55 N = 56 N = 53 N = 52

sd ≈ 0.27 t = 6.45 t = 6.60 t = 6.55 t = 6.60
Gamma (2, 1

2
) N = 54 N = 51 N = 52 N = 50

sd ≈ 0.50 t = 5.70 t = 5.75 t = 5.80 t = 5.85
Inv-Gauss (1) N = 51 N = 50 N = 49 N = 49
sd ≈ 1.00 t = 4.85 t = 4.65 t = 5.05 t = 4.90

Exponential (1) N = 50 N = 50 N = 50 N = 49
sd ≈ 1.00 t = 4.75 t = 4.65 t = 4.65 t = 4.80

enough net VS have accumulated, more PIs are needed to nullify one VS. The theoretical

investigation of λ remains an open problem. Moreover, in this research we found that

subdivision of Stage 1 leads to an increase in the Stage 1 duration, and hence the system

lifetime. In the next chapter, we will consider varying magnitudes of VS and PI and allow

natural system degradation.
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5. AN OPTIMAL REPLACEMENT POLICY UNDER

VARIABLE SHOCKS AND DIFFERENT PATTERNS OF

SELF-HEALING

5.1 Introduction

Industrial systems are often challenged by external impetus that affect their normal

functioning. An impetus that inflicts a damaging effect is called a “shock”. In the last few

years, there have been extensive studies on different types of external shocks and their effects

on a system. On the other hand, when an impetus produces a positive effect on the system

by improving its current state, it is called a “healing effect”. When the system heals by

default, without requiring intervention, it is called “self-healing”. Such natural and continuous

self-healing is commonplace in many industrial, ecological, and biological systems and may

continue either indefinitely or for a specific duration.

Self-healing exists in software debugging systems, where bugs, malware invasion, license

expiration, etc. are considered shocks, while automatic system cleansing is considered self-

healing. The software industry spends millions of dollars to monitor and maintain such

systems to prevent them from failing, especially when such a failure is catastrophic. These

maintenance policies seek optimal rules to replace the system before risking it’s failure.

In recent decades, many shock models with healing effects have been studied that also

permit sporadic shocks of variable magnitudes and continuous internal degradation. For

example, in  Shen et al. ( 2018 ) shocks arrive according to a Poisson process with changing

intensities. Depending on the degree of accumulated damage, the system performance can

be divided into several states. In some states, self-healing reduces the accumulated damage;

however, self-healing can stop when the system reaches a specific state. There may also

be an internal degradation process. For instance, in some systems or components such as

micro-electro-mechanical systems (MEMS) and servo motors as described in  Wang et al. 

( 2020 ), natural degradation affects the consequences caused by shocks and vice versa. That

paper allows a natural-degradation-state (NDS) function to classify shocks into safety, damage,

and fatal zones according to their thresholds, and derives closed-form reliability function and
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failure time distribution function.  Dong et al. ( 2020b ) introduced a “damage recovery factor”

to quantify self-healing and its effect on the reliability function and the mean failure time.

They allow random shocks to accelerate internal degradation rate and discuss a preventive

replacement policy. Similarly,  Kong and Yang ( 2020 ) formulated a reliability model under

multiple competing failure processes. They considered the magnitudes of the shock and their

duration simultaneously to study their impacts on the degradation processes, describing

both recovery level and recovery time.  Ranjkesh et al. ( 2019 ), evaluate system reliability

using dependencies between inter-arrival times having phase-type distributions and shock

magnitudes.

A survey of various maintenance policies for industrial systems is provided in  Wang ( 2002 ),

including a broad spectrum of replacement policies such as age-dependent, periodic, failure

limit and sequential preventive maintenance policies. These policies essentially use one of

the following optimization criteria: maximize availability, minimize expected cost per unit

time, minimize downtime, and minimize limiting failure rate. They also consider various

repair policies, such as perfect or imperfect repair, and various monitoring strategies such as

monitoring at discrete time points or continuously. We will next seek an optimal maintenance

policy that minimizes the average cost per unit time.

Preventive maintenance (PM) and corrective maintenance (CM) are the two classical

types of maintenance policies undertaken to maximize profit or minimize loss due to failure.

In  Chien et al. ( 2012 ), each period of operation inflicts a random amount of damage to

the system and those damages accumulate to trigger a PM or a CM action. The long-run

expected cost rate is minimized to determine the optimal policy.  Qiu et al.  ( 2020 ) develops

a novel reliability model characterizing self-healing effect on system reliability. They carry

out an imperfect repair following each minor failure, and replace the system based on its

lifetime and the number of minor failures. The optimal replacement time is determined

using a stochastic dynamic programming formulation that minimizes the expected total cost

of system failure and imperfect repairs. In  Dong et al.  ( 2021 ) external shocks and their

damaging effects are considered for multi-component systems that are subject to dependent

and competing failure processes. Generalized shock models are presented under several shock

categories. A block replacement policy is introduced, and the Nelder-Mead downhill simplex
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method is employed to determine the optimal replacement interval based on the derived

system reliability.

Some applications of systems exposed to external shocks, internal degradation, and

experiencing self-healing are the following.  Dong et al. ( 2020b ) considers micro-electro-

mechanical systems (MEMS), where electrostatic, piezoelectric, optical, mechanical vibration

or magnetic stimuli are classified as external shocks, whereas self-healing is induced in the

electrode by a polymer binder.  Dong et al.  ( 2021 ) discusses a similar system with internal

degradation.  Kong and Yang ( 2020 ) discusses an example of insulators in power-transmission

systems, where temperature, humidity, ultraviolet radiation, and corona discharge are external

damaging shocks; and hydrophobicity degradation and corona discharge cause internal

degradation of the system. They consider the system recovery level and time to characterize

a self-healing mechanism.

