159 research outputs found

    Blocking DDoS attacks at the network level

    Get PDF
    Denial of service (DDoS) is a persistent and continuously growing problem. These attacks are based on methods that flood the victim with messages that it did not request, effectively exhausting its computational or bandwidth resources. The variety of attack approaches is overwhelming and the current defense mechanisms are not completely effective. In today’s internet, a multitude of DDoS attacks occur everyday, some even degrading the availability of critical or governmental services. In this dissertation, we propose a new network level DDoS mitigation protocol that iterates on previous attempts and uses proven mechanisms such as cryptographic challenges and packet-tagging. Our analysis of the previous attempts to solve this problem led to a ground-up design of the protocol with adaptability in mind, trying to minimize deployment and adoption barriers. With this work we concluded that with software changes only on the communication endpoints, it is possible to mitigate the most used DDoS attacks with results up to 25 times more favourable than standard resource rate limiting (RRL) methods

    Defence against Denial of Service (DoS) attacks using Identifier-Locator Network Protocol (ILNP) and Domain Name System (DNS)

    Get PDF
    This research considered a novel approach to network security by combining a new networking architecture based on the Identifier-Locator Network Protocol (ILNP) and the existing Domain Name System (DNS). Specifically, the investigations considered the mitigation of network-level and transport-level based Denial of Service (DoS) attacks. The solutions presented for DoS are applicable to secure servers that are visible externally from an enterprise network. DoS was chosen as an area of concern because in recent years DoS has become the most common and hard to defend against attacks. The novelty of this approach was to consider the way the DNS and ILNP can work together, transparently to the application, within an enterprise scenario. This was achieved by the introduction of a new application-level access control function - the Capability Management System (CMS) - which applies configuration at the application level (DNS data) and network level (ILNP namespaces). CMS provides dynamic, ephemeral identity and location information to clients and servers, in order to effectively partition legitimate traffic from attack traffic. This was achieved without modifying existing network components such as switches and routers and making standard use of existing functions, such as access control lists, and DNS servers, all within a single trust domain that is under the control of the enterprise. The prime objectives of this research were: • to defend against DoS attacks with the use of naming and DNS within an enterprise scenario. • to increase the attacker’s effort in launching a successful DoS attack. • to reduce the visibility of vulnerabilities that can be discovered by an attacker by active probing approaches. • to practically demonstrate the effectiveness of ILNP and DNS working together to provide a solution for DoS mitigation. The solution methodology is based on the use of network and transport level capabilities, dynamic changes to DNS data, and a Moving Target Defence (MTD) paradigm. There are three solutions presented which use ILNP namespaces. These solutions are referred to as identifier-based, locator-based, and combined identifier-locator based solutions, respectively. ILNP-based node identity values were used to provide transport-level per-client server capabilities, thereby providing per-client isolation of traffic. ILNP locator values were used to allow a provision of network-level traffic separation for externally accessible enterprise services. Then, the identifier and locator solutions were combined, showing the possibility of protecting the services, with per-client traffic control and topological traffic path separation. All solutions were site-based solutions and did not require any modification in the core/external network, or the active cooperation of an ISP, therefore limiting the trust domain to the enterprise itself. Experiments were conducted to evaluate all the solutions on a test-bed consisting of off-the-shelf hardware, open-source software, an implementation of the CMS written in C, all running on Linux. The discussion includes considering the efficacy of the solutions, comparisons with existing methods, the performance of each solution, and critical analysis highlighting future improvements that could be made

    LISP Mapping System as DoS Amplification Vector

    Full text link
    peer reviewedThere is a growing interest in solutions relying on the identifier/locator separation paradigm. It introduces several benefits in terms of scalability and flexibility. It relies on two addressing spaces, namely the identifiers, for endpoint identification, and the locators, for packet forwarding. An additional control plane is necessary to map one space to the other. In this paper, we explore how control messages can be an amplification vector for DoS attacks. We evaluate the possible amplification factor based on a real deployment, showing that the amplification factor exists. We also build a GNS-3 testbed to demonstrate further and analyze the attack

