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Abstract 
The challenge of cyberattack detection can be 

illustrated by the complexity of the MITRE ATT&CKTM 
matrix, which catalogues >200 attack techniques 
(most with multiple sub-techniques). To reliably detect 
cyberattacks, we propose an evidence-based approach 
which fuses multiple cyber events over varying time 
periods to help differentiate normal from malicious 
behavior. We use Bayesian Networks (BNs) – 
probabilistic graphical models consisting of a set of 
variables and their conditional dependencies – for 
fusion/classification due to their interpretable nature, 
ability to tolerate sparse or imbalanced data, and 
resistance to overfitting. Our technique utilizes a small 
collection of expert-informed cyber intrusion 
indicators to create a hybrid detection system that 
combines data-driven training with expert knowledge 
to form a host-based intrusion detection system 
(HIDS). We demonstrate a software pipeline for 
efficiently generating and evaluating various BN 
classifier architectures for specific datasets and 
discuss explainability benefits thereof. 

Keywords: Bayesian networks, cybersecurity, 
explainable machine learning, semi-supervised 
learning, discretization 

1. Introduction

Prior work has used Bayesian networks (BNs) as
the core technology of an intrusion detection system 
(IDS), albeit typically using a single BN architecture. 
Jemili et al. (2007) designed a network-based IDS 
(NIDS) that uses signature recognition matched with 
known behavior in combination with the K2 BN 
learning algorithm and Junction Tree inference. They 
focus on detection of intrusions but do not consider 
false positives, a very important metric in an IDS. Xu 
and Shelton (2010) present a system for both NIDS 
and HIDS based on continuous-time BNs which they 
employ in lieu of dynamic BNs due to the bursty nature 
of cyber event data. Their system focuses on event 
timing instead of complex features even though their 
HIDS data has somewhat imprecise timing which 
could allow incorrect event ordering. Jabbar et al. 
(2017) focus on increasing the detection rate and 
accuracy while attenuating the number of false alarms 
in an IDS using feature selection in combination with 
a BN classifier. Our approach seeks to achieve these 

same goals via more sophisticated techniques for 
feature selection and discretization and generates a 
suite of BN classifiers with performance tradeoffs. 

Our focus on host-based cyberattack detection 
requires the use of host logs. Rather than the oft-used 
DARPA KDD '99 dataset (or its revised version, NSL-
KDD), we utilized a more modern dataset from Sandia 
National Laboratories which contains a significant 
amount of host-based log data generated by Windows 
System Monitor (a.k.a. Sysmon) with millisecond 
timing, as described in detail in section 2. 

BNs are probabilistic graphical models capable of 
multi-directional inference among multiple variables 
via Bayes’ Rule (Pourret et al., 2008). When trained 
upon expert-informed features, BNs yield relatively 
interpretable solutions to classification problems. 
They are lightweight and cheap to train, natively 
provide confidence estimates and goodness-of-fit 
measures, and are relatively robust to imbalanced 
datasets and overfitting, especially in rare event 
detection (Uusitalo, 2007). These advantages make 
BNs well-suited to the detection and analysis of 
suspect system logs in the cybersecurity field. We have 
developed a pipeline that allows multiple BN 
architectures to be evaluated to determine the highest 
performing BN classifier solution for specific 
stakeholder needs with minimal manual effort.  

We desired the capability to be accessible from a 
common data analytic environment. There was no 
Python-native comprehensive package for creation, 
training, and testing of BNs beyond Naïve Bayes, and 
although R has several strong BN packages, its 
copyleft licensing is unsuitable for some intended uses. 
After reviewing several BN modeling tools, we 
selected Bayes Server (2021) as our engine for BN 
creation, inference, and analysis, due to its Python-
accessible API and strong data-driven model-building 
algorithms. We created Python wrappers for select 
components of Bayes Server’s Java API, enabling 
model training and assessment within an automated 
workflow via a few succinct classes and methods. 

We investigated several changes to manual BN 
development pipelines to improve convenience and 
classification performance. Key examples: 

• Automatic discretization removes the need to
manually discretize new/updated data and often
outperforms continuous encodings; supervised
discretization can further improve performance.
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• Automatic feature selection reduces model size
and can improve classification performance.

• A performance-tunability metric and Pareto
method enables selecting the best model at a given
complexity.

We designed the framework for model interpretability 
and results explainability, as outlined in Figure 1: 
• Expert-informed datasets: Start with datasets

vetted by experts to ensure the pedigree and
content of known malicious behavior (Section 2)

• Interpretable features: Derive features based on
expert input, with names/descriptions which map
to known suspect behavior. (Section 2)

• Explainable discretization: Define feature-split
thresholds via a method explainable in terms of
importance to target classification. (Section 3.2)

• Bayesian Networks: Provide interpretability by
defining the relationships among variables
(features and target/label) both graphically and
with inspectable conditional probability tables.

