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ABSTRACT
The available probes of the large-scale structure in the Universe have distinct properties:
galaxies are a high resolution but biased tracer of mass, while weak lensing avoids such
biases but, due to low signal-to-noise ratio, has poor resolution. We investigate reconstructing
the projected density field using the complementarity of weak lensing and galaxy positions.
We propose a maximum-probability reconstruction of the 2D lensing convergence with a
likelihood term for shear data and a prior on the Fourier phases constructed from the galaxy
positions. By considering only the phases of the galaxy field, we evade the unknown value of
the bias and allow it to be calibrated by lensing on a mode-by-mode basis. By applying this
method to a realistic simulated galaxy shear catalogue, we find that a weak prior on phases
provides a good quality reconstruction down to scales beyond l = 1000, far into the noise
domain of the lensing signal alone.

Key words: gravitational lensing: weak – methods: data analysis – large-scale structure of
Universe.

1 IN T RO D U C T I O N

Weak lensing is a promising cosmological probe, allowing the mass
distribution in the Universe to be investigated without assumptions
about the dynamics of the baryonic component.

In the pioneering work of Kaiser & Squires (1993), it has been
shown that weak lensing can be used to map the distribution of dark
matter in galaxy clusters. Following this, several methods for mak-
ing so-called mass maps have been developed, with much attention
given to reconstruction methods such as maximum-likelihood (ML)
approaches (Bartelmann et al. 1996). However, there is a substantial
level of noise in the resulting maps, due to the effect of galaxies hav-
ing intrinsic ellipticities in addition to the sought-after gravitational
shear. Therefore, it was immediately realized that the reconstruc-
tion methods require smoothing or regularization (Squires & Kaiser
1996). A significant proposal in this regard is the maximum-entropy
(MaxEnt) method known from image reconstruction studies (Bridle

� E-mail: rafal.szepietowski@manchester.ac.uk

et al. 1998; Seitz, Schneider & Bartelmann 1998; Marshall et al.
2002).

These methods work well when applied to clusters, but the lens-
ing ellipticity measurements of galaxies are still sufficiently noisy
that reconstruction of the low-contrast large-scale structure is not
possible with significant signal-to-noise (S/N). In this study, we
develop a methodology attempting to make maps of the projected
density with higher S/N, by utilizing a maximum-probability (MP)
reconstruction with a physically motivated prior probability term:
we will examine the usefulness of using Fourier phase information
from the distribution of galaxies in the lensing map area. This is
related to other recent methods that use galaxy positions to improve
density reconstruction (Simon 2012) or combine weak lensing and
galaxy positions to measure bias (Amara et al. 2012); in our case,
we do not need to assume an amplitude for the bias.

The paper is organized as follows. In Section 2, we review
the relevant theoretical background, including weak gravitational
lensing quantities and the Fourier description of fields. We also
emphasize the importance of Fourier phases in mapping cosmo-
logical fields. In Section 3, we introduce the MP method. We
define the likelihood and the prior term for our reconstruction
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method, describe the phase prior in detail, and outline the prac-
tical implementation of our method. Section 4 describes the sim-
ulated data set used in the analysis and the results of applying the
reconstruction method. Finally, we discuss the implications of our
work in Section 5.

2 T H E O RY

2.1 Lensing quantities

Here we briefly discuss the necessary lensing theory; full details
can be found in e.g. Bartelmann & Schneider (2001) and Munshi
et al. (2008).

The flat perturbed Friedman–Robertson–Walker metric of the
standard cosmological model is

ds2 = (1 + 2�/c2)dt2 − a2(t)(1 − 2�/c2)
[
dr2 + r2d�2

]
, (1)

where � is the usual Newtonian gravitational potential and a is the
scale factor. The potential is related to the matter density field by
Poisson’s equation

∇2
com� = 4πG�̄δa2 = 3

2
H 2

0 �m
δ

a
, (2)

where δ = �/�̄ − 1 describes the perturbation around the mean
density of matter in the Universe.

