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 To mitigate the evolution of phish websites, various phishing prediction8 

schemes are being optimized eventually. However, the optimized methods 

produce gratuitous performance overhead due to the limited exploration of 

advanced phishing cues. Thus, a phishing uniform resource locator-based 
predictive model is enhanced by this work to defeat this deficiency using 

deep learning algorithms. This model’s architecture encompasses pre-

processing of the effective feature space that is made up of 60 mutual 

uniform resource locator (URL) phishing features, and a dual deep learning-
based model of convolution neural network with bi-directional long short-

term memory (CNN-BiLSTM). The proposed predictive model is trained 

and tested on a dataset of 14,000 phish URLs and 28,074 legitimate URLs. 

Experimentally, the performance outputs are remarked with a 0.01% false 
positive rate (FPR) and 99.27% testing accuracy. 
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1. INTRODUCTION 

Phishing is a social engineering attack aiming at stealing the sensitive information of victim users 

and enterprises like credit card numbers, login credentials, products’ quick response codes, and even 

encrypted passwords. Usually, phishers evolve fake websites (phish websites) that closely resemble 

trustworthy websites of any enterprise, to redirect the victims through spoofing links for illegal gains, 

industrial espionage, cyber-crimes and so far, cyber-terrorism and cyber-warfare [1], [2]. To defeat phishing 

and mitigate its impacts, many detection schemes have been developed by applying black-lists, white-list, 

visual similarity, machine learning, and then deep learning algorithms as well as anti-phishing tools that are 

surplus to their requirements like Google secure browsing and PhishTank, or the Denylist which are based on 

users voting [3]. Although all of them have produced acceptable rates of detection accuracies with low false-

positive rates, they are still fragile at predicting all uniform resource locator (URL) cues of evolutionary 

phish websites [1]–[3]. 

To thwart this evolution in the vast cyber-space, deep learning knowledge has been evoked for 

superior performance among other phishing detection schemes [4], [5]. However, they have suffered from 

categorizing the most mutual URL features that have been exploited by new phish websites as well as their 

shortage at predicting the forecasting change of these URLs in the future [5], [6]. Thus, the mutual phishing 

feature space needs to narrow with efficacious and lightweight deep learning-algorithms configuration. That, 

in turn, has become an ultimate solution to deep learning in phishing mitigation at the present and in the near 

future [5], [6]. To provide this ultima, a set of 60 mutual features with the least flaws have been filtered from 

https://creativecommons.org/licenses/by-sa/4.0/
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111 examined phishing features to be fed into a hybrid deep learning predictive model for better learning 

optimization. The hybrid deep learning predictive model was of dual architecture that encompassed the 

adapting exclamations of convolution neural network (CNN) and the decisive parameters of bidirectional 

long short-term memory (Bi-LSTM). From examining the frontiers of deep learning-based phishing 

anticipating approaches that have been studied in our previous research work [6], this work aims at providing 

efficacious phish website predictor through the following contributions: Exploring 111 adversarial URL 

phishing features that belong to URL property and domains (41 features), URL directory (18 features), the 

URL file name (18 features), URL parameters (20 features) as well as URL resolving and external services 

(14 features) to convolve 60 potential features. And handling deep-learning induction limits by hyper-

parameterizing decisive margins of CNN and Bi-LSTM into a dual deep learning model. 

People’s life has become more dependent on cyberspace, data on the cloud, social media 

networking, web transactions, e-healthcare, e-business, e-learning and education, and e-government services 

over the last decade, particularly during the coronavirus disease 2019 (COVID-19) epidemic [7]. Active 

cyber-space users have surpassed 4.66 billion (or 59.5% of the global population) through the channels and 

services as reported by World Digital Population Report 2021 [8]. Eventually, a lot of sensitive data has been 

transmitted and stored via cloud computing, which has given hackers many opportunities to impersonate 

trustworthy enterprises and services to intrude on computer-based systems and mobile platforms illegally 

using social engineering mimics [9]. Among the most potential social engineering-based cyber-attack, are 

phish websites that aim to steal users’ credentials like credit card numbers, logins, form submissions, file 

uploading, and passwords [10]. To do so, phishers often register their websites with fake layouts and domain 

addresses that resemble trustworthy websites of their targets (known enterprises and communities). Next, 

phishers have sent their mass notifications to victim users acquiring them to click spoof links to redirect them 

to fake websites. Then, victim users have sent the required credentials and phishers catch their digital 

identities [7]–[10]. Thus, the potential inflicts of phishing have reached billions of dollars to the cyber-space 

enterprises, data loss, and cyber-security defeat [7]–[10]. 

