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Abstract 

Imbalanced data is present in various business areas and when facing it without proper 

knowledge, it can have undesired negative consequences. In addition, the most common 

evaluation metrics in machine learning to measure the desired solution can be inappropriate 

and misleading. Multiple combinations of methods are proposed to handle imbalanced data 

however, often, they required specialised knowledge to be used correctly. 

For imbalanced classification, the desire to correctly classify the underrepresented class tends 

to be more important than the overrepresented class, while being more challenging and time-

consuming. Several approaches, ranging from more accessible and more advanced in the 

domains of data resampling and cost-sensitive techniques, will be considered to handle 

imbalanced data. 

The application developed delivers recommendations of the most suited combinations of 

techniques for the specific dataset imported, by extracting and comparing meta-features values 

recorded in a knowledge base. It facilitates effortless classification and automates part of the 

machine learning pipeline with comparable or better results to a state-of-the-art solution and 

with a much smaller execution time. 
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Resumo 

Os dados não balanceados estão presentes em diversas áreas de negócio e, ao enfrentá-los sem 

o devido conhecimento, podem trazer consequências negativas e indesejadas. Além disso, as 

métricas de avaliação mais comuns em aprendizagem de máquina (machine learning) para 

medir a solução desejada podem ser inadequadas e enganosas. Múltiplas combinações de 

métodos são propostas para lidar com dados não balanceados, contudo, muitas vezes, estas 

exigem um conhecimento especializado para serem usadas corretamente. 

Para a classificação não balanceada, o desejo de classificar corretamente a classe sub-

representada tende a ser mais importante do que a classe que está representada em demasia, 

sendo mais difícil e demorado. Várias abordagens, desde as mais acessíveis até as mais 

avançadas nos domínios de reamostragem de dados e técnicas sensíveis ao custo vão ser 

consideradas para lidar com dados não balanceados. 

A aplicação desenvolvida fornece recomendações das combinações de técnicas mais adequadas 

para o conjunto de dados específico importado, extraindo e comparando os valores de meta 

características registados numa base de conhecimento. Ela facilita a classificação sem esforço e 

automatiza parte das etapas de aprendizagem de máquina com resultados comparáveis ou 

melhores a uma solução de estado da arte e com tempo de execução muito menor. 

 

Palavras-chave: Classificação Não Balanceada, Manipulação de Dados Não Balanceados, 

Automatização de Aprendizagem de Máquina. 
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1 Introduction 

This chapter gives the reader an overview of the project, presents the Context, and then, it is 

explained the Problem, Goals and Approach for this project. Last, it presents the Document 

Structure where it is enumerated the chapters and sections that compose this document. 

1.1 Context 

Several current real-world datasets are imbalanced by nature, in that they have one or some 

classes underrepresented compared to the other class or classes. The class imbalance problem 

arises in multiple areas, including telecommunication, bioinformatics, fraud detection, and 

medical diagnosis. The best approach to handle imbalanced data highly depends on the nature 

of the data. The methods and combination of methods proposed are abundant in various 

conceivable outcomes and most times they require specialised knowledge to be used correctly. 

As such, this project focuses on an open-ended current problem associated with machine 

learning tasks, being a new proposal to automate imbalanced classification, applied to different 

case study solutions. 

1.2 Problem 

Classification algorithms for imbalance scenarios applied without proper data resampling or a 

cost-sensitive approach, for instance, tend to perform better for well-represented classes and 

worse for underrepresented classes. In these cases, the underrepresented class tends to be the 

class with more interest to predict. Multiple strategies have been proposed to address class 

imbalance problems. However, there is no general guidance on when to use each technique. 

In addition, the combination of different data resampling techniques, classification algorithms 

and multiple hyperparameter optimization transforms the possibilities to evaluate the desired 
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solution to become endless. Thus, is needed a solution to automate and facilitate these 

imbalanced classification tasks, hence, to get better and faster results. 

1.3 Goal 

This project aims to develop a system to automatically prepare an imbalanced dataset to be 

used by a classifier. To accomplish that, this project includes a review of the state of the art on 

balance techniques, an implementation of the most promising ones and testing different 

combinations of them in several public datasets, using different classification algorithms. The 

best combination of the balance technique, with the best performing classification algorithm 

and the appropriate meta-features values of the dataset, are recorded in a knowledge base to 

be recommended for new datasets. 

1.4 Approach 

First, it is necessary to survey the literature on balance algorithmic techniques, classification 

algorithms, and the automation of machine learning tasks that can be conducted for imbalance 

scenarios. Thus, this survey should be primarily aimed at the keywords “automated imbalanced 

classification,” and then, it must be also analysed appropriate related solutions. Next, it should 

be conducted a value analysis of this new solution. 

Later, it must be designed the architecture of the solution to then implement and evaluate the 

solution where it should be explained different choices made. Also, the selection of different 

algorithms and evaluation metrics should follow quantitative research methods with an 

experimental research design.  

1.5 Document Structure 

This document consists of seven chapters, each of which is divided into sections, and one part 

for the references. The first chapter, named Introduction, delivers the Context, Problem, Goals, 

and Approach to be conducted. Then, there is the State of the Art chapter with four sections, 

where is it explained and contextualised the Classification, Imbalanced Classification, Relevant 

Machine Learning Topics, and Related Solutions. Next, it follows the Value Analysis chapter with 

the Opportunity Identification, Opportunity Analysis, Value Offer, and TOPSIS Method sections. 

Later, it is presented the Solution Design chapter, which is divided into four sections, 

Requirement Analysis, System Architecture, Datasets, and Technologies Choice. Next, there is 

the Solution Implementation chapter, which is split into two sections, the Development Phase, 

and the Recommendation Phase. Then, there is the Solution Evaluation chapter, which is 

divided into three sections, the Internal Evaluation, the External Evaluation, and the Final 
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Remarks. Finally, there are the Conclusions of this document with the Accomplished Objectives 

and the Limitations and Future Work sections. 
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2 State of the Art 

This chapter starts with an explanation of Classification and examples of Classification 

Algorithms that can be applied. Next, it is made a contextualisation of the Imbalanced 

Classification, and then it is enumerated Causes and Examples and important Strategies for 

Handling Imbalanced Domains. After that, it is described Relevant Machine Learning Topics such 

as Meta-Features, Evaluation Metrics, Automated Machine Learning and Optimization. Finally, 

it is enumerated appropriate Related Solutions with Final Considerations included. 

2.1 Classification 

Classification is a supervised predictive modelling problem in machine learning that involves 

assigning a class label to each observation[1]. All the observations can be expressed on a 

training dataset file for uncomplicated data manipulation. Classification is in the supervised 

learning scope, where there is an output label for corresponding input features. Additionally, 

there is the binary classification where there are only two labels or multiclass classification 

where there are multiple (over two) labels. 

2.1.1 Classification Algorithms 

Classification algorithms can be split into linear, non-linear and ensemble algorithms. Linear 

algorithms, often mentioned as probabilistic algorithms, are those that are often drawn from 

the field of statistics and make strong assumptions about the functional form of the problem[2]. 

Examples can be logistic regression, linear discriminant analysis, and Naive Bayes. Nonlinear 

algorithms are drawn from the field of machine learning and make few assumptions about the 

functional form of the problem[2]. Examples can be decision trees, k-nearest neighbours, 

artificial neural networks, and support vector machines (SVM). Finally, ensemble algorithms are 

also drawn from the field of machine learning and combine the predictions from two or more 

models that can be bagging or boosting[2]. Examples can be bagged decision trees, random 

forests, extra trees, and gradient boosting. 
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Other algorithms that can be applied to classification are a cost-sensitive algorithm approach 

and the one-class algorithms. Cost-sensitive algorithms take the differing costs of 

misclassification into account when fitting the model to the training dataset[3]. Most of the 

linear, non-linear and ensemble algorithms can be adapted to this sensitive approach. On the 

other hand, One-Class Algorithms are more used in outlier detection and anomaly detection, 

with few examples of the positive class[3]. Examples can be one-class SVM, isolation forests, 

minimum covariance determinants, and local outlier factors. 

2.2 Imbalanced Classification 

A dataset becomes inherently imbalanced when one class is heavily underrepresented, in their 

instances, regarding the rest of the classes, in two-class or multi-class datasets[3]. The 

underrepresented class is designated as the minority class, which has few instances. Contrarily, 

the majority class has several instances. The minority class is typically the one with the most 

interest, which means it is more desired to predict the class label or probability for the minority 

class than the majority class or classes[2]. The minority class is represented as the positive one, 

which corresponds to the class where the correct prediction is more important. The imbalanced 

ratio can be defined as Equation 1[4], where 𝑁− and 𝑁+ are cardinalities of the minority and 

the majority classes, respectively. 

 

𝐼𝑅 =
𝑁−

𝑁+
 

 

(1) 
 
 

Although, this ratio can also be expressed, for example, in (1:50), which means that for every 

one example in a particular class, there are fifty examples in the other class, for an imbalanced 

binary classification problem. This imbalance property can be split into a slight imbalance and a 

severe imbalance[2]. The former applies when the distribution of examples is uneven by a small 

amount in the training dataset, for example, a distribution of (2:3); and the latter applies when 

the distribution of examples is uneven by a large amount in the training dataset, by (1:100) or 

more.  

A slight imbalance of the classes is often not a concern, because it can be applied to regular 

classification predictive modelling problems without degradation of results[5]. A severe class 

imbalance and/or the existence of classes that are overlapped, one in another, may require the 

use of specialised techniques and can be challenging to model[5]. Although, sometimes, the 

less represented class is not the most relevant one depending on the aim of the work, or the 

existence of class imbalance does not become conceivably a challenging problem, for instance, 

when the classes are well separated[4]. 
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2.2.1 Causes and Examples 

The class imbalance causes origin mostly from two main groups, biased sampling, and 

measurement errors. The former can be applied when the data is collected in a way that does 

not correctly represent the entire distribution, and the latter, when the observations conducted 

have errors, for example, when applying the wrong label to some of the samples. Also, the 

imbalance can be a property of the domain problem, in which the presence of one class may 

dominate over other classes, because of cost, time, or computation. Some other important 

characteristics regarding these data intrinsic situations can be expressed as follows: “i) the 

identification of areas with small disjuncts, ii) lack of density and information in the training 

data, iii) class-overlap, iv) the impact of noisy data, v) the significance of the borderline instances, 

and vi) changes between the distribution of train and test sets, i.e. data set shift”[6].  

Some of the most remarkable examples of imbalance classification are fraud detection, claim 

prediction, churn prediction, default prediction, spam detection, anomaly detection, outlier 

detection, intrusion detection and conversion prediction. Most of these examples are binary, 

for example, in fraud detection, the goal is to detect fraud and no-fraud transactions. The 

minority class is usually rare, extreme, or unusual in some capacity and faces abundant 

examples of the majority class. Consequently, the desire to detect or predict the minority class 

highlights the challenge of this problem. For imbalanced multiclass classification, the problem 

arises when there are multiple minorities and majority classes that cause skew data distribution, 

for example, “a class may be a minority one when compared to some other classes, but a 

majority of the rest of them”[7]. 

