
Diogo Carvalho Rodrigues

Bachelor Degree in Computer Science

Blocking DDoS attacks at the network level

Dissertation submitted in partial fulfillment
of the requirements for the degree of

Master of Science in
Computer Science and Engineering

Adviser: José Legatheaux Martins, Professor Catedrático,
Faculdade de Ciências e Tecnologia, Universidade Nova de
Lisboa

June, 2018

Blocking DDoS attacks at the network level

Copyright © Diogo Carvalho Rodrigues, Faculty of Sciences and Technology, NOVA Uni-

versity of Lisbon.

The Faculty of Sciences and Technology and the NOVA University of Lisbon have the

right, perpetual and without geographical boundaries, to file and publish this disserta-

tion through printed copies reproduced on paper or on digital form, or by any other

means known or that may be invented, and to disseminate through scientific reposito-

ries and admit its copying and distribution for non-commercial, educational or research

purposes, as long as credit is given to the author and editor.

This document was created using the (pdf)LATEX processor, based in the “novathesis” template[1], developed at the Dep. Informática of FCT-NOVA [2].
[1] https://github.com/joaomlourenco/novathesis [2] http://www.di.fct.unl.pt

https://github.com/joaomlourenco/novathesis
http://www.di.fct.unl.pt

Acknowledgements

I would first like to thank my thesis advisor Prof. José Legatheaux for the useful com-

ments, remarks and engagement through the learning process for this master thesis. His

door was always open whenever i had a question about my research or writing.

Also, i would like to thank my family for the continued support and encouragement

throughout the process of learning and writing this thesis and my friends Duarte, João,

Fouto, Joana, Prates, Mestre and Freire for witnessing the ups and downs of the whole

process as well as providing vital feedback. Lastly, i thank my girlfriend Catarina who

supported me throughout both emotionally and by acting as a secondary reader of this

thesis.

v

Abstract

Denial of service (DDoS) is a persistent and continuously growing problem. These

attacks are based on methods that flood the victim with messages that it did not request,

effectively exhausting its computational or bandwidth resources. The variety of attack

approaches is overwhelming and the current defense mechanisms are not completely

effective. In today’s internet, a multitude of DDoS attacks occur everyday, some even

degrading the availability of critical or governmental services.

In this dissertation, we propose a new network level DDoS mitigation protocol that

iterates on previous attempts and uses proven mechanisms such as cryptographic chal-

lenges and packet-tagging.

Our analysis of the previous attempts to solve this problem led to a ground-up design

of the protocol with adaptability in mind, trying to minimize deployment and adoption

barriers.

With this work we concluded that with software changes only on the communication

endpoints, it is possible to mitigate the most used DDoS attacks with results up to 25

times more favourable than standard resource rate limiting (RRL) methods.

Keywords: Denial of Service, Spoofing, DDoS defense mechanisms, Cryptographic chal-

lenges

vii

Resumo

Na Internet atual, os ataques de negação de serviço são um problema persistente e

em constante crescimento. Estes ataques baseiam-se em métodos que inundam as suas

vitimas com pacotes que estas não pediram, de modo a esgotar os seus recursos computa-

cionais ou de largura de banda.

A elevada variedade dos métodos de ataque impõe dificuldades aos atuais mecanismos

de defesa que não são completamente suficientes para os conter eficazmente. Todos os

dias ocorrem uma multitude de ataques de negação de serviço, alguns até mesmo afetam

a disponibilidade de serviços críticos ou governamentais.

Nesta dissertação, é proposto um novo protocolo de mitigação de ataques de negação

de serviço que itera sobre tentativas anteriores e utiliza mecanismos comprovados, como

técnicas de desafios criptográficos e marcação de pacotes.

A nossa análise das anteriores tentativas de resolver esta problemática, levou à con-

cepção do protocolo desde a sua incepção, que se baseia em facilitar a sua adoção, neces-

sitando o menor número de alterações possiveis à actual arquitetura da Internet.

Com este trabalho, conseguimos concluir que apenas com mudanças de software nos

extremos em comunicação, é possível construir um protocolo que consegue mitigar os

vetores de ataque DDoS mais usados, produzindo situações até 25 vezes mais favoráveis

que as soluções atuais mais comuns baseadas em Resource Rate Limiting (RRL).

Palavras-chave: Ataques de negação de serviço, Falsificação de endereços de origem,

Mecanismos de defesa a ataques de negação de serviço, desafios criptográficos

ix

Contents

List of Figures xv

List of Tables xvii

1 Introduction 1

1.1 Context . 1

1.2 Motivation . 2

1.3 Contributions . 2

1.4 Dissertation outline . 3

2 State of the Art 5

2.1 DDoS general notions . 5

2.2 Attack Vectors . 7

2.2.1 Reflection attacks . 7

2.2.2 Protocol exploit based attacks . 10

2.2.3 Brute force attacks . 13

2.3 The impact of the Internet of Things . 14

2.4 DDoS Defense Mechanisms . 14

2.4.1 Server replication . 15

2.4.2 Absorption . 15

2.4.3 DNS RRL . 16

2.4.4 IPSec . 18

2.4.5 HIP . 18

2.4.6 EIP . 18

2.5 Attack vector trends and comparison . 19

2.6 Summary . 20

3 End-to-end Network Layer Security with HIP 23

3.1 HIP Description . 24

3.1.1 HIP goals and solutions . 24

3.1.2 How HIP works: Base Exchange . 25

3.1.3 Puzzle mechanism . 27

3.2 HIP Attacks . 27

xi

CONTENTS

3.3 HIP Adoption barriers . 28

3.4 HIP variants . 30

3.4.1 HIP Diet Exchange (DEX) . 30

3.4.2 Lightweight HIP (LHIP) . 30

3.4.3 HIP Tiny Exchange (TEX) . 32

3.5 Conclusion . 32

4 End to end Light Security Protocol 33

4.1 Overview . 34

4.2 Connectionless One round Variant . 36

4.3 Two round with no Security Association Variants 37

4.4 Two round with Security Association Variant 39

4.5 Preliminary Security Analysis . 40

4.5.1 Attacks on the Connectionless One round variant 41

4.5.2 Attacks on the two round no session security variants 41

4.6 Conclusion . 42

5 Quantitative Effectiveness Analysis 43

5.1 ELSP Variants Analysis . 44

5.1.1 Connectionless One Round . 45

5.1.2 Two Rounds with no Security Association 46

5.1.3 Two Rounds with Security Association Variant 47

5.2 Effectiveness Analysis in a Reflection Attack scenario 48

5.2.1 Attack bandwidth example instantiation 50

5.3 Effectiveness Analysis in Protocol Exploit based Attacks 51

5.4 Overall effectiveness and conclusion . 51

6 Implementation proposal and Proof of concept 53

6.1 Problems regarding NAT traversal . 53

6.1.1 Case study: HIP . 54

6.2 Tunnelling over UDP as a possible solution and alternatives 54

6.2.1 LISP . 56

6.2.2 GRE over UDP . 57

6.2.3 Virtual Extensible LAN . 58

6.2.4 How Tunnels are integrated in Operating Systems 59

6.2.5 Choosing an adequate approach . 59

6.3 Integrating ELSP with applications . 60

6.3.1 ELSP daemon execution of ELSP UDP BEX 61

6.3.2 ELSP daemon execution of ELSP TCP BEX 62

6.4 ELSP Proof of concept Implementation Overview 63

6.5 Conclusion . 65

xii

CONTENTS

7 Conclusion 67

7.1 Conclusion . 67

7.2 Future work . 68

Bibliography 69

I Annex 1 - Code listing 73

xiii

List of Figures

2.1 Architecture of a DDoS attack that uses a set of zombies to flood a victim. . . 6

2.2 SYN Flood attack timeline: After the attacker has exhausted the server’s re-

sources, a legitimate request could not be fulfilled. Adapted from[38]. 11

2.3 Example Ack-storm attacker model - Alice is connected through the wireless

access point AliceNet, to a remote web server Bob. Eve is able to receive

occasional traffic from Alice’s network. In addition, Eve’s ISP does not filter

traffic, so Eve is able to send spoofed packets to the Internet. Adapted from [1]. 12

2.4 Attacker’s algorithm to perform an Optimistic Acknowledgment attack.From

[36] . 13

2.5 Basic SOS architecture. Adapted from [12]. 16

2.6 DDoS Attack Vector Popularity in Q4 2017, as reported by Akamai in [27]. . 19

3.1 Approximate location of the HIP sublayer within the TCP/IP stack. 26

3.2 HIP base exchange messages. 26

3.3 Reasons for HIP non-deployement[15]. 29

3.4 HIP Diet Exchange. 31

3.5 Lightweight HIP exchange (LHIP). 31

4.1 ELSP varied messages exchange flows tailored for each specific situation. . . 35

4.2 ELSP One round connectionless scenario message exchange. 36

4.3 ELSP Two round with no session security variant message exchange. 38

4.4 ELSP two round with session security variant message exchange. 39

5.1 Headers decomposition for a ELSP packet. 45

5.2 Message composition for the Connectionless One Round Variant. 46

5.3 Message composition for the Two Rounds with no Security Association variants. 46

5.4 Time needed to solve the cryptographic puzzle as a function of its difficulty

(K). 47

5.5 Message composition for the Two Rounds with Security Association variant. 48

5.6 Number of reflectors needed to achieve a typical DDoS reflection attack of

12Gbps using ELSP, as a function of Rshap. 50

xv

List of Figures

6.1 Example network configuration, where both the Initiator and Responder of a

HIP exchange are behind a NAT. 55

6.2 Overview of a LISP deployment. 57

6.3 VXLAN Packet format. 58

6.4 ELSP tunnelling process implementation overview. 60

6.5 ELSP UDP logic flow overview when a new association is locally initiated (left)

and when it is remotely treated (right). 62

6.6 ELSP TCP logic flow in case of success. 63

6.7 Temporal flow of a successful TCP connection with ELSP. 64

xvi

List of Tables

2.1 Examples of possible amplification factors of the studied amplified attack

vectors . 7

2.2 Time taken to identify 1000 (T1K) and 100,000 (T100K) reflectors per protocol

according to[29]. 8

2.3 Several LEAK-RATE configurations for an ANY attack targeting a DNS server.

From [39]. 17

2.4 Attack vectors comparison . 20

5.1 Cryptographic suites selected for ELSP implementation. 45

5.2 Maximum known amplification factors for the most common protocols used

in reflection DDoS attacks. 50

5.3 Resulting Attack bandwidth, Rv , in an example instantiation where we have

1Gbps of initial botnet upload capacity, 1000 reflectors each one accepting 10

packets per second and having a request size of 784 bits. 50

xvii

C
h
a
p
t
e
r

1
Introduction

The creation of the Internet was a turning point for the evolution of how we communi-

cate with each other. In our day to day life, Internet access is everywhere and with the

emergence of the Internet of Things1, the future seems promising with regards to the

continuous digital integration into our lives. However, certain design choices in the early

days of the Internet have left it’s mark in today’s Internet security concerns.

One of these security concerns is related to the Denial of Service (DoS) attacks. This

type of attacks goal is to degrade the availability of an Internet Service, effectively denying

its normal functionality and impeding the access of legitimate clients.

1.1 Context

In a DoS/DDoS attack, we consider, the entity that intentionally blocks the normal Inter-

net usage of a legitimate client to be the attacker in our system security model. As we

will see in next chapters, we consider three types of attacks: reflection, protocol exploit

based and brute force. The first makes use of public service provider machines to be used

as reflectors in the attack, creating an amplification effect. For the second type, protocol

exploit based attacks focus on depleting either computational, memory or bandwidth

resources from the victim by exploiting flaws in a chosen protocol. For the last type, the

attacker uses simple mechanisms and the attacks impact is caused by simple brute force.

Nowadays, a DDoS attack is at reach to most and not only to those with sufficient

technical knowledge. According to [34], Booters, DDoS-as-a-service platforms, provide

the illegal renting of time based DDoS attacks against a victim the buyer chooses, for only

tens of dollars, for the most basic attacks.

1Simple, mass produced, Internet connected devices.

1

CHAPTER 1. INTRODUCTION

The Internet was designed under a stateless, best-effort model, ideal to build a simple

and scalable communication substrate. For a message to be routed, the data is decom-

posed into packets by the sender, a source and destination address is attached and then

those packets are injected into the network. Upon arrival at the destination, the packets

are reorganized by the receiver into the original message. However, since each packet is

treated individually by the network, its delivery is not guaranteed, e.g. if any problem

occurs, a packet can be discarded.

The stateless, best-effort model has been at the heart of the explosive Internet growth,

since it poses low barriers for the entry of new operators, new applications, new commu-

nication infrastructures, etc.

However, it has been implemented without any real concerns to what relates the

certification of the authenticity of the senders address, also the willingness of the receiver

to receive all packets directed to him is not required, as well as any innate message

sending accounting mechanisms.

1.2 Motivation

Currently, the Internet has a very significant and real vulnerability against these types

of attacks which need to be addressed. Any organization or individual with an online

service can be anonymously disturbed by an entity with comparatively fewer resources.

In an increasingly interconnected world, even governmental or critical services can be

affected, or even compromised at the hands of cyber-terrorism.

Between February and March of 2015, a group of researchers setup 21 honey pots2

and verified that 1.5 million DDoS attacks occured during these two months. All tried to

use the 21 honeypot servers as reflectors for amplified attacks[14]. Reflection attacks will

be further discussed in section 2.2.1. The problem is real and the attacks exist. As we will

show later, the defence mechanisms are expensive and routinely fail to stop the attack.

1.3 Contributions

In this document we present the results of the research conducted on the topics of DDoS

attacks and its current mitigation techniques.

We discussed the flaws that attackers exploit in order to achieve DDoS attacks capable

of affecting the availability of sites on the Internet. On the other end of the spectrum, we

also discuss the mechanisms that are currently deployed to try and mitigate these attacks.

In this work, we present a new network level DDoS mitigation protocol with a detailed

description of the used mechanisms as well as a quantitative security analysis. The main

goals of the protocol are to mitigate the most common known vectors of DDoS attacks,

the protocol is based on the Host Identity Protocol (HIP), but it differentiates in the way

2A security mechanism set to appear as legitimate part of an attackers interested site, but is actually
isolated and monitored. Similar to the police baiting a criminal.

2

1.4. DISSERTATION OUTLINE

that it aims to make the protocol’s adoption easier while retaining the defining DDoS

mitigation features of HIP.

To complement the new proposal and to prepare for future work, we also discuss the

proposal’s implementation and provide a proof of concept version.

1.4 Dissertation outline

The remainder of this work is organized as follows:

Chapter 2 We present the related work necessary for the better understand of the lat-

ter chapters of this dissertation. In particular, we delve into several major DDoS

attack vectors by analysing and comparing them. Furthermore, we explain the

current trends in DDoS defence mechanisms and how they will impact the future

development of this work.

Chapter 3 An analysis on the Host Identity protocol [23] is provided, focusing on the

protocol’s innate DDoS mitigation mechanism as well as its possible limitations and

barriers of adoption.

Chapter 4 We first introduce the End to end Light Security Protocol (ELSP), a new net-

work level DDoS mitigation protocol based on proven mechanisms taken from HIP,

and built from the ground up to be of easy implementation and deployment.

Chapter 5 We perform a quantitative analysis of the effectiveness of ELSP in face of

several DDoS attack vectors.

Chapter 6 A discussion on the possible implementation barriers ELSP may face to be

deployed in today’s Internet, as well as discussion on a proof of concept implemen-

tation.

Chapter 7 The conclusion of this work, as well as the presentation of the future work we

assume it requires.

3

C
h
a
p
t
e
r

2
State of the Art

In this chapter we discuss several necessary topics relevant to the understanding of the

goals of this thesis work. In particular, the following topics will be introduced:

In section 2.1 the basic principles of a DDoS attack will be covered.

In section 2.2 we will analyze the most important attack vectors used by today’s

attackers.

In section 2.3 we discuss the impact the Internet of Things(IoT) has on the current

DDoS attacks.

In section 2.4 we discuss the current DDoS defense mechanisms available and we

analyze a subset of the more relevant ones.

In section 2.5 we analyze and compare the current trends in DDoS attack vectors.

And in section 2.6 we summarize this chapter.

2.1 DDoS general notions

A distributed denial of service, or simply DDoS attacks, occurs when several malign com-

puter systems flood the bandwidth or exhaust the computational resources of a targeted

system, leaving its availability degraded.

A good analogy to better understand what a DDoS attack accomplishes is to think

of it as if a large group of people were hired to try to enter the same door of a shop or

business at the same time, leaving potential legitimate clients unable to enter the shop,

thus disrupting its normal services.

In order to launch an attack of this type, the attackers need a great number of com-

puters scattered around the internet. In this work, these computers will be referred as

zombies since this this is the traditional jargon used in DDoS related literature.

5

CHAPTER 2. STATE OF THE ART

Generally, a zombie is a computer system that has been infected with malware1 and

can be remotely controlled by an entity that isn’t its owner. Dependent on the privileges

of the installed malware, we will consider two types of zombies:

• User level access zombies - With only user level access, the zombie can’t send packets

with spoofed IP addresses, the attacker is thus limited in terms of which attack

vector it can use for a DDoS attack. In the simplest scenario the attacker can use

this type of zombie to flood the victim, e.g. with UDP packets or by trying to open

many HTTP connections, this is generally called a brute-force attack.

• Root level access zombies - When the malware is installed with root privileges or

by using privilege exploits, the attacker may have root level access on the infected

system. For this type of zombie the possibilities are endless, since it can now use

spoofed source IP addresses a lot of new DDoS attack vectors are open.

Figure 2.1: Architecture of a DDoS attack that uses a set of zombies to flood a victim.

1Malware, short for malicious software, is a term used to refer to a variety of forms of hostile or intrusive
software, including computer viruses, worms, trojan horses, ransomware, spyware, adware, scareware, and
other malicious programs.

6

2.2. ATTACK VECTORS

2.2 Attack Vectors

In the next subsections, several types of DDoS attacks will be covered. DDoS attacks can

be separated in groups in many different ways. In this work, in order to avoid complex

taxonomies[20], DDoS attacks will be separated according to their most defining trait.

This can either be the type of resource it mainly targets or the way its deployed.

As the years have passed, new ways to inflict a DDoS attack have appeared and their

complexity and difficulty to overcome has risen sharply. In what follows we will concen-

trate on the most important attack vectors for each group.

2.2.1 Reflection attacks

In general, this type of attacks are performed using application protocols of the kind

request/reply made over the exchange of UDP packets. A service is requested using an

UDP packet whose source address is spoofed and has been replaced by that of the victim.

