460 research outputs found

    Inverse scaling trends for charge-trapping-induced degradation of FinFETs performance

    Get PDF
    In this paper, we investigate the impact of a single discrete charge trapped at the top oxide interface on the performance of scaled nMOS FinFET transistors. The charge-trapping-induced gate voltage shift is simulated as a function of the device scaling and for several regimes of conduction-from subthreshold to ON-state. Contrary to what is expected for planar MOSFETs, we show that the trap impact decreases with scaling down the FinFET size and the applied gate voltage. By comparing drift-diffusion with nonequilibrium Green functions simulations, we show that quantum effects in the charge distribution and transport can reduce or amplify the impact of discrete traps in simulation of reliability resilience of scaled FinFETs

    A surface-potential-based compact model for partially-depleted silicon-on-insulator MOSFETs

    No full text
    With the continuous scaling of CMOS technologies, Silicon-on-Insulator (SOI) technologies have become more competitive compared to bulk, due to their lower parasitic capacitances and leakage currents. The shift towards high frequency, low power circuitry, coupled with the increased maturity of SOI process technologies, have made SOI a genuinely costeffective solution for leading edge applications. The original STAG2 model, developed at the University of Southampton, UK, was among the first compact circuit simulation models to specifically model the behaviour of Partially-Depleted (PD) SOI devices. STAG2 was a robust, surface-potential based compact model, employing closed-form equations to minimise simulation times for large circuits. It was able to simulate circuits in DC, small signal, and transient modes, and particular care was taken to ensure that convergence problems were kept to a minimum. In this thesis, the ongoing development of the STAG model, culminating in the release of a new version, STAG3, is described. STAG3 is intended to make the STAG model applicable to process technologies down to 100nm. To this end, a number of major model improvements were undertaken, including: a new core surface potential model, new vertical and lateral field mobility models, quantum mechanical models, the ability to model non-uniform vertical doping profiles, and other miscellaneous effects relevant to deep submicron devices such as polysilicon depletion, velocity overshoot, and the reverse short channel effect.As with the previous versions of STAG, emphasis has been placed on ensuring that model equations are numerically robust, as well as closed-form wherever possible, in order to minimise convergence problems and circuit simulation times. The STAG3 model has been evaluated with devices manufactured in PD-SOI technologies down to 0.25?m, and was found to give good matching to experimental data across a range of device sizes and biases, whilst requiring only a single set of model parameters

    A Compact Model for the Ballistic Subthreshold Current in Ultra-Thin Independent Double-Gate MOSFETs

    No full text
    International audienceWe present an analytical model for the subthreshold characteristic of ultra-thin Independent Double-Gate (IDG) MOSFET working in the ballistic regime. This model takes into account short-channel effects, quantization effects and source-to-drain tunneling (WKB approximation) in the expression of the subthreshold drain current. Important device parameters, such as off-state current or subthreshold swing, can be easily evaluated through this full analytical approach. The model can be successfully implemented in a TCAD circuit simulator for the simulation of IDG MOSFET based-circuits

    Devenlopment of Compact Small Signal Quasi Static Models for Multiple Gate Mosfets

