
AUTOMATIC HANDLING OF IMBALANCED
DATASETS FOR CLASSIFICATION

PEDRO MARQUES VIEIRA
Outubro de 2022

AUTOMATIC HANDLING OF IMBALANCED

DATASETS FOR CLASSIFICATION

Pedro Marques Vieira

A dissertation attending on the requirements for

the master’s degree in Computer Engineering,

specialisation area in Information and Knowledge Systems

Advisor: Doctor Fátima Rodrigues

Porto, October 2022

ii

iii

I dedicate this work to my mother, my father, and my grandparents.

iv

v

Abstract

Imbalanced data is present in various business areas and when facing it without proper

knowledge, it can have undesired negative consequences. In addition, the most common

evaluation metrics in machine learning to measure the desired solution can be inappropriate

and misleading. Multiple combinations of methods are proposed to handle imbalanced data

however, often, they required specialised knowledge to be used correctly.

For imbalanced classification, the desire to correctly classify the underrepresented class tends

to be more important than the overrepresented class, while being more challenging and time-

consuming. Several approaches, ranging from more accessible and more advanced in the

domains of data resampling and cost-sensitive techniques, will be considered to handle

imbalanced data.

The application developed delivers recommendations of the most suited combinations of

techniques for the specific dataset imported, by extracting and comparing meta-features values

recorded in a knowledge base. It facilitates effortless classification and automates part of the

machine learning pipeline with comparable or better results to a state-of-the-art solution and

with a much smaller execution time.

Keywords: Imbalanced Classification, Handling Imbalanced Data, Automated Machine Learning.

vi

vii

Resumo

Os dados não balanceados estão presentes em diversas áreas de negócio e, ao enfrentá-los sem

o devido conhecimento, podem trazer consequências negativas e indesejadas. Além disso, as

métricas de avaliação mais comuns em aprendizagem de máquina (machine learning) para

medir a solução desejada podem ser inadequadas e enganosas. Múltiplas combinações de

métodos são propostas para lidar com dados não balanceados, contudo, muitas vezes, estas

exigem um conhecimento especializado para serem usadas corretamente.

Para a classificação não balanceada, o desejo de classificar corretamente a classe sub-

representada tende a ser mais importante do que a classe que está representada em demasia,

sendo mais difícil e demorado. Várias abordagens, desde as mais acessíveis até as mais

avançadas nos domínios de reamostragem de dados e técnicas sensíveis ao custo vão ser

consideradas para lidar com dados não balanceados.

A aplicação desenvolvida fornece recomendações das combinações de técnicas mais adequadas

para o conjunto de dados específico importado, extraindo e comparando os valores de meta

características registados numa base de conhecimento. Ela facilita a classificação sem esforço e

automatiza parte das etapas de aprendizagem de máquina com resultados comparáveis ou

melhores a uma solução de estado da arte e com tempo de execução muito menor.

Palavras-chave: Classificação Não Balanceada, Manipulação de Dados Não Balanceados,

Automatização de Aprendizagem de Máquina.

viii

ix

Acknowledgements

First, I thank my mother, father, and grandparents who always believe in me and the rest of my

family. Also, Instituto Superior de Engenharia do Porto provided a great workplace and my

supervisor, Fátima Rodrigues, assisted me with the best intentions. Last, I am grateful to all

people that have supported me on this journey.

x

xi

Table of Contents

1 Introduction ... 1

1.1 Context ..1

1.2 Problem ..1

1.3 Goal ..2

1.4 Approach ..2

1.5 Document Structure ...2

2 State of the Art ... 5

2.1 Classification ..5
2.1.1 Classification Algorithms ..5

2.2 Imbalanced Classification ...6
2.2.1 Causes and Examples ..7
2.2.2 Strategies for Handling Imbalanced Domains ..7

2.3 Relevant Machine Learning Topics ...9
2.3.1 Meta-Features ..9
2.3.2 Automated Machine Learning ...9
2.3.3 Optimization .. 10
2.3.4 Evaluation Metrics .. 11

2.4 Related Solutions ... 13
2.4.1 Final Considerations ... 14

3 Value Analysis ... 17

3.1 Opportunity Identification .. 17

3.2 Opportunity Analysis ... 18

3.3 Value Offer .. 19
3.3.1 Value for the Customer .. 19
3.3.2 Perceived Value .. 20
3.3.3 Value Proposition ... 20

3.4 TOPSIS Method .. 21
3.4.1 Applying TOPSIS Method ... 23

4 Solution Design ... 25

4.1 Requirements Analysis ... 25
4.1.1 Functional Requirements .. 25
4.1.2 Non-functional Requirements .. 26

4.2 System Architecture ... 27
4.2.1 Activity Diagram .. 27
4.2.2 Domain Model ... 28
4.2.3 Component Diagrams .. 28

xii

4.2.4 Sequence Diagram ... 30

4.3 Datasets ... 31

4.4 Technologies Choice ... 32

5 Solution Implementation .. 35

5.1 Development Phase .. 36
5.1.1 Reading and Extracting Knowledge from a Dataset 39
5.1.2 Pre-Processing Techniques and Classification Algorithms Used 41
5.1.3 Process of Discarding the Worst Performant Combinations 43
5.1.4 Write Results to Knowledge Base files .. 45

5.2 Recommendation Phase ... 46
5.2.1 Reading the Dataset ... 47
5.2.2 Calculating the Best Recommendations ... 48

6 Solution Evaluation ... 53

6.1 Internal Evaluation ... 55
6.1.1 Research Hypothesis Number One ... 55
6.1.2 Research Hypothesis Number Two ... 57

6.2 External Evaluation .. 58
6.2.1 Research Hypothesis Number Three ... 59
6.2.2 Research Hypothesis Number Four .. 60

6.3 Final Remarks ... 61

7 Conclusions .. 63

7.1 Accomplished Objectives ... 63

7.2 Limitations and Future Work ... 64

List of Figures

Figure 1: Strategies for Handling Imbalanced Domains. .. 7

Figure 2: Depiction of a ROC Curve. ... 12

Figure 3: Imbalanced Classification – Google Trends[44]. ... 18

Figure 4: AutoML – Google Trends[45]. ... 19

Figure 5: Value Proposition. ... 20

Figure 6: Use Case Diagram. .. 26

Figure 7: Activity Diagram. ... 27

Figure 8: Domain Model... 28

Figure 9: Initial Component Diagram. .. 29

Figure 10: Final Component Diagram. ... 29

Figure 11: Sequence Diagram. ... 30

Figure 12: test.ml code. .. 36

Figure 13: credit-g dataset in OpenML[88]. ... 37

Figure 14: execute_ml function on ml.py file. .. 38

Figure 15: Console output of execute_ml function. ... 39

Figure 16: The use of MFE Library. ... 40

Figure 17: The use of the get_dummies function of Pandas library. ... 40

Figure 18: The use of the cross_validate function. .. 42

Figure 19: GUI Application for Recommendation Phase. .. 46

Figure 20: GUI Alert – fill both fields. ... 47

Figure 21: GUI Alert – not fill any field. .. 48

Figure 22: Calling execute_byCharacteristics function in ui.py. ... 48

Figure 23: execute_byCharacteristics function of ml.py file. ... 49

Figure 24: GUI recommendations example. .. 50

Figure 25: GUI recommendations output example. .. 51

Figure 26: TPOTClassifier function used. ... 58

xiv

List of Tables

Table 1: Confusion Matrix. ... 11

Table 2: TOPSIS calculations... 23

Table 3: Combination best scored by the development phase. .. 56

Table 4: Recommended combinations by the recommendation phase. 56

Table 5: Comparison of execution times of the recommendation and development phases. . 57

Table 6: Evaluation metrics values of the recommendation phase. .. 59

Table 7: Evaluation metrics values of the TPOT tool. .. 60

Table 8: Comparison of execution times of the recommendation phase to the TPOT tool. 61

xvi

xvii

List of Equations

Equation 1: Imbalanced Ratio .. 6

Equation 2: Precision ... 11

Equation 3: Recall ... 11

Equation 4: Specificity .. 11

Equation 5: Balanced Accuracy .. 11

Equation 6: F1-Score .. 12

Equation 7: G-mean ... 12

Equation 8: Cohen Kappa ... 13

Equation 9: Frobenius norm .. 49

Equation 10: Euclidian norm .. 50

xviii

xix

List of Acronyms

ADASYN Adaptive Synthetic Sampling Approach

API Application Programming Interface

ATOMIC Automated Imbalanced Classification

AutoML Automated Machine Learning

AWS Amazon Web Services

CASH Combined Algorithm Selection and Hyperparameter

CPU Central Processing Unit

FAST Features from Accelerated Segment Test

FMS Full Model Selection

FN False Negative

FP False Positive

GCP Google Cloud Platform

GPU Graphics Processing Unit

GUI Graphical User Interface

HIC Handling Imbalanced Classification

MFE Meta-Feature Extractor

NAS Neural Architecture Search

NNI Neural Network Intelligence

QFD Quality Function Deployment

RH Research Hypothesis

ROC AUC Area Under the Receiver Operating Characteristic Curve

SMOTE Synthetic Minority Oversampling Technique

SVM Support Vector Machines

TN True Negative

xx

TOPSIS Technique for Order of Preference by Similarity to Ideal Solution

TP True Positive

1

1 Introduction

This chapter gives the reader an overview of the project, presents the Context, and then, it is

explained the Problem, Goals and Approach for this project. Last, it presents the Document

Structure where it is enumerated the chapters and sections that compose this document.

1.1 Context

Several current real-world datasets are imbalanced by nature, in that they have one or some

classes underrepresented compared to the other class or classes. The class imbalance problem

arises in multiple areas, including telecommunication, bioinformatics, fraud detection, and

medical diagnosis. The best approach to handle imbalanced data highly depends on the nature

of the data. The methods and combination of methods proposed are abundant in various

conceivable outcomes and most times they require specialised knowledge to be used correctly.

As such, this project focuses on an open-ended current problem associated with machine

learning tasks, being a new proposal to automate imbalanced classification, applied to different

case study solutions.

1.2 Problem

Classification algorithms for imbalance scenarios applied without proper data resampling or a

cost-sensitive approach, for instance, tend to perform better for well-represented classes and

worse for underrepresented classes. In these cases, the underrepresented class tends to be the

class with more interest to predict. Multiple strategies have been proposed to address class

imbalance problems. However, there is no general guidance on when to use each technique.

In addition, the combination of different data resampling techniques, classification algorithms

and multiple hyperparameter optimization transforms the possibilities to evaluate the desired

2

solution to become endless. Thus, is needed a solution to automate and facilitate these

imbalanced classification tasks, hence, to get better and faster results.

1.3 Goal

This project aims to develop a system to automatically prepare an imbalanced dataset to be

used by a classifier. To accomplish that, this project includes a review of the state of the art on

balance techniques, an implementation of the most promising ones and testing different

combinations of them in several public datasets, using different classification algorithms. The

best combination of the balance technique, with the best performing classification algorithm

and the appropriate meta-features values of the dataset, are recorded in a knowledge base to

be recommended for new datasets.

1.4 Approach

First, it is necessary to survey the literature on balance algorithmic techniques, classification

algorithms, and the automation of machine learning tasks that can be conducted for imbalance

scenarios. Thus, this survey should be primarily aimed at the keywords “automated imbalanced

classification,” and then, it must be also analysed appropriate related solutions. Next, it should

be conducted a value analysis of this new solution.

Later, it must be designed the architecture of the solution to then implement and evaluate the

solution where it should be explained different choices made. Also, the selection of different

algorithms and evaluation metrics should follow quantitative research methods with an

experimental research design.

1.5 Document Structure

This document consists of seven chapters, each of which is divided into sections, and one part

for the references. The first chapter, named Introduction, delivers the Context, Problem, Goals,

and Approach to be conducted. Then, there is the State of the Art chapter with four sections,

where is it explained and contextualised the Classification, Imbalanced Classification, Relevant

Machine Learning Topics, and Related Solutions. Next, it follows the Value Analysis chapter with

the Opportunity Identification, Opportunity Analysis, Value Offer, and TOPSIS Method sections.

Later, it is presented the Solution Design chapter, which is divided into four sections,

Requirement Analysis, System Architecture, Datasets, and Technologies Choice. Next, there is

the Solution Implementation chapter, which is split into two sections, the Development Phase,

and the Recommendation Phase. Then, there is the Solution Evaluation chapter, which is

divided into three sections, the Internal Evaluation, the External Evaluation, and the Final

3

Remarks. Finally, there are the Conclusions of this document with the Accomplished Objectives

and the Limitations and Future Work sections.

4

5

2 State of the Art

This chapter starts with an explanation of Classification and examples of Classification

Algorithms that can be applied. Next, it is made a contextualisation of the Imbalanced

Classification, and then it is enumerated Causes and Examples and important Strategies for

Handling Imbalanced Domains. After that, it is described Relevant Machine Learning Topics such

as Meta-Features, Evaluation Metrics, Automated Machine Learning and Optimization. Finally,

it is enumerated appropriate Related Solutions with Final Considerations included.

2.1 Classification

Classification is a supervised predictive modelling problem in machine learning that involves

assigning a class label to each observation[1]. All the observations can be expressed on a

training dataset file for uncomplicated data manipulation. Classification is in the supervised

learning scope, where there is an output label for corresponding input features. Additionally,

there is the binary classification where there are only two labels or multiclass classification

where there are multiple (over two) labels.

2.1.1 Classification Algorithms

Classification algorithms can be split into linear, non-linear and ensemble algorithms. Linear

algorithms, often mentioned as probabilistic algorithms, are those that are often drawn from

the field of statistics and make strong assumptions about the functional form of the problem[2].

Examples can be logistic regression, linear discriminant analysis, and Naive Bayes. Nonlinear

algorithms are drawn from the field of machine learning and make few assumptions about the

functional form of the problem[2]. Examples can be decision trees, k-nearest neighbours,

artificial neural networks, and support vector machines (SVM). Finally, ensemble algorithms are

also drawn from the field of machine learning and combine the predictions from two or more

models that can be bagging or boosting[2]. Examples can be bagged decision trees, random

forests, extra trees, and gradient boosting.