This way, the reply will be sent to the victim. If the reply has more bytes than the request

query, it then has an amplification factor greater than one and this is a fundamental factor

in the effectiveness of a reflection attack.

Table 2.1: Examples of possible amplification factors of the studied amplified attack
vectors

Protocol Possible Amplification factor

DNS 70

CharGen 360

NTP 206

SSDP 30

CLDAP 57

In order to gather reflector servers, the attacker will need to scan the internet. To

better evaluate the difficulty in gathering a large amount of reflection machines, Table

2.1 presents the results of an essay[29] to determine how long it took to find 1000 and

100,000 reflectors per protocol. This essay has been performed in 2014 and it’s results

can vary today but it still is important to get a glimpse of how easy it is for the attackers

to assemble a set of reflectors in preparation for a reflection DDoS attack.

Therefore, we assume that for attacks using these protocols, the attackers gathering

the necessary reflectors is not a issue difficult to overcome, even today. Some of these

reflectors actions are performed because they use a ill-defined protocol, under the point

of view of maturity (SSDP,NGP and CharGen) or because it is a necessary feature(e.g

DNS).

In the following, we present the major reflection based DDoS attacks.

7

CHAPTER 2. STATE OF THE ART

Table 2.2: Time taken to identify 1000 (T1K) and 100,000 (T100K) reflectors per protocol
according to[29].

Protocol Reflectors T100k T1K

DNS 7.782.000 92.5s 0.9s

CharGen 89.000 n/a 80.6s

NTP 1.451.000 195.1s 2.0s

SSDP 3.704.000 193.5s 1.9s

DNS In a DNS based Reflection attack[6] the reflection is achieved by eliciting a response

from a DNS server using a spoofed IP address. Normally, DNS UDP responses are

limited to 512 bytes, but when using EDNS2 this number jumps to 4000 bytes, so

when querying a DNS server with an ANY command, it then returns all known

information to its DNS zone in a single response. An attacker can this way, reflect

large amounts of traffic to an unsuspecting victim. DNS reflection attacks are

very common and hard to detect because of the nature of DNS servers. With the

increasingly popularity of DNSSEC[7], the amplification factor can even be larger

because of the signatures used.

With a simple ANY query with only around 64 bytes, it was enough to produce an

answer with 3223 bytes, an amplification factor of around 50x. Both the ANY query

and the response can be seen bellow:

Query:

dig ANY isc.org @x.x.x.x

Response:

; <<>> DiG 9.7.3 <<>> ANY isc.org @x.x.x.x

;; global options: +cmd

;; Got answer:

;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id:5147

;; flags: qr rd ra; QUERY:1, ANSWER:27, AUTHORITY: 4, ADDITIONAL: 5

;; QUESTION SECTION:

;isc.org. IN ANY

;; ANSWER SECTION:

isc.org. 4084 IN SQA ns-int.isc.org. hostmaster

2EDNS is a specification for expanding the size of several parameters of the Domain Name System (DNS)
protocol

8

2.2. ATTACK VECTORS

...

isc.org 4084 IN NS sfba.sns-pb.isc.org.

;; AUTHORITY SECTION:

isc.org. 4084 IN NS ns.isc.afilias-nst.info

isc.org. 4084 IN NS ams.sns-pb.isc.org.

isc.org. 4084 IN NS ord.sns-pb.isc.org.

isc.org. 4084 IN NS sfba.sns-pb.isc.org.

;; ADDITIONAL SECTION:

mx.ams1.isc.org. 484 IN A 199.6.1.65

mx.ams1.isc.org. 484 IN AAAA 2001:500:60::65

mx.pao1.isc.org. 484 IN A 149.20.64.53

mx.pao1.isc.org. 484 IN AAAA 2001:4f8:0:2::2b

_sip._udp.isc.org. 4094 IN SRV 0 1 5060 asterisk.isc.org.

;; Query time: 176 msec

;;SERVER: x.x.x.x#53(x.x.x.x)

;; WHEN: True Oct 30 01:14:32 2012

;; MSG SIZE rcvd: 3223

NTP The NTP protocol is used to synchronize the clocks of computers. It has a command

called monlist that is used to launch NTP based reflection DDoS attacks[31]. When

sending this command to a NTP server with a spoofed IP address, the server will

send the target a list with the last 600 users that have requested the time from this

server, this generates a response 550 times larger than the request query.

CharGen Chargen is a legacy protocol intended for testing, debugging and measurement

purposes. When a client sends a UDP datagram to a server that exposes the CharGen

protocol, the server generates a response containing a random number of characters

(between 0 and 512) and sends them to the client. Its easy to see that the protocol

can be used to launch reflected attacks with very high amplification factors.

SSDP SSDP is a protocol used to advertise and discover network services. It’s a part of the

Universal Plug and Play, or simply UPnP, protocol standard and comes enabled in

millions of devices like web cams, routers, TVs and printers. In the first step of this

attack, a SOAP request (M-SEARCH) with a spoofed IP address is sent to a UPnP

enabled device. By receiving a M-SEARCH request the device responds with a XML

file containing its location, operating system, UUID, etc. The more information the

device responds with the larger the amplification factor of the attack.

9

CHAPTER 2. STATE OF THE ART

CLDAP Connection-less Directory Access Protocol[42] was developed to support ap-

plications which require access to small amounts of information remotely. The

protocol avoids the overhead of initializing and closing a connection, and works

entirely in a connectionless fashion. A CLDAP server is normally used internally

and use some form of authentication, but despite best practices, they are exposed to

the Internet and coupled with the fact that normally these enterprise-grade servers

are backed by computationally strong hardware makes this protocol an easy target

for a reflection DDoS attack. Even though this protocol was retired from the IETF3,

many enterprises still use it today.

There are other types of reflection attacks and more can be discovered at any time.

Reflection attacks can be performed whenever a zombie is able to use the victim’s address

as a spoofed address.

We will now turn to other types of attacks.

2.2.2 Protocol exploit based attacks

These type of attacks use certain vulnerabilities found in protocols. More often than not,

these vulnerabilities aren’t easy to overcome and are part of the definition of the protocol.

UDP Fragmentation UDP Fragmentation is based on depleting the computing resources

of its target. This attack is based on exploiting the process of IP fragmentation and

understanding this attack means understanding this process. When the size of a

datagram is larger than the Maximum Transmission Unit (MTU) of a given link, the

datagram is broken into smaller pieces, this smaller fragments are reassembled by

the receiving host, which requires computational resources and memory. An UDP

Fragmentation attack is based on exploiting this necessary process in order to cause

pointless computations on the target. This can be achieved by using larger than the

MTU value sized UDP datagrams to force fragmentation, and since this datagrams

contain fake crafted data, the target server will be consuming CPU resources and

fill memory buffers in a fruitless endeavor to reassemble useless datagrams4.

SYN Flood A SYN flood attack exploits the design of the three-way handshake TCP

Communication process between a client and a server in order to deplete its targets

computing resources. In this attack, SYN packets are sent to the target using spoofed

source IP addresses. In a normal TCP handshake, the SYN packet is used to signal

the server that the source of this packet wants to start a TCP connection, the server

when receiving a SYN packet allocates resources pertaining to this connection. A

SYN Flood’s objective is then to exhaust the targets resources by starting connections

3Internet Engineering Task Force, developer and promoter of Internet standards.
4For this reason, automatic IP fragmentation by intermediate routers is now considered bad practice and

is no longer supported in IPv6.

10

2.2. ATTACK VECTORS

Figure 2.2: SYN Flood attack timeline: After the attacker has exhausted the server’s
resources, a legitimate request could not be fulfilled. Adapted from[38].

with random spoofed IP’s or ports that will not be acknowledged thus leaving the

connections half-open. A visualization of the effects of this attack can be found in

Figure 2.4.

ACK Storm ACK Storm attacks[1] can be launched by a very weak Man in the Middle, or

simply MitM, attackers, which can only eavesdrop occasionally and spoof packets.

The Ack-storm attacks are based on the fact that, upon receiving a packet with the

acknowledge number field (the receiver’s sequence number) larger than the one

sent by the receiving client, the client must, according to the TCP standard[26],

resend the last sent acknowledgment packet to the other side, and discard the re-

ceived packet. Using carefully crafted acknowledge packets for both sides of the

communication, this results in the TCP connection between the client and server

to be trapped in an infinite loop of sending and receiving empty acknowledgement

packets. A basic example of an Ack-storm attack is as follows:

1. Pick up (at least) one packet from a TCP connection between a client and a

server.

2. Generate two packets, each addressed to one party and with sender address of

the other party (i.e. spoofed). The packets must be inside the TCP windows of

both sides. The packets should have content - at least one byte of data.

3. Send the packets to the client and the server at the same time. The connection

will then enter an infinite loop of sending ack packets back and forth between

11

CHAPTER 2. STATE OF THE ART

both parties.

An example model of an ACK storm attack can be viewed in Figure 2.5.

Figure 2.3: Example Ack-storm attacker model - Alice is connected through the wireless
access point AliceNet, to a remote web server Bob. Eve is able to receive occasional traffic
from Alice’s network. In addition, Eve’s ISP does not filter traffic, so Eve is able to send
spoofed packets to the Internet. Adapted from [1].

Optimistic ACK An optimistic acknowledgment (opt-ack) is an acknowledgment sent by

a misbehaving client for a data segment that it has not received. The Optimistic Ack

DDoS attack[36] exploits the TCP congestion control system. In a normal scenario,

TCP’s congestion control adjusts the transmission rate according to the available

bandwidth. The way for TCP to know how congested the communication channel

is, is based on the Acknowledgement packets sent by the destination, if ACK’s are

being received, that means that the network isn’t congested and the transmission

rate can be adjusted to higher values. The way an Opt-Ack attack works is, the

attacker sends many ACK packets without receiving the corresponding data. The

server then rises the transmission rate to the attacker, congesting the servers uplink

and saturating the whole path from the server to attacker. TCP implicitly assumes

by design that remote clients generate correct ACK feedback and this incorrect

feedback deteriorates end-to-end performance. However, an attack that doesn’t care

about data integrity can violate this assumption, forcing the server to send many

packets into the network. In Figure 2.6 we can see a possible attackers algorithm to

perform such an attack. The attacker need three parameters, if attacking more than

one victim, a number n representing the number of victims to attack, the maximum

segment size (mss) and the window scaling (wscale). The attacker then keeps track

of each victims estimated window (Wi) and the sequence number to acknowledge

(acki).

12

2.2. ATTACK VECTORS

Figure 2.4: Attacker’s algorithm to perform an Optimistic Acknowledgment attack.From
[36]

2.2.3 Brute force attacks

In this subsection we discuss the least complex forms of DDoS attack vectors. These

methods mainly rely on simple protocols and don’t require root level access zombies.

Direct UDP Flood A direct UDP flood is a very simple attack vector, it only needs user

level access zombies and has no amplification factor. It simply consists of sending

UDP packets to a target to try to exhaust its bandwidth.

HTTP Flood An HTTP Flood is a layer 7 DDoS attack in which an attacker sends HTTP

requests to a target server. With this kind of attack, the HTTP clients such as web

browser interacts with an application or server to send HTTP requests. The request

can be either “GET” or “POST”. The aim of the attack is then to compel the server to

allocate as many resources as possible to serving the attack, thus denying legitimate

users access to the server’s resources. We then consider two different types of HTTP

floods:

GET flood - The GET request is used to retrieve static content like images. Typically

this induces relatively low load on the server per request.

POST flood - POST requests are more likely to require the server to perform some

kind of processing, such as looking up items in a database. Therefore, HTTP

POST flood attacks typically impose higher load on the server per request.

13

CHAPTER 2. STATE OF THE ART

2.3 The impact of the Internet of Things

With the increasingly higher number of devices connected to the internet, the number of

potential zombies to be used in an attackers botnet also rise. The term Internet of Things,

or simply IoT, refers to the mass produced low cost devices with Internet connection.

These devices profit margin is also very thin, and thus the security measures implemented

in these devices are often left behind or of weak quality. Also due to the nature of these

devices, applying security patches is not an easy task, which leaves the devices in an

unsecure software version compared to the current known vulnerabilities.

A famous botnet known as Mirai, is estimated to be made of over 100 thousand

zombies, of which mostly are hacked “Internet of Things” devices such as IP cameras,

routers and internet connected sensors. In September 2016 a 620 Gbps attack 5 was

launched by the Mirai botnet, one of the largest ever recorded DDoS attacks. As the Mirai

malware source code has been made open source6, many new variations have appeared,

namely Persirai and many unnamed others. With the amount of IoT devices vulnerable,

it’s possible to create very large botnets which otherwise wouldn’t have been possible to

create without much more work from the attackers. This leads to a point where spoofing

IP addresses is no longer needed and the DDoS attacks can be based on fully establishing

TCP connections and, e.g , generating HTTPS floods.

2.4 DDoS Defense Mechanisms

DDoS attacks are inherently difficult to combat, their similarity to legitimate traffic makes

defense and detection mechanisms hard to implement. DDoS attacks are not new and over

the years there have been several proposals with different techniques, but for most of them

to be implemented in production level, the internal foundations of the Internet would

need to be modified and upgraded. For example, there are proposals that require complex

software implementations on the core of the Internet, and for it to work every entity

responsible for an important Autonomous Systems would need to collaborate and invest

in this software changes and possibly also hardware changes. This leads to a problem

called Tragedy of the commons7, a good analogy to explain this situation would be: In

the internet there is no centralized legislator and thus, creating laws in this environment

is very hard to achieve. If there were no environmental laws that prohibit a certain level

of pollution for a certain business, why would this business implement such measures

that would only affect its profit? A single entity has no real value in implementing

such measures if they are alone, if all of the polluting business implemented pollution

5https://krebsonsecurity.com/2016/09/krebsonsecurity-hit-with-record-ddos
6https://github.com/jgamblin/Mirai-Source-Code
7The tragedy of the commons is a phrase referring to a problem of shared resources. Increased use of the

resource by any sharing member hurts all members equally. Yet the benefit to a member that uses more of
the resource outweighs, to him, the damage from the overall increased use. As a result, all sharing members
choose to maximize their use of the resource, resulting in its inevitable depletion

14

2.4. DDOS DEFENSE MECHANISMS

reduction measures everyone would at least gain from the fact that there would be no

more pollution.

One of the main reasons DDoS attacks are so common is because the internet in-

frastructure industry allows IP spoofing on a large scale which enables attackers to be

untraceable and target victims using legitimate reflector servers.

Another issue is related with the lack, by design, of security, accountability and au-

thentication at the IP level. This is related with the "end-to-end arguments of system

design"[33] which mandates a simple IP layer that cannot easily give many guarantees to

the edge.

In these types of situations, botnets thrive because it’s not the core of the Internet

that checks whether or not computers send traffic from IP addresses that they have been

assigned. Thus, in this work, mechanisms for DDoS defense, such as ones involving the

change of the Internets core, will not be reviewed by lack of incentives to implement

them.

2.4.1 Server replication

One simple way to protect a server from DDoS attacks, consists in replicating the existing

infrastructure and making the attackers require more attack power to degrade the systems

availability. This is not a rock solid solution, as it’s easier for the attacker to get resources

than it is for the defender. Many organizations lack the resources for this replication,

because, as we have seen the attackers need less resources than the victims to successfully

cause an impact.

However, a common technique consists in sharing the costs of that replication by

using a Content Delivery Network(CDN)[40].

2.4.2 Absorption

An absorption technique called Secure Overlay Service (SOS)[12] prevents a DDoS attack

in a proactive way. It’s based on an architecture that is constructed using a combination of

secure overlay tunnels, routing via consistent hashing and filtering. The defense is based

on performing intensive filtering on network protected edges and pushing the traffic to

the network core where high-speed routers can better handle incoming traffic, and by

introducing a randomness and anonymity factor that makes it difficult for an attacker to

target nodes in the path to a SOS protected destination.

To summarize, the sequence of operations in a SOS architecture is as follows:

1. A site installs a filter in its viscinity and then selects a number of SOS nodes to act

as secret servlets, that is, a node that is allowed to forward traffic through the filter

to that site. Routers at the perimeter of the site are only allowed to let traffic from

these servlets to the networks internal core.

15

CHAPTER 2. STATE OF THE ART

Figure 2.5: Basic SOS architecture. Adapted from [12].

2. When a SOS node is informed that it will act as a secret servlet for a site, it will

compute a key k for each of a number of well known hashing function8, based on

the site’s network address. Each of these keys will identify a number of overlay

nodes that will act as a beacon for thaat site.

3. Then the servlets or the site will notify the beacons of its existence. A beacon, after

verifying the validity of the request will store the necessary information to forward

traffic for that site to the appropriate servlet.

4. A source that wants to communicate with the site needs to contact an Overlay Access

Point(SOAP). After authentication, the SOAP routes all traffic from the source to

the target site via one of the beacons.

5. The beacon routes the packet to a secret servlet through a filtering router to the

target site.

In Figure 2.5 we can see a high-level overview of the SOS architecture that protects a

target site to only receive legitimate transmissions.

Currently there are several providers for this type of service, making it a very effective

way to protected high priority or emergency services with an overlaying network that can

absorb the attacks. Examples of providers of this service are Akamai/Prolexic, Cloudflare

and Incapsula.

2.4.3 DNS RRL

As seen in the earlier sections of this work, a DNS DDoS attack takes advantage of the

fact that small DNS queries can generate a much larger response, and since the attacker

spoofs the IP address of the victim to reflect the network traffic, it makes it difficult to

8Function that can be used to map data of arbitrary size to data of fixed size.

16

2.4. DDOS DEFENSE MECHANISMS

trace the attacker. Response rate limiting[30, 39] is a mechanism for limiting the amount

of unique responses returned by a DNS server, thus limiting the effectiveness of a DNS

reflection DDoS attack by dropping the packets that exceed the pre-configured rate limit.

As an overview, DNS rate limiting works as follows:

• As the server generates a response to a DNS query, the requesters IP address is

added into a bucket. For the most common implementation, there’s one bucket per

/24 subnet for IPv4.

• If the number of unique responses exceed the configured limit, the server starts

dropping all requests for the specific subnet during a certain period.

With this overview it’s easy to encounter a problem, if all requests are dropped for

the whole network that may also affect legitimate users. To combat this flaw it’s possible

to configure a LEAK-RATE value of one or more. With a LEAK-RATE value of one, every

dropped request generates a response with the TrunCation flag[21] set to one. This may

still create a heavy load on the victim, as it’s still a non-amplified DDoS attack. When

the victim receives a response with control flag set to one, it then knows that they are

under attack and in order to communicate with the DNS server it needs to establish a

TCP connection.

Table 2.3: Several LEAK-RATE configurations for an ANY attack targeting a DNS server.
From [39].