    MP-CFM: MPTCP-Based communication functional module for next generation ERTMS

    Get PDF
    184 p. El contenido de los capítulos 4,5,6,7,8 y 9 está sujeto a confidencialidadEl Sistema Europeo de Gestión del Tráfico Ferroviario (ERTMS, por sus siglasen inglés), fue originalmente diseñado para los ferrocarriles europeos. Sinembargo, a lo largo de las dos últimas décadas, este sistema se ha convertidoen el estándar de-facto para los servicios de Alta Velocidad en la mayoría depaíses desarrollados.El sistema ERTMS se compone de tres subsistemas principales: 1) el Sistemade Control Ferroviario Europeo (ETCS, por sus siglas en inglés), que actúacomo aplicación de señalización; 2) el sistema Euroradio, que a su vez estádividido en dos subsistemas, el Módulo de Seguridad Funcional (SFM, porsus siglas en inglés), y el Módulo de Comunicación Funcional (CFM, porsus siglas en inglés); y 3) el sistema de comunicaciones subyacente, GSM-R,que transporta la información intercambiada entre el sistema embarcado enel tren (OBU, por sus siglas en inglés) y el Centro de Bloqueo por Radio(RBC, por sus siglas en inglés). El sistema de señalización ETCS soporta tresniveles dependiendo del nivel de prestaciones soportadas. En el nivel 3 seintroduce la posibilidad de trabajar con bloques móviles en lugar de bloquesfijos definidos en la vía. Esto implica que la distancia de avance entre dos trenesconsecutivos puede ser reducida a una distancia mínima en la que se garanticela seguridad del servicio, aumentando por tanto la capacidad del corredorferroviario. Esta distancia de seguridad viene determinada por la combinaciónde la distancia de frenado del tren y el retraso de las comunicaciones deseñalización. Por lo tanto, se puede afirmar que existe una relación directaentre los retrasos y la confiabilidad de las transmisiones de las aplicaciones deseñalización y la capacidad operacional de un corredor ferroviario. Así pues,el estudio y mejora de los sistemas de comunicaciones utilizados en ERTMSjuegan un papel clave en la evolución del sistema ERTMS. Asimismo, unaoperatividad segura en ERTMS, desde el punto de vista de las comunicacionesimplicadas en la misma, viene determinada por la confiabilidad de lascomunicaciones, la disponibilidad de sus canales de comunicación, el retrasode las comunicaciones y la seguridad de sus mensajes.Unido este hecho, la industria ferroviaria ha venido trabajando en ladigitalización y la transición al protocolo IP de la mayor parte de los sistemasde señalización. Alineado con esta tendencia, el consorcio industrial UNISIGha publicado recientemente un nuevo modelo de comunicaciones para ERTMSque incluye la posibilidad, no solo de operar con el sistema tradicional,basado en tecnología de conmutación de circuitos, sino también con un nuevosistema basado en IP. Esta tesis está alineada con el contexto de migraciónactual y pretende contribuir a mejorar la disponibilidad, confiabilidad yseguridad de las comunicaciones, tomando como eje fundamental los tiemposde transmisión de los mensajes, con el horizonte puesto en la definición deuna próxima generación de ERTMS, definida en esta tesis como NGERTMS.En este contexto, se han detectado tres retos principales para reforzar laresiliencia de la arquitectura de comunicaciones del NGERTMS: 1) mejorarla supervivencia de las comunicaciones ante disrupciones; 2) superar laslimitaciones actuales de ERTMS para enviar mensajes de alta prioridad sobretecnología de conmutación de paquetes, dotando a estos mensajes de un mayorgrado de resiliencia y menor latencia respecto a los mensajes ordinarios; y3) el aumento de la seguridad de las comunicaciones y el incremento de ladisponibilidad sin que esto conlleve un incremento en la latencia.Considerando los desafíos previamente descritos, en esta tesis se proponeuna arquitectura de comunicaciones basada en el protocolo MPTCP, llamadaMP-CFM, que permite superar dichos desafíos, a la par que mantener laretrocompatibilidad con el sistema de comunicaciones basado en conmutaciónde paquetes recientemente propuesto por UNISIG. Hasta el momento, esta esla primera vez que se propone una arquitectura de comunicaciones completacapaz de abordar los desafíos mencionados anteriormente. Esta arquitecturaimplementa cuatro tipos de clase de servicio, los cuales son utilizados porlos paquetes ordinarios y de alta prioridad para dos escenarios distintos; unescenario en el que ambos extremos, el sistema embarcado o OBU y el RBC,disponen de múltiples interfaces de red; y otro escenario transicional en el cualel RBC sí tiene múltiples interfaces de red pero el OBU solo dispone de unaúnica interfaz. La arquitectura de comunicaciones propuesta para el entornoferroviario ha sido validada mediante un entorno de simulación desarrolladopara tal efecto. Es más, dichas simulaciones demuestran que la arquitecturapropuesta, ante disrupciones de canal, supera con creces en términos derobustez el sistema diseñado por UNISIG. Como conclusión, se puede afirmarque en esta tesis se demuestra que una arquitectura de comunicaciones basadade MPTCP cumple con los exigentes requisitos establecidos para el NGERTMSy por tanto dicha propuesta supone un avance en la evolución del sistema deseñalización ferroviario europeo

