13 research outputs found

    Integrated Circuits/Microchips

    Get PDF
    With the world marching inexorably towards the fourth industrial revolution (IR 4.0), one is now embracing lives with artificial intelligence (AI), the Internet of Things (IoTs), virtual reality (VR) and 5G technology. Wherever we are, whatever we are doing, there are electronic devices that we rely indispensably on. While some of these technologies, such as those fueled with smart, autonomous systems, are seemingly precocious; others have existed for quite a while. These devices range from simple home appliances, entertainment media to complex aeronautical instruments. Clearly, the daily lives of mankind today are interwoven seamlessly with electronics. Surprising as it may seem, the cornerstone that empowers these electronic devices is nothing more than a mere diminutive semiconductor cube block. More colloquially referred to as the Very-Large-Scale-Integration (VLSI) chip or an integrated circuit (IC) chip or simply a microchip, this semiconductor cube block, approximately the size of a grain of rice, is composed of millions to billions of transistors. The transistors are interconnected in such a way that allows electrical circuitries for certain applications to be realized. Some of these chips serve specific permanent applications and are known as Application Specific Integrated Circuits (ASICS); while, others are computing processors which could be programmed for diverse applications. The computer processor, together with its supporting hardware and user interfaces, is known as an embedded system.In this book, a variety of topics related to microchips are extensively illustrated. The topics encompass the physics of the microchip device, as well as its design methods and applications

    Caractérisation, mécanismes et applications mémoire des transistors avancés sur SOI