We build this current chapter on our previous Chapters  3 and  4 , where the system was

exposed to randomly arriving external shocks of the same magnitude. Here, unlike previously,

we let external shocks inflict damages of varying magnitudes. We also permit the system to

begin to heal instantaneously and continue to heal at a fixed rate while also continuously

degrading due to aging. Under this more general model of variable damage, our objective is

to determine an optimal replacement time that minimizes the cost per unit time.

The remainder of this chapter is organized as follows. Section  5.2 describes the evolution

of the system as a continuous-time stochastic process that renews itself after a preventive or

corrective replacement. Subsection  5.2.1 explains the method of computing the expected cost

per unit time. Subsection  5.2.2 reports the optimal replacement times obtained in simulation

studies. Furthermore, once we have established the optimal replacement policy, we also

consider different variations of our assumed system in Section  5.3 : First, the damaging shocks

can heal only for a finite duration τ (Subsection  5.3.1 ); second, a fixed proportion of shocks

are non-healable (that is, τ = 0 for these shocks) (Subsection  5.3.2 ); and third, there are

two different types of shocks—healable for a finite duration τ and non-healable (Subsection

 5.3.3 ). Details of the simulation studies for the three sub-cases are mentioned in Section  5.3 .

Section  5.4 summarizes our research findings.
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5.2 Stochastic evolution of systems

The system described in this research is either a single- or a multi-unit system. External

shocks arrive with random inter-arrival times inflicting damages of random magnitudes.

Immediately after a shock arrives, the system begins to heal, which reduces the accumulated

damage by automated replenishment which is known as the self-healing behavior. We

assume that healing occurs continuously and indefinitely at a constant rate according to an

exponential function of time; therefore, cumulative damage decreases exponentially. The

system fails when cumulative damage crosses a certain threshold, which decreases with time

as a result of aging.

The set-up and assumptions:

(A1) Let X1, X2, . . . , Xn denote the inter-arrival times of shocks which are IID with arbitrary

CDF F .

(A2) Let Y1, Y2, . . . , Yn denote the corresponding magnitudes of damage caused by the

external shocks, which are IID with arbitrary CDF G.

(A3) Damages from the shocks accumulate over time.

(A4) The system self-heals from the damages at a constant rate. Hence, at any given time,

either a shock arrives, causing the cumulative damage to shoot up, or the system

continuously heals from the effects of all previous shocks, causing the cumulative

damage to decrease continuously.

(A5) The system fails when the accumulated damage exceeds a certain boundary threshold,

which decreases over time at a faster rate as the system ages, making it more vulnerable

to failure. Here, for illustration, we assume that the boundary is a quadratically

decreasing function of time. Thus, the system fails in one of two ways:

(i) a new shock arrives so that the cumulative damage exceeds the boundary;

(ii) the accumulated damage, though decreasing, crosses the boundary while the

system is healing because aging causes the boundary to come down faster.
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Figure  5.1 , which depicts the accumulated damage as a function of time, illustrates these

two types of failure using two sample paths. The black sample path crosses the boundary

threshold when a shock of sufficient magnitude arrives. The red sample path exceeds the

boundary while the system is healing, but the boundary is reducing faster.

0 5 10 15 20

0

2

4

6

8

 

A
cc

um
ul

at
ed

 d
am

ag
e

Non−increasing boundary threshold

T

T

Time

Figure 5.1. Depicting cumulative damage (black and red curves) as shocks
arrive randomly. The blue curve represents the quadratically decreasing bound-
ary threshold; dotted vertical segments denote random amount of damage
inflicted by each shock, and the continuous curves represent exponential decay
of cumulative damage due to constant healing. When the cumulative damage
exceeds the boundary threshold, the system fails.

5.2.1 Methodology

Let us explain how to calculate the cumulative damage to the system at any given time:

Let Sj =
∑j

i=1 Xi be the arrival time of the j-th shock. Let N(t) denote the number of
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shocks that have arrived till time t (observed at increments of ∆). Then the cumulative

damage D, at time t is computed as

D(t) =

N(t)∑
i=1

Yie−κ(t−Si) (5.2.1)

where Yi is the damage inflicted by the i-th shock, and κ is the fixed healing rate.

For monitoring purpose, the system is observed at regular epochs at increments of ∆

over a window of time [0, T ]. Borrowing the discretization approach from Chapter  2 , we

choose ∆ sufficiently small so that for all practical purposes, we observe the system almost

continuously. At each observation epoch, we measure the difference between the cumulative

damage and the boundary threshold given by

B(t) = a+ bt− ct2 (5.2.2)

where a, c ∈ R+ and b ∈ R. Note that, the above choice of the boundary threshold is

illustrative only, one can consider any other non-increasing function of time. For k = 1, 2, . . . ,

if the cumulative damage D(t) does not cross the threshold B(t) at the (k− 1)-st observation

epoch, but is found to have crossed it at the k-th inspection epoch, then the system has

failed and we replace it at time T = k∆.

However, replacement upon failure is not desirable due to the high cost of replacing a failed

system and the loss of revenue until a new system is installed. Instead, we must determine a

preventive maintenance policy in which we replace the system before failure; however, we

must not replace the system too early and forfeit its remaining lifetime. Therefore, we propose

the following maintenance policy: Whenever the cumulative damage D(t) enters within d

units of the threshold B(t), where d > 0 has yet to be determined, an alarm is activated

and we replace the system after an additional time t∗ which depends on the tolerable risk

probability (say, between 10% and 20%) that the system might fail before that epoch. Thus,

the choice parameter d is related to the additional duration t∗ after the alarm sets off, when

we replace the unfailed system. For any choice of d ∈ [D1, D2], at increments of 0.1, we apply
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Algorithm 5.1 to compute lifetime, replacement time, residual life-time and the number of

shocks.

Algorithm 5.1

(S1) Generate n shocks with inter-arrival time X1, X2, . . . , Xn IID with CDF F and magni-

tudes. Y1, Y2, . . . , Yn IID with CDF G, where n is sufficiently large; say, n ≈ 2 T /E[X].