    Is DNS Ready for Ubiquitous Internet of Things?

    Get PDF
    The vision of the Internet of Things (IoT) covers not only the well-regulated processes of specific applications in different areas but also includes ubiquitous connectivity of more generic objects (or things and devices) in the physical world and the related information in the virtual world. For example, a typical IoT application, such as a smart city, includes smarter urban transport networks, upgraded water supply, and waste-disposal facilities, along with more efficient ways to light and heat buildings. For smart city applications and others, we require unique naming of every object and a secure, scalable, and efficient name resolution which can provide access to any object\u27s inherent attributes with its name. Based on different motivations, many naming principles and name resolution schemes have been proposed. Some of them are based on the well-known domain name system (DNS), which is the most important infrastructure in the current Internet, while others are based on novel designing principles to evolve the Internet. Although the DNS is evolving in its functionality and performance, it was not originally designed for the IoT applications. Then, a fundamental question that arises is: can current DNS adequately provide the name service support for IoT in the future? To address this question, we analyze the strengths and challenges of DNS when it is used to support ubiquitous IoT. First, we analyze the requirements of the IoT name service by using five characteristics, namely security, mobility, infrastructure independence, localization, and efficiency, which we collectively refer to as SMILE. Then, we discuss the pros and cons of the DNS in satisfying SMILE in the context of the future evolution of the IoT environment

    Defending against Distributed Denial of Service Attack Under Tunnel Based Forwarding

    Get PDF
    Today, attacks are a harmful element of the computer networks. Distributed Denial of Service (DDoS) attack is one of the most harmful attacks. Many defense mechanisms have been proposed to mitigate the effect of the attacks. 2In this thesis, we study two methods for defending against DDoS attacks. First, we identify the attack packets to detect a DDoS attack by checking the TTL value of incoming packets and monitoring the number of new source IP addresses of incoming packets. Second, we propose an algorithm to traceback the attack traffic to identify the source IP address of origin by deploying a tunneling based protocol. The tunneling based protocol is called the Locator/Identifier Separation Protocol (LISP) and it is deployed in a domain network to encapsulate all outgoing packets decapsulate all incoming packets. As a side-effect the tunneling protocol reveals the ingress point of attack traffic. We also analyzed the approach in a simulation environment and compare the results in the domain network when deploying the tunneling based protocol

