182 research outputs found

    A machine learning-based investigation of cloud service attacks

    Get PDF
    In this thesis, the security challenges of cloud computing are investigated in the Infrastructure as a Service (IaaS) layer, as security is one of the major concerns related to Cloud services. As IaaS consists of different security terms, the research has been further narrowed down to focus on Network Layer Security. Review of existing research revealed that several types of attacks and threats can affect cloud security. Therefore, there is a need for intrusion defence implementations to protect cloud services. Intrusion Detection (ID) is one of the most effective solutions for reacting to cloud network attacks. [Continues.

    Bayesian Networks for Interpretable Cyberattack Detection

    Get PDF
    The challenge of cyberattack detection can be illustrated by the complexity of the MITRE ATT&CKTM matrix, which catalogues >200 attack techniques (most with multiple sub-techniques). To reliably detect cyberattacks, we propose an evidence-based approach which fuses multiple cyber events over varying time periods to help differentiate normal from malicious behavior. We use Bayesian Networks (BNs) – probabilistic graphical models consisting of a set of variables and their conditional dependencies – for fusion/classification due to their interpretable nature, ability to tolerate sparse or imbalanced data, and resistance to overfitting. Our technique utilizes a small collection of expert-informed cyber intrusion indicators to create a hybrid detection system that combines data-driven training with expert knowledge to form a host-based intrusion detection system (HIDS). We demonstrate a software pipeline for efficiently generating and evaluating various BN classifier architectures for specific datasets and discuss explainability benefits thereof

    IoT Data Analytics in Dynamic Environments: From An Automated Machine Learning Perspective

    Full text link
    With the wide spread of sensors and smart devices in recent years, the data generation speed of the Internet of Things (IoT) systems has increased dramatically. In IoT systems, massive volumes of data must be processed, transformed, and analyzed on a frequent basis to enable various IoT services and functionalities. Machine Learning (ML) approaches have shown their capacity for IoT data analytics. However, applying ML models to IoT data analytics tasks still faces many difficulties and challenges, specifically, effective model selection, design/tuning, and updating, which have brought massive demand for experienced data scientists. Additionally, the dynamic nature of IoT data may introduce concept drift issues, causing model performance degradation. To reduce human efforts, Automated Machine Learning (AutoML) has become a popular field that aims to automatically select, construct, tune, and update machine learning models to achieve the best performance on specified tasks. In this paper, we conduct a review of existing methods in the model selection, tuning, and updating procedures in the area of AutoML in order to identify and summarize the optimal solutions for every step of applying ML algorithms to IoT data analytics. To justify our findings and help industrial users and researchers better implement AutoML approaches, a case study of applying AutoML to IoT anomaly detection problems is conducted in this work. Lastly, we discuss and classify the challenges and research directions for this domain.Comment: Published in Engineering Applications of Artificial Intelligence (Elsevier, IF:7.8); Code/An AutoML tutorial is available at Github link: https://github.com/Western-OC2-Lab/AutoML-Implementation-for-Static-and-Dynamic-Data-Analytic

    Classifying spam emails using agglomerative hierarchical clustering and a topic-based approach

    Get PDF
    [EN] Spam emails are unsolicited, annoying and sometimes harmful messages which may contain malware, phishing or hoaxes. Unlike most studies that address the design of efficient anti-spam filters, we approach the spam email problem from a different and novel perspective. Focusing on the needs of cybersecurity units, we follow a topic-based approach for addressing the classification of spam email into multiple categories. We propose SPEMC-15K-E and SPEMC-15K-S, two novel datasets with approximately 15K emails each in English and Spanish, respectively, and we label them using agglomerative hierarchical clustering into 11 classes. We evaluate 16 pipelines, combining four text representation techniques -Term Frequency-Inverse Document Frequency (TF-IDF), Bag of Words, Word2Vec and BERT- and four classifiers: Support Vector Machine, Näive Bayes, Random Forest and Logistic Regression. Experimental results show that the highest performance is achieved with TF-IDF and LR for the English dataset, with a F1 score of 0.953 and an accuracy of 94.6%, and while for the Spanish dataset, TF-IDF with NB yields a F1 score of 0.945 and 98.5% accuracy. Regarding the processing time, TF-IDF with LR leads to the fastest classification, processing an English and Spanish spam email in 2ms and 2.2ms on average, respectively.S