    Get PDF
    En esta tesis hemos desarrollado los modelos compactos explícitos de carga y de capacitancia adaptados para los dispositivos dopados y no dopados de canal largo (DG MOSFETs dopados, DG MOSFETs no dopados, UTB MOSFETs no dopados y SGT no dopados) de un modelo unificado del control de carga derivado de la ecuación de Poisson. El esquema de modelado es similar en todos estos dispositivos y se adapta a cada geometría. Los modelos de la C.C. y de la carga son completamente compatibles. Las expresiones de la capacitancia se derivan del modelo de la carga. La corriente, la carga total y las capacitancias se escriben en términos de las densidades móviles de la carga en los extremos de fuente y drenador del canal. Las expresiones explícitas e infinitamente continuas se utilizan para las densidades móviles de la carga en la fuente y drenador. Las capacitancias modeladas demuestran el acuerdo excelente con las simulaciones numéricas 2D y 3D (SGT), en todos los regímenes de funcionamiento. Por lo tanto, el modelo es muy prometedor para ser utilizado en simuladores del circuito. Desafortunadamente, no mucho trabajo se ha dedicado a este dominio de modelado. Las cargas analíticas y las capacitancias, asociadas a cada terminal se prefieren en la simulación de circuito. Con respecto al SGT MOSFET, nuestro grupo fue el primero en desarrollar y publicar un modelo de las cargas y de las capacitancias intrínsecas, que es también analítico y explícito. La tesis es organizada como sigue: el capítulo (1) presenta el estado del arte, capítulo (2) el modelado compacto de los cuatro dispositivos: DG MOSFETs dopados, DG MOSFETs no dopados, UTB MOSFETs no dopados y SGT no dopados; en el capítulo (3) estudiamos las capacitancias de fricción en MuGFETs. Finalmente el capítulo (4) resuma el trabajo hecho y los futuros objetivos que necesitan ser estudiados. Debido a la limitación de los dispositivos optimizados disponibles para el análisis, la simulación numérica fue utilizada como la herramienta principal del análisis. Sin embargo, cuando estaban disponibles, medidas experimentales fueron utilizadas para validar nuestros resultados. Por ejemplo, en la sección 2A, en el caso de DG MOSFETs altamente dopados podríamos comparar nuestros resultados con datos experimentales de FinFETs modelados como DG MOSFETs. La ventaja principal de este trabajo es el carácter analítico y explícito del modelo de la carga y de la capacitancia que las hace fácil de implementar en simuladores de circuitos. El modelo presenta los resultados casi perfectos para diversos casos del dopaje y para diversas estructuras no clásicas del MOSFET (los DG MOSFETs, los UTB MOSFETs y los SGTs). La variedad de las estructuras del MOSFET en las cuales se ha incluido nuestro esquema de modelado y los resultados obtenidos, demuestran su validez absoluta. En el capítulo 3, investigamos la influencia de los parámetros geométricos en el funcionamiento en RF de los MuGFETs. Demostramos el impacto de parámetros geométricos importantes tales como el grosor de la fuente y del drenador o, el espaciamiento de las fins, la anchura del espaciador, etc. en el componente parásito de la capacitancia de fricción de los transistores de la múltiple-puerta (MuGFET). Los resultados destacan la ventaja de disminuir el espaciamiento entre las fins para MuGFETs y la compensación entre la reducción de las resistencias parásitas de fuente y drenador y el aumento de capacitancias de fricción cuando se introduce la tecnología del crecimiento selectivo epitaxial (SEG). La meta de nuestro estudio y trabajo es el uso de nuestros modelos en simuladores de circuitos. El grupo de profesor Aranda, de la Universidad de Granada ha puesto el modelo actual de SGT en ejecución en el simulador Agilent ADS y buenos resultados fueron obtenidos.In this thesis we have developed explicit compact charge and capacitance models adapted for doped and undoped long-channel devices (doped Double-Gate (DG) MOSFETs, undoped DG MOSFETs, undoped Ultra-Thin-Body (UTB) MOSFETs and undoped Surrounding Gate Transistor (SGT)) from a unified charge control model derived from Poisson's equation. The modelling scheme is similar in all these devices and is adapted to each geometry. The dc and charge models are fully compatible. The capacitance expressions are derived from the charge model. The current, total charges and capacitances are written in terms of the mobile charge sheet densities at the source and drain ends of the channel. Explicit and infinitely continuous expressions are used for the mobile charge sheet densities at source and drain. As a result, all small signal parameters will have an infinite order of continuity. The modeled capacitances show excellent agreement with the 2D and 3D (SGT) numerical simulations, in all operating regimes. Therefore, the model is very promising for being used in circuit simulators. Unfortunately, not so much work has been dedicated to this modelling domain. Analytical charges and capacitances, associated with each terminal are preferred in circuit simulation. Regarding the surrounding-gate MOSFET, our group was the first to develop and publish a model of the charges and intrinsic capacitances, which is also analytic and explicit. The thesis is organized as follows: Chapter (1) presents the state of the art, Chapter (2) the compact modeling of the four devices: doped DG MOSFETs, undoped DG MOSFETs, undoped UTB MOSFETs and undoped SGT; in Chapter (3) we study the fringing capacitances in MuGFETs. Finally Chapter (4) summarizes the work done and the future points that need to be studied. Due to the limitation of available optimized devices for analysis, numerical simulation was used as the main analysis tool. However, when available, measurements were used to validate our results. The experimental part was realised at the Microelectronics Laboratory, Université Catholique de Louvain, Louvain-la Neuve, Belgium. For example, in section 2A, in the case of highly-doped DG MOSFETs we could compare our results with experimental data from FinFETs modeled as DG MOSFETs. The main advantage of this work is the analytical and explicit character of the charge and capacitance model that makes it easy to implement in circuit simulators. The model presents almost perfect results for different cases of doping (doped/undoped devices) and for different non classical MOSFET structures (DG MOSFET, UTB MOSFETs and SGT). The variety of the MOSFET structures in which our modeling scheme has been included and the obtained results, demonstrate its absolute validity. In chapter 3, we investigate the influence of geometrical parameters on the RF performance in MuGFETs. We show the impact of important geometrical parameters such as source and drain thickness, fin spacing, spacer width, etc. on the parasitic fringing capacitance component of multiple-gate field-effect transistors (MuGFET). Results highlight the advantage of diminishing the spacing between fins for MuGFETs and the trade-off between the reduction of parasitic source and drain resistances and the increase of fringing capacitances when Selective Epitaxial Growth (SEG) technology is introduced. The goal of our study and work is the usage of our models in circuit simulators. This part, of implementing and testing our models of these multi gate MOSFET devices in circuit simulators has already begun. The group of Professor Aranda, from the University of Granada has implemented the SGT current model in the circuit simulator Agilent ADS and good results were obtained