LEAK-RATE False positives In Out Amplification factor

1 0% 80KB/s 80B/s 1:1

2 50% 80KB/s 40KB/s 1:0.5

3 66% 80KB/s 26KB/s 1:0.3

4 80% 80KB/s 16KB/s 1:0.2

10 90% 80KB/s 8KB/s 1:0.1

As long as the attackers are using repeating ANY query attacks, RRL is a very effective

solution[39] completely removing the amplification factor of the attack. However, the

effectiveness of RRL decreases when the attacks get more sophisticated. Such as when

the attacker uses a large set of DNS servers and distributes the queries over them not

triggering the rate limiting factor and still achieving full or close to full amplification.

Therefore, without extra measures, there is no easy way to completely stop DNS amplifi-

cation attacks without several side effects until most ISPs make source address validation

a default setting.

17

CHAPTER 2. STATE OF THE ART

2.4.4 IPSec

IPSec[11] is a network protocol suite that authenticates and encrypts packets of data sent

over a network. It guarantees data origin authentication through the packets Authenti-

cation Headers. However, it does not guarantee non-repudiation, which means that IP

spoofing is still possible. To guarantee non-repudiation, a trusted third party is needed

to certify each entities signatures.

A widespread implementation of IPSec that guarantees the senders authentication

would imply that every Internet user would need to be granted a signed certificate by

an authorized third-party entity. The sheer complexity of the processing required by the

certification chains makes this approach not realistic.

2.4.5 HIP

Host Identity Protocol(HIP)[24] is an inter-networking architecture that enhances the

original internet architecture by adding a name space between the IP layer and the trans-

port layer. This new name space consists of cryptografic identifiers that will replace the

role of IP addresses in naming application end-points(sockets). IPv4 and IPv6 addresses

are still used, but only as names for topological locations in the network.

HIP delves into some of the problems of the contemporary Internet such as: loss of

universal connectivity, poor support for mobility and multi-homing, unwanted traffic,

and lack of authentication, privacy and accountability. Let’s focus on the properties of

HIP that directly impact the problem of the unwanted traffic, e.g. flooding or other

malicious packets.

In the current message passing paradigm of the Internet, there is a sender and a

receiver. The sender creates a message and sends it to a specific receiver by naming the

message with a destination name. However, it’s worth noting that in this paradigm, the

sender has all the power, when a sender dispatches a message, the network itself has

no idea whether or not the recipient of the message will be interested in it. Only when

the message arrives at the recipient host is the consent consulted, and only then is the

message dropped.

HIP offers two types of measures against unwanted traffic: making the recipient names

not immediately accessible by the senders or by requiring the consent of the recipient

before the networks delivers him any packet; also, with HIP it’s possible to raise the cost

of sending packets or reduce the cost of receiving them[15].

2.4.6 EIP

Ephemeral IP[19] is a preliminary proposal that aims to guarantee the integrity of source

IP addresses. This proposal is based on LISP[5] and proposes the utilization of cryp-

tographically generated IP addresses to be used as contextual identifiers, and, when

accompanied with a self-generated certificate, allow for the verification of the source

18

2.5. ATTACK VECTOR TRENDS AND COMPARISON

identification of a packet. In order to guarantee the integrity of the tunnels source loca-

tor9, it’s possible to optionally trigger a cryptographic challenge to the sender, which if

responded correctly guarantees the integrity of both the senders identity and it’s locator.

When using challenge based handshakes in a TCP connection, EIP guarantees that

all types of SYN flood attacks are nullified. EIP also makes it harder for an attacker to

exchange packets with other hosts, effectively also making harder the task of gathering

reflectors for a reflection based DDoS attack.

As presented in [19], EIP is able to drastically reduce the power of some of the most

deadly attack vectors. But it has a few glaring flaws that we will discuss in the next

chapter.

2.5 Attack vector trends and comparison

In this section we will analyze and compare the different studied attack vectors. We will

take in consideration popularity, effectiveness, type of resource depleted, layer of the

attack and the necessity of a spoofed IP.

Figure 2.6: DDoS Attack Vector Popularity in Q4 2017, as reported by Akamai in [27].

As seen in the former sections, there are many ways to inflict a DDoS attack. There

are many factors that may contribute to a certain attack vector being popular, like type

of zombie needed and available exposed reflectors but one trend is certain, the attackers

seem to favor either very simple attacks like UDP Fragment, UDP Flood and SYN Flood,

or attacks with a high amplification factor like DNS Reflection and NTP. In Figure 2.7

we can see the DDoS Attack trends for the Q1 of 2017, provided by the Q1 2017 Akamai

security report[27].

In table 2.4 we present a general overview of the discussed attack vectors, as well as a

popularity and efficiency comparison.
9LISP is based on the idea that the Internet architecture is combined into: locators(where a client is

attached to the network) and identifiers(who the client is)

19

CHAPTER 2. STATE OF THE ART

Table 2.4: Attack vectors comparison

Attack Type Main resource depleted Layer IP Spoofed Popularity Efficiency

DNS network application yes ***** *****

CharGen network application yes **** ****

NTP network application yes **** ****

SSDP network application yes *** ****

CLDAP network application yes ** ****

Ack Storm network transport yes * **

Opt. Ack network transport no * ***

UDP Frag processing capabilities transport yes ***** *****

Syn Flood processing capabilities transport yes ** ****

Direct UDP network transport no *** *

HTTP Flood network application no ** **

Breakdown of Table 2.3 The columns Attack type, Main resource depleted, Layer and

IP Spoofed are self explanatory and Popularity is derived from Figure 2.7. We are

left with Efficiency, this metric tries to quantify the amount of effort the attacker

needs in order have the highest amount of impact in its DDoS attack vector. Not to

be confused with the amplification factor, the latter only takes into account the size

ratio of request/reply messages. With efficiency we take into account:

Method complexity The implementation complexity of the attack vector.

Method requirements The requirements needed to execute, i.e network knowl-

edge, connection parameter knowledge, etc.

Zombie type needed Can it be done with a user level zombie, or does it need root

level access.

Amplification factor Amplification factor is also taken into account.

Area of effect Does it effect a single server or does it also affect the surrounding

network and the path between the attacker and the victim.

2.6 Summary

In this chapter we have introduced the necessary literature for the understanding of

the next chapters. We have seen that different types of attack vectors require different

resources from the attacker, e.g. reflection based attack require root-level access zombies

and Ack based attacks require knowledge of the network.

The currently available defense mechanisms are limited in their effectiveness due to

the lack of incentives for the ISPs (Internet Service Providers) to mediate and authenticate

20

2.6. SUMMARY

the source addresses in their network, effectively heavily limiting spoofing based attack

vectors.

Also, in the Internet, everyone can send packets and the willingness of the destination

to received them is not controllable.

We have seen that the Internet of Things already has a huge impact on the biggest

DDoS attacks today, and it is predicted that the number of these devices will continue

to grow, so will the intensity and frequency of large scale DDoS attacks. Namely attack

vectors that do not require IP spoofing, as with the increasingly availability of vulnerable

machines, the effort required by the attacker decreases, as he may only need connection

based attack vectors such as HTTPS flooding to cause a large impact on its victim. Such

an attack requires only user-level access zombies which are easier to acquire.

21

C
h
a
p
t
e
r

3
End-to-end Network Layer Security with

HIP

In the last chapter we have seen several methods of DDoS defence. However, most of

these methods require important changes in the Internet structure, or lack incentives for

their adoption (e.g. ISP anti-spoofing practices). The most common and successful ones

require costly infrastructures, e. g. specialized Cloud services. None are end-to-end or

do allow progressive adoption without heavy investments.

A potentially better method would consist on a "magic-filter", implemented in an

end-to-end fashion on the communicating entities or near them, in the Internet’s edge

routers. This solution would assure that all data traffic that went through the filter would

be composed of: traffic intended to establish a data flux between two parties, where the

receiving end has accepted the exchange; traffic related to a data exchange of a previously

mutually agreed interaction.

However, this type of solution would still be vulnerable to a flood of message exchange

requests. To mitigate it, filtering measures would need to be implemented near the source,

through limiting the number of new message fluxes a party can try to establish in a given

time interval.

Thus, a solution to this problem would be to have a generalized adoption of IPSec.

Though, this solution is complex and lacks incentives for its adoption since at the trans-

port level there are several popular security alternatives (e.g. TLS, HTTPS, SSH).

As we have also seen in that chapter, a proposal to boost the usage of IPSec in a host

to host manner in a more realistic way, is HIP (Host Identity Protocol). This protocol

facilitates the establishment of authenticated host-to-host network level channels. Its

generalized adoption would be of great help to combat DDoS.

Unfortunately, HIP has not been widely adopted. Probably because it also contains

some adoption barriers and lacks the right incentives. However, we think that if most of

23

CHAPTER 3. END-TO-END NETWORK LAYER SECURITY WITH HIP

these barriers could be smoothed, or removed, a solution with its advantages but without

its drawback or barriers for adoption, could be of great help.

In this chapter we will delve deeper into HIP in order to get a better understanding

of the reasons that led to its poor adoption. Then, we will try to devise ways to overcome

these adoption barriers, while still allowing it to fulfil all its promises as an end-to-end

security solution able to also combat DDoS.

In section 3.1 we analyse the HIP protocol in a more in depth approach.

In section 3.2 we analyse the possible DDoS attacks based on HIP itself and how HIP

tries to overcome them.

In section 3.3 we discuss the reasons that led HIP to have very low adoption as it’s

only applied in a few private networks.

In section 3.4 we present three HIP protocol variants and discuss their motivations

and desired impact.

In section 6.5 we conclude the chapter.

3.1 HIP Description

The Host Identity Protocol is a networking architecture developed by Ericsson and Boeing,

among other companies, and academic institutions, since 1999. It has been standardized

by IETF[23].

The original ideas were formed from the need to devise a new architecture that would

solve some of the most challenging problems in the contemporary Internet: loss of uni-

versal connectivity, poor support for mobility and multi-homing, unwanted traffic, and

the lack of authentication, privacy and accountability.

HIP is an implementation of the identifier/locator split[35] approach in the stack.

That is, while in the current IP architecture, IP addresses take both the role of the host

identifier and the host locator, in HIP these roles are separated, Host Identifiers take the

role of Identifiers and the traditional IP addresses take the role of locators.

As a result of this split, the way applications send packets in this network is very

different, since instead of referring to IP addresses they refer to Host Identities (HI), i.e.,

public keys. In HIP the Host Identity is a public key of an asymmetric key pair. Public

keys are large in size and impractical to use as identifiers in the message exchanges. Thus,

the need for a Host Identity Tag (HIT), which is an hashed encoding of the HI, used to

represent the HI and has the following three properties: i) It’s the same length as an IPv6

address; ii) it’s self-certifying (i.e., given a HIT, it is computationally hard to find a HI key

that matches the HIT); and iii) the probability of a HIT collision is extremely low.

3.1.1 HIP goals and solutions

As previously mentioned, HIP tackles some of the most challenging problems in today’s

Internet.

24

3.1. HIP DESCRIPTION

Loss of universal connectivity Loss of connectivity is caused by NATs, firewalls and

dynamic IP addresses. While this may not seem a problem because of how familiar

it is, originally the Internet did have a universal naming scheme. HIP achieves this

with it’s Host Identifiers that allow the IP addresses to be used as ephemeral locators,

along side a number of design details related to middle boxes, such as the ability

for hosts to directly authenticate themselves to firewalls via explicit registration.

Poor support for mobility and multi-homing In order to map mobile entities identities

to their dynamic changing locations, a new level of indirection not present in typical

DNS mappings is needed. The cryptographic nature of the Host Identifiers and

them serving as a new name space creates the needed level of indirection that

provides HIP with a new approach to implement mobility and multi-homing. In

most identifier/locator schemes, this service is implemented as a mapping service[5].

HIP proposes the use of the DNS for this purpose.

Unwanted traffic Spam, phishing and DDoS are an everyday problem to every ISP or

service. The current Internet architecture is an extension to the message passing

paradigm, a sending process creates a message and sends it to another process by

naming the recipient with a name. The problem is that all the power is given to the

sender, as the recipient’s address can be easily obtained and there are no incentives

to refrain from sending additional messages, since sending for any reason has little

to no cost. Thus the existence of spam and most DDoS attacks.

Lack of authentication, privacy and accountability Today, the authentication problem

is technically easy to solve, but socially very challenging to adopt. Thus, HIP threats

this problem in a per case basis between the end-users. HIP does not directly pro-

vide a solution to the privacy and accountability problems, but the use of crypto-

graphic host identifiers to support the establishment of connection paths makes it

easier to attribute ownership of a certain key to a distinct host. Also, the separa-

tion of Identifiers and Locators makes it easier to hide the topological location of

communicating parties.

3.1.2 How HIP works: Base Exchange

The HIP base exchange, from now on referred as BEX, is used to establish a pair of IPSec

security associations (SA) between two hosts. It’s built around an authenticated Diffie-

Hellman key exchange[28] but with some unusual features related to DDoS-Protection.

As seen in Figure 3.1, the introduction of the new Host Identity layer means that

communicating hosts don’t need to know their counterpart’s locators, only their Host

Identity. The Host Identity layer maintains mappings between identities and locators.

Thus, when a mobile host changes its IP address, HIP is used to transfer that information

to all peer hosts. Upper layers, e.g. applications, remain unaware of this changes.

25

CHAPTER 3. END-TO-END NETWORK LAYER SECURITY WITH HIP

Figure 3.1: Approximate location of the HIP sublayer within the TCP/IP stack.

The HIP BEX consists of a two round handshake, in which the hosts exchange Diffie-

Hellman public values and create a shared Diffie-Hellman key. This key will be used to

generate keying material for several cryptographic operations, such as message integrity

and confidentiality. Currently, the default option is to used them to establish a pair of

IPSec Encapsulated Security Payload (ESP) Security Associations (SA) between the hosts.

Figure 3.2: HIP base exchange messages.

Figure 3.2 depicts the HIP BEX, we shall now delve further on each separate message.

I1 The Initiator receives the Responder’s HIT-R (Responder’s HIT) from either a DNS

lookup, some other repository, a mapping service or a local table. Since I1 is so easy

to spoof, no attempt is made to add to its generation or processing cost.

R1 The Initiator’s HIT-I must match the one received in the I1 packet. Puzzle(I,K) con-

tains a random I number and a difficulty level K, we shall see a more in depth

overview of the puzzle mechanism in a later subsection. The parameters listed

so far are the non signed part of R1. In order to reduce the overhead of generat-

ing Diffie-Hellman values, the R1 packet is pre-signed, the signed values are the

Responders Diffie-Hellman value (DH-R), it’s Host Identifier (HI-R), several trans-

forms related to cryptographic suite preferences (HIP Transforms, ESP Transforms)

and the Echo Request. This last parameter takes an important role, in it the Re-

sponder can remain stateless during this part of the BEX. The responder ciphers an

26

3.2. HIP ATTACKS

hash of all the needed information related to the puzzle mechanism and forces the

Initiator to return it unchanged in the next I2 message, this way the Responder can

verify that it indeed sent the corresponding R1 and that the puzzle solution in I2

follows the given parameters.

I2 In this packet the Initiator sends the puzzle solution (Solution(I,K,J)), it’s Security

Parameter Index (SPI-I) in order to later create the IPSec Security Associations, it

also sends its Diffie-Hellman public value (DH-I) and encrypted Host Identity (HI-I),

along with the cryptographic protocol transforms (HIP Transform, ESP Transforms).

As referred earlier, the Initiator needs to send Echo Response as it was sent from

the Responder, untouched. The Initiators Host Identity is encrypted with keying

material derived from the Diffie-Hellman values. The whole message is signed, with

the exception of both parties Host Identity Tags (HIT).

R2 The final message in the HIP BEX serves as a way to confirm that the Diffie-Hellman

shared secret key was successfully generated by both parties, besides both entities

HIT values (HIT-I, HIT-R), the Responders Security Parameter Index value (SPI-

R) is also included. A HMAC is calculated over the whole HIP packet with the

Responder’s HI concatenated to it. The message is then signed.

3.1.3 Puzzle mechanism

The purpose of the HIP puzzle mechanism is to protect the Responder from DDoS threats.

It allows the Responder to delay state creation until the Initiator has proven to be "sincere"

in the sense that it used enough CPU cycles to solve the puzzle.

The puzzle is based on finding a value J, such that the hash of the concatenation

between J, I and both parties HIT values has K least significant bits set to 0. To solve this,

the Initiator must compute the solution using a brute force approach as the Responder

selects an I value that cannot be previously guessed by the Initiator. The Responder can,

this way, set the level of trust on the Initiator in the form of the value of K. It can also

alter K based on it’s own load level.

3.2 HIP Attacks

When HIP BEX ends, a secure and authenticated channel is created between the end-

users since both parties know the necessary Security Associations and a shared key. This

grants a robust defense mechanism against DDoS but introduces significant overhead.

Additionally the BEX is itself susceptible to attacks based on its message exchanges [23,

24].

Replaying Message replaying can be done in several phases of the HIP BEX, thus HIP

has different ways to deal with this attack. Responders are protected against replays

of I1 packets by virtue of the stateless response to I1 with pre-signed R1 messages

27

CHAPTER 3. END-TO-END NETWORK LAYER SECURITY WITH HIP

and Response Rate Limit mechanisms[39]. Initiators are protected against R1 re-

plays by a monotonically increasing R1 generation counter parameter included in

R1. Responders are protected against replays of forged I2 messages by the puzzle

mechanism and the Echo Request field.

I1 Flood The purpose of an I1 flood is to try and deplete the available pre-signed R1 mes-

sages of the responder. HIP tries to solve this by attributing the same Diffie-Hellman

values to different I1 messages, however this introduces a statistical probability of

Diffie-Hellman value collision.

I1 Spoofing An attacker by spoofing a I1 message with another user HIT can try to make

an unsuspecting user of receiving and possibly solving a puzzle he hasn’t requested.

HIP solves this by discarding all R1 messages where an I1 message wasn’t first sent

by use the HIP state machine.

I1 to R1 Reflection attack Related to the previous attack, I1 to R1 Reflection attack uses

spoofing to get unwanted traffic to a victim. As seen earlier, spoofing gets the

victim to discard the messages, but the messages still arrive to the victim. Since

the size difference of I1 and R1 packets is very significant, an amplified reflection

attack is possible in this round of the BEX. HIP uses as a solution a mechanism

studied earlier in Chapter 2, response rate-limiting of the sent R1 by the IP address

parameter. With a fined tuned value for the RRL it’s possible to severely mitigate

reflection attacks this way.

I2 Flood In this attack, the attacker correctly solves the puzzle on R1 but then spoofs its

IP address and uses an invalid or someone else’s HIT in order to try to make the

responder, upon seeing a correct puzzle solution, computes shared Diffie-Hellman

secret keys for various spoofed entities. HIP solves this by, after an N number of

bad I2 messages containing a certain solution, all following I2 messages with that

solution are discarded.