6

Other algorithms that can be applied to classification are a cost-sensitive algorithm approach

and the one-class algorithms. Cost-sensitive algorithms take the differing costs of

misclassification into account when fitting the model to the training dataset[3]. Most of the

linear, non-linear and ensemble algorithms can be adapted to this sensitive approach. On the

other hand, One-Class Algorithms are more used in outlier detection and anomaly detection,

with few examples of the positive class[3]. Examples can be one-class SVM, isolation forests,

minimum covariance determinants, and local outlier factors.

2.2 Imbalanced Classification

A dataset becomes inherently imbalanced when one class is heavily underrepresented, in their

instances, regarding the rest of the classes, in two-class or multi-class datasets[3]. The

underrepresented class is designated as the minority class, which has few instances. Contrarily,

the majority class has several instances. The minority class is typically the one with the most

interest, which means it is more desired to predict the class label or probability for the minority

class than the majority class or classes[2]. The minority class is represented as the positive one,

which corresponds to the class where the correct prediction is more important. The imbalanced

ratio can be defined as Equation 1[4], where 𝑁− and 𝑁+ are cardinalities of the minority and

the majority classes, respectively.

𝐼𝑅 =
𝑁−

𝑁+

(1)

Although, this ratio can also be expressed, for example, in (1:50), which means that for every

one example in a particular class, there are fifty examples in the other class, for an imbalanced

binary classification problem. This imbalance property can be split into a slight imbalance and a

severe imbalance[2]. The former applies when the distribution of examples is uneven by a small

amount in the training dataset, for example, a distribution of (2:3); and the latter applies when

the distribution of examples is uneven by a large amount in the training dataset, by (1:100) or

more.

A slight imbalance of the classes is often not a concern, because it can be applied to regular

classification predictive modelling problems without degradation of results[5]. A severe class

imbalance and/or the existence of classes that are overlapped, one in another, may require the

use of specialised techniques and can be challenging to model[5]. Although, sometimes, the

less represented class is not the most relevant one depending on the aim of the work, or the

existence of class imbalance does not become conceivably a challenging problem, for instance,

when the classes are well separated[4].

7

2.2.1 Causes and Examples

The class imbalance causes origin mostly from two main groups, biased sampling, and

measurement errors. The former can be applied when the data is collected in a way that does

not correctly represent the entire distribution, and the latter, when the observations conducted

have errors, for example, when applying the wrong label to some of the samples. Also, the

imbalance can be a property of the domain problem, in which the presence of one class may

dominate over other classes, because of cost, time, or computation. Some other important

characteristics regarding these data intrinsic situations can be expressed as follows: “i) the

identification of areas with small disjuncts, ii) lack of density and information in the training

data, iii) class-overlap, iv) the impact of noisy data, v) the significance of the borderline instances,

and vi) changes between the distribution of train and test sets, i.e. data set shift”[6].

Some of the most remarkable examples of imbalance classification are fraud detection, claim

prediction, churn prediction, default prediction, spam detection, anomaly detection, outlier

detection, intrusion detection and conversion prediction. Most of these examples are binary,

for example, in fraud detection, the goal is to detect fraud and no-fraud transactions. The

minority class is usually rare, extreme, or unusual in some capacity and faces abundant

examples of the majority class. Consequently, the desire to detect or predict the minority class

highlights the challenge of this problem. For imbalanced multiclass classification, the problem

arises when there are multiple minorities and majority classes that cause skew data distribution,

for example, “a class may be a minority one when compared to some other classes, but a

majority of the rest of them”[7].

2.2.2 Strategies for Handling Imbalanced Domains

The different strategies for handling imbalanced domains can be summarized in Figure 1[8].

Figure 1: Strategies for Handling Imbalanced Domains.

8

Data pre-processing techniques can be split into distribution changes when resampling the data

or weighting the data space when applying cost-sensitive procedures. First, distribution change

occurs when it is changed the data distribution to better represent the more relevant and less

represented cases[8]. Consequently, distribution change and more specifically data sampling

algorithms change the composition of the training dataset to improve the performance of a

standard machine learning algorithm on an imbalanced classification problem[5].

Data oversampling involves duplicating examples several times of the minority class or

synthesising new examples from the minority class from existing examples[5]. Examples can be

random oversampling, synthetic minority oversampling technique (SMOTE), borderline SMOTE,

SVM SMOTE, k-means SMOTE, and adaptive synthetic sampling approach (ADASYN).

Under-sampling involves deleting examples from the majority class, such as randomly or using

an algorithm to carefully choose which examples to delete[5]. Examples can be random under-

sampling, condensed nearest neighbour, Tomek links, edited nearest neighbours,

neighbourhood cleaning Rule, and one-sided selection. Also, it is possible to combine different

combinations of oversampling and under-sampling techniques. Examples can be SMOTE and

random under-sampling, SMOTE and Tomek links, and SMOTE and edited nearest neighbours.

When applying under-sampling there is a risk of losing important cases and when applying over-

sampling there is a risk of overfitting because of the replication of certain cases[9].

For weighting the data space, it is changed the distribution of the data to process

misclassification costs and avoid costly errors[8]. To this effect, cost-sensitive algorithms can be

effective when used on imbalanced classification, where the cost of misclassification is

configured to be inversely proportional to the distribution of examples in the training

dataset[11]. However, there is a risk of model overfitting and not knowing the actual cost to

properly apply.

For special-purpose learning methods like the approach of cost-sensitive algorithms, it is

applied a modification of a selected algorithm in the preference criterion that directly

incorporates costs in the learning process[8]. Additionally, ensemble methods can also be

applied to this effect, using a cost-sensitive framework by integrating them into the learning

phase.

For prediction post-processing, there is a threshold method that uses the ranking provided by

a score, which expresses the degree to which an example is a member of a class and cost-

sensitive post-processing that associates costs with prediction errors and minimises the

expected cost[8].

Finally, there are also hybrid methods when combining different approaches to benefit from

some of the main advantages of different solutions with a high variety of results[8].

9

2.3 Relevant Machine Learning Topics

There are many relevant machine learning topics to be addressed, thus it was selected a few,

and they are explained in a summarised manner regarding some significant aspects.

2.3.1 Meta-Features

First, meta-learning refers to learning about learning and, in machine learning, to machine

learning algorithms that learn from the output of other machine learning algorithms.

Meanwhile, meta-features are measures used to characterise datasets and their relations with

algorithm bias[10]. Meta-features are used in machine learning to represent and understand a

dataset, to understand a certain learning bias, to provide the knowledge to create machine

learning recommendation systems, and to create surrogate models and other scenarios.

Meta-features can be separated into the following meta-features groups[11]:

▪ Complexity: estimate the difficulty in separating the data points into their expected

classes.

▪ Concept: estimate the variability of class labels among examples and the density of the

examples.

▪ General: general information related to the dataset, also known as simple measures,

such as the number of instances, attributes and classes.

▪ Itemset: compute the correlation between binary attributes.

▪ Landmarking: performance of simple and efficient learning algorithms.

▪ Model-based: measures designed to extract characteristics from simple machine

learning models.

▪ Statistical: Standard statistical measures to describe the numerical properties of data

distribution.

Finally, the meta-features can be expressed with descriptive statistics, when in a single value,

or with a distribution, when in multiple values. Examples can be the mean, median, maximum,

minimum, standard deviation, variance, kurtosis, and skewness.

2.3.2 Automated Machine Learning

Automated machine learning (AutoML) is “a subfield of machine learning devoted to the

development of approaches for automatically selecting and optimising predictive models”[9].

AutoML usually involves the automatic selection of data preparation, machine learning model,

and model hyperparameters for a predictive modelling task. It refers to techniques that quickly

allow practitioners with modest technical skills to discover a suitable predictive model pipeline

for the machine learning tasks, with little intervention in the different steps of the pipeline,

other than providing a dataset and, in supervised classification, by choosing the target classes

to aim[12].

10

Alternative approaches to automate tasks of the machine learning pipeline can be found in the

fields of artificial neural networks. When applying neural networks to a classification problem,

it is possible to use a Neural Architecture Search (NAS), transfer learning, and continual learning,

among other novel approaches. NAS can automate artificial neural networks with sometimes

excellent results nevertheless often demands increased computational resources[13].

Alternatively, transfer learning is a machine learning method where a model developed for a

task, which can be pre-trained, is reused as the starting point for a model on a second task[14].

Finally, continual learning studies the problem of learning from an endless data source, with

the ability to improve over time the acquired knowledge and use it for future learning[15].

2.3.3 Optimization

Based on the No Free Lunch Theorem, without having substantive information about the

modelling problem, there is no single best machine learning algorithm for predictive modelling

problems such as classification[16]. In addition, there is no definitive best path for machine

learning algorithms to effectively predict and there is no clear way to know where to start or

when to discard a model or when to perfect a model without proper knowledge of the

problem[12]. Two viable solutions that address this situation are to approach the problem as a

series of sequential decisions, iteratively, and by choosing popular machine learning algorithms

that other researchers already used and that worked for similar cases. Another one is by

implementing the Combined Algorithm Selection and Hyperparameter (CASH) Optimization,

which addresses the selection of the data preparation technique, the learning algorithm, and

the algorithm hyperparameters[17].

The CASH Optimization requires that the data preparation, the selection of the machine

learning model, along with the corresponding model hyperparameters, must form the scope of

the optimization problem and that the optimization algorithm must know all these

dependencies[17]. This approach can also be referenced as Full Model Selection (FMS), being a

challenging global optimization problem that must be aware of all these dependencies

described as sequential global optimization algorithms with specific versions of Bayesian

Optimization[18]. A Bayesian Optimization is an approach that uses the Bayes Theorem to direct

the search to find the minimum or maximum of an objective function[19]. Also, there is the

possibility of more advanced concepts like evolutionary optimization, or more simple ones like

random search which is defined by a search space as a bounded domain of hyperparameter

values and randomly sample points in that domain, or grid search, when evaluating every

position in the grid of the hyperparameter values[2].

11

2.3.4 Evaluation Metrics

Regarding the evaluation metrics to evaluate a solution, accuracy and error rate are not suited

for imbalanced scenarios[3]. When the accuracy is reflecting the underlying class distribution,

the accuracy paradox can occur. There are more appropriate single-class measures for binary

imbalanced classification like Precision, Recall, Specificity, Balanced Accuracy, F1 Score, and

Geometric Mean, and some overall class metrics like Area Under the Receiver Operating

Characteristic Curve (ROC AUC) and Cohen Kappa [20]. These metrics are calculated from the

confusion matrix that informs what classes are predicted correctly, which were incorrectly

predicted and what types of errors are being made[20], and is given in the following Table 1.

Table 1: Confusion Matrix.

 Predicted Class

 Positive Negative

Actual Class
Positive True Positive (TP) False Positive (FP)

Negative False Negative (FN) True Negative (TN)

The Precision or Positive Predicted Value summarises the fraction of examples assigned to the

positive class that belongs to the positive class and the Recall, Sensitivity or True Positive Rate

summarises how well the positive class was predicted. They range between 0 and 1 and are

given by the following Equation 2 and Equation 3[20], respectively.

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 =
𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

(2)

𝑹𝒆𝒄𝒂𝒍𝒍 =
𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 (3)

The Specificity or True Negative Rate summarises how well the positive class was predicted,

which ranges between 0 and 1 and is given by the following Equation 4[20].

𝑺𝒑𝒆𝒄𝒊𝒇𝒊𝒄𝒊𝒕𝒚 =
𝑇𝑟𝑢𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

(4)

The Balanced Accuracy is the arithmetic mean of the True Positive Rate and the True Negative

Rate, which ranges between 0 and 1 and is given by the following Equation 5[8].

𝑩𝒂𝒍𝒂𝒏𝒄𝒆𝒅 𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒

2

(5)

12

The F1 Score or F-Measure is the harmonic mean between Precision and Recall, which ranges

between 0 and 1 and is given by the following Equation 6[20].

𝑭𝟏-𝑺𝒄𝒐𝒓𝒆 =
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

(6)

The Geometric Mean or G-mean combines the Sensitivity and Specificity in a single score, which

ranges between 0 and 1 and is given by the following Equation 7[20].

𝑮-𝒎𝒆𝒂𝒏 = √𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 × 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦

(7)

The ROC AUC is interpreted as the probability that the scores given by a classifier will rank a

randomly chosen positive instance higher than a randomly chosen negative one. It ranges

between 0.5 and 1 and it is considered in the following Figure 2 and expressions when

calculating[20].

Figure 2: Depiction of a ROC Curve.

13

𝑹𝑶𝑪 𝑪𝒖𝒓𝒗𝒆: 𝑃𝑙𝑜𝑡 𝑜𝑓 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 (𝑥) 𝑣𝑠. 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 (𝑦)

𝑷𝒆𝒓𝒇𝒆𝒄𝒕 𝑺𝒌𝒊𝒍𝒍: 𝐴 𝑝𝑜𝑖𝑛𝑡 𝑖𝑛 𝑡ℎ𝑒 𝑡𝑜𝑝 𝑙𝑒𝑓𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑙𝑜𝑡

The Cohen Kappa (k) is the measure of the agreement between the model predictions and the

actual class values as if happening by chance, which ranges between 0 and 1 and is given by the

following Equation 8[8].

𝒌 =
2 × (𝑇𝑃 × 𝑇𝑁 − 𝐹𝑁 × 𝐹𝑃)

(𝑇𝑃 + 𝐹𝑃) × (𝐹𝑃 + 𝑇𝑁) + (𝑇𝑃 + 𝐹𝑁) × (𝐹𝑁 + 𝑇𝑁)
 (8)

2.4 Related Solutions

There are several applications and services, capable of providing tools that can handle

imbalanced classification. For instance, Scikit-Learn[21] is a general-purpose machine learning

python library, which provides data preparation, machine learning algorithms, and model

evaluation schemes and although not designed around imbalanced classification, it provides

some useful tools for handling imbalanced datasets also. One python library that directly

addresses imbalanced classification is imbalanced-learn[22] which is related to Scikit-Learn and

implements most of the necessary techniques. For R programming language, there exists the

ROSE[23] and imbalanced[24] libraries, among various others, also specialised in imbalanced

classification.