(S2) Calculate cumulative damage D(t) at each epoch t = j∆ (for j = 1, 2, · · · ) using

equation ( 5.2.1 ). Suppose that T = k∆, is the first time D(t) exceeds the boundary.

Then we must replace the system at epoch T , called failure time.

(S3) We record the number N of shocks that the system endures until failure.

(S4) Let T ′ = l∆, for some l < k, be the first time that cumulative damage D(t) is within d

units of the boundary. Had we replaced the system at T ′, the lifetime of the system lost

due to premature replacement would have been T − T ′, and would be called residual

lifetime.

(S5) Repeat steps (S1) to (S4) 104 times. For each repetition, obtain T , T ′, N , and compute

r = T − T ′.

Note that our objective is to utilize the system to its fullest. Therefore, we should not

replace the system too soon. How long could we allow the system to function before replacing

it so that the chance of a system failure within this additional duration would be 10%,

15% or 20% (equivalently, survival probabilities would be 90%, 85% or 80%), respectively?

Let us denote these survival percentiles after the alarm sets off by t∗90(d), t∗85(d), and t∗80(d),

respectively (collectively denoted by t∗γ(d) for γ = 0.90, 0.85, 0.80). We compute these survival

percentiles using the 1000 values of the residual lifetime r = T − T ′. This we do for every

choice of d ∈ [D1, D2], at increments of 0.1. Our main objective is to find an optimal d such

that the expected cost per unit of time is minimized when we are willing to risk a small (10%,

15% or 20%) chance of system failure within the next t∗γ(d) units of time after the alarm sets

off.

To compute the expected cost per unit time, let c0 be the initial cost of installing the

system, cI be the per unit time cost of inspection and maintenance (although the inspection
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cost is incurred at increments of ∆, we redistribute the cost over the entire interval), cop be

the per unit time cost of operating the system, crev be the per unit time revenue earned by

the system while operating (it is a negative cost), and cf be the additional cost of failure

replacement. We define as cycle time the duration from the time a system is installed for

operation until it is replaced at epoch min{T, T ′ + t∗γ(d)}. Then, the expected cost (EC)

within a cycle time is:

EC[t∗γ(d)] = c0 + (cI + cop − crev)× E[min{T, T ′ + t∗γ(d)}] + cfIF (5.2.3)

where IF = 1 if the system experiences failure and IF = 0 if the system is replaced before

failure. We wish to minimize EC[t∗γ(d)]/E[min{T, T ′ + t∗γ(d)}] with respect to d.

5.2.2 Simulations

Let us demonstrate how to find the optimal d and associated expected t∗γ(d), in our

proposed policy we choose T = 100,∆ = 0.05, κ = 0.01 or 0.02, E[X] = 1 and E[Y ] = 10,

respectively. We take n = 200 so that in every iteration, the cumulative damage (almost) surely

crosses the boundary (equation (  5.2.2 )) with a = 500, b = 0 and c = 0, 1/60, 1/50, 1/40, 1/30.

We calculate the cumulative damage at time t using equation (  5.2.1 ). Let the various

costs be c0 = 5000, cI = 50, cop = 100, crev = 200, cf = 1000. We search for optimal

d ∈ [D1 = 8, D2 = 16].

For inter-arrival time between shocks, we choose X ∼ Weibull (shape = 2, scale = 2/
√

π)

so that E[X] = 1. For the magnitude of the shocks, we choose Y ∼ Weibull (shape = 10,

scale = 50/Γ(1/5)) so that E[Y ] = 10. For each choice of d ∈ [8, 16] in increments 0.1,

values of t∗γ are obtained for γ = 0.90, 0.85, 0.80. In Figure  5.2 , as an illustration, we display

the survival plot for a particular choice d = 12 showing that the additional time after the

alarm sets off that the system can be operated with 90%, 85% and 80% survival probabilities,

respectively, are 0.50, 0.80, 1.04.

Next, using equation (  5.2.3 ), the expected cost per unit time is calculated for every

choice of d and the associated t∗γ , for survival probabilities γ = 90%, 85%, 80%. Figure  5.3 (a)

demonstrates that the larger d is (that is, the farther the accumulated damage from the
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Figure 5.2. When B(t) = 500− t2/50, κ = 0.01 and d = 12, the additional
time t∗γ that the system should be allowed to operate after the alarm sets off,
for γ = 0.90, 0.85, 0.80.

boundary), the larger is the t∗γ , for each γ = 0.90, 0.85, 0.80. Figure  5.3 (b) shows the expected

cost per unit time as a function of d when X ∼ Weibull (shape = 2, scale = 2/
√

π), Y ∼

Weibull (shape = 2, scale =1/2) and B(t) = 500− t2/50. If expected cost per unit time has

multiple minima, we choose the smallest one, since we wish to utilize the system as much as

possible without compromising the cost per unit time.

Table  5.1 displays the simulation results showing the optimal d for different choices of κ

and boundary thresholds with different quadratic coefficients, but keeping the inter-arrival

distribution Weibull and the magnitude of shocks Weibull.

Here are some lessons learned from Table  5.1 :

1. If the healing rate κ increases, the system heals faster so that it takes longer for the

accumulated damage to come within d units of the boundary, thus increasing the

replacement time. Using the same logic, a higher κ also causes the optimal d to be

smaller.

2. Furthermore, for a fixed κ and for a particular choice of boundary threshold, if the

survival probabilities are chosen to be smaller, then t∗ increases or at least remains the

same (because, by definition, t∗80 ≥ t∗85 ≥ t∗90), and the optimal d also increases, because
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(a) (b)

Figure 5.3. (a) The percentiles t∗80 ≥ t∗85 ≥ t∗90 are increasing functions of d.
(b) The expected cost per unit time is minimized at d = 10.3 for γ = 0.90; at
d = 10.4 for γ = 0.85 and γ = 0.80. If there are multiple minima, choose the
smallest one.

of monotonic relation with t∗ exhibited in Figure  5.3 (a). On the contrary, if we demand

a higher survival rate, then the optimal d decreases.