    Get PDF
    Ce travail présente les principaux résultats obtenus avec une large gamme de dispositifs SOI avancés, candidats très prometteurs pour les futurs générations de transistors MOSFETs. Leurs propriétés électriques ont été analysées par des mesures systématiques, agrémentées par des modèles analytiques et/ou des simulations numériques. Nous avons également proposé une utilisation originale de dispositifs FinFETs fabriqués sur ONO enterré en fonctionnalisant le ONO à des fins d'application mémoire non volatile, volatile et unifiées. Après une introduction sur l'état de l'art des dispositifs avancés en technologie SOI, le deuxième chapitre a été consacré à la caractérisation détaillée des propriétés de dispositifs SOI planaires ultra- mince (épaisseur en dessous de 7 nm) et multi-grille. Nous avons montré l excellent contrôle électrostatique par la grille dans les transistors très courts ainsi que des effets intéressants de transport et de couplage. Une approche similaire a été utilisée pour étudier et comparer des dispositifs FinFETs à double grille et triple grille. Nous avons démontré que la configuration FinFET double grille améliore le couplage avec la grille arrière, phénomène important pour des applications à tension de seuil multiple. Nous avons proposé des modèles originaux expliquant l'effet de couplage 3D et le comportement de la mobilité dans des TFTs nanocristallin ZnO. Nos résultats ont souligné les similitudes et les différences entre les transistors SOI et à base de ZnO. Des mesures à basse température et de nouvelles méthodes d'extraction ont permis d'établir que la mobilité dans le ZnO et la qualité de l'interface ZnO/SiO2 sont remarquables. Cet état de fait ouvre des perspectives intéressantes pour l'utilisation de ce type de matériaux aux applications innovantes de l'électronique flexible. Dans le troisième chapitre, nous nous sommes concentrés sur le comportement de la mobilité dans les dispositifs SOI planaires et FinFET en effectuant des mesures de magnétorésistance à basse température. Nous avons mis en évidence expérimentalement un comportement de mobilité inhabituel (multi-branche) obtenu lorsque deux ou plusieurs canaux coexistent et interagissent. Un autre résultat original concerne l existence et l interprétation de la magnétorésistance géométrique dans les FinFETs.L'utilisation de FinFETs fabriqués sur ONO enterré en tant que mémoire non volatile flash a été proposée dans le quatrième chapitre. Deux mécanismes d'injection de charge ont été étudiés systématiquement. En plus de la démonstration de la pertinence de ce type mémoire en termes de performances (rétention, marge de détection), nous avons mis en évidence un comportement inattendu : l amélioration de la marge de détection pour des dispositifs à canaux courts. Notre concept innovant de FinFlash sur ONO enterré présente plusieurs avantages: (i) opération double-bit et (ii) séparation de la grille de stockage et de l'interface de lecture augmentant la fiabilité et autorisant une miniaturisation plus poussée que des Finflash conventionnels avec grille ONO.Dans le dernier chapitre, nous avons exploré le concept de mémoire unifiée, en combinant les opérations non volatiles et 1T-DRAM par le biais des FinFETs sur ONO enterré. Comme escompté pour les mémoires dites unifiées, le courant transitoire en mode 1T-DRAM dépend des charges non volatiles stockées dans le ONO. D'autre part, nous avons montré que les charges piégées dans le nitrure ne sont pas perturbées par les opérations de programmation et lecture de la 1T-DRAM. Les performances de cette mémoire unifiée multi-bits sont prometteuses et pourront être considérablement améliorées par optimisation technologique de ce dispositif.The evolution of electronic systems and portable devices requires innovation in both circuit design and transistor architecture. During last fifty years, the main issue in MOS transistor has been the gate length scaling down. The reduction of power consumption together with the co-integration of different functions is a more recent avenue. In bulk-Si planar technology, device shrinking seems to arrive at the end due to the multiplication of parasitic effects. The relay has been taken by novel SOI-like device architectures. In this perspective, this manuscript presents the main achievements of our work obtained with a variety of advanced fully depleted SOI MOSFETs, which are very promising candidates for next generation MOSFETs. Their electrical properties have been analyzed by systematic measurements and clarified by analytical models and/or simulations. Ultimately, appropriate applications have been proposed based on their beneficial features.In the first chapter, we briefly addressed the short-channel effects and the diverse technologies to improve device performance. The second chapter was dedicated to the detailed characterization and interesting properties of SOI devices. We have demonstrated excellent gate control and high performance in ultra-thin FD SOI MOSFET. The SCEs are efficiently suppressed by decreasing the body thickness below 7 nm. We have investigated the transport and electrostatic properties as well as the coupling mechanisms. The strong impact of body thickness and temperature range has been outlined. A similar approach was used to investigate and compare vertical double-gate and triple-gate FinFETs. DG FinFETs show enhanced coupling to back-gate bias which is applicable and suitable for dynamic threshold voltage tuning. We have proposed original models explaining the 3D coupling effect in FinFETs and the mobility behavior in ZnO TFTs. Our results pointed on the similarities and differences in SOI and ZnO transistors. According to our low-temperature measurements and new promoted extraction methods, the mobility in ZnO and the quality of ZnO/SiO2 interface are respectable, enabling innovating applications in flexible, transparent and power electronics. In the third chapter, we focused on the mobility behavior in planar SOI and FinFET devices by performing low-temperature magnetoresistance measurements. Unusual mobility curve with multi-branch aspect were obtained when two or more channels coexist and interplay. Another original result in the existence of the geometrical magnetoresistance in triple-gate and even double-gate FinFETs.The operation of a flash memory in FinFETs with ONO buried layer was explored in the forth chapter. Two charge injection mechanisms were proposed and systematically investigated. We have discussed the role of device geometry and temperature. Our novel ONO FinFlash concept has several distinct advantages: double-bit operation, separation of storage medium and reading interface, reliability and scalability. In the final chapter, we explored the avenue of unified memory, by combining nonvolatile and 1T-DRAM operations in a single transistor. The key result is that the transient current, relevant for 1T-DRAM operation, depends on the nonvolatile charges stored in the nitride buried layer. On the other hand, the trapped charges are not disturbed by the 1T-DRAM operation. Our experimental data offers the proof-of-concept for such advanced memory. The performance of the unified/multi-bit memory is already decent but will greatly improve in the coming years by processing dedicated devices.SAVOIE-SCD - Bib.électronique (730659901) / SudocGRENOBLE1/INP-Bib.électronique (384210012) / SudocGRENOBLE2/3-Bib.électronique (384219901) / SudocSudocFranceF

    Field-Effect Sensors

    Get PDF
    This Special Issue focuses on fundamental and applied research on different types of field-effect chemical sensors and biosensors. The topics include device concepts for field-effect sensors, their modeling, and theory as well as fabrication strategies. Field-effect sensors for biomedical analysis, food control, environmental monitoring, and the recording of neuronal and cell-based signals are discussed, among other factors

    Low Power Memory/Memristor Devices and Systems

    Get PDF
    This reprint focusses on achieving low-power computation using memristive devices. The topic was designed as a convenient reference point: it contains a mix of techniques starting from the fundamental manufacturing of memristive devices all the way to applications such as physically unclonable functions, and also covers perspectives on, e.g., in-memory computing, which is inextricably linked with emerging memory devices such as memristors. Finally, the reprint contains a few articles representing how other communities (from typical CMOS design to photonics) are fighting on their own fronts in the quest towards low-power computation, as a comparison with the memristor literature. We hope that readers will enjoy discovering the articles within