Numerous libraries automatically permit the creation of a predictive system with few steps

capable of doing classification, even for imbalanced scenarios, with various results. For open-

source software libraries ready to use when coding, the first concern to note is that most of

them focus only on some parts of the autoML pipeline[25]. For instance, Auto-sklearn[26] is

built on top of Scikit-Learn and formulated as a CASH problem capable of automatically trying

different classifiers and hyperparameters, however, it only searches for traditional machine

learning models[27]. Auto-sklearn does an automatic ensemble of the different models

searched and applies a post-processing method, instead of discarding all the models

searched[27]. It can do parallelization on a single computer or in a cluster on a limited time

budget[28].

Additionally, AutoKeras[29] based on Keras[30], supports multi-modal and multi-task by

searching for deep learning models[25]. Neural Network Intelligence (NNI)[31] developed by

Microsoft, also integrates Scikit-Learn features that can do automated feature engineering,

hyperparameter optimization, and NAS, becoming a powerful and lightweight toolkit for

autoML[25]. TPOT[32] is a framework based on genetic programming able to only handle

categorical parameters with the ability to create arbitrary complex pipelines makes it prone to

14

overfitting. To compensate for this, TPOT optimises a combination of high performance and low

pipeline complexity[28].

In addition, there is also Hyperopt-sklearn[33] which supports various classifiers of Scikit-Learn

and provides a fixed pipeline structure, to one classification algorithm to each processor, by

adding a configuration space definition[28]. Finally, there is also H2O AutoML[34] that, instead

of being built on python, is programmed in Java, thus not using the Scikit-Learn library. It is able,

without pre-processing, to select and tune each classification algorithm by a fixed order and

create a final ensemble of them similar to Auto-sklearn[28]. Also, many big tech companies like

Microsoft, Amazon and Google provide autoML services, such as Microsoft Azure Automated

Machine Learning[35], Amazon Web Services (AWS) SageMaker Autopilot[36] and Google

Cloud Platform (GCP) AutoML[37], correspondingly. All these services provide autoML tools by

interacting on the website and without needing to code the implementation.

For R programming language, there is the proposed Automated Imbalanced Classification

(ATOMIC) method implemented in the autoresampling package which applies autoML

specifically for imbalanced classification becoming to their knowledge the first approach that

specialises in automating imbalanced classification[9]. It uses meta-learning therefore

computationally complex to instantiate and on 101 imbalanced datasets tested, it got a

predictive performance comparable to or better than similar state-of-the-art solutions[9]. It is

mainly for binary classification and only builds models using the Random Forest learning

algorithm[38].

2.4.1 Final Considerations

When analysing all these libraries/packages/frameworks, at this point there are not any

advanced data cleaning methods in the context of autoML, most methods combine predefined

operators with features naively, and there are few flexible approaches to the autoML

pipeline[28]. In addition, as most automate the creation of the pipeline, it is difficult to

comprehend how a specific pipeline was created and introduce some hyperparameters to be

used, it prevents the automation that autoML should automate in the first place. To make

autoML truly available to inexperienced users in this domain, integration and deployment

measures are necessary[28]. Moreover, there is sometimes a lack of scientific proof of why

certain outcomes are achieved and numerous papers do not cover all aspects of the

implementation in detail becoming complicated to reproduce the same outcomes[25].

Finally, when creating an autoML solution and addressing multiple datasets of different

domains, it is also possible to remember previously learnt knowledge, however, the

performance of the model on the previous datasets is substantially reduced[25]. For instance,

there is the learning without forgetting method, which applies incremental learning and trains

a model using only new data while preserving its original capabilities[39]. Then, in another work

conducted, it is possible to only use a small proportion of old data for pretraining, and then

escalate the proportion of a new class of data used to train the model[40].

15

Therefore, the contribution of this project is to implement a new easy-to-use application that

automates the classification of imbalanced datasets even for less experienced users, mainly

because that are few applications that specialise in imbalanced datasets.

16

17

3 Value Analysis

This chapter is composed of four sections. First, is described the Opportunity Identification and

Opportunity Analysis. Next, is presented the Value Offer with the Value for the Customer, the

Perceived Value, and the Value Proposition. Then, it is applied the TOPSIS Method to compare

similar related platforms that handle imbalance classification for different datasets domains.

3.1 Opportunity Identification

This project focuses on an open-ended current problem associated with machine learning tasks,

being a new proposal to automate imbalanced classification, applied to different domains. Most

of these domains are from the areas of fraud detection, claim prediction, churn prediction,

default prediction, spam detection, anomaly detection, outlier detection, intrusion detection

and conversion prediction. For example, in fraud detection, the goal is to detect fraud (rare

cases) and no-fraud (abundant cases) transactions, with the desire to prioritise the classification

of fraudulent transactions. This becomes a demanding problem that can be addressed from

multiple novel balancing techniques that sometimes are challenging and time-consuming to

obtain optimal results, as explained previously in the State of the Art chapter.

Many autoML solutions can be applied to imbalanced datasets to do classification. These

solutions can be split into two groups, the code-free and the code-needed requirement to use.

The former is a solution where the user does not need to code, it only needs to click on a few

buttons on, for example, a webpage and the solution does automation of the machine learning

classification pipeline in the loaded imbalanced datasets. Examples can be Microsoft Azure

Automated Machine Learning, AWS SageMaker Canvas[41] (related to AWS SageMaker

Autopilot) and GCP AutoML, among others. The latter is usually a software library for a

particular programming language that needs to be imported for the project of the user that is

18

written in that programming language like python or R, for instance. Examples were already

mentioned in the Related Solutions of the State of the Art chapter.

However, some of the autoML solutions already developed, either the code-free or the code-

needed ones, sometimes may not be properly prepared for imbalanced classification because,

for example, do not provide an appropriate metric to aim for imbalanced data, it only has a

limited selection of the most used metrics, and they cannot be the more appropriate metrics to

select to these scenarios, as it will be further discussed in the Solution Evaluation chapter. In

addition, most of these autoML solutions can provide remarkable results for imbalanced data,

nonetheless, they do not implement some specific techniques to handle imbalanced data and

it can limit some greater results.

3.2 Opportunity Analysis

Several solutions address the automation of machine learning classification or handling

imbalanced classification. However, when combining these two fields, there are a few solutions

freely available. Furthermore, opportunity can be defined as “an occasion or situation that

makes it possible to do something that you want to do or have to do, or the possibility of doing

something”[42], therefore when this project combines the automation of machine learning

with the specialisation on handling imbalanced data raises a segment in the market that has

limited available tools to operate these multiple imbalanced scenarios[43]. The rising interest

in these two areas can be noted in the number of Google search in Google Trends over the years,

shown in Figure 3 and Figure 4.

Figure 3: Imbalanced Classification – Google Trends[44].

19

Figure 4: AutoML – Google Trends[45].

3.3 Value Offer

Value can be defined as the representation of the connection between customer satisfaction

and cost, the relationship between the contribution of functions to the satisfaction of a need

and the cost of functions[46]. In this project, customer satisfaction can be by obtaining

remarkable results when properly analysing some relevant evaluation metrics and when

comparing to state-of-the-art similar solutions. Oppositely, the cost can be the increasing time,

computation resources or specialised knowledge needed to use the autoML solution.

As a small note, the Quality Function Deployment (QFD)[47] or the Features from Accelerated

Segment Test (FAST)[48] are not appropriate to use on this project because the goal of this

project is not to guarantee the specific requirements of each imbalanced dataset, rather make

an open-ended solution that works for multiple datasets of different domains at the same time.

3.3.1 Value for the Customer

Customer value can be defined as the satisfaction that the customer has or expects to have

when performing a certain action, considering the cost of that action[49]. Considering this

definition, the potential client or rather the user of this free open-source software autoML

solution, in this project, allows “The freedom to run the program as you wish, for any purpose;

The freedom to study how the program works and change it so that it does your computing as

you wish; The freedom to redistribute copies so you can help others; The freedom to distribute

copies of your modified versions to others – giving the whole community a chance to benefit

from your changes”, established on the four freedoms of Richard Stallman, the founder of the

Free Software Foundation[50].

20

3.3.2 Perceived Value

Perceived value can be defined as the overall assessment that the consumer makes of a product,

weighing the relevant benefits and sacrifices[51]. It is expectable that any autoML solution

should facilitate the tasks of doing, in this case, classification even for imbalanced datasets. The

perceived value is affected by the easy-of-use, the evaluation metrics selection, the time to

execute, the quality of the results and provided documentation of the autoML solution.

3.3.3 Value Proposition

Value propositions should not only express why the services, products, or solutions are better

than the competition’s, but also should be simple, clear, easy to absorb, credible, and adaptable

to specific clients or segments[52]. In this context, the project aims to implement an autoML

solution that can be applied specifically to handling imbalanced datasets, as previously

mentioned.

Alexander Osterwalder proposed a value proposition framework[53]. This framework revolves

around two larger entities, the customer profile, and the value map, which are visually

presented on a canvas. The customer profile aims to identify the proposed gain of the system,

the benefits which the customer expects and needs, pains, the risks that the customer may

experience, and the customer’s jobs, which represent the tasks that are trying to be done. As

for the value map, it represents the gain creators, how the system creates and satisfies the gains

of the customer, pain relievers, how the product or service alleviates customer pains, and the

products and services, representing what functionalities and operations the system

presents[53]. Next, it is presented the value proposition canvas for this project in Figure 5.

Figure 5: Value Proposition.

21

3.4 TOPSIS Method

The Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) is a multi-criteria

decision analysis method, which was originally developed by Ching-Lai Hwang and Yoon[54].

TOPSIS is based on the concept that the chosen alternative should have the shortest geometric

distance from the positive ideal solution and the longest geometric distance from the negative

ideal solution[54]. In this context, the aim is:

▪ To automatically classify two or more classes with imbalanced data provided.

The criteria that are going to be applied are:

▪ Easy-of-use

▪ It measures if the solution is accessible to use or not.

▪ Metrics Selection

▪ It measures if the metrics selection is appropriate.

▪ Results

▪ It measures quantitively the quality of the results.

▪ Time of Execution

▪ It measures how long it takes to execute the solution.

▪ Documentation

▪ It measures the quality of the provided documentation after executing the

solution.

It will be analysed some of the most used autoML solutions that can address this aim. The three

autoML solutions selected to be compared are:

▪ Azure AutoML (short for Microsoft Azure automated machine learning)

▪ AWS Canvas (short for Amazon Web Service SageMaker Canvas)

▪ GCP AutoML (short for Google Cloud Platform AutoML)

The steps needed to apply the TOPSIS method are as follows[54]:

1. Create a matrix consisting of M alternatives and N criteria.

2. Normalise the matrix.

22

3. Calculate the weighted normalised decision matrix.

4. Determine the best and the worst alternative for each criterion.

5. Calculate the Euclidean distance between the target alternative and the worst

alternative.

6. Calculate the similarity to the worst condition.

7. Rank alternatives according to the TOPSIS score in descending order.

23

3.4.1 Applying TOPSIS Method

The initial values attributed are expressed in Table 2.

Table 2: TOPSIS calculations.

weights 0.2 0.1 0.3 0.3 0.1

 Easy-of-
use

Metrics
Selection

Results Time of
Execution

Documentation

Azure AutoML 6 7 7 8 7

AWS Canvas 9 6 8 6 8

GCP AutoML 6 7 8 7 9

 Easy-of-
use

Metrics
Selection

Results Time of
Execution

Documentation

Azure AutoML 36 49 49 64 49

AWS Canvas 81 36 64 36 64

GCP AutoML 36 49 64 49 81

∑ 𝑋𝑖𝑗
2 153 134 177 149 194

(∑ 𝑋2)1/2 12.37 11.58 13.30 12.21 13.93

 Easy-of-
use

Metrics
Selection

Results Time of
Execution

Documentation

Azure AutoML 0.49 0.60 0.53 0.66 0.50

AWS Canvas 0.73 0.52 0.60 0.49 0.57

GCP AutoML 0.49 0.60 0.60 0.57 0.65

 Easy-of-
use

Metrics
Selection

Results Time of
Execution

Documentation

Azure AutoML 0.098 0.060 0.159 0.198 0.050

AWS Canvas 0.146 0.052 0.18 0.147 0.057

GCP AutoML 0.098 0.060 0.18 0.171 0.065

𝐴∗ 0.146 0.060 0.18 0.198 0.065

𝐴´ 0.098 0.052 0.159 0.147 0.050

24

The results obtained are:

• AWS Canvas with a score of 0.52

• Azure AutoML with a score of 0.47

• GCP AutoML with a score of 0.41

Based on these results, AWS Canvas is the best option. Consequently, is the best solution with

the best score.

25

4 Solution Design

This chapter starts with the Requirements Analysis, which comprises the Functional and Non-

functional Requirements that should be attained, and next, the System Architecture, which

presents all the relevant documentation made for the solution. Then, the selected Datasets and

the Technologies Choice to be used when developing and evaluating this solution.

4.1 Requirements Analysis

To understand the requirements analysis, first, requirements are capabilities and conditions to

which the system and the project should reply. This analysis is split into two sections, first, the

Functional Requirements and then the Non-functional Requirements.

4.1.1 Functional Requirements

The following functional requirements were identified in the analysis of the project and

expressed in the following use cases:

▪ Use Case 1: Build a knowledge base with the dataset meta-features, the best

combination of pre-processing technique and classification algorithm and the

appropriate evaluation metrics of at least 50 datasets.

▪ Use Case 2: Recommend the best pre-processing techniques and classification

algorithms for a certain dataset.

26

The following Figure 6 represents the use case diagram elaborated from the functional

requirement previously defined.

Figure 6: Use Case Diagram.

4.1.2 Non-functional Requirements

The non-functional requirements analysis was made according to the FURPS+ Model[55].

Initially, this model was named FURPS which stands for Functionality, Usability, Reliability,

Performance and Supportability requirements. Later, it was added the “plus,” which extends

into other requirements: Design, Implementation, Interface, and Physical requirements. It is

also important to acknowledge that in the FURPS+ Model, all the different requirements that

do not fit in the first category, the functionality requirements, are non-functional requirements.

The following non-functional requirements were identified in the analysis of the project.

▪ Usability requirements:

o The user interface shall be simple and effective.

▪ Reliability requirements:

o The user interface shall appropriately alert the user, even in unexpected

situations.

▪ Performance requirements:

o The user experience should not be degraded by the system, even with larger

datasets loaded.