3. As the boundary threshold decreases at a faster rate, the optimal d increases for each

of the survival rates 90%, 85% and 80%. This is because when the boundary decreases

faster, we should let the alarm go off earlier to avoid potential failure.

For boundary B(t) = 500 − t2/50, healing rate κ = 0.02, and Y following Weibull

distribution, Table  5.2 shows the optimal d and the associated t∗γ for various distributions of

inter-arrival time of shocks.

When X has Weibull or gamma distribution, the additional time t∗(γ) after the alarm

sets off, are comparable, and the optimal d is robust around 10. However, when X is

inverse-Gaussian, the t∗γ values are much lower, because inverse-Gaussian distribution has a

heavier right tail than Weibull and gamma. Likewise, because the exponential distribution

has an even thicker right tail, the corresponding t∗γ ’s are even smaller. Among all inter-arrival

time distributions considered here, exponential is the most heavy-tailed; hence its survival

function is the highest, and the optimal d is the highest.

106



Table 5.1. For X ∼ Weibull(2,2/π), Y ∼ Weibull(2,1/2), and for various
choices of κ and B(t), the optimal d and [the associated t∗γ] are displayed for
γ = 0.90, 0.85, 0.80.

B(t) = 500
κ γ = 0.90 γ = 0.85 γ = 0.80
0.01 9.1 [0.625] 9.1 [0.803] 9.6 [0.963]
0.02 8.2 [1.105] 8.2 [1.137] 8.8 [1.423]

B(t) = 500− t2/60
κ γ = 0.90 γ = 0.85 γ = 0.80
0.01 9.6 [0.448] 9.6 [0.583] 9.6 [0.709]
0.02 9.3 [0.610] 9.3 [0.782] 9.3 [0.953]

B(t) = 500− t2/50
κ γ = 0.90 γ = 0.85 γ = 0.80
0.01 10.3 [0.456] 10.4 [0.575] 10.4 [0.679]
0.02 9.3 [0.601] 10.1 [0.774] 10.1 [0.934]

B(t) = 500− t2/40
κ γ = 0.90 γ = 0.85 γ = 0.80
0.01 10.6 [0.401] 10.6 [0.534] 10.6 [0.638]
0.02 9.5 [0.530] 10.2 [0.698] 10.2 [0.843]

B(t) = 500− t2/30
κ γ = 0.90 γ = 0.85 γ = 0.80
0.01 10.8 [0.376] 10.8 [0.495] 10.8 [0.606]
0.02 9.7 [0.526] 10.7 [0.681] 10.7 [0.813]

In the next section, we discuss some variations on the healing pattern.

5.3 Variations in the healing effect and the shock types

In this section, we discuss some variations on the stochastic modelling of the system

evolution described earlier.

5.3.1 Case 1: Healing stops after a finite duration

Unlike in the previous section where healing continues indefinitely so that the damage

eventually heals 100%, in this subsection, healing continues only up to a finite duration τ , and
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Table 5.2. For Y ∼ Weibull(2,1/2), κ = 0.02, and B(t) = 500 − t2/50, and
various inter-arrival time distributions, the optimal d and [the associated t∗γ]
are displayed for γ = 0.90, 0.85, 0.80.

X ∼ gamma (shape = 3, scale = 1/3)
γ = 0.90 γ = 0.85 γ = 0.80
8.7 [0.542] 8.7 [0.706] 8.4 [0.865]

X ∼ W eibull (shape = 2, scale = 2/
√

π)
γ = 0.90 γ = 0.85 γ = 0.80
9.3 [0.601] 10.1 [0.698] 10.1 [0.934]

X ∼ inverse-Gaussian (mean = 1)
γ = 0.90 γ = 0.85 γ = 0.80
9.9 [0.334] 9.9 [0.432] 10.5 [0.529]

X ∼ exponential (rate = 1)
γ = 0.90 γ = 0.85 γ = 0.80

11.4 [0.143] 10.9 [0.229] 10.7 [0.315]

thereafter stops, so that only a certain percentage of the inflicted damage heals. Conversely,

if we specify what proportion of the inflicted damage will heal, we can find the corresponding

τ . Thus, the shocks are not totally healable, and a residual damage is left behind. Figure  5.4 

illustrates the accumulated damage until system failure.

For illustration, we make the following choices: For exponential healing with rate κ = 0.01,

we choose τ = 50 to attain a 40% healing of the inflicted damage, and τ = 25 for a 22%

healing. When the healing rate increases to κ = 0.02, a choice of τ = 25 attains a 40%

healing, and τ = 50 attains a 64% healing. Hence, at a given time t, the cumulative damage

D to the system at time t is calculated as

D(t) =

N(t)∑
i=1

Yie−κ[(t−Si)∧τ ] (5.3.1)

where the notation “∧” stands for the minimum. We see that the equation (  5.3.1 ) matches

equation (  5.2.1 ) when we let τ = ∞. As in the previous section, we calculate the lifetimes,

replacement times and associated t∗γ’ s for survival probabilities γ = 90%, 85%, 80% after

1000 repetitions of the stochastic process. We implement the same preventive maintenance
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Figure 5.4. Depicting cumulative damage (black and red) as shocks arrive
randomly. The blue curve represents the quadratically decreasing boundary
threshold; dotted vertical segments denote random amount of damage inflicted
by each shock, and the continuous curves represent exponential decay of
cumulative damage upto a finite duration τ = 1 due to constant healing. When
the cumulative damage exceeds the boundary threshold, the system fails.

policy as in Subsection  5.2.2 to document in Table  5.3 and Table  5.4 the optimal d and the

associated t∗γ under the modified healing rule for τ = 50 and 25 respectively.