    Solid State Circuits Technologies

    Get PDF
    The evolution of solid-state circuit technology has a long history within a relatively short period of time. This technology has lead to the modern information society that connects us and tools, a large market, and many types of products and applications. The solid-state circuit technology continuously evolves via breakthroughs and improvements every year. This book is devoted to review and present novel approaches for some of the main issues involved in this exciting and vigorous technology. The book is composed of 22 chapters, written by authors coming from 30 different institutions located in 12 different countries throughout the Americas, Asia and Europe. Thus, reflecting the wide international contribution to the book. The broad range of subjects presented in the book offers a general overview of the main issues in modern solid-state circuit technology. Furthermore, the book offers an in depth analysis on specific subjects for specialists. We believe the book is of great scientific and educational value for many readers. I am profoundly indebted to the support provided by all of those involved in the work. First and foremost I would like to acknowledge and thank the authors who worked hard and generously agreed to share their results and knowledge. Second I would like to express my gratitude to the Intech team that invited me to edit the book and give me their full support and a fruitful experience while working together to combine this book

    Réalisation de transistors à haute mobilité électronique à enrichissement à base d’hétérostructure AlGaN/GaN pour les applications en électronique de puissance

    Get PDF
    Les semiconducteurs à large bande interdite III-N sont des matériaux exceptionnels de par leurs propriétés physico-chimiques. Ils constituent une solution pour répondre aux défis mondiaux actuels en permettant d’améliorer considérablement l’efficacité des appareils électroniques même à haute température et de poursuivre la miniaturisation des circuits. Le nitrure de gallium (GaN), matériau phare de ces nitrures de la colonne III, est utilisé dans le cadre de ces travaux pour élaborer des transistors à haute mobilité électronique. Ces derniers ont démontré des performances nettement supérieures à leurs congénères à petits gap ou SiC et présentent un comportement électrique normalement conducteur sans contrôle de la grille. Pour être parfaitement adaptés pour remplir ces fonctions en électronique de puissance, il est nécessaire d’utiliser en partie des transistors normalement bloqués permettant de simplifier l’architecture de certains circuits ainsi que pour des raisons de sécurité. L’objectif principal de ce projet de thèse consiste en la conception et à la réalisation technologique de nouveaux transistors à haute mobilité électronique à grille isolée MOSHEMTs Normally-OFF à base d’hétérostructure AlGaN/GaN pour des applications en électronique de puissance. Ces dispositifs ont été intégrés pour réaliser des fonctions de l’électronique comme des convertisseurs DC/DC avec des circuits BOOST. Pour se faire, un effort particulier a été entrepris pour développer une nouvelle technique douce et sélective quant à la gravure de la couche de cap de nitrure de silicium sans endommager la surface de la couche barrière AlGaN. Ce procédé constitue une solution originale à l’un des verrous majeurs liés à la fabrication des transistors MOSHEMTs à base de GaN

    Etude des transistors MOSFET à barrière Schottky, à canal Silicium et Germanium sur couches minces