3.3 HIP Adoption barriers

So far, HIP seems like a worthwhile upgrade to the current Internet so why hasn’t it

had a more widespread implementation? The answer to this question is that HIP faces

several techno-economic adoption barriers caused by HIP complete network architecture

turnaround. The Internet has been based on the TCP/IP stack since it’s inception and the

changes HIP requires are simply too many and too severe.

In 2013 a survey was made on the reasons for the non-deployment of HIP, the in-

terviewees’ consisted of stakeholders in operating system vendors, Virtual Private Net-

work (VPN) software providers, mobility, security and sensor solutions, Internet service

providers and professionals with expertise in the networking and data security. Seen

28

3.3. HIP ADOPTION BARRIERS

Figure 3.3: Reasons for HIP non-deployement[15].

in Figure 3.3 is the ranked list of these reasons. These can be grouped into 5 main HIP

adoption barriers, in order of importance:

Demand is low Demand for HIP functionalities is low, and where demand exists, substi-

tutes have been favoured either because they were earlier in the market or because

they have relative advantages due to some design choices of HIP. Additionally, HIP

solves problems that may not be demanded by applications, e.g. seamless mobility

that preserves TCP connections may not be needed, as a majority of network traffic

is HTTP according to[18].

Substitutes arrived earlier HIP was introduced considerably later than its core substi-

tutes IKE[9] a protocol used to set security associations, Mobile IP[25] which allows

the usage of the same IP even when changing networks and TLS, a set of crypto-

graphic protocols used to provide privacy and data integrity. These substitutes

solutions were already accepted by the standardization bodies and the industry

before HIP even started its development. This made HIP lose the headlines and

decreased the general public’s knowledge. These substitutes also evolved in parallel

to HIP, e.g. VPN providers that decided to add mobility to IKE, decided to specify

MOBIKE[3] instead of changing to HIP.

Substitutes have advantages The lower complexity implementation of using problem-

specific protocol solutions is favoured to the approach of HIPs complex, general

solution. Additionally, problem-specific solutions are optimized in fixing a very

specific problem, they need less patches and are thus easier to deploy.

29

CHAPTER 3. END-TO-END NETWORK LAYER SECURITY WITH HIP

Early adopter benefits requires costly coordination HIP requires both communicating

partners to support HIP before either of them gets any benefits associated with HIP.

This creates a problem for early adopters as they will only benefit after the critical

mass has adopted HIP, obviously, stakeholders are not willing to invest in such

changes unless they are certain that other stakeholders also adopt HIP.

Research-mindedness of HIP developers has lead to strategic mistakes HIP developers

visualized HIP as a protocol that would change the whole Internet, which can be

seen by outsiders as lack of realism. They focused too much on the Identifier-Locator

split instead of its practical benefits, and their search for theoretic perfection has

lead to non-optimal design choices from the deployment point of view.

3.4 HIP variants

The HIP BEX involves heavy cryptographic computations on both Initiator and Respon-

der. The heaviest component is the computation of the Diffie-Hellman key, immediately

followed by the computation of the Diffie-Hellman public values. Signature computa-

tions and verifications over messages R1, I2, R2 represent a lesser overall computational

expenditure but are non negligible. From this observation, two modifications of HIP have

been proposed in order to make the protocol used by resource constrained hosts. Another

HIP variant is based on distributed load sharing[32]).

3.4.1 HIP Diet Exchange (DEX)

DEX[22] proposes that each host uses a long-term elliptic curve Diffie-Hellman[10]

(ECDH) public value as its host identifier and adapts the key exchange as seen in Figure

3.4.

As the Host Identifier is itself also the Diffie-Hellman public value, there is no need

to authenticate it through asymmetric cryptography. Knowledge of the DH key is enough

to prove that a host is a legitimate peer in the exchange. Additionally, the DH key is also

used to transport two random seeds x and y that will be used to derive the final shared

key.

The static nature of the ECDH eliminates the recurrent DH key generation costs,

and make the key exchange lighter. However, this was still though to be too heavy for

resource-constrained hosts, so an even lighter variant was devised.

3.4.2 Lightweight HIP (LHIP)

LHIP is a more radical approach, it uses the same syntax as in the original HIP BEX but

doesn’t use any of its security mechanisms in order to achieve the lightest HIP variant with

the least amount of compatibility issues. Therefore, no Diffie-Hellman key is computed,

no RSA operations are performed and thus, no IPsec tunnel is set after the exchange.

30

3.4. HIP VARIANTS

Figure 3.4: HIP Diet Exchange.

Figure 3.5: Lightweight HIP exchange (LHIP).

Instead hash chains are used to cryptographically bind successive messages with each

other, which represents a minimal degree of security. LHIP exchange is depicted in figure

3.5.

It’s worth noting that even though the fields representing the Diffie-Hellman Respon-

der and Initiator values (DH-R and DH-I) and their public keys (PK-R and PK-I) are

present, they are unused in the LHIP exchange and are only present for compatibility

reasons and because LHIP supports the upgrade to standard HIP BEX.

LHIP does not provide strong host authentication, the hash chains only guarantee

that the ongoing session has not been hijacked. Therefore LHIP trades security for energy

31

CHAPTER 3. END-TO-END NETWORK LAYER SECURITY WITH HIP

efficiency in a drastic manner.

3.4.3 HIP Tiny Exchange (TEX)

TEX aims at reducing the computational requirements of running HIP BEX while still

retaining its basic features, like using the keying material obtained from the transactions

to create a post-TEX security mechanism such as IPsec.

HIP TEX is based on two design decisions:

Replacement of DH with Public Key Cryptography The computational cost of a key ex-

change using Diffie-Hellman values (one DH exchange + one signature/verification)

is around 2.5 times higher[32] than using a 1024-bit RSA algorithm (one encryp-

tion/decryption + one signature/verification). On this premise, TEX puts aside

Diffie-Hellman calculations in favour of computationally less expensive approach

that still ensures secure HIP connections. This changes still weren’t enough for a

highly constrained host, therefore TEX presents another key feature.

Collaborative key exchange approach In a scenario where a highly-constrained host

node is surrounded by possibly trustworthy peer nodes, TEX proposes to delegate

heavy computational load from public key cryptography to less constrained nodes

in its neighbourhood.

During the key exchange, these assisting nodes, called "proxies", take charge of secret

key delivery using asymmetric cryptography primitives in a distributed and collabora-

tive manner. Each proxy encrypts a different part of the secret key sent by the highly

resource-constrained Initiator to the Responder. Proxies also have to receive the secret

key generated by the responder in order to decrypt it and transmit it to the Initiator. The

reconstruction of the session key is completed by both the Initiator and the Responder in

order to guarantee its secrecy.

3.5 Conclusion

In conclusion, the key features of HIP impose several changes that led to the protocol’s

adoption barriers. Moreover, HIP functionality requires a heavy BEX with two rounds

which introduces significant overhead. In certain scenarios this overhead would be bigger

in both size and computational requirements than the expected end-to-end transaction,

e.g. DNS and other Request/Reply protocols. This means that using HIP as a defence for

DDoS attacks that involve this protocols is inefficient and other methods may be a better

option. Another problem with HIP adoption occurs in a situation where security is prefer-

entially deployed in a layer higher than HIP. Thus, using similar security mechanisms in

different network layers would introduce redundancy but, e.g. by using tls without HIP,

and knowing that TLS only starts after TCP, we would still have SYN flood type attacks.

32

C
h
a
p
t
e
r

4
End to end Light Security Protocol

Our goal in this chapter is to present the End to end Light Security Protocol (ELSP). In

order to create an end-to-end network layer protocol that complements IP with practices

allowing the mitigation of DDoS attacks, one should focus on the good security practices

carried out by HIP, such as its puzzle mechanism, and if required, the ways in which it

deals with protocol attacks.

However, for a protocol with this purpose, we shall not worry about user authen-

tication or any other sub-problem that HIP tries to fix that isn’t directly linked with

DDoS defense. Other examples are the problem of loss of universal connectivity, support

for mobility and multi-homing and the lack of privacy and accountability. Thus, ELSP

should not need any major change to the Internet’s architecture, should not need third

party entities to account for user authentication, as authentication per se, isn’t a DDoS

problem.

This protocol adopts features from HIP to a certain degree. In fact, if HIP was widely

adopted, since it offers a solution based on strong and proven defence mechanisms, DDoS

at network and transport level would be more easily controlled and it would be easier to

find tools to combat it at other levels (e.g. application). Unfortunately, this is not the case,

and, as we have seen in the previous chapter, it probably won’t ever be.

As seen in the previous chapter, some HIP features seem hard to justify in a DDoS

mitigation context or were clearly an over-specification in the sense that the adoption of

certain mechanisms are mandatory even when they are useless (e.g. Diffie-Hellman key

exchange in a scenario where a connectionless approach would be desired).

However, if we build on the HIP proposal and refrain from adopting its most arguable

features that lead to its adoption barriers, it may be possible to devise a solution that still

retains the end-to-end DDoS mitigation features found on HIP.

That is the goal of ELSP, which we will present bellow.

33

CHAPTER 4. END TO END LIGHT SECURITY PROTOCOL

In section 4.1 we introduce ELSP and give an overview of the protocol functionalities

and how it tackles the DDoS problem.

In section 4.2 we present how ELSP behaves when in a connectionless scenario, based

on UDP-like interactions.

In section 4.3 we present how ELSP behaves when in a scenario where the Initiator

intends to establish a non-secure exchange with the Responder.

Finally, in section 4.5, we analyse the security properties of ELSP and how they can

be compared to the guarantees that HIP BEX provides, by discussing both protocols

behaviours when faced with the same attack vectors.

4.1 Overview

Even though HIP faces many fierce adoption barriers that prevents it from being deployed

solution, it may be possible to create a protocol prototype inspired from it, where we

can remove the barriers that contributed to its non adoption while retaining its security

features as much as possible. In order to do so, we introduced the following modifications:

Public keys are not to be used as identifiers and their certification is orthogonal to the protocol

This means that in ELSP, public/private keys are just that, and ELSP doesn’t rely on

any particular certification method.

Thus, there are no certificate exchanges in the protocol And if keys need to be certified

in a certain context, any suitable mechanism can used.

Public keys are to be exchanged directly As it is in SSH and TLS to avoid the need of

third party key distributors.

Exclusion of Identifiers The packets exchanged under ELSP are not tagged by identi-

fiers, but are tagged by message exchange nonces. To be able to invert, without

previously knowing such nonce, is very hard and would require an enormous num-

ber of probes.

Both parties should only pay what it uses This means that ELSP should allow the Re-

sponder to fine tune the level of security and complexity of the mechanism it re-

quires when exchanging packets with the Initiator, this also means that when the

goal is to use security at the transport level, it is useless to pay the price of redundant

features at lower levels. Thus, ELSP strongly adheres to the end-to-end principles,

which HIP didn’t.

Early in the development of ELSP, we have found that in order to efficiently mitigate

DDoS attacks by following HIP’s security mechanisms, and at the same time refraining

from having the same adoption barriers, we had to treat different scenarios in a flexible

way. An Initiator that intends to only complete a Request/Reply round should be treated

34

4.1. OVERVIEW

Figure 4.1: ELSP varied messages exchange flows tailored for each specific situation.

differently from an Initiator that intends to establish a long term TCP connection. Also, an

Initiator that pretends to establish a session relying on security mechanisms in another

layer, should be able to bypass all redundant lower level security mechanisms if it so

desires.

Therefore, we have defined ELSP from the ground up with this in mind. Figure 4.1

further illustrates the reasoning for the different message exchanges that represent the

different scenarios that will be developed in the next sections.

Furthermore, for a better understanding of the capabilities of ELSP, we need to make

clear the type of attacks that it’s designed to mitigate and which type of attacks it has no

intention of mitigation. Firstly, the protocol is designed to mitigate DDoS attacks, these

attacks are usually based on either depleting the computation resources of a victim or

exhausting its bandwidth.

With the former in mind, the attacker’s model for ELSP doesn’t contemplate attack

types such as:

Eavesdropping In a non secure, "cleartext", network communication, an attacker that

has access to the victim’s network can read the ongoing message exchange and thus,

access potentially sensitive information. In order to effectively mitigate this type of

attack, strong encryption and a certified key distribution mechanism is required. In

the perspective of DDoS mitigation, having these security mechanisms mandatory

would introduce significant overhead when they are not needed. Thus, in ELSP we

make use of these mechanisms optional.

35

CHAPTER 4. END TO END LIGHT SECURITY PROTOCOL

Man in the Middle These attacks differ from the previous Eavesdropping attack in the

fact that the attacker not only reads the messages but also changes them in order to

assume someone else’s identity to harm the victim. To mitigate these type of attacks,

all communicating entities would need to have certified keys and, as discussed

earlier, this overhead is taken as optional and thus ELSP doesn’t necessarily mitigate

MitM attacks per si.

As the purpose of this work is to mitigate DDoS attacks, we made the decision to

keep using the already proven mechanisms when dealing with a similar to HIP variant.

Thus, we did not explore the options studied earlier in Chapter 3, like the replacement

of Diffie-Hellman with RSA public key cryptography.

Having made clear the purpose of ELSP we shall now delve into the discussion of its

variants.

4.2 Connectionless One round Variant

One of HIP’s biggest adoption barriers was the fact that according to some sources[18],

nearly 60% of the Internet’s interactions are simple Request/Reply messages, and many

of them connectionless. In a normal HIP environment in order for the Initiator to receive

the reply to its request, 2 obligatory security rounds need to first take place and then

another with the request and reply exchange. Thus, we devised a message exchange that

only needs one round in a typical, best case connectionless scenario, while still retaining

optional tools to mitigate DDoS attacks.

Figure 4.2: ELSP One round connectionless scenario message exchange.

As seen in Figure 4.2, base exchange in this scenario is very simple. The I1 message

only contains a random generated number Nonce-I and the request itself, the R1 message

correspondingly returns Nonce-I and the response.

The best case scenario is based on the Responder’s acceptance of the I1 message,

which is determined by the evaluation of three major metrics: the Responder’s current

load values, the amplification factor correspondent to the query/response at stake and

36

4.3. TWO ROUND WITH NO SECURITY ASSOCIATION VARIANTS

whether or not the Initiator’s IP address has been flagged by the Responder’s Response-

Rate-Limiting (RRL) mechanism. If the Responder decides that a certain I1 message has

a low probability of being part of a DDoS attack, e.g. , the Responder receives an UDP

query with a low amplification factor, with an IP address that hasn’t been flagged as

malicious by the RRL mechanism, and at that moment, the Responder is under low load.

It may then decide to answer immediately.

The types of DDoS attack vectors that use typical UDP Request/Reply messages are,

as we have seen in Chapter 2, amplified reflection attacks and flooding attacks. This

message exchange nonce’s in conjunction with a RRL mechanism on the Responder side

provide for a meaningful defence strategy against reflection attacks.

In a scenario where this message exchange is implemented, any receiving party can

very easily identify if the message received was actually a response to a previous query,

by verifying if the current protocol state matches I1-Sent(Nonce-I). This prevents an

entity from uselessly computing a received message that it did not request. However this

doesn’t prevent its network channels from being overwhelmed by bandwidth exhausting

attacks such as a reflection attack. To make the attack less effective, RRL can be used on

the Responder’s side, the utilization of RRL and the assessment of its effectiveness shall

be further discussed in a later section.

By now, we have shown how ELSP deals with a traditional connectionless scenario

where only nonces and RRL mechanisms seem to be sufficient to mitigate Reflection DDoS

attacks, the type of attack vector most prominent in this scenario.

4.3 Two round with no Security Association Variants

If the Responder is currently under heavy load, or because it has detected that the Initia-

tor’s IP address is linked to DDoS activities with a high degree of probability, the same

message exchange listed earlier is not a sufficient solution.

In this scenario, we still want to resolve the connectionless scenario as efficiently

as possibly while still mitigating possible DDoS Reflection attacks. We are now in the

point where the Responder has received an I1 message and it has decided not to directly

respond the Initiator. Thus, as we have learned from the defence mechanisms that HIP

uses, we can make the Initiator prove that he has good intentions by the means of solving

a cryptographic puzzle.

However, the message exchange can’t continue as it does in HIP. In HIP the messages

R1, I2 and R2 achieved DDoS defence by the means of its puzzle mechanism and achieved

the creation of a future connection association by the means of exchanging Diffie-Hellman

values and Security Parameter Index values.

The same applies in a scenario where session security is preferred to be handled in

an upper layer of the network stack, where a security protocol may be obligatory and we

want to avoid redundancy.

37

CHAPTER 4. END TO END LIGHT SECURITY PROTOCOL

Figure 4.3: ELSP Two round with no session security variant message exchange.

As the current scenario seeks to solve DDoS attacks in a connectionless scenario, the

security typically gained by the creation of an secure IPSec tunnel is useless and thus

redundant. So, the message exchange in this scenario consists of:

R1 The Responder returns the Initiators Nonce-I and challenges it with a cryptographic

Puzzle(I,K) where I is a random number and K is the difficulty level. In the Echo

Request field we have an HMAC of the concatenation of the required information

the Responder will need to check to prove the solutions authenticity. The respon-

der’s public key is also included in this message, in order to allow the Initiator to

verify the given signature.

I2 The Initiator has to once again send the payload-request and the same Nonce-I value

as the Responder doesn’t keep any state of the message exchange. Solution(I,K,J)

consists of the solution to the puzzle challenged in R1 where J is the solution and

I and K are the numbers given in R1. In order to prove the solutions authenticity,

the Initiator also returns the Echo Request. A signature of these parameters is also

provided by the Initiator.

R2 The Responder starts by verifying the solution as it is the least computationally inten-

sive task that can quickly discard false solving attempts. If the solution is correct,

the Responder then verifies its authenticity by verifying the Echo Request HMAC. If

sucessful, the Responder can now send an R2 message that consists of the Initiators

Nonce-I and the payload-reply, followed by the Responder’s signature of the reply.

In fact both connectionless variants are used in an integrated way. When the Respon-

der receives the I1 message, it may reply in several different ways:

38

4.4. TWO ROUND WITH SECURITY ASSOCIATION VARIANT

1. Discard the message.

2. Reply immediately.

3. Respond with a challenge.

This kind of mechanism is a good, application-independent generalization. The sit-

uation where the Responder answers with a challenge message is equivalent to current

mechanism of DNS servers of responding to suspicious queries with truncated DNS re-

sponses, and if the querying party wants the rest of the Response, it will need to establish

a TCP connection with the DNS server, thus mitigating possible DDoS Reflection attacks.

