823 research outputs found

    Impact of disparity error on user experience of interacting with stereoscopic 3D video content

    Get PDF
    The stereoscopic three-dimensional (3D) displays can offer immersive experience to the audience by artificially stimulating binocular stereopsis in the human visual system. The binocular disparity between the left and right view is the key factor in creating the impression of depth, distinguishing the stereo 3D video from other types of video paradigms. Taking into consideration of the imperfections of current disparity estimation algorithms, this paper focus on the impact of disparity error on the user experience of pointing and selecting stereo 3D content. The conducted user study into perception tolerance suggests that users can tolerate disparity errors to a certain degree, where the level of tolerance varies with perceived distance from the screen. In addition, the study demonstrates that for a typical interaction task, reduction of accuracy is proportional to the disparity level of targeted 3D objects

    Three-dimensional media for mobile devices

    Get PDF
    Cataloged from PDF version of article.This paper aims at providing an overview of the core technologies enabling the delivery of 3-D Media to next-generation mobile devices. To succeed in the design of the corresponding system, a profound knowledge about the human visual system and the visual cues that form the perception of depth, combined with understanding of the user requirements for designing user experience for mobile 3-D media, are required. These aspects are addressed first and related with the critical parts of the generic system within a novel user-centered research framework. Next-generation mobile devices are characterized through their portable 3-D displays, as those are considered critical for enabling a genuine 3-D experience on mobiles. Quality of 3-D content is emphasized as the most important factor for the adoption of the new technology. Quality is characterized through the most typical, 3-D-specific visual artifacts on portable 3-D displays and through subjective tests addressing the acceptance and satisfaction of different 3-D video representation, coding, and transmission methods. An emphasis is put on 3-D video broadcast over digital video broadcasting-handheld (DVB-H) in order to illustrate the importance of the joint source-channel optimization of 3-D video for its efficient compression and robust transmission over error-prone channels. The comparative results obtained identify the best coding and transmission approaches and enlighten the interaction between video quality and depth perception along with the influence of the context of media use. Finally, the paper speculates on the role and place of 3-D multimedia mobile devices in the future internet continuum involving the users in cocreation and refining of rich 3-D media content

    Stereoscopic 3D user interfaces : exploring the potentials and risks of 3D displays in cars

    Get PDF
    During recent years, rapid advancements in stereoscopic digital display technology has led to acceptance of high-quality 3D in the entertainment sector and even created enthusiasm towards the technology. The advent of autostereoscopic displays (i.e., glasses-free 3D) allows for introducing 3D technology into other application domains, including but not limited to mobile devices, public displays, and automotive user interfaces - the latter of which is at the focus of this work. Prior research demonstrates that 3D improves the visualization of complex structures and augments virtual environments. We envision its use to enhance the in-car user interface by structuring the presented information via depth. Thus, content that requires attention can be shown close to the user and distances, for example to other traffic participants, gain a direct mapping in 3D space

    Remote Visual Observation of Real Places Through Virtual Reality Headsets

    Get PDF
    Virtual Reality has always represented a fascinating yet powerful opportunity that has attracted studies and technology developments, especially since the latest release on the market of powerful high-resolution and wide field-of-view VR headsets. While the great potential of such VR systems is common and accepted knowledge, issues remain related to how to design systems and setups capable of fully exploiting the latest hardware advances. The aim of the proposed research is to study and understand how to increase the perceived level of realism and sense of presence when remotely observing real places through VR headset displays. Hence, to produce a set of guidelines that give directions to system designers about how to optimize the display-camera setup to enhance performance, focusing on remote visual observation of real places. The outcome of this investigation represents unique knowledge that is believed to be very beneficial for better VR headset designs towards improved remote observation systems. To achieve the proposed goal, this thesis presents a thorough investigation of existing literature and previous researches, which is carried out systematically to identify the most important factors ruling realism, depth perception, comfort, and sense of presence in VR headset observation. Once identified, these factors are further discussed and assessed through a series of experiments and usability studies, based on a predefined set of research questions. More specifically, the role of familiarity with the observed place, the role of the environment characteristics shown to the viewer, and the role of the display used for the remote observation of the virtual environment are further investigated. To gain more insights, two usability studies are proposed with the aim of defining guidelines and best practices. The main outcomes from the two studies demonstrate that test users can experience an enhanced realistic observation when natural features, higher resolution displays, natural illumination, and high image contrast are used in Mobile VR. In terms of comfort, simple scene layouts and relaxing environments are considered ideal to reduce visual fatigue and eye strain. Furthermore, sense of presence increases when observed environments induce strong emotions, and depth perception improves in VR when several monocular cues such as lights and shadows are combined with binocular depth cues. Based on these results, this investigation then presents a focused evaluation on the outcomes and introduces an innovative eye-adapted High Dynamic Range (HDR) approach, which the author believes to be of great improvement in the context of remote observation when combined with eye-tracked VR headsets. Within this purpose, a third user study is proposed to compare static HDR and eye-adapted HDR observation in VR, to assess that the latter can improve realism, depth perception, sense of presence, and in certain cases even comfort. Results from this last study confirmed the author expectations, proving that eye-adapted HDR and eye tracking should be used to achieve best visual performances for remote observation in modern VR systems

    Integration of Multisensorial Stimuli and Multimodal Interaction in a Hybrid 3DTV System

    Get PDF
    This article proposes the integration of multisensorial stimuli and multimodal interaction components into a sports multimedia asset under two dimensions: immersion and interaction. The first dimension comprises a binaural audio system and a set of sensory effects synchronized with the audiovisual content, whereas the second explores interaction through the insertion of interactive 3D objects into the main screen and on-demand presentation of additional information in a second touchscreen. We present an end-to-end solution integrating these components into a hybrid (internet-broadcast) television system using current 3DTV standards. Results from an experimental study analyzing the perceived quality of these stimuli and their influence on the Quality of Experience are presented

