46 research outputs found

    Nano-scale TG-FinFET: Simulation and Analysis

    Get PDF
    Transistor has been designed and fabricated in the same way since its invention more than four decades ago enabling exponential shrinking in the channel length. However, hitting fundamental limits imposed the need for introducing disruptive technology to take over. FinFET - 3-D transistor - has been emerged as the first successor to MOSFET to continue the technology scaling roadmap. In this thesis, scaling of nano-meter FinFET has been investigated on both the device and circuit levels. The studies, primarily, consider FinFET in its tri-gate (TG) structure. On the device level, first, the main TCAD models used in simulating electron transport are benchmarked against the most accurate results on the semi-classical level using Monte Carlo techniques. Different models and modifications are investigated in a trial to extend one of the conventional models to the nano-scale simulations. Second, a numerical study for scaling TG-FinFET according to the most recent International Technology Roadmap of Semiconductors is carried out by means of quantum corrected 3-D Monte Carlo simulations in the ballistic and quasi-ballistic regimes, to assess its ultimate performance and scaling behavior for the next generations. Ballisticity ratio (BR) is extracted and discussed over different channel lengths. The electron velocity along the channel is analyzed showing the physical significance of the off-equilibrium transport with scaling the channel length. On the circuit level, first, the impact of FinFET scaling on basic circuit blocks is investigated based on the PTM models. 256-bit (6T) SRAM is evaluated for channel lengths of 20nm down to 7nm showing the scaling trends of basic performance metrics. In addition, the impact of VT variations on the delay, power, and stability is reported considering die-to-die variations. Second, we move to another peer-technology which is 28nm FD-SOI as a comparative study, keeping the SRAM cell as the test block, more advanced study is carried out considering the cell‘s stability and the evolution from dynamic to static metrics

    Ultra-low Power FinFET SRAM Cell with improved stability suitable for low power applications

    Get PDF
    In this paper, a new 11T SRAM cell using FinFET technology has been proposed, the basic component of the cell is the 6T SRAM cell with 4 NMOS access transistors to improve the stability and also makes it a dual port memory cell. The proposed cell uses a header scheme in which one extra PMOS transistor is used which is biased at different voltages to improve the read and write stability thus, helps in reducing the leakage power and active power. The cell shows improvement in RSNM (Read Static Noise Margin) with LP8T by 2.39x at sub-threshold voltage 2.68x with D6T SRAM cell, 5.5x with TG8T. The WSNM (Write Static Noise Margin) and HM (Hold Margin) of the SRAM cell at 0.9V is 306mV and 384mV. At sub-threshold operation also it shows improvement. The Leakage power reduced by 0.125x with LP8T, 0.022x with D6T SRAM cell, TG8T and SE8T. Also, impact of process variation on cell stability is discussed

    Ultra-low Power FinFET SRAM Cell with improved stability suitable for low power applications

    Get PDF
    In this paper, a new 11T SRAM cell using FinFET technology has been proposed, the basic component of the cell is the 6T SRAM cell with 4 NMOS access transistors to improve the stability and also makes it a dual port memory cell. The proposed cell uses a header scheme in which one extra PMOS transistor is used which is biased at different voltages to improve the read and write stability thus, helps in reducing the leakage power and active power. The cell shows improvement in RSNM (Read Static Noise Margin) with LP8T by 2.39x at sub-threshold voltage 2.68x with D6T SRAM cell, 5.5x with TG8T. The WSNM (Write Static Noise Margin) and HM (Hold Margin) of the SRAM cell at 0.9V is 306mV and 384mV. At sub-threshold operation also it shows improvement. The Leakage power reduced by 0.125x with LP8T, 0.022x with D6T SRAM cell, TG8T and SE8T. Also, impact of process variation on cell stability is discussed

    INFLUENCE OF OXIDE THICKNESS VARIATION ON ANALOG AND RF PERFORMANCES OF SOI FINFET

    Get PDF
    This paper focuses on the impact of variation in the thickness of the oxide (SiO2) layer on the performance parameters of a FinFET analysed by varying the oxide layer thickness in the range of 0.8nm to 3nm. While varying the oxide layer thickness, the overall width of the FinFET is fixed at a value 30nm, and the FinFET parameters are analysed for structures with different oxide layer thickness. The parameters like drain current, transconductance, transconductance generation factor, parasitic capacitances, output conductance, cut-off frequency, maximum frequency, GBW, energy and power consumption are calculated to study the influence of FinFET oxide (SiO2) layer thickness variation. It is detected from the result and analysis that the drain current, transconductance, transconductance generation factor, gain bandwidth and output conductance improve with decrement in oxide layer thickness whereas, the parasitic capacitances, cut-off frequency and maximum frequency degrade when there is a reduction in oxide (SiO2) layer thickness. The parameters like energy and consumed power of FinFET get better when the oxide (SiO2) layer thickness increases