Note that the overall optimal replacement time t∗γ when τ is a finite number is lower than

that in Subsection  5.2.2 where τ = ∞. This is anticipated because when the shocks do not

heal indefinitely, their residual damages bring the collective damage closer to the boundary

threshold much earlier. In general, we also see that the t∗γ’s are significantly lower and the

optimal d’s are larger in Tables  5.3 and  5.4 as compared to Table  5.1 , implying that the

alarm goes off when the distance from the boundary is larger and we wait a shorter duration

after the alarm goes off to replace the system. Further, comparing Tables  5.3 and  5.4 , we see

that for the latter one, the optimal d’s are larger and the expected t∗γ’s are lower beacuse

when τ = 25, the healing continues for a shorter duration than when τ = 50.
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Table 5.3. For τ = 50, X ∼ Weibull(2,2/π), Y ∼ Weibull(2,1/2), and
for various choices of κ and B(t), the optimal d and [the associated t∗γ] are
displayed for γ = 0.90, 0.85, 0.80.

B(t) = 500− t2/60
κ γ = 0.90 γ = 0.85 γ = 0.80
0.01 9.9 [0.447] 9.9 [0.575] 11.1 [0.690]
0.02 9.3 [0.578] 9.8 [0.742] 9.8 [0.880]

B(t) = 500− t2/50
κ γ = 0.90 γ = 0.85 γ = 0.80
0.01 10.5 [0.435] 11 [0.564] 11.3 [0.683]
0.02 9.6 [0.552] 9.6 [0.714] 10.4 [0.863]

B(t) = 500− t2/40
κ γ = 0.90 γ = 0.85 γ = 0.80
0.01 10.6 [0.392] 10.6 [0.527] 11.4 [0.634]
0.02 9.7 [0.505] 10.1 [0.642] 10.2 [0.774]

5.3.2 Case 2: Some shocks are not healable

In this subsection, we consider the situation when not all shocks are healable. A fixed

proportion p of shocks never heal; that is, their damage is permanent. Equivalently, for such

shocks τ = 0. We incorporate the effect of such shocks, not by an increase in accumulated

damage, but by a sudden drop in the threshold boundary. Figure  5.6 illustrates the cumulative

damage until it exceeds the boundary threshold.

(1) Classify a shock as nonhealable with probability p.

(2) Let N(t) denote the number of shocks that have arrived by time t (observed at

increments of ∆). Let Hi be an indicator function that takes value 1 if the i-th shock

is healable, and 0 otherwise. Then the boundary curve drops by the corresponding

magnitude of the nonhealable shock, making the modified boundary

B(t) = a+ bt− ct2 −
N(t)∑
i=1

(1−Hi)Yi (5.3.2)
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Table 5.4. For τ = 25, X ∼ Weibull(2,2/π), Y ∼ Weibull(2,1/2), and
for various choices of κ and B(t), the optimal d and [the associated t∗γ] are
displayed for γ = 0.90, 0.85, 0.80.

B(t) = 500− t2/60
κ γ = 0.90 γ = 0.85 γ = 0.80
0.01 10.8 [0.338] 11.3 [0.449] 11.3 [0.568]
0.02 10.5 [0.426] 10.5 [0.562] 10.5 [0.682]

B(t) = 500− t2/50
κ γ = 0.90 γ = 0.85 γ = 0.80
0.01 11.3 [0.349] 11.3 [0.456] 11.3 [0.561]
0.02 10.7 [0.430] 10.7 [0.560] 10.7 [0.669]

B(t) = 500− t2/40
κ γ = 0.90 γ = 0.85 γ = 0.80
0.01 11.3 [0.339] 11.5 [0.442] 11.7 [0.541]
0.02 10.8 [0.394] 11.1 [0.517] 11.1 [0.626]

(3) We record the cumulative damage inflicted by healable shocks only. Therefore, the

cumulative damage D to the system at time t, is calculated as in Subsection  5.2.1 

D(t) =

N(t)∑
i=1

Hi Yie−κ[(t−Si)∧τ ] (5.3.3)

As in Subsection  5.3.1 , here also on average, compared to Subsection  5.2.2 , the overall

waiting time until replacement after the alarm goes off is shorter.

5.3.3 Case 3: The arrival times of healable and non-healable shocks have different
distributions, so do their magnitudes

Suppose that the shocks affecting the system are of two types based on their healing

capabilities. The first type of shock is self-healable for a finite duration τ (or up to a certain

percentage of the damage heals and the rest is permanent). We assume such healable shocks

arrive with inter-arrival times X1, X2, . . . , Xn which are IID with arbitrary CDF F . Moreover,

the magnitudes of each of such shocks are denoted by Y1, Y2, . . . , Yn which are IID with

arbitrary CDF G. The second type of shocks are nonhealable (or τ = 0) and their impact is
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Figure 5.5. (a) With κ = 0.02 and τ = 50, the expected cost per unit time is
minimized at d = 9.3 for γ = 0.90 and γ = 0.85 and at d = 9.9 for γ = 0.80.
(b) With κ = 0.02 and τ = 25, the expected cost per unit time is minimized
at d = 10.7 for γ = 0.90, 0.85, 0.80. If there are multiple minima, choose the
smallest one.

characterized by drops in the non-increasing boundary threshold causing the system degrade

more severely than under natural aging. Let Z1, Z2, . . . , Zm denote the inter-arrival times of

the nonhealable shocks, which are IID with arbitrary CDF H. Let U1, U2, . . . , Um denote the

magnitudes of such shocks, which are IID with arbitrary CDF K. The system fails in one of

three ways:

(i) a new healable shock arrives so that the cumulative damage exceeds the boundary;

(ii) the accumulated damage curve, although decreasing because of healing, crosses the

boundary which decreases faster due to aging;

(iii) a new nonhealable shock arrives so that the boundary suddenly drops below the

(otherwise) gently decreasing cumulative damage curve.

