996 research outputs found

    Recent Advances in Cellular D2D Communications

    Get PDF
    Device-to-device (D2D) communications have attracted a great deal of attention from researchers in recent years. It is a promising technique for offloading local traffic from cellular base stations by allowing local devices, in physical proximity, to communicate directly with each other. Furthermore, through relaying, D2D is also a promising approach to enhancing service coverage at cell edges or in black spots. However, there are many challenges to realizing the full benefits of D2D. For one, minimizing the interference between legacy cellular and D2D users operating in underlay mode is still an active research issue. With the 5th generation (5G) communication systems expected to be the main data carrier for the Internet-of-Things (IoT) paradigm, the potential role of D2D and its scalability to support massive IoT devices and their machine-centric (as opposed to human-centric) communications need to be investigated. New challenges have also arisen from new enabling technologies for D2D communications, such as non-orthogonal multiple access (NOMA) and blockchain technologies, which call for new solutions to be proposed. This edited book presents a collection of ten chapters, including one review and nine original research works on addressing many of the aforementioned challenges and beyond

    Socio-economic aware data forwarding in mobile sensing networks and systems

    Get PDF
    The vision for smart sustainable cities is one whereby urban sensing is core to optimising city operation which in turn improves citizen contentment. Wireless Sensor Networks are envisioned to become pervasive form of data collection and analysis for smart cities but deployment of millions of inter-connected sensors in a city can be cost-prohibitive. Given the ubiquity and ever-increasing capabilities of sensor-rich mobile devices, Wireless Sensor Networks with Mobile Phones (WSN-MP) provide a highly flexible and ready-made wireless infrastructure for future smart cities. In a WSN-MP, mobile phones not only generate the sensing data but also relay the data using cellular communication or short range opportunistic communication. The largest challenge here is the efficient transmission of potentially huge volumes of sensor data over sometimes meagre or faulty communications networks in a cost-effective way. This thesis investigates distributed data forwarding schemes in three types of WSN-MP: WSN with mobile sinks (WSN-MS), WSN with mobile relays (WSN-HR) and Mobile Phone Sensing Systems (MPSS). For these dynamic WSN-MP, realistic models are established and distributed algorithms are developed for efficient network performance including data routing and forwarding, sensing rate control and and pricing. This thesis also considered realistic urban sensing issues such as economic incentivisation and demonstrates how social network and mobility awareness improves data transmission. Through simulations and real testbed experiments, it is shown that proposed algorithms perform better than state-of-the-art schemes.Open Acces

    From MANET to people-centric networking: Milestones and open research challenges

    Get PDF
    In this paper, we discuss the state of the art of (mobile) multi-hop ad hoc networking with the aim to present the current status of the research activities and identify the consolidated research areas, with limited research opportunities, and the hot and emerging research areas for which further research is required. We start by briefly discussing the MANET paradigm, and why the research on MANET protocols is now a cold research topic. Then we analyze the active research areas. Specifically, after discussing the wireless-network technologies, we analyze four successful ad hoc networking paradigms, mesh networks, opportunistic networks, vehicular networks, and sensor networks that emerged from the MANET world. We also present an emerging research direction in the multi-hop ad hoc networking field: people centric networking, triggered by the increasing penetration of the smartphones in everyday life, which is generating a people-centric revolution in computing and communications

    Proximity as a Service via Cellular Network-Assisted Mobile Device-to-Device

    Get PDF
    PhD ThesisThe research progress of communication has brought a lot of novel technologies to meet the multi-dimensional demands such as pervasive connection, low delay and high bandwidth. Device-to-Device (D2D) communication is a way to no longer treat the User Equipment (UEs) as a terminal, but rather as a part of the network for service provisioning. This thesis decouples UEs into service providers (helpers) and service requesters. By collaboration among proximal devices, with the coordination of cellular networks, some local tasks can be achieved, such as coverage extension, computation o oading, mobile crowdsourcing and mobile crowdsensing. This thesis proposes a generic framework Proximity as a Service (PaaS) for increasing the coverage with demands of service continuity. As one of the use cases, the optimal helper selection algorithm of PaaS for increasing the service coverage with demands of service continuity is called ContAct based Proximity (CAP). Mainly, fruitful contact information (e.g., contact duration, frequency, and interval) is captured, and is used to handle ubiquitous proximal services through the optimal selection of helpers. The nature of PaaS is evaluated under the Helsinki city scenario, with movement model of Points Of Interest (POI) and with critical factors in uencing the service demands (e.g., success ratio, disruption duration and frequency). Simulation results show the advantage of CAP, in both success ratio and continuity of the service (outputs). Based on this perspective, metrics such as service success ratio and continuity as a service evaluation of the PaaS are evaluated using the statistical theory of the Design Of Experiments (DOE). DOE is used as there are many dimensions to the state space (access tolerance, selected helper number, helper access limit, and transmit range) that can in uence the results. A key contribution of this work is that it brings rigorous statistical experiment design methods into the research into mobile computing. Results further reveal the influence of four factors (inputs), e.g., service tolerance, number of helpers allocated, the number of concurrent devices supported by each helper and transmit range. Based on this perspective, metrics such as service success ratio and continuity are evaluated using DOE. The results show that transmit range is the most dominant factor. The number of selected helpers is the second most dominant factor. Since di erent factors have di erent regression levels, a uni ed 4 level full factorial experiment and a cubic multiple regression analysis have been carried out. All the interactions and the corresponding coe cients have been found. This work is the rst one to evaluate LTE-Direct and WiFi-Direct in an opportunistic proximity service. The contribution of the results for industry is to guide how many users need to cooperate to enable mobile computing and for academia. This reveals the facts that: 1, in some cases, the improvement of spectrum e ciency brought by D2D is not important; 2, nodal density and the resources used in D2D air-interfaces are important in the eld of mobile computing. This work built a methodology to study the D2D networks with a di erent perspective (PaaS)

    Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks

    Full text link
    Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.Comment: 46 pages, 22 fig

    Review on Radio Resource Allocation Optimization in LTE/LTE-Advanced using Game Theory

    Get PDF
    Recently, there has been a growing trend toward ap-plying game theory (GT) to various engineering fields in order to solve optimization problems with different competing entities/con-tributors/players. Researches in the fourth generation (4G) wireless network field also exploited this advanced theory to overcome long term evolution (LTE) challenges such as resource allocation, which is one of the most important research topics. In fact, an efficient de-sign of resource allocation schemes is the key to higher performance. However, the standard does not specify the optimization approach to execute the radio resource management and therefore it was left open for studies. This paper presents a survey of the existing game theory based solution for 4G-LTE radio resource allocation problem and its optimization

    An Analytical Model Based on Population Processes to Characterize Data Dissemination in 5G Opportunistic Networks

    Get PDF
    (c) 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.[EN] The scarcity of bandwidth due to the explosive growth of mobile devices in 5G makes the offloading messaging workload to Wi-Fi devices that use opportunistic connections, a very promising solution. Communications in mobile opportunistic networks take place upon the establishment of ephemeral contacts among mobile nodes using direct communication. In this paper, we propose an analytical model based on population processes to evaluate data dissemination considering several parameters, such as user density, contact rate, and the number of fixed nodes. From this model, we obtain closed-form expressions for determining the diffusion time, the network coverage, and the waiting time. Newer 5G wireless technologies, such as WiGig, can offer multi-gigabit speeds, low latency, and security-protected connectivity between nearby devices. We therefore focus our work on the impact of high-speed and short-range wireless communications technologies for data dissemination in mobile opportunistic networks. Moreover, we test whether the coexistence with a fixed infrastructure can improve content dissemination, and thus justify its additional cost. Our results show that, when user density is high, the diffusion is mainly performed through the opportunistic contacts between mobile nodes, and that the diffusion coverage is close to 100%. Moreover, the diffusion is fast enough to dynamically update the information among all the participating members, so users do not need to get closer to fixed spots for receiving updated information.This work was supported in part by the Ministerio de Economa y Competitividad, Spain, under Grant TEC2014-52690-R, Grant MTM 2016-75963-P, and Grant SEV-2013-0323, in part by Generalitat Valenciana, Spain, under Grant AICO/2015/108 and Grant ACOMP/2015/005.Hernández-Orallo, E.; Murillo Arcila, M.; Cano, J.; Tavares De Araujo Cesariny Calafate, CM.; Conejero, JA.; Manzoni, P. (2018). An Analytical Model Based on Population Processes to Characterize Data Dissemination in 5G Opportunistic Networks. IEEE Access. 6:1603-1615. https://doi.org/10.1109/ACCESS.2017.2779748S16031615

    Bandwidth Allocation for Multiple Federated Learning Services in Wireless Edge Networks

    Full text link
    This paper studies a federated learning (FL) system, where \textit{multiple} FL services co-exist in a wireless network and share common wireless resources. It fills the void of wireless resource allocation for multiple simultaneous FL services in the existing literature. Our method designs a two-level resource allocation framework comprising \emph{intra-service} resource allocation and \emph{inter-service} resource allocation. The intra-service resource allocation problem aims to minimize the length of FL rounds by optimizing the bandwidth allocation among the clients of each FL service. Based on this, an inter-service resource allocation problem is further considered, which distributes bandwidth resources among multiple simultaneous FL services. We consider both cooperative and selfish providers of the FL services. For cooperative FL service providers, we design a distributed bandwidth allocation algorithm to optimize the overall performance of multiple FL services, meanwhile cater to the fairness among FL services and the privacy of clients. For selfish FL service providers, a new auction scheme is designed with the FL service owners as the bidders and the network provider as the auctioneer. The designed auction scheme strikes a balance between the overall FL performance and fairness. Our simulation results show that the proposed algorithms outperform other benchmarks under various network conditions

    Node Cooperation in Hybrid Ad hoc Networks

    Get PDF
    A hybrid ad hoc network is a structure-based network that is extended using multi-hop communications. Indeed, in this kind of network, the existence of a communication link between the mobile station and the base station is not required: A mobile station that has no direct connection with a base station can use other mobile stations as relays. Compared with conventional (single-hop) structure-based networks, this new generation can lead to a better use of the available spectrum and to a reduction of infrastructure costs. However, these benefits would vanish if the mobile nodes did not properly cooperate and forward packets for other nodes. In this paper, we propose a charging and rewarding scheme to encourage the most fundamental operation, namely packet forwarding. We use ``MAC layering" to reduce the space overhead in the packets and a stream cipher encryption mechanism to provide ``implicit authentication" of the nodes involved in the communication. We analyze the robustness of our protocols against rational and malicious attacks. We show that - using our solution - collaboration is rational for selfish nodes. We also show that our protocols thwart rational attacks and detect malicious attacks
    • …
    corecore