2.2.2 Strategies for Handling Imbalanced Domains 

The different strategies for handling imbalanced domains can be summarized in Figure 1[8]. 

 

 

Figure 1: Strategies for Handling Imbalanced Domains. 
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Data pre-processing techniques can be split into distribution changes when resampling the data 

or weighting the data space when applying cost-sensitive procedures. First, distribution change 

occurs when it is changed the data distribution to better represent the more relevant and less 

represented cases[8]. Consequently, distribution change and more specifically data sampling 

algorithms change the composition of the training dataset to improve the performance of a 

standard machine learning algorithm on an imbalanced classification problem[5].  

Data oversampling involves duplicating examples several times of the minority class or 

synthesising new examples from the minority class from existing examples[5]. Examples can be 

random oversampling, synthetic minority oversampling technique (SMOTE), borderline SMOTE, 

SVM SMOTE, k-means SMOTE, and adaptive synthetic sampling approach (ADASYN).  

Under-sampling involves deleting examples from the majority class, such as randomly or using 

an algorithm to carefully choose which examples to delete[5]. Examples can be random under-

sampling, condensed nearest neighbour, Tomek links, edited nearest neighbours, 

neighbourhood cleaning Rule, and one-sided selection. Also, it is possible to combine different 

combinations of oversampling and under-sampling techniques. Examples can be SMOTE and 

random under-sampling, SMOTE and Tomek links, and SMOTE and edited nearest neighbours. 

When applying under-sampling there is a risk of losing important cases and when applying over-

sampling there is a risk of overfitting because of the replication of certain cases[9]. 

For weighting the data space, it is changed the distribution of the data to process 

misclassification costs and avoid costly errors[8]. To this effect, cost-sensitive algorithms can be 

effective when used on imbalanced classification, where the cost of misclassification is 

configured to be inversely proportional to the distribution of examples in the training 

dataset[11]. However, there is a risk of model overfitting and not knowing the actual cost to 

properly apply.  

For special-purpose learning methods like the approach of cost-sensitive algorithms, it is 

applied a modification of a selected algorithm in the preference criterion that directly 

incorporates costs in the learning process[8]. Additionally, ensemble methods can also be 

applied to this effect, using a cost-sensitive framework by integrating them into the learning 

phase.  

For prediction post-processing, there is a threshold method that uses the ranking provided by 

a score, which expresses the degree to which an example is a member of a class and cost-

sensitive post-processing that associates costs with prediction errors and minimises the 

expected cost[8]. 

Finally, there are also hybrid methods when combining different approaches to benefit from 

some of the main advantages of different solutions with a high variety of results[8]. 
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2.3 Relevant Machine Learning Topics 

There are many relevant machine learning topics to be addressed, thus it was selected a few, 

and they are explained in a summarised manner regarding some significant aspects. 

2.3.1 Meta-Features 

First, meta-learning refers to learning about learning and, in machine learning, to machine 

learning algorithms that learn from the output of other machine learning algorithms. 

Meanwhile, meta-features are measures used to characterise datasets and their relations with 

algorithm bias[10]. Meta-features are used in machine learning to represent and understand a 

dataset, to understand a certain learning bias, to provide the knowledge to create machine 

learning recommendation systems, and to create surrogate models and other scenarios. 

Meta-features can be separated into the following meta-features groups[11]: 

▪ Complexity: estimate the difficulty in separating the data points into their expected 

classes. 

▪ Concept: estimate the variability of class labels among examples and the density of the 

examples. 

▪ General: general information related to the dataset, also known as simple measures, 

such as the number of instances, attributes and classes. 

▪ Itemset: compute the correlation between binary attributes. 

▪ Landmarking: performance of simple and efficient learning algorithms. 

▪ Model-based: measures designed to extract characteristics from simple machine 

learning models. 

▪ Statistical: Standard statistical measures to describe the numerical properties of data 

distribution. 

 

Finally, the meta-features can be expressed with descriptive statistics, when in a single value, 

or with a distribution, when in multiple values. Examples can be the mean, median, maximum, 

minimum, standard deviation, variance, kurtosis, and skewness. 

2.3.2 Automated Machine Learning 

Automated machine learning (AutoML) is “a subfield of machine learning devoted to the 

development of approaches for automatically selecting and optimising predictive models”[9]. 

AutoML usually involves the automatic selection of data preparation, machine learning model, 

and model hyperparameters for a predictive modelling task. It refers to techniques that quickly 

allow practitioners with modest technical skills to discover a suitable predictive model pipeline 

for the machine learning tasks, with little intervention in the different steps of the pipeline, 

other than providing a dataset and, in supervised classification, by choosing the target classes 

to aim[12]. 
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Alternative approaches to automate tasks of the machine learning pipeline can be found in the 

fields of artificial neural networks. When applying neural networks to a classification problem, 

it is possible to use a Neural Architecture Search (NAS), transfer learning, and continual learning, 

among other novel approaches. NAS can automate artificial neural networks with sometimes 

excellent results nevertheless often demands increased computational resources[13]. 

Alternatively, transfer learning is a machine learning method where a model developed for a 

task, which can be pre-trained, is reused as the starting point for a model on a second task[14]. 

Finally, continual learning studies the problem of learning from an endless data source, with 

the ability to improve over time the acquired knowledge and use it for future learning[15]. 

2.3.3 Optimization 

Based on the No Free Lunch Theorem, without having substantive information about the 

modelling problem, there is no single best machine learning algorithm for predictive modelling 

problems such as classification[16]. In addition, there is no definitive best path for machine 

learning algorithms to effectively predict and there is no clear way to know where to start or 

when to discard a model or when to perfect a model without proper knowledge of the 

problem[12]. Two viable solutions that address this situation are to approach the problem as a 

series of sequential decisions, iteratively, and by choosing popular machine learning algorithms 

that other researchers already used and that worked for similar cases. Another one is by 

implementing the Combined Algorithm Selection and Hyperparameter (CASH) Optimization, 

which addresses the selection of the data preparation technique, the learning algorithm, and 

the algorithm hyperparameters[17]. 

The CASH Optimization requires that the data preparation, the selection of the machine 

learning model, along with the corresponding model hyperparameters, must form the scope of 

the optimization problem and that the optimization algorithm must know all these 

dependencies[17]. This approach can also be referenced as Full Model Selection (FMS), being a 

challenging global optimization problem that must be aware of all these dependencies 

described as sequential global optimization algorithms with specific versions of Bayesian 

Optimization[18]. A Bayesian Optimization is an approach that uses the Bayes Theorem to direct 

the search to find the minimum or maximum of an objective function[19]. Also, there is the 

possibility of more advanced concepts like evolutionary optimization, or more simple ones like 

random search which is defined by a search space as a bounded domain of hyperparameter 

values and randomly sample points in that domain, or grid search, when evaluating every 

position in the grid of the hyperparameter values[2]. 
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2.3.4 Evaluation Metrics 

Regarding the evaluation metrics to evaluate a solution, accuracy and error rate are not suited 

for imbalanced scenarios[3]. When the accuracy is reflecting the underlying class distribution, 

the accuracy paradox can occur. There are more appropriate single-class measures for binary 

imbalanced classification like Precision, Recall, Specificity, Balanced Accuracy, F1 Score, and 

Geometric Mean, and some overall class metrics like Area Under the Receiver Operating 

Characteristic Curve (ROC AUC) and Cohen Kappa [20]. These metrics are calculated from the 

confusion matrix that informs what classes are predicted correctly, which were incorrectly 

predicted and what types of errors are being made[20], and is given in the following Table 1. 

Table 1: Confusion Matrix.  

  Predicted Class 

  Positive Negative 

Actual Class 
Positive True Positive (TP) False Positive (FP) 

Negative False Negative (FN) True Negative (TN) 

 

The Precision or Positive Predicted Value summarises the fraction of examples assigned to the 

positive class that belongs to the positive class and the Recall, Sensitivity or True Positive Rate 

summarises how well the positive class was predicted. They range between 0 and 1 and are 

given by the following Equation 2 and Equation 3[20], respectively. 

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 =  
𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 +  𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 

(2) 
 

 
 

𝑹𝒆𝒄𝒂𝒍𝒍 =  
𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 +  𝐹𝑎𝑙𝑠𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 (3) 

 
 

 
The Specificity or True Negative Rate summarises how well the positive class was predicted, 

which ranges between 0 and 1 and is given by the following Equation 4[20]. 

𝑺𝒑𝒆𝒄𝒊𝒇𝒊𝒄𝒊𝒕𝒚 =
𝑇𝑟𝑢𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 

 

(4) 
 
 

The Balanced Accuracy is the arithmetic mean of the True Positive Rate and the True Negative 

Rate, which ranges between 0 and 1 and is given by the following Equation 5[8]. 

𝑩𝒂𝒍𝒂𝒏𝒄𝒆𝒅 𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 +  𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒

2
 

 

(5) 
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The F1 Score or F-Measure is the harmonic mean between Precision and Recall, which ranges 

between 0 and 1 and is given by the following Equation 6[20]. 

𝑭𝟏-𝑺𝒄𝒐𝒓𝒆 =  
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

 

(6) 
 

 

The Geometric Mean or G-mean combines the Sensitivity and Specificity in a single score, which 

ranges between 0 and 1 and is given by the following Equation 7[20]. 

𝑮-𝒎𝒆𝒂𝒏 =  √𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 × 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 

 
(7) 

 
 

The ROC AUC is interpreted as the probability that the scores given by a classifier will rank a 

randomly chosen positive instance higher than a randomly chosen negative one. It ranges 

between 0.5 and 1 and it is considered in the following Figure 2 and expressions when 

calculating[20]. 

 

 

Figure 2: Depiction of a ROC Curve. 
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𝑹𝑶𝑪 𝑪𝒖𝒓𝒗𝒆: 𝑃𝑙𝑜𝑡 𝑜𝑓 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 (𝑥) 𝑣𝑠. 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 (𝑦) 

𝑷𝒆𝒓𝒇𝒆𝒄𝒕 𝑺𝒌𝒊𝒍𝒍: 𝐴 𝑝𝑜𝑖𝑛𝑡 𝑖𝑛 𝑡ℎ𝑒 𝑡𝑜𝑝 𝑙𝑒𝑓𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑙𝑜𝑡 

 

The Cohen Kappa (k) is the measure of the agreement between the model predictions and the 

actual class values as if happening by chance, which ranges between 0 and 1 and is given by the 

following Equation 8[8]. 

𝒌 =  
2 × (𝑇𝑃 × 𝑇𝑁 − 𝐹𝑁 × 𝐹𝑃)

(𝑇𝑃 + 𝐹𝑃) × (𝐹𝑃 + 𝑇𝑁) + (𝑇𝑃 + 𝐹𝑁) × (𝐹𝑁 + 𝑇𝑁)
 (8) 

 
 

2.4 Related Solutions 

There are several applications and services, capable of providing tools that can handle 

imbalanced classification. For instance, Scikit-Learn[21] is a general-purpose machine learning 

python library, which provides data preparation, machine learning algorithms, and model 

evaluation schemes and although not designed around imbalanced classification, it provides 

some useful tools for handling imbalanced datasets also. One python library that directly 

addresses imbalanced classification is imbalanced-learn[22] which is related to Scikit-Learn and 

implements most of the necessary techniques. For R programming language, there exists the 

ROSE[23] and imbalanced[24] libraries, among various others, also specialised in imbalanced 

classification. 