In this space–time a lensing potential can be defined as

φ(θ, r) ≡ 2

c2

∫ r

0
dr ′ r − r ′

rr ′ �(θ , r ′), (3)

where r is the comoving distance of the source and the integration
is along the line of sight, and θ is the position on the sky. This can
be understood as a two-dimensional projection of the gravitational
potential. The way in which an image of a source is distorted when
passing through a gravitational field depends on a combination of
the second-order derivatives of the lensing potential

κ = 1

2

(
∂2

1 + ∂2
2

)
φ, (4)

γ1 = 1

2

(
∂2

1 − ∂2
2

)
φ, (5)

γ2 = ∂1∂2φ, (6)

where κ is called the convergence, γ 1 and γ 2 are the two components
of the shear γ , and ∂1, ∂2 denote angular derivatives in the x and y
directions, respectively. These quantities are found in the Jacobian
matrix

A =
(

1 − κ − γ1 −γ2

−γ2 1 − κ + γ1

)
, (7)

which maps the source plane coordinates β i to the image plane
coordinates θ j

Aij = ∂βi

∂θj

. (8)

The convergence κ describes the projection of the overdensity field
on the sky

κ(θ, r) = 3H 2
0 �m

2c2

∫ r

0
dr ′ r ′(r − r ′)

r

δ(θ , r ′)
a(r ′)

, (9)

and this projected density is the quantity which we seek to recon-
struct as a map.

2.2 Fourier description of fields

In our reconstruction method, we will use a prior term which in-
volves the phase of lensing fields, so here we define the required
quantities for this term. A real space field such as κ can be expanded
in a Fourier superposition of plane waves:

κ(θ ) =
∑

κ̃(l) exp(il · θ ). (10)

The Fourier transform κ̃ of such a field is complex and is described
by an amplitude |κ̃(l)| and phase αl, where

κ̃(l) = |κ̃(l)| exp(iαl). (11)

A Gaussian random field will have phases distributed
independently1 and uniformly on the interval [−π, π). The sta-
tistical properties of the field are then fully specified by its power
spectrum P (l) = 〈|κ̃(l)|2〉l , where 〈〉l denotes an average over all
modes at a wavenumber l.

However, the phase information contained in the κ field is inter-
esting for two reasons:

(i) Morphology: in cases where one is interested in a specific
realization of a density field, the phases describe features of its spa-
tial pattern (Chiang 2001). For instance, one might be examining
a region of the Universe where one wants to know the spatial dis-
tribution of matter, to understand the relationship between density
and astrophysical properties (e.g. star formation).

(ii) Non-Gaussianity: due to primordial physics (e.g. Komatsu
et al. 2009) and non-linear evolution on scales probed by weak
lensing, the κ field will have non-zero higher order statistics beyond
the power spectrum. This higher order information is encoded in
a combination of phase and amplitude of the Fourier transformed
field. If we can obtain a full estimate of phase and amplitude, we
will be able to extract information about the growth of structure and
the early Universe (Watts & Coles 2003; Chiang, Naselsky & Coles
2004).

3 M E T H O D

3.1 Maximum-probability reconstruction

Our reconstruction method seeks to find a hypothesis field which
has the maximum probability of accounting for the observed data.
We suppose that we have a data vector d, which contains estimates
of shear from observed galaxy ellipticities. We parametrize the hy-
pothesis field by the values p of projected density in a grid of pixels.
The best-fitting set of parameters is then found by maximizing the
posterior probability P ( p|d, M) according to Bayes’ theorem

P ( p|d, M) = L(d| p, M)P ( p|M)

P (d|M)
∝ L(d| p, M)P ( p|M), (12)

where L(d| p, M) is the likelihood and P ( p|M) is the prior prob-
ability. The evidence P (d|M) is useful to compare various models
M, whereas for a particular model M we can simply deal with the
proportional term on the right-hand side. If we have no knowledge
of how the parameters of the model should be distributed, we may
assume that all values are equally likely a priori, i.e. the prior dis-
tribution is flat. Then, P ( p|d, M) ∝ L(d| p, M) and the posterior
distribution is found by maximizing the likelihood. This is the basis
of ML methods.

1 There is a caveat to this statement. For a real valued field κ , its Fourier
modes have to satisfy the Hermitian relation κ̃∗(l) = κ̃(−l).
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However, the ML method (Bartelmann et al. 1996) will typically
overfit the data by fitting the noise. Due to finite sampling of the
shear field at galaxy positions, and further contamination of the sig-
nal by galaxy ellipticity noise, the reconstruction methods require
smoothing or regularization (Squires & Kaiser 1996). We can con-
sider two classes of prior which try to achieve this: informative and
uninformative priors, differing in the assumptions which they make
about the signal. If the purpose of introducing extra information
is to regularize rather than inform an inference we can speak of a
weakly informative prior.

Over the past two decades, different forms of regularization have
been considered. An important example is the MaxEnt regulariza-
tion known from image reconstruction (Bridle et al. 1998; Seitz et al.
1998; Marshall et al. 2002) which, while being an uninformative
prior, benefitted from inferring information about the correlations
in the data (Marshall et al. 2002). In addition, methods have been
studied with informative priors; these make some assumptions about
the nature of the signal, e.g. Wiener filtering (Hu & Keeton 2002;
Simon, Taylor & Hartlap 2009; Simon et al. 2012). Here we will
consider a MP approach with a weakly informative prior.