    Novel architectures and strategies for security offloading

    Get PDF
    Internet has become an indispensable and powerful tool in our modern society. Its ubiquitousness, pervasiveness and applicability have fostered paradigm changes around many aspects of our lives. This phenomena has positioned the network and its services as fundamental assets over which we rely and trust. However, Internet is far from being perfect. It has considerable security issues and vulnerabilities that jeopardize its main core functionalities with negative impact over its players. Furthermore, these vulnerabilities¿ complexities have been amplified along with the evolution of Internet user mobility. In general, Internet security includes both security for the correct network operation and security for the network users and endpoint devices. The former involves the challenges around the Internet core control and management vulnerabilities, while the latter encompasses security vulnerabilities over end users and endpoint devices. Similarly, Internet mobility poses major security challenges ranging from routing complications, connectivity disruptions and lack of global authentication and authorization. The purpose of this thesis is to present the design of novel architectures and strategies for improving Internet security in a non-disruptive manner. Our novel security proposals follow a protection offloading approach. The motives behind this paradigm target the further enhancement of the security protection while minimizing the intrusiveness and disturbance over the Internet routing protocols, its players and users. To accomplish such level of transparency, the envisioned solutions leverage on well-known technologies, namely, Software Defined Networks, Network Function Virtualization and Fog Computing. From the Internet core building blocks, we focus on the vulnerabilities of two key routing protocols that play a fundamental role in the present and the future of the Internet, i.e., the Border Gateway Protocol (BGP) and the Locator-Identifier Split Protocol (LISP). To this purpose, we first investigate current BGP vulnerabilities and countermeasures with emphasis in an unresolved security issue defined as Route Leaks. Therein, we discuss the reasons why different BGP security proposals have failed to be adopted, and the necessity to propose innovative solutions that minimize the impact over the already deployed routing solution. To this end, we propose pragmatic security methodologies to offload the protection with the following advantages: no changes to the BGP protocol, neither dependency on third party information nor on third party security infrastructure, and self-beneficial. Similarly, we research the current LISP vulnerabilities with emphasis on its control plane and mobility support. We leverage its by-design separation of control and data planes to propose an enhanced location-identifier registration process of end point identifiers. This proposal improves the mobility of end users with regards on securing a dynamic traffic steering over the Internet. On the other hand, from the end user and devices perspective we research new paradigms and architectures with the aim of enhancing their protection in a more controllable and consolidated manner. To this end, we propose a new paradigm which shifts the device-centric protection paradigm toward a user-centric protection. Our proposal focus on the decoupling or extending of the security protection from the end devices toward the network edge. It seeks the homogenization of the enforced protection per user independently of the device utilized. We further investigate this paradigm in a mobility user scenario. Similarly, we extend this proposed paradigm to the IoT realm and its intrinsic security challenges. Therein, we propose an alternative to protect both the things, and the services that leverage from them by consolidating the security at the network edge. We validate