Numerous libraries automatically permit the creation of a predictive system with few steps 

capable of doing classification, even for imbalanced scenarios, with various results. For open-

source software libraries ready to use when coding, the first concern to note is that most of 

them focus only on some parts of the autoML pipeline[25]. For instance, Auto-sklearn[26] is 

built on top of Scikit-Learn and formulated as a CASH problem capable of automatically trying 

different classifiers and hyperparameters, however, it only searches for traditional machine 

learning models[27]. Auto-sklearn does an automatic ensemble of the different models 

searched and applies a post-processing method, instead of discarding all the models 

searched[27]. It can do parallelization on a single computer or in a cluster on a limited time 

budget[28]. 

Additionally, AutoKeras[29] based on Keras[30], supports multi-modal and multi-task by 

searching for deep learning models[25]. Neural Network Intelligence (NNI)[31] developed by 

Microsoft, also integrates Scikit-Learn features that can do automated feature engineering, 

hyperparameter optimization, and NAS, becoming a powerful and lightweight toolkit for 

autoML[25]. TPOT[32] is a framework based on genetic programming able to only handle 

categorical parameters with the ability to create arbitrary complex pipelines makes it prone to 



 

14 
 

overfitting. To compensate for this, TPOT optimises a combination of high performance and low 

pipeline complexity[28]. 

In addition, there is also Hyperopt-sklearn[33] which supports various classifiers of Scikit-Learn 

and provides a fixed pipeline structure, to one classification algorithm to each processor, by 

adding a configuration space definition[28]. Finally, there is also H2O AutoML[34] that, instead 

of being built on python, is programmed in Java, thus not using the Scikit-Learn library. It is able, 

without pre-processing, to select and tune each classification algorithm by a fixed order and 

create a final ensemble of them similar to Auto-sklearn[28]. Also, many big tech companies like 

Microsoft, Amazon and Google provide autoML services, such as Microsoft Azure Automated 

Machine Learning[35],  Amazon Web Services (AWS) SageMaker Autopilot[36] and Google 

Cloud Platform (GCP) AutoML[37], correspondingly.  All these services provide autoML tools by 

interacting on the website and without needing to code the implementation. 

For R programming language, there is the proposed Automated Imbalanced Classification 

(ATOMIC) method implemented in the autoresampling package which applies autoML 

specifically for imbalanced classification becoming to their knowledge the first approach that 

specialises in automating imbalanced classification[9]. It uses meta-learning therefore 

computationally complex to instantiate and on 101 imbalanced datasets tested, it got a 

predictive performance comparable to or better than similar state-of-the-art solutions[9]. It is 

mainly for binary classification and only builds models using the Random Forest learning 

algorithm[38]. 

2.4.1 Final Considerations 

When analysing all these libraries/packages/frameworks, at this point there are not any 

advanced data cleaning methods in the context of autoML, most methods combine predefined 

operators with features naively, and there are few flexible approaches to the autoML 

pipeline[28]. In addition, as most automate the creation of the pipeline, it is difficult to 

comprehend how a specific pipeline was created and introduce some hyperparameters to be 

used, it prevents the automation that autoML should automate in the first place. To make 

autoML truly available to inexperienced users in this domain, integration and deployment 

measures are necessary[28]. Moreover, there is sometimes a lack of scientific proof of why 

certain outcomes are achieved and numerous papers do not cover all aspects of the 

implementation in detail becoming complicated to reproduce the same outcomes[25]. 

Finally, when creating an autoML solution and addressing multiple datasets of different 

domains, it is also possible to remember previously learnt knowledge, however, the 

performance of the model on the previous datasets is substantially reduced[25]. For instance, 

there is the learning without forgetting method, which applies incremental learning and trains 

a model using only new data while preserving its original capabilities[39]. Then, in another work 

conducted, it is possible to only use a small proportion of old data for pretraining, and then 

escalate the proportion of a new class of data used to train the model[40]. 
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Therefore, the contribution of this project is to implement a new easy-to-use application that 

automates the classification of imbalanced datasets even for less experienced users, mainly 

because that are few applications that specialise in imbalanced datasets. 
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3 Value Analysis 

This chapter is composed of four sections. First, is described the Opportunity Identification and 

Opportunity Analysis. Next, is presented the Value Offer with the Value for the Customer, the 

Perceived Value, and the Value Proposition. Then, it is applied the TOPSIS Method to compare 

similar related platforms that handle imbalance classification for different datasets domains. 

3.1 Opportunity Identification 

This project focuses on an open-ended current problem associated with machine learning tasks, 

being a new proposal to automate imbalanced classification, applied to different domains. Most 

of these domains are from the areas of fraud detection, claim prediction, churn prediction, 

default prediction, spam detection, anomaly detection, outlier detection, intrusion detection 

and conversion prediction. For example, in fraud detection, the goal is to detect fraud (rare 

cases) and no-fraud (abundant cases) transactions, with the desire to prioritise the classification 

of fraudulent transactions. This becomes a demanding problem that can be addressed from 

multiple novel balancing techniques that sometimes are challenging and time-consuming to 

obtain optimal results, as explained previously in the State of the Art chapter. 

Many autoML solutions can be applied to imbalanced datasets to do classification. These 

solutions can be split into two groups, the code-free and the code-needed requirement to use. 

The former is a solution where the user does not need to code, it only needs to click on a few 

buttons on, for example, a webpage and the solution does automation of the machine learning 

classification pipeline in the loaded imbalanced datasets. Examples can be Microsoft Azure 

Automated Machine Learning, AWS SageMaker Canvas[41] (related to AWS SageMaker 

Autopilot) and GCP AutoML, among others. The latter is usually a software library for a 

particular programming language that needs to be imported for the project of the user that is 
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written in that programming language like python or R, for instance. Examples were already 

mentioned in the Related Solutions of the State of the Art chapter. 

However, some of the autoML solutions already developed, either the code-free or the code-

needed ones, sometimes may not be properly prepared for imbalanced classification because, 

for example, do not provide an appropriate metric to aim for imbalanced data, it only has a 

limited selection of the most used metrics, and they cannot be the more appropriate metrics to 

select to these scenarios, as it will be further discussed in the Solution Evaluation chapter. In 

addition, most of these autoML solutions can provide remarkable results for imbalanced data, 

nonetheless, they do not implement some specific techniques to handle imbalanced data and 

it can limit some greater results. 

3.2 Opportunity Analysis 

Several solutions address the automation of machine learning classification or handling 

imbalanced classification. However, when combining these two fields, there are a few solutions 

freely available. Furthermore, opportunity can be defined as “an occasion or situation that 

makes it possible to do something that you want to do or have to do, or the possibility of doing 

something”[42], therefore when this project combines the automation of machine learning 

with the specialisation on handling imbalanced data raises a segment in the market that has 

limited available tools to operate these multiple imbalanced scenarios[43]. The rising interest 

in these two areas can be noted in the number of Google search in Google Trends over the years, 

shown in Figure 3 and Figure 4. 

 

 

Figure 3: Imbalanced Classification – Google Trends[44]. 
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Figure 4: AutoML – Google Trends[45]. 

3.3 Value Offer 

Value can be defined as the representation of the connection between customer satisfaction 

and cost, the relationship between the contribution of functions to the satisfaction of a need 

and the cost of functions[46]. In this project, customer satisfaction can be by obtaining 

remarkable results when properly analysing some relevant evaluation metrics and when 

comparing to state-of-the-art similar solutions. Oppositely, the cost can be the increasing time, 

computation resources or specialised knowledge needed to use the autoML solution. 

As a small note, the Quality Function Deployment (QFD)[47] or the Features from Accelerated 

Segment Test (FAST)[48] are not appropriate to use on this project because the goal of this 

project is not to guarantee the specific requirements of each imbalanced dataset, rather make 

an open-ended solution that works for multiple datasets of different domains at the same time. 

3.3.1 Value for the Customer 

Customer value can be defined as the satisfaction that the customer has or expects to have 

when performing a certain action, considering the cost of that action[49]. Considering this 

definition, the potential client or rather the user of this free open-source software autoML 

solution, in this project, allows “The freedom to run the program as you wish, for any purpose; 

The freedom to study how the program works and change it so that it does your computing as 

you wish; The freedom to redistribute copies so you can help others; The freedom to distribute 

copies of your modified versions to others – giving the whole community a chance to benefit 

from your changes”, established on the four freedoms of Richard Stallman, the founder of the 

Free Software Foundation[50]. 
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3.3.2 Perceived Value 

Perceived value can be defined as the overall assessment that the consumer makes of a product, 

weighing the relevant benefits and sacrifices[51]. It is expectable that any autoML solution 

should facilitate the tasks of doing, in this case, classification even for imbalanced datasets. The 

perceived value is affected by the easy-of-use, the evaluation metrics selection, the time to 

execute, the quality of the results and provided documentation of the autoML solution. 

3.3.3 Value Proposition 

Value propositions should not only express why the services, products, or solutions are better 

than the competition’s, but also should be simple, clear, easy to absorb, credible, and adaptable 

to specific clients or segments[52]. In this context, the project aims to implement an autoML 

solution that can be applied specifically to handling imbalanced datasets, as previously 

mentioned. 

Alexander Osterwalder proposed a value proposition framework[53]. This framework revolves 

around two larger entities, the customer profile, and the value map, which are visually 

presented on a canvas. The customer profile aims to identify the proposed gain of the system, 

the benefits which the customer expects and needs, pains, the risks that the customer may 

experience, and the customer’s jobs, which represent the tasks that are trying to be done. As 

for the value map, it represents the gain creators, how the system creates and satisfies the gains 

of the customer, pain relievers, how the product or service alleviates customer pains, and the 

products and services, representing what functionalities and operations the system 

presents[53]. Next, it is presented the value proposition canvas for this project in Figure 5. 

 

 

Figure 5: Value Proposition. 
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3.4 TOPSIS Method 

The Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) is a multi-criteria 

decision analysis method, which was originally developed by Ching-Lai Hwang and Yoon[54]. 

TOPSIS is based on the concept that the chosen alternative should have the shortest geometric 

distance from the positive ideal solution and the longest geometric distance from the negative 

ideal solution[54]. In this context, the aim is: 

▪ To automatically classify two or more classes with imbalanced data provided. 

 

The criteria that are going to be applied are: 

▪ Easy-of-use 

▪ It measures if the solution is accessible to use or not. 

▪ Metrics Selection 

▪ It measures if the metrics selection is appropriate. 

▪ Results 

▪ It measures quantitively the quality of the results. 

▪ Time of Execution 

▪ It measures how long it takes to execute the solution. 

▪ Documentation 

▪ It measures the quality of the provided documentation after executing the 

solution. 