Figure  5.7 illustrates the type (i) and (ii) failures using black and red sample paths

respectively which depict accumulated damage as a function of time. The black sample path

crosses the boundary threshold when a healable shock of sufficient magnitude arrives. The red

sample path exceeds the boundary while the system is healing, but the boundary comes down

faster due to aging. Type (iii) failure is self-explanatory (and not shown in the illustration).
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Figure 5.6. Depicting cumulative damage and the corresponding boundary
curves (black and red curves) as shocks arrive randomly. The boundaries drop
due to arrival of nonhealable shocks denoted by diamond shaped dots on the
stochastic paths.

Figure  5.8 shows the expected cost per unit time as a function of d when B(t) = 500−t2/50.

Table  5.6 displays the simulation results showing the optimal d for different choices of κ

and boundary thresholds with different quadratic coefficients, but keeping the inter-arrival

time distribution of healable shocks and their magnitudes such that their means are 1 and

10 units respectively; and the inter-arrival times of non-healbale shocks and their damage

contributions such that their means are 5 and 3 units respectively. The given choice is

considered to ensure that non-healable shocks are not more frequent than healable shocks.

5.4 Summary

In this chapter, we incorporated random magnitude of shocks and allowed the system to

degrade over time due to aging while it heals at a constant rate. The main objective of our

research has been to design a preventive maintenance policy. In each of the different scenarios
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Table 5.5. For p = 0.2 proportion of all shocks nonhealable, for
X ∼ Weibull(2,2/π), Y ∼ Weibull(2,1/2), and for various choices of κ and
B(t), the optimal d and [the associated t∗γ ] are displayed for γ = 0.90, 0.85, 0.80.

B(t) = 500− t2/60
κ γ = 0.90 γ = 0.85 γ = 0.80
0.01 10.0 [0.263] 10.2 [0.367] 10.2 [0.476]
0.02 9.0 [0.462] 9.0 [0.613] 9.0 [0.754]

B(t) = 500− t2/50
κ γ = 0.90 γ = 0.85 γ = 0.80
0.01 10.6 [0.263] 10.6 [0.378] 10.9 [0.485]
0.02 9.0 [0.425] 9.0 [0.598] 9.0 [0.745]

B(t) = 500− t2/40
κ γ = 0.90 γ = 0.85 γ = 0.80
0.01 11.2 [0.263] 11.2 [0.374] 11.4 [0.480]
0.02 10.3 [0.398] 10.4 [0.545] 10.4 [0.676]

that we considered, we found an optimum d such that when the cumulative damage comes

within d units of the boundary threshold an alarm sets off, and we replace the system after

an additional duration dependent on a tolerable risk of failure. The optimization criterion is

to minimize the cost per unit time. We allow different distributions for inter-arrival times

and magnitude of shocks, different rates of healing, and different rates of degradation due

to aging for the originally proposed system. Thus, we are not limited to using only certain

types of inter-arrival time distributions. We also see that as the healing patterns change or

the system degrades much faster, we wait for a relatively shorter duration of time before

replacing the system in order to not risk failure.
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Figure 5.7. Depicting cumulative damage as shocks arrive randomly. The
black and red stepwise decreasing curves represent the boundary threshold
corresponding to the black and red sample paths respectively. Diamond shaped
dots represent the arrival times of nonhealable shocks. For illustration we
consider τ = 2 and that nonhealable shocks arrive twice as faster as healable
shocks.
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Figure 5.8. The expected cost per unit time is minimized at d = 11 for
γ = 0.90; at d = 11.3 for γ = 0.85 and d = 11.5 for γ = 0.80. If there are
multiple minima, choose the smallest one.
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Table 5.6. For X ∼ Weibull(2,2/π), Y ∼ Weibull(2,1/2), Z ∼
Weibull(2,10/

√
π), U ∼ gamma (3,1), and for various choices of κ and

B(t), the optimal d and [the associated t∗γ ] are displayed for γ = 0.90, 0.85, 0.80.

B(t) = 500− t2/60
κ γ = 0.90 γ = 0.85 γ = 0.80
0.01 11.0 [0.305] 11.0 [0.401] 11.3 [0.495]
0.02 10.8 [0.415] 11.0 [0.543] 11.1 [0.647]

B(t) = 500− t2/50
κ γ = 0.90 γ = 0.85 γ = 0.80
0.01 11.3 [0.290] 11.3 [0.383] 11.3 [0.467]
0.02 11.1 [0.382] 11.1 [0.512] 11.1 [0.631]

B(t) = 500− t2/40
κ γ = 0.90 γ = 0.85 γ = 0.80
0.01 11.5 [0.278] 11.5 [0.365] 11.5 [0.448]
0.02 11.1 [0.382] 11.5 [0.502] 12.4 [0.605]
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6. SUMMARY

In this chapter, we present the chapter-wise conclusions and the possible directions of future

research.

6.1 Conclusions

Let us revisit the conclusions of each chapter to knit together the thematic message of

this dissertation.

In Chapter  2 , we study a one-unit repairable system supported by identical spare units

on cold standby and repair facilities for which we remove the restrictive assumption of

exponential life- or repair time distributions. The exponential distribution assumption is

very common in the literature due to its lack of memory property, which ensures that the

successive differences between life- or repair times are independent exponential variables

(with different rates), and hence closed form expressions for the limiting average availability

can be obtained. We allow arbitrary lifetime and arbitrary repair time distributions for any

number of spare units and repair facilities by devising a discretization approach in which we

inspect the system only at discrete time points; intervening only when during inspection we

detect failure of unit(s) or revival of a failed system due to completion of at least one repair.

In particular, we do not intervene at all even if a repair has been completed as long as the

operating unit has not failed. Thus, this approach essentially discretizes the time variable

and simplifies continuous monitoring to periodic monitoring (at inspection times only); thus,

making it logistically preferable. We provide a simple computational approach by using the

discretization which allows us to incorporate any arbitrary life- and repair time distributions

as well as increase the number of repair facilities and/or the number of spare units. This

broadens the horizon of research related to repair time distributions.