    Overview of ionizing radiation effects in image sensors fabricated in a deep-submicrometer CMOS imaging technology

    Get PDF
    An overview of ionizing radiation effects in imagers manufactured in a 0.18-μm CMOS image sensor technology is presented. Fourteen types of image sensors are characterized and irradiated by a 60Co source up to 5 kGy. The differences between these 14 designs allow us to separately estimate the effect of ionizing radiation on microlenses, on low- and zero-threshold-voltage MOSFETs and on several pixel layouts using P+ guard-rings and edgeless transistors. After irradiation, wavelength dependent responsivity drops are observed. All the sensors exhibit a large dark current increase attributed to the shallow trench isolation that surrounds the photodiodes. Saturation voltage rises and readout chain gain variations are also reported. Finally, the radiation hardening perspectives resulting from this paper are discussed

    Compact modeling of the rf and noise behavior of multiple-gate mosfets

    Get PDF
    La reducción de la tecnología MOSFET planar ha sido la opción tecnológica dominante en las últimas décadas. Sin embargo, hemos llegado a un punto en el que los materiales y problemas en los dispositivos surgen, abriendo la puerta para estructuras alternativas de los dispositivos. Entre estas estructuras se encuentran los dispositivos DG, SGT y Triple-Gate. Estas tres estructuras están estudiadas en esta tesis, en el contexto de rducir las dimensiones de los dispositivos a tamaños tales que los mecanismos cuánticos y efectos de calan coro deben tenerse n cuenta. Estos efectos vienen con una seria de desafíos desde el pun to de vista de modelación, unos de los más grandes siendo el tiempo y los recursos comprometidos para ejecutar las simulaciones. para resolver este problema, esta tesis propone modelos comlets analíticos y compactos para cada una de las geometrías, validos desde DC hasta el modo de operación en Rf para los nodos tecnológicos futuros. Dichos modelos se han extendido para analizar el ruido de alta frecuencia en estos diapositivos

    Compact Models for Integrated Circuit Design

    Get PDF
    This modern treatise on compact models for circuit computer-aided design (CAD) presents industry standard models for bipolar-junction transistors (BJTs), metal-oxide-semiconductor (MOS) field-effect-transistors (FETs), FinFETs, and tunnel field-effect transistors (TFETs), along with statistical MOS models. Featuring exercise problems at the end of each chapter and extensive references at the end of the book, the text supplies fundamental and practical knowledge necessary for efficient integrated circuit (IC) design using nanoscale devices. It ensures even those unfamiliar with semiconductor physics gain a solid grasp of compact modeling concepts

    Statistical compact model strategies for nano CMOS transistors subject of atomic scale variability

    Get PDF
    One of the major limiting factors of the CMOS device, circuit and system simulation in sub 100nm regimes is the statistical variability introduced by the discreteness of charge and granularity of matter. The statistical variability cannot be eliminated by tuning the layout or by tightening fabrication process control. Since the compact models are the key bridge between technology and design, it is necessary to transfer reliably the MOSFET statistical variability information into compact models to facilitate variability aware design practice. The aim of this project is the development of a statistical extraction methodology essential to capture statistical variability with optimum set of parameters particularly in industry standard compact model BSIM. This task is accomplished by using a detailed study on the sensitivity analysis of the transistor current in respect to key parameters in compact model in combination with error analysis of the fitted Id-Vg characteristics. The key point in the developed direct statistical compact model strategy is that the impacts of statistical variability can be captured in device characteristics by tuning a limited number of parameters and keeping the values for remaining major set equal to their default values obtained from the “uniform” MOSFET compact model extraction. However, the statistical compact model extraction strategies will accurately represent the distribution and correlation of the electrical MOSFET figures of merit. Statistical compact model parameters are generated using statistical parameter generation techniques such as uncorrelated parameter distributions, principal component analysis and nonlinear power method. The accuracy of these methods is evaluated in comparison with the results obtained from ‘atomistic’ simulations. The impact of the correlations in the compact model parameters has been analyzed along with the corresponding transistor figures of merit. The accuracy of the circuit simulations with different statistical compact model libraries has been studied. Moreover, the impact of the MOSFET width/length on the statistical trend of the optimum set of statistical compact model parameters and electrical figures of merit has been analyzed with two methods to capture geometry dependencies in proposed statistical models