To compete with this steady escalation of phishing and to mitigate its social and economic impacts, 

researchers have devised various schemes of list-based, heuristics-based, visual similarity-based, and 

machine learning-based phishing mitigation [1], [3]. Typically, list-based phishing mitigation has utilized 

either whitelists or blacklists of authorized URLs or phishing URLs, respectively [3], [7], [8]. However, they 

have produced significant false negatives because they have needed major and frequent modifications to their 

employed lists. Whilst heuristic-based schemes have deployed extracted heuristics that are usually exploited 

by phish websites to characterize them, they have fallen short at the holistic characterization of all patterns of 

phish websites in high detection levels with the least false detections [3], [7], [8]. Contrarily, the visual 

similarity-based phishing mitigation schemes target phishers’ replicas of trustworthy websites that are similar 

in their images, pictures, data items, and the source code’s tree structure. However, they have suffered from 

time-consuming layout processing, similarity/dissimilarity matching, and a lot of processing and memory 

footprints for layout traits and storage. That in turn, has yielded high false detections [6], [8]. On the other 

hand, the machine learning-based phishing mitigation schemes [1], [2] have been employed with different 

algorithms like random forest (RF), k-nearest neighbor (KNN), naive Bayes, artificial neural network (ANN), 

support vector machine (SVM), and decision tree (DT) in a single or an ensemble design. They have 

constructed effective features-based classifiers that could classify typical patterns of phish websites among 

legitimate websites [1], [2], [6]. By product, such classifiers have outperformed their competitors at detecting 

prevalent phishing activities (i.e. those exploiting generic features) professionally but they have limited at 

predicting those adversarial features adaptively in the near future [2]. 

Oppositely, deep learning-based phishing mitigation schemes peer to outperform their formers 

because they could identify and prevent zero-hour phish websites that sophisticated their features [3], [4]. 

They have been trained on phishing URLs, phishing who is lookups, and phishing web page layouts. 

However, employing various features together has caused mild false detections on big cyber-data due to the 

variety of examined features as well as the diversity of their relevance and redundancy to phishing. To the 

best of our knowledge, phishing has shared many cues with malware and ransomware attacks that target 

computer-based systems and mobile-based systems [4], [6], [11]. To cope with this challenge, researchers 

need to improve the proactive mitigation of phish websites by advancing the architecture of deep learning 

classifiers. By applying self-learning, unsupervised, supervised, and hybrid learning; the prediction models 

could characterize the mutually relevant phishing features on the vast cyber-data without human tuning  

[9], [10]. To this point, this presented work attempts to improve a deep learning-based classifier that 

effectively characterizes and categorizes URL phishing features as described in the next sections. 

The paper organized into six sections as follows: the literature review depicted in: section 2 which 

depicts phishing and its mitigation by synthesizing and categorizing the literature. Section 3 depicts the 

method and materials needed to evoke the hybrid architecture of deep learning model with a list of 111 
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features alongside the used method to select the 60 informative features. Experiments, datasets, and 

evaluations are described and discussed in section 4. Section 5 discuss the result of the experiments. Finally, 

section 6 concludes the whole work.  

 

 

2. LITERATURE REVIEW 

This section studies the literature on deep learning-based detection schemes in a critical context. 

Among the literature, was that improved by [12] for phishing detection using deep neural network (DNN) 

across a big dataset of Ebbu2017 to obtain up to 98% as the detection accuracy overall examined URLs. 

Ultimately, the authors of [13] attempted to boost that detection accuracy rate through a blended approach of 

DNN and features weighting algorithms like genetic algorithm (GA) to classify phish websites by their most 

exploiting features. While researchers of [14], applied a multi-headed and self-attentional CNN on an 

imbalanced dataset throughout a generative adversarial network (GAN) with a large number of URL features. 

However, their work fell short of fixing the length of examined URL strings among other URL features. 

Therefore, their work achieved 97.20% of detection accuracy with a rare focus on optimization parameters 

for fewer processing resources. Likely, Yerima and Alzaylaee [15] designed a single-based classifier using 

the CNN algorithm to detect phishing from legitimate websites with a higher rate of detection accuracy 

(98.2%) and low rate of false detections by automating the selection of features via their key influencing 

parameters. But Kumar et al. [16] attempted to create a neural network using swarm intelligence binary bat 

algorithm for website classification across a big dataset collected from Kaggle. The proposed approach 

achieved 94.8% detection accuracy but an unacceptable rate of false detections. That was due to the  

never-been tuning model in terms of the number of epochs, the learning rate, and the data batch size. Then, a 

faster recurrent neural network (R-CNN) was developed by [17] for website logo recognition with an 

improved feature pyramid network (FPN) criterion. Both FlickrLogos-32 and FlickrLogos-32plus datasets 

were aggregated to obtain detection accuracy of (98.9%) and (94.6%). Also, a long short-term memory 

(LSTM) model was developed for phishing URL detection with one-hot encoding to encode URL strings. As 

such, each encoded character vector could be fed into the LSTM classifier on a big dataset retrieved from 

PhishTank and Common Crawl with a detection accuracy of 93.5%. Similarly, the deep auto-encoder model 

was obtained by [18] and achieved a detection accuracy of 97.34% at carious crawling zero-day phish 

samples using three categories of character, string, and address code feature. Ultimately, researchers of [19] 

employed LSTM and CNN algorithms in an ensemble model to detect phishing activities on a dataset of up 

to 200K samples. They got a detection accuracy of 96% via decision voting. However, both approaches 

obtained unstable detection accuracy rates across the escalating dataset. 