our proposal by providing experimental results from prof-of-concepts implementations.Internet se ha convertido en una poderosa e indispensable herramienta para nuestra sociedad moderna. Su omnipresencia y aplicabilidad han promovido grandes cambios en diferentes aspectos de nuestras vidas. Este fenómeno ha posicionado a la red y sus servicios como activos fundamentales sobre los que contamos y confiamos. Sin embargo, Internet está lejos de ser perfecto. Tiene considerables problemas de seguridad y vulnerabilidades que ponen en peligro sus principales funcionalidades. Además, las complejidades de estas vulnerabilidades se han ampliado junto con la evolución de la movilidad de usuarios de Internet y su limitado soporte. La seguridad de Internet incluye tanto la seguridad para el correcto funcionamiento de la red como la seguridad para los usuarios y sus dispositivos. El primero implica los desafíos relacionados con las vulnerabilidades de control y gestión de la infraestructura central de Internet, mientras que el segundo abarca las vulnerabilidades de seguridad sobre los usuarios finales y sus dispositivos. Del mismo modo, la movilidad en Internet plantea importantes desafíos de seguridad que van desde las complicaciones de enrutamiento, interrupciones de la conectividad y falta de autenticación y autorización globales. El propósito de esta tesis es presentar el diseño de nuevas arquitecturas y estrategias para mejorar la seguridad de Internet de una manera no perturbadora. Nuestras propuestas de seguridad siguen un enfoque de desacople de la protección. Los motivos detrás de este paradigma apuntan a la mejora adicional de la seguridad mientras que minimizan la intrusividad y la perturbación sobre los protocolos de enrutamiento de Internet, sus actores y usuarios. Para lograr este nivel de transparencia, las soluciones previstas aprovechan nuevas tecnologías, como redes definidas por software (SDN), virtualización de funciones de red (VNF) y computación en niebla. Desde la perspectiva central de Internet, nos centramos en las vulnerabilidades de dos protocolos de enrutamiento clave que desempeñan un papel fundamental en el presente y el futuro de Internet, el Protocolo de Puerta de Enlace Fronterizo (BGP) y el Protocolo de Separación Identificador/Localizador (LISP ). Para ello, primero investigamos las vulnerabilidades y medidas para contrarrestar un problema no resuelto en BGP definido como Route Leaks. Proponemos metodologías pragmáticas de seguridad para desacoplar la protección con las siguientes ventajas: no cambios en el protocolo BGP, cero dependencia en la información de terceros, ni de infraestructura de seguridad de terceros, y de beneficio propio. Del mismo modo, investigamos las vulnerabilidades actuales sobre LISP con énfasis en su plano de control y soporte de movilidad. Aprovechamos la separacçón de sus planos de control y de datos para proponer un proceso mejorado de registro de identificadores de ubicación y punto final, validando de forma segura sus respectivas autorizaciones. Esta propuesta mejora la movilidad de los usuarios finales con respecto a segurar un enrutamiento dinámico del tráfico a través de Internet. En paralelo, desde el punto de vista de usuarios finales y dispositivos investigamos nuevos paradigmas y arquitecturas con el objetivo de mejorar su protección de forma controlable y consolidada. Con este fin, proponemos un nuevo paradigma hacia una protección centrada en el usuario. Nuestra propuesta se centra en el desacoplamiento o ampliación de la protección de seguridad de los dispositivos finales hacia el borde de la red. La misma busca la homogeneización de la protección del usuario independientemente del dispositivo utilizado. Además, investigamos este paradigma en un escenario con movilidad. Validamos nuestra propuesta proporcionando resultados experimentales obtenidos de diferentes experimentos y pruebas de concepto implementados.Postprint (published version