3.2 Likelihood

We would like to find a best-fitting hypothesized model for the
convergence, κ , given a set of shear observations γ d. In the flat sky
approximation, we can relate the convergence and shear fields most
easily in Fourier space (Kaiser & Squires 1993):

γ̃1(l) = l2
1 − l2

2

l2
1 + l2

2

κ̃(l), (13)

γ̃2(l) = 2l1l2

l2
1 + l2

2

κ̃(l). (14)

As the field of observations will be limited, a simple application
of these transformations introduces edge effects, which we will
mitigate by making reconstructions over larger patches than the
data (see Section 3.4).

The data vector γ d consists of estimates of the shear components
γ 1 and γ 2 in each pixel of a 2D grid. These are obtained by averaging
over galaxy ellipticities in each pixel, so that the error on the mean
shear in a pixel is

σγ ≈ σε/
√

n, (15)

where σ ε is the intrinsic scatter of shear estimators for galaxies, and
n the mean number of galaxies in a pixel. This error is approximately
Gaussian by the central limit theorem.

If our hypothesized convergence field has corresponding shear
pixel values γ κ

i , and the data shear pixel values are γ d
i , then the

likelihood for our hypothesized reconstruction is

L(γ d|κ) ∝
∏
i,j

exp

(
− (γ κ

i − γ d
i )T C−1

ij (γ κ
j − γ d

j )

2

)
, (16)

where C−1 is the noise covariance matrix. Assuming the noise in
each pixel is uncorrelated makes the covariance matrix diagonal
and simplifies the likelihood to

L(γ d|κ) ∝
∏

i

exp

(
− (γ κ

i − γ d
i )2

2σ 2
γ

)
= exp

(
−χ2

γ

2

)
. (17)

This assumption is trivially true for shape noise, which dominates
on all scales considered. However, intrinsic correlations between

galaxy shapes will introduce non-zero off-diagonal terms in the co-
variance matrix (Catelan, Kamionkowski & Blandford 2001; Hirata
& Seljak 2004).

We turn now to consider the prior term for our MP reconstruction.

3.3 Phase prior

A prior term that accounts for the claim that galaxies trace mass,
even if very poorly, can be achieved by constructing a prediction of
the lensing convergence based on galaxy count overdensities

δg(θ , z) = nz(θ)

n̄z

− 1, (18)

where nz(θ ) is the number density of galaxies at position θ and
n̄z is the mean number density of galaxies at redshift z. We could
suppose that the overall matter overdensity δ � b−1δg, where b is
the galaxy bias. Then, we can project δ according to equation (9) to
find the count-estimated convergence κg. For a sample divided into
Nz redshift bins the projection becomes

κg(θ , z) = 3H0�m

2c2

Nz∑
i=1

�ri

r(zi)[r(z) − r(zi)]

r(z)

δ(θ , zi)

a(zi)
, (19)

where �ri = r(zi) − r(zi − 1). It would then be possible to require
that the hypothesized final convergence field is close to this κg,
within some tolerance.

However, there is a problem with this approach: the bias b is
unknown, and the claim of linear bias introduces another assumption
into the reconstruction.

An easy way of avoiding this problem is to consider only the
information about the phases of the Fourier modes of κg, neglecting
their amplitudes. Fig. 1 shows the relation between the phases of the
true convergence κ and count convergence κg found in DES mock
catalogue v4.02 (see Section 4.1).

As expected for a close-to-Gaussian field, the histograms of
phases for both κ and κg fields are close to uniform in the range
[−π, π). However, the overlaid histogram of the phase difference
�α = ακ − αgal between the true κ and κg is visibly spiked around
�α = 0, indicating a strong correlation between the phases of the
two fields. We now discuss how this phase difference is calculated
in detail.

3.3.1 Phase difference distribution

As the phases are distributed on the interval [−π,π) their differ-
ences will have values on the interval (−2π, 2π). However, since
the phases are a cyclic quantity, absolute phase difference |�α| > π

will correspond to a phase difference smaller than π. This is easily
accounted for: if �α is less than −π, we add 2π to �α; if �α is
greater than or equal to π, then we subtract 2π from �α.