A connection-oriented version of this variant is based on the same principles. How-

ever, the I1 message does not contain a request message as the Initiator knows it will have

to re-send it later on I2. Connection-oriented request message are e.g. the SYN message

used in TCP.

4.4 Two round with Security Association Variant

The final message exchange variant is the closest to HIP, having both its puzzle mecha-

nisms and computationally heavy shared key distribution with the Diffie-Hellman algo-

rithm.

Figure 4.4: ELSP two round with session security variant message exchange.

I1 This message exchange begins with the Initiator sending an I1 message with the a

on-the-fly, randomly generated value Nonce-I.

39

CHAPTER 4. END TO END LIGHT SECURITY PROTOCOL

R1 The Responder, when receiving an I1 message, chooses a previously computed R1

message and adds the Puzzle I value, the Initiator nonce and the Echo Request field,

these values are not pre-signed. The parameter that now differs from the message

exchange listed on 4.3 is the Difie-Hellman value of the Responder (DH-R), needed

to assure session security within ELSP. The last needed parameter on R1 is the

Responder’s public key (pubKey-R).

I2 The Initiator, when receiving an R1 message first checks if it is in state I1-Sent(Nonce-

I), with a matching Nonce-I received on R1, then verifies the Responders signature.

After these checks, the Initiator can now try to brute force a solution to the given

puzzle and create its own Diffie-Hellman value. I2 is then composed of, Nonce-I

and pubKey-I, as the Responder does not store any state on each of its ongoing mes-

sage exchanges, the puzzle Solution(I,K,J) and the corresponding Echo Request, the

Initiators public Diffie-Hellman value (DH-I) and the Initiator’s proposed Security

Parameter Index (SPI). Lastly, the Initiator produces a message signature covering

the Solution(I,K,J), DH-I and the Echo Request.

R2 When receiving an I2 message, the Responder first verifies the puzzle solution as it

is the least complex verification and immediately discards all I2 messages sent by

entities that didn’t solve the puzzle. Then, the Responder verifies the Echo Request

and finally the Initiator’s signature is checked. The R2 message is then composed

by the Initiators Nonce-I, the Responders Security Parameter Index value (SPI-R)

to later be used in IPSec. At this point, the Responder can successfully generate the

shared Diffie-Hellman key and as a token of proof that both parties are in possession

of the same Diffie-Hellman key, in R2, an HMAC of the Nonce-I and SPI-R values

is included in the message. Lastly, the message is signed by the Responder. The

Initiator, when receiving R2, generates the shared DIffie-Hellman key and verifies

the received HMAC. All the components for the establishment of an IPSec secure

tunnel are now available.

4.5 Preliminary Security Analysis

In this section we will discuss the security guarantees provided by ELSP in its variants.

We will list the common attack vectors shared with HIP and what is the corresponding

available solution in a case-by-case approach.

We can now discuss the main differences of the overall ELSP protocol with HIP, and

how these differences may affect the effectiveness of ELSP when mitigating DDoS attacks:

• The security analysis done on HIP expects the usage of authenticated public keys

by both parties, in HIP’s case, these keys are obtained from third-party entities,

making HIP a non end-to-end protocol. ELSP being an end-to-end protocol, keys are

exchanged by both entities when required, thus avoiding redundant key exchange

40

4.5. PRELIMINARY SECURITY ANALYSIS

mechanisms when not desired. However, as the authentication of keys on ELSP

is mainly optional and we do not expect it to be used in normal situations, ELSP

becomes vulnerable to Man in the Middle Attacks.

• The other main difference lies on the architectural decision of ELSP to not follow

the Locator/Identifier separation paradigm. As so, ELSP does not use Host Iden-

titifiers or Host Identity Tags, in its place, and only for tagging purposes i.e. not

as identifiers, ELSP uses Nonce-I values. ELSP loses the ability to have self trans-

forming identifiers, but as its purpose is DDoS mitigation, this does not affect its

effectiveness.

Thus, we shall not analyse the HIP-like variant of ELSP, the two round with security

association variant. As it was discussed in Section 3.2.

4.5.1 Attacks on the Connectionless One round variant

R1 Replay This attack is based on an eavesdropping entity storing R1 messages from a

certain Responder to later send to unsuspecting victims and entice them to solve

the cryptographic puzzle worthlessly.

ELSP solution: This is attack is fully mitigated by the inclusion of Nonce-I parameters

on all I1 messages. If an entity receives an R1 or R2 message without being in the

state I1-Sent(Nonce-I) or I2-Sent(Nonce-I), the message is immediately discarded.

I1->R1 Reflection An attacker spoofs the IP address of the victim and floods a typical

Request/Reply server, the victim will then receive answers to queries it did not

request.

ELSP solution: ELSP tackles this attack with two different mechanisms, first, having

the RRL mechanism on the Responder’s side set to not answer queries with a high

amplification factor, e.g. DNS any-queries. Secondly, if an entity has a firewall

that intercepts traffic before it reaches the main host, this firewall can now filter all

messages with unrequested Nonce-I values.

4.5.2 Attacks on the two round no session security variants

I1 Flood This attack is based on the fact that the I1 message is very small and easy to

create, on the other side the R1 message has computationally complex mechanisms

like signature signing. This disparity makes I1 Flooding an effective attack vector.

ELSP solution: The solution is to have pre-signed stock R1 messages, that only need to be

added exchange specific parameters. However this solution may not be enough as

an attacker can try to exhaust all the available stock R1 messages of the Responder,

the solution adopted for this problem is the same as used in HIP, when in shortage

41

CHAPTER 4. END TO END LIGHT SECURITY PROTOCOL

of stock R1 message, re utilize the available R1 messages to different Initiators in a

randomly distributed way. This can cause key collisions, and thus, a high stock of

R1 is recommended.

R1 Replay This attack and its solutions are the same as described in the earlier subsec-

tion.

I1-R1 Reflection This works in the same manner as the one described in the earlier sub-

section, with the difference that in this message exchange variant, the R1 message

is much larger, thus creating a larger amplification factor.

ELSP solution: The same base solution mechanism is the same as in the earlier variant,

with the difference in the RRL parameter settings. The sent R1 messages from this

variant have a different IP address bucket, with a stricter threshold.

Incorrect query I2 Flood This attack is based on the attacker correctly solving the re-

ceived puzzle on R1, and then flooding the Responder with I2 messages that have

both correct puzzle solution and correct Echo Request values but an incorrect or

invalid query. The Responder will then exhaust its resources by continuously veri-

fying the same puzzle response data.

ELSP solution: The solution for this attack is to store state when this occurs. When a

certain number of times an I2 message has its puzzle solution verified but no R2

message is produced, that puzzle solution is blacklisted. The fact that the Responder

needs to store state is offset by the fact that the attacker has to solve the puzzle in

order to continue with the attack.

4.6 Conclusion

As many of the security mechanisms used in ELSP are the ones used in HIP, we need

to correctly analyse the transition of these HIP functionalities to the normal Internet

architecture. We need to understand what is being lost and how this affects the security

guarantees of ELSP.

Routing is no longer based on Identifier Tags as the Identifier/Locator separation

paradigm is abandoned, IP addresses will now take the role of both Identifier and Locator

of an host. This removes the inherent HIP solution to the mobility problem, and more

importantly, entities are no longer able to reconstruct another entities HIT values using

its public key (HI) as we will no longer support the equivalent to Host Identity Tags.

However this functionality of HIP only makes sense when Host Identities are certified by

a third party, and since we leave this feature open to implementation, as HIP does, no

real difference is to be had.

Regarding the different attacks on both HIP and ELSP we can conclude that ELSP

doesn’t weaken in any way the security features adopted by HIP.

42

C
h
a
p
t
e
r

5
Quantitative Effectiveness Analysis

Obtaining attack traces that are simultaneously recent, publicly available, and representa-

tive of complete attacks isn’t an easy task. Nevertheless, there are some sites that contain

some attack traces1,2. Also, in a typical real scenario high scale attack, the attackers em-

ploy several different vectors, making it difficult to measure the effectiveness of a given

protocol.

Analysing a DDoS mitigating protocol is tricky, even with access to concrete DDoS

attack data, the analysis of the effectiveness of a given protocol is dependable on each

attack situation, the same can also be said for simulated attack data. DDoS defence is

a game of cat and mouse, where new vulnerabilities are always trying to be found by

attackers and thus, they are always one step ahead. This leads to the conclusion that

using concrete data to discuss effectiveness analysis is never enough. In fact, proving that

a mechanism prevents an attack using any attack traces is like proving that a program

has no bugs by doing some tests.

Protocols at the network and transport layer, can be exploited by as many attacks

as there are different mechanisms within these protocols (e.g. SYN Flood, ACK Storm,

Optimal Ack Attack, UDP Fragmentation).

In reality, one way to simplify such an analysis would be to establish a common barrier

to all protocols with the usage of a unique initial message exchange mechanism, that once

complete, would isolate all possible exploits.

For instance, if all traffic acknowledged by a party is composed of either the prelim-

inary security message exchange and the then trust-secured message flow, then all the

traffic that is needed to analyse is:

• Traffic needed to establish the trust based session.

1https://www.simpleweb.org/wiki/index.php/Traces.
2http://www.caida.org/data/passive/ddos-20070804_dataset.xml.

43

CHAPTER 5. QUANTITATIVE EFFECTIVENESS ANALYSIS

• All following traffic, correctly identified with verifiable tags, where the authenticity

of the sender and the consent of the receiver are guaranteed.

If this was possible, then, the number of now possible attacks is limited to the possi-

ble attacks on the initial security message exchange protocol, and it’s inherent variants.

Moreover, it is also required to show that traffic not belonging to a safe message exchange

would be detected.

The latter leads to a focus on attacks:

Based on legitimate looking initial exchange requests These attacks would be based

on sending legitimate looking initial messages that don’t intend to continue the

session establishment.

Targeting the preliminary message exchange Attacks that would try to find exploits on

an ongoing preliminary message exchange.

This analysis, necessarily of the white-box style, effectively limits the possible attacks

spectrum, and at the same time allows for a more focused approach on the problem. In

this chapter we present a quantitative effectiveness analysis of the mechanisms used by

ELSP to establish its different variants.

In section 5.1 we discuss the design decisions of the previously presented protocol

variants.

In section 5.2 we present a quantitative discussion on the effectiveness of ELSP in a

reflection based scenario.

In section 5.3 we discuss ELSP’s behaviour when faced with protocol exploit based

attacks.

The chapter ends with section 6.5 where we conduct an overall assessment of the

effectiveness of ELSP during the initial message exchange. We then discuss the conditions

provided by ELSP to help in identifying with verifiable tags, that ongoing traffic belongs

to an exchange correctly established.

5.1 ELSP Variants Analysis

In order to quantitatively predict the behaviour of ELSP in face of different DDoS attacks,

we need to further define the parameters used in the message exchanges of the protocol,

and also make concrete instantiations of the cryptographic mechanisms used.

In Table 5.1 we can see the cryptographic suites chosen for ELSP implementation.

This will allow us to define the default length of all the messages present in ELSP. The

reasoning for choosing each of the protocols depicted in the previous table will be further

discussed in the following sections.

Also, to more accurately evaluate ELSP, we have approximated that 82 bytes (656 bits)

will be needed for different protocol headers as show in Figure 5.1. The reasons for this

choice will be addressed in the next chapter.

44

5.1. ELSP VARIANTS ANALYSIS

Table 5.1: Cryptographic suites selected for ELSP implementation.

Usage Protocol

DH Key agreement ECDH 256 bits

Keys and Signatures RSA 1024 bits

Hash SHA3 256 bits

HMAC HMAC-SHA3 256 bits

Having set both a cryptographic choice and the size of the message headers, we are

now ready for a quantitative discussion of ELSP in later sections of the chapter.

Figure 5.1: Headers decomposition for a ELSP packet.

In the following subsections we will present the exchange messages of the different

variants in a more concrete manner, discussing the design decisions and offering a more

detailed explanation than the one provided in Chapter 4.

5.1.1 Connectionless One Round

In this variant, the Initiator starts by randomly generating a "number only used once"

(Nonce-I) with the purpose of being used as an exchange ID, i.e. if an entity knows all

the current standing requests by the means of storing the Nonce-I value, it is possible to

discard all incoming messages with an unknown nonce-I value. However, for the attack

to be mitigated, the malicious traffic shouldn’t even reach the victim, meaning that a

dedicated upstream entity is available to filter all traffic and only forward legitimate

traffic to the potential victim.

ELSP can be then be used to more easily mitigate reflection DDoS attacks by providing

a filtering entity with the Nonce-I values and thus, forward only messages with the correct

and current Nonce-I values to the potential victim.

As seen in Figure 5.2, the discrepancy in length for the I1 and R1 messages will fully

depend on the connectionless protocol used. It’s up to the Responder to decide if it’s able

45

CHAPTER 5. QUANTITATIVE EFFECTIVENESS ANALYSIS

Figure 5.2: Message composition for the Connectionless One Round Variant.

to immediately respond to the received query.

We then have two main mitigation mechanisms in a scenario used in this variant, the

aid of a possible filtering entity upstream of the potential victim, with the use of Nonce-I

and also, the RRL applied on the Responder side in order to mitigate reflection DDoS

attacks.

5.1.2 Two Rounds with no Security Association

In this scenario, we have two fitting variants as depicted in Figure 4.1. As their differences

in their default structure are minimal we will analyse them as one.

Figure 5.3: Message composition for the Two Rounds with no Security Association vari-
ants.

The message equilibrium in this message exchange is based on the choices of the

cryptographic suites. In order to both achieve cryptographic integrity and at the same

time ease the burden on the Responder’s side, low bit RSA were chosen.

In Figure 5.3 we can see a detailed composition of this message exchange. We can

observe that the amplification factor between I1 and R1 will always be under 4 after

factoring request size, this will be discussed in a later section.

The Responder when verifying the validity of a puzzle solution needs to check if the K

LSBH(I+J+IP−I+IP−R+Nonce−I) = 0, where LSB is the least significant bits, H denotes an hash

function, "+", denotes concatenation and I is the random value given by the Responder,

J the solution given by the Initiator, IP-I and IP-R the Initiator’s and the Responders IP

addresses respectively and the Nonce-I, the random number generated by the Initiator

on I1 message creation.

46

5.1. ELSP VARIANTS ANALYSIS

A single computation of the previous hash, assuming a Skylake Core-i5 test platform

at 2.7Ghz, takes 375 ns. Using probability theory we have, P (1) = 2256−k

2256 , as the probability

of successfully completing the puzzle on one try. Thus, for average number of tries needed

to complete the puzzle, we have 2k−1. With an example value of k=16, 32768 tries would

be needed on average to solve the puzzle, this implies a time of computation of ≈ 1,2 ms

in the same test platform.

Figure 5.4: Time needed to solve the cryptographic puzzle as a function of its difficulty
(K).

Before verifying the Initiator’s solution, the Responder needs to first verify the Echo

Request parameter. This parameter was previously HMAC’ed by the Responder and to

verify it, the Responder creates another HMAC with a static private key only it has access

to, and the parameters provided by the Initiator. If both HMAC’s are equal, the puzzle

solution is accepted and a reply message is generated.

5.1.3 Two Rounds with Security Association Variant

In this variant, it is introduced both the Diffie-Hellman algorithm and the exchange of

Security Parameter Indexes. To ease the burden of the Responder, the usage of Elliptic

curve Diffie-Hellman[10] was chosen in order to significantly reduce key size, a ECDH

key of 256 bits has equivalent strength to a 3072 bit RSA key as referenced by NIST3.

In this scenario, subsequent exchanged messages are identified by the session specific

Nonce-I values, which are bound to security association parameters.

3https://www.keylength.com/en/4/.

47

CHAPTER 5. QUANTITATIVE EFFECTIVENESS ANALYSIS

Figure 5.5: Message composition for the Two Rounds with Security Association variant.

5.2 Effectiveness Analysis in a Reflection Attack scenario

As discussed earlier, with ELSP it is possible for a Responder to immediately answer

a given request, and if the Responder decides to, it can instead send a cryptographic

challenge to the Initiator to prove its good intentions. Thus, in a scenario where an

attacker decides to use a ELSP enabled Responder, the traffic that reaches a potential

victim is either a reply to the attacker given request, or a challenge that the potential

victim did not request. With this in mind, and given the fact that high-amplification factor

queries are automatically answered with a challenge, the maximum amplification factor

can be derived from the inherent amplification factor within ELSP I1 and R1 messages.

In order to more easily model the total malicious traffic, let’s introduce some notions:

Effective Attacker Requests (Ra) This can be obtained by multiplying the average bot

upload rate and the total size of the botnet currently active.

Request Size(Rsize) The size of the request message involved in the attack in bits, when

not using ELSP.

Af The amplification factor.

R The number of reflectors the bots are using to amplify traffic.

RRL Shaper(Rshap) The number of packets per second (pps) allowed by the RRL mecha-

nism.

Puzzle Message Size(Psize) The size of the challenge message given by the Responder.

Also, for a clearer analysis, we shall establish three different scenarios:

1. A baseline scenario with no shaper or ELSP usage.

A DDoS reflection attack scenario with no shapers can be approximated by:

Rv = Ra ∗Af

48

5.2. EFFECTIVENESS ANALYSIS IN A REFLECTION ATTACK SCENARIO

This scenario is devastating when we take into account the possible amplification

factors for protocols such as DNS and NTP that can be in the tens to few hundreds

range, with higher values being more difficult to attain. However, this scenario

is heavily limited by the ability of the reflectors to respond such vast a vast and

unrestricted amount of queries.

2. Using a shaper policy and no ELSP usage.

When a shaper is in place on all used reflectors, the attack can be modelled as:

Rv = R ∗Rshap ∗Rs ∗Af

However, this model is only valid when Ra is enough to maximise the shaper

throughput in all reflectors, as in:

Ra

R
> Rshap ∗Rsize

The strength of the attack is now based on number of reflectors, the amplification

factor and the shaper policy, but not by the attacker’s upload power. This is because

the shaper mechanism only allows a fixed amount of outgoing traffic.

However, when faced in a situation without ELSP , the traffic received by the victim

(Rv) depends on many other parameters. We now need to take into account the

total upload power of the attacker as well as the amplification factors inherent to

the connectionless protocols used

3. Using ELSP.

When using ELSP if a Responder successfully detects a reflection attack, the following

traffic to the victim can be modelled by:

Rv = R ∗Rshap ∗ Psize

We can disregard Ra and Af because, the outgoing traffic of a Responder with RRL

only depends on how many packets per second he is willing to send to a certain IP and

the size of this packet, in this case it’s the Puzzle Message Size.