▪ Supportability requirements:

o All components of the systems shall be modular, meaning that each component

is not dependent on the technical specifications of another.

▪ “+” – Design, implementation, interface, and physical requirements:

o Appropriate design patterns shall be used.

27

o A version control system shall be used.

o An incremental and iterative software development process shall be used.

4.2 System Architecture

This System Architecture is composed, initially, of the Activity Diagram to comprehend the

initial architecture of the solution. Next, the Domain Model presents the different business

concepts of the solution. Then, the alternative and final Component Diagram to comprehend

the selected approach, and finally, the Sequence Diagram concludes the documentation of this

system.

4.2.1 Activity Diagram

The solution should be able to receive an imbalanced dataset file prepared for classification,

learn the data, and apply a classifier to predict with a low error margin. To better understand

the high-granularity software architecture of the solution, Figure 7 presents an activity diagram

of the solution.

Figure 7: Activity Diagram.

28

First, the user starts the application and loads the desired imbalanced dataset file, then if the

system reads it and is unsuccessful the system alerts and returns the user to the initial state.

After, if succeeded, the system applies different machine learning tasks and when this step is

concluded, the system informs the user of the obtained evaluation metrics and results. Finally,

the user can quit the application.

4.2.2 Domain Model

Next, it is presented the Domain Model of the solution. Figure 8 represents the analysis of the

identified Entities and their respective connections, thus explaining the logic underneath the

different business concepts.

Figure 8: Domain Model.

The User uses one or more Devices, which can be a computer or a mobile device that has a

certain screen resolution and an operating system. The Device can store multiple Data Files

ready to be used by the Application. All Data Files should have the feature and label columns

and represent a certain business domain.

4.2.3 Component Diagrams

An initial architecture of the solution was envisioned based on the previous requirements, and

it is expressed as a component diagram in Figure 9.

29

Figure 9: Initial Component Diagram.

A dataset file should be loaded in the application using the graphical user interface (GUI) of the

application, and then, applied the necessary Machine Learning tasks where it is composed of

the handling imbalanced classification (HIC), classifier and optimizer components. This first

component applies different techniques to handle imbalanced classification primarily in the

pre-processing stage of the machine learning pipeline. The classifier component should select

the most appropriate classification algorithm for the loaded dataset file, and then the optimizer

component improves the previous results.

With the imbalanced techniques selected, the classification algorithm and the optimizations got,

the machine learning component should write the results obtained to the knowledge base.

However, as this initial architecture is simplistic and faces two problems, it is not appropriate

to be the GUI responsible for reading the dataset file and neither the machine learning

component is responsible for writing to the knowledge base. Therefore, a second, and more

appropriate architecture was designed, the selected architecture, by addressing the two

previous problems, present in Figure 10.

Figure 10: Final Component Diagram.

30

Now, there is a data retrieval component that is responsible for reading the dataset file and

that is called by the machine learning controller component. The machine learning controller

uses the classifier component that, in combination with the HIC and the optimizer, delivers the

final classification model selected. When the model is prepared, the machine learning controller

component uses the data manager component that is responsible for writing to the knowledge

base.

4.2.4 Sequence Diagram

A final diagram was developed that presents the process view of the system that summarises

all the previous documentation regarding this architecture in Figure 11.

Figure 11: Sequence Diagram.

There are two different use cases that the user, identified as the data scientist, is envisioned to

achieve with this system. The first one, regarding the initial construction of the knowledge base,

is an iterative process with at least 50 different datasets that this user needs to make before

the second use case. In this step, the goal is to have the knowledge base with enough meta-

features and evaluation metrics results to properly be used by the recommendation engine.

31

In the second step, the user can now get recommendations from the system to a certain dataset

that he loads. This recommendation is composed of a few combinations of pre-processing and

classification algorithms that can be well adequate for the dataset that was loaded. This

recommendation is possible by reading the previously obtained meta-features in the

knowledge base and finding the previous similar dataset in terms of meta-features.

4.3 Datasets

The datasets are chosen from different business domains that have imbalanced data like fraud

detection, claim prediction, churn prediction, default prediction, spam detection, anomaly

detection, outlier detection, intrusion detection, conversion prediction and others. The aim is

to always choose publicly available datasets without needing to do specific pre-processing tasks

before using them. In addition, it was also ensured have a different ratio of proportions of

imbalanced data across the diverse datasets.

Initially, it was analysed several candidate datasets from websites like UCI Machine Learning

Repository[56], KEEL – Knowledge Extraction based on Evolutionary Learning[57], OpenML[58],

Kaggle[59] and Google Dataset Search[60]. Then, it was selected to work with KEEL website

because it listed the diverse datasets by the imbalanced ratio in an organised manner with key

information. Afterwards, it was also selected to work with OpenML since it provides plenty of

datasets to choose from and it has an easy-to-use and well-documented Application

Programming Interface (API)[61] that simplified the different related datasets tasks.

At the time of this project development, the OpenML API provided 125 datasets when filtering

the datasets that have an active status, for binary classification problems, with the number of

instances (rows) between 200 and 10000, the number of features (columns) less than 500 and

with an imbalance ratio above 2. Of these 125 datasets, some datasets were repeated since

they have different versions of the same dataset, for this case it was selected the most recent

one, discarding the older ones.

Other datasets were not possible to use because it was not conceivable to provide a decent

enough evaluation metrics score. They needed major individual pre-processing tasks that were

not the point of this application to make. It was also selected datasets from the KEEL website

getting 65 datasets to be used. For these 65 datasets, it was found that the imbalanced ratio

ranges from 1.820 (minimum) to 85.880 (maximum), averaging 14.501 with a standard

deviation of 19.301.

32

4.4 Technologies Choice

For the selection of the programming language to use, there is python[62] and R[63], which are

both free open-source and high-level programming languages that can be used for data

manipulation and machine learning. Contrarily, the former is general-purpose object-oriented,

and the latter is statistically computing but also with strong object-oriented capabilities. Python

was selected because it was observed that it offers more support in developing autoML

solutions and it has more versatility in developing desktop and web applications.

This application can be a GUI desktop application or a web application. For developing GUI

applications, it was initially selected two easy-to-use python libraries, PySimpleGUI[64] and

DearPyGUI[65]. PySimpleGUI wraps well-known GUI python libraries like tkinter[66], Qt[67],

WxPython[68], and Remi[69] and simplifies developing the GUI. Similarly, DearPyGUI is another

accessible GUI development library that is built on top of Dear ImGui[70], a C++ library.

For developing web applications, it can be used two easy-to-use python libraries like Flask[71]

a general-purpose web micro-framework or streamlit[72] which is intended for machine

learning and data science applications. For deploying a web application, it can be used on cloud

platforms like Heroku[73] or also streamlit. In the end, it was selected to do a desktop

application with the assistance of PySimpleGUI because the objective of this project is to

maximise the time of developing the machine learning core module and building and deploying

a web application is more time-consuming than developing a simple GUI desktop application.

Another possible relevant technology to build the final application can be tools that help to

parallelize the workload and utilise the graphics processing unit (GPU) for general-purpose

processing instead of the central processing unit (CPU) and thus obtain faster results. To this

effect, there is a multitude of options ranging from libraries that facilitate the distribution of

workloads like Apache Spark[74], Dask[75], or Ray[76], or even more general-purpose libraries

like Tensorflow[77] and PyTorch[78] albeit more tailored to deep learning.

Many of these libraries use the proprietary Nvidia CUDA[79] or open-source alternatives like

OpenCL[80] and OpenGL[81]. The application is built in a GIT[82] repository that allows version

control. To this effect, there is Github[83] and Bitbucket[84] that provide internet hosting for

software development. Open-source applications like this project are more present at Github,

and consequently, it was selected over Bitbucket, for this project.

Regarding the knowledge base, it can be built on an SQL or NoSQL database, or in CSV or XSLX

files. The aim is to save the final evaluation metrics and results of the execution of the machine

learning module on a certain dataset file, thus, if this was going to be stored in SQL or NoSQL

the result was only one table or document correspondingly. Thus, the choice is to use CSV or

XSLX files to store the learnt knowledge in the knowledge base that is used as guidance for

future executions.

Finally, it can be used one python library, for instance, PyInstaller[85], capable of transforming

a python program into an executable program that can be executed from the operating system

33

of the device without needing to have python installed. Thus, this application becomes not

dependent on whether the device has python installed, to be executed.

34

35

5 Solution Implementation

The application is built in python and available, in a GitHub repository[86], as free and open-

source software, licenced as GPL 3.0[87]. It is composed of two different functionalities, the

development phase, and the recommendation phase, to address the two identified use cases

reflected in the functional requirements stated in the previous Solution Design made.

Consequently, it has also two distinct methods to interact with the user.

In the first functionality, the goal is to build the knowledge base by obtaining the meta-features

of datasets, some adequate evaluation metrics, and the time of execution of selected

classification algorithms in each dataset selected to be part of the knowledge base. In the

second, with the assistance of the previous knowledge base constructed, the application can

recommend the best combinations of pre-processing techniques and classification algorithms

to handle a new imbalanced dataset imported.

These two phases are similarly engineered, as previously shown in the Sequence Diagram

presented in the previous chapter. This recommendation should help the user to hopefully

decide the best methods to correctly classify the imbalanced dataset imported.

The application has three main python files and two folders:

▪ “ml.py” file – where is made all the machine learning processing of the application.

▪ “test_ml.py” file – it is the file to be executed by the console application in the

development phase.

▪ “ui.py” file – it is the user interface file to be executed in the recommendation phase.

▪ “input” folder – the place to put the datasets to be imported by the application.

▪ “output” folder – where are present the knowledge base files, the

“kb_characteristics.csv,” “kb_results.csv” and “kb_full_results.csv.”

36

5.1 Development Phase

The user, in this phase, interacts with the application by executing, in the console, the

“test_ml.py” file that has already presented the invocation of the “execute_ml” function,

declared in the “ml.py” file. This function has two parameters to indicate the imported dataset,

the former when importing a dataset by file and the latter when imported by OpenML dataset

ID. If it is by file, it must preferably place the dataset file in the “input” folder and indicate the

correct path of the dataset file.

Next, it is illustrated one example of importing a dataset in Figure 12, present in the “test.ml”

file.

Figure 12: test.ml code.

If it is by OpenML dataset ID, the user can go to the OpenML website and search for the dataset

wanted and, if available, it should have the corresponding ID. One example of this is illustrated

in Figure 13, in this case, the “credit-g” dataset has an ID of 31.

37

Figure 13: credit-g dataset in OpenML[88].

In a summarised manner and according to the activity diagram previously created, the

“execute_ml” function, first, reads the imported dataset by file or by OpenML dataset ID, then,

it extracts the meta-features information with the help of the Meta-Feature Extractor (MFE)[11]

library, next it combines several different pre-processing techniques and classification

algorithms to train, test and validate, and then, it writes the obtained results to the three

knowledge base files of the application, and finally, it outputs to the console, the obtained

results.

The last version of the “execute_ml” function, on the “ml.py” file, is presented in Figure 14.

38

Figure 14: execute_ml function on ml.py file.

One console output example is illustrated in Figure 15, where it is imported from the “car-

good.dat” dataset[89].

39

Figure 15: Console output of execute_ml function.

In this example, it is informed of the best combination of pre-processing technique and the

corresponding classifier. In this case, it was the “RandomOverSampler” with the

“LGBMClassifier.” Then, it is displayed a final score that is the average of all evaluation metrics

used and will be explained later, and the elapsed time in “HH:mm:ss” of that combination. Then,

it ends by presenting if the application wrote or not in the three knowledge base files.

5.1.1 Reading and Extracting Knowledge from a Dataset

To have a robust knowledge base to be used in the recommendation phase and according to

the first functional requirement, it was achieved 65 datasets imported, executed, and

documented in the knowledge base files, surpassing the 50 datasets required. Most of these

datasets were got with the help of the OpenML API and some by the KEEL website, as previously

described in the Datasets section of the Solution Design. It was assumed in all these imbalanced

datasets that the class with less representation is the class with more interest to predict, as it

regularly occurs in imbalanced binary classification.

Regarding the MFE library to extract the meta-feature information from the datasets, it used

the following groups of meta-features: complexity, concept, general, itemset, landmarking,

model-based and statistical. Additionally, the summary function used was the average/mean,

standard deviation, kurtosis, and skewness. This can be observed in Figure 16.

40

Figure 16: The use of MFE Library.

These meta-features groups and summary functions are already described in the State of the

Art chapter. It is important to note that some meta-features can have a distinct value, for

example, the “c2” meta-feature of the group “complexity” which is the value of the imbalance

ratio with no summary function values. Other ones are expressed with all (or some) of the

summary functions defined, for example, the “cov” meta-feature of the group “statistical”

which is the absolute value of the covariance of distinct dataset attribute pairs. All these meta-

features used resulted in 257 values.

Last, in some datasets, it is also needed to properly encode the existing categorical columns to

integers/indicator values because some classification algorithms require it. This was attained

with the function “get_dummies” of Pandas [90] library, as is present in Figure 17.

Figure 17: The use of the get_dummies function of Pandas library.

It is important to note that it was used the parameter “drop_first” with “True” gets the k-1

indicators values out of k categorical levels by removing the first level. This means that it

removes redundant columns that cause multi-collinearity. For example, in binary columns, the

value of “1” in one column after obtaining the indicator values automatically implies “0” in the

other column.

41

5.1.2 Pre-Processing Techniques and Classification Algorithms Used

This process started by executing 19 pre-processing techniques and 1 without any pre-

processing technique combined with 11 classification algorithms, resulting in 220 different

combinations. The 19 pre-processing techniques used, as of the time of writing, are all available

in the Imbalanced Learn library [91], are:

▪ Under-sampling techniques:

▪ ClusterCentroids,

▪ CondensedNearestNeighbour,

▪ EditedNearestNeighbours,

▪ RepeatedEditedNearestNeighbours,

▪ AllKNN,

▪ InstanceHardnessThreshold,

▪ NearMiss,

▪ NeighbourhoodCleaningRule,

▪ OneSidedSelection,

▪ RandomUnderSampler,

▪ TomekLinks.

