29,218 research outputs found

    Estimating hyperparameters and instrument parameters in regularized inversion. Illustration for SPIRE/Herschel map making

    Full text link
    We describe regularized methods for image reconstruction and focus on the question of hyperparameter and instrument parameter estimation, i.e. unsupervised and myopic problems. We developed a Bayesian framework that is based on the \post density for all unknown quantities, given the observations. This density is explored by a Markov Chain Monte-Carlo sampling technique based on a Gibbs loop and including a Metropolis-Hastings step. The numerical evaluation relies on the SPIRE instrument of the Herschel observatory. Using simulated and real observations, we show that the hyperparameters and instrument parameters are correctly estimated, which opens up many perspectives for imaging in astrophysics

    Semi-blind Sparse Image Reconstruction with Application to MRFM

    Get PDF
    We propose a solution to the image deconvolution problem where the convolution kernel or point spread function (PSF) is assumed to be only partially known. Small perturbations generated from the model are exploited to produce a few principal components explaining the PSF uncertainty in a high dimensional space. Unlike recent developments on blind deconvolution of natural images, we assume the image is sparse in the pixel basis, a natural sparsity arising in magnetic resonance force microscopy (MRFM). Our approach adopts a Bayesian Metropolis-within-Gibbs sampling framework. The performance of our Bayesian semi-blind algorithm for sparse images is superior to previously proposed semi-blind algorithms such as the alternating minimization (AM) algorithm and blind algorithms developed for natural images. We illustrate our myopic algorithm on real MRFM tobacco virus data.Comment: This work has been submitted to the IEEE Trans. Image Processing for possible publicatio

    Variational semi-blind sparse deconvolution with orthogonal kernel bases and its application to MRFM

    Get PDF
    We present a variational Bayesian method of joint image reconstruction and point spread function (PSF) estimation when the PSF of the imaging device is only partially known. To solve this semi-blind deconvolution problem, prior distributions are specified for the PSF and the 3D image. Joint image reconstruction and PSF estimation is then performed within a Bayesian framework, using a variational algorithm to estimate the posterior distribution. The image prior distribution imposes an explicit atomic measure that corresponds to image sparsity. Importantly, the proposed Bayesian deconvolution algorithm does not require hand tuning. Simulation results clearly demonstrate that the semi-blind deconvolution algorithm compares favorably with previous Markov chain Monte Carlo (MCMC) version of myopic sparse reconstruction. It significantly outperforms mismatched non-blind algorithms that rely on the assumption of the perfect knowledge of the PSF. The algorithm is illustrated on real data from magnetic resonance force microscopy (MRFM)

    Variational semi-blind sparse deconvolution with orthogonal kernel bases and its application to MRFM

    Get PDF
    We present a variational Bayesian method of joint image reconstruction and point spread function (PSF) estimation when the PSF of the imaging device is only partially known. To solve this semi-blind deconvolution problem, prior distributions are specified for the PSF and the 3D image. Joint image reconstruction and PSF estimation is then performed within a Bayesian framework, using a variational algorithm to estimate the posterior distribution. The image prior distribution imposes an explicit atomic measure that corresponds to image sparsity. Importantly, the proposed Bayesian deconvolution algorithm does not require hand tuning. Simulation results clearly demonstrate that the semi-blind deconvolution algorithm compares favorably with previous Markov chain Monte Carlo (MCMC) version of myopic sparse reconstruction. It significantly outperforms mismatched non-blind algorithms that rely on the assumption of the perfect knowledge of the PSF. The algorithm is illustrated on real data from magnetic resonance force microscopy (MRFM)

    Density mapping with weak lensing and phase information

    Get PDF
    The available probes of the large scale structure in the Universe have distinct properties: galaxies are a high resolution but biased tracer of mass, while weak lensing avoids such biases but, due to low signal-to-noise ratio, has poor resolution. We investigate reconstructing the projected density field using the complementarity of weak lensing and galaxy positions. We propose a maximum-probability reconstruction of the 2D lensing convergence with a likelihood term for shear data and a prior on the Fourier phases constructed from the galaxy positions. By considering only the phases of the galaxy field, we evade the unknown value of the bias and allow it to be calibrated by lensing on a mode-by-mode basis. By applying this method to a realistic simulated galaxy shear catalogue, we find that a weak prior on phases provides a good quality reconstruction down to scales beyond l=1000, far into the noise domain of the lensing signal alone.Comment: 11 pages, 9 figures, published in MNRA