• Results explainability: Enabled by BNs, provide
explainability of output classifications via impact
analysis, value of information, and analysis of
difficult/ambiguous cases. (Sections 3.4, 5.3, 5.4)

 Figure 1. Visual outline of 
interpretable/explainable design pipeline. 

2. Expert-Informed Features and Data

We conducted our analysis using two datasets,
Tracer FIRE 9 (TF9) and Tracer FIRE 10 (TF10), 
which consist of a combination of both “normal”, 
nonsuspicious system events, as well as “suspect” 
events resulting from adversarial attacks. The data was 
obtained from the Sandia National Laboratories (SNL) 
Tracer FIRE team. Tracer FIRE (TF) is a Forensic 
Incident Response Exercise designed by SNL to give 
participants an advanced persistent threat (APT) real-
life scenario driven experience to test forensic skills 
and learn new methodologies to conduct forensic 
investigations. Each year a new scenario is created 
using the latest exposed APT attacks and software 
vulnerabilities used. Vulnerabilities are embedded into 
a simulated enterprise network with normal security 
practices in place, then attacked by a red team using 
customized APT malware. There can be multiple APT 
groups with differing tactics, techniques, and 
procedures (TTPs) using custom malware to gain 
access and perform actions necessary to their 
motivations. While each fictional APT performs its 
actions, forensic details are captured by the victim 
network using a variety of cyber event detectors 
including Zeek and Windows System Monitor (a.k.a. 
Sysmon). Access to the TF9 data is publicly available 

including the raw event data as well as the forensic 
reports which characterize the malicious behavior 
(Tracer FIRE, 2021).  

 To convert the raw Sysmon data into a usable form 
for training a BN, we developed a scenario extraction 
tool (SET) for identifying scenarios (parent-child 
process trees) which contain one or more suspicious 
events (system logs) based on expert-informed 
indicators and expert knowledge of cyberattacks. The 
scenarios labeled as “suspect” are known malicious 
APT activities within the dataset which may not readily 
map to intrusions identified in the MITRE ATT&CK 
matrix. The collection of suspect indicators and 
associated Sysmon events used herein are described in 
Table 1 and are intended to be illustrative but not 
exhaustive. The SET uses wildcard string matching to 
detect suspicious Sysmon events, as well as 
whitelisting to ignore innocuous events.  

Each scenario is represented as a collection of 
aggregated statistics based on the events which 
comprise it as described below, then used as an 
interpretable set of features for the BN.  

• known company percent: The integer percentage
(0-100) of the executables within the scenario with
a known company as the publisher. If the publisher
is known, it is specified in the Sysmon event
record, else it is blank.

• file create count/duration/stdev: The number of
times the same executable repeats a file creation
action; the duration in seconds; and standard
deviation, when multiple file saves occur (three
separate features).

• max time delta: The maximum time delta between
any two adjacent scenario events (in seconds).

• max tree depth: The maximum depth of the
process tree across all events in the scenario.

• duration: The sequence duration (starting from the
first suspect event) in seconds.

• threat [XX] count: The number of times threat
event XX from Table 1 was present in the scenario
(e.g., Threat 17 count = # of file saves) (multiple
separate features).

• priority sum: The sum of priority values across all
child events, including repeats. The priority of an
event indicates how suspicious it is (with higher
values being more suspicious). The event
prioritization scheme is based on expert input but
used for notional purposes only.

• max priority: Maximum priority across all events.
• single-dest count/duration/stdev: The number of

network connections from the same executable to
a single destination (beaconing); the duration in
seconds; and standard deviation when multiple
network connections occur (three features).

• multi-dest count/duration/stdev: The number of
times the same executable connects to multiple
network destinations (reconnaissance); the
duration in seconds; and standard deviation, when
multiple connections occur (three features).
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3. Key Elements of BN Pipeline

The classification pipeline is based upon a Python 
API extension library written to provide a convenient 
level of abstraction for BN operations such as network 
instantiation, parameter and structural learning, batch 
queries, and explainability analyses. The library 
utilizes wrapper classes that succinctly encapsulate 
common BN operations from Bayes Server’s Java API 
and facilitate integration with other machine learning 

libraries, allowing for creation, training, and 
inspection of BNs to be completed in a few high-level 
object-oriented function calls. The following 
subsections describe key pipeline features. 