▪ Over-sampling techniques:

▪ RandomOverSampler,

▪ SMOTE,

▪ ADASYN,

▪ BorderlineSMOTE,

▪ KMeansSMOTE,

▪ SVMSMOTE.

▪ Combination of over- and under-sampling techniques:

▪ SMOTEENN,

▪ SMOTETomek.

The 11 classification algorithms functions used with the help of the Scikit-Learn, LightGBM[92]

and XGBoost[93] libraries are:

▪ LogisticRegression,

▪ GaussianNB,

▪ SVC,

▪ KNeighborsClassifier,

▪ LGBMClassifier,

▪ XGBClassifier,

▪ RandomForestClassifier,

▪ ExtraTreesClassifier,

▪ AdaBoostClassifier,

▪ BaggingClassifier,

▪ GradientBoostingClassifier.

42

The parameters used in all these pre-processing and classification functions, when available,

were the “random_state” and the “n_jobs.” In the former, when it is used the same value in all

functions, it was chosen the widely used value of “42” which is the seed that guarantees

reproducibility, meaning that executing the same machine learning functions more than once,

will always result in the same scores. The latter, when equal to “-1”, the machine learning

function will use all the processors of the machine during the cross-validation step.

Specifically, in the classification algorithm function, the aim here was to not use any specific

hyperparameter that can improve the scores got to a specific dataset but can degrade the

performance of other datasets, thus the aim was to use the most generic and adequate

hyperparameters that can work across all the datasets for this scenario.

Last, when it was possible to specify that the dataset is binary or the “class_weight” is

“balanced,” it was appropriately indicated. The former specifies the learning objective function,

and the latter stipulates, in “balanced” mode, to automatically adjust the class weights inversely

proportional to class frequencies. Then, with the pre-processing task done, implicating that one

class was under- or over-sampled, and the classification algorithm selected, the application

does cross-validation with the use of the “cross_validate” function of the Scikit-Learn library, as

illustrated in Figure 18.

Figure 18: The use of the cross_validate function.

To this effect, in the “estimator” parameter, the model chosen is a machine learning pipeline

that includes the pre-processing task and the classifier selected, with the function

“make_pipeline” of the Scikit-Learn library that guarantees that each step of the pipeline is

constrained to the data available for the evaluation, such as the training dataset or each fold of

the cross-validation procedure. Then it is passed the features “X” and target “y” columns of the

43

dataset and next in the “scoring” parameter it is specified the 5 evaluation metrics to be used,

as will be further enumerated.

Then in the “cv” parameter, the cross-validation splitting strategy, it was chosen the

“RepeatedStratifiedKFold” function of the Scikit-Learn library that repeats a Stratified K-Fold

cross-validator several times with different randomization in each repetition which assures an

improved estimator performance. Here, it was used 10 folds with ”n_splits” repeated 3 times

with “n_repeats”, which are common values for this case study.

5.1.3 Process of Discarding the Worst Performant Combinations

Iteratively, it was discarded some worst-performing pre-processing techniques and

classification algorithms. To rigorously evaluate each of these combinations, it was selected 5

adequate evaluation metrics to use in imbalanced binary classification, being:

▪ Balanced Accuracy,

▪ F1 Score,

▪ ROC AUC,

▪ Geometric Mean,

▪ Cohen Kappa.

The distinction made to categorise each result of each combination was the average score of all

these 5 selected metrics. As previously mentioned, the starting point of the application had 220

combinations with 19 pre-processing techniques and 1 more with no pre-processing technique,

combined with 11 classification algorithms. It was iteratively discarded several combinations in

five times/steps. Each combination for each dataset processed achieves a certain final score,

the average of the 5 metrics, and a corresponding ranking position, for example, position 22 of

220 total combinations.

Then, when some datasets were randomly chosen and processed, it was analysed the various

positions of each combination by grouping all the different rank positions, first by the pre-

processing technique and then by the classifier. Next, it was examined the values above the

third quartile (75% to 100%) of the distribution of the two lists of each mentioned group and it

was studied the possibility of discarding the combinations that have a pre-processing technique

or a classifier that is closer, in terms of rank position, to the maximum (100%) of the list than

the third quartile value (75%) of the list. This analysis occurred after importing at least two

datasets after the previous step or the beginning and examined if any pre-processing technique

or classifier in the corresponding lists was to be discarded or not based on the previous

explanation.

To better understand what happens when discarding one combination, two simple scenarios

will be explained. In the beginning, when it starts with 220 combinations and it is found, for

example, one pre-processing technique that is going to be discarded based on the previous

explanation, when discarding it, it is discarded 11 combinations. This happens because there

44

are the initial 11 classifiers with that pre-processing technique. A comparable situation occurs

when it is found, in the same situation, for example, one classifier that is going to be discarded,

when discarding it, it is discarded 20 combinations. This happens because there are initially 19

pre-processing techniques and 1 with no pre-processing technique.

In the first step, after 3 datasets imported and processed, it was discarded all the combinations

that have the following pre-processing techniques or classifiers:

▪ Pre-processing techniques:

▪ SMOTEENN,

▪ CondensedNearestNeighbour,

▪ InstanceHardnessThreshold,

▪ ClusterCentroids,

▪ NearMiss.

▪ Classifiers:

▪ LogisticRegression,

▪ GaussianNB,

▪ SVC.

After this first iteration, by removing 5 pre-processing techniques and 3 classifiers, the result

was the remaining 14 pre-processing techniques, 1 with no pre-processing technique, and 8

classifiers resulting in 120 combinations.

Then, in the second step, after 2 datasets imported and processed, it was discarded all the

combinations that have the following pre-processing techniques or classifiers:

▪ Pre-processing techniques:

▪ OneSidedSelection,

▪ “Without pre-processing,”

▪ KMeansSMOTE.

▪ Classifiers:

▪ AdaBoostClassifier,

▪ KNeighborsClassifier.

After this second iteration, by removing 2 pre-processing techniques, 1 “without pre-processing”

and 2 classifiers, the result was the remaining 12 pre-processing techniques and 6 classifiers,

resulting in 72 combinations.

Then, in the third step, after 3 datasets imported and processed, it was discarded all the

combinations that have the following pre-processing techniques or classifiers:

▪ Pre-processing techniques:

▪ EditedNearestNeighbours,

▪ AllKNN,

▪ RepeatedEditedNearestNeighbours,

45

▪ NeighbourhoodCleaningRule,

▪ RandomUnderSampler.

▪ Classifiers:

▪ BaggingClassifier,

▪ ExtraTreesClassifier.

After this third iteration, by removing 5 pre-processing techniques and 2 classifiers, the result

was the remaining 7 pre-processing techniques and 4 classifiers, resulting in 28 combinations.

Then, in the fourth step, after 14 datasets imported and processed, it was discarded all the

combinations that have the following pre-processing techniques or classifiers:

▪ Pre-processing techniques:

▪ BorderlineSMOTE,

▪ TomekLinks.

▪ Classifier:

▪ RandomForestClassifier.

After this fourth iteration, by removing 2 pre-processing techniques and 1 classifier, the result

was the remaining 5 pre-processing techniques and 3 classifiers, resulting in 15 combinations.

Then, in the fifth and last step, after 9 datasets imported and processed, it was discarded all the

combinations that have the following pre-processing technique:

▪ Pre-processing technique:

▪ ADASYN.

After this fifth iteration, by removing 1 pre-processing technique, the result was the remaining

4 pre-processing techniques and 3 classifiers, resulting in 12 combinations.

The rest of the datasets imported and processed were not needed to have further steps of

discarding more combinations, because it was not found any worse performant pre-processing

technique or classifier based on the previous explanation and the result of 12 combinations is

already relatively few combinations to discard further.

5.1.4 Write Results to Knowledge Base files

When it is time to write the obtained results, there are three knowledge base files. The

application uses the functions “write_characteristics” to write in “kb_characteristics.csv,”

“write_results” to write in “kb_results.csv” and “write_full_results” to write in

“kb_full_results.csv.” In the “write_characteristics” and “write_full_results” functions, in this

development phase, if there are already previous results present in the knowledge base files

regarding a certain dataset, these functions only write if the newly obtained results are better

46

than previous ones. This distinction between better or worse results is made by the final score,

meaning that is the average of all the 5 selected metrics score.

All these knowledge base files have the first column indicating the name of the dataset that was

imported. For the “kb_characteristics.csv,” then follows all the 257 meta-features obtained by

the MFE library, and then, the best combination of pre-processing technique and classification

algorithm that was achieved for each imported dataset.

Afterwards, the “kb_results.csv” also has the previously mentioned best combination, then the

time, in seconds, that took to execute that combination, after, there are the 5 selected metrics

and the corresponding standard deviation of the cross-validation of each one, and finally, there

is a column to indicate the total elapsed time, in “HH:mm:ss” format, that counts the time of all

the combinations that were executed.

Last, the “kb_full_results.csv” resembles the “kb_results.csv” however, here is written all the

combinations to each imported dataset are to observe the time and metrics achieved in each

combination. Additionally, the last column, instead of the total elapsed times, indicates the

average of all the recorded metrics. Contrary to the two other knowledge base files, this one is

guaranteed in order from the best global final score (average of the final metrics score) to the

worst ones.

5.2 Recommendation Phase

The user, in this phase, interacts with the application by executing, in the console, the “ui.py”

file that launches a GUI desktop application with the support of the PySimpleGUI library, as

illustrated in Figure 19.

Figure 19: GUI Application for Recommendation Phase.

In this phase, the goal of the application is to deliver recommendations of the best combinations

of pre-processing techniques and classification algorithms to be used in a certain imported

dataset, as stated in the second use case addressed in the functional requirements.

47

5.2.1 Reading the Dataset

Similarly to the previous phase, it is possible to import the dataset by file, located in any place

of the computer, or by OpenML dataset ID. However, if the user accidentally fills both fields or

does not fill any, the application alerts it, as shown in Figure 20 and Figure 21, correspondingly.

Figure 20: GUI Alert – fill both fields.

48

Figure 21: GUI Alert – not fill any field.

Then, when the user indicates only one option to import the dataset, of the two previous ones

mentioned, he can “Submit,” and the application executes the “execute_byCharacteristics”

function present in the “ui.py” file, illustrated in Figure 22.

Figure 22: Calling execute_byCharacteristics function in ui.py.

5.2.2 Calculating the Best Recommendations

The previously stated “execute_byCharacteristics” function is declared in the “ml.py” file and is

presented in Figure 23.

49

Figure 23: execute_byCharacteristics function of ml.py file.

First, the “execute_byCharacteristics” starts by extracting the meta-features and encoding the

categorical columns, if there are any, of the dataset imported, equally to the development

phase. Then, in the “get_best_results_by_characteristics” function it is computed the Frobenius

norm (the Euclidian norm of two vectors) uses the “linalg.norm” function from the NumPy[94]

library, which, in this case, is the average of all Euclidian distances (vectors) of each meta-

feature extracted between the current imported dataset and all the previous imported datasets.

This takes into consideration the previously processed 257 meta-features in the development

phase, in the “kb_characteristics.csv” file. Some meta-feature values can be null, negative, or

positive infinity and those values were dropped from the vectors. The Frobenius norm can be

expressed as Equation 9 and the Euclidian norm as Equation 10.

‖𝑨‖𝑭 = [∑ 𝒂𝒃𝒔(𝒂𝒊𝒋)
𝟐

𝒊𝒋

]

𝟏/𝟐

(9)

50

‖𝒙‖𝟐 = (∑(𝒘𝒊|(𝒖𝒊 − 𝒗𝒊)
𝟐))

𝟏/𝟐

(10)

Next, it is selected the three smaller average values, since a smaller value means that those two

datasets resemble the most in terms of the features used. By knowing the corresponding

datasets, it is recommended the three combinations of pre-processing techniques and

classification algorithms that are distinct and were recorded as the better performant ones, in

the development phase, for those datasets.

To better understand how this recommendation works, it will be exemplified with the following

simple scenario. First, it is imported the “car-good.dat” dataset and submitted it to the

application, when it finalises all the calculations, it informs, in this example, that (SVMSMOTE,

GradientBoostingClassifier), (SMOTE, GradientBoostingClassifier), (SMOTE, XGBClassifier) were

the best three combinations of pre-processing techniques and classification algorithms

correspondingly, as illustrated in Figure 24.

Figure 24: GUI recommendations example.

The application also outputs information to the console with more detailed and technical

information, as illustrated in Figure 25.

51

Figure 25: GUI recommendations output example.

For this case, those recommendations were given because the “analcatdata_germangss”

(OpenML ID: 1025)[95], “poker-8_vs_6.dat”[96] and “glass1.dat”[97] datasets had the lowest

Euclidian distances, it was obtained 0.202055, 0.227712 and 0.275151, correspondingly. Those

datasets, in the development phase, had each of those best combinations of pre-processing

techniques and classifiers. For instance, the “analcatdata_germangss” dataset, in the

development phase, achieved the best final score (average of all evaluation metrics) with the

(SVMSMOTE, GradientBoostingClassifier) combination.

It was also experimented to recommend the best combinations of pre-processing techniques

and classification algorithms by multiclass classification instead of relying on the Euclidean

distances from the meta-features values of each dataset. This multiclass classification task used

the meta-features values of each dataset as features and the previously mentioned

combination as the target. The problem occurs that for the 65 available datasets (number of

instances/rows), by having 12 different target combinations with 257 meta-features values, this

was proven to hinder the performance and take more processing time. Therefore, it was not

the selected approach for these conditions.

52

53

6 Solution Evaluation

The evaluation of the solution is conducted with two distinct steps, an internal evaluation and

an external evaluation. The former is made by analysing and comparing the final recommended

results, by the recommendation phase, with the results that are acquired by the development

phase. The latter is achieved by analysing and comparing the final recommended results with

other results publicly available state-of-the-art papers or that is accomplished by using certain

state-of-the-art autoML solutions.

This evaluation aims to know if the results achieved in the recommendation phase are at least

comparable or better, first, to the development phase (internal evaluation) and then, to other

similar state-of-the-art papers or autoML solutions (external evaluation). The results are

considered better when comparing the same appropriate evaluation metrics, they are greater

than other ones, or the execution time is smaller than the other ones.

Therefore, it was formulated four research hypotheses (RH) for this evaluation, the first two for

the internal evaluation and the other two for the external evaluation, they are:

54

▪ RH1: The evaluation metrics achieved by the recommendation phase of the

implemented application have comparable or greater values than the development

phase of the implemented application.