    Automatic Handling of Imbalanced Datasets for Classification

    Get PDF
    Imbalanced data is present in various business areas and when facing it without proper knowledge, it can have undesired negative consequences. In addition, the most common evaluation metrics in machine learning to measure the desired solution can be inappropriate and misleading. Multiple combinations of methods are proposed to handle imbalanced data however, often, they required specialised knowledge to be used correctly. For imbalanced classification, the desire to correctly classify the underrepresented class tends to be more important than the overrepresented class, while being more challenging and time-consuming. Several approaches, ranging from more accessible and more advanced in the domains of data resampling and cost-sensitive techniques, will be considered to handle imbalanced data. The application developed delivers recommendations of the most suited combinations of techniques for the specific dataset imported, by extracting and comparing meta-features values recorded in a knowledge base. It facilitates effortless classification and automates part of the machine learning pipeline with comparable or better results to a state-of-the-art solution and with a much smaller execution timeOs dados não balanceados estão presentes em diversas áreas de negócio e, ao enfrentá-los sem o devido conhecimento, podem trazer consequências negativas e indesejadas. Além disso, as métricas de avaliação mais comuns em aprendizagem de máquina (machine learning) para medir a solução desejada podem ser inadequadas e enganosas. Múltiplas combinações de métodos são propostas para lidar com dados não balanceados, contudo, muitas vezes, estas exigem um conhecimento especializado para serem usadas corretamente. Para a classificação não balanceada, o desejo de classificar corretamente a classe sub-representada tende a ser mais importante do que a classe que está representada em demasia, sendo mais difícil e demorado. Várias abordagens, desde as mais acessíveis até as mais avançadas nos domínios de reamostragem de dados e técnicas sensíveis ao custo vão ser consideradas para lidar com dados não balanceados. A aplicação desenvolvida fornece recomendações das combinações de técnicas mais adequadas para o conjunto de dados específico importado, extraindo e comparando os valores de meta características registados numa base de conhecimento. Ela facilita a classificação sem esforço e automatiza parte das etapas de aprendizagem de máquina com resultados comparáveis ou melhores a uma solução de estado da arte e com tempo de execução muito meno

    Detection and Explanation of Distributed Denial of Service (DDoS) Attack Through Interpretable Machine Learning

    Get PDF
    Distributed denial of service (DDoS) is a network-based attack where the aim of the attacker is to overwhelm the victim server. The attacker floods the server by sending enormous amount of network packets in a distributed manner beyond the servers capacity and thus causing the disruption of its normal service. In this dissertation, we focus to build intelligent detectors that can learn by themselves with less human interactions and detect DDoS attacks accurately. Machine learning (ML) has promising outcomes throughout the technologies including cybersecurity and provides us with intelligence when applied on Intrusion Detection Systems (IDSs). In addition, from the state-of-the-art ML-based IDSs, the Ensemble classifier (combination of classifiers) outperforms single classifier. Therefore, we have implemented both supervised and unsupervised ensemble frameworks to build IDSs for better DDoS detection accuracy with lower false alarms compared to the existing ones. Our experimentation, done with the most popular and benchmark datasets such as NSL-KDD, UNSW-NB15, and CICIDS2017, have achieved at most detection accuracy of 99.1% with the lowest false positive rate of 0.01%. As feature selection is one of the mandatory preprocessing phases in ML classification, we have designed several feature selection techniques for better performances in terms of DDoS detection accuracy, false positive alarms, and training times. Initially, we have implemented an ensemble framework for feature selection (FS) methods which combines almost all well-known FS methods and yields better outcomes compared to any single FS method.The goal of my dissertation is not only to detect DDoS attacks precisely but also to demonstrate explanations for these detections. Interpretable machine learning (IML) technique is used to explain a detected DDoS attack with the help of the effectiveness of the corresponding features. We also have implemented a novel feature selection approach based on IML which helps to find optimum features that are used further to retrain our models. The retrained model gives better performances than general feature selection process. Moreover, we have developed an explainer model using IML that identifies detected DDoS attacks with proper explanations based on effectiveness of the features. The contribution of this dissertation is five-folded with the ultimate goal of detecting the most frequent DDoS attacks in cyber security. In order to detect DDoS attacks, we first used ensemble machine learning classification with both supervised and unsupervised classifiers. For better performance, we then implemented and applied two feature selection approaches, such as ensemble feature selection framework and IML based feature selection approach, both individually and in a combination with supervised ensemble framework. Furthermore, we exclusively added explanations for the detected DDoS attacks with the help of explainer models that are built using LIME and SHAP IML methods. To build trustworthy explainer models, a detailed survey has been conducted on interpretable machine learning methods and on their associated tools. We applied the designed framework in various domains, like smart grid and NLP-based IDS to verify its efficacy and ability of performing as a generic model