 

It will be analysed some of the most used autoML solutions that can address this aim. The three 

autoML solutions selected to be compared are: 

▪ Azure AutoML (short for Microsoft Azure automated machine learning) 

▪ AWS Canvas (short for Amazon Web Service SageMaker Canvas) 

▪ GCP AutoML (short for Google Cloud Platform AutoML) 

 

The steps needed to apply the TOPSIS method are as follows[54]: 

1. Create a matrix consisting of M alternatives and N criteria. 

 

 

2. Normalise the matrix. 
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3. Calculate the weighted normalised decision matrix. 

 

 

4. Determine the best and the worst alternative for each criterion. 

 

 

5. Calculate the Euclidean distance between the target alternative and the worst 

alternative. 

 

6. Calculate the similarity to the worst condition. 

 

 

7. Rank alternatives according to the TOPSIS score in descending order. 
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3.4.1 Applying TOPSIS Method 

The initial values attributed are expressed in Table 2. 

Table 2: TOPSIS calculations. 

weights 0.2 0.1 0.3 0.3 0.1 

 Easy-of-
use 

Metrics 
Selection 

Results Time of 
Execution 

Documentation 

Azure AutoML 6 7 7 8 7 

AWS Canvas 9 6 8 6 8 

GCP AutoML 6 7 8 7 9 

 

 Easy-of-
use 

Metrics 
Selection 

Results Time of 
Execution 

Documentation 

Azure AutoML 36 49 49 64 49 

AWS Canvas 81 36 64 36 64 

GCP AutoML 36 49 64 49 81 

∑ 𝑋𝑖𝑗
2  153 134 177 149 194 

(∑ 𝑋2)1/2 12.37 11.58 13.30 12.21 13.93 

 

 Easy-of-
use 

Metrics 
Selection 

Results Time of 
Execution 

Documentation 

Azure AutoML 0.49 0.60 0.53 0.66 0.50 

AWS Canvas 0.73 0.52 0.60 0.49 0.57 

GCP AutoML 0.49 0.60 0.60 0.57 0.65 

 

 Easy-of-
use 

Metrics 
Selection 

Results Time of 
Execution 

Documentation 

Azure AutoML 0.098 0.060 0.159 0.198 0.050 

AWS Canvas 0.146 0.052 0.18 0.147 0.057 

GCP AutoML 0.098 0.060 0.18 0.171 0.065 

 

𝐴∗ 0.146 0.060 0.18 0.198 0.065 

𝐴´ 0.098 0.052 0.159 0.147 0.050 
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The results obtained are: 

• AWS Canvas with a score of 0.52 

• Azure AutoML with a score of 0.47 

• GCP AutoML with a score of 0.41 

 

Based on these results, AWS Canvas is the best option. Consequently, is the best solution with 

the best score. 
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4 Solution Design 

This chapter starts with the Requirements Analysis, which comprises the Functional and Non-

functional Requirements that should be attained, and next, the System Architecture, which 

presents all the relevant documentation made for the solution. Then, the selected Datasets and 

the Technologies Choice to be used when developing and evaluating this solution. 

4.1 Requirements Analysis 

To understand the requirements analysis, first, requirements are capabilities and conditions to 

which the system and the project should reply. This analysis is split into two sections, first, the 

Functional Requirements and then the Non-functional Requirements. 

4.1.1 Functional Requirements 

The following functional requirements were identified in the analysis of the project and 

expressed in the following use cases: 

▪ Use Case 1: Build a knowledge base with the dataset meta-features, the best 

combination of pre-processing technique and classification algorithm and the 

appropriate evaluation metrics of at least 50 datasets. 

▪ Use Case 2: Recommend the best pre-processing techniques and classification 

algorithms for a certain dataset. 

 



 

26 
 

The following Figure 6 represents the use case diagram elaborated from the functional 

requirement previously defined. 

 

 

Figure 6: Use Case Diagram. 

4.1.2 Non-functional Requirements 

The non-functional requirements analysis was made according to the FURPS+ Model[55]. 

Initially, this model was named FURPS which stands for Functionality, Usability, Reliability, 

Performance and Supportability requirements. Later, it was added the “plus,” which extends 

into other requirements: Design, Implementation, Interface, and Physical requirements. It is 

also important to acknowledge that in the FURPS+ Model, all the different requirements that 

do not fit in the first category, the functionality requirements, are non-functional requirements. 

The following non-functional requirements were identified in the analysis of the project. 

▪ Usability requirements: 

o The user interface shall be simple and effective. 

▪ Reliability requirements: 

o The user interface shall appropriately alert the user, even in unexpected 

situations. 

▪ Performance requirements: 

o The user experience should not be degraded by the system, even with larger 

datasets loaded. 

▪ Supportability requirements: 

o All components of the systems shall be modular, meaning that each component 

is not dependent on the technical specifications of another. 

▪ “+” – Design, implementation, interface, and physical requirements: 

o Appropriate design patterns shall be used. 
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o A version control system shall be used. 

o An incremental and iterative software development process shall be used. 

4.2 System Architecture 

This System Architecture is composed, initially, of the Activity Diagram to comprehend the 

initial architecture of the solution. Next, the Domain Model presents the different business 

concepts of the solution. Then, the alternative and final Component Diagram to comprehend 

the selected approach, and finally, the Sequence Diagram concludes the documentation of this 

system. 

4.2.1 Activity Diagram 

The solution should be able to receive an imbalanced dataset file prepared for classification, 

learn the data, and apply a classifier to predict with a low error margin. To better understand 

the high-granularity software architecture of the solution, Figure 7 presents an activity diagram 

of the solution. 

 

Figure 7: Activity Diagram. 
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First, the user starts the application and loads the desired imbalanced dataset file, then if the 

system reads it and is unsuccessful the system alerts and returns the user to the initial state. 

After, if succeeded, the system applies different machine learning tasks and when this step is 

concluded, the system informs the user of the obtained evaluation metrics and results. Finally, 

the user can quit the application. 

4.2.2 Domain Model 

Next, it is presented the Domain Model of the solution. Figure 8 represents the analysis of the 

identified Entities and their respective connections, thus explaining the logic underneath the 

different business concepts. 

 

 

Figure 8: Domain Model. 

The User uses one or more Devices, which can be a computer or a mobile device that has a 

certain screen resolution and an operating system. The Device can store multiple Data Files 

ready to be used by the Application. All Data Files should have the feature and label columns 

and represent a certain business domain. 

4.2.3 Component Diagrams 

An initial architecture of the solution was envisioned based on the previous requirements, and 

it is expressed as a component diagram in Figure 9. 
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Figure 9: Initial Component Diagram. 

 

A dataset file should be loaded in the application using the graphical user interface (GUI) of the 

application, and then, applied the necessary Machine Learning tasks where it is composed of 

the handling imbalanced classification (HIC), classifier and optimizer components. This first 

component applies different techniques to handle imbalanced classification primarily in the 

pre-processing stage of the machine learning pipeline. The classifier component should select 

the most appropriate classification algorithm for the loaded dataset file, and then the optimizer 

component improves the previous results.  

With the imbalanced techniques selected, the classification algorithm and the optimizations got, 

the machine learning component should write the results obtained to the knowledge base. 

However, as this initial architecture is simplistic and faces two problems, it is not appropriate 

to be the GUI responsible for reading the dataset file and neither the machine learning 

component is responsible for writing to the knowledge base. Therefore, a second, and more 

appropriate architecture was designed, the selected architecture, by addressing the two 

previous problems, present in Figure 10. 

 

 

Figure 10: Final Component Diagram. 
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Now, there is a data retrieval component that is responsible for reading the dataset file and 

that is called by the machine learning controller component. The machine learning controller 

uses the classifier component that, in combination with the HIC and the optimizer, delivers the 

final classification model selected. When the model is prepared, the machine learning controller 

component uses the data manager component that is responsible for writing to the knowledge 

base. 

4.2.4 Sequence Diagram 

A final diagram was developed that presents the process view of the system that summarises 

all the previous documentation regarding this architecture in Figure 11. 

 

 

Figure 11: Sequence Diagram. 

There are two different use cases that the user, identified as the data scientist, is envisioned to 

achieve with this system. The first one, regarding the initial construction of the knowledge base, 

is an iterative process with at least 50 different datasets that this user needs to make before 

the second use case. In this step, the goal is to have the knowledge base with enough meta-

features and evaluation metrics results to properly be used by the recommendation engine. 
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In the second step, the user can now get recommendations from the system to a certain dataset 

that he loads. This recommendation is composed of a few combinations of pre-processing and 

classification algorithms that can be well adequate for the dataset that was loaded. This 

recommendation is possible by reading the previously obtained meta-features in the 

knowledge base and finding the previous similar dataset in terms of meta-features. 

4.3 Datasets 

The datasets are chosen from different business domains that have imbalanced data like fraud 

detection, claim prediction, churn prediction, default prediction, spam detection, anomaly 

detection, outlier detection, intrusion detection, conversion prediction and others. The aim is 

to always choose publicly available datasets without needing to do specific pre-processing tasks 

before using them. In addition, it was also ensured have a different ratio of proportions of 

imbalanced data across the diverse datasets. 

Initially, it was analysed several candidate datasets from websites like UCI Machine Learning 

Repository[56], KEEL – Knowledge Extraction based on Evolutionary Learning[57], OpenML[58], 

Kaggle[59] and Google Dataset Search[60]. Then, it was selected to work with KEEL website 

because it listed the diverse datasets by the imbalanced ratio in an organised manner with key 

information. Afterwards, it was also selected to work with OpenML since it provides plenty of 

datasets to choose from and it has an easy-to-use and well-documented Application 

Programming Interface (API)[61] that simplified the different related datasets tasks. 

At the time of this project development, the OpenML API provided 125 datasets when filtering 

the datasets that have an active status, for binary classification problems, with the number of 

instances (rows) between 200 and 10000, the number of features (columns) less than 500 and 

with an imbalance ratio above 2. Of these 125 datasets, some datasets were repeated since 

they have different versions of the same dataset, for this case it was selected the most recent 

one, discarding the older ones.  

Other datasets were not possible to use because it was not conceivable to provide a decent 

enough evaluation metrics score. They needed major individual pre-processing tasks that were 

not the point of this application to make. It was also selected datasets from the KEEL website 

getting 65 datasets to be used. For these 65 datasets, it was found that the imbalanced ratio 

ranges from 1.820 (minimum) to 85.880 (maximum), averaging 14.501 with a standard 

deviation of 19.301. 
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4.4 Technologies Choice 

For the selection of the programming language to use, there is python[62] and R[63], which are 

both free open-source and high-level programming languages that can be used for data 

manipulation and machine learning. Contrarily, the former is general-purpose object-oriented, 

and the latter is statistically computing but also with strong object-oriented capabilities. Python 

was selected because it was observed that it offers more support in developing autoML 

solutions and it has more versatility in developing desktop and web applications. 

This application can be a GUI desktop application or a web application. For developing GUI 

applications, it was initially selected two easy-to-use python libraries, PySimpleGUI[64] and 

DearPyGUI[65]. PySimpleGUI wraps well-known GUI python libraries like tkinter[66], Qt[67], 

WxPython[68], and Remi[69] and simplifies developing the GUI. Similarly, DearPyGUI is another 

accessible GUI development library that is built on top of Dear ImGui[70], a C++ library. 