3.1. Feature Selection 

Several schemes for feature selection were 
developed and tested with an eye towards improving 
data dimensionality and model interpretability and 
robustness. A basic scheme is to remove highly 
correlated features and features with zero variance, 
which we refer to as covariance screening. Additional 
feature-selection schemes using supervised learning 
algorithms are optionally applied after. Feature 
selection schemes utilizing mean decreases in impurity 
(MDIs) calculated by random forests, gain calculated 
by extreme gradient boosting (XGBoost) models, or 
ridge regression coefficients can often improve 
precision-recall performance of BNs. 

3.2. BN Variable Discretization 

Although Bayes Server’s API (and therefore our 
library) supports continuous linear gaussian variables, 
their usage often requires significant additional BN 
structure complexity to adequately approximate joint 
distributions, and/or reduces model performance. 
Binning feature values and then using discrete 
variables is common, but it is expensive for a subject 
matter expert or analyst to analyze each variable 
separately to determine bin boundaries – particularly 
as datasets change and/or new features are engineered. 
Readily available programmatic discretization 
routines did not meet our needs. Thus, we investigated 
automated discretization schemes involving both 
supervised and unsupervised machine learning 
techniques. A primary challenge was to automate 
decisions that would normally require human input, 
such as number of bins, location of bin boundaries etc., 
in an explainable classification-salient way. 

One solution was to run k-means clustering on 
individual features to discretize values into distinct 
clusters. The number of clusters to ultimately use for 
each variable was determined by the “elbow method” 
outlined by Bholowalia, et al. (2014); as the number of 
clusters was increased, the mean squared error (MSE) 
for each number of clusters was calculated and the 
optimal number of clusters chosen when the MSE 
dropped significantly, which we detected by 
approximating the second derivative with respect to 
the number of clusters using the central difference. 
Note that our goal was not to minimize MSE, but to 
provide a good balance between underfitting and 
overfitting. Double-interval partitioning values were 
then obtained by extracting k-mean centroids from the 
k-value that had the highest central difference. We
refer to this approach of discretizing variables using k-
means clustering as “k-means discretization”.

Table 1. Suspect indicators 

[ID] Indicator Name
Associated 
Sysmon Eventa Priority 

[1] WScript creating script in Users
subdirectory (11) FileCreate 2 
[2] Execution of VB script in Users
subdirectory

(1) Process
creation 2 

[3] PowerShell WebClient 
downloadstring

(1) Process
creation 1 

[4] PowerShell EncodedCommand
(1) Process
creation 1 

[5] wget storing exe file in 
Windows directory (11) FileCreate 3 
[6] wget creating exe file in any 
directory (11) FileCreate 2 
[7] MS Office creates exe file in 
Users subdirectory (11) FileCreate 4 
[8] MS Office creates any file in 
Users subdirectory (11) FileCreate 2 

[9] MS Office exe stream creation
(15) FileCreate-
StreamHash 4 

[10] Shell command launches exe
(1) Process
creation 1 

[11] Shell command launches exe
in Users, Temp or Startup directory

(1) Process
creation 2 

[12] Executable launches
power/command shell

(1) Process
creation 1 

[13] Any exe modifying registry
(13) Registry-
Event (set) 1 

[14] Exe in Users subdirectory or 
temp directory making network 
connection

(3) Network 
connection 3 

[15] Exe in user Windows directory 
making network connection

(3) Network 
connection 1 

[16] Exe in Users subdirectory 
creating DLL/EXE/script in Users,
Temp or Startup directory (11) FileCreate 3 
[17] Browser saves DLL, EXE, or 
script in Users or Temp directory (11) FileCreate 3 
[18] Exe creates DLL/EXE/script
in Users, Temp or Startup directory (11) FileCreate 2 
[19] Execution of exe in Users or 
Temp subdirectory

(1) Process
creation 2 

[20] Exe in non-main root directory 
creates exe in temp or downloads 
directory (11) FileCreate 2 
[21] Browser saves DLL, EXE, or 
script in users temp/downloads 
directory via FileStream

(15) FileCreate-
StreamHash 3 

[22] Shell command saves DLL,
EXE, or script in Users, Temp or 
Startup directory (11) FileCreate 2 
[23] Suspect exe modification in 
registry

(13) Registry-
Event (set) 3 

[24] Suspect process creation
(1) Process
creation 2 

[27] Execution of exe in non-main 
root directory

(1) Process
creation 2 

[28] Execution of ping.exe
(network discovery)

(1) Process
creation 2 

[29] Shell command launches script 
in Users, Temp or Startup directory

(1) Process
creation 2 

a. a complete description of all Sysmon events can be found at 
https://docs.microsoft.com/enus/sysinternals/downloads/sysmon
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A limitation of both the manual and k-means 
discretization methods is that they do not consider the 
relationship between the feature and the target 
variable; a bin boundary that “clusters” the feature well 
may not provide the best contrast for target 
classification. With this in mind, we modified the 
“random forests discretizer” proposed by Berrado and 
Runger (2009). Their method allows discretizing 
features in a supervised, multivariate manner that is 
relatively cheap to train: a random forest model is 
trained on the labeled data, and feature-split thresholds 
that are most important for classification can then be 
extracted by crawling through the forest. 