On the other hand, a hybrid deep learning model was proposed in [20] to classify phish websites 

through their character embedding and natural language processing (NLP) characteristics with DNN and bi-

directional short-term memory (BiLSTM). Although the proposed model yielded a detection accuracy of 

98.79% on the Ebbu2017 dataset and a detection accuracy of 99.21% on the PhishTank dataset, it yielded a 

long execution time and unacceptable false alarms due to the use of various character exploitations and 

features that needed extra processing. While a DNN with convolutional layers was developed together for 

phishing detection [21]. Experimental results yielded approximately 100% of detection accuracy on collected 

URLs due to phishing characterization using the text of URLs only. In [22], blended the CNN with LSTM for 

characterizing website layouts like pictures, frames, and text. The developed classifier achieved a detection 

accuracy of 93.28% in maximally 25 seconds of computational time. Datasets retrieved from Phish Tank and 

common crawl were examined by the developed classifier which was insufficient to meet the needs of the 

real-time practice. Further, Somesha et al. [23] applied feature set reduction using information gain (IG) for 

the most distinctive URL obfuscation, hyperlink, and third-party features. Their approach achieved a 

detection accuracy of 99.52% using DNN, 99.57% using LSTM, and 99.43% using CNN. Thus, they 

constructed their model to be subject to third-party services exclusively.  

Although the afore-mentioned works have made convincing contributions to support the urgent need 

for efficacious phishing detection, they still have a shortage in: i) adapting decisive classification to the 

advanced phishing features due to exploiting the generic, immutable phishing feature space; ii) insignificant 

computational cost in leveraging the escalating phishing attacks due to the use of external search engines and 

resources; and iii) limited prediction accuracies and unacceptable rates of falsely detecting adversaries due to 

their decisive parameters, layered architectures, and hyper-parameters limits. 

 

 

3. MATERIAL AND METHOD  

3.1.  The anticipating phishing features 

To define the prominent anticipating features space of phishing, various phishing URLs were 

aggregated from three different sources to emulate their generic and sophisticated exploitations that might be 
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employed to defeat phishing mitigation schemes. As shown in Figure 1, a generic uniform resource locator 

(URL) identified webpages and file resources on the web through a protocol, a hostname, and a pathname. 

Typically, the hostname could refer to which server that the resource could be located via its components: 

subdomain and domain, whereas the pathname, specifies the location of that resource on that server. Domain 

camouflaged the second-level domain (SLD) and the top-level domain (TLD). SLD, in turn, stood for the 

brand name, trademark name, or organization name [24]. On the other hand, the pathname broke into 

directory, filename, and arguments. Simultaneously, phish adversaries have exploited obfuscation, spoofing, 

and cybersquatting interchangeably in subdomain, domains and brand names, TLDs, common spelling 

mistakes, and re-ordering or consecutive characters in the domain names, respectively [24]. Further, phish 

websites are used to exploit visual spoofing and uni-coding alteration into the homographs of the target 

domains, as well as inserting suspicious words instead of brand names in the domain part. So far, phishing 

websites concealed URL property as well as hoaxing URL directory file names, and external services  

[25]–[27]. 

 

 

 
 

Figure 1. Generic URL components, an example of PayPal homepage 

 

 

3.2.  Features selection 

Information gain [28] in features engineering has contributed the most essential features for further 

classification tasks based on discovering each informative feature’s entropy that has inferred how much the 

feature has associated with random variable uncertainty by using information theory throughout the (1), (2), 

(3), and (4) [29]. As such, the information entropy of the random variable Y has been defined for the random 

variable X. Next, the difference in the information entropy between the random variables X and Y has been 

calculated as the amount of information gained by eliminating the uncertainty. Then, the value of Information 

Gain can be inferred by understanding the significance of the presence or absence of an individual feature to 

the classification task so that only the amount of information that characteristically has contributed to the 

classification can be used to determine its relevance. Thus, the feature has become increasingly essential as 

the amount of information it carried has increased. As a result, the significant features with higher 

information gain can be filtered to be encompassed in a subset of selective features. 