    Cache memory design in the FinFET era

    Get PDF
    The major problem in the future technology scaling is the variations in process parameters that are interpreted as imperfections in the development process. Moreover, devices are more sensitive to the environmental changes of temperature and supply volt- age as well as to ageing. All these influences are manifested in the integrated circuits as increased power consumption, reduced maximal operating frequency and increased number of failures. These effects have been partially overcome with the introduction of the FinFET technology which have solved the problem of variability caused by Random Dopant Fluctuations. However, in the next ten years channel length is projected to shrink to 10nm where the variability source generated by Line Edge Roughness will dominate, and its effects on the threshold voltage variations will become critical. The embedded memories with their cells as the basic building unit are the most prone to these effects due to their the smallest dimensions. Because of that, memories should be designed with particular care in order to make possible further technology scaling. This thesis explores upcoming 10nm FinFETs and the existing issues in the cache memory design with this technology. More- over, it tries to present some original and novel techniques on the different level of design abstraction for mitigating the effects of process and environmental variability. At first original method for simulating variability of Tri-Gate Fin- FETs is presented using conventional HSPICE simulation environment and BSIM-CMG model cards. When that is accomplished, thorough characterisation of traditional SRAM cell circuits (6T and 8T) is performed. Possibility of using Independent Gate FinFETs for increasing cell stability has been explored, also. Gain Cells appeared in the recent past as an attractive alternative for in the cache memory design. This thesis partially explores this idea by presenting and performing detailed circuit analysis of the dynamic 3T gain cell for 10nm FinFETs. At the top of this work, thesis shows one micro-architecture optimisation of high-speed cache when it is implemented by 3T gain cells. We show how the cache coherency states can be used in order to reduce refresh energy of the memory as well as reduce memory ageing.El principal problema de l'escalat la tecnologia són les variacions en els paràmetres de disseny (imperfeccions) durant procés de fabricació. D'altra banda, els dispositius també són més sensibles als canvis ambientals de temperatura, la tensió d'alimentació, així com l'envelliment. Totes aquestes influències es manifesten en els circuits integrats com l'augment de consum d'energia, la reducció de la freqüència d'operació màxima i l'augment del nombre de xips descartats. Aquests efectes s'han superat parcialment amb la introducció de la tecnologia FinFET que ha resolt el problema de la variabilitat causada per les fluctuacions de dopants aleatòries. No obstant això, en els propers deu anys, l'ample del canal es preveu que es reduirà a 10nm, on la font de la variabilitat generada per les rugositats de les línies de material dominarà, i els seu efecte en les variacions de voltatge llindar augmentarà. Les memòries encastades amb les seves cel·les com la unitat bàsica de construcció són les més propenses a sofrir aquests efectes a causa de les seves dimensions més petites. A causa d'això, cal dissenyar les memòries amb una especial cura per tal de fer possible l'escalat de la tecnologia. Aquesta tesi explora la tecnologia de FinFETs de 10nm i els problemes existents en el disseny de memòries amb aquesta tecnologia. A més a més, presentem noves tècniques originals sobre diferents nivells d'abstracció del disseny per a la mitigació dels efectes les variacions tan de procés com ambientals. En primer lloc, presentem un mètode original per a la simulació de la variabilitat de Tri-Gate FinFETs usant entorn de simulació HSPICE convencional i models de tecnologia BSIMCMG. Després, es realitza la caracterització completa dels circuits de cel·les SRAM tradicionals (6T i 8T) conjuntament amb l'ús de Gate-independent FinFETs per augmentar l'estabilitat de la cèl·lula

    Design, Modeling and Analysis of Non-classical Field Effect Transistors

    Get PDF
    Transistor scaling following per Moore\u27s Law slows down its pace when entering into nanometer regime where short channel effects (SCEs), including threshold voltage fluctuation, increased leakage current and mobility degradation, become pronounced in the traditional planar silicon MOSFET. In addition, as the demand of diversified functionalities rises, conventional silicon technologies cannot satisfy all non-digital applications requirements because of restrictions that stem from the fundamental material properties. Therefore, novel device materials and structures are desirable to fuel further evolution of semiconductor technologies. In this dissertation, I have proposed innovative device structures and addressed design considerations of those non-classical field effect transistors for digital, analog/RF and power applications with projected benefits. Considering device process difficulties and the dramatic fabrication cost, application-oriented device design and optimization are performed through device physics analysis and TCAD modeling methodology to develop design guidelines utilizing transistor\u27s improved characteristics toward application-specific circuit performance enhancement. Results support proposed device design methodologies that will allow development of novel transistors capable of overcoming limitation of planar nanoscale MOSFETs. In this work, both silicon and III-V compound devices are designed, optimized and characterized for digital and non-digital applications through calibrated 2-D and 3-D TCAD simulation. For digital functionalities, silicon and InGaAs MOSFETs have been investigated. Optimized 3-D silicon-on-insulator (SOI) and body-on-insulator (BOI) FinFETs are simulated to demonstrate their impact on the performance of volatile memory SRAM module with consideration of self-heating effects. Comprehensive simulation results suggest that the current drivability degradation due to increased device temperature is modest for both devices and corresponding digital circuits. However, SOI FinFET is recommended for the design of low voltage operation digital modules because of its faster AC response and better SCEs management than the BOI structure. The FinFET concept is also applied to the non-volatile memory cell at 22 nm technology node for low voltage operation with suppressed SCEs. In addition to the silicon technology, our TCAD estimation based on upper projections show that the InGaAs FinFET, with superior mobility and improved interface conditions, achieve tremendous drive current boost and aggressively suppressed SCEs and thereby a strong contender for low-power high-performance applications over the silicon counterpart. For non-digital functionalities, multi-fin FETs and GaN HEMT have been studied. Mixed-mode simulations along with developed optimization guidelines establish the realistic application potential of underlap design of silicon multi-Fin FETs for analog/RF operation. The device with underlap design shows compromised current drivability but improve analog intrinsic gain and high frequency performance. To investigate the potential of the novel N-polar GaN material, for the first time, I have provided calibrated TCAD modeling of E-mode N-polar GaN single-channel HEMT. In this work, I have also proposed a novel E-mode dual-channel hybrid MIS-HEMT showing greatly enhanced current carrying capability. The impact of GaN layer scaling has been investigated through extensive TCAD simulations and demonstrated techniques for device optimization