    Get PDF
    Until the early 2000’s Dennard’s scaling rules at the transistor level have enabled to achieve a performance gain while still preserving the basic structure of the MOSFET building block from one generation to the next. However, this conservative approach has already reached its limits as shown by the introduction of channel stressors for the sub-130 nm technological nodes, and later high-k/metal gate stacks for the sub-65 nm nodes. Despite the introduction of high-k gate dielectrics, constraints in terms of gate leakage and reliability have been delaying the diminution of the equivalent oxide thickness (EOT). Concurrently, lowering the supply voltage (VDD) has become a critical necessity to reduce both the active and passive power density in integrated circuits. Hence the challenge: how to keep decreasing both gate length and supply voltage faster than the EOT without losing in terms of ON-state/OFF-state performance trade-off? Several solutions can be proposed aiming at solving this conundrum for nanoscale transistors, with architectures in rupture with the plain old Silicon-based MOSFET with doped Source and Drain invented in 1960. One approach consists in achieving an ION increase while keeping IOFF (and Vth) mostly unchanged. Specifically, two options are considered in detail in this manuscript through a review of their respective historical motivations, state-of-the-art results as well as remaining fundamental (and technological) challenges: i/ the reduction of the extrinsic parasitic resistance through the implementation of metallic Source and Drain (Schottky Barrier FET architecture); ii/ the reduction of the intrinsic channel resistance through the implementation of Germanium-based mobility boosters (Ge CMOS, compressively-strained SiGe channels, n-sSi/p-sSiGe Dual Channel co-integration). In particular, we study the case of thin films on insulator (SOI, SiGeOI, GeOI substrates), a choice justified by: the preservation of the electrostatic integrity for the targeted sub-22nm nodes; the limitation of ambipolar leakage in SBFETs; the limitation of junction leakage in (low-bandgap) Ge-based FETs. Finally, we show why, and under which conditions the association of the SBFET architecture with a Ge-based channel could be potentially advantageous with respect to conventional Si CMOS.Jusqu’au début des années 2000, les règles de scaling de Dennard ont permis de réaliser des gains en performance tout en conservant la structure de la brique de base transistor d’une génération technologique à la suivante. Cependant, cette approche conservatrice a d’ores et déjà atteint ses limites, comme en témoigne l’introduction de la contrainte mécanique pour les générations sub-130nm, et les empilements de grille métal/high-k pour les nœuds sub-65nm. Malgré l’introduction de diélectriques à forte permittivité, des limites en termes de courants de fuite de grille et de fiabilité ont ralenti la diminution de l’épaisseur équivalente d’oxyde (EOT). De façon concommitante, la diminution de la tension d’alimentation (VDD) est devenue une priorité afin de réduire la densité de puissance dissipée dans les circuits intégrés. D’où le défi actuel: comment continuer de réduire à la fois la longueur de grille et la tension d’alimentation plus rapidement que l’EOT sans pour autant dégrader le rapport de performances aux états passant et bloqué (ON et OFF) ? Diverses solutions peuvent être proposées, passant par des architectures s’éloignant du MOSFET conventionnel à canal Si avec source et drain dopés tel que défini en 1960. Une approche consiste en réaliser une augmentation du courant passant (ION) tout en laissant le courant à l’état bloqué (IOFF) et la tension de seuil (Vth) inchangés. Concrètement, deux options sont considérées en détail dans ce manuscrit à travers une revue de leurs motivations historiques respectives, les résultats de l’état de l’art ainsi que les obstacles (fondamentaux et technologiques) à leur mise en œuvre : i/ la réduction de la résistance parasite extrinsèque par l’introduction de source et drain métalliques (architecture transistor à barrière Schottky) ; ii/ la réduction de la résistance de canal intrinsèque par l’introduction de matériaux à haute mobilité à base de Germanium (CMOS Ge, canaux SiGe en contrainte compressive, co-intégration Dual Channel n-sSi/p-sSiGe). En particulier, nous étudions le cas de couches minces sur isolant (substrats SOI, SiGeOI, GeOI), un choix motivé par: la préservation de l’intégrité électrostatique pour les nœuds technologiques sub-22nm; la limitation du courant de fuite ambipolaire dans les SBFETs; la limitation du courant de fuites de jonctions dans les MOSFETs à base de Ge (qui est un matériau à faible bandgap). Enfin, nous montrons pourquoi et dans quelles conditions l’association d’une architecture SBFET et d’un canal à base de Germanium peut être avantageuse vis-à-vis du CMOS Silicium conventionnel

    CBM Progress Report 2013

    Get PDF

    Ferroelectrics

    Get PDF
    Ferroelectric materials exhibit a wide spectrum of functional properties, including switchable polarization, piezoelectricity, high non-linear optical activity, pyroelectricity, and non-linear dielectric behaviour. These properties are crucial for application in electronic devices such as sensors, microactuators, infrared detectors, microwave phase filters and, non-volatile memories. This unique combination of properties of ferroelectric materials has attracted researchers and engineers for a long time. This book reviews a wide range of diverse topics related to the phenomenon of ferroelectricity (in the bulk as well as thin film form) and provides a forum for scientists, engineers, and students working in this field. The present book containing 24 chapters is a result of contributions of experts from international scientific community working in different aspects of ferroelectricity related to experimental and theoretical work aimed at the understanding of ferroelectricity and their utilization in devices. It provides an up-to-date insightful coverage to the recent advances in the synthesis, characterization, functional properties and potential device applications in specialized areas
    corecore