 

𝐻(𝑋) = −∑ 𝑝(𝑥𝑖)𝑙𝑜𝑔𝑝(𝑥𝑖)
𝑖  (1) 

 

𝐻(𝑋|𝑌) = −∑ 𝑝(𝑦𝑗)𝑗 ∑ 𝑝(𝑥𝑖|𝑦𝑗) 𝑙𝑜𝑔 𝑝(𝑥𝑖|𝑦𝑗)𝑖  (2) 

 

𝐼𝐺(𝑋, 𝑌) = 𝐻(𝑋) − 𝐻(𝑋|𝑌) (3) 

 

𝐼𝐺(𝑋, 𝑌) = 𝐻(𝑋) − 𝐻(𝑋|𝑌) (4) 

 

3.3.  Convolutional neural network 

As shown in Figure 2 CNN has made up of multi-layers of convolution, subsampling, fully 

connected, and normalization layers, respectively. In the convolution layer, the most proficient features have 

been extracted and then they have been fed to the fully connected layer for their categorization. In between a 

sub-sampling layer has been used frequently to pixelate a picture. All layers have encompassed kernels to be 

grouped by two-dimensional neurons. As such, the neurons in each feature extraction layer cannot be 

connected to all neurons in the next layers, unlike typical neural networking algorithms [30]. As such, a 

feature map can be constructed by coupling only the proceeding layers into a number of spatial mappings, 

fixed in size, and partial in overlapping, neurons. Thus, fewer connections can be produced with less training 

time and overfitting risk. A filter’s neurons in each layer can be linked to the same number of neurons in the 

prior input layer producing a feature map with the corresponding features’ weights and biases. Whilst, max 

and/or mean pooling can be used for sub-sampling frequently such that the last layer is fully coupled with the 

neurons for classification, the overall weights and biases can be trained in a backpropagation context [31]. 
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3.4.  Bidirectional long short-term memory 

The bidirectional long short-term memory (Bi-LSTM) model has resolved the constraints of the 

former LSTM by considering both the past and future context of the tracked sequence of dependencies at 

every time step as shown in Figure  [32]–[35]. The Bi-LSTM model can learn incoming data sequentially 

and develop recurrent neural network models that have been relied on in the context of the previous state to 

save their important information [33]. Whereas, the former model of LSTM has resolved the architecture of 

recurrent neural network (RNN) with self-loops to preserve the gradient of the recent inputs during a long 

period [34]. Thus, the significant information has been accumulated to be interfaced into the next step via a 

memory cell structure [34]. That is behind the capability of LSTM to overcome vanishing gradients, unlike 

RNN by the gradient disappearance and the gradient blowing up, which has allowed the gradients to pass 

unmodified. However, LSTM takes a significantly long time to train, datasets among its competitors [33], 

[34]. In addition, LSTM only considers the forward information and does not consider the backward 

information. Hence, this issue has been resolved in Bidirectional LSTM [33], [34]. Experimentally, BiLSTM 

has been proven as a powerful method as a URL anticipating model that could improve URL categorization 

through its layers compared to LSTM layers. Therefore, it has been blended with CNN to train URL features 

in our proposed detection model [33], [34]. 

 

 

 
 

Figure 2. Architecture of CNN 

 

 

 
 

Figure 3. Architecture of bi-directional long short-term memory [36] 

 

 

3.5.  Dual predictive model 

In the dual predictive model (CNN-BiLSTM), each input sequence in the input vector is convolved 

using one of the 20 convolution filters. A one-dimensional vector is set as the filter size. Downsampling and 

spatial dimensionality functions are performed by the maximum pooling layer. To obtain the highest value 

feasible, input features in each filter kernel’s pool are added together. Bidirectional LSTM networks have an 

output that is shared by two hidden layers that are connected in different directions. Reproductive deep 

learning is used in the BiLSTM network’s production layer to obtain knowledge sequences from both 
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previous and future states. LSTM layer memory cells could distribute the results of earlier data features into 

the output layer. A reduced performance for the machine learning system is also the result of the features 

being learned just in the forward direction, neglecting the backward relation. This flaw is addressed by the 

bidirectional recurrent network approach, which processes data both forward and backward. Respectively, 

each LSTM cell performs four discrete computations based on four gates: input (), forget (), candidate (), and 

output (). The following is an introduction and definition of the equations for these gates: 

 

𝑓𝑡 = 𝜎(𝑊𝑓𝑥𝑡 + 𝑤𝑓ℎ𝑡−1 + 𝑤𝑐𝑓𝑐𝑡−1 +𝑏𝑓) (5) 

 

𝑖𝑡 = 𝜎(𝑊𝑖 𝑥𝑡 + 𝑤𝑖 ℎ𝑡−1 + 𝑏𝑖 ) (6) 

 

𝑜𝑡 = 𝜎(𝑊𝑜 𝑥𝑡 + 𝑤𝑜 ℎ𝑡−1 +𝑏𝑜 ) (7) 

 

𝑐𝑡 =  𝑓𝑡 ⊗𝑐𝑡−1 +  𝑖𝑡 ⊗ 𝑡𝑎𝑛ℎ(𝑊𝑐𝑥𝑡 + 𝑊𝑓 ℎ𝑡−1 + 𝑏𝑐) (8) 

 

ℎ𝑡 =  𝑜𝑡 ⊗ 𝑡𝑎𝑛ℎ(𝑐𝑡) (9) 

 

𝐻𝑡 = (ℎ𝑡
→: ℎ𝑡

←) (10) 

 

Altogether, the forget, input, and output gate vectors are represented by 𝑓, 𝑖 and 𝑜, respectively. b, W, w, and 

⊗ stand for bias, input weights, recurrent output weights, and element-wise multiplication, respectively. 