However, as noted by Cheng (2015), raw count of 
a threshold’s prevalence across all trees may be a 
misleading metric of importance. Building a weighted 
histogram based on change in Gini impurity at each 
split in every tree provides a more meaningful measure 
of the information content of a given feature split (see 
Figure 2). We therefore modified Berrado and 
Runger’s algorithm using delta-Gini-weighted feature 
split importance histograms. Figure 2 illustrates this 
concept for feature “max tree depth”; note that splits 
below value 3.5, for example, provide low delta 
impurity and class contrast despite their prevalence. In 
Figure 3, Gini-based discretization of this same feature 
demonstrates high contrast between positive and 
negative classes.  

Although Berrado and Runger suggest a possible 
thresholding method for future automation, the paper 
examples are based on manual selection of histogram 
modes. Needing a method to automatically determine 
the number of modes/bins to select and, recognizing 
that a choice of threshold is likely data-dependent, we 
instead developed an elbow method for automatically 
picking bin boundaries using the central difference, 
similar to the terminating method used for k-means 
discretization. Our modified random forest (“target-
informed discretization”) method is as follows: 

1. Train a random forest classifier on the labeled
training data and, for each feature variable, extract
classification importance information for feature-
split thresholds, as measured by changes in Gini
impurity in every tree.

2. For each feature, build a weighted histogram with
thresholds on the x-axis and split importance on
the y-axis, with bin centers as candidate feature
splits/thresholds.

3. Choose the number of feature splits for each
variable using the elbow method over MSE
scores. MSE for different numbers of splits are
calculated and the optimal number of splits is
determined by the central difference. Histogram
bins the with highest relative importance are
greedily added first, and histogram bin centers are
used directly as our discretization bin boundaries
(since they are chosen specifically for their ability
to split the data for classification).

Key challenges included determining the number of 
bins/split candidates for the elbow method to work 
well, and how to decide whether/when a variable with 
a moderate number of distinct states should be further 
summarized in a discretized variable with fewer states. 
We further recognize that performance of this method 
is potentially hampered by the simplicity of the greedy 
heuristic and may be quite dependent on the binning 
strategy in step 2; we intend to address these questions 
more thoroughly in future work.  

Figure 3. Histogram of max tree depth values, 
with bin boundaries set based on delta Gini 
impurities in Figure 2. Note contrast between 
negative (top) and positive class (bottom).  

Figure 2. A comparison of measures of feature 
split importance for a numerical feature (max 
tree depth) in a random forest. The top plot 
shows raw count/prevalence of split values 
across all trees. The bottom plot shows counts 
weighted by changes in Gini impurities. In this 
example, we see that some split values with 
lower count (such as 7.5) provide greater delta 
impurity. In contrast, splits below 3.5 are quite 
frequent but provide low delta impurity and 
would add little value for classification. 
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3.3. Assessing Models: Performance-
Tunability Pareto Front 

To assess BN performance, we took the geometric 
mean of the area under the Precision-Recall curve and 
the F1 score (at 0.5 probability threshold for positive 
classification). We will refer to this metric as the 
“performance-tunability” metric. The intent is to 
reward models that have good default performance 
and robustly tunable performance across alternate 
thresholds. Once multiple networks are trained and 
tested on the same data, the performance-tunability 
metric and number of parameters can be extracted 
from each BN and plotted. We propose selecting 
models that lie on the Pareto front of the plot, i.e., no 
other model can do better in one axis without getting 
worse in the other. An example is shown in Figure 7; 
since we wish to maximize model robustness and 
minimize model complexity, the Pareto front here is 
the upper left edge of the point cloud. Pareto front 
selection provides a means for selecting from a suite 
of models with optimal performance and complexity 
tradeoffs and can easily be adapted to other 
performance or complexity metrics.  