    Novel architectures and strategies for security offloading

    Get PDF
    Internet has become an indispensable and powerful tool in our modern society. Its ubiquitousness, pervasiveness and applicability have fostered paradigm changes around many aspects of our lives. This phenomena has positioned the network and its services as fundamental assets over which we rely and trust. However, Internet is far from being perfect. It has considerable security issues and vulnerabilities that jeopardize its main core functionalities with negative impact over its players. Furthermore, these vulnerabilities¿ complexities have been amplified along with the evolution of Internet user mobility. In general, Internet security includes both security for the correct network operation and security for the network users and endpoint devices. The former involves the challenges around the Internet core control and management vulnerabilities, while the latter encompasses security vulnerabilities over end users and endpoint devices. Similarly, Internet mobility poses major security challenges ranging from routing complications, connectivity disruptions and lack of global authentication and authorization. The purpose of this thesis is to present the design of novel architectures and strategies for improving Internet security in a non-disruptive manner. Our novel security proposals follow a protection offloading approach. The motives behind this paradigm target the further enhancement of the security protection while minimizing the intrusiveness and disturbance over the Internet routing protocols, its players and users. To accomplish such level of transparency, the envisioned solutions leverage on well-known technologies, namely, Software Defined Networks, Network Function Virtualization and Fog Computing. From the Internet core building blocks, we focus on the vulnerabilities of two key routing protocols that play a fundamental role in the present and the future of the Internet, i.e., the Border Gateway Protocol (BGP) and the Locator-Identifier Split Protocol (LISP). To this purpose, we first investigate current BGP vulnerabilities and countermeasures with emphasis in an unresolved security issue defined as Route Leaks. Therein, we discuss the reasons why different BGP security proposals have failed to be adopted, and the necessity to propose innovative solutions that minimize the impact over the already deployed routing solution. To this end, we propose pragmatic security methodologies to offload the protection with the following advantages: no changes to the BGP protocol, neither dependency on third party information nor on third party security infrastructure, and self-beneficial. Similarly, we research the current LISP vulnerabilities with emphasis on its control plane and mobility support. We leverage its by-design separation of control and data planes to propose an enhanced location-identifier registration process of end point identifiers. This proposal improves the mobility of end users with regards on securing a dynamic traffic steering over the Internet. On the other hand, from the end user and devices perspective we research new paradigms and architectures with the aim of enhancing their protection in a more controllable and consolidated manner. To this end, we propose a new paradigm which shifts the device-centric protection paradigm toward a user-centric protection. Our proposal focus on the decoupling or extending of the security protection from the end devices toward the network edge. It seeks the homogenization of the enforced protection per user independently of the device utilized. We further investigate this paradigm in a mobility user scenario. Similarly, we extend this proposed paradigm to the IoT realm and its intrinsic security challenges. Therein, we propose an alternative to protect both the things, and the services that leverage from them by consolidating the security at the network edge. We validate our proposal by providing experimental results from prof-of-concepts implementations.Internet se ha convertido en una poderosa e indispensable herramienta para nuestra sociedad moderna. Su omnipresencia y aplicabilidad han promovido grandes cambios en diferentes aspectos de nuestras vidas. Este fenómeno ha posicionado a la red y sus servicios como activos fundamentales sobre los que contamos y confiamos. Sin embargo, Internet está lejos de ser perfecto. Tiene considerables problemas de seguridad y vulnerabilidades que ponen en peligro sus principales funcionalidades. Además, las complejidades de estas vulnerabilidades se han ampliado junto con la evolución de la movilidad de usuarios de Internet y su limitado soporte. La seguridad de Internet incluye tanto la seguridad para el correcto funcionamiento de la red como la seguridad para los usuarios y sus dispositivos. El primero implica los desafíos relacionados con las vulnerabilidades de control y gestión de la infraestructura central de Internet, mientras que el segundo abarca las vulnerabilidades de seguridad sobre los usuarios finales y sus dispositivos. Del mismo modo, la movilidad en Internet plantea importantes desafíos de seguridad que van desde las complicaciones de enrutamiento, interrupciones de la conectividad y falta de autenticación y autorización globales. El propósito de esta tesis es presentar el diseño de nuevas arquitecturas y estrategias para mejorar la seguridad de Internet de una manera no perturbadora. Nuestras propuestas de seguridad siguen un enfoque de desacople de la protección. Los motivos detrás de este paradigma apuntan a la mejora adicional de la seguridad mientras que minimizan la intrusividad y la perturbación sobre los protocolos de enrutamiento de Internet, sus actores y usuarios. Para lograr este nivel de transparencia, las soluciones previstas aprovechan nuevas tecnologías, como redes definidas por software (SDN), virtualización de funciones de red (VNF) y computación en niebla. Desde la perspectiva central de Internet, nos centramos en las vulnerabilidades de dos protocolos de enrutamiento clave que desempeñan un papel fundamental en el presente y el futuro de Internet, el Protocolo de Puerta de Enlace Fronterizo (BGP) y el Protocolo de Separación Identificador/Localizador (LISP ). Para ello, primero investigamos las vulnerabilidades y medidas para contrarrestar un problema no resuelto en BGP definido como Route Leaks. Proponemos metodologías pragmáticas de seguridad para desacoplar la protección con las siguientes ventajas: no cambios en el protocolo BGP, cero dependencia en la información de terceros, ni de infraestructura de seguridad de terceros, y de beneficio propio. Del mismo modo, investigamos las vulnerabilidades actuales sobre LISP con énfasis en su plano de control y soporte de movilidad. Aprovechamos la separacçón de sus planos de control y de datos para proponer un proceso mejorado de registro de identificadores de ubicación y punto final, validando de forma segura sus respectivas autorizaciones. Esta propuesta mejora la movilidad de los usuarios finales con respecto a segurar un enrutamiento dinámico del tráfico a través de Internet. En paralelo, desde el punto de vista de usuarios finales y dispositivos investigamos nuevos paradigmas y arquitecturas con el objetivo de mejorar su protección de forma controlable y consolidada. Con este fin, proponemos un nuevo paradigma hacia una protección centrada en el usuario. Nuestra propuesta se centra en el desacoplamiento o ampliación de la protección de seguridad de los dispositivos finales hacia el borde de la red. La misma busca la homogeneización de la protección del usuario independientemente del dispositivo utilizado. Además, investigamos este paradigma en un escenario con movilidad. Validamos nuestra propuesta proporcionando resultados experimentales obtenidos de diferentes experimentos y pruebas de concepto implementados