ℎ𝑡is the LSTM cell's output, while (ℎ𝑡
→: ℎ𝑡

←)represents the concatenation of the outputs from the forward 

and backward layers, as shown in Figure 4. 

 

 

 
 

Figure 4. The dual predictive model (CNN-BiLSTM) 
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3.6.  Feature space pre-processing 

The feature space was constructed through three steps of cleaning, shuffling, and selection as shown 

in Figure 5. First, URLs have been chopped as a bag of words and given a unique integer value for each 

word in the bag via Python’s string package and printable class. As such, all penetrated URLs would have a 

similar size. All null values of the penetrated URLs have been eliminated in the cleaning step before feeding 

them to the shuffling step to avoid any obstruction during the URL training. Next, the shuffling step omitted 

overfitting values to reduce the random abundance of URL classes (phish and legitimate). Then, the selection 

step has filtered the mass-informative features from the miss-informative features to the classification 

accuracy via information gain (IG) criterion. Correspondingly, only the topmost potential and mutually 

relevant features to characterize the adversarial phish URLs have been selected to generate the feature space, 

as shown in Figures 6 to 11. Table 1Error! Reference source not found. shows the optimum features, with 

the value of information Gain after applying IG algorithm to the large feature set. 

Then, the feature space was split into feature vectors and target vectors. The target vectors have 

been made up of URLs’ classes as either “0” for legitimate or “1” for phish. Whereas feature vectors have 

consisted of the values of all 60 mutual features. As such, the dual prediction model (CNN-BiLSTM) would 

optimize its decisive parameters of convolution neural network and bi-directional long short-term memory 

by obtaining the representative feature space of 60 features for training without the undue time and memory 

consumption versus the sophisticated phish URLs. 

Training features space has been fed to the training pipeline particularly the features extraction 

module to extract feature vector. Feature vectors have been passed into the input layer. Then, URL features 

have been chained by CNN max-pooling with an activation function to be fed into the BiLSTM layer. That, 

in turn, employed a hyperbolic tangent function to activate the output with a size of 32 through a dense layer 

of two neurons alongside the sigmoid activation function for actual classification. Altogether output classes 

have been passed to the output layer for categorizing them into phish and/or legitimate labels. Both binary 

cross-entropy Adam optimizer and dropouts have been exploited throughout all hidden layers. On the other 

hand, the testing pipeline gets the advantage of the dual predictive model (CNN-BiLSMT) in the training 

pipeline to classify the extracted features in the testing features space as either phish or legitimate URLs 

iteratively. Then, produced dual predictive model (CNN-BiLSTM) has been run throughout the framework 

in Figure 12 that has evoked a web request while the user browsing the websites and checked up whether 

that requesting URL might be safe to visit by notifying the user.  

 

 

 
 

Figure 5. Feature space construction 

 

 

 
 

Figure 6. Most effective feature of whole URL properties 
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Figure 7. Most effective feature of domain properties 

 

 

 
 

Figure 8. Most effective feature of directory properties 

 

 

 
 

Figure 9. Most effective feature of file properties 
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Figure 10. Most effective feature of parameter properties 
 

 

 
 

Figure 11. Most effective feature of resolve and third-party properties 
 

 

Table 1. Optimum feature set based on IG algorithm 
ID Feature Name IG ID Feature Name IG 
F1 qty_slash_url 0.374893 F31 qty_dot_file 0.348736 
F2 length_url 0.281893 F32 file_length 0.347988 
F3 qty_equal_url 0.063778 F33 qty_dollar_file 0.334679 
F4 qty_dot_url 0.059265 F34 qty_at_file 0.33449 
F5 qty_hyphen_url 0.048873 F35 qty_and_file 0.334483 
F6 qty_tld_url 0.040417 F36 qty_exclamation_file 0.334395 
F7 qty_underline_url 0.038548 F37 qty_slash_file 0.334388 
F8 qty_and_url 0.032214 F38 qty_equal_file 0.334304 
F9 qty_at_url 0.021126 F39 qty_comma_file 0.334149 
F10 email_in_url 0.018615 F40 qty_hyphen_file 0.334089 
F11 qty_dot_domain 0.070389 F41 qty_percent_params 0.073628 
F12 domain_length 0.017554 F42 qty_tilde_params 0.073148 
F13 qty_vowels_domain 0.016099 F43 qty_exclamation_params 0.072738 
F14 qty_hyphen_domain 0.009891 F44 qty_asterisk_params 0.072396 
F15 domain_in_ip 0.003394 F45 qty_dot_params 0.071897 
F16 qty_at_domain 0.002991 F46 tld_present_params 0.071747 
F17 qty_questionmark_domain 0.001893 F47 qty_at_params 0.071641 
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Figure 12. Framework of dual deep learning predictive model 

 

 

4. EXPERIMENTS AND DISCUSSION 

Experiments, datasets, and evaluations are described and discussed systematically in this section. The 

dataset has been built, then select the most potential features based on the IG value. Finally, proposed a hybrid 

deep learning-based classification model that hybridizes convolution neural network and bi-directional long 

short-term memory (CNN-BiLSTM). 