3.4. Impact Analysis: Enhancing 
Classification Explainability 

Impact analysis indicates which features make the 
greatest difference to the classification probability for 
a given set of evidence (Bayes Server, 2021). Evidence 
from a given data sample is included, one feature set 

at a time, in a query to a BN with no other evidence 
observed (or the evidence can be excluded from a 
query where all other evidence is observed). This 
capability leverages BNs’ unique abilities for 
inference with missing feature data. Whereas manually 
setting evidence feature-by-feature in a UI is time-
consuming and error prone, automating via the API 
allows the user to initiate a query directly from 
common Python data structures representing the entire 
feature space of a single sample/case (and, if desired, 
automate over all cases in a set/list).  

We introduce a network graph visualization of 
impact analysis (executed for all individuals and pairs 
of features) that provides single-feature information 
within nodes and information for pairs of features 
along edges (see Figure 4). The results of such 
analyses can then be used to discern the impact of 
feature states or combinations of feature states against 
a particular target variable. 

4. Experiment on Cybersecurity Data

We applied the pipeline capabilities above to the
classification of cybersecurity scenarios (summarized 
process trees of system logs) found in the TF9 and 
TF10 datasets. Manually selecting the right BN 
classifier is a challenge; using the transformed TF9 and 
TF10 SET data, our analysis sought to determine 
which BN structures have the highest performance for 
scenario classification. We additionally sought to 
answer the following questions in the specific context 
of this application and dataset:  

Figure 4. A graphical depiction of impact analysis queried on a BN trained on cybersecurity data, using 
feature state values from a single scenario. Nodes indicate feature names, states, and positive class 
probability if only this feature’s evidence is observed.  Edges indicate positive class probability if the 
two connected features’ evidence is observed. The graph is filtered to show only combinations of 
evidence that substantially increase the probability of a positive classification (vs. no evidence). The 
darkest links belong to the subgraph of features most strongly tied to a positive classification. This 
model believes that the combination of 0 known company percent with 1 threat 19 count or 0 threat 10 
count are the most suspect in the absence of other evidence. A similar graphic can be produced to 
understand which features/pairs are most impactful when excluded from the scenario evidence. 
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• Do BN classifiers benefit from semi-supervised 
training? Since BNs can learn non-target links 
from unlabeled data, can augmenting the training 
set with unlabeled data improve classification? 

• How do feature selection and discretization – 
supervised methods in particular – affect the 
robustness of BNs?  

Our experiment used a modification of k-fold cross-
validation. The TF9 and TF10 data were aggregated 
into a single dataset and split into three separate 
train/test folds by shuffling and then stratifying across 
the overall dataset. We did not use more folds due to 
the highly imbalanced nature of the data (TF9 had 54 
positives in 310 scenarios and TF10 had 119 positives 
in 3623 scenarios). We then defined three separate 
train-test partition strategies, described in Table 2:  

 
The “2-0-1” strategy is equivalent to regular k-fold 

cross-validation with three folds and is therefore also 
referred to as a “2:1 train-test split”. The “1-0-1” and 
“1-1-1” partition strategies are included to measure the 
performance of semi-supervised training. For each 
strategy, the test set was rotated among the three folds. 

Four preprocessing sequences were assessed by 
running k-means or Target-Informed discretization in 
combination with either Covariance Screening (0.99 
threshold), or Covariance+XGBoost feature selection 
(0.99 cov. threshold, 0.001 XGBoost gain threshold). 

Models were built via every individual structural 
learning algorithm shown as a node in Figure 5, and 
every valid pair shown as an edge (e.g., TAN followed 
by PC is valid, but PC followed by TAN is not). The 
full experiment design is summarized in Table 3.  

Finally, parameter learning was performed on each 
model built from a unique sequence of train/test split 

partitioning, preprocessing, and structural learning, 
and metrics were averaged over the three test splits.  

We assess each model’s performance via precision 
and recall (and related F1 and PR AUC measures), 
which are more appropriate for our class-imbalanced 
problem than TPR, FPR, accuracy, or ROC AUC. For 
simplicity, we omitted other imbalance mitigations, 
such as oversampling or overweighting the minority 
class, from the experiment design. Among machine 
learning (ML) methods, BNs are known to be 
relatively robust to imbalance (e.g., Leong, 2016) – 
likely in part because they are not typically trained to 
maximize accuracy – and in our experience over-
weighting the minority class does not improve a BN’s 
classification performance. However, using SMOTE 
(Synthetic Minority Oversampling Technique) or 
other similar approaches before structural learning 
may result in better BNs from some algorithms. We 
intend to address class resampling and/or reweighting 
for structural learning in future work. 