▪ RH2: The time of execution achieved by the recommendation phase of the

implemented application is comparable to or smaller than the development phase of

the implemented application.

▪ RH3: The evaluation metrics achieved by the recommendation phase of the

implemented application have comparable or greater values than similar state-of-the-

art papers and/or autoML solutions.

▪ RH4: The time of execution achieved by the recommendation phase of the

implemented application is comparable to or smaller than similar state-of-the-art

papers and/or autoML solutions.

Thus, the goal of these two evaluation steps is to rigorously evaluate the implemented

application, as well as the formulation of the four research hypotheses to clarify if the objectives

previously defined are met or not. Also, it is important to mention that each evaluation task

that needs to be executed, is executed with the same conditions of the same available local

computer resources.

In the internal and external evaluation, the evaluation metrics used to evaluate the different

solutions are Balanced Accuracy, F1 Score, ROC AUC, Geometric Mean and Cohen Kappa.

Additionally, it was assumed that the minority target class is the most relevant to predict.

Concerning the datasets chosen to evaluate this application internally and externally, it was

randomly selected 15 imbalanced datasets from the 65 used in the implementation of the

application. The imbalanced ratio of these datasets ranges from 2.307 (minimum) to 67

(maximum), averaging 18.662 with a standard deviation of 21.998. The datasets are:

▪ dis (OpenML ID: 40713)[98],

▪ musk (OpenML ID:1116)[99],

▪ mfeat-fourier (OpenML ID:971)[100],

▪ Satellite (OpenML ID:40900)[101],

▪ arsenic-male-bladder (OpenML ID:947)[102],

▪ analcatdata_apnea2 (OpenML ID:765)[103],

▪ regime_alimentaire (OpenML ID:42172)[104],

▪ page-blocks0.dat[105],

▪ dgf_test (OpenML ID:42883)[106],

▪ cpu_small (OpenML ID:735)[107],

▪ analcatdata_birthday (OpenML ID:968)[108],

▪ optdigits (OpenML ID:980)[109],

▪ kr-vs-k-zero_vs_eight.dat[110],

▪ analcatdata_lawsuit (OpenML ID:450)[111],

▪ JapaneseVowels (OpenML ID:976)[112].

55

6.1 Internal Evaluation

To conduct the internal evaluation, first, in the development phase of the implemented

application, it was observed the best combination of pre-processing technique and

classification algorithm, using the average of all the selected evaluation metrics (final score) and

the time of execution, of 15 datasets randomly selected.

Then, in the recommendation phase of the application, it was observed the three

recommended combinations of pre-processing techniques and classification algorithms and the

execution time, all these also to the same 15 datasets.

6.1.1 Research Hypothesis Number One

Regarding the evaluation metrics achieved from the recommendation phase compared to the

development phase concerning the 15 datasets, the recommendation phase will always return

worse or, in the best scenario, equal to the best one got by the development phase. This

situation occurs because there is always one combination that returns the best score of the

metrics used and all the remaining ones are worse, depending on the dataset used.

Additionally, all the possible recommended combinations, by the recommendation phase, are

the ones that the development phase previously calculated. Consequently, it is enough for the

recommendation phase to return one combination that is not the best, to one of the 15 datasets

that will cause the worst scores of metrics concerning the development phase.

To be certain of this effect, it was evaluated the 15 datasets by the two phases of the

implemented application, and it was concluded that in some datasets it is not recommended

the combination that would cause the best score, as explained further. Therefore, the scores

accomplished by the recommendation phase are worse than the development phase, hence,

the RH1 was not achieved.

However, since the recommendation phase was sentenced to fail, it was done a complementary

analysis. For each dataset, it was investigated all three recommended combinations, by the

recommendation phase, concerning the combination best scored by the development phase.

All those combinations are on the following Table 3 and Table 4. The fields highlighted in green

are the combinations that matched the best-scored combination by the development phase,

and the fields highlighted in yellow are partially matched combinations where the match occurs

only by the pre-processing technique or the classifier algorithm.

56

Table 3: Combination best scored by the development phase.

Dataset Pre-processing technique Classifier Algorithm

dis RandomOverSampler GradientBoostingClassifier

musk RandomOverSampler XGBClassifier

mfeat-fourier SMOTE GradientBoostingClassifier

Satellite SMOTETomek LGBMClassifier

arsenic-male-bladder RandomOverSampler LGBMClassifier

analcatdata_apnea2 RandomOverSampler GradientBoostingClassifier

regime_alimentaire SVMSMOTE LGBMClassifier

page-blocks0.dat RandomOverSampler XGBClassifier

dgf_test RandomOverSampler XGBClassifier

cpu_small SMOTETomek LGBMClassifier

analcatdata_birthday SVMSMOTE XGBClassifier

optdigits SVMSMOTE XGBClassifier

kr-vs-k-zero_vs_eight.dat RandomOverSampler GradientBoostingClassifier

analcatdata_lawsuit RandomOverSampler LGBMClassifier

JapaneseVowels SVMSMOTE LGBMClassifier

Table 4: Recommended combinations by the recommendation phase.

Dataset

Recommendation number 1 Recommendation number 2 Recommendation number 3

Pre-
processing
technique

Classifier
Algorithm

Pre-
processing
technique

Classifier
Algorithm

Pre-
processing
technique

Classifier
Algorithm

dis RandomOv
erSampler LGBMClassifier

RandomOv
erSampler

GradientBoosti
ngClassifier SMOTE XGBClassifier

musk RandomOv
erSampler XGBClassifier

SMOTETom
ek LGBMClassifier SVMSMOTE LGBMClassifier

mfeat-
fourier SVMSMOTE

GradientBoosti
ngClassifier SVMSMOTE XGBClassifier

RandomOv
erSampler

GradientBoosti
ngClassifier

Satellite
SMOTE

GradientBoosti
ngClassifier

SMOTETom
ek LGBMClassifier

RandomOv
erSampler XGBClassifier

arsenic-
male-
bladder

RandomOv
erSampler LGBMClassifier

SMOTETom
ek

GradientBoosti
ngClassifier

SMOTETom
ek LGBMClassifier

analcatdata
_apnea2

RandomOv
erSampler

GradientBoosti
ngClassifier

RandomOv
erSampler LGBMClassifier SVMSMOTE LGBMClassifier

regime_ali
mentaire SVMSMOTE XGBClassifier SVMSMOTE

GradientBoosti
ngClassifier

RandomOv
erSampler LGBMClassifier

page-
blocks0.dat SMOTE LGBMClassifier

SMOTETom
ek LGBMClassifier SVMSMOTE LGBMClassifier

dgf_test
SVMSMOTE LGBMClassifier

SMOTETom
ek LGBMClassifier

SMOTETom
ek

GradientBoosti
ngClassifier

cpu_small SMOTETom
ek

GradientBoosti
ngClassifier SMOTE LGBMClassifier SVMSMOTE LGBMClassifier

analcatdata
_birthday

RandomOv
erSampler LGBMClassifier

RandomOv
erSampler

GradientBoosti
ngClassifier

SMOTETom
ek

GradientBoosti
ngClassifier

optdigits RandomOv
erSampler

GradientBoosti
ngClassifier SVMSMOTE

GradientBoosti
ngClassifier SMOTE XGBClassifier

kr-vs-k-
zero_vs_eig
ht.dat SVMSMOTE XGBClassifier

RandomOv
erSampler

GradientBoosti
ngClassifier SMOTE XGBClassifier

analcatdata
_lawsuit SVMSMOTE

GradientBoosti
ngClassifier SVMSMOTE XGBClassifier

RandomOv
erSampler

GradientBoosti
ngClassifier

JapaneseVo
wels

RandomOv
erSampler

GradientBoosti
ngClassifier

RandomOv
erSampler XGBClassifier

SMOTETom
ek LGBMClassifier

57

There are 3 datasets (musk, arsenic-male-bladder and analcatdata_apnea2) that, the

recommendation phase, got right at the first recommendation according to the development

phase. Then, there are also 3 datasets (dis, Satellite and kr-vs-k-zero_vs_eight.dat) that the best

recommendation is on the second recommendation. Next, there are 6 datasets (mfeat-fourier,

regime_alimentaire, cpu_small, optdigits, analcatdata_lawsuit and JapaneseVowels) that one

part of the combination (pre-processing technique or classifier algorithm) was got right. Then,

there are the remaining 3 datasets (page-blocks0.dat, dgf_test and analcatdata_birthday) that

were not right in any of the combinations or partial combinations.

6.1.2 Research Hypothesis Number Two

Regarding the time of execution achieved from the recommendation phase compared to the

development phase concerning the 15 datasets, all these values are expressed in the following

Table 5, and all the values of time are in the “HH:mm:ss” format.

Table 5: Comparison of execution times of the recommendation and development phases.

Dataset Execution time in the
recommendation phase

Execution time in the
development phase

dis 00:00:25 00:03:59

musk 00:04:08 00:55:34

mfeat-fourier 00:00:13 00:08:12

Satellite 00:00:57 00:10:30

arsenic-male-bladder 00:00:02 00:00:36

analcatdata_apnea2 00:00:01 00:00:17

regime_alimentaire 00:00:01 00:00:16

page-blocks0.dat 00:00:58 00:03:49

dgf_test 00:01:01 00:06:55

cpu_small 00:03:20 00:08:54

analcatdata_birthday 00:00:01 00:00:17

optdigits 00:01:19 00:11:49

kr-vs-k-zero_vs_eight.dat 00:00:06 00:00:48

analcatdata_lawsuit 00:00:01 00:01:40

JapaneseVowels 00:05:20 00:23:41

Consequently, for all the 15 datasets, the recommendation phase achieved 17 minutes and 53

seconds (1073 total seconds) of the total amount of execution time and the development phase

achieved 2 hours 17 minutes and 17 seconds (8237 total seconds) of execution time. Thus, when

dividing the total time achieved in the recommendation phase by the development phase, it is

concluded that the execution time of the recommendation phase is smaller/faster with only

13.03% of the time of the development phase. Therefore, the RH2 was successfully achieved.

58

6.2 External Evaluation

To perform the external evaluation, it was first analysed relevant state-of-the-art papers that

could address these 15 selected datasets with a machine learning pipeline that adopted similar

pre-processing techniques and/or classification algorithms, with a similar machine learning

validation used (Stratified K-Fold cross-validator) and with the same evaluation metrics selected.

Crossing all these factors, especially these 15 datasets, was not found in any paper without

ignoring relevant factors that would cause a compromised comparison of the attained results.

Consequently, the second step was to select one autoML application that could be executed for

these 15 datasets with the same machine learning pipeline earlier mentioned. It was explored

all the different applications previously analysed in the Related Solutions section of the State of

the Art chapter. The first ones to be excluded from this choice were the autoML services, such

as Microsoft Azure Automated Machine Learning, AWS SageMaker Autopilot and GCP AutoML,

because they execute in different servers/machines that the one used in the implementation

and evaluation of the developed application, this would cause a compromised comparison.

The autoML application/tool selected was the TPOT, a tree-based pipeline optimization tool,

because it was noted to be the most easy-to-use open-source tool. In this scenario, it was only

needed to test higher or smaller values with a “try-error” approach for two parameters, as

explained further. Additionally, it can export any produced pipeline directly to python code.

It was created the “_test_TPOT.py” file to execute the TPOT tool and the results are saved in

the “results_TPOT.csv” file in the “output” folder of the project. Then, it was executed the

python file to all these 15 datasets which contain the “TPOTClassifier” function with the

following parameters used, as illustrated in Figure 26.

Figure 26: TPOTClassifier function used.

First, the “generations” and the “population_size” parameters are, in this scenario, the

parameters used as a “try-error” approach because specifying them with higher values usually

results in higher scores/metrics values but with also increased times of execution. To have

similar values of execution time as the recommendation phase of the implemented application

achieves, it was concluded that the value of “2” to the “generations” and the “population_size”

was the most suited to these 15 datasets and the available local computer.

Then, it was used the “max_time_mins” parameter with “10” which sets the maximum time

that TOPT must optimise the pipeline because it is a closer value to the maximum time that the

59

development phase achieved in one of these 15 datasets. Next, the “scoring” parameter, the

built-in scoring function to evaluate the quality of a pipeline, was set to “f1” because F1 Score

is one of the metrics used and this parameter only lets set one metric.

Afterwards, the “cv” parameter sets the cross-validation strategy to be used, and the “n_jobs”

and “random_state” parameters were set the same as the implementation of the application.

At last, the “verbosity” parameter with the value “2” prints a progress bar with minimal

information when TPOT is running.

6.2.1 Research Hypothesis Number Three

Now, the evaluation metrics achieved from the recommendation phase will be compared to the

TPOT tool set in the “_test_TPOT.py” file, previously explained, concerning the 15 datasets.

However, first, it is important to mention that the values from the recommendation phase are

the ones got when executing the development phase of the implemented application to those

15 datasets, for the first recommended combination (of the three combinations available). All

these values are expressed in the following Table 6 and Table 7, and the final score is the

average of all metrics.

Table 6: Evaluation metrics values of the recommendation phase.

Dataset Balanced
Accuracy

F1 Score ROC
AUC

Geometric
Mean

Cohen
Kappa

Final
Score

dis 0.787 0.995 0.915 0.747 0.614 0.812

musk 0.998 0.996 1.000 0.998 0.996 0.998

mfeat-fourier 0.990 0.999 0.999 0.990 0.986 0.993

Satellite 0.882 0.672 0.984 0.870 0.666 0.815

arsenic-male-bladder 0.795 0.636 0.836 0.716 0.625 0.722

analcatdata_apnea2 0.936 0.833 0.972 0.934 0.804 0.896

regime_alimentaire 0.940 0.876 0.977 0.938 0.840 0.914

page-blocks0.dat 0.950 0.868 0.992 0.949 0.852 0.922

dgf_test 0.987 0.971 0.999 0.987 0.965 0.982

cpu_small 0.914 0.943 0.976 0.913 0.816 0.912

analcatdata_birthday 0.800 0.937 0.944 0.778 0.576 0.807

optdigits 0.982 0.996 0.999 0.982 0.960 0.984

kr-vs-k-
zero_vs_eight.dat

0.980 0.947 0.998 0.977 0.945 0.969

analcatdata_lawsuit 0.966 0.873 0.991 0.962 0.863 0.931

JapaneseVowels 0.978 0.987 0.998 0.978 0.925 0.973

60

Table 7: Evaluation metrics values of the TPOT tool.