 

4.1.  The dataset collection 

For an effective phishing predictive model, training and testing data must own item quality, source 

reliability, and class abundance greatly affect detection performance [37], [38]. Thus, we emulated a dataset 

of phish and legitimate URLs that were collected from various archives of phishing and legitimate URLs. 

Thus, the emulated dataset consisted of 14,000 valid sophisticated and generic phish URLs as well as 28,074 

valid legitimate URLs. The goal of the imbalanced dataset is to simulate a real-world situation in which there 

are more legitimate websites. The dataset contains 111 features are separated into six categories: 

characteristics that are dependent on the whole URL property (20 features), characteristics based on domain 

URL (21 features), characteristics based on the directory of the URL (18 features), characteristics based on 

the URL file name (18 features), characteristics based on URL parameters (20 features) and characteristics 

based on resolving URL and external services (14 features). The dataset was collected from PhishTank and 

OpenPhish data sources for phishing sites, and domkop data sources for legitimated websites during the end 

of November 2021. The description of emulating dataset is present in Table 2. 

 

 

Table 2. Description of emulating dataset [39]–[41] 
Source Number of Phishes Number of Legitimate Type 

Phish-Tank 13,000 Zero Phish Archive 

Open-Fish 1,000 Zero Phish Archive 

domcop Zero 28074 Legitimate Archive 

 

 

4.2.  Performance evaluation measurements 

To estimate the effectiveness of the proposed dual deep learning predictive model, the standard 

confusion matrix was employed to infer the values true positives (TP), true negatives (TN), false positives 

(FP), and false negatives (FN) listed (FN) by counting its rows, columns, and diagonals as shown in  

Figure 13. Overall, TP and TN can reveal the correctly classified negative and positive instances. FP and FN 

can infer the incorrectly classified positive and negative instances, respectively. Accordingly, detection 
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accuracy, precision, recall, and f-measure described in Table 3, can be computed as the proportion of the 

correctly identified URLs to the total number of examined URLs; the rate of valid positive URLs to the 

anticipated positive URLs; the rate of valid positive URLs regarding all positive URLs; and the harmonically 

computed rate of both accuracy and recall as presented in Table 3. 

 

 

 
 

Figure 13. Confusion matrix 

 

 

Table 3. Description of performance evaluation measurements 
Measurement Formula 

Accuracy 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  (𝑇𝑃 + 𝑇𝑁)/(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑁 + 𝐹𝑃) 
Precision 𝑃 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑃) 

Recall 𝑅 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁) 
F-measure 𝐹 =  (2 ∗ 𝑃 ∗ 𝑅)/(𝑃 + 𝑅) 

 

 

5. RESULTS AND DISCUSSION 

Altogether, CNN, LSTM, BiLSTM, and the proposed dual predictive model of (CNN-BiLSTM) 

have been carried out via Scikit Learn Library in Python. All examined models have been trained across 

(75%) of the emulating dataset and tested on (25%) of the emulating datasets respectively. The performance 

of the CNN 1D model is shown in Figure 14, the training accuracy of the CNN 1D model shown in  

Figure 14(a) and training loss of the CNN 1D model is shown in Figure 14(b), and Figure 14(c) shows the 

confusion matrix of the CNN model. The convolution layers with 20, and the kernel size is 2. The optimizer 

function was decided to be adaptive moment estimation (Adam) that is one of the most used optimization 

techniques for estimating large-scale neural network parameters, it works best with extremely large amounts 

of data when the gradients are maintained “tighter” during numerous learning iterations. Rectified linear unit 

(ReLU) was employed as the hidden layers’ activation function because it can 55 disrupt linearity between 

layers and prevent gradients from becoming unsaturated, while the sigmoid function was used for the output 

layer. The model has trained with 18 epochs.  

Then, the same anticipating feature space was used to train BiLSTM deep learning algorithm with 8 

epochs, Adam optimizer has used with ReLU activation function. The model consists of three layers, the first 

of which has seven cells and the second of which has three cells, and last layer has 1 cell. Finally, the 

sigmoid activation function has used. Figure 15 shows the Performance outcomes of the BiLSTM model,  

the training accuracy ratio in Figure 15(a), the loss and confusion matrix in Figures 15(b) and 15(c) 

respectively. 