We can construct the correlation matrix for the phase difference
between true convergence phase and galaxy-count derived conver-
gence phase. In our simulations (Section 4.1), this is constructed
from 36 different 2◦ × 2◦ areas including κ and κg information,
as for each area only one galaxy distribution realization is avail-
able. By the ergodic principle, this should give an estimate of how
much the phases usually differ between the density and galaxy
fields in an area. We find that the correlation matrix constructed
for 2 arcmin × 2 arcmin pixels is strongly diagonal with the median
absolute value of the correlation coefficient �0.06.

The histograms of �α for the whole field (Fig. 1) as well as
for individual wavenumbers (Fig. 2) are well fitted by a wrapped
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2194 R. M. Szepietowski et al.

Figure 1. Distribution of convergence Fourier phases and their difference.
Histogram of the phases α of the true convergence field κ (solid line)
and those obtained from the galaxy distribution κg (dotted line) for all
wavenumbers. The distributions are close to uniform, as expected for fields
which have a distribution close to that of a Gaussian random field. Overlaid
(peaked curves), the histogram of the phase difference �α between the true
convergence κ and the approximation κg (solid line), for all wavenumbers.
The distribution is well approximated by a wrapped Cauchy distribution
(dashed line). We see a strong correlation between the phases of the two
fields.

Cauchy probability distribution function:

Pprior(κ|αgal) ∝
∏

i

1 − ρ2

1 + ρ2 − 2ρ cos(�αi)
. (20)

We note that the distribution is symmetric around zero. The param-
eter describing the width of the distribution is ρ = e−σα , where σα

is the half-width of an unwrapped Cauchy distribution. For small
values, σα can be estimated using the median absolute deviation
(MAD)

σα ≈ 1.1 · MAD�α. (21)

We provide further details on this distribution in Appendix A. How-
ever, we want to use the phase information as a weakly informative
prior, so we are free to relax this width; we will allow more tolerance
in phase difference between our reconstructed κ and the κg field by
choosing σα = 2.2 · MAD�α . Using σα = 1.1 · MAD�α would take
us in the direction of a joint reconstruction of the density field from
shear and galaxy position data, which is also of interest; some of
our runs in Section 4.2 explore this possibility.

It is to be expected that σα will be a function of l, with the phase
differences between galaxies and dark matter for large-scale modes
being more constrained than for small-scale ones. We indeed find
this to be the case in our simulations, as shown in Fig. 3. The phase
difference distribution for each l also follows a wrapped Cauchy
distribution. This distribution is naturally generated when the dif-
ference between κ and κg comes from a white noise contribution,
such as shot-noise, and possibly a further contribution from the
stochasticity of the bias relation (Dekel & Lahav 1999; Manera &
Gaztañaga 2011). Hence, the low-l modes have smaller phase dif-

Figure 2. The histogram of the phase difference �α between the true
convergence κ and the approximation κg (solid lines) at l = 1200 (top) and
l = 2250 (bottom). The distributions are well approximated by a wrapped
Cauchy distribution (dashed lines).

ferences, as this white noise offset is smaller as a proportion of the
signal on these scales.

In the mock catalogue, the galaxy biasing is roughly linear and
deterministic. It could be that the wrapped Cauchy pdf of the phase
differences is typical only for this type of bias, but might be quite
different for more complex scenarios. Hence, further studies of how
the phase difference distribution arises are important. However,
as we permit very large errors on the phase difference, moderate

MNRAS 440, 2191–2200 (2014)
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Figure 3. MAD of the phase difference �α between the true convergence κ

and the approximation obtained from the galaxy distribution κg as a function
of l. The solid line shows the mean MAD(�α) of the phase difference
obtained in shells of radius l from the origin with error bars showing the
standard deviation, across the 36 simulated fields.

Figure 4. Distribution of galaxies with redshift. True redshift (black solid)
and photometric redshifts obtained using the ANNZ code (red dotted).

deviations from our simulations’ bias model should not change the
conclusions of the paper.

In reality, the estimation of δg will suffer from systematics origi-
nating, for example, from an inhomogeneous galaxy survey. These
could be mitigated by methods used for the matter power spec-
trum estimation, where pixels are reweighted to account for the
mask (Feldman, Kaiser & Peacock 1994; Percival, Verde & Pea-
cock 2004). A further systematic will arise from using photomet-
ric redshifts to estimate distances (Fig. 4). However, this will be

mitigated by the fact the convergence is projected; nevertheless,
careful tests of this systematic will be necessary.