Thus, the main difference between scenario 2 and scenario 3 where ELSP is used, is in

the maximum amplification factor allowed, in the case of ELSP, as seen before this value

is always under 5.

This ceiling value for the possible amplification factor heavily limits the usage of

ELSP as a protocol for reflection based DDoS attacks. When comparing with the values

discussed in Table 5.2 we can see a weighted average amplification factor value of 124,

which is ≈25 times worse than using ELSP, thus reaching the conclusion that if an attacker

wants to perform a reflection based DDoS attack it wouldn’t use ELSP Responders for it,

and as such, ELSP enabled entities wouldn’t be used as reflectors.

49

CHAPTER 5. QUANTITATIVE EFFECTIVENESS ANALYSIS

Table 5.2: Maximum known amplification factors for the most common protocols used
in reflection DDoS attacks.

Protocol Max. known Amplification factor Share in Reflection DDoS(%)

DNS 70 40

CLDAP 57 21

NTP 206 19

CHARGEN 360 12

SSDP 30 8

Figure 5.6: Number of reflectors needed to achieve a typical DDoS reflection attack of
12Gbps using ELSP, as a function of Rshap.

5.2.1 Attack bandwidth example instantiation

For a more concrete idea of the impact of the previously discussed scenarios, let us com-

pare computed attack traffic, in all three scenarios, generated by a 1Gbps of botnet upload

capacity, using 1000 reflectors with each one accepting at most 10 requests per second,

and having a request size of 784 bits (98 bytes), value obtained in the same fashion as the

amplification factors obtained in Table 5.2, for the same protocols.

We then have:

Table 5.3: Resulting Attack bandwidth, Rv , in an example instantiation where we have
1Gbps of initial botnet upload capacity, 1000 reflectors each one accepting 10 packets per
second and having a request size of 784 bits.

Scenario Formula Rv Af = 124

1 Ra ∗Af 1 Gbps * Af 128 Gbps

2 R ∗Rshap ∗Rsize ∗Af 7,84 Mbps * Af 0,97 Gbps

3 R ∗Rshap ∗ Psize 33,6 Mbps 33,6 Mbps

50

5.3. EFFECTIVENESS ANALYSIS IN PROTOCOL EXPLOIT BASED ATTACKS

Table 5.3 further demonstrates the importance of a shaper mechanism.

5.3 Effectiveness Analysis in Protocol Exploit based Attacks

When using ELSP, the viability of most protocol exploit based attacks is severely reduced.

SYN Flood This attack relies on exhausting the table slots available for starting TCP

connections by flooding the victim with spoofed SYN messages. With ELSP, for an

Initiator to start a TCP connection it first need to complete a cryptographic puzzle,

thus fully mitigating this attack vector. As the R1 messages on the Two round with

security association variant are pre-signed to avoid on the fly Diffie-Hellman and

RSA computations, one can argue that an attack of similar type can be exploited

within ELSP, this is, spoofing I1 messages to try and exhaust the available pre-signed

R1 messages.

UDP Fragmentation As ELSP is a network layer DDoS mitigation protocol, it’s possible

to enforce the usage of lower than MTU packet sizes and thus fully mitigating

this attack vector. In fact, in all variants except the two rounds with no security

association variants, all messages in ELSP exchange are smaller than 3400 bits (425

bytes).

As the minimum datagram size required to request fragmentation is 576 bytes[16]

and, messages in ELSP are all lower than this value, it is possible to correctly discard

all ELSP messages with fragmentations tags, as these would surely be malicious.

5.4 Overall effectiveness and conclusion

In the beginning of this chapter, we stated that ELSP would be effective in mitigating

reflection, protocol exploit and flood based DDoS attacks if a correct effectiveness analysis

of both the traffic needed to establish the protocol and all following traffic, where the

authenticity of the sender and the consent of the receiver, are guaranteed.

Let’s begin with the first statement, the effectiveness of the base exchange of ELSP

is correlated with the absence of a viable attack vector through it. And, as discussed on

Chapter 4 and on Sections 5.2 and 5.3 no new vulnerability is introduced with the usage

of ELSP. More explicitly, we discussed a number of possible attacks on the protocol, and

the resilience of ELSP to these attacks would determine its effectiveness. These attacks

and the behaviour of ELSP in their response are:

• Based on legitimate looking initial exchange requests These attacks are based on

sending requests that don’t intend to continue the protocol. They try to exhaust

the resources of the Responder in order for legitimate Initiators to not be able to

communicate with them. In ELSP, this attack would be best used on the two round

with security association variant, where R1 messages are pre-signed, and the goal

51

CHAPTER 5. QUANTITATIVE EFFECTIVENESS ANALYSIS

of the attack would be to exhaust this pre-signed message. The ELSP solution is

similar to the one employed by HIP, when in a situation of exhaustion of pre-signed

messages, the Responder uses the available signed Diffie-Hellman values to more

than one Initiator.

• Targeting an ongoing message exchange In this category of attacks we have the

reflection attacks discussed in Section 5.2, and also attacks such as the I2 flood and

R1 replay discussed in Chapter 4.

For the second statement, we need to discuss if the traffic following the base message

exchange produces vulnerabilities. This would only make sense in the variants two

round with security associations and a connection oriented two round with no security

associations. For the first variant, the usage of a well established protocol like IPSec

dismisses all vulnerabilities within the proposed Attackers model discussed in Chapter

4. For the second variant, we have a scenario where, an Initiator wants to connect to a

Responder via TCP, to accomplish this, first the Initiator needs to complete the protocols

base message exchange, which includes completing a cryptographic puzzle, if in this

scenario the Initiator has malicious intent, he could try to attack via e.g. SYN flood. In

this example however, the effort used by the attacker is much greater than the damage

caused (completing a demanding cryptographic puzzle vs exhausting one table entry).

Another by-product of ELSP is its positive impact on the functioning of a firewall.

Without ELSP usage, a firewall has the strenuous task of checking a large set of rules

to each incoming packet, with ELSP it’s now possible for the firewall to only check if

the message is a ELSP message and if the Nonce-I is known. These two verifications

are enough to achieve comparable firewall effectiveness levels of much more resource

intensive filtering techniques.

52

C
h
a
p
t
e
r

6
Implementation proposal and Proof of

concept

Having analysed the functionality, mechanisms and the effectiveness of the ELSP variants

in the previous chapters, in this chapter, we shall now discuss possible implementation

and adoption barriers as well as introduce a guideline for ELSP implementation.

The first barrier we found is the NAT traversal problem, also present in HIP. In Section

6.1 we discuss the problem on HIP especially as well as present its current solution. Then,

in Section 6.2 we discuss a general purpose approach of this previously discussed solution

and argue other possibilities.

The second implementation barrier we found is in the interaction of ELSP with appli-

cations and is discussed in Section 6.3 alongside the guidelines for ELSP implementation.

Finally in the last section of this chapter we will discuss the key points of the proof of

concept implementation provided in I.

6.1 Problems regarding NAT traversal

In the current Internet, edge, simple pure IP end-to-end paths are rare. For several

reasons, devices modify or extend the forward functionality of the Internet. These are

often called middleboxes1, and they affect Internet communications in many ways, e.g.

they inspect protocol flows and drop, insert or modify packets.

There are many different types of middleboxes, such as network address translators

(NAT) and firewalls. Hosts behind NAT-enabled routers do not have end-to-end connec-

tivity and as such cannot participate in some Internet protocols, e.g. services that require

TCP connections from outside the NAT-ed network.

1Any intermediary device performing functions other than the normal, standard functions of an IP
router on the datagram path between a source host and a destination host[2]

53

CHAPTER 6. IMPLEMENTATION PROPOSAL AND PROOF OF CONCEPT

Because when using a NAT-enabled router, all hosts behind it are all seen publicly

as a single public IP address. Only traffic directed to a non NAT-ed network does not

encounter NAT traversal problems.

6.1.1 Case study: HIP

HIP suffers with two main problems caused by middleboxes. They interfere with the base

exchange and with the transmission of HIP data traffic carried within the Encapsulating

Security Payload (ESP). The protocol specification for HIP requires an additional header

at the network layer, which is necessarily delegated to the next protocol IP header. If a

protocol number is not recognized, the packet is rejected.

An extra complexity may arise with NAT, since NAT, in general may also interfere

with the transport header.

HIP’s traverse success depends on the type of NAT used, if the NAT only interprets

and modifies the IP header and does not inspect the IP payload, the array traverse occur

without problems. However, these basic NATs are rare[37], much more common are the

NATs that inspect and translate transport-layer port numbers, and because the IP payload

used in HIP BEX does not contain port numbers, these NATs cannot relay on them.

In HIP, after BEX is successfully completed, subsequent data exchanges between the

two parties will use ESP. Thus, HIP faces the same challenges that IPSec faces with

regards to NAT traversal.

ESP-Encrypted data traffic makes it so that all upper layer headers are invisible to

a NAT, and thus, changes to the IP header will invalidate upper layer checksums that

cannot be changed, as they are within the ESP-protected payload.

As such, ELSP implemented directly at the IP network would face the same challenges

as HIP regarding NAT traversal.

Currently as a work in progress document, [13] discusses a possible solution. In a HIP

architecture, for two hosts to communicate over NAT environments, they need a reliable

way to exchange information, for this purpose and to cover the general case, i.e. both

hosts are behind NATs, an “HIP Relay Server” was defined. It works by supporting the

relay of HIP control messages over UDP via tunnels. Figure 6.1 further illustrates this

solution.

6.2 Tunnelling over UDP as a possible solution and

alternatives

A tunnelling protocol is based on the principle of encapsulation. It allows a foreign

protocol to run over a network that does not support such protocol, and works by using

the data portion of a packet to carry the unsupported protocol.

54

6.2. TUNNELLING OVER UDP AS A POSSIBLE SOLUTION AND

ALTERNATIVES

Figure 6.1: Example network configuration, where both the Initiator and Responder of a
HIP exchange are behind a NAT.

As such, it’s possible to e.g. send MAC frames or IP packets to different networks

connected over the Internet, by having the entire frame or packet stored in a UDP data

payload. Further examples will be discussed in the following sections.

As we have seen, building ELSP by simply having a ELSP header as a Next Header
protocol in a IP packet is not realistic. Furthermore, such a scenario would require IANA2

approval.

Moreover, ELSP could only be used where it would be generally adopted, as both hosts

need to support ELSP, thus, it would face the same NAT traversal problem HIP faces. As

such, a much more easily approachable and still valid solution would be to encapsulate

ELSP messages via a UDP tunnelling mechanism.

Tunnelling can then also possibly be a solution for the previously discussed NAT

traversal problem, by having ELSP headers encapsulated within a commonly used trans-

port layer protocol that doesn’t have problems with NAT traversal, it’s then possible to

make transparent usage of such protocol.

However, due to the nature of the demultiplexing present in NAT devices, the former

is only valid when only a single host is behind the NAT. This occurs because, for the

encapsulation and de-encapsulation that a transport layer tunnelling protocol requires, a

single port number needs to be reserved and thus only one host behind each NAT.

This is not acceptable, as there are commonly multiple hosts behind each NAT, as

such, using tunnelling for ELSP implementation is only useful for bypassing firewalls

2Internet Assigned Numbers Authority.

55

CHAPTER 6. IMPLEMENTATION PROPOSAL AND PROOF OF CONCEPT

and NATs in the sense that ELSP as Next Header protocol would be immediately discarded

as it wouldn’t follow common firewall rules nor, being in the network layer, have a port

number and thus would be discarded also by the NAT device.

The current solutions for NAT traversal are based on the same defining principle that

a relay server is needed for efficient communication between two hosts that are behind

NAT devices. Examples of protocols implementing this principle are:

Socket Secure(SOCKS) SOCKS is a protocol that exchanges packets between client and

server using a relay proxy, additionally it also provides security features for access-

ing the proxy. Practically, with SOCKS, UDP packets and TCP connections are

forwarded via a proxy server.

Traversal Using Relays around NAT (TURN) TURN [17], unlike SOCKS, is a general

purpose protocol specialized in traversing NAT devices. A complete, general pur-

pose NAT traversal solution, requires a means by which a client can obtain the

address from which it can receive data from any peer in the public Internet. This

requires a server available on the public Internet to relay such information and

TURN is the protocol that allows a client to obtain the required IP addresses and

ports from such relay server.

In a real world scenario, such NAT relay servers should normally be found along the

node paths of the two communicating peers, as such, extra communication hops would

not necessary.

In summary, even if currently, the implementation of ELSP at the network layer as a

Next Header IP protocol were realistic, it would still require a middlebox traversal solution.

Tunnelling protocols do not, per se, solve NAT traversal problems, but are effective in

solving problems resulted from other types of middleboxes such as firewalls.

Thus, it seems that any realistic ELSP implementation needs a tunnelling-based so-

lution. We shall now review some of the most appropriate tunnelling protocols for con-

joined usage with ELSP.

6.2.1 LISP

The Locator/Identifier Separation protocol[4] was designed with the purpose of solving

the problem of suboptimal route scaling present in the single IP address paradigm, and

also the problem of multi-homing.

Its proposed solution is based on an architecture where a host has two distinct IP

addresses: one to indicate routing locators (RLOC) for traffic through the global internet,

and a second one for endpoint identifiers (EID), used to identify network sessions between

devices. LISP relies on tunnelling based on a UDP encapsulation solution.

Figure 6.2 displays a general overview illustration of a LISP deployment environment,

showing the three essential LISP environments: LISP sites (EID namespace), non-LISP

sites (RLOC namespace), and the LISP mapping service (third-party infrastructure).

56

6.2. TUNNELLING OVER UDP AS A POSSIBLE SOLUTION AND

ALTERNATIVES

Figure 6.2: Overview of a LISP deployment.

LISP EID namespace represents the architecture’s host space, these are connected to

the global Internet by endpoint routers (LISP-xTR). IP addresses used within these LISP

sites are not advertised to the non-LISP Internet.

To fully implement LISP, several additional infrastructure components are needed as

part of the deployment. These devices function in the LISP roles of map resolver (MR),

map server (MS), proxy egress tunnel router (PETR), proxy ingress tunnel router (PITR),

and LISP alternative logical topology (ALT).

Although LISP is fully standardized and implemented in Linux and Cisco routers, it’s

not a popular protocol and lacks wide spread adoption.

Also, LISP, as a protocol within the Locator/Identifier separation paradigm is not the

desired choice in this scenario, as end-to-end connectivity is one of the top priorities for

ELSP.

6.2.2 GRE over UDP

This protocol[41] allows for the encapsulation of IP packets within GRE and UDP head-

ers. The Generic Routing Encapsulation is a simple IP over IP tunnelling mechanism

developed by Cisco and later standardized[8].

Encapsulation and De-Encapsulation occurs on the network switch. When a switch

receives a IP packet to be tunnelled, it sends the packet to the tunnel interface, this tunnel

interface then encapsulates the packet in a GRE packet and adds an outer IP header and

a UDP header in case of GRE over UDP. When a switch receives a message from a tunnel

57

CHAPTER 6. IMPLEMENTATION PROPOSAL AND PROOF OF CONCEPT

interface, the outer IP header, the GRE header and the UDP header are removed and the

packet is routed based on its inner IP header.

GRE over UDP is then an extension on the widely established GRE protocol that

allows traffic to go through middleboxes such as NATs.

6.2.3 Virtual Extensible LAN

Data centers are often required to host multiple tenants, each with their own isolated

network. As such, VXLAN emerged from the need to increase the maximum number of

hosts in Virtual LAN (VLAN).

VXLAN is a tunnelling protocol that encapsulates Ethernet Layer 2 network services

in UDP datagrams, where the original L2 frame has a VXLAN header added and is then

placed in a UDP packet. With this MAC-in-UDP encapsulation, VXLAN can tunnel Layer

2 network over Layer 3 networks, effectively allowing normally intra-network traffic

across different networks and increasing the maximum number of hosts in a VLAN from

4094 to over 16 million.

Figure 6.3: VXLAN Packet format.

In a VXLAN architecture, each VXLAN overlay scheme is termed a VXLAN segment,

and only hosts in the same segment can communicate with each other. Each VXLAN seg-

ment is identified by a 24-bit VXLAN Network Identifier (VNI) which provides network

isolation.

Each Ethernet frame is encapsulated according to a set of rules in the VXLAN packet

format as seen in Figure 6.3, encapsulation and de-encapsulation occurs at the Tunnel

Endpoint (VTEP). VXLAN related tunnel and header encapsulation information are

only known to the VTEP. Thus, usage of VXLAN, as seen in the host’s perspective is

transparent.

58

6.2. TUNNELLING OVER UDP AS A POSSIBLE SOLUTION AND

ALTERNATIVES

6.2.4 How Tunnels are integrated in Operating Systems

TUN and TAP are virtual network kernel interfaces, supported entirely in software and

provided by all Unix derived kernel operating systems (Linux, Mac OSX, BSD), and also

supported in windows by the OpenVPN project. TUN simulates and operates with layer

3 packets, while TAP simulates a layer 2 link layer i.e. Ethernet frames.

Packets sent by the operating system to a TUN/TAP interface are delivered to a user-

space process which attaches itself to the interface. User-space programs can also pass

packets into the TUN/TAP interface they are connected to, effectively injecting them

into the operating system’s network stack.3 In this case, the operating system believes it

received the packets from an external source, thus making possible a transparent usage

by applications.

Virtual Private Networks e.g. OpenVPN, OpenSSH, and virtual machine networking

such as Open vSwitch rely on TUN/TAP implementations. As such, there are TUN/TAP or

equivalent drivers for all the major operating systems, its portability however is operating

system specific.

6.2.5 Choosing an adequate approach

Mostly, any standardized tunnelling protocol that would resist passing through the mid-

dleboxes described earlier, would be a possible candidate.

Thus, we give high importance how generalized the adoption is for a given tunnelling

protocol.

As seen earlier LISP, even though it has interesting features, would not be a good fit

to be used with ELSP.

GRE over UDP offers a simple, and achievable approach to an encapsulation mecha-

nism. GRE over UDP, also mentions in [41] considerations to help solve its middlebox

related problems. However, its implementation is not yet standard nor it is widely imple-

mented in all operating systems.

Even though VXLAN is aimed at MAC over UDP encapsulation, its usage with ELSP

is suitable. The general implementation and deployment of VXLAN over the Internet

using open source software such as Open vSwitch (ovs) satisfies ELSP goal of friction-free

protocol adoption. Other favourable VXLAN characteristics are its dominant usage on

the Cloud as well as its implementation in all current operating systems. One setback we

should point about VXLAN is its higher overhead compared to protocols like GRE over

UDP (50 bytes instead of 28 bytes in GRE over UDP).

The chosen solution in this section is agnostic to the discussion present in the next

section. However, we believe that VXLAN would currently be the best decision to be used

with ELSP, and calculations made in the previous chapters took this into account.