5. Cybersecurity Experimental Results 

 The results of the analysis are summarized in 
figures 6 and 7. In each figure, the top 20 models (by 
F1 score mean) from each preprocessing and partition 
combination are displayed, with each model being 
trained with a different sequence of one to two 
structural learning methods. Red and blue lines mark 
the performance of the best Naïve Bayes and tree-
augmented naïve (TAN) models respectively, from 
any partition and processing strategy, with respect to 
the performance metric shown on the axis. The best 
model is not necessarily the same on all axes, so not all 
red/blue “crosshairs” will intersect a point. Values 
(other than the area calculation for performance-
tunability) are calculated at the default 0.5 probability 
threshold for positive classification. 

The efficiency and comprehensive feature set of 
the Python API extension library allowed for the 
creation of highly robust models for this specific 
application. Given a rich training set and adequate 
discretization and data preprocessing, we saw mean F1 
scores surpass 0.87 in a highly data-imbalanced 
classification application (Figure 6). Through 
combining structural learning methods, models often 
exceed the performance achieved by traditional Naïve 
Bayes and TAN models within the same partition and 
pre-processing classes (recall that in Figure 6, only the 
best TAN and Naïve Bayes models across all strategies 
are denoted by blue and red lines).  

Table 2. Partition strategies 

Partition 
Strategy 

Percentage of TF9+TF10 Data in Partition 
Labeled train Unlabeled train Test 

1-0-1 33.3% 0% 33.3% 
1-1-1 33.3% 33.3% 33.3% 
2-0-1 66.7% 0% 33.3% 

 

Table 3. Experiment design 

Train-test 
Partition  
Strategy × 

Pre-processing  
(on training data) 

× 

Structural Learning 
(on training data) Screening 

× 

Discretization 
1-1-1 Covariance k-means All methods 
1-0-1 Covariance + 

XGBoost 
Target- 

informed 
All valid pairs of 

methods 2-0-1 
 

 
Figure 5. Nodes denote structural learning 
methods and edges denote valid ordered pairs 
(some methods do not support link constraints 
or latent variables from prior methods). Naïve 
Bayes is custom (to ensure an acyclic graph), 
and clustering is adapted to use the elbow 
method for fewer latent cluster states. All other 
methods are unmodified from Bayes Server. 
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The best F1 performance was from models using 
the 2-0-1 train-test strategy (unsurprisingly) and built 
using covariance screening and target-informed 
discretization. Models with high F1 are generally also 
tunable, based on correlation between mean F1 and 
mean area under the precision-recall curve (R2 = 0.71). 
This indicates that competitive models can likely be 
tuned to specific probability thresholds to achieve 
greater performance in either precision or recall. BNs 
also performed quite well with sparser labeled training 
data (1-0-1 section of Figure 6), particularly using 
target-informed discretization and the less aggressive 
covariance screening. Going from 1-0-1 to 1-1-1, 
adding unlabeled data decreased mean F1 scores. This 
is consistent with Cohen et al. (2003), which observes 
that addition of unlabeled data to a training set can 
often reduce performance on model structures not 
designed to take advantage of it. 

5.1. Pareto Front Selection 

Plotting performance-tunability versus parameter 
count in Figure 7 as discussed in section 3.3, the Pareto 
front (top left) selects models with simple underlying 
structures to optimally balance complexity and 
performance – typically built with naïve, TAN, or 
clustering structural learning. K-means discretization 
generally provides lower complexity, particularly 
combined with XGBoost feature selection. Higher 
performance often results from covariance screening 
and/or target-informed discretization. Notably, the 
choice of axes for the Pareto could differ based on 
stakeholder priorities. In the cybersecurity domain, 
analysts are typically swamped with false positives, so 
choosing models with high precision and acceptable 
recall is a likely strategy. We could instead select the 
Pareto set of the mean precision vs. mean recall plot to 

Figure 6. Mean F1 score across 3 test splits of best 20 models for each preprocessing strategy 
(colors) and partition strategy (x-axis). Red line = F1 of best Naïve Bayes, Blue line = F1 of best TAN. 

Figure 7. Mean performance-tunability index vs. mean parameter count across all 3 splits. 
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get optimal precision-recall tradeoffs. This strategy 
favors search-and-score and naïve/TAN structures, 
often in combination with other methods, and favors 
the 2:1 train-test strategy and covariance screening.  

5.2. Comparison Against Random Forest 

Table 4 compares metric averages of the best-
average-F1 model – naïve and clustering BN (NBC) – 
for the 2-0-1 split against default random forest and 
TAN BN models. This single-BN model developed by 
our pipeline performs quite favorably when compared 
to common naïve and TAN structures and remains 
competitive when compared to random forest models 
in terms of F1 scores. Even greater F1 scores were 
possible on our testing set by running a grid search 
over different probability thresholds.  