In Chapter  3 , we shift focus to complex systems that are exposed to external impacts

which can be broadly classified into two types: the damaging impacts are called valid shocks

(VS) (we assume that each VS causes equal damage); and the ones that have a positive

impact to the system are referred to as positive interventions (PI), accumulation of k of which

triggers a healing effect, wherein the effect of one VS is nullified. The VS and PIs arrive
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according to independent stochastic processes, and we essentially focus on the net count

of shocks at any given time. In the literature of shock models, either shocks/impacts are

assumed to have exponential inter-arrival times, or even if non-exponential inter-arrival times

are mentioned, the illustrations are presented with only exponential examples. We generalize

the inter-arrival time distribution of VSs and PIs to be arbitrary. Whenever we can count

the number of VS and PIs, the distribution of Stage 1 duration and the lifetime of the system

can be calculated. Furthermore, we consider that the system can lose its healing capacity as

it ages, therefore, it is divided into Stage 1 (where it can heal) and Stage 2 (where PIs do

not have any effect and the system cannot heal). We find that the distributions of Stage 1

duration T1 and the system lifetime T can be described by a weighted convolution process

with an adjustment involving a multiplier λ obtained numerically. Indeed, it is a function of

the logarithm of the ratio of the standard deviations of inter-arrival time distributions of VS

and PIs. The use of various distributions with choice of parameters yielding the same mean

shows that we can allow any arbitrary inter-arrival distributions of shocks. Furthermore, we

study three replacement policies, each of which optimizes the average cost per unit time to

operate the system under different scenarios.

In Chapter  4 we basically maintain the same setup as in Chapter  3 , the new addition

being subdividing Stage 1 into two parts: initially the system heals at a faster rate requiring

a few PIs to nullify one VS; but once enough net VS have accumulated, more PIs are needed

to nullify one VS. We show that given a predetermined net number of shocks that the system

can withstand in various stages, we can work out the distributions of Stage 1 duration T1

and lifetime T2 using a point process or an adjusted convolution process, as long as we can

count the net number of VS. Moreover, we discover that subdivision of Stage 1 leads to an

increase in Stage 1 duration, and hence system lifetime.

In Chapter  5 , unlike in the previous chapters, we let external shocks inflict damage

of varying magnitudes. Thus, we do not limit ourselves to considering only counts of

shocks, but instead incorporate their magnitudes. We also allow the system to begin to

heal instantaneously and continue to heal exponentially at a fixed rate κ (> 0) while also

continually degrading due to aging. We have designed a time-dependent maintenance policy

which focuses on risk assessment of the system at a given time as soon as the system comes
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dangerously close (that is, within d units) to the boundary threshold, at which instant we are

warned of a high probability of failure in the near future, and thus we determine an optimal

d and associated replacement time by minimizing the cost per unit time. We study changes

in healing behavior such as healing happening only for a fixed duration τ ; changes in types

of shocks, wherein with a certain probability p, some shocks are healable and the others are

non-healable which leave some permanent damage to the system by suddenly degrading the

system by a random amount; and also a combination of both types of shocks. Here too we

allow arbitrary inter-arrival time distribution of all types of shocks. We make four important

discoveries from this chapter:

• As the boundary degrades faster, the optimal d increases and the associated expected

t∗γ(d) (the additional t∗ units of time that the system can be allowed to function once it

has reached within d units of the boundary with a probability of survival γ) decreases,

which means due to higher risk, we allow the system to not come too close to the

boundary threshold and also allow it to run for a shorter duration of time once the risk

is detected; also when the healing rate becomes faster, we can allow the optimal d to

be smaller and thus allow the system to function for a little bit longer.

• When shocks do not heal indefinitely, but rather for a fixed duration τ , their residual

damage brings the collective damage closer to the boundary threshold much earlier. In

general, we also see that the t∗γ(d)’s are significantly lower and the optimal d’s are larger

as compared to the former setup implying that the alarm goes off when the distance

from the boundary is larger and we wait a shorter duration after the alarm goes off to

replace the system. Furthermore, if τ is shorter, the optimal d’ s are even larger and

the expected t∗γ(d)’s are even smaller because healing continues for a shorter duration,

increasing the risk of failure.

• When a fixed proportion p of shocks never heal; that is, their damage is permanent, we

see that on average, as compared to Subsection  5.2.2 , the overall waiting time until

replacement after the alarm goes off is shorter.
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• When there are two types of shock where the first type of shock is self-healable

for a finite duration τ (or when a certain percentage of the damage heals and the

rest is permanent), and the second type of shock is non-healable, we have similar

interpretations: As healing patterns change or the system degrades much faster, we

wait a relatively shorter duration of time before replacing the system to reduce the risk

of failure.

This research provides a comprehensive view of different types of shocks and degradation rates.

Although the simulations and illustrations consider some standard parametric distributions,

the approach can easily be replicated for any type of distribution where parameters can be

approximated from the data.

6.2 Directions of future research

6.2.1 Thoughts on research in reliability theory

Let us discuss some directions of future research in reliability theory and applied proba-

bilistic modelling that may follow from each chapter of this dissertation.

The following are the possible directions from Chapter  2 .

• One plausible extension is to increase the number of spare units and/or the number of

repair facilities and study the changes in system availability. However, the inclusion of

additional spares or repair facilities will lead to an increase in the number of states,

and thus might lead to computational complexity.

• One may also consider implementing the proposed discretization method to study other

systems, such as a k-out-of-N : G system.

• Studies involving cost per unit time for repair and maintenance of spare units may be

undertaken. Design policies to determine the optimal number of repair facilities to be

established and the optimum number of spare units to be kept in hand so that the

overall availability of the system is not compromised and at the same time the cost is

within control.
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• Moreover, one may possibly think about a more realistic repair situation since a perfect

repair policy is often practically infeasible, and hence imperfect repair can be considered.