    MP-CFM: MPTCP-Based communication functional module for next generation ERTMS

    Get PDF
    184 p. El contenido de los capítulos 4,5,6,7,8 y 9 está sujeto a confidencialidadEl Sistema Europeo de Gestión del Tráfico Ferroviario (ERTMS, por sus siglasen inglés), fue originalmente diseñado para los ferrocarriles europeos. Sinembargo, a lo largo de las dos últimas décadas, este sistema se ha convertidoen el estándar de-facto para los servicios de Alta Velocidad en la mayoría depaíses desarrollados.El sistema ERTMS se compone de tres subsistemas principales: 1) el Sistemade Control Ferroviario Europeo (ETCS, por sus siglas en inglés), que actúacomo aplicación de señalización; 2) el sistema Euroradio, que a su vez estádividido en dos subsistemas, el Módulo de Seguridad Funcional (SFM, porsus siglas en inglés), y el Módulo de Comunicación Funcional (CFM, porsus siglas en inglés); y 3) el sistema de comunicaciones subyacente, GSM-R,que transporta la información intercambiada entre el sistema embarcado enel tren (OBU, por sus siglas en inglés) y el Centro de Bloqueo por Radio(RBC, por sus siglas en inglés). El sistema de señalización ETCS soporta tresniveles dependiendo del nivel de prestaciones soportadas. En el nivel 3 seintroduce la posibilidad de trabajar con bloques móviles en lugar de bloquesfijos definidos en la vía. Esto implica que la distancia de avance entre dos trenesconsecutivos puede ser reducida a una distancia mínima en la que se garanticela seguridad del servicio, aumentando por tanto la capacidad del corredorferroviario. Esta distancia de seguridad viene determinada por la combinaciónde la distancia de frenado del tren y el retraso de las comunicaciones deseñalización. Por lo tanto, se puede afirmar que existe una relación directaentre los retrasos y la confiabilidad de las transmisiones de las aplicaciones deseñalización y la capacidad operacional de un corredor ferroviario. Así pues,el estudio y mejora de los sistemas de comunicaciones utilizados en ERTMSjuegan un papel clave en la evolución del sistema ERTMS. Asimismo, unaoperatividad segura en ERTMS, desde el punto de vista de las comunicacionesimplicadas en la misma, viene determinada por la confiabilidad de lascomunicaciones, la disponibilidad de sus canales de comunicación, el retrasode las comunicaciones y la seguridad de sus mensajes.Unido este hecho, la industria ferroviaria ha venido trabajando en ladigitalización y la transición al protocolo IP de la mayor parte de los sistemasde señalización. Alineado con esta tendencia, el consorcio industrial UNISIGha publicado recientemente un nuevo modelo de comunicaciones para ERTMSque incluye la posibilidad, no solo de operar con el sistema tradicional,basado en tecnología de conmutación de circuitos, sino también con un nuevosistema basado en IP. Esta tesis está alineada con el contexto de migraciónactual y pretende contribuir a mejorar la disponibilidad, confiabilidad yseguridad de las comunicaciones, tomando como eje fundamental los tiemposde transmisión de los mensajes, con el horizonte puesto en la definición deuna próxima generación de ERTMS, definida en esta tesis como NGERTMS.En este contexto, se han detectado tres retos principales para reforzar laresiliencia de la arquitectura de comunicaciones del NGERTMS: 1) mejorarla supervivencia de las comunicaciones ante disrupciones; 2) superar laslimitaciones actuales de ERTMS para enviar mensajes de alta prioridad sobretecnología de conmutación de paquetes, dotando a estos mensajes de un mayorgrado de resiliencia y menor latencia respecto a los mensajes ordinarios; y3) el aumento de la seguridad de las comunicaciones y el incremento de ladisponibilidad sin que esto conlleve un incremento en la latencia.Considerando los desafíos previamente descritos, en esta tesis se proponeuna arquitectura de comunicaciones basada en el protocolo MPTCP, llamadaMP-CFM, que permite superar dichos desafíos, a la par que mantener laretrocompatibilidad con el sistema de comunicaciones basado en conmutaciónde paquetes recientemente propuesto por UNISIG. Hasta el momento, esta esla primera vez que se propone una arquitectura de comunicaciones completacapaz de abordar los desafíos mencionados anteriormente. Esta arquitecturaimplementa cuatro tipos de clase de servicio, los cuales son utilizados porlos paquetes ordinarios y de alta prioridad para dos escenarios distintos; unescenario en el que ambos extremos, el sistema embarcado o OBU y el RBC,disponen de múltiples interfaces de red; y otro escenario transicional en el cualel RBC sí tiene múltiples interfaces de red pero el OBU solo dispone de unaúnica interfaz. La arquitectura de comunicaciones propuesta para el entornoferroviario ha sido validada mediante un entorno de simulación desarrolladopara tal efecto. Es más, dichas simulaciones demuestran que la arquitecturapropuesta, ante disrupciones de canal, supera con creces en términos derobustez el sistema diseñado por UNISIG. Como conclusión, se puede afirmarque en esta tesis se demuestra que una arquitectura de comunicaciones basadade MPTCP cumple con los exigentes requisitos establecidos para el NGERTMSy por tanto dicha propuesta supone un avance en la evolución del sistema deseñalización ferroviario europeo
    • …
    corecore