The slightly worse NBC performance compared to 
a random forest was deemed acceptable considering 
the vastly greater interpretability of a single BN with 
inspectable probability tables vs. a large forest of 
decision trees, and the local/global self-explainability 
it provides for subject matter experts (although random 
forests have built-in global explainability, they require 
a surrogate like SHAP to derive local explainability for 
specific samples). Specific interpretability and 
explainability benefits of BNs are discussed further in 
sections 5.3 and 5.4. 

5.3. Interpretability and Explainability 

As pointed out by Rudin (2019), it is preferable to 
use inherently interpretable models for making high-
stakes decisions; cyber intrusion detection certainly 
qualifies. Rudin further claims that any explanation 
method for a black-box model will almost certainly be 
inaccurate for some inputs, resulting in unpredictable 
mismatches between the model and explanations. BNs 
avoid these issues by providing an interpretable model 
representation as well as self-explanation of output 
(i.e., without needing a surrogate).  

Figure 8 shows a TAN BN model trained on the 
Tracer FIRE data with highly correlated variables 
(34% of features) removed; it illustrates the 
dependencies between the different variables for 
model interpretability. The conditional probability 
table (CPT) for each variable can be inspected to get a 
deeper understanding of the classifier.  

Aas et al. (2020) mention that a disadvantage of 
calculating Shapley values – as required to explain 
many common machine learning methods – is that the 

computational complexity grows exponentially with 
number of features, which has led to approximation 
methods being used by the Kernel SHAP method. The 
Kernel SHAP method assumes that the features are 
independent and when this is not true (i.e., when some 
variables are correlated) may lead to incorrect Shapley 
values and thus incorrect explanations. Further noted 
by Smith et al. (2021), LIME and SHAP make strong 
assumptions of feature independence and linear 
interactions, which are frequently inaccurate. In 
contrast, not only are BN models self-explainable, but 
because they are generative models, explanation does 
not require additional calculations over the training 
set. Thus, no subsampling is needed, and explanation 
accuracy does not vary by sample size. Furthermore, 
explanation calculation runtime is independent of 
training set size and can be dramatically faster than 
post-hoc explanation methods.  

To assess SHAP explainability versus BN self-
explainability, we applied the Python implementation 
of Kernel SHAP (Lundberg & Lee, 2017) to a 
Categorical Naïve Bayes classifier in scikit-learn 
(CategoricalNB [Pedregosa et al., 2011]) using 
different sample sizes for the SHAP analysis: all 3933, 
1000 and 100 samples. The experiments were 
performed on a Windows 10 PC with a dual-core i7-
7500U running at 2.70 GHz. We saw exceedingly long 
run times (especially when using all 3933 sample 
records) and an inconsistency of feature-importance 
ordering between runs for sampled SHAP. As shown 
in Table 5, the Kernel SHAP feature importance  does 
not match well with the feature importance given by 
the Value of Information of the Categorical Naïve 
Bayes model (as produced by Bayes Server with an 
equivalent model). Given this mismatch between the 
BN’s self-explained feature importance (which comes 
directly from the BN) and the SHAP determination of 
feature importance, one could reasonably hypothesize 
that using SHAP as a post-hoc explainability method 

Figure 8. TAN BN trained on TF9 and TF10 data. 
Target variable SUSPECT is highlighted in red. 

Table 4. Classifier Performance Comparison 

Random 
Forest 

TAN 
(PT=0.5) 

NBC 
(PT=0.5) 

NBC 
(PT=0.13) 

Accuracy 99.3% 98.4% 99.0% 99.0% 
TPR/Recall 85.0% 80.9% 81.6% 89.0% 
FPR 0.05% 0.82% 0.24% 0.56% 
Precision 98.0% 82.0% 94.1% 88.0% 
F1 Score 91.0% 81.4% 87.2% 88.5% 
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can result in misleading or incorrect feature 
importance explanations for other ML models as well.  

 
Table 5. Runtime and top-10 features for Naïve BN 

self-explanation vs. SHAP

 
Because the BN is a collection of CPTs, it is also 

relatively straightforward to determine via Bayes Rule 
how the target variable relates to individual states of 
the features. This characteristic enables understanding 
the effects of dependent/ correlated features and 
nonlinear interactions and can provide valuable feature 
insights. For instance, a state-level analysis of the 
Naïve Bayes model shows that low max tree depth 
values provide little target contrast, and virtually all of 
the discriminative power of the feature lies in the 
difference between moderate and high values. Such 
analysis can also be performed with partial evidence 
observed, allowing the user to understand what feature 
state information would be next-most-valuable when 
some features are known. 