    Reducing "Structure From Motion": a General Framework for Dynamic Vision - Part 2: Experimental Evaluation

    Get PDF
    A number of methods have been proposed in the literature for estimating scene-structure and ego-motion from a sequence of images using dynamical models. Although all methods may be derived from a "natural" dynamical model within a unified framework, from an engineering perspective there are a number of trade-offs that lead to different strategies depending upon the specific applications and the goals one is targeting. Which one is the winning strategy? In this paper we analyze the properties of the dynamical models that originate from each strategy under a variety of experimental conditions. For each model we assess the accuracy of the estimates, their robustness to measurement noise, sensitivity to initial conditions and visual angle, effects of the bas-relief ambiguity and occlusions, dependence upon the number of image measurements and their sampling rate

    Identifiability of generalised Randles circuit models

    Full text link
    The Randles circuit (including a parallel resistor and capacitor in series with another resistor) and its generalised topology have widely been employed in electrochemical energy storage systems such as batteries, fuel cells and supercapacitors, also in biomedical engineering, for example, to model the electrode-tissue interface in electroencephalography and baroreceptor dynamics. This paper studies identifiability of generalised Randles circuit models, that is, whether the model parameters can be estimated uniquely from the input-output data. It is shown that generalised Randles circuit models are structurally locally identifiable. The condition that makes the model structure globally identifiable is then discussed. Finally, the estimation accuracy is evaluated through extensive simulations

    Reducing “Structure from Motion”: a general framework for dynamic vision. 2. Implementation and experimental assessment

    Get PDF
    For pt.1 see ibid., p.933-42 (1998). A number of methods have been proposed in the literature for estimating scene-structure and ego-motion from a sequence of images using dynamical models. Despite the fact that all methods may be derived from a “natural” dynamical model within a unified framework, from an engineering perspective there are a number of trade-offs that lead to different strategies depending upon the applications and the goals one is targeting. We want to characterize and compare the properties of each model such that the engineer may choose the one best suited to the specific application. We analyze the properties of filters derived from each dynamical model under a variety of experimental conditions, assess the accuracy of the estimates, their robustness to measurement noise, sensitivity to initial conditions and visual angle, effects of the bas-relief ambiguity and occlusions, dependence upon the number of image measurements and their sampling rate

    On the Anatomy of MCMC-Based Maximum Likelihood Learning of Energy-Based Models

    Full text link
    This study investigates the effects of Markov chain Monte Carlo (MCMC) sampling in unsupervised Maximum Likelihood (ML) learning. Our attention is restricted to the family of unnormalized probability densities for which the negative log density (or energy function) is a ConvNet. We find that many of the techniques used to stabilize training in previous studies are not necessary. ML learning with a ConvNet potential requires only a few hyper-parameters and no regularization. Using this minimal framework, we identify a variety of ML learning outcomes that depend solely on the implementation of MCMC sampling. On one hand, we show that it is easy to train an energy-based model which can sample realistic images with short-run Langevin. ML can be effective and stable even when MCMC samples have much higher energy than true steady-state samples throughout training. Based on this insight, we introduce an ML method with purely noise-initialized MCMC, high-quality short-run synthesis, and the same budget as ML with informative MCMC initialization such as CD or PCD. Unlike previous models, our energy model can obtain realistic high-diversity samples from a noise signal after training. On the other hand, ConvNet potentials learned with non-convergent MCMC do not have a valid steady-state and cannot be considered approximate unnormalized densities of the training data because long-run MCMC samples differ greatly from observed images. We show that it is much harder to train a ConvNet potential to learn a steady-state over realistic images. To our knowledge, long-run MCMC samples of all previous models lose the realism of short-run samples. With correct tuning of Langevin noise, we train the first ConvNet potentials for which long-run and steady-state MCMC samples are realistic images.Comment: Code available at: https://github.com/point0bar1/ebm-anatom
    corecore