3.4 Practical implementation

We are now ready to discuss our approach to finding a reconstructed
convergence field. Rather than estimating the posterior distribution
of our convergence hypotheses, we will seek a maximum a posteriori
(MAP) solution. The reconstruction is performed by seeking a κ̃ trial

that maximizes the posterior probability. The posterior pdf will
be generally strongly peaked so it is convenient to work with its
logarithm

− ln P (κ̃|γ d, αgal) ∝ − ln L − ln P prior
α , (22)

which varies more slowly with the change in κ̃ .
As the shape of the posterior pdf is generally unknown, we use a

simple heuristic optimizer. We use the idea of simulated anneal-
ing (Kirkpatrick, Gelatt & Vecchi 1983), but replace the usual
Metropolis–Hastings sampler (Metropolis et al. 1953; Hastings
1970) with a Multi Try Metropolis (Liu, Liang & Wong 2000) one.
In each step t a set of trial convergence fields {κ̃ trial

i } is generated
from the current field

κ̃ trial
i = κ̃current + δκ̃i , (23)

where components of each δκ̃i are drawn from normal distribution
N (0, σt

√
P(l)), where the scaling P(l) is proportional to the ex-

pected signal (see below). A proposal field κ̃proposal is then chosen.
To limit the random walk behaviour, the field with the highest prob-
ability different from the current one is chosen. Then, a reference set
{κ ref

j } that includes κ̃current is formed from that field. The proposal
field is then accepted with the probability

P
(
κ̃proposal| {κ ref

j

}) = 1 for
∑

j P
(

κ̃ref
j

)
∑

i P (κ̃ trial
i ) ≥ 1, (24)

P
(
κ̃proposal| {κ ref

j

}) = Tt

∑
j P

(
κ̃ref
j

)
∑

i P (κ̃ trial
i ) otherwise. (25)

In addition to a cooling schedule for the acceptance rate

Tt = T0

log10(t + 10)
, (26)

we have added a similar schedule to decrease the step size in the
sampling algorithm

σt = σ0

log10(t2 + 10)
, (27)

to allow for more refined changes as the optimizer gets closer to the
solution we seek (Elson et al. 2007; Kotze 2009). The solution with
the highest probability κbest is stored and used as the output of the
optimizer.

Operations on the fields, such as calculating the shears from the
convergence, are performed in Fourier space; hence, edge effects
such as periodic boundaries of the reconstruction will be present.
This would mean that the largest scales would not be recovered
accurately. This is partially solved by introducing a larger recon-
struction grid as suggested in Bridle et al. (1998) and here we use a
grid four times bigger than the reconstruction area.

To aid the optimization process, we choose a starting position
for our hypothesis which is expected to be close to the MAP solu-
tion. The initial guess for the reconstruction, κ̃ initial, is a field fully
consistent with the prior; that is, we choose phases from the galaxy
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convergence map. We also apply a power spectrum filter to the κ̃g

field

κ̃ initial(l) = κ̃g(l)

√
P (l)

Pg(l)
, (28)

which gives the κg field the required amplitude of power spectrum
and suppresses the high-l noise. As this is only a starting guess, any
P(l) with a very approximately correct shape and amplitude should
suffice. Here, we choose the true average κ power spectrum from
simulations. By choosing this starting point, the optimizer evolves
the reconstruction from the prior to the posterior under the influence
of lensing.

However, to check for possible local maxima in the posterior, we
also try running the code from a noisy position such as κg without
applying any filters.

4 A PPLICATION TO SIMULATED DATA

4.1 Simulated galaxy catalogue

For this study, we have used the mock galaxy catalogues created for
the Dark Energy Survey based on the algorithm Adding Density De-
termined GAlaxies to Lightcone Simulations (ADDGALS; Wechsler
et al., in preparation; Busha et al., in preparation). This algorithm at-
taches synthetic galaxies, including multiband photometry, to dark
matter particles in a lightcone output from a dark matter N-body
simulation and is designed to match the luminosities, colours and
clustering properties of galaxies. The catalogue used here was based
on a single ‘Carmen’ simulation run as part of the LasDamas of sim-
ulations (McBride et al., in preparation).2 This simulation modelled
a flat � cold dark matter universe with �m = 0.25 and σ 8 = 0.8
in a 1 Gpc h−1 box with 11203 particles. A 220 deg2 light cone ex-
tending out to z = 1.33 was created by pasting together 40 snapshot
outputs.

The galaxy distribution for this mock catalogue was created by
first using an input luminosity function to generate a list of galaxies,
and then adding the galaxies to the dark matter simulation using an
empirically measured relationship between a galaxy’s magnitude,
redshift and local dark matter density, P(Mr, z|δdm) – the proba-
bility that a galaxy with magnitude Mr and redshift z resides in
a region with local density δdm. This relation was tuned using a
high-resolution simulation combined with the SubHalo Abundance
Matching technique that has been shown to reproduce the observed
galaxy two-point function to high accuracy (Kravtsov et al. 2004;
Conroy, Wechsler & Kravtsov 2006; Reddick et al. 2013).