For developing web applications, it can be used two easy-to-use python libraries like Flask[71] 

a general-purpose web micro-framework or streamlit[72] which is intended for machine 

learning and data science applications. For deploying a web application, it can be used on cloud 

platforms like Heroku[73] or also streamlit. In the end, it was selected to do a desktop 

application with the assistance of PySimpleGUI because the objective of this project is to 

maximise the time of developing the machine learning core module and building and deploying 

a web application is more time-consuming than developing a simple GUI desktop application. 

Another possible relevant technology to build the final application can be tools that help to 

parallelize the workload and utilise the graphics processing unit (GPU) for general-purpose 

processing instead of the central processing unit (CPU) and thus obtain faster results. To this 

effect, there is a multitude of options ranging from libraries that facilitate the distribution of 

workloads like Apache Spark[74], Dask[75], or Ray[76], or even more general-purpose libraries 

like Tensorflow[77] and PyTorch[78] albeit more tailored to deep learning.  

Many of these libraries use the proprietary Nvidia CUDA[79] or open-source alternatives like 

OpenCL[80] and OpenGL[81]. The application is built in a GIT[82] repository that allows version 

control. To this effect, there is Github[83] and Bitbucket[84] that provide internet hosting for 

software development. Open-source applications like this project are more present at Github, 

and consequently, it was selected over Bitbucket, for this project. 

Regarding the knowledge base, it can be built on an SQL or NoSQL database, or in CSV or XSLX 

files. The aim is to save the final evaluation metrics and results of the execution of the machine 

learning module on a certain dataset file, thus, if this was going to be stored in SQL or NoSQL 

the result was only one table or document correspondingly. Thus, the choice is to use CSV or 

XSLX files to store the learnt knowledge in the knowledge base that is used as guidance for 

future executions.  

Finally, it can be used one python library, for instance, PyInstaller[85], capable of transforming 

a python program into an executable program that can be executed from the operating system 
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of the device without needing to have python installed. Thus, this application becomes not 

dependent on whether the device has python installed, to be executed. 
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5 Solution Implementation 

The application is built in python and available, in a GitHub repository[86], as free and open-

source software, licenced as GPL 3.0[87]. It is composed of two different functionalities, the 

development phase, and the recommendation phase, to address the two identified use cases 

reflected in the functional requirements stated in the previous Solution Design made. 

Consequently, it has also two distinct methods to interact with the user.  

In the first functionality, the goal is to build the knowledge base by obtaining the meta-features 

of datasets, some adequate evaluation metrics, and the time of execution of selected 

classification algorithms in each dataset selected to be part of the knowledge base. In the 

second, with the assistance of the previous knowledge base constructed, the application can 

recommend the best combinations of pre-processing techniques and classification algorithms 

to handle a new imbalanced dataset imported.  

These two phases are similarly engineered, as previously shown in the Sequence Diagram 

presented in the previous chapter. This recommendation should help the user to hopefully 

decide the best methods to correctly classify the imbalanced dataset imported. 

The application has three main python files and two folders: 

▪ “ml.py” file – where is made all the machine learning processing of the application. 

▪ “test_ml.py” file – it is the file to be executed by the console application in the 

development phase. 

▪ “ui.py” file – it is the user interface file to be executed in the recommendation phase. 

▪ “input” folder – the place to put the datasets to be imported by the application. 

▪ “output” folder – where are present the knowledge base files, the 

“kb_characteristics.csv,” “kb_results.csv” and “kb_full_results.csv.” 
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5.1 Development Phase 

The user, in this phase, interacts with the application by executing, in the console, the 

“test_ml.py” file that has already presented the invocation of the “execute_ml” function, 

declared in the “ml.py” file. This function has two parameters to indicate the imported dataset, 

the former when importing a dataset by file and the latter when imported by OpenML dataset 

ID. If it is by file, it must preferably place the dataset file in the “input” folder and indicate the 

correct path of the dataset file.  

Next, it is illustrated one example of importing a dataset in Figure 12, present in the “test.ml” 

file. 

 

 

Figure 12: test.ml code. 

  

If it is by OpenML dataset ID, the user can go to the OpenML website and search for the dataset 

wanted and, if available, it should have the corresponding ID. One example of this is illustrated 

in Figure 13, in this case, the “credit-g” dataset has an ID of 31. 
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Figure 13: credit-g dataset in OpenML[88]. 

 

In a summarised manner and according to the activity diagram previously created, the 

“execute_ml” function, first, reads the imported dataset by file or by OpenML dataset ID, then, 

it extracts the meta-features information with the help of the Meta-Feature Extractor (MFE)[11] 

library, next it combines several different pre-processing techniques and classification 

algorithms to train, test and validate, and then, it writes the obtained results to the three 

knowledge base files of the application, and finally, it outputs to the console, the obtained 

results.  

The last version of the “execute_ml” function, on the “ml.py” file, is presented in Figure 14. 
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Figure 14: execute_ml function on ml.py file. 

 

One console output example is illustrated in Figure 15, where it is imported from the “car-

good.dat” dataset[89]. 
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Figure 15: Console output of execute_ml function. 

 

In this example, it is informed of the best combination of pre-processing technique and the 

corresponding classifier. In this case, it was the “RandomOverSampler” with the 

“LGBMClassifier.” Then, it is displayed a final score that is the average of all evaluation metrics 

used and will be explained later, and the elapsed time in “HH:mm:ss” of that combination. Then, 

it ends by presenting if the application wrote or not in the three knowledge base files. 

5.1.1 Reading and Extracting Knowledge from a Dataset 

To have a robust knowledge base to be used in the recommendation phase and according to 

the first functional requirement, it was achieved 65 datasets imported, executed, and 

documented in the knowledge base files, surpassing the 50 datasets required. Most of these 

datasets were got with the help of the OpenML API and some by the KEEL website, as previously 

described in the Datasets section of the Solution Design. It was assumed in all these imbalanced 

datasets that the class with less representation is the class with more interest to predict, as it 

regularly occurs in imbalanced binary classification. 

Regarding the MFE library to extract the meta-feature information from the datasets, it used 

the following groups of meta-features: complexity, concept, general, itemset, landmarking, 

model-based and statistical. Additionally, the summary function used was the average/mean, 

standard deviation, kurtosis, and skewness. This can be observed in Figure 16. 
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Figure 16: The use of MFE Library. 

 

These meta-features groups and summary functions are already described in the State of the 

Art chapter. It is important to note that some meta-features can have a distinct value, for 

example, the “c2” meta-feature of the group “complexity” which is the value of the imbalance 

ratio with no summary function values. Other ones are expressed with all (or some) of the 

summary functions defined, for example, the “cov” meta-feature of the group “statistical” 

which is the absolute value of the covariance of distinct dataset attribute pairs. All these meta-

features used resulted in 257 values. 

Last, in some datasets, it is also needed to properly encode the existing categorical columns to 

integers/indicator values because some classification algorithms require it. This was attained 

with the function “get_dummies” of Pandas [90] library, as is present in Figure 17. 

 

 

Figure 17: The use of the get_dummies function of Pandas library. 

 

It is important to note that it was used the parameter “drop_first” with “True” gets the k-1 

indicators values out of k categorical levels by removing the first level. This means that it 

removes redundant columns that cause multi-collinearity. For example, in binary columns, the 

value of “1” in one column after obtaining the indicator values automatically implies “0” in the 

other column. 
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5.1.2 Pre-Processing Techniques and Classification Algorithms Used 

This process started by executing 19 pre-processing techniques and 1 without any pre-

processing technique combined with 11 classification algorithms, resulting in 220 different 

combinations. The 19 pre-processing techniques used, as of the time of writing, are all available 

in the Imbalanced Learn library [91], are: 

▪ Under-sampling techniques: 

▪ ClusterCentroids, 

▪ CondensedNearestNeighbour, 

▪ EditedNearestNeighbours, 

▪ RepeatedEditedNearestNeighbours, 

▪ AllKNN, 

▪ InstanceHardnessThreshold, 

▪ NearMiss, 

▪ NeighbourhoodCleaningRule, 

▪ OneSidedSelection, 

▪ RandomUnderSampler, 

▪ TomekLinks. 

▪ Over-sampling techniques: 

▪ RandomOverSampler, 

▪ SMOTE, 

▪ ADASYN, 

▪ BorderlineSMOTE, 

▪ KMeansSMOTE, 

▪ SVMSMOTE. 

▪ Combination of over- and under-sampling techniques: 

▪ SMOTEENN, 

▪ SMOTETomek. 

The 11 classification algorithms functions used with the help of the Scikit-Learn, LightGBM[92] 

and XGBoost[93] libraries are: 

▪ LogisticRegression, 

▪ GaussianNB, 

▪ SVC, 

▪ KNeighborsClassifier, 

▪ LGBMClassifier, 

▪ XGBClassifier, 

▪ RandomForestClassifier, 

▪ ExtraTreesClassifier, 

▪ AdaBoostClassifier, 

▪ BaggingClassifier, 

▪ GradientBoostingClassifier. 
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The parameters used in all these pre-processing and classification functions, when available, 

were the “random_state” and the “n_jobs.” In the former, when it is used the same value in all 

functions, it was chosen the widely used value of “42” which is the seed that guarantees 

reproducibility, meaning that executing the same machine learning functions more than once, 

will always result in the same scores. The latter, when equal to “-1”, the machine learning 

function will use all the processors of the machine during the cross-validation step.  

Specifically, in the classification algorithm function, the aim here was to not use any specific 

hyperparameter that can improve the scores got to a specific dataset but can degrade the 

performance of other datasets, thus the aim was to use the most generic and adequate 

hyperparameters that can work across all the datasets for this scenario.  

Last, when it was possible to specify that the dataset is binary or the “class_weight” is 

“balanced,” it was appropriately indicated. The former specifies the learning objective function, 

and the latter stipulates, in “balanced” mode, to automatically adjust the class weights inversely 

proportional to class frequencies. Then, with the pre-processing task done, implicating that one 

class was under- or over-sampled, and the classification algorithm selected, the application 

does cross-validation with the use of the “cross_validate” function of the Scikit-Learn library, as 

illustrated in Figure 18. 

 

 

Figure 18: The use of the cross_validate function. 

 

To this effect, in the “estimator” parameter, the model chosen is a machine learning pipeline 

that includes the pre-processing task and the classifier selected, with the function 

“make_pipeline” of the Scikit-Learn library that guarantees that each step of the pipeline is 

constrained to the data available for the evaluation, such as the training dataset or each fold of 

the cross-validation procedure. Then it is passed the features “X” and target “y” columns of the 
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dataset and next in the “scoring” parameter it is specified the 5 evaluation metrics to be used, 

as will be further enumerated. 

Then in the “cv” parameter, the cross-validation splitting strategy, it was chosen the 

“RepeatedStratifiedKFold” function of the Scikit-Learn library that repeats a Stratified K-Fold 

cross-validator several times with different randomization in each repetition which assures an 

improved estimator performance. Here, it was used 10 folds with ”n_splits” repeated 3 times 

with “n_repeats”, which are common values for this case study. 