3This is accomplished transparently when the routing table of the host sends IP packets with the appro-
priate destinations through that interface

59

CHAPTER 6. IMPLEMENTATION PROPOSAL AND PROOF OF CONCEPT

Such solution would consist of a fixed port VXLAN tunnel in which NAT traversal

would be aided by general purpose, public NAT relay servers found along the communi-

cations path.

6.3 Integrating ELSP with applications

For a transparent integration between applications and ELSP, the interactions made by

the applications need to be oblivious of the presence of ELSP. Otherwise, the applications

would need to be modified, which is not a realistic approach.

For this, information going and outgoing the application needs to be dealt with by

an intermediary in the host. For this purpose, a suitable and easily integrated solution

for most operating systems would be to rely on the usage of an ELSP daemon at user-

level, responsible of making logical decisions on how to behave in different scenarios.

Such daemon, would work in a way that it would intercept and re-route packets sent by

applications to the daemon via routing rules. On the other end, as communications are

based on a tunnelling protocol, incoming traffic is easily distinguishable and also routed

to the ELSP daemon. This is illustrated in Figure 6.4

Figure 6.4: ELSP tunnelling process implementation overview.

The ELSP daemon also handles the protocols inherent logical state machine consisting

of the base exchange, managing previously known ELSP enabled or disabled addresses,

and all other necessary processing needed for having the application act transparently as

if it were communicating directly to the operating system network stack.

Only the hosts IP packet routing needs to be modified by its administrator. In a first

approach, we can assume that all incoming traffic is sent to the ELSP daemon.

All outgoing traffic is sent to the ELSP daemon and depending on it, it is sent via

a tunnel or directly to the network stack for normal routing. All ELSP related traffic is

60

6.3. INTEGRATING ELSP WITH APPLICATIONS

directly sent to the ELSP daemon to be process and, when appropriate, de-encapsulated

and routed to the local application.

If the ELSP daemon receives a packet from the local host (i.e. it has been routed

from the application to the tun/tap interface used in the tunnelling protocol), it is an

application packet and therefore the daemon must realize if the packet is the first in that

applications recent exchanges or it belongs to a known ELSP association.

If the received packet is a first of a given association, the daemon must decide if it

will use ELSP itself or simply send the request traditionally. This settings allows for

flexibility. To complement such flexibility, ELSP should have a probing mechanism that

records different external hosts behaviours when dealing with ELSP. On the contrary, if

the packet is from a known association, the daemon will act on it based on the previously

discussed logical behaviours on Chapters 4 and 5 (i.e. deciding which protocol variant to

use as well as decide the correct response to the given protocol step).

This probing mechanism first detects if the given target host has its ELSP ports open.

If closed, the host is immediately regarded as non ELSP compliant for a set amount of

time. However, if the ELSP ports are open this still does not mean that the host is ELSP

compliant.

If a ELSP I1 message is sent and no response is received within the timeout time frame,

the host is also added to the known non ELSP compliant hosts for a certain amount of

time. When an application tries to communicate with known non ELSP compliant hosts,

the daemon treats the request traditionally.

If the packet reaches the ELSP daemon via the network, the daemon must then also

decide if the packet belongs to a new or to a known ELSP association. ELSP associations

are identified by IP addresses and Nounces and also have corresponding timeout values,

that if exceeded delete the association from the current associations table.

Also to be considered at this stage, is whether the received packet is in fact ELSP

compliant, if it’s not compliant for reasons such as header malformation or wrong message

type in junction with the current state in the ELSP state machine, the packet is simply

discarded. On the other hand, if these parameters are in conformance and correct, the

daemon reacts accordingly to the current stage of the ELSP BEX or the already established

ELSP association.

For a simpler explanation of the rules used, we will separate them into different

scenarios: UDP traffic and TCP traffic. Transport layer protocols other than UDP and

TCP will not be considered at this time.

6.3.1 ELSP daemon execution of ELSP UDP BEX

When receiving a first I1 message or when trying to initiate an association with an I1

message, the ELSP daemon inspects the transport layer protocol and in conjunction with

other administrator chosen security settings, the daemon chooses the ELSP variant to

61

CHAPTER 6. IMPLEMENTATION PROPOSAL AND PROOF OF CONCEPT

continue. Figure 6.5 shows the the ELSP guidelines for when the transport layer protocol

is UDP.

Figure 6.5: ELSP UDP logic flow overview when a new association is locally initiated (left)
and when it is remotely treated (right).

The number of times a message is re-sent after having its timeout triggered and the

amount of time to wait before re-trying should enable the occurrence of lost packets in

the network without damaging the functioning of the ELSP protocol.

The Responders choice on whether or not to challenge the Initiator with a crypto-

graphic puzzle should be made based on factors such as current load or whether or not

it’s RRL flagged for usage as a possible DDoS reflector. These metrics should be made

accessible by the ELSP daemon, either directly or via a specialized API.

6.3.2 ELSP daemon execution of ELSP TCP BEX

If the inspected transport layer protocol is TCP, then the ELSP daemon needs to react in a

different way, always choosing a two round variant, with or without security associations

depending on externally established parameters (by an administrator or any other mean).

Figure 6.6 shows the rules implemented when dealing with a TCP connection. How-

ever, TCP is a complex protocol and shown is only a simplified instance of a real world

scenario.

62

6.4. ELSP PROOF OF CONCEPT IMPLEMENTATION OVERVIEW

Figure 6.6: ELSP TCP logic flow in case of success.

In a simplified manner, the ELSP tunnelling process intercepts and interprets the

usage of the TCP segment before being sent on the Initiators side and when being received

on the Responders side.

Before a connection is deemed established in a ELSP setting, the ELSP base exchange

first needs to complete, as such, a TCP SYN segment triggers the R1 message, the cor-

responding TCP ACK is returned only after the puzzle message is confirmed on the R2

message, and as TCP is a 3 way handshake, the Initiator will send a SYN+ACK to symbol-

ize connection establishment.

On the Initiators side, after the ELSP daemon intercepts a packet and identifies it

using the TCP protocol, it then compares the received packet to the table of current

associations via Nonce and IP pairs and also checks for a timeout. Then the ELSP daemon

takes into account from where was the packet received from, which is an early indication

of the possible TCP message types.

On the Responders side, the process is similar, taking most importantly into account

the state transitions imposed by TCP. As seen in 6.7, to reduce on overhead, SYN and

SYN+ACK messages are “piggybacked” on the ELSP BEX.

6.4 ELSP Proof of concept Implementation Overview

In I we can find our proof of concept implementation of the ELSP daemon written in

python, for the UDP protocol case. It presents outgoing packet capturing, successful

ELSP base exchange and original packet delivery to its destination. It also supports

63

CHAPTER 6. IMPLEMENTATION PROPOSAL AND PROOF OF CONCEPT

Figure 6.7: Temporal flow of a successful TCP connection with ELSP.

multiple associations per host. This proof of concept represents the two round no security

association variant, triggered on connectionless outgoing datagrams (UDP).

Let us now overview the key components in our ELSP daemon proof of concept.

Libnetfilter-queue is a library that provides user-level access to packets filtered by the

kernel packet filter. This library comes as standard for many of the most popular

Linux distributions. NetfilterQueue is the python library that provides the python

bindings for Libnetfilter-queue.

Iptables is a command line utility for implementing Linux kernel firewall rules. With

Iptables and Libnetfilter-queue, it’s possible to add incoming and outgoing firewall

rules to re-route packets into a numbered queue, user-level accessible.

The path a packet follows when an outgoing packet is captured by the ELSP daemon

is then as follows. Having set both incoming and outgoing iptables rules (either for a

certain IP range, or for all incoming and outgoing addresses), a packet is then routed

to the NFQUEUE numbered on the iptables rule. On the ELSP daemon, when a packet

arrives on the queue, a callback function is called that filters the packet as either incoming

or outgoing, and thus the ELSP base exchange occurs. When a packet arrives in the queue,

it is treated in the ELSP daemon until it is either accepted or dropped. While the ELSP

BEX doesn’t complete, needed informations are stored on the pendingAssociations table,

that is responsible for storing the current ELSP state and on the Initiator’s side it also

stores the Initial requests and the received Responders RSA public key materials.

On the last stage of the ELSP BEX, the I2 message carries the original request captured

in the Initiators host, which when the Responder deems this I2 message authentic and

correct, the Responder removes the ELSP related fields on the received IP packet and only

leaves the original request and then accepts this modified packet to be delivered to the

corresponding application.

After accepting this recently modified packet, the responder can now add a new entry

on the associations table with the peer’s IP address and corresponding message Nonce

value. All the packets captured by the ELSP daemon that have its target IP address in the

associations table is immediately accepted.

64

6.5. CONCLUSION

6.5 Conclusion

The definition and implementation of a network level protocol is a challenging task, hav-

ing many, hard to predict, barriers to look out for. ELSP is no different and in this chapter

we discussed a few of the implementation barriers to be expected with its implementation.

In this chapter we have discussed ELSP implementation guidelines and the way it

overcomes its adoption barriers. We also presented practical solutions for these problems

and choose to delve into a solution based on a custom ELSP tunnelling process that creates

a tunnel between two hosts, facilitating ELSP message flows.

We have shown the logical flows for both UDP and TCP communications. However,

we have not discussed communications based on the Two round with Security Association

variant as the differences are based on the ELSP protocol logic and as such was discussed

in the previous chapters. By default, the ELSP variant with security associations is dis-

abled, and its usage can only be enabled by the hosts administrator. Both hosts in a

Security Association based ELSP connection need to have this setting enabled.

65

C
h
a
p
t
e
r

7
Conclusion

7.1 Conclusion

Nowadays, DDoS attacks represent a significant amount of all attacks that take place in

the Internet, which leads to significant economic losses, especially when compared to the

much lower required investments by the attackers.

In this dissertation we have delved into the ever growing problem that is DDoS in the

current state of the Internet. We presented an overview of the state of the art detailing

the different exploits attackers use to inflict loss of availability on its victims.

Also, as a counterpart, we discussed the current efforts in DDoS mitigation technology,

and how they are not enough to combat such an ever evolving problem. Among these,

the most popular are based on server replication and hiring specialized cloud-based

absorption companies to load balance incoming attacks. Both these choices are bound to

be disproportionate in what concerns cost of defence versus the cost of the attack, as new

exploits keep surfacing with increasingly more effective results, and need less and less

resources from the attackers while fortunes are spent by businesses.

Radical changes need to happen if we want DDoS to be a thing of the past. How-

ever, current least effort ideology practises taken by ISP’s mean that all and any changes

proposed are all taken with great friction.

The current solution based on shielding critical DDoS attack targets behind cloud

mega-infrastructures does not solve the crux of the problem, but instead only patches it,

also contributing to a decreasingly end-to-end Internet.

We presented the Host Identity Protocol as a case study, even though it contains

several very effective security and DDoS mitigations mechanisms, it still hasn’t received

wide adoption. The reason for this, is the fact that HIP was designed to try to solve several

orthogonal problems at the same time, e.g. it both tried to solve security, authentication

67

CHAPTER 7. CONCLUSION

problems as well as multi-homing and universal connectivity. This is a too complex

requirements list if taken all together.

As such, in this dissertation we propose ELSP, a network layer protocol inspired from

HIP and designed to address the DDoS issue in an easy to adopt approach without losing

security functionalities and mitigation effectiveness. We studied the factors that are taken

into account to determine the severity of the influx traffic received by the victim, and

provided an analysis based on the theoretical models.

With our analysis we concluded that in a reflection based DDoS attack, using ELSP

and RRL was up to 25 times more effective than current situations where only RRL

mechanisms are used. For the other main DDoS attack vectors discussed in this document,

we have shown that when in usage of ELSP, both UDP Fragmentation and SYN Flood

would be mitigated.

We predict that the DDoS problematic will continue to grow, as the current solution of

mostly increasing resources, is not a sustainable solution. As such, it’s up to the scientific

community to research and test the effectiveness of less demanding solutions.

We hope that the work presented in this document helps to prove that non intrusive

and effective solutions for this important and omnipresent issue are possible.

7.2 Future work

In this section we present possible future work regarding the protocol present in this

document.

Complete implementation of the ELSP logic core In this work, we present a working

proof of concept, that indeed proves possible DDoS mitigation. However, a produc-

tion ready version of ELSP will still need support for more protocols such as TCP

and ICMP, as well as implementing timeout triggers.

Test ELSP with embracing and representative real tests Even though we believe it to

be very challenging, the theoretical support provided by this document should be

further enhanced with real and representative tests on the protocol.

Improve compatibility The provided ELSP proof of concept was implemented with only

Linux systems in mind, and makes use of several libraries not immediately available

by all Linux distributions. As such, it would be beneficial to drop the usage of

Nfqueue’s and other libraries for the dynamic creation of tun interfaces and routing

rules, as well as using raw packet programming.

68

Bibliography

[1] R. Abramov and A. Herzberg. “TCP Ack storm DoS attacks.” In: Computers &
Security 33 (2013), pp. 12–27.

[2] B. Carpenter and S. Brim. Middleboxes: Taxonomy and issues. Tech. rep. 2002.

[3] P. Eronen. “IKEv2 mobility and multihoming protocol (MOBIKE).” In: (2006).

[4] D. Farinacci, V. Fuller, D. Meyer, and D. Lewis. “RFC 6830: The Locator.” In: ID
Separation Protocol (LISP) (2013).

[5] D. Farinacci, D. Lewis, D. Meyer, and V. Fuller. “The locator/ID separation protocol

(LISP).” In: (2013).

[6] M. Geva, A. Herzberg, and Y. Gev. “Bandwidth distributed denial of service: At-

tacks and defenses.” In: IEEE Security & Privacy 12.1 (2014), pp. 54–61.

[7] N. W. Group et al. “Request for Comments (RFC) 4033,“” in: Protocol Modifications
for the DNS Security Extensions,” Mar (2005).

[8] S. Hanks, D. Meyer, D. Farinacci, and P. Traina. “Generic routing encapsulation

(GRE).” In: (2000).

[9] D. Harkins and D. Carrel. The internet key exchange (IKE). Tech. rep. 1998.

[10] K. Igoe, D. McGrew, and M. Salter. “Fundamental elliptic curve cryptography

algorithms.” In: (2011).

[11] S. Kent and K. Seo. “RFC-4301: Security Architecture for the Internet Protocol.

2005.” In: acesso em 15.03 (2016).

[12] A. D. Keromytis, V. Misra, and D. Rubenstein. “SOS: Secure overlay services.” In:

ACM SIGCOMM Computer Communication Review. Vol. 32. 4. ACM. 2002, pp. 61–

72.

[13] M. Komu, A. Keränen, and J. Melen. “Native NAT Traversal Mode for the Host

Identity Protocol.” In: (2017).

[14] L. Krämer, J. Krupp, D. Makita, T. Nishizoe, T. Koide, K. Yoshioka, and C. Rossow.

“Amppot: Monitoring and defending against amplification ddos attacks.” In: In-
ternational Workshop on Recent Advances in Intrusion Detection. Springer. 2015,

pp. 615–636.

69

BIBLIOGRAPHY

[15] T. Levä, M. Komu, A. Keränen, and S. Luukkainen. “Adoption barriers of network

layer protocols: The case of host identity protocol.” In: Computer networks 57.10

(2013), pp. 2218–2232.

[16] M. Luckie and B. Stasiewicz. “Measuring path MTU discovery behaviour.” In: Pro-
ceedings of the 10th ACM SIGCOMM conference on Internet measurement. ACM. 2010,

pp. 102–108.

[17] R Mahy, P Matthews, and J Rosenberg. “Traversal Using Relays around NAT

(TURN): Relay Extensions to Session Traversal Utilities for NAT (STUN) RFC 5766.”

In: Internet Society Request for Comments (2010), p. 6.

[18] G. Maier, A. Feldmann, V. Paxson, and M. Allman. “On dominant characteristics

of residential broadband internet traffic.” In: Proceedings of the 9th ACM SIGCOMM
Conference on Internet Measurement. ACM. 2009, pp. 90–102.

[19] R. P. Martins, J. L. Martins, and H. J. Domingos. “EIP-Preventing DDoD with

Ephemeral IP Identifiers Cryptographically Generated.” In: arXiv preprint arXiv:1612.07065
(2016).

[20] J. Mirkovic and P. Reiher. “A taxonomy of DDoS attack and DDoS defense mecha-

nisms.” In: ACM SIGCOMM Computer Communication Review 34.2 (2004), pp. 39–

53.

[21] P. Mockapetris. “RFC 1035—Domain names—implementation and specification,

November 1987.” In: URL http://www. ietf. org/rfc/rfc1035. txt (2004).

[22] R Moskowitz and R Hummen. “Hip diet exchange (dex).” In: draft-moskowitz-hip-
dex-00 (WiP), IETF (2012).

[23] R. Moskowitz, T. Heer, P. Jokela, and T Henderson. Host identity protocol version 2
(HIPv2). Tech. rep. 2015.

[24] P. Nikander, A. Gurtov, and T. R. Henderson. “Host identity protocol (HIP): Connec-

tivity, mobility, multi-homing, security, and privacy over IPv4 and IPv6 networks.”

In: IEEE Communications Surveys & Tutorials 12.2 (2010), pp. 186–204.

[25] C. E. Perkins. “Mobile ip.” In: IEEE communications Magazine 35.5 (1997), pp. 84–

99.

[26] J. Postel et al. Transmission control protocol RFC 793. 1981.

[27] F. Quarter. “State of the Internet.” In: Security Report, Akamai Technologies https://www.akamai.com/us/en/multimedia/documents/state-
of-the-internet/q4-2017-state-of-the-internet-security-report.pdf. jsp. Accessed Decem-
ber (2017).

[28] E. Rescorla. “Diffie-hellman key agreement method.” In: (1999).

[29] C. Rossow. “Amplification Hell: Revisiting Network Protocols for DDoS Abuse.”

In: NDSS. 2014.

70

BIBLIOGRAPHY

[30] T. Rozekrans, M. Mekking, and J. de Koning. “Defending against DNS reflection

amplification attacks.” In: University of Amsterdam System & Network Engineering
RP1 (2013).

[31] L. Rudman and B Irwin. “Characterization and analysis of NTP amplification based

DDoS attacks.” In: Information Security for South Africa (ISSA), 2015. IEEE. 2015,

pp. 1–5.

[32] Y. B. Saied and A. Olivereau. “HIP Tiny Exchange (TEX): A distributed key ex-

change scheme for HIP-based Internet of Things.” In: Communications and Network-
ing (ComNet), 2012 Third International Conference on. IEEE. 2012, pp. 1–8.