Our developed dual deep learning algorithm of CNN+BiLSTM outperformed CNN, and BiLSTM 

because the neural network model was influenced by the size of the data set as well as other factors such as 

the number of hidden layers, activations employed, and drop out to avoid overfitting. As such, the Input URL 

is reshaped to be input to the CNN model, in this layer generates a tensor of outputs by convolving the layer 

input with the convolution kernel over a single spatial (or temporal) dimension. Since the number of features 

is 60, the input shape of the first convolution layer is (60,1). The convolution layers with 20, and the kernel 

size is 2. ReLU is the activation function used. The output of the CNN layer passed through the max pooling 

layer with a size of (2,1). Then the BiLSTM layer had 4 neurons followed by a flattened layer. A fully 

connected layer was used to be the last layer with a sigmoid activation function. The Adam optimizer, and 

Cross entropy loss function were used, as it proves to be the best for binary classification problems. Error! 

Reference source not found. shows the performance results of the proposed model CNN-BiLSTM with the 

training accuracy, and loss in Figure 16(a), and Figure 16(b) respectively, and Figure 16(c) shows the 

confusion matrix of the proposed model. 
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(a) (b) 

  

 
(c) 

 

Figure 14. Performance outcomes of CNN 1D model (a) training accuracy of CNN, (b) training loss of CNN, 

and (c) confusion matrix of CNN 

 

 

  
(a) (b) 

  

 
(c) 

 

Figure 15. Performance outcomes of BiLSTM model, (a) training accuracy of BiLSTM, (b) training loss of 

BiLSTM, and (c) confusion matrix of BiLSTM 
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(a) (b) 

  

 
(c) 

 

Figure 16. Performance outcomes of CNN-BiLSTM model, (a) training accuracy of CNN-BiLSTM,  

(b) training loss of CNN-BiLSTM, and (c) confusion matrix of CNN-BiLSTM 

 

 

Due to harmonizing the mean of models’ precision and recall together, the proposed dual predictive 

model of (CNN-BiLSTM) achieved the greatest F-measure of 98.88%, accuracy of 99.27%, Recall of 

98.85% rather than CNN, and BiLSTM individually, as shown in Error! Reference source not found. and 

in Table 4. Figure 17(a) shows the comparison training, and testing accuracy among the CCN, BILSTM, and 

CNN-BILSTM.  

Figure 17(b) compares recall, precision, and F-measure performance. Thus, the experimental results revealed 

that the three different deep learning-based predictive models varied in their performance and performance 

overhead. These experimental outputs raised the following question: “What factors should be attained to 

provide the highest detection accuracy?” 

It can be observed from Error! Reference source not found. that the numbers of filters in CNN-

BiLSTM compared to CNN and BiLSTM models, improved the performance outcomes of phishing 

prediction. Indeed, the increasing number of filters produced a higher training accuracy with a lower training 

loss. Correspondingly, the obtained F-measure was (98.88), and testing accuracy was 99.27 which inferred 

the highest rates. However, increasing the number of features rather they were significantly informative ones, 

would require leveraging more filters that in turn might maximize the complexity of the detection model and 

the number of  

hyper-parameters to train. Adding more filters (i.e., more layers) was unlikely to improve the training 

accuracy and minimize training loss. Furthermore, the training loss might not match up the increasing 

number of epochs closely, which would reflect how the detection model was over-fitted across imbalanced 

instances in the training dataset. That would maximize the training time and hence no outperformance can be 

obtained. On the other hand, the variance in filters’ length across the examined deep learning predictive 

models causes varied performance from low, moderate, and mild. Amongst, was the highest F-measure 

(98.88) of the proposed predictive model (CNN-BiLSTM) in comparison to a filter length of 4, 6, and 8, 

respectively. 

That inferred the outperformance of the deep learning predictive model depending on how to 

customary cross-combine more than deep learning algorithms at high detection accuracy versus the  

cyber-data stream [7]. Moreover, adapting the prediction of the new URL features of phishing in a real-time 

environment [6]. Contrarily, a solo deep learning predictive model (not a cross-combination or blended) 
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might output overfitting versus new phishing features by comparing the rates of false detections obtained via 

the training pipeline and testing pipeline along with the number of epochs. Thus, the best improvement to 

margin the prediction setting between under-fitting and overfitting can be obtained by the early stop of 

running epochs (no more than ten via CNN-BiLSTM) [16], [27], [42]. In addition, fine-tuning neurons in the 

running layers could significantly affect deep learning prediction accuracy and minimize the elapsed time 

(time consumption by training and testing pipelines). Hence, the dual deep learning predictive model like that 

of CNN-BiLSTM architecture could emulate the training imbalanced cyber-data stream into an informative 

feature space without compromising its effectiveness and efficiency in a sandboxing context [42], [43]. 

According to the results shown in Table 5, our technique offers comparable accuracy, recall, and precision to 

the current state-of-the-art models. To identify phishing websites, some related works utilized various sets of 

generic phishing features, however, their suggestions did not make a significant contribution to innovative 

phishing prediction. 