Dataset Balanced
Accuracy

F1 Score ROC
AUC

Geometric
Mean

Cohen
Kappa

Final
Score

dis 0.721 0.994 0.721 0.666 0.566 0.734

musk 0.998 0.991 0.998 0.998 0.989 0.995

mfeat-fourier 0.941 0.993 0.941 0.939 0.920 0.947

Satellite 0.875 0.857 0.875 0.866 0.855 0.866

arsenic-male-bladder 0.800 0.750 0.800 0.775 0.736 0.772

analcatdata_apnea2 0.528 0.105 0.528 0.236 0.091 0.298

regime_alimentaire 0.972 0.917 0.972 0.972 0.888 0.944

page-blocks0.dat 0.906 0.868 0.906 0.902 0.853 0.887

dgf_test 0.981 0.961 0.981 0.981 0.954 0.972

cpu_small 0.890 0.939 0.890 0.888 0.784 0.878

analcatdata_birthday 0.532 0.922 0.532 0.297 0.092 0.475

optdigits 0.958 0.992 0.958 0.957 0.924 0.958

kr-vs-k-
zero_vs_eight.dat

0.688 0.042 0.688 0.662 0.031 0.422

analcatdata_lawsuit 0.742 0.600 0.742 0.701 0.569 0.671

JapaneseVowels 0.976 0.992 0.976 0.976 0.948 0.974

Consequently, for all 15 datasets, the recommendation phase accomplished an average final

score of 0.9087 and the TPOT tool accomplished 0.7862. Thus, when dividing the average of the

final score attained in the recommendation phase by the one in the TPOT tool, it is concluded

that the final score of the recommendation phase is greater, on average, by 16% than the one

attained by the TPOT tool. Therefore, the RH3 was successfully achieved in these conditions.

6.2.2 Research Hypothesis Number Four

Now, it is going to be analysed the time of execution achieved from the recommendation phase

of the implemented application compared to the TPOT tool set in the “_test_TPOT.py” file,

concerning the 15 datasets. All these values are expressed in the following Table 8, and all the

values of time are in the “HH:mm:ss” format.

61

Table 8: Comparison of execution times of the recommendation phase to the TPOT tool.

Dataset Execution time in the
recommendation phase

Execution time in the TPOT
tool

dis 00:00:25 00:00:40

musk 00:04:08 00:09:12

mfeat-fourier 00:00:13 00:01:19

Satellite 00:00:57 00:01:18

arsenic-male-bladder 00:00:02 00:00:17

analcatdata_apnea2 00:00:01 00:00:17

regime_alimentaire 00:00:01 00:00:28

page-blocks0.dat 00:00:58 00:01:34

dgf_test 00:01:01 00:01:01

cpu_small 00:03:20 00:02:40

analcatdata_birthday 00:00:01 00:00:27

optdigits 00:01:19 00:01:16

kr-vs-k-zero_vs_eight.dat 00:00:06 00:00:22

analcatdata_lawsuit 00:00:01 00:00:16

JapaneseVowels 00:05:20 00:01:54

Consequently, for all the 15 datasets, the recommendation phase accomplished 17 minutes and

53 seconds (1073 total seconds) of the total amount of execution time and the TPOT tool

accomplished 23 minutes and 1 second (1381 total seconds) of execution time. Thus, when

dividing the total time attained in the recommendation phase by the TPOT tool, it is concluded

that the execution time of the recommendation phase is smaller/faster with 78% of the time of

the TPOT tool. Therefore, the RH4 was successfully achieved in these conditions.

6.3 Final Remarks

To conclude the evaluation of this application, the RH2, RH3 and RH4 were successfully

achieved to the tested conditions, and the RH1 was not achieved. Therefore, the outcome of

this evaluation was mostly positive.

62

63

7 Conclusions

This chapter is composed of two sections, the Accomplished Objectives and the Limitations and

Future Work. The former explains if the objectives were and how they were accomplished, and

the latter, by guiding the potential future work to be addressed.

7.1 Accomplished Objectives

This application was successfully documented, designed, implemented, and evaluated. It can

deliver recommendations of suited combinations of pre-processing techniques and

classification algorithms to imbalanced datasets, therefore automating this step in the machine

learning pipeline.

Moreover, it provides these recommendations to a newly imported dataset by using the meta-

features values, previously extracted, of the most similar datasets already present in the

knowledge base, from past executions. Additionally, it was used appropriate evaluation metrics

to benchmark internally each combination, and externally to the overall recommendations

delivered by this application compared to other autoML solution. The latter was achieved with

small success but with smaller execution times, as it was evaluated to certain conditions

established.

As it was analysed in the State of the Art, there are several autoML solutions. However, there

are a few that focus specifically on handling imbalanced classification problems. Consequently,

this project has a positive overview of the work done, especially when considering some

limitations and future work needed, as is going to be explained in the next section.

64

7.2 Limitations and Future Work

While the objectives were accomplished, there is still some improvement that should be

adopted for this application. First, it should be evaluated if some optimization techniques like

Grid Search, Random Search, Bayesian Optimization, CASH optimization and others can improve

the results achieved. Then, other pre-processing techniques and classification algorithms can

also be added to the application. Moreover, it can be experimented to run the application on

the GPU instead of the CPU of the computer with libraries like Apache Spark, Dask, Ray or others,

to improve the execution times.

Furthermore, it can also be applied a meta-feature selection like principal component analysis

to the extracted meta-features. Additionally, it can be verified if the results got when

recommending are improved by adding more datasets to the knowledge base of the application.

Then, this application should be compared to more autoML solutions. Finally, in the future, this

application should operate also with multiclass classification problems.

65

References

[1] M. Kuhn and K. Johnson, ‘Applied predictive modeling’, Appl. Predict. Model., pp. 1–600,
Jan. 2013, doi: 10.1007/978-1-4614-6849-3.

[2] B. Krawczyk, ‘Learning from imbalanced data: open challenges and future directions’,
Prog. Artif. Intell., vol. 5, no. 4, pp. 221–232, Nov. 2016, doi: 10.1007/S13748-016-0094-
0/TABLES/1.

[3] N. Japkowicz, ‘Learning from Imbalanced Data Sets: A Comparison of Various Strategies
*’, 2000, Accessed: Feb. 06, 2022. [Online]. Available: www.aaai.org.

[4] M. Lango, ‘Tackling the Problem of Class Imbalance in Multi-class Sentiment
Classification: An Experimental Study’, Found. Comput. Decis. Sci., vol. 44, no. 2, pp. 151–
178, Jun. 2019, doi: 10.2478/FCDS-2019-0009.

[5] A. Fernández, S. García, M. Galar, R. C. Prati, B. Krawczyk, and F. Herrera, ‘Learning from
Imbalanced Data Sets’, Learn. from Imbalanced Data Sets, 2018, doi: 10.1007/978-3-
319-98074-4.

[6] V. López, A. Fernández, S. García, V. Palade, and F. Herrera, ‘An insight into classification
with imbalanced data: Empirical results and current trends on using data intrinsic
characteristics’, Inf. Sci. (Ny)., vol. 250, pp. 113–141, Nov. 2013, doi:
10.1016/J.INS.2013.07.007.

[7] J. Tanha, Y. Abdi, N. Samadi, N. Razzaghi, and M. Asadpour, ‘Boosting methods for multi-
class imbalanced data classification: an experimental review’, J. Big Data, vol. 7, no. 1,
pp. 1–47, Dec. 2020, doi: 10.1186/S40537-020-00349-Y/FIGURES/5.

[8] P. Branco, I. Torgo, R. P. Ribeiro, and L. Torgo, ‘A Survey of Predictive Modeling on
Imbalanced Domains’, ACM Comput. Surv. 1, 1, Artic., vol. 1, 2016.

[9] N. Moniz and V. Cerqueira, ‘Automated imbalanced classification via meta-learning’,
Expert Syst. Appl., vol. 178, Sep. 2021, doi: 10.1016/J.ESWA.2021.115011.

[10] P. Brazdil, C. Giraud-Carrier, C. Soares, and R. Vilalta, ‘Metalearning’, 2008, doi:
10.1007/978-3-540-73263-1.

[11] ‘The PyMFE example gallery — pymfe 0.4.1 documentation’.
https://pymfe.readthedocs.io/en/latest/auto_examples/index.html (accessed Aug. 20,
2022).

[12] F. Hutter, L. Kotthoff, and J. Vanschoren, ‘Automated Machine Learning: Methods,
Systems, Challenges’, 2019, doi: 10.1007/978-3-030-05318-5.

[13] B. Zoph and Q. V. Le, ‘Neural Architecture Search with Reinforcement Learning’, 5th Int.
Conf. Learn. Represent. ICLR 2017 - Conf. Track Proc., Nov. 2016, Accessed: Feb. 09, 2022.
[Online]. Available: https://arxiv.org/abs/1611.01578v2.

66

[14] I. Goodfellow, Y. Bengio, and A. Courville, ‘Deep Learning’, Nature, vol. 521, no. 7553, p.
800, 2016, Accessed: Feb. 07, 2022. [Online]. Available:
http://goodfeli.github.io/dlbook/%0Ahttp://dx.doi.org/10.1038/nature14539.

[15] M. De Lange et al., ‘A continual learning survey: Defying forgetting in classification tasks’,
2021, doi: 10.1109/TPAMI.2021.3057446.

[16] D. H. Wolpert and W. G. Macready, ‘No free lunch theorems for optimization’, IEEE Trans.
Evol. Comput., vol. 1, no. 1, pp. 67–82, 1997, doi: 10.1109/4235.585893.

[17] C. Thornton, F. Hutter, H. H. Hoos, and K. Leyton-Brown, ‘Auto-WEKA: Combined
Selection and Hyperparameter Optimization of Classification Algorithms’, Proc. ACM
SIGKDD Int. Conf. Knowl. Discov. Data Min., vol. Part F128815, pp. 847–855, Aug. 2012,
doi: 10.1145/2487575.2487629.

[18] H. Jair Escalante, M. Montes, and L. Enrique Sucar ESUCAR, ‘Particle Swarm Model
Selection’, J. Mach. Learn. Res., vol. 10, no. 15, pp. 405–440, 2009, Accessed: Feb. 09,
2022. [Online]. Available: http://jmlr.org/papers/v10/escalante09a.html.

[19] E. Brochu, V. M. Cora, and N. de Freitas, ‘A Tutorial on Bayesian Optimization of
Expensive Cost Functions, with Application to Active User Modeling and Hierarchical
Reinforcement Learning’, Dec. 2010, Accessed: Feb. 09, 2022. [Online]. Available:
https://arxiv.org/abs/1012.2599v1.

[20] ‘Imbalanced Classification with Python: Better Metrics, Balance Skewed ... - Jason
Brownlee - Google Livros’. https://books.google.pt/books?hl=pt-
PT&lr=&id=jaXJDwAAQBAJ&oi=fnd&pg=PP1&dq=imbalanced+classification+metrics&o
ts=CfMx7PUX_Q&sig=p3LfN7xLTOwsXX6n9HZk_GMco8E&redir_esc=y#v=onepage&q=i
mbalanced classification metrics&f=false (accessed Aug. 20, 2022).

[21] ‘scikit-learn: machine learning in Python — scikit-learn 1.0.2 documentation’.
https://scikit-learn.org/stable/ (accessed Feb. 13, 2022).

[22] G. Lemaître, F. Nogueira, and C. K. Aridas, ‘Imbalanced-learn: A python toolbox to tackle
the curse of imbalanced datasets in machine learning’, J. Mach. Learn. Res., vol. 18, pp.
1–5, Jan. 2017.

[23] N. Lunardon, G. Menardi, and N. T. Maintainer, ‘Package “ROSE” Type Package Title
Random Over-Sampling Examples’, 2021.

[24] ‘CRAN - Package imbalance’. https://cran.r-
project.org/web/packages/imbalance/index.html (accessed Feb. 14, 2022).

[25] X. He, K. Zhao, and X. Chu, ‘AutoML: A survey of the state-of-the-art’, Knowledge-Based
Syst., vol. 212, p. 106622, Jan. 2021, doi: 10.1016/j.knosys.2020.106622.

[26] M. Feurer, K. Eggensperger, S. Falkner, M. Lindauer, and F. Hutter, ‘Auto-Sklearn 2.0:
Hands-free AutoML via Meta-Learning’, Jul. 2020, Accessed: Feb. 13, 2022. [Online].
Available: http://arxiv.org/abs/2007.04074.

[27] Q. Yao et al., ‘Taking Human out of Learning Applications: A Survey on Automated

67

Machine Learning’, Oct. 2018, Accessed: Feb. 12, 2022. [Online]. Available:
https://arxiv.org/abs/1810.13306v4.

[28] M. A. Zöller and M. F. Huber, ‘Benchmark and Survey of Automated Machine Learning
Frameworks’, J. Artif. Intell. Res., vol. 70, pp. 409–472, Jan. 2021, doi:
10.1613/JAIR.1.11854.

[29] ‘AutoKeras’. https://autokeras.com/ (accessed Feb. 13, 2022).

[30] ‘Keras: the Python deep learning API’. https://keras.io/ (accessed Feb. 13, 2022).

[31] ‘Welcome To Neural Network Intelligence !!! — An open source AutoML toolkit for
neural architecture search, model compression and hyper-parameter tuning (NNI v2.6)’.
https://nni.readthedocs.io/en/stable/ (accessed Feb. 13, 2022).

[32] ‘TPOT’. https://epistasislab.github.io/tpot/ (accessed Feb. 13, 2022).

[33] ‘hyperopt-sklearn by hyperopt’. https://hyperopt.github.io/hyperopt-sklearn/
(accessed Feb. 13, 2022).

[34] ‘AutoML: Automatic Machine Learning — H2O 3.36.0.2 documentation’.
https://docs.h2o.ai/h2o/latest-stable/h2o-docs/automl.html (accessed Feb. 13, 2022).