    Novel haptic interface For viewing 3D images

    Get PDF
    In recent years there has been an explosion of devices and systems capable of displaying stereoscopic 3D images. While these systems provide an improved experience over traditional bidimensional displays they often fall short on user immersion. Usually these systems only improve depth perception by relying on the stereopsis phenomenon. We propose a system that improves the user experience and immersion by having a position dependent rendering of the scene and the ability to touch the scene. This system uses depth maps to represent the geometry of the scene. Depth maps can be easily obtained on the rendering process or can be derived from the binocular-stereo images by calculating their horizontal disparity. This geometry is then used as an input to be rendered in a 3D display, do the haptic rendering calculations and have a position depending render of the scene. The author presents two main contributions. First, since the haptic devices have a finite work space and limited resolution, we used what we call detail mapping algorithms. These algorithms compress geometry information contained in a depth map, by reducing the contrast among pixels, in such a way that it can be rendered into a limited resolution display medium without losing any detail. Second, the unique combination of a depth camera as a motion capturing system, a 3D display and haptic device to enhance user experience. While developing this system we put special attention on the cost and availability of the hardware. We decided to use only off-the-shelf, mass consumer oriented hardware so our experiments can be easily implemented and replicated. As an additional benefit the total cost of the hardware did not exceed the one thousand dollars mark making it affordable for many individuals and institutions

    A Neurophysiologic Study Of Visual Fatigue In Stereoscopic Related Displays

    Get PDF
    Two tasks were investigated in this study. The first study investigated the effects of alignment display errors on visual fatigue. The experiment revealed the following conclusive results: First, EEG data suggested the possibility of cognitively-induced time compensation changes due to a corresponding effect in real-time brain activity by the eyes trying to compensate for the alignment. The magnification difference error showed more significant effects on all EEG band waves, which were indications of likely visual fatigue as shown by the prevalence of simulator sickness questionnaire (SSQ) increases across all task levels. Vertical shift errors were observed to be prevalent in theta and beta bands of EEG which probably induced alertness (in theta band) as a result of possible stress. Rotation errors were significant in the gamma band, implying the likelihood of cognitive decline because of theta band influence. Second, the hemodynamic responses revealed that significant differences exist between the left and right dorsolateral prefrontal due to alignment errors. There was also a significant difference between the main effect for power band hemisphere and the ATC task sessions. The analyses revealed that there were significant differences between the dorsal frontal lobes in task processing and interaction effects between the processing lobes and tasks processing. The second study investigated the effects of cognitive response variables on visual fatigue. Third, the physiologic indicator of pupil dilation was 0.95mm that occurred at a mean time of 38.1min, after which the pupil dilation begins to decrease. After the average saccade rest time of 33.71min, saccade speeds leaned toward a decrease as a possible result of fatigue on-set. Fourth, the neural network classifier showed visual response data from eye movement were identified as the best predictor of visual fatigue with a classification accuracy of 90.42%. Experimental data confirmed that 11.43% of the participants actually experienced visual fatigue symptoms after the prolonged task

    Remotely operated telepresent robotics

    Get PDF
    Remotely operated robots with the ability of performing specific tasks are often used in hazardous environments in place of humans to prevent injury or death. Modern remotely operated robots suffer from limitations with accuracy which is primarily due the lack of depth perception and unintuitive hardware controls. The undertaken research project suggests an alternative method of vision and control to increase a user‟s operational performance of remotely controlled robotics. The Oculus Rift Development Kit 2.0 is a low cost device originally developed for the electronic entertainment industry which allows users to experience virtual reality by the use of a head mounted display. This technology is able to be adapted to different uses and is primarily utilised to achieve real world stereoscopic 3D vision for the user. Additionally a wearable controller was trialled with the goal of allowing a robotic arm to mimic the position of the user‟s arm via a master/slave setup. By incorporating the stated vision and control methods, any possible improvements in the accuracy and speed for users was investigated through experimentation and a conducted study. Results indicated that using the Oculus Rift for stereoscopic vision improved upon the user‟s ability to judge distances remotely but was detrimental to the user‟s ability to operate the robot. The research has been conducted under the supervision of the University of Southern Queensland (USQ) and provides useful information towards the area of remotely operated telepresent robotics

    Motion Parallax in Stereo 3D: Model and Applications

    Get PDF
    Binocular disparity is the main depth cue that makes stereoscopic images appear 3D. However, in many scenarios, the range of depth that can be reproduced by this cue is greatly limited and typically fixed due to constraints imposed by displays. For example, due to the low angular resolution of current automultiscopic screens, they can only reproduce a shallow depth range. In this work, we study the motion parallax cue, which is a relatively strong depth cue, and can be freely reproduced even on a 2D screen without any limits. We exploit the fact that in many practical scenarios, motion parallax provides sufficiently strong depth information that the presence of binocular depth cues can be reduced through aggressive disparity compression. To assess the strength of the effect we conduct psycho-visual experiments that measure the influence of motion parallax on depth perception and relate it to the depth resulting from binocular disparity. Based on the measurements, we propose a joint disparity-parallax computational model that predicts apparent depth resulting from both cues. We demonstrate how this model can be applied in the context of stereo and multiscopic image processing, and propose new disparity manipulation techniques, which first quantify depth obtained from motion parallax, and then adjust binocular disparity information accordingly. This allows us to manipulate the disparity signal according to the strength of motion parallax to improve the overall depth reproduction. This technique is validated in additional experiments
    • …
    corecore