    Enhancing cardiovascular risk assessment with advanced data balancing and domain knowledge-driven explainability

    Get PDF
    In medical risk prediction, such as predicting heart disease, machine learning (ML) classifiers must achieve high accuracy, precision, and recall to minimize the chances of incorrect diagnoses or treatment recommendations. However, real-world datasets often have imbalanced data, which can affect classifier performance. Traditional data balancing methods can lead to overfitting and underfitting, making it difficult to identify potential health risks accurately. Early prediction of heart attacks is of paramount importance, and researchers have developed ML-based systems to address this problem. However, much of the existing ML research is based on a single dataset, often ignoring performance evaluation across multiple datasets. As the demand for interpretable ML models grows, model interpretability becomes central to revealing insights and feature effects within predictive models. To address these challenges, we present a novel data balancing technique that uses a divide-and-conquer strategy with the -Means clustering algorithm to segment the dataset. The performance of our approach is highlighted through comparisons with established techniques, which demonstrate the superiority of our proposed method. To address the challenge of inter-dataset discrepancies, we use two different datasets. Our holistic pipeline, strengthened by the innovative balancing technique, effectively addresses performance discrepancies, culminating in a significant improvement from 81% to 90%. Furthermore, through advanced statistical analysis, it has been determined that the 95% confidence interval for the AUC metric of our method ranges from 0.8187 to 0.8411. This observation serves to underscore the consistency and reliability of our approach, demonstrating its ability to achieve high performance across a range of scenarios. Incorporating Explainable AI (XAI), we examine the feature rankings and their contributions within the best performing Random Forest model. While the domain expert feedback is consistent with the explanatory power of XAI, some differences remain. Nevertheless, a remarkable convergence in feature ranking and weighting is observed, bridging the insights from XAI tools and domain expert perspectives

    Deep learning in phishing mitigation: a uniform resource locator-based predictive model

    Get PDF
    To mitigate the evolution of phish websites, various phishing prediction8 schemes are being optimized eventually. However, the optimized methods produce gratuitous performance overhead due to the limited exploration of advanced phishing cues. Thus, a phishing uniform resource locator-based predictive model is enhanced by this work to defeat this deficiency using deep learning algorithms. This model’s architecture encompasses pre-processing of the effective feature space that is made up of 60 mutual uniform resource locator (URL) phishing features, and a dual deep learning-based model of convolution neural network with bi-directional long short-term memory (CNN-BiLSTM). The proposed predictive model is trained and tested on a dataset of 14,000 phish URLs and 28,074 legitimate URLs. Experimentally, the performance outputs are remarked with a 0.01% false positive rate (FPR) and 99.27% testing accuracy

    ADGym: Design Choices for Deep Anomaly Detection

    Full text link
    Deep learning (DL) techniques have recently found success in anomaly detection (AD) across various fields such as finance, medical services, and cloud computing. However, most of the current research tends to view deep AD algorithms as a whole, without dissecting the contributions of individual design choices like loss functions and network architectures. This view tends to diminish the value of preliminary steps like data preprocessing, as more attention is given to newly designed loss functions, network architectures, and learning paradigms. In this paper, we aim to bridge this gap by asking two key questions: (i) Which design choices in deep AD methods are crucial for detecting anomalies? (ii) How can we automatically select the optimal design choices for a given AD dataset, instead of relying on generic, pre-existing solutions? To address these questions, we introduce ADGym, a platform specifically crafted for comprehensive evaluation and automatic selection of AD design elements in deep methods. Our extensive experiments reveal that relying solely on existing leading methods is not sufficient. In contrast, models developed using ADGym significantly surpass current state-of-the-art techniques.Comment: NeurIPS 2023. The first three authors contribute equally. Code available at https://github.com/Minqi824/ADGy
    corecore