[35] ‘Automated Machine Learning | Microsoft Azure’, 2022.
https://azure.microsoft.com/en-us/services/machine-learning/automatedml/#features
(accessed Feb. 07, 2022).

[36] ‘Amazon SageMaker Autopilot | Amazon SageMaker’, 2022.
https://aws.amazon.com/pt/sagemaker/autopilot/ (accessed Feb. 07, 2022).

[37] ‘Cloud AutoML - Google Cloud’, 2022. https://cloud.google.com/automl (accessed Feb.
07, 2022).

[38] N. Moniz, ‘Nuno Moniz: ATOMIC: an AutoML (and easy-to-use) solution for imbalanced
learning’, dcc.fc.up.pt, Apr. 04, 2021. https://www.dcc.fc.up.pt/~nmoniz/posts/2021-
04-04-autoresampling-a-baseline-for-imbalanced-learning/ (accessed Nov. 15, 2021).

[39] Z. Li and D. Hoiem, ‘Learning without Forgetting’, IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 40, no. 12, pp. 2935–2947, Jun. 2016, doi: 10.1109/TPAMI.2017.2773081.

[40] S. A. Rebuffi, A. Kolesnikov, G. Sperl, and C. H. Lampert, ‘iCaRL: Incremental Classifier
and Representation Learning’, Proc. - 30th IEEE Conf. Comput. Vis. Pattern Recognition,
CVPR 2017, vol. 2017-January, pp. 5533–5542, Nov. 2016, doi: 10.1109/CVPR.2017.587.

[41] ‘No-code machine learning - Amazon Web Services’.
https://aws.amazon.com/pt/sagemaker/canvas/ (accessed Feb. 14, 2022).

[42] ‘OPPORTUNITY | Significado, definição em Dicionário Inglês’.
https://dictionary.cambridge.org/pt/dicionario/ingles/opportunity (accessed Feb. 14,
2022).

68

[43] G. Haixiang, L. Yijing, J. Shang, G. Mingyun, H. Yuanyue, and G. Bing, ‘Learning from class-
imbalanced data: Review of methods and applications’, Expert Systems with Applications,
vol. 73. Elsevier Ltd, pp. 220–239, May 01, 2017, doi: 10.1016/j.eswa.2016.12.035.

[44] ‘Imbalanced Classification - Google Trends’.
https://trends.google.pt/trends/explore?date=2006-01-01 2022-02-27&q=imbalanced
classification (accessed Feb. 15, 2022).

[45] ‘AutoML - Google Trends’. https://trends.google.pt/trends/explore?date=2006-01-01
2022-02-27&q=automl (accessed Feb. 15, 2022).

[46] ‘Repositório Aberto da Universidade do Porto: Uma reflexão sobre a análise do valor e
o seu posicionamento no actual panorama da gestão da qualidade’. https://repositorio-
aberto.up.pt/handle/10216/12568 (accessed Feb. 14, 2022).

[47] F. Franceschini and S. Rossetto, ‘QFD: an interactive algorithm for the prioritization of
product’s technical design characteristics’, Integr. Manuf. Syst., vol. 13, no. 1, pp. 69–75,
2002, doi: 10.1108/09576060210411521/FULL/XML.

[48] Deepanshu Tyagi, ‘Introduction to FAST (Features from Accelerated Segment Test) | by
Deepanshu Tyagi | Data Breach | Medium’, 2019. https://medium.com/data-
breach/introduction-to-fast-features-from-accelerated-segment-test-4ed33dde6d65
(accessed Feb. 14, 2022).

[49] ‘Customer Value: What it Means & Why It’s Important - Builtvisible’.
https://builtvisible.com/understanding-customer-value/ (accessed Feb. 14, 2022).

[50] ‘What is Free Software? - GNU Project - Free Software Foundation’.
https://www.gnu.org/philosophy/free-sw.en.html (accessed Feb. 14, 2022).

[51] P. E. Boksberger and L. Melsen, ‘Perceived value: A critical examination of definitions,
concepts and measures for the service industry’, J. Serv. Mark., vol. 25, no. 3, pp. 229–
240, May 2011, doi: 10.1108/08876041111129209.

[52] A. Whiting, ‘Six Steps to Crafting Effective Value Propositions’, 2012.

[53] ‘Value Proposition Design Book - Preview & Download PDF’, Oct. 30, 2014.
https://www.strategyzer.com/books/value-proposition-design (accessed Feb. 14, 2022).

[54] H. S. Shih, H. J. Shyur, and E. S. Lee, ‘An extension of TOPSIS for group decision making’,
Math. Comput. Model., vol. 45, no. 7–8, pp. 801–813, Apr. 2007, doi:
10.1016/J.MCM.2006.03.023.

[55] R. B. Grady, ‘Practical software metrics for project management and process
improvement’, p. 270, 1992.

[56] ‘UCI Machine Learning Repository’. https://archive.ics.uci.edu/ml/index.php (accessed
Feb. 14, 2022).

[57] ‘KEEL: A software tool to assess evolutionary algorithms for Data Mining problems
(regression, classification, clustering, pattern mining and so on)’.

69

https://sci2s.ugr.es/keel/datasets.php (accessed Feb. 14, 2022).

[58] ‘OpenML’. https://www.openml.org/search?type=data (accessed Feb. 14, 2022).

[59] ‘Find Open Datasets and Machine Learning Projects | Kaggle’.
https://www.kaggle.com/datasets (accessed Feb. 14, 2022).

[60] ‘Dataset Search’. https://datasetsearch.research.google.com/ (accessed Feb. 14, 2022).

[61] ‘OpenML APIs - OpenML Documentation’. https://docs.openml.org/APIs/ (accessed Jul.
30, 2022).

[62] ‘Welcome to Python.org’. https://www.python.org/ (accessed Feb. 13, 2022).

[63] ‘R: The R Project for Statistical Computing’. https://www.r-project.org/ (accessed Feb.
13, 2022).

[64] ‘PySimpleGUI’. https://pysimplegui.readthedocs.io/en/latest/ (accessed Feb. 15, 2022).

[65] ‘Dear PyGui’s Documentation — Dear PyGui documentation’.
https://dearpygui.readthedocs.io/en/latest/index.html (accessed Feb. 15, 2022).

[66] ‘tkinter — Python interface to Tcl/Tk — Python 3.10.2 documentation’.
https://docs.python.org/3/library/tkinter.html (accessed Feb. 15, 2022).

[67] ‘Python UI | Design GUI with Python | Python Bindings for Qt’. https://www.qt.io/qt-
for-python (accessed Feb. 15, 2022).

[68] ‘Welcome to wxPython! | wxPython’. https://www.wxpython.org/ (accessed Feb. 15,
2022).

[69] ‘dddomodossola/remi: Python REMote Interface library. Platform independent. In about
100 Kbytes, perfect for your diet.’ https://github.com/dddomodossola/remi (accessed
Feb. 15, 2022).

[70] ‘ocornut/imgui: Dear ImGui: Bloat-free Graphical User interface for C++ with minimal
dependencies’. https://github.com/ocornut/imgui (accessed Feb. 15, 2022).

[71] ‘Welcome to Flask — Flask Documentation (2.0.x)’.
https://flask.palletsprojects.com/en/2.0.x/ (accessed Feb. 15, 2022).

[72] ‘Streamlit • The fastest way to build and share data apps’. https://streamlit.io/ (accessed
Feb. 15, 2022).

[73] ‘Cloud Application Platform | Heroku’. https://www.heroku.com/ (accessed Feb. 15,
2022).

[74] ‘Apache SparkTM - Unified Engine for large-scale data analytics’.
https://spark.apache.org/ (accessed Feb. 14, 2022).

[75] ‘Dask: Scalable analytics in Python’. https://dask.org/ (accessed Feb. 14, 2022).

70

[76] ‘Ray - Scaling Python made simple, for any workload’. https://www.ray.io/ (accessed Feb.
14, 2022).

[77] ‘TensorFlow’. https://www.tensorflow.org/ (accessed Feb. 14, 2022).

[78] ‘PyTorch’. https://pytorch.org/ (accessed Feb. 14, 2022).

[79] ‘CUDA Zone | NVIDIA Developer’. https://developer.nvidia.com/cuda-zone (accessed
Feb. 14, 2022).

[80] ‘OpenCL Overview - The Khronos Group Inc’. https://www.khronos.org/opencl/
(accessed Feb. 14, 2022).

[81] ‘OpenGL - The Industry Standard for High Performance Graphics’.
https://www.opengl.org// (accessed Feb. 14, 2022).

[82] ‘Git’. https://git-scm.com/ (accessed Feb. 15, 2022).

[83] ‘GitHub’. https://github.com/ (accessed Feb. 15, 2022).

[84] ‘Bitbucket’. https://bitbucket.org/ (accessed Feb. 15, 2022).

[85] ‘PyInstaller Manual — PyInstaller 4.9 documentation’.
https://pyinstaller.readthedocs.io/en/stable/ (accessed Feb. 15, 2022).

[86] P. Vieira, ‘PedroVieira1160634/automated-imbalanced-classification: Automated
Imbalanced Classification’. https://github.com/PedroVieira1160634/automated-
imbalanced-classification (accessed Sep. 10, 2022).

[87] ‘GNU General Public License v3.0 - Project GNU - Free Software Foundation’.
https://www.gnu.org/licenses/gpl-3.0.html (accessed Sep. 10, 2022).

[88] J. van Rijn, ‘OpenML: credit-g Dataset (ID: 31)’, 2014.
https://www.openml.org/search?type=data&sort=runs&status=active&id=31
(accessed Sep. 10, 2022).

[89] ‘KEEL: Car Good dataset’. https://sci2s.ugr.es/keel/dataset.php?cod=1328 (accessed
Sep. 11, 2022).

[90] ‘pandas - Python Data Analysis Library’. https://pandas.pydata.org/ (accessed Sep. 10,
2022).

[91] ‘imbalanced-learn documentation — Version 0.9.1’. https://imbalanced-
learn.org/stable/ (accessed Sep. 10, 2022).

[92] ‘Python-package Introduction — LightGBM 3.3.2.99 documentation’.
https://lightgbm.readthedocs.io/en/latest/Python-Intro.html (accessed Sep. 10, 2022).

[93] ‘Python Package Introduction — xgboost 1.6.2 documentation’.
https://xgboost.readthedocs.io/en/stable/python/python_intro.html (accessed Sep. 10,
2022).

71

[94] ‘NumPy’. https://numpy.org/ (accessed Sep. 10, 2022).

[95] J. Vanschoren, ‘OpenML: analcatdata_germangss dataset (ID: 1025)’, 2014.
https://www.openml.org/search?type=data&status=active&id=1025 (accessed Sep. 11,
2022).

[96] ‘KEEL: Poker Hand (Imbalanced: 8 vs 6) dataset’.
https://sci2s.ugr.es/keel/dataset.php?cod=1340 (accessed Sep. 11, 2022).

[97] ‘KEEL: Glass Identification (Imbalanced: 1) dataset’.
https://sci2s.ugr.es/keel/dataset.php?cod=142 (accessed Sep. 11, 2022).

[98] P. Gijsbers, ‘OpenML: dis Dataset (ID: 40713)’, 2017.
https://www.openml.org/search?type=data&status=active&id=40713 (accessed Oct.
02, 2022).

[99] J. Vanschoren, ‘OpenML: musk Dataset (ID: 1116)’, 2014.
https://www.openml.org/search?type=data&status=active&id=1116 (accessed Oct. 02,
2022).

[100] J. Vanschoren, ‘OpenML: mfeat-fourier Dataset (ID: 971)’, 2014.
https://www.openml.org/search?type=data&status=active&id=971 (accessed Oct. 02,
2022).

[101] R. G. Mantovani, ‘OpenML: Satellite Dataset (ID: 40900)’, 2015.
https://www.openml.org/search?type=data&status=active&id=1464 (accessed Oct. 02,
2022).

[102] J. Vanschoren, ‘OpenML: arsenic-male-bladder Dataset (ID: 947)’, 2014.
https://www.openml.org/search?type=data&status=active&id=947&sort=runs
(accessed Oct. 02, 2022).

[103] J. Vanschoren, ‘OpenML: analcatdata_apnea2 Dataset (ID: 765)’, 2014.
https://www.openml.org/search?type=data&status=active&id=765&sort=runs
(accessed Oct. 02, 2022).

[104] G. Ferrettini, ‘OpenML: regime_alimentaire Dataset (ID: 42172)’, 2019.
https://www.openml.org/search?type=data&status=active&id=42172 (accessed Oct.
02, 2022).

[105] ‘KEEL: page-blocks0 Dataset - Page Blocks Classification’.
https://sci2s.ugr.es/keel/dataset.php?cod=147 (accessed Oct. 02, 2022).

[106] P. Soriano, ‘OpenML: dgf_test Dataset (ID: 42883)’, 2021.
https://www.openml.org/search?type=data&status=active&id=42883&sort=runs
(accessed Oct. 02, 2022).

[107] J. Vanschoren, ‘OpenML: cpu_small Dataset (ID: 735)’, 2014.
https://www.openml.org/search?type=data&status=active&id=735&sort=runs
(accessed Oct. 02, 2022).

72

[108] J. Vanschoren, ‘OpenML: analcatdata_birthday Dataset (ID: 968)’, 2014.
https://www.openml.org/search?type=data&status=active&id=968&sort=runs
(accessed Oct. 02, 2022).

[109] J. Vanschoren, ‘OpenML: optdigits Dataset (ID: 980)’, 2014.
https://www.openml.org/search?type=data&status=active&id=980&sort=runs
(accessed Oct. 02, 2022).

[110] ‘KEEL: kr-vs-k-zero_vs_eight Dataset - Chess - King-Rook vs. King (Imbalanced: zero vs
eight)’. https://sci2s.ugr.es/keel/dataset.php?cod=1335 (accessed Oct. 02, 2022).

[111] J. Vanschoren, ‘OpenML: analcatdata_lawsuit Dataset (ID: 450)’, 2014.
https://www.openml.org/search?type=data&status=active&id=450&sort=runs
(accessed Oct. 02, 2022).

[112] J. Vanschoren, ‘OpenML: JapaneseVowels Dataset (ID: 976)’, 2014.
https://www.openml.org/search?type=data&status=active&id=976 (accessed Oct. 02,
2022).