 

 

 
(a) 

 

 
(b) 

 

Figure 17. Comparative performance evaluation (a) training and testing accuracies of comparable classifiers 

and (b) precision, recall, and F-measure of comparable classifiers 

 

 

Table 4. Comparative among the proposed models 
Model Training accuracy Testing accuracy Precision  f1-score Recall 

CNN 1D 0.9789 0.9813 0.9490 0.9710 0.9941 
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BI-LSTM 0.9831 0.9855 0.9584 0.9777 0.9978 
CNN-BI-LSTM 0.9913 0.9927 0.9792 0.98881 0.9985 

 

Table 5. Comparative review of the related works 
Related Work Deep Learning 

Algorithm 

Method Data Source Performance evaluation 

Kumar et al. 

2021 [16] 

CNN It is improved with Swarm Intelligence 

Binary Bat Algorithm to learn URL features 

KAGGLE Accuracy: 94.8% 

0.2 % False detections 

Xiao et al. 

2021 [14] 

CNN It is a multi-headed and self-attentional 

algorithm assisted by the Generative 

Adversarial Network (GAN) and URL 

features 

Five thousand 

legitimate websites 

[36], Phish Tank 

Accuracy: 97.20% 

Detection Time: 174 as 

Recall= 95.60% 

Precision = 98.76% 

F1= 97.15% 

Jiang et al. 

2018 [44] 

CNN Classifies URL at character-level by the 

features of URL length, URL separators, 

number of dots, and other categorical and 

lexical features 

Google, DMOZ 

Phish Tank, Virus 

Total 

Miss Rates: 4/1000 URLs 

Ozcan et al., 

2021 [20] 

DNN+ LSTM, 

DNN + Bi-LSTM 

It is important for NLP features and 

character embedding features classification 

Ebbu2017 DL model Accuracy 

DNN+ 

LSTM 

98.62% 

DNN+ 

BILSTM 

98.79% 

Phish Tank DNN+ 

LSTM 

98.98% 

DNN+ 

BILSTM 

99.21% 

DNN+ 

LSTM 

98.62% 

Somesha  

et al. 2020 

[23] 

DNN+CNN+LSTM It uses information gain (IG) for features 

ranking and optimizing a set of URL 

obfuscation features, hyperlink-based 

features, and third party-based features. 

Phish Tank, Alexa Accuracy varied from: 

99.57%, to 99.43% 

Zhang and Li 

2017 [45] 

DBN Borderline Smote-based classification 

across a set of URL features, Page contents, 

and Images 

Phish Tank Recall: 90.7% 

Precision: 96.5% 

Huang et al. 

2019 [46] 

CNN+ RNN It segments specific Viterbi and URL 

features for phishing classification 

Phish Tank, Alexa, 

Open-Fish 

Accuracy: 97.905% 

FPR= 0.020% 

Precision: 98.958% 

Our Model CNN-BILSTM It uses information gain (IG) for features 

ranking and optimizing a set of URL 

obfuscation features, and third party-based 

features. 

Phish Tank, Open-

Fish DomCop 

Accuracy: 99.27% 

F-measure: 98.88% 

Recall: 99.85% 

Since we employed a tuned dataset by applying the IG algorithm with a sizable amount of data, our approach performed more accurately 

than the previous studies. 

 

 

6. CONCLUSIONS AND FUTURE WORK 

This work investigates how the mutual phishing feature space, and a dual deep learning-based 

predictive model can be satisfactorily blended to improve deep learning in phishing mitigation. To do so, 111 

phishing features were assessed and filtered for the 60 most mutual features by information gain. Then, the 

60 mutual phishing features were employed to construct the required feature space. Based on this assessment, 

a dual architecture of deep learning predictive model was proposed to extract these features from fetched 

URLs. For a more elastic and manageable evaluation, the proposed predictive model was evaluated with an 

emulated dataset consisting of 14,000 phishing URLs and 28074 legitimate URLs. The performance 

outcomes indicate an agreeable Elapsed time of less than 90 ms, accuracy is 99.27%, and F-measure of 

(98.88%). As such, our work presents a superior predictive model when compared with those of the 

literature. 

In the future, the predictive model will apply to a desktop anti-phishing tool that can examine and 

detect any URL inserted into the tool, then notify the user whether the fetched website is phishing or 

legitimate. Also, we will consider implementing the proposed predictive model for proper phishing profiler 

and investigating the appropriateness of that phishing profiler versus the emerging IoT phishing attacks. 

manageable evaluation, the proposed predictive model was evaluated with an emulated dataset consisting of 

14,000 phishing URLs and 28074 legitimate URLs. The performance outcomes indicate an agreeable 

Elapsed time of less than 90 ms and a F-measure of (98.88%). As such, our work presents a superior 

predictive model when compared with those of the literature. 
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