5.4. Analysis of Difficult/Ambiguous Cases 

A given BN classifier model can be analyzed to 
determine which cases it found the most difficult to 
score. By comparing the log likelihood of each case 
with and without the target label observed, one can 
find which cases would have significantly better model 
fit without the assigned label. This analysis process 
allows identifying potentially mislabeled cases and 
cases whose label-salient characteristics are perhaps 
not well represented in the feature space.  

We demonstrate here on a model with excellent 
precision and moderate recall (chosen consistent with 
a priority on minimizing false negatives). As seen in 

Figure 9, there are a few cases with large differences 
between the log likelihood scores with and without 
target labels observed. As one would expect given the 
model’s high precision and modest recall, all of these 
cases were false negatives in at least one test split. We 
discuss three representative cases:  

• TF9-240: File downloads followed by sequence of 
chained command/powershell executions – 
suspicious upon manual inspection, but in ways 
that are not well reflected in current features. 

• TF10-118: File downloads, apparently innocuous 
registry sets, and download of a PowerShell script. 
Weak evidence of malicious activity without prior 
knowledge. 

• TF10-1078: Save of a batch file by svchost.exe. 
Weak evidence of malicious activity without prior 
knowledge.  

In these cases, it is understandable why the model 
provided false negatives (and why models that label 
these correctly might have worse precision). Such 
cases are expected, since APTs intentionally perform 
attacks using standard techniques to mimic normal 
host behavior and avoid detection. Additionally, cases 
such as TF9-240 may motivate iterative refinement of 
the feature space when existing features do not reflect 
key nuances relevant to the classification problem.  

Ambiguous cases can also be identified based on 
classification probability, and impact analysis (as 
discussed in section 3) may help clarify the model’s 
labeling rationale and give analysts more evidence to 
determine whether a classification might be incorrect. 
Figure 4 depicts such a case, TF9-122, which was 
highly ambiguous (P(Suspect) = 0.4996) in one test 
split. Review of an impact analysis visualization such 
as Figure 4 would allow an expert to determine the 
salient features of such a case and determine whether 
the evidence was sufficient for a given classification. 

6. Conclusions 

This study demonstrated the effectiveness and 
efficiency of building BNs for detecting cyberattacks 
through automated pipelines using a novel Python API 
extension library. Automating structural and 
parameter learning, discretization, and k-fold cross-
validation accelerate model building and assessment 
and enable more comprehensive experimentation and 
model optimization. In particular, the ability to 
automate structural learning across a wide selection of 
algorithm combinations enables creation of a diverse 
portfolio of networks, improving the likelihood of 
creating appropriate models for a wide range of use 
cases and stakeholder needs. As APT behavior drifts, 
models can quickly be rebuilt or retrained.  

Using this pipeline, we can efficiently create a 
cyberattack detection system which considers the 
tradeoff between the probability of detection and the 
probability of false alarm. This tradeoff can be 

 
Figure 9. Histogram of labeled minus 

unlabeled log likelihood across all TF9 and 
TF10 cases (average across 3 test splits) using 

a high-precision BN model. Note log-y axis.  
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considered both during model selection, and in tuning 
the selected model’s detection threshold. Given the 
typically unbalanced data that will be experienced in 
real-world systems, managing this tradeoff is critical 
since missing a true attack could result in a significant 
compromise whereas excessive false positives make it 
far more difficult to single out an actual attack.  

Calculating log likelihood of each case with and 
without the target label observed allows identifying 
cases that the model had difficulty classifying. This 
can lead to greater understanding of false negative/ 
false positive trends, and of where features can be 
improved. Batch impact efficiently provides tabular 
and/or graphical classification explanations for any 
desired data samples. This capability could aid cyber 
analysts in quickly determining if certain ambiguous 
scenarios are malicious or innocuous and why.  

While other methods such as random forests may 
have greater classification performance in certain 
instances, the BN pipeline provides a suite of models 
that are mostly simpler and more interpretable, with 
built-in explainability (such as value of information, 
impact analysis, and analysis of difficult cases). In this 
application, because we have developed interpretable 
features, the BN variables (ignoring latent variables) 
map directly to the input data and there is no “semantic 
gap between real-world interpretation and low-level 
feature space” (Smith et al. 2021) as seen in black-box 
ML systems. These interpretability and explainability 
characteristics of BNs are critical to analyst and 
stakeholder trust in results as well as overall utility of 
the system. 
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