5.1.3 Process of Discarding the Worst Performant Combinations 

Iteratively, it was discarded some worst-performing pre-processing techniques and 

classification algorithms. To rigorously evaluate each of these combinations, it was selected 5 

adequate evaluation metrics to use in imbalanced binary classification, being:  

▪ Balanced Accuracy, 

▪ F1 Score, 

▪ ROC AUC, 

▪ Geometric Mean, 

▪ Cohen Kappa.  

 

The distinction made to categorise each result of each combination was the average score of all 

these 5 selected metrics. As previously mentioned, the starting point of the application had 220 

combinations with 19 pre-processing techniques and 1 more with no pre-processing technique, 

combined with 11 classification algorithms. It was iteratively discarded several combinations in 

five times/steps. Each combination for each dataset processed achieves a certain final score, 

the average of the 5 metrics, and a corresponding ranking position, for example, position 22 of 

220 total combinations. 

Then, when some datasets were randomly chosen and processed, it was analysed the various 

positions of each combination by grouping all the different rank positions, first by the pre-

processing technique and then by the classifier. Next, it was examined the values above the 

third quartile (75% to 100%) of the distribution of the two lists of each mentioned group and it 

was studied the possibility of discarding the combinations that have a pre-processing technique 

or a classifier that is closer, in terms of rank position, to the maximum (100%) of the list than 

the third quartile value (75%) of the list. This analysis occurred after importing at least two 

datasets after the previous step or the beginning and examined if any pre-processing technique 

or classifier in the corresponding lists was to be discarded or not based on the previous 

explanation. 

To better understand what happens when discarding one combination, two simple scenarios 

will be explained. In the beginning, when it starts with 220 combinations and it is found, for 

example, one pre-processing technique that is going to be discarded based on the previous 

explanation, when discarding it, it is discarded 11 combinations. This happens because there 
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are the initial 11 classifiers with that pre-processing technique. A comparable situation occurs 

when it is found, in the same situation, for example, one classifier that is going to be discarded, 

when discarding it, it is discarded 20 combinations. This happens because there are initially 19 

pre-processing techniques and 1 with no pre-processing technique. 

In the first step, after 3 datasets imported and processed, it was discarded all the combinations 

that have the following pre-processing techniques or classifiers: 

▪ Pre-processing techniques: 

▪ SMOTEENN, 

▪ CondensedNearestNeighbour, 

▪ InstanceHardnessThreshold, 

▪ ClusterCentroids, 

▪ NearMiss. 

▪ Classifiers: 

▪ LogisticRegression, 

▪ GaussianNB, 

▪ SVC. 

 

After this first iteration, by removing 5 pre-processing techniques and 3 classifiers, the result 

was the remaining 14 pre-processing techniques, 1 with no pre-processing technique, and 8 

classifiers resulting in 120 combinations. 

Then, in the second step, after 2 datasets imported and processed, it was discarded all the 

combinations that have the following pre-processing techniques or classifiers: 

▪ Pre-processing techniques: 

▪ OneSidedSelection, 

▪ “Without pre-processing,” 

▪ KMeansSMOTE. 

▪ Classifiers: 

▪ AdaBoostClassifier, 

▪ KNeighborsClassifier. 

 

After this second iteration, by removing 2 pre-processing techniques, 1 “without pre-processing” 

and 2 classifiers, the result was the remaining 12 pre-processing techniques and 6 classifiers, 

resulting in 72 combinations. 

Then, in the third step, after 3 datasets imported and processed, it was discarded all the 

combinations that have the following pre-processing techniques or classifiers: 

▪ Pre-processing techniques: 

▪ EditedNearestNeighbours, 

▪ AllKNN, 

▪ RepeatedEditedNearestNeighbours, 
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▪ NeighbourhoodCleaningRule, 

▪ RandomUnderSampler. 

▪ Classifiers: 

▪ BaggingClassifier, 

▪ ExtraTreesClassifier. 

 

After this third iteration, by removing 5 pre-processing techniques and 2 classifiers, the result 

was the remaining 7 pre-processing techniques and 4 classifiers, resulting in 28 combinations. 

Then, in the fourth step, after 14 datasets imported and processed, it was discarded all the 

combinations that have the following pre-processing techniques or classifiers: 

▪ Pre-processing techniques: 

▪ BorderlineSMOTE, 

▪ TomekLinks. 

▪ Classifier: 

▪ RandomForestClassifier. 

 

After this fourth iteration, by removing 2 pre-processing techniques and 1 classifier, the result 

was the remaining 5 pre-processing techniques and 3 classifiers, resulting in 15 combinations. 

Then, in the fifth and last step, after 9 datasets imported and processed, it was discarded all the 

combinations that have the following pre-processing technique: 

▪ Pre-processing technique: 

▪ ADASYN. 

 

After this fifth iteration, by removing 1 pre-processing technique, the result was the remaining 

4 pre-processing techniques and 3 classifiers, resulting in 12 combinations. 

The rest of the datasets imported and processed were not needed to have further steps of 

discarding more combinations, because it was not found any worse performant pre-processing 

technique or classifier based on the previous explanation and the result of 12 combinations is 

already relatively few combinations to discard further. 

5.1.4 Write Results to Knowledge Base files 

When it is time to write the obtained results, there are three knowledge base files. The 

application uses the functions “write_characteristics” to write in “kb_characteristics.csv,” 

“write_results” to write in “kb_results.csv” and “write_full_results” to write in 

“kb_full_results.csv.” In the “write_characteristics” and “write_full_results” functions, in this 

development phase, if there are already previous results present in the knowledge base files 

regarding a certain dataset, these functions only write if the newly obtained results are better 
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than previous ones. This distinction between better or worse results is made by the final score, 

meaning that is the average of all the 5 selected metrics score. 

All these knowledge base files have the first column indicating the name of the dataset that was 

imported. For the “kb_characteristics.csv,” then follows all the 257 meta-features obtained by 

the MFE library, and then, the best combination of pre-processing technique and classification 

algorithm that was achieved for each imported dataset.  

Afterwards, the “kb_results.csv” also has the previously mentioned best combination, then the 

time, in seconds, that took to execute that combination, after, there are the 5 selected metrics 

and the corresponding standard deviation of the cross-validation of each one, and finally, there 

is a column to indicate the total elapsed time, in “HH:mm:ss” format, that counts the time of all 

the combinations that were executed.  

Last, the “kb_full_results.csv” resembles the “kb_results.csv” however, here is written all the 

combinations to each imported dataset are to observe the time and metrics achieved in each 

combination. Additionally, the last column, instead of the total elapsed times, indicates the 

average of all the recorded metrics. Contrary to the two other knowledge base files, this one is 

guaranteed in order from the best global final score (average of the final metrics score) to the 

worst ones. 

5.2 Recommendation Phase 

The user, in this phase, interacts with the application by executing, in the console, the “ui.py” 

file that launches a GUI desktop application with the support of the PySimpleGUI library, as 

illustrated in Figure 19. 

 

 

Figure 19: GUI Application for Recommendation Phase. 

 

In this phase, the goal of the application is to deliver recommendations of the best combinations 

of pre-processing techniques and classification algorithms to be used in a certain imported 

dataset, as stated in the second use case addressed in the functional requirements. 
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5.2.1 Reading the Dataset 

Similarly to the previous phase, it is possible to import the dataset by file, located in any place 

of the computer, or by OpenML dataset ID. However, if the user accidentally fills both fields or 

does not fill any, the application alerts it, as shown in Figure 20 and Figure 21, correspondingly. 

 

 

Figure 20: GUI Alert – fill both fields. 
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Figure 21: GUI Alert – not fill any field. 

 

Then, when the user indicates only one option to import the dataset, of the two previous ones 

mentioned, he can “Submit,” and the application executes the “execute_byCharacteristics” 

function present in the “ui.py” file, illustrated in Figure 22.  

 

 
Figure 22: Calling execute_byCharacteristics function in ui.py. 

 

5.2.2 Calculating the Best Recommendations 

The previously stated “execute_byCharacteristics” function is declared in the “ml.py” file and is 

presented in Figure 23. 
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Figure 23: execute_byCharacteristics function of ml.py file. 

 

First, the “execute_byCharacteristics” starts by extracting the meta-features and encoding the 

categorical columns, if there are any, of the dataset imported, equally to the development 

phase. Then, in the “get_best_results_by_characteristics” function it is computed the Frobenius 

norm (the Euclidian norm of two vectors) uses the “linalg.norm” function from the NumPy[94] 

library, which, in this case, is the average of all Euclidian distances (vectors) of each meta-

feature extracted between the current imported dataset and all the previous imported datasets.  

This takes into consideration the previously processed 257 meta-features in the development 

phase, in the “kb_characteristics.csv” file. Some meta-feature values can be null, negative, or 

positive infinity and those values were dropped from the vectors. The Frobenius norm can be 

expressed as Equation 9 and the Euclidian norm as Equation 10. 

 

‖𝑨‖𝑭  =  [∑ 𝒂𝒃𝒔(𝒂𝒊𝒋)
𝟐

𝒊𝒋

]

𝟏/𝟐

  

 

(9) 
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‖𝒙‖𝟐 = (∑(𝒘𝒊|(𝒖𝒊 −  𝒗𝒊)
𝟐))

𝟏/𝟐

  

 

(10) 

 

Next, it is selected the three smaller average values, since a smaller value means that those two 

datasets resemble the most in terms of the features used. By knowing the corresponding 

datasets, it is recommended the three combinations of pre-processing techniques and 

classification algorithms that are distinct and were recorded as the better performant ones, in 

the development phase, for those datasets.  

To better understand how this recommendation works, it will be exemplified with the following 

simple scenario. First, it is imported the “car-good.dat” dataset and submitted it to the 

application, when it finalises all the calculations, it informs, in this example, that (SVMSMOTE, 

GradientBoostingClassifier), (SMOTE, GradientBoostingClassifier), (SMOTE, XGBClassifier) were 

the best three combinations of pre-processing techniques and classification algorithms 

correspondingly, as illustrated in Figure 24. 

 

 

Figure 24: GUI recommendations example. 

 

The application also outputs information to the console with more detailed and technical 

information, as illustrated in Figure 25. 
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Figure 25: GUI recommendations output example. 

 

For this case, those recommendations were given because the “analcatdata_germangss” 

(OpenML ID: 1025)[95], “poker-8_vs_6.dat”[96] and “glass1.dat”[97] datasets had the lowest 

Euclidian distances, it was obtained 0.202055, 0.227712 and 0.275151, correspondingly. Those 

datasets, in the development phase, had each of those best combinations of pre-processing 

techniques and classifiers. For instance, the “analcatdata_germangss” dataset, in the 

development phase, achieved the best final score (average of all evaluation metrics) with the 

(SVMSMOTE, GradientBoostingClassifier) combination. 