For the galaxy assignment algorithm, we choose a luminosity
function that is similar to the SDSS luminosity function as mea-
sured in Blanton et al. (2003), but evolves in such a way as to
reproduce the higher redshift observations (e.g. SDSS-Stripe 82,
AGES, GAMA, NDWFS and DEEP2). In particular, φ∗ and Mr are
varied as a function of redshift in accordance with the recent results
from GAMA (Loveday et al. 2012).

Once the galaxy positions have been assigned, photometric prop-
erties are added. Here, we use a training set of spectroscopic galaxies
taken from SDSS DR5. For each galaxy in both the training set and
simulation we measure �5, the distance to the fifth nearest galaxy
on the sky in a redshift bin. Each simulated galaxy is then assigned
an SED based on drawing a random training-set galaxy with the

2 Further details regarding the simulations can be found at
http://lss.phy.vanderbilt.edu/lasdamas/simulations.html

appropriate magnitude and local density, k-correcting to the appro-
priate redshift, and projecting on to the desired filters. When doing
the colour assignment, the likelihood of assigning a red or a blue
galaxy is smoothly varied as a function of redshift in order to si-
multaneously reproduce the observed red fraction at low and high
redshifts as observed in SDSS and DEEP2.

For the simulation of gravitational lensing, weak lensing shear
at each galaxy position was computed using the multiple plane ray
tracing code CALCLENS (Becker 2013). Then, an intrinsic ellipticity
is assigned to each galaxy. The intrinsic shape distribution and
dispersion σ ε in these simulations are magnitude dependent and are
modelled after those found in deep SuprimeCam i′-band data with
excellent seeing (0.6 arcsec), with fainter galaxies having a higher
intrinsic ellipticity dispersion. Averaged over all galaxies σ ε = 0.4.

4.2 Results

From the simulated catalogue described in Section 4.1, we select
a large square patch of 12◦ × 12◦. To study the behaviour of the
reconstructions, 100 areas (with replacement) of 2◦ × 2◦ were ran-
domly selected from this patch. These were divided into pixels of
2 arcmin × 2 arcmin containing � 116 galaxies. Hence, the number
density of sources is 29 gal arcmin−2. We use the same galaxies as
sources and tracers of the density field.

The reconstruction code was run for 30 000 trial steps for each
sub-field, with 300 trial fields generated in each optimization step.
The reconstructed maps span 4◦ × 4◦, containing 14 400 pixels
of 2 arcmin × 2 arcmin, i.e. we reconstruct a larger patch than the
2◦ × 2◦ data patch in each case.

The reconstructions were performed for each of the 100 fields
using different phase distribution parameters and initial guesses
that are summarized in Table 1. Using 100 different fields allowed
us to examine the noise properties of the reconstruction method.

Reconstructions were performed using an ML method (i.e. no
prior terms) and the MP approach with the phase prior. In this set of
runs, the phase prior included a phase tolerance σα = 2.2 · MAD�α

in order to provide a weakly informative prior. To obtain a reason-
able starting point, κ̃ initial was filtered according to equation (28).

Fig. 5 shows examples of maps obtained using both methods of
reconstruction (b and c) with the true simulated convergence map
(a) and the convergence estimated from galaxy positions (d) shown
for comparison (using δ = δg, i.e. b = 1, see Section 3.3). The
ML method reconstructs only the most prominent peaks, with a
high level of contamination by spurious peaks. The inclusion of
the phases prior appears to improve the map considerably, but it
also maps features from κg that are not necessarily present in the
true convergence, e.g. RA = 40 arcmin, δ = 115 arcmin. However,
these are consistent with the lensing only reconstruction.

Table 1. List of the reconstructions carried out, with
different combinations of priors, phase distribution
parameters and initial reconstruction hypothesis.

Posterior Phases tolerance κ initial

L(γ d|κ) − Filt.

L(γ d|κ)P(κ|αgal) σα = 1.1 · MAD�α Filt.

L(γ d|κ)P(κ|αgal) σα = 2.2 · MAD�α Filt.

L(γ d|κ)P(κ|αgal) σα = 2.2 · MAD�α Noisy

L(γ d|κ)P(κ|αgal) σα = 3.3 · MAD�α Filt.
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Density mapping with lensing and phases 2197

Figure 5. Resulting reconstructed maps of the convergence field. The maps are showing an example of a 2◦ × 2◦ reconstruction field with 2 arcmin ×
2 arcmin pixels. The maps were zero-padded in Fourier space to have a smoother appearance. The true convergence is shown along with reconstructions
obtained using the ML method and the MP method with the phase prior. The galaxy convergence κg from which the prior was computed is also shown
for comparison. (a) True convergence in the simulation. (b) ML reconstruction. (c) MP, including phase information. (d) Convergence estimate from galaxy
positions.

