534 research outputs found

    Towards Optimal Copyright Protection Using Neural Networks Based Digital Image Watermarking

    Get PDF
    In the field of digital watermarking, digital image watermarking for copyright protection has attracted a lot of attention in the research community. Digital watermarking contains varies techniques for protecting the digital content. Among all those techniques,Discrete Wavelet Transform (DWT) provides higher image imperceptibility and robustness. Over the years, researchers have been designing watermarking techniques with robustness in mind, in order for the watermark to be resistant against any image processing techniques. Furthermore, the requirements of a good watermarking technique includes a tradeoff between robustness, image quality (imperceptibility) and capacity. In this paper, we have done an extensive literature review for the existing DWT techniques and those combined with other techniques such as Neural Networks. In addition to that, we have discuss the contribution of Neural Networks in copyright protection. Finally we reached our goal in which we identified the research gaps existed in the current watermarking schemes. So that, it will be easily to obtain an optimal techniques to make the watermark object robust to attacks while maintaining the imperceptibility to enhance the copyright protection

    Robust Distortion-free Watermarks for Language Models

    Full text link
    We propose a methodology for planting watermarks in text from an autoregressive language model that are robust to perturbations without changing the distribution over text up to a certain maximum generation budget. We generate watermarked text by mapping a sequence of random numbers -- which we compute using a randomized watermark key -- to a sample from the language model. To detect watermarked text, any party who knows the key can align the text to the random number sequence. We instantiate our watermark methodology with two sampling schemes: inverse transform sampling and exponential minimum sampling. We apply these watermarks to three language models -- OPT-1.3B, LLaMA-7B and Alpaca-7B -- to experimentally validate their statistical power and robustness to various paraphrasing attacks. Notably, for both the OPT-1.3B and LLaMA-7B models, we find we can reliably detect watermarked text (p≤0.01p \leq 0.01) from 3535 tokens even after corrupting between 4040-5050\% of the tokens via random edits (i.e., substitutions, insertions or deletions). For the Alpaca-7B model, we conduct a case study on the feasibility of watermarking responses to typical user instructions. Due to the lower entropy of the responses, detection is more difficult: around 25%25\% of the responses -- whose median length is around 100100 tokens -- are detectable with p≤0.01p \leq 0.01, and the watermark is also less robust to certain automated paraphrasing attacks we implement

    Improved anti-noise attack ability of image encryption algorithm using de-noising technique

    Get PDF
    Information security is considered as one of the important issues in the information age used to preserve the secret information through out transmissions in practical applications. With regard to image encryption, a lot of schemes related to information security were applied. Such approaches might be categorized into 2 domains; domain frequency and domain spatial. The presented work develops an encryption technique on the basis of conventional watermarking system with the use of singular value decomposition (SVD), discrete cosine transform (DCT), and discrete wavelet transform (DWT) together, the suggested DWT-DCT-SVD method has high robustness in comparison to the other conventional approaches and enhanced approach for having high robustness against Gaussian noise attacks with using denoising approach according to DWT. MSE in addition to the peak signal-to-noise ratio (PSNR) specified the performance measures which are the base of this study’s results, as they are showing that the algorithm utilized in this study has high robustness against Gaussian noise attacks

    Euclidean Distance Distortion Based Robust and Blind Mesh Watermarking

    Get PDF
    The three-dimensional (3D) polygonal meshes are recently widely used in several domains, which necessitate the realistic visualization of the objects. Moreover, there is an urgent need to protect the 3D data properties for preventing unauthorized reproduction. The 3D digital watermarking technology is one of the best solutions to protect data from piracy during transmission through the internet. The current work proposed a novel robust watermarking scheme of polygonal meshes for copyright protection purposes. The proposed algorithm is based on the characteristics of the mesh geometry to embed a sequence of data bits into the object by slightly adjusting the vertex positions. Furthermore, the proposed method used a blind detection scheme. The watermarked model is perceptually indistinguishable from the original one and the embedded watermark is invariant to affine transformation. Through simulations, the quality of the watermarked object as well as the inserted watermark robustness against various types of attacks were tested and evaluated to prove the validity and the efficiency of our algorithm

    ICA for watermarking digital images

    Get PDF
    A domain independent ICA-based approach to watermarking is presented. This approach can be used on images, music or video to embed either a robust or fragile watermark. In the case of robust watermarking, the method shows high information rate and robustness against malicious and non-malicious attacks, while keeping a low induced distortion. The fragile watermarking scheme, on the other hand, shows high sensitivity to tampering attempts while keeping the requirement for high information rate and low distortion. The improved performance is achieved by employing a set of statistically independent sources (the independent components) as the feature space and principled statistical decoding methods. The performance of the suggested method is compared to other state of the art approaches. The paper focuses on applying the method to digitized images although the same approach can be used for other media, such as music or video

    A robust audio watermarking scheme based on reduced singular value decomposition and distortion removal

    Get PDF
    This paper presents a blind audio watermarking algorithm based on the reduced singular value decomposition(RSVD). A new observation on one of the resulting unitary matrices is uncovered. The proposed scheme manipulates coefficients based on this observation in order to embed watermark bits. To preserve audio fidelity a threshold- based distortion control technique is applied and this is further supplemented by distortion suppression utilizing psychoacoustic principles. Test results on real music signals show that this watermarking scheme is in the range of imperceptibility for human hearing, is accurate and also robust against MP3 compression at various bit rates as well as other selected attacks. The data payload is comparatively high compared to existing audio watermarking schemes

    On robustness against JPEG2000: a performance evaluation of wavelet-based watermarking techniques

    Get PDF
    With the emergence of new scalable coding standards, such as JPEG2000, multimedia is stored as scalable coded bit streams that may be adapted to cater network, device and usage preferences in multimedia usage chains providing universal multimedia access. These adaptations include quality, resolution, frame rate and region of interest scalability and achieved by discarding least significant parts of the bit stream according to the scalability criteria. Such content adaptations may also affect the content protection data, such as watermarks, hidden in the original content. Many wavelet-based robust watermarking techniques robust to such JPEG2000 compression attacks are proposed in the literature. In this paper, we have categorized and evaluated the robustness of such wavelet-based image watermarking techniques against JPEG2000 compression, in terms of algorithmic choices, wavelet kernel selection, subband selection, or watermark selection using a new modular framework. As most of the algorithms use a different set of parametric combination, this analysis is particularly useful to understand the effect of various parameters on the robustness under a common platform and helpful to design any such new algorithm. The analysis also considers the imperceptibility performance of the watermark embedding, as robustness and imperceptibility are two main watermarking properties, complementary to each other

    Wavelet-Based Audio Embedding & Audio/Video Compression

    Get PDF
    With the decline in military spending, the United States relies heavily on state side support. Communications has never been more important. High-quality audio and video capabilities are a must. Watermarking, traditionally used for copyright protection, is used in a new and exciting way. An efficient wavelet-based watermarking technique embeds audio information into a video signal. Several highly effective compression techniques are applied to compress the resulting audio/video signal in an embedded fashion. This wavelet-based compression algorithm incorporates bit plane coding, first difference coding, and Huffman coding. To demonstrate the potential of this audio embedding audio/video compression system, an audio signal is embedded into a video signal and the combined signal is compressed. Results show that overall compression rates of 15:1 can be achieved. The video signal is reconstructed with a median PSNR of nearly 33dB. Finally, the audio signal is extracted with out error
    • …
    corecore