[33] J. H. Saltzer, D. P. Reed, and D. D. Clark. “End-to-end arguments in system design.”

In: ACM Transactions on Computer Systems (TOCS) 2.4 (1984), pp. 277–288.

[34] J. J. Santanna, R. van Rijswijk-Deij, R. Hofstede, A. Sperotto, M. Wierbosch, L. Z.

Granville, and A. Pras. “Booters—An analysis of DDoS-as-a-service attacks.” In:

Integrated Network Management (IM), 2015 IFIP/IEEE International Symposium on.

IEEE. 2015, pp. 243–251.

[35] D. Saucez, L. Iannone, O. Bonaventure, and D. Farinacci. “Designing a deployable

internet: The locator/identifier separation protocol.” In: IEEE Internet Computing
16.6 (2012), pp. 14–21.

[36] R. Sherwood, B. Bhattacharjee, and R. Braud. “Misbehaving TCP receivers can

cause Internet-wide congestion collapse.” In: Proceedings of the 12th ACM conference
on Computer and communications security. ACM. 2005, pp. 383–392.

[37] M. Stiemerling. “NAT and firewall traversal issues of host identity protocol (HIP)

communication.” In: (2008).

[38] SYN Flood Attacks. SYN Flood Attacks — Wikipedia, The Free Encyclopedia. [Online;

accessed 10-June-2017]. 2017. url: https://en.wikipedia.org/wiki/SYN_

flood.

[39] P. Vixie and V. Schryver. “Dns response rate limiting (dns rrl).” In: URL: http://ss.
vix. su/˜ vixie/isc-tn-2012-1. txt (2012).

[40] J. M. Wein, J. J. Kloninger, M. C. Nottingham, D. R. Karger, and P. A. Lisiecki. Con-
tent delivery network (CDN) content server request handling mechanism with metadata
framework support. US Patent 7,240,100. 2007.

[41] L. Yong, E. Crabbe, X. Xu, and T. Herbert. GRE-in-UDP Encapsulation. Tech. rep.

2017.

[42] A. Young. “Connection-less Lightweight X. 500 Directory Access Protocol.” In:

(1995).

71

https://en.wikipedia.org/wiki/SYN_flood
https://en.wikipedia.org/wiki/SYN_flood

A
n
n
e
x

I
Annex 1 - Code listing

Listing I.1: ELSP Daemon python proof of concept implementation for connectionless

scenarios.

1 from n e t f i l t e r q u e u e import Netf i l terQueue

2 from scapy . a l l import *
3 import os

4 from array import array

5 import socket

6 import f c n t l

7 import s t r u c t

8 import random

9 from Crypto . PublicKey import RSA

10 from Crypto . Hash import SHA256

11 from Crypto . Hash import HMAC

12 from Crypto . Random import random as cryptorandom

13 from Crypto . Signature import PKCS1_v1_5

14 from b i t a r r a y import b i t a r r a y

15

16 #The b e l l o w i p t a b l e r u l e s a r e f o r when p r e v i o u s l y known t h e p e e r .
17 # For m u l t i p l e pee r s , use more broad r u l e s .
18 i p t a b l e s o = " i p t a b l e s �− I �OUTPUT�−d�TARGET_IP/32�− j �NFQUEUE�−−queue−num�1 "

19 i p t a b l e s i = " i p t a b l e s �− I �INPUT�−s�TARGET_IP/32�− j �NFQUEUE�−−queue−num�1 "

20

21 pendingAssociat ions = { }

22 a s s o c i a t i o n s = { }

23 nonELSPCompliant = []

24 puzzleK=16

25 hmacKey = b ’ tes tkey1 ’

26 rsaKey = RSA . generate (2048)

27 privKeyBin = rsaKey . exportKey (’DER ’)

28 pubKeyBin = rsaKey . publickey () . exportKey (’DER ’)

73

ANNEX I. ANNEX 1 - CODE LISTING

29 privKeyObj = RSA . importKey (privKeyBin)

30 pubKeyObj = RSA . importKey (pubKeyBin)

31

32 print (" Adding� i p t a b l e � r u l e s � : ")

33 print (i p t a b l e s o)

34 os . system (i p t a b l e s o)

35 print (i p t a b l e s i)

36 os . system (i p t a b l e s i)

37

38

39 def get_ip_address (ifname) :

40 s = socket . socket (socket . AF_INET , socket .SOCK_DGRAM)

41 return socket . inet_ntoa (f c n t l . i o c t l (

42 s . f i l e n o () ,

43 0x8915 ,

44 s t r u c t . pack (’ 256 s ’ , ifname [: 1 5])

45) [2 0 : 2 4])

46

47

48 def udp_send (dst , packet) :

49 osocket . sendto (packet , (dst , 40000))

50

51

52 def ca l lbac k (pkt) :

53 payload= pkt . get_payload ()

54 scpkt = scapy . a l l . IP (payload)

55 i f (scpkt . s r c==THISIP) :

56 outgoing (pkt)

57 e l s e :

58 incoming (pkt)

59

60

61 def incoming (pkt) :

62 payload= pkt . get_payload ()

63 payloadArray = array (’B ’ , payload)

64 data = payloadArray [2 8 :]

65 scpkt = scapy . a l l . IP (payload)

66 d a t a s t r i n g=" " . j o i n (map(chr , data))

67 i f a s s o c i a t i o n s . has_key (scpkt . s r c) or pkt . get_mark ()==123:

68 print (’ Received : � ’ , d a t a s t r i n g)

69 pkt . accept ()

70 e l s e :

71 datarray = d a t a s t r i n g . s p l i t (’ : ’)

72 s tage = datarray [1]

73 nonce = datarray [0]

74 i f (pendingAssociat ions . has_key (nonce)) and (s tage != ’ I1 ’) :

75 print (’ incoming� s tage : � ’ , s tage)

76 i f (getPreviousStage (s tage) == pendingAssociat ions [nonce] . s p l i t (’ : ’) [1]) and \

77 (scpkt . s r c == pendingAssociat ions [nonce] . s p l i t (’ : ’) [0]) :

78 i f s tage == ’R1 ’ :

74

79 handleR1 (scpkt . src , datarray , pkt)

80 e l i f s tage == ’ I2 ’ :

81 handleI2 (scpkt . src , datarray , pkt)

82 e l i f s tage == ’R2 ’ :

83 handleR2 (scpkt . src , datarray , pkt)

84 e l s e :

85 pkt . drop ()

86 e l s e :

87 pkt . drop ()

88 e l i f s tage == ’ I1 ’ :

89 print (’ incoming� s tage : � ’ , s tage)

90 handleI1 (scpkt . src , datarray)

91 e l s e :

92 pkt . drop ()

93

94

95 def outgoing (pkt) :

96 payload= pkt . get_payload ()

97 payloadarray = array (’B ’ , payload)

98 ip_dstA = payloadarray [1 6 : 2 0]

99 ip_dst = s t r (ip_dstA [0]) + " . " + s t r (ip_dstA [1]) + " . " + s t r (ip_dstA [2])

100 + " . " + s t r (ip_dstA [3])

101 i f a s s o c i a t i o n s . has_key (ip_dst) or pkt . get_mark () == 123:

102 print (’ Sent : � ’ , payload)

103 pkt . accept ()

104 e l s e :

105 data = payloadarray [2 8 :]

106 d a t a s t r i n g = " " . j o i n (map(chr , data))

107 datarray = d a t a s t r i n g . s p l i t (’ : ’)

108 nonce = datarray [0]

109

110 i f pendingAssociat ions . has_key (nonce) :

111 i f pendingAssociat ions [nonce] . s p l i t (’ : ’) [0] != ip_dst :

112 pkt . drop ()

113 s tage = datarray [1]

114 i f s tage == ’ I1 ’ :

115 pkt . accept ()

116 e l i f s tage == ’ I2 ’ :

117 pkt . accept ()

118 e l i f s tage == ’R1 ’ :

119 pkt . accept ()

120 e l i f s tage == ’R2 ’ :

121 pkt . accept ()

122 print (’ outgoing� s tage : � ’ , s tage)

123 e l s e :

124 newnonce = random . g e t r a n db i t s (3 2)

125 message = s t r (newnonce)+ ’ : I1 ’

126 udp_send (ip_dst , message)

127 pendingAssociat ions [s t r (newnonce)] = ip_dst+ ’ : I1 : ’+d a t a s t r i n g

128

75

ANNEX I. ANNEX 1 - CODE LISTING

129

130 def handleI1 (ip_dst , datarray) :

131 # a v a i l a b i l i t y f u n c t i o n would be h e r e d e c i d i n g t y p e o f r e s p o n s e
132

133 hmac = HMAC. new(hmacKey)

134 r n d f i l e = cryptorandom . Random . new ()

135 i=r n d f i l e . read (256)

136 i=bin2hex (i)

137

138 nonce = datarray [0]

139 hmac . update (b ’ ’+ s t r (nonce)+ s t r (ip_dst)+ s t r (i)+ s t r (puzzleK))

140 hmacdigest = hmac . hexdigest ()

141 hmacdigest = bin2hex (hmacdigest)

142

143 toHash = s t r (nonce)+ s t r (hmacdigest)

144 hash = SHA256 . new ()

145 hash . update (toHash)

146

147 s igner = PKCS1_v1_5 . new(privKeyObj)

148 signed = s igner . s ign (hash)

149 signed = bin2hex (signed)

150

151 message = s t r (nonce)+ ’ : R1 : ’+ s t r (bin2hex (pubKeyBin)) + " : "+ i + ’ : ’+ s t r (puzzleK)+ ’ : ’

152 + s t r (hmacdigest)+ ’ : ’+ s t r (signed)

153 pendingAssociat ions [nonce]= s t r (ip_dst)+ ’ : R1 ’

154 udp_send (ip_dst , message)

155

156

157 def handleR1 (ip_dst , datarray , pkt) :

158 nonce = datarray [0]

159 outerPubKeyBin = datarray [2]

160 i=datarray [3]

161 i=hex2bin (i)

162 k=int (datarray [4])

163 hmac=datarray [5]

164 s ignature=datarray [6]

165

166 toVer i fy = s t r (nonce)+ s t r (hmac)

167 hash = SHA256 . new ()

168 hash . update (toVer i fy)

169

170 outerPubKeyObj = RSA . importKey (hex2bin (outerPubKeyBin))

171 v e r i f i e r = PKCS1_v1_5 . new(outerPubKeyObj)

172 v e r i f i e d = v e r i f i e r . v e r i f y (hash , hex2bin (s ignature))

173

174 i f v e r i f i e d == False :

175 print (’Wrong� s ignature � rece ived ’)

176 pkt . drop ()

177 r n d f i l e = cryptorandom . Random . new ()

178 contador = 0

76

179 print (’ S t a r t i n g � to� so lve �puzzle ’)

180 while True :

181 contador += 1

182 j = r n d f i l e . read (256)

183 s o l u t i o n=tryPuzz leSo lut ion (i , ip_dst , nonce , k , j)

184 i f s o l u t i o n != None :

185 break
186

187 print (’ Puzzled� solved , � t r i e s �needed : � ’ , contador)

188 print (’ Solut ion : � ’ , s o l u t i o n)

189 request = pendingAssociat ions [nonce] . s p l i t (’ : ’) [2]

190 message = s t r (nonce)+ ’ : I2 : ’+ s t r (bin2hex (i)) + ’ : ’+ s t r (k)+ ’ : ’+ s t r (s o l u t i o n)+ ’ : ’

191 + s t r (hmac)+ ’ : ’+ s t r (request)

192 pendingAssociat ions [nonce] = s t r (ip_dst)+ ’ : I2 : ’+request+ ’ : ’+outerPubKeyBin

193 udp_send (ip_dst , message)

194

195

196 def handleI2 (ip_dst , datarray , pkt) :

197 nonce = datarray [0]

198 i = datarray [2]

199 k = int (datarray [3])

200 s o l u t i o n = datarray [4]

201 s o l u t i o n = hex2bin (s o l u t i o n)

202 hmacreceived = datarray [5]

203 request = datarray [6]

204

205 hmac = HMAC. new(hmacKey)

206 hmac . update (b ’ ’+ s t r (nonce)+ s t r (ip_dst)+ s t r (i)+ s t r (puzzleK))

207 hmacdigest = hmac . hexdigest ()

208 hmacdigest = bin2hex (hmacdigest)

209 i = hex2bin (i)

210

211 i f hmacdigest != hmacreceived :

212 print (’hmac� errado ’)

213 pkt . drop ()

214 t r i e d s o l u t i o n = tryPuzz leSo lut ion (i , THISIP , nonce , k , s o l u t i o n)

215 i f bin2hex (s o l u t i o n) != t r i e d s o l u t i o n :

216 print (’ puzzle� errado ’)

217 pkt . drop ()

218 e l s e :

219 print (’ puzzle� c e r t o ’)

220 a s s o c i a t i o n s [ip_dst] = nonce

221

222 # change c u r r e n t p a c k e t t o have o r i g i n a l r e q u e s t t o avo id anothe r p a c k e t exchange
223 temppacket = scapy . a l l . IP (pkt . get_payload ())

224

225 before len = len (temppacket [scapy . a l l .UDP] . payload)

226 temppacket [Raw] . load = request

227 a f t e r l e n = len (temppacket [scapy . a l l .UDP] . payload)

228 d i f = a f t e r l e n −before len

77

ANNEX I. ANNEX 1 - CODE LISTING

229

230 temppacket [scapy . a l l .UDP] . len = temppacket [scapy . a l l .UDP] . len+d i f

231 temppacket [scapy . a l l . IP] . len = temppacket [scapy . a l l . IP] . len+d i f

232

233 del temppacket [scapy . a l l .UDP] . chksum

234 del temppacket . chksum

235 temppacket . show2 ()

236 pkt . set_payload (s t r (temppacket))

237 pkt . set_mark (123)

238

239 toHash = s t r (nonce)

240 hash = SHA256 . new ()

241 hash . update (toHash)

242

243 s igner = PKCS1_v1_5 . new(privKeyObj)

244 signed = s igner . s ign (hash)

245 signed = bin2hex (signed)

246

247 message = s t r (nonce)+ ’ : R2 : ’+signed

248

249 udp_send (ip_dst , message)

250

251 pkt . accept ()

252

253

254 def handleR2 (ip_dst , datarray , pkt) :

255 nonce = datarray [0]

256 s ignature = datarray [2]

257

258 toVer i fy = s t r (nonce)

259 hash = SHA256 . new ()

260 hash . update (toVer i fy)

261 outerPubKeyObj = RSA . importKey (hex2bin (pendingAssociat ions [nonce] . s p l i t (’ : ’) [3]))

262 v e r i f i e r = PKCS1_v1_5 . new(outerPubKeyObj)

263 v e r i f i e d = v e r i f i e r . v e r i f y (hash , hex2bin (s ignature))

264

265 i f v e r i f i e d == False :

266 print (’ Received� i n v a l i d � s ignature ’)

267 pkt . drop ()

268 e l s e :

269 print (’ Assoc ia t ion � f u l l y �complete ! ! ! ’)

270 a s s o c i a t i o n s [ip_dst]= nonce

271

272

273 def t ryPuzz leSolut ion (i , ip_dst , nonce , k , j) :

274 counter = 0

275

276 sha = SHA256 . new(i + j + ip_dst + ip_dst + nonce) . d i g e s t ()

277 bl = t o b i t s (sha)

278 lenght = len (bl)

78

279

280 for x in range (lenght − k , lenght) :

281 i f bl [x] == 0 :

282 counter += 1

283 i f counter == k :

284 s o l u t i o n = j

285 return bin2hex (s o l u t i o n)

286 e l s e :

287 return None

288

289

290 def t o b i t s (s) :

291 ba = b i t a r r a y ()

292 ba . frombytes (s)

293 return ba . t o l i s t ()

294

295

296 def getPreviousStage (s tage) :

297 i f s tage== ’R1 ’ :

298 return ’ I1 ’

299 e l i f s tage == ’ I2 ’ :

300 return ’R1 ’

301 e l i f s tage == ’R2 ’ :

302 return ’ I2 ’

303

304

305 def hex2bin (hex) :

306 return b i n a s c i i . unhexl i fy (hex)

307

308

309 def bin2hex (bin) :

310 return b i n a s c i i . h e x l i f y (bin)

311

312

313 THISIP = get_ip_address (INTERFACE_NAME)

314 nfqueue = Netf i l terQueue ()

315 nfqueue . bind (1 , c a l lb ack)

316 osocket=socket . socket (socket . AF_INET , socket .SOCK_DGRAM)

317

318 try :

319 nfqueue . run ()

320

321 except KeyboardInterrupt :

322 print (’ ’)

323 nfqueue . unbind ()

324 os . system (’ i p t a b l e s �−F ’)

79

	List of Figures
	List of Tables
	Introduction
	Context
	Motivation
	Contributions
	Dissertation outline

	State of the Art
	DDoS general notions
	Attack Vectors
	Reflection attacks
	Protocol exploit based attacks
	Brute force attacks

	The impact of the Internet of Things
	DDoS Defense Mechanisms
	Server replication
	Absorption
	DNS RRL
	IPSec
	HIP
	EIP

	Attack vector trends and comparison
	Summary

	End-to-end Network Layer Security with HIP
	HIP Description
	HIP goals and solutions
	How HIP works: Base Exchange
	Puzzle mechanism

	HIP Attacks
	HIP Adoption barriers
	HIP variants
	HIP Diet Exchange (DEX)
	Lightweight HIP (LHIP)
	HIP Tiny Exchange (TEX)

	Conclusion

	End to end Light Security Protocol
	Overview
	Connectionless One round Variant
	Two round with no Security Association Variants
	Two round with Security Association Variant
	Preliminary Security Analysis
	Attacks on the Connectionless One round variant
	Attacks on the two round no session security variants

	Conclusion

	Quantitative Effectiveness Analysis
	ELSP Variants Analysis
	Connectionless One Round
	Two Rounds with no Security Association
	Two Rounds with Security Association Variant

	Effectiveness Analysis in a Reflection Attack scenario
	Attack bandwidth example instantiation

	Effectiveness Analysis in Protocol Exploit based Attacks
	Overall effectiveness and conclusion

	Implementation proposal and Proof of concept
	Problems regarding NAT traversal
	Case study: HIP

	Tunnelling over UDP as a possible solution and alternatives
	LISP
	GRE over UDP
	Virtual Extensible LAN
	How Tunnels are integrated in Operating Systems
	Choosing an adequate approach

	Integrating ELSP with applications
	ELSP daemon execution of ELSP UDP BEX
	ELSP daemon execution of ELSP TCP BEX

	ELSP Proof of concept Implementation Overview
	Conclusion

	Conclusion
	Conclusion
	Future work

	Bibliography
	Annex 1 - Code listing