To quantify the quality of the reconstruction, we construct a
power spectrum of the error per mode in the reconstruction,

Perr(l) = 〈|κ̃ rec
l − κ̃ true

l |2〉l . (29)

A faithful reconstruction will have small Perr(l), preferably smaller
than the true power in order to achieve good S/N (i.e. the errors
in the reconstruction are preferably smaller than the signal of the
reconstructed structures for a given scale). Perr(l) shows the scale
dependence of the reconstruction faithfulness. However, it is not

intended as a metric of how well we can reconstruct the power
spectrum from the maps.

Fig. 6 shows the power spectra (dashed) and error power spectra
(dotted) of the reconstruction averaged over 100 fields. The ML
reconstruction (red) is dominated by noise on most scales. Including
the phase prior (blue) leads to a reconstruction that has higher S/N
than the ML reconstruction on all scales, and has S/N > 1 even
beyond l = 1000, far into the domain where the initial shear data is
noise-dominated. On a pixel by pixel basis, the phase prior improves

MNRAS 440, 2191–2200 (2014)

 at U
niversity of Portsm

outh L
ibrary on June 5, 2015

http://m
nras.oxfordjournals.org/

D
ow

nloaded from
 

http://mnras.oxfordjournals.org/


2198 R. M. Szepietowski et al.

Figure 6. Power spectra (dashed) and error power spectra (dotted) for the
reconstructions. The true convergence power spectrum (black solid line)
is plotted for comparison. Red: ML approach. Blue: MP reconstruction
including the phase prior. The reconstructions including the phase prior
have S/N > 1 even beyond l = 1000, far into the domain where the shear
data is noise-dominated.

Figure 7. The contours for a 2D histogram of pixels in the reconstruction
versus pixels in the true convergence. Contours are for 10, 101.5, 102, 102.5

values, and the histogram shows a concatenation of reconstructions for 100
different fields. Results are shown with phase prior (blue solid) and ML
approaches (red dotted). The best-fitting line to the phase reconstruction
contours (black dashed) has a gradient of 0.89 and offset of 0.001.

the correlation between the true convergence and the reconstruction
as shown in Fig. 7. The Pearson correlation coefficient changes
from 0.22 for the ML reconstruction to 0.72 in the case of the MP
reconstruction.

Figure 8. Dependence on the starting position. The true convergence power
spectrum (black solid line) is plotted for comparison. We show the error
power for a reconstruction starting from a κ initial filtered according to equa-
tion (28) (blue dashed) and an unfiltered one (green dotted).

The reduction of the noise visible in Fig. 6 is due to the interplay
between the galaxy phases and both the phase and amplitude of the
lensing. Given noisy shear data, and if the phases of the two fields
disagree strongly, the only permitted hypothesis that satisfies both
the phase prior and the likelihood with modest probability, has low
amplitude for the signal. On the other hand, where the phases agree,
a higher amplitude is permitted.

To assess the errors on curves in Fig. 6, an additional 100 runs
different starting points were performed on a single 2◦ × 2◦ field, to
see the variation in reconstructions permitted by the optimizer. The
different κ initial

i fields were generated by multiplying each mode in
κ̃g by a complex random number with each component drawn from
a standard normal distribution N (0, 1). The error bars on different
power spectra in Figs 6, 8 and 9 show the standard deviation in error
powers of this set of runs. We see that these errors are substantially
smaller than the variation between the ML and MP runs (Fig. 6)
and also between MP runs with different values of the σα parameter
(Fig. 9).

To check the dependence of the reconstruction on the initial guess
κ initial, further reconstructions with the phase prior were performed.
The phase tolerance was again set to σα = 2.2 · MAD�α but κ initial

was left unfiltered. Fig. 8 shows the errors on these reconstruction
compared to the analogous filtered one. The reconstruction with
an unfiltered starting guess (green dotted) deviates more from the
reconstruction with a filtered one (blue dashed) on small scales, l �
1000 suggesting that the posterior probability surface is very flat in
some directions (or multimodal). Although, the difference is visible
on all scales, the reconstruction remains a substantial improvement
over the ML reconstruction in Fig. 6.