It was also experimented to recommend the best combinations of pre-processing techniques 

and classification algorithms by multiclass classification instead of relying on the Euclidean 

distances from the meta-features values of each dataset. This multiclass classification task used 

the meta-features values of each dataset as features and the previously mentioned 

combination as the target. The problem occurs that for the 65 available datasets (number of 

instances/rows), by having 12 different target combinations with 257 meta-features values, this 

was proven to hinder the performance and take more processing time. Therefore, it was not 

the selected approach for these conditions. 
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6 Solution Evaluation 

The evaluation of the solution is conducted with two distinct steps, an internal evaluation and 

an external evaluation. The former is made by analysing and comparing the final recommended 

results, by the recommendation phase, with the results that are acquired by the development 

phase. The latter is achieved by analysing and comparing the final recommended results with 

other results publicly available state-of-the-art papers or that is accomplished by using certain 

state-of-the-art autoML solutions. 

This evaluation aims to know if the results achieved in the recommendation phase are at least 

comparable or better, first, to the development phase (internal evaluation) and then, to other 

similar state-of-the-art papers or autoML solutions (external evaluation). The results are 

considered better when comparing the same appropriate evaluation metrics, they are greater 

than other ones, or the execution time is smaller than the other ones.  

Therefore, it was formulated four research hypotheses (RH) for this evaluation, the first two for 

the internal evaluation and the other two for the external evaluation, they are: 
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▪ RH1: The evaluation metrics achieved by the recommendation phase of the 

implemented application have comparable or greater values than the development 

phase of the implemented application. 

▪ RH2: The time of execution achieved by the recommendation phase of the 

implemented application is comparable to or smaller than the development phase of 

the implemented application. 

▪ RH3: The evaluation metrics achieved by the recommendation phase of the 

implemented application have comparable or greater values than similar state-of-the-

art papers and/or autoML solutions. 

▪ RH4: The time of execution achieved by the recommendation phase of the 

implemented application is comparable to or smaller than similar state-of-the-art 

papers and/or autoML solutions. 

 

Thus, the goal of these two evaluation steps is to rigorously evaluate the implemented 

application, as well as the formulation of the four research hypotheses to clarify if the objectives 

previously defined are met or not. Also, it is important to mention that each evaluation task 

that needs to be executed, is executed with the same conditions of the same available local 

computer resources. 

In the internal and external evaluation, the evaluation metrics used to evaluate the different 

solutions are Balanced Accuracy, F1 Score, ROC AUC, Geometric Mean and Cohen Kappa. 

Additionally, it was assumed that the minority target class is the most relevant to predict.  

Concerning the datasets chosen to evaluate this application internally and externally, it was 

randomly selected 15 imbalanced datasets from the 65 used in the implementation of the 

application. The imbalanced ratio of these datasets ranges from 2.307 (minimum) to 67 

(maximum), averaging 18.662 with a standard deviation of 21.998. The datasets are: 

▪ dis (OpenML ID: 40713)[98], 

▪ musk (OpenML ID:1116)[99], 

▪ mfeat-fourier (OpenML ID:971)[100], 

▪ Satellite (OpenML ID:40900)[101], 

▪ arsenic-male-bladder (OpenML ID:947)[102], 

▪ analcatdata_apnea2 (OpenML ID:765)[103], 

▪ regime_alimentaire (OpenML ID:42172)[104], 

▪ page-blocks0.dat[105], 

▪ dgf_test (OpenML ID:42883)[106], 

▪ cpu_small (OpenML ID:735)[107], 

▪ analcatdata_birthday (OpenML ID:968)[108], 

▪ optdigits (OpenML ID:980)[109], 

▪ kr-vs-k-zero_vs_eight.dat[110], 

▪ analcatdata_lawsuit (OpenML ID:450)[111], 

▪ JapaneseVowels (OpenML ID:976)[112]. 
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6.1 Internal Evaluation 

To conduct the internal evaluation, first, in the development phase of the implemented 

application, it was observed the best combination of pre-processing technique and 

classification algorithm, using the average of all the selected evaluation metrics (final score) and 

the time of execution, of 15 datasets randomly selected.  

Then, in the recommendation phase of the application, it was observed the three 

recommended combinations of pre-processing techniques and classification algorithms and the 

execution time, all these also to the same 15 datasets. 

6.1.1 Research Hypothesis Number One 

Regarding the evaluation metrics achieved from the recommendation phase compared to the 

development phase concerning the 15 datasets, the recommendation phase will always return 

worse or, in the best scenario, equal to the best one got by the development phase. This 

situation occurs because there is always one combination that returns the best score of the 

metrics used and all the remaining ones are worse, depending on the dataset used.  

Additionally, all the possible recommended combinations, by the recommendation phase, are 

the ones that the development phase previously calculated. Consequently, it is enough for the 

recommendation phase to return one combination that is not the best, to one of the 15 datasets 

that will cause the worst scores of metrics concerning the development phase. 

To be certain of this effect, it was evaluated the 15 datasets by the two phases of the 

implemented application, and it was concluded that in some datasets it is not recommended 

the combination that would cause the best score, as explained further. Therefore, the scores 

accomplished by the recommendation phase are worse than the development phase, hence, 

the RH1 was not achieved. 

However, since the recommendation phase was sentenced to fail, it was done a complementary 

analysis. For each dataset, it was investigated all three recommended combinations, by the 

recommendation phase, concerning the combination best scored by the development phase. 

All those combinations are on the following Table 3 and Table 4. The fields highlighted in green 

are the combinations that matched the best-scored combination by the development phase, 

and the fields highlighted in yellow are partially matched combinations where the match occurs 

only by the pre-processing technique or the classifier algorithm. 
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Table 3: Combination best scored by the development phase. 

Dataset Pre-processing technique Classifier Algorithm 

dis RandomOverSampler GradientBoostingClassifier 

musk RandomOverSampler XGBClassifier 

mfeat-fourier SMOTE GradientBoostingClassifier 

Satellite SMOTETomek LGBMClassifier 

arsenic-male-bladder RandomOverSampler LGBMClassifier 

analcatdata_apnea2 RandomOverSampler GradientBoostingClassifier 

regime_alimentaire SVMSMOTE LGBMClassifier 

page-blocks0.dat RandomOverSampler XGBClassifier 

dgf_test RandomOverSampler XGBClassifier 

cpu_small SMOTETomek LGBMClassifier 

analcatdata_birthday SVMSMOTE XGBClassifier 

optdigits SVMSMOTE XGBClassifier 

kr-vs-k-zero_vs_eight.dat RandomOverSampler GradientBoostingClassifier 

analcatdata_lawsuit RandomOverSampler LGBMClassifier 

JapaneseVowels SVMSMOTE LGBMClassifier 

 

Table 4: Recommended combinations by the recommendation phase. 

Dataset 

Recommendation number 1 Recommendation number 2 Recommendation number 3 

Pre-
processing 
technique 

Classifier 
Algorithm 

Pre-
processing 
technique 

Classifier 
Algorithm 

Pre-
processing 
technique 

Classifier 
Algorithm 

dis RandomOv
erSampler LGBMClassifier 

RandomOv
erSampler 

GradientBoosti
ngClassifier SMOTE XGBClassifier 

musk RandomOv
erSampler XGBClassifier 

SMOTETom
ek LGBMClassifier SVMSMOTE LGBMClassifier 

mfeat-
fourier SVMSMOTE 

GradientBoosti
ngClassifier SVMSMOTE XGBClassifier 

RandomOv
erSampler 

GradientBoosti
ngClassifier 

Satellite 
SMOTE 

GradientBoosti
ngClassifier 

SMOTETom
ek LGBMClassifier 

RandomOv
erSampler XGBClassifier 

arsenic-
male-
bladder 

RandomOv
erSampler LGBMClassifier 

SMOTETom
ek 

GradientBoosti
ngClassifier 

SMOTETom
ek LGBMClassifier 

analcatdata
_apnea2 

RandomOv
erSampler 

GradientBoosti
ngClassifier 

RandomOv
erSampler LGBMClassifier SVMSMOTE LGBMClassifier 

regime_ali
mentaire SVMSMOTE XGBClassifier SVMSMOTE 

GradientBoosti
ngClassifier 

RandomOv
erSampler LGBMClassifier 

page-
blocks0.dat SMOTE LGBMClassifier 

SMOTETom
ek LGBMClassifier SVMSMOTE LGBMClassifier 

dgf_test 
SVMSMOTE LGBMClassifier 

SMOTETom
ek LGBMClassifier 

SMOTETom
ek 

GradientBoosti
ngClassifier 

cpu_small SMOTETom
ek 

GradientBoosti
ngClassifier SMOTE LGBMClassifier SVMSMOTE LGBMClassifier 

analcatdata
_birthday 

RandomOv
erSampler LGBMClassifier 

RandomOv
erSampler 

GradientBoosti
ngClassifier 

SMOTETom
ek 

GradientBoosti
ngClassifier 

optdigits RandomOv
erSampler 

GradientBoosti
ngClassifier SVMSMOTE 

GradientBoosti
ngClassifier SMOTE XGBClassifier 

kr-vs-k-
zero_vs_eig
ht.dat SVMSMOTE XGBClassifier 

RandomOv
erSampler 

GradientBoosti
ngClassifier SMOTE XGBClassifier 

analcatdata
_lawsuit SVMSMOTE 

GradientBoosti
ngClassifier SVMSMOTE XGBClassifier 

RandomOv
erSampler 

GradientBoosti
ngClassifier 

JapaneseVo
wels 

RandomOv
erSampler 

GradientBoosti
ngClassifier 

RandomOv
erSampler XGBClassifier 

SMOTETom
ek LGBMClassifier 
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There are 3 datasets (musk, arsenic-male-bladder and analcatdata_apnea2) that, the 

recommendation phase, got right at the first recommendation according to the development 

phase. Then, there are also 3 datasets (dis, Satellite and kr-vs-k-zero_vs_eight.dat) that the best 

recommendation is on the second recommendation. Next, there are 6 datasets (mfeat-fourier, 

regime_alimentaire, cpu_small, optdigits, analcatdata_lawsuit and JapaneseVowels) that one 

part of the combination (pre-processing technique or classifier algorithm) was got right. Then, 

there are the remaining 3 datasets (page-blocks0.dat, dgf_test and analcatdata_birthday) that 

were not right in any of the combinations or partial combinations. 

6.1.2 Research Hypothesis Number Two 

Regarding the time of execution achieved from the recommendation phase compared to the 

development phase concerning the 15 datasets, all these values are expressed in the following 

Table 5, and all the values of time are in the “HH:mm:ss” format. 

 

Table 5: Comparison of execution times of the recommendation and development phases. 