    A statistical study of time dependent reliability degradation of nanoscale MOSFET devices

    Get PDF
    Charge trapping at the channel interface is a fundamental issue that adversely affects the reliability of metal-oxide semiconductor field effect transistor (MOSFET) devices. This effect represents a new source of statistical variability as these devices enter the nano-scale era. Recently, charge trapping has been identified as the dominant phenomenon leading to both random telegraph noise (RTN) and bias temperature instabilities (BTI). Thus, understanding the interplay between reliability and statistical variability in scaled transistors is essential to the implementation of a ‘reliability-aware’ complementary metal oxide semiconductor (CMOS) circuit design. In order to investigate statistical reliability issues, a methodology based on a simulation flow has been developed in this thesis that allows a comprehensive and multi-scale study of charge-trapping phenomena and their impact on transistor and circuit performance. The proposed methodology is accomplished by using the Gold Standard Simulations (GSS) technology computer-aided design (TCAD)-based design tool chain co-optimization (DTCO) tool chain. The 70 nm bulk IMEC MOSFET and the 22 nm Intel fin-shape field effect transistor (FinFET) have been selected as targeted devices. The simulation flow starts by calibrating the device TCAD simulation decks against experimental measurements. This initial phase allows the identification of the physical structure and the doping distributions in the vertical and lateral directions based on the modulation in the inversion layer’s depth as well as the modulation of short channel effects. The calibration is further refined by taking into account statistical variability to match the statistical distributions of the transistors’ figures of merit obtained by measurements. The TCAD simulation investigation of RTN and BTI phenomena is then carried out in the presence of several sources of statistical variability. The study extends further to circuit simulation level by extracting compact models from the statistical TCAD simulation results. These compact models are collected in libraries, which are then utilised to investigate the impact of the BTI phenomenon, and its interaction with statistical variability, in a six transistor-static random access memory (6T-SRAM) cell. At the circuit level figures of merit, such as the static noise margin (SNM), and their statistical distributions are evaluated. The focus of this thesis is to highlight the importance of accounting for the interaction between statistical variability and statistical reliability in the simulation of advanced CMOS devices and circuits, in order to maintain predictivity and obtain a quantitative agreement with a measured data. The main findings of this thesis can be summarised by the following points: Based on the analysis of the results, the dispersions of VT and ΔVT indicate that a change in device technology must be considered, from the planar MOSFET platform to a new device architecture such as FinFET or SOI. This result is due to the interplay between a single trap charge and statistical variability, which has a significant impact on device operation and intrinsic parameters as transistor dimensions shrink further. The ageing process of transistors can be captured by using the trapped charge density at the interface and observing the VT shift. Moreover, using statistical analysis one can highlight the extreme transistors and their probable effect on the circuit or system operation. The influence of the passgate (PG) transistor in a 6T-SRAM cell gives a different trend of the mean static noise margin

    Multi-Threshold Low Power-Delay Product Memory and Datapath Components Utilizing Advanced FinFET Technology Emphasizing the Reliability and Robustness

    Get PDF
    Indiana University-Purdue University Indianapolis (IUPUI)In this thesis, we investigated the 7 nm FinFET technology for its delay-power product performance. In our study, we explored the ASAP7 library from Arizona State University, developed in collaboration with ARM Holdings. The FinFET technology was chosen since it has a subthreshold slope of 60mV/decade that enables cells to function at 0.7V supply voltage at the nominal corner. An emphasis was focused on characterizing the Non-Ideal effects, delay variation, and power for the FinFET device. An exhaustive analysis of the INVx1 delay variation for different operating conditions was also included, to assess the robustness. The 7nm FinFET device was then employed into 6T SRAM cells and 16 function ALU. The SRAM cells were approached with advanced multi-corner stability evaluation. The system-level architecture of the ALU has demonstrated an ultra-low power system operating at 1 GHz clock frequency
    corecore