The tolerance we permit on the phases has a moderate impact
on the reconstruction, as shown in Fig. 9. The lines show error
power spectra for reconstruction with phase tolerance of σα =
1.1 · MAD�α (red dotted), σα = 2.2 · MAD�α (green dashed) and
σα = 3.3 · MAD�α (blue dot–dashed), and the error power grows
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Density mapping with lensing and phases 2199

Figure 9. Dependence on the phase tolerance. The true convergence power
spectrum (black solid line) is plotted for comparison. The lines show errors
for reconstructions with phase tolerance of σα = 1.1 · MAD�α (red dotted),
σα = 2.2 · MAD�α (green dashed) and σα = 3.3 · MAD�α (blue dot–
dashed).

by a factor of 2 on intermediate scales between the tightest and
weakest of these tolerances. However, independent of the phase
tolerance the reconstructions are similar on small scales where the
reconstruction is noise dominated, and on the largest scales where
the likelihood term is large.

5 C O N C L U S I O N S

In this paper, we have proposed an MP reconstruction method for
the lensing convergence, and have studied the impact of a physically
motivated prior term.

To put a weakly informative prior on the Fourier phases of the
modes, we made a prediction of the convergence from the galaxy
number overdensity, and used this to inform the preferred phases of
the reconstructed convergence field. In this way, by using only the
phases of this field, we avoid the use of the unknown amplitude of
the linear galaxy bias. We also do not require a deterministic bias,
as we allow a phase deviation between the galaxy distribution and
the underlying matter density.

By implementing and testing this method with a realistic sim-
ulated galaxy shear catalogue, we have found that a weak prior
on phases provides a good quality 2D density reconstruction with
S/N ≥ 1 on scales up to and beyond l = 1000 (Fig. 6).

The sensitivity of the phase prior reconstruction to initial condi-
tions (Fig. 8) shows that the probability surface is flat in directions
associated with noise-dominated modes, as expected. However, an
approximate knowledge of the power spectrum can help to select
a solution with modest S/N even on the smallest scales. The phase
difference tolerance can be made more or less strict, depending
on whether one wishes to make a joint reconstruction using weak
lensing and phases, or instead to make a reconstruction from weak
lensing weakly informed by phases. In either case, the reconstruc-

tion is found to be an improvement over ML reconstruction (contrast
Figs 9 and 6).

Although, most of the phase information is coming from the
galaxy field, the amplitude of the modes is determined by the inter-
play between these and the lensing, which includes both phase and
amplitude information. It is important to emphasize that in Fig. 5(d)
the amplitude is an assumption, whereas in Fig. 5(c) it is derived
purely from data.

In summary, using the phase information from the galaxy distri-
bution to inform weak lensing density reconstruction, appears to be
a very powerful addition to the tools we can use for mass mapping.
As these maps combine information from the weak lensing and
galaxy fields, they can potentially be used to improve our under-
standing of the relation between dark matter and galaxies, i.e. the
bias.
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A P P E N D I X A : W R A P P E D C AU C H Y
D I S T R I BU T I O N

The Cauchy pdf is given by

fC(x; x0, σ ) = 1

π
· σ

σ 2 + (x − x0)2
, x ⊂ (−∞, ∞). (A1)

The Wrapped Cauchy pdf is defined as

fWC(β; β0, γ ) =
∞∑

n=−∞

σ

π(σ 2 + (x − x0 + 2πn)2)
, (A2)

which gives

fWC(β; β0, γ ) = 1

2π
· 1 − γ 2

1 + γ 2 + 2γ cos(β − β0)
, (A3)

where γ = e−σ and β ⊂ [−π, π).
A Cauchy distributed random number x can be generated from

two independent normally distributed random numbers y1, y2 ∼
N (0, 1) as

x = x0 + σ
y1

y2
. (A4)

Then, a wrapped Cauchy distributed random number is obtained by
taking

β = x mod 2π, (A5)

Figure A1. MAD as an estimator of σα . Assuming σα can be estimated as
1.1 · MAD�α (solid line) is justified for values of σα � 1 (see Fig. 3). For
larger values, MAD�α will tend to a constant (here π/2).

and applying a procedure similar to the one in Section 3.3.1, i.e. if
β is less than −π, we add 2π to β; if β is greater than or equal to
π, then we subtract 2π from β.

For a distribution with β0 = 0 the parameter σα can be approxi-
mated (for small values) as 1.1 · MAD�α (Fig. A1). For high values
of σα this approximation breaks down; as σα → ∞ the wrapped
Cauchy tends to a uniform distribution, and MAD�α goes to a con-
stant equal to the standard deviation of the uniform distribution,
here π/2 (see Fig. A1).
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