Dataset Execution time in the 
recommendation phase 

Execution time in the 
development phase 

dis 00:00:25 00:03:59 

musk 00:04:08 00:55:34 

mfeat-fourier 00:00:13 00:08:12 

Satellite 00:00:57 00:10:30 

arsenic-male-bladder 00:00:02 00:00:36 

analcatdata_apnea2 00:00:01 00:00:17 

regime_alimentaire 00:00:01 00:00:16 

page-blocks0.dat 00:00:58 00:03:49 

dgf_test 00:01:01 00:06:55 

cpu_small 00:03:20 00:08:54 

analcatdata_birthday 00:00:01 00:00:17 

optdigits 00:01:19 00:11:49 

kr-vs-k-zero_vs_eight.dat 00:00:06 00:00:48 

analcatdata_lawsuit 00:00:01 00:01:40 

JapaneseVowels 00:05:20 00:23:41 

 

Consequently, for all the 15 datasets, the recommendation phase achieved 17 minutes and 53 

seconds (1073 total seconds) of the total amount of execution time and the development phase 

achieved 2 hours 17 minutes and 17 seconds (8237 total seconds) of execution time. Thus, when 

dividing the total time achieved in the recommendation phase by the development phase, it is 

concluded that the execution time of the recommendation phase is smaller/faster with only 

13.03% of the time of the development phase. Therefore, the RH2 was successfully achieved. 
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6.2 External Evaluation 

To perform the external evaluation, it was first analysed relevant state-of-the-art papers that 

could address these 15 selected datasets with a machine learning pipeline that adopted similar 

pre-processing techniques and/or classification algorithms, with a similar machine learning 

validation used (Stratified K-Fold cross-validator) and with the same evaluation metrics selected. 

Crossing all these factors, especially these 15 datasets, was not found in any paper without 

ignoring relevant factors that would cause a compromised comparison of the attained results. 

Consequently, the second step was to select one autoML application that could be executed for 

these 15 datasets with the same machine learning pipeline earlier mentioned. It was explored 

all the different applications previously analysed in the Related Solutions section of the State of 

the Art chapter. The first ones to be excluded from this choice were the autoML services, such 

as Microsoft Azure Automated Machine Learning, AWS SageMaker Autopilot and GCP AutoML, 

because they execute in different servers/machines that the one used in the implementation 

and evaluation of the developed application, this would cause a compromised comparison. 

The autoML application/tool selected was the TPOT, a tree-based pipeline optimization tool, 

because it was noted to be the most easy-to-use open-source tool. In this scenario, it was only 

needed to test higher or smaller values with a “try-error” approach for two parameters, as 

explained further. Additionally, it can export any produced pipeline directly to python code. 

It was created the “_test_TPOT.py” file to execute the TPOT tool and the results are saved in 

the “results_TPOT.csv” file in the “output” folder of the project. Then, it was executed the 

python file to all these 15 datasets which contain the “TPOTClassifier” function with the 

following parameters used, as illustrated in Figure 26. 

 

 

Figure 26: TPOTClassifier function used. 

 

First, the “generations” and the “population_size” parameters are, in this scenario, the 

parameters used as a “try-error” approach because specifying them with higher values usually 

results in higher scores/metrics values but with also increased times of execution. To have 

similar values of execution time as the recommendation phase of the implemented application 

achieves, it was concluded that the value of “2” to the “generations” and the “population_size” 

was the most suited to these 15 datasets and the available local computer. 

Then, it was used the “max_time_mins” parameter with “10” which sets the maximum time 

that TOPT must optimise the pipeline because it is a closer value to the maximum time that the 
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development phase achieved in one of these 15 datasets. Next, the “scoring” parameter, the 

built-in scoring function to evaluate the quality of a pipeline, was set to “f1” because F1 Score 

is one of the metrics used and this parameter only lets set one metric.  

Afterwards, the “cv” parameter sets the cross-validation strategy to be used, and the “n_jobs” 

and “random_state” parameters were set the same as the implementation of the application. 

At last, the “verbosity” parameter with the value “2” prints a progress bar with minimal 

information when TPOT is running. 

6.2.1 Research Hypothesis Number Three 

Now, the evaluation metrics achieved from the recommendation phase will be compared to the 

TPOT tool set in the “_test_TPOT.py” file, previously explained, concerning the 15 datasets. 

However, first, it is important to mention that the values from the recommendation phase are 

the ones got when executing the development phase of the implemented application to those 

15 datasets, for the first recommended combination (of the three combinations available). All 

these values are expressed in the following Table 6 and Table 7, and the final score is the 

average of all metrics. 

 

Table 6: Evaluation metrics values of the recommendation phase. 

Dataset Balanced 
Accuracy 

F1 Score ROC 
AUC 

Geometric 
Mean 

Cohen 
Kappa 

Final 
Score 

dis 0.787 0.995 0.915 0.747 0.614 0.812 

musk 0.998 0.996 1.000 0.998 0.996 0.998 

mfeat-fourier 0.990 0.999 0.999 0.990 0.986 0.993 

Satellite 0.882 0.672 0.984 0.870 0.666 0.815 

arsenic-male-bladder 0.795 0.636 0.836 0.716 0.625 0.722 

analcatdata_apnea2 0.936 0.833 0.972 0.934 0.804 0.896 

regime_alimentaire 0.940 0.876 0.977 0.938 0.840 0.914 

page-blocks0.dat 0.950 0.868 0.992 0.949 0.852 0.922 

dgf_test 0.987 0.971 0.999 0.987 0.965 0.982 

cpu_small 0.914 0.943 0.976 0.913 0.816 0.912 

analcatdata_birthday 0.800 0.937 0.944 0.778 0.576 0.807 

optdigits 0.982 0.996 0.999 0.982 0.960 0.984 

kr-vs-k-
zero_vs_eight.dat 

0.980 0.947 0.998 0.977 0.945 0.969 

analcatdata_lawsuit 0.966 0.873 0.991 0.962 0.863 0.931 

JapaneseVowels 0.978 0.987 0.998 0.978 0.925 0.973 
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Table 7: Evaluation metrics values of the TPOT tool. 

Dataset Balanced 
Accuracy 

F1 Score ROC 
AUC 

Geometric 
Mean 

Cohen 
Kappa 

Final 
Score 

dis 0.721 0.994 0.721 0.666 0.566 0.734 

musk 0.998 0.991 0.998 0.998 0.989 0.995 

mfeat-fourier 0.941 0.993 0.941 0.939 0.920 0.947 

Satellite 0.875 0.857 0.875 0.866 0.855 0.866 

arsenic-male-bladder 0.800 0.750 0.800 0.775 0.736 0.772 

analcatdata_apnea2 0.528 0.105 0.528 0.236 0.091 0.298 

regime_alimentaire 0.972 0.917 0.972 0.972 0.888 0.944 

page-blocks0.dat 0.906 0.868 0.906 0.902 0.853 0.887 

dgf_test 0.981 0.961 0.981 0.981 0.954 0.972 

cpu_small 0.890 0.939 0.890 0.888 0.784 0.878 

analcatdata_birthday 0.532 0.922 0.532 0.297 0.092 0.475 

optdigits 0.958 0.992 0.958 0.957 0.924 0.958 

kr-vs-k-
zero_vs_eight.dat 

0.688 0.042 0.688 0.662 0.031 0.422 

analcatdata_lawsuit 0.742 0.600 0.742 0.701 0.569 0.671 

JapaneseVowels 0.976 0.992 0.976 0.976 0.948 0.974 

 

Consequently, for all 15 datasets, the recommendation phase accomplished an average final 

score of 0.9087 and the TPOT tool accomplished 0.7862. Thus, when dividing the average of the 

final score attained in the recommendation phase by the one in the TPOT tool, it is concluded 

that the final score of the recommendation phase is greater, on average, by 16% than the one 

attained by the TPOT tool. Therefore, the RH3 was successfully achieved in these conditions. 

6.2.2 Research Hypothesis Number Four 

Now, it is going to be analysed the time of execution achieved from the recommendation phase 

of the implemented application compared to the TPOT tool set in the “_test_TPOT.py” file, 

concerning the 15 datasets. All these values are expressed in the following Table 8, and all the 

values of time are in the “HH:mm:ss” format. 
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Table 8: Comparison of execution times of the recommendation phase to the TPOT tool. 

Dataset Execution time in the 
recommendation phase 

Execution time in the TPOT 
tool 

dis 00:00:25 00:00:40 

musk 00:04:08 00:09:12 

mfeat-fourier 00:00:13 00:01:19 

Satellite 00:00:57 00:01:18 

arsenic-male-bladder 00:00:02 00:00:17 

analcatdata_apnea2 00:00:01 00:00:17 

regime_alimentaire 00:00:01 00:00:28 

page-blocks0.dat 00:00:58 00:01:34 

dgf_test 00:01:01 00:01:01 

cpu_small 00:03:20 00:02:40 

analcatdata_birthday 00:00:01 00:00:27 

optdigits 00:01:19 00:01:16 

kr-vs-k-zero_vs_eight.dat 00:00:06 00:00:22 

analcatdata_lawsuit 00:00:01 00:00:16 

JapaneseVowels 00:05:20 00:01:54 

 

Consequently, for all the 15 datasets, the recommendation phase accomplished 17 minutes and 

53 seconds (1073 total seconds) of the total amount of execution time and the TPOT tool 

accomplished 23 minutes and 1 second (1381 total seconds) of execution time. Thus, when 

dividing the total time attained in the recommendation phase by the TPOT tool, it is concluded 

that the execution time of the recommendation phase is smaller/faster with 78% of the time of 

the TPOT tool. Therefore, the RH4 was successfully achieved in these conditions. 

6.3 Final Remarks 

To conclude the evaluation of this application, the RH2, RH3 and RH4 were successfully 

achieved to the tested conditions, and the RH1 was not achieved. Therefore, the outcome of 

this evaluation was mostly positive. 
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7 Conclusions 

This chapter is composed of two sections, the Accomplished Objectives and the Limitations and 

Future Work. The former explains if the objectives were and how they were accomplished, and 

the latter, by guiding the potential future work to be addressed. 

7.1 Accomplished Objectives 

This application was successfully documented, designed, implemented, and evaluated. It can 

deliver recommendations of suited combinations of pre-processing techniques and 

classification algorithms to imbalanced datasets, therefore automating this step in the machine 

learning pipeline.  

Moreover, it provides these recommendations to a newly imported dataset by using the meta-

features values, previously extracted, of the most similar datasets already present in the 

knowledge base, from past executions. Additionally, it was used appropriate evaluation metrics 

to benchmark internally each combination, and externally to the overall recommendations 

delivered by this application compared to other autoML solution. The latter was achieved with 

small success but with smaller execution times, as it was evaluated to certain conditions 

established. 

As it was analysed in the State of the Art, there are several autoML solutions. However, there 

are a few that focus specifically on handling imbalanced classification problems. Consequently, 

this project has a positive overview of the work done, especially when considering some 

limitations and future work needed, as is going to be explained in the next section. 
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7.2 Limitations and Future Work 

While the objectives were accomplished, there is still some improvement that should be 

adopted for this application. First, it should be evaluated if some optimization techniques like 

Grid Search, Random Search, Bayesian Optimization, CASH optimization and others can improve 

the results achieved. Then, other pre-processing techniques and classification algorithms can 

also be added to the application. Moreover, it can be experimented to run the application on 

the GPU instead of the CPU of the computer with libraries like Apache Spark, Dask, Ray or others, 

to improve the execution times. 

Furthermore, it can also be applied a meta-feature selection like principal component analysis 

to the extracted meta-features. Additionally, it can be verified if the results got when 

recommending are improved by adding more datasets to the knowledge base of the application. 

Then, this application should be compared to more autoML solutions. Finally, in the future, this 

application should operate also with multiclass classification problems. 
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