    Investigation of the electrical properties of Si₁-×Ge× channel pMOSFETs with high-κ dielectrics

    Get PDF
    It is now apparent that the continued performance enhancements of silicon metal-oxide-semiconductor field effect transistors (MOSFETs) can no longer be met by scaling alone. High-mobility channel materials such as strained Si1-xGex and Ge are now being seriously considered to maintain the performance requirements specified by the semiconductor industry. In addition, alternative gate dielectric, or high-κ dielectrics, will also be required to meet gate leakage requirements. This work investigates the properties of using strained Si1-xGex or Ge as alternative channel materials for pMOSFETs incorporating hafnium oxide (HfO2) high-κ gate dielectric. Whilst the SiGe pMOSFETs (x = 0.25) exhibited an enhancement in hole mobility (300 K) over comparable silicon control pMOSFETs with sputtered HfO2 dielectric, high Coulomb scattering and surface roughness scattering relating to the dielectric deposition process meant that the effective hole mobilities were degraded with respect to the silicon universal curve. Germanium channel pMOSFETs with halo-doping and HfO2 gate dielectric deposited by atomic layer deposition showed high hole mobilities of 230 cm2V-1s-1 and 480 cm2V-1s-1 at room temperature and 77 K, respectively. Analysis of the off-state current for the Ge pMOSFETs over a range of temperatures indicated that band-to-band tunnelling, gate-induced drain leakage and other defect-assisted leakage mechanisms could all be important. Hole carrier velocity and impact ionisation were also studied in two batches of buried channel SiGe pMOSFET with x = 0.15 and x = 0.36, respectively. SiGe channel pMOSFETs were found to exhibit reduced impact ionisation compared to silicon control devices, which has been attributed to a strain-induced reduction of the density of states in the SiGe conduction and valence bands. Analysis of the hole carrier velocity indicated that pseudomorphic SiGe offered no performance enhancements over Si below 100 nm, possibly due to higher ion implantation damage and strain relaxation of the strained SiGe channel. The results indicate that velocity overshoot effects might not provide the performance improvements at short channel lengths that was previously hoped for

    Sub-10nm Transistors for Low Power Computing: Tunnel FETs and Negative Capacitance FETs

    Get PDF
    One of the major roadblocks in the continued scaling of standard CMOS technology is its alarmingly high leakage power consumption. Although circuit and system level methods can be employed to reduce power, the fundamental limit in the overall energy efficiency of a system is still rooted in the MOSFET operating principle: an injection of thermally distributed carriers, which does not allow subthreshold swing (SS) lower than 60mV/dec at room temperature. Recently, a new class of steep-slope devices like Tunnel FETs (TFETs) and Negative-Capacitance FETs (NCFETs) have garnered intense interest due to their ability to surpass the 60mV/dec limit on SS at room temperature. The focus of this research is on the simulation and design of TFETs and NCFETs for ultra-low power logic and memory applications. Using full band quantum mechanical model within the Non-Equilibrium Greens Function (NEGF) formalism, source-underlapping has been proposed as an effective technique to lower the SS in GaSb-InAs TFETs. Band-tail states, associated with heavy source doping, are shown to significantly degrade the SS in TFETs from their ideal value. To solve this problem, undoped source GaSb-InAs TFET in an i-i-n configuration is proposed. A detailed circuit-to-system level evaluation is performed to investigate the circuit level metrics of the proposed devices. To demonstrate their potential in a memory application, a 4T gain cell (GC) is proposed, which utilizes the low-leakage and enhanced drain capacitance of TFETs to realize a robust and long retention time GC embedded-DRAMs. The device/circuit/system level evaluation of proposed TFETs demonstrates their potential for low power digital applications. The second part of the thesis focuses on the design space exploration of hysteresis-free Negative Capacitance FETs (NCFETs). A cross-architecture analysis using HfZrOx ferroelectric (FE-HZO) integrated on bulk MOSFET, fully-depleted SOI-FETs, and sub-10nm FinFETs shows that FDSOI and FinFET configurations greatly benefit the NCFET performance due to their undoped body and improved gate-control which enables better capacitance matching with the ferroelectric. A low voltage NC-FinFET operating down to 0.25V is predicted using ultra-thin 3nm FE-HZO. Next, we propose one-transistor ferroelectric NOR type (Fe-NOR) non-volatile memory based on HfZrOx ferroelectric FETs (FeFETs). The enhanced drain-channel coupling in ultrashort channel FeFETs is utilized to dynamically modulate memory window of storage cells thereby resulting in simple erase-, program-and read-operations. The simulation analysis predicts sub-1V program/erase voltages in the proposed Fe-NOR memory array and therefore presents a significantly lower power alternative to conventional FeRAM and NOR flash memories
    corecore