The lifetime of an imperfectly repaired unit is stochastically shorter than that of a

perfectly repaired unit, and the next imperfect repair time is stochastically larger than

the previous repair time. Therefore, an intermediate repair policy may be significantly

better than a perfect repair policy if the gain from early completion of repair and

reduction of cost exceeds the loss due to shortening of the lifetime and expansion of

the next repair time. Thus, a system may be subjected to several imperfect repairs

before replacement.

From Chapters  3 and  4 , the following potential future directions can be taken.

• Data-driven estimation techniques may be used to incorporate various semiparametric

and non-paramteric forms of interarrival distributions of the VSs and PIs.

• Other replacement policies, such as a block replacement policy may be considered.

• Similar to the subdivision of Stage 1 in Chapter  4 , further subdivisions are possible for

various healing rates based on the magnitude of shocks.

Finally, Chapter  5 opens the following possibilities for future research.

• Different self-healing functions like the one described below can be incorporated.

h(t) =

 α
(α+βt)1+γ for t ≥ 0,

0, otherwise
(6.2.1)

where h(t) is the time-dependent healing function and α, β ∈ R, γ ≥ 0 ( Cui et al. ,

 2018 ).

• Different degradation processes, such as the gamma process, the Wiener process, etc.

can be considered for the system.

• The inter-arrival time distribution of shocks may be from some other type of distribution

such as phase-type distribution, non-homogeneous Poisson process, Hawkes process,

Affine process etc.
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• In addition to those described in the current research, various competing failure processes

can be considered with healing. For example, in an electronic circuit board, one failure

mode can be random voltage spikes, which cause damage by overloading the system,

eventually causing failure. Another failure mode may be wearout, which usually occurs

only after the system has been running for several cycles. The objective will be to

determine the overall reliability of the components after N cycles and to find optimal

policies to replace the system before risking failure.

6.2.2 Thoughts on statistical and computational issues

This research involved probabilistic modelling of various maintained systems. Moreover,

the resultant simulations required heavy computational approaches. We have identified some

potential statistical research as well as implementation challenges that could arise from such

problems, which are described below.

• The choice of thresholds in Chapter  3 : In the counting process of the number of arriving

impacts, the thresholds for various states of the process are assumed to be predetermined.

Some notable works in this direction are  Chien et al.  ( 2012 );  Zhao et al.  ( 2018b );  Cui

et al.  ( 2018 );  Dong et al.  ( 2020b ) among others. One way to determine the threshold

values is by calculating the reliability of the system at any given time. Subsequently, we

can determine the choice of thresholds m1 and m2 that achieve some specified measure

of reliability. These may be empirically calculated using the inter-arrival times of valid

shocks and positive interventions. As described in  Dong and Cui  ( 2019 ), identifying

such thresholds remains an open problem. To bypass this issue, several time-based

thresholds, commonly known as duration thresholds, are often considered by studying

the reliability of the system at a given observation epoch.

Alternatively, prior information on similar systems can be used to determine the optimal

threshold based on the cost involved, losses incurred, average system downtime and

remaining system lifetime ( Rafiee et al.  ,  2015 ). We discovered in Chapter  4 that

subdividing Stage 1 and further incorporating varied thresholds can increase the overall
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lifetime of the system. Determining the thresholds mathematically is a challenging task

which has potential for future research in Bayesian reliability.

• The exact value of λ in Chapter  3 : We have established that λ is a function of the

logarithm of the ratio of the standard deviations of F and G. However, we have not

tried to find a closed-form expression of λ, as it was not the main focus of our research.

The value of λ may be estimated using non-parametric estimation techniques such as

kernel density estimation.

• The choice of d in Chapter  5 : Because of randomness in the stochastic paths, the

system fails when either a shock arrives or while the system is healing. Even though at

times the cumulative damage comes very close to the boundary, the system may not

fail. Moreover, even if at a given inspection epoch the cumulative damage is far from

the boundary, two things can happen: (1) before the next inspection epoch, a shock

arrives, making the cumulative damage high enough to cross the boundary, or (2) the

cumulative damage crosses the boundary while the system was healing. Due to this

randomness, there can be multiple minima when the expected cost per unit time is

plotted against the various choices of d (as in Figure  5.4 (b)). The cycle time in equation

( 5.2.3 ) is minimum of the failure time T and the replacement time T ′ + t∗γ(d). With

some non-negative probability, sometimes the system might fail before the cumulative

damage comes within d of the boundary. Therefore, finding a global minimum remains

unsolved.

Finding a suitable confidence interval of d based on the boundary function and the

cumulative damage remains another open statistical problem. To find the confidence

interval of d, we may use a data-driven approach such as the bootstrap method. This

will give a range of values of d as a function of the inter-arrival times of shocks, their

magnitudes, and the boundary function. Even though closed-form expressions of T

and T ′ can be obtained for exponential inter-arrival time distribution of the incoming

chocks, it will become increasingly challenging for other inter-arrival time distributions.
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• Computational aspect: The approaches taken throughout the various chapters require

heavy computation. For example, in Chapter  5 , the simulation of the entire stochastic

path for various choices of d over a range and the monitoring of the system at observation

epochs in small increments of ∆, are computationally demanding. Parallel computing

is the most efficient technique to perform the simulations simultaneously for different

choices of the (hyper)parameters to search for the optimal solutions.

To summarize, the main focus of this dissertation has been to propose probabilistic

modelling approach to systems supported by various spare and/or repair conditions or exposed

to external stress factors such as shocks that have a deteriorating impact or impetus that

can sometimes induce healing from the damages. We have established policies to maximize

reliability measures such as availability and system lifetime. The results are illustrated by

taking various choices of parameters and hyperparameters to define the conditions under

which the systems function. The methodologies undertaken in this research enable us to

study complex systems and various system environments in the future and will be beneficial

for studying the reliability of not only industrial systems but also systems found in economic,

environmental, biological, and actuarial sciences.
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