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Semi-Blind Sparse Image Reconstruction
With Application to MRFM

Se Un Park, Nicolas Dobigeon, Member, IEEE, and Alfred O. Hero, Fellow, IEEE

Abstract— We propose a solution to the image deconvolution
problem where the convolution kernel or point spread function
(PSF) is assumed to be only partially known. Small pertur-
bations generated from the model are exploited to produce a
few principal components explaining the PSF uncertainty in a
high-dimensional space. Unlike recent developments on blind
deconvolution of natural images, we assume the image is sparse in
the pixel basis, a natural sparsity arising in magnetic resonance
force microscopy (MRFM). Our approach adopts a Bayesian
Metropolis-within-Gibbs sampling framework. The performance
of our Bayesian semi-blind algorithm for sparse images is
superior to previously proposed semi-blind algorithms such as
the alternating minimization algorithm and blind algorithms
developed for natural images. We illustrate our myopic algorithm
on real MRFM tobacco virus data.

Index Terms— Bayesian inference, magnetic resonance force
microscopy (MRFM) experiment, Markov chain Monte Carlo
(MCMC) methods, semi-blind (myopic) sparse deconvolution.

I. INTRODUCTION

RECENTLY, a new 3-D imaging technology called mag-
netic resonance force microscopy (MRFM) has been

developed. The principles of MRFM were introduced by Sidles
[1]–[3], who described its potential for achieving 3-D atomic
scale resolution. In 1992 and 1996, Rugar et al. [4], [5]
reported experiments that demonstrated the feasibility of
MRFM and produced the first MRFM images. More recently,
MRFM volumetric spatial resolutions of less than 10 nm have
been demonstrated for imaging a biological sample [6]. The
signal provided by MRFM is a so-called force map that is
the 3-D convolution of the atomic spin distribution and the
point spread function (PSF) [7]. This formulation casts the
estimation of the spin density from the force map as an
inverse problem. Several approaches have been proposed to
solve this inverse problem, i.e., to reconstruct the unknown
image from the measured force map. Basic algorithms rely
on Wiener filters [5], [8], [9] whereas others are based on
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iterative least-squares reconstruction approaches [6], [7], [10].
More recently, this problem has been addressed within the
Bayesian estimation framework [11], [12].
However, all of these reconstruction techniques require

prior knowledge of the device response, namely the PSF.
As shown by Mamin et al. [13], this PSF is a function of
several parameters specified by the physics of the device
including mass of cantilever probe, ferromagnetic constant
of probe tip, and external field strength. Unfortunately,
in practice the physical parameters that tune the response
of the MRFM tip are only partially known. In such
circumstances, the PSF used in the reconstruction algorithm
is mismatched to the true PSF of the microscope and the
quality of standard MRFM image reconstruction will suffer
if one does not account for this mismatch. Estimating the
unknown image and the partially known PSF jointly is
usually referred to as semi-blind [14], [15] or myopic [16],
[17] deconvolution, and this is the approach taken in this
paper. The myopic image restoration problem was previously
studied within a hierarchical Bayesian framework [18]
with partially known blur functions in many applications,
including natural and astronomical imaging [19], [20]. This
previous work [19], [20] models the deviation of the PSF as
uncorrelated zero mean Gaussian noise. The authors of [21]
considered an extension of this model to a non-sparse, simulta-
neous autoregression prior model for both the image and PSF.
Compared to [21], recent papers on single motion deblurring
in photography [22], [23] use heavier tailed distributions
for the gradient of images and an exponential distribution for
the PSF. In addition, the algorithm in [22] separately identifies
the PSF using a multiscale approach to perform conventional
image restoration. The authors of [23] proposed an image
prior to reduce ringing artifacts from blind deconvolution
of photo images. This paper considers an alternative model,
appropriate to MRFM but significantly different from
photography, that imposes sparsity on the image and an
empirical Bayes prior on the PSF.
To mitigate the effects of PSF mismatch on MRFM sparse

image reconstruction, a non-Bayesian alternating minimization
(AM) algorithm [24] was proposed by Herrity et al. which
showed robust performance. In this paper, we propose a hierar-
chical Bayesian approach to semi-blind image deconvolution
that exploits prior information on the PSF model. This is a
semi-blind modification of the Bayesian MRFM reconstruction
approach of Dobigeon et al. [12] that uses an adaptive tuning
scheme to produce a Bayesian estimate of the PSF and a
Bayesian reconstruction of the image. The contribution of this
paper is a novel Bayesian approach to a joint estimation of



PSFs and images. We represent the PSF on a truncated orthog-
onal basis, where the basis elements are the singular vectors
in the singular value decomposition of the family of per-
turbed nominal PSFs. A Gaussian prior model specifies a log
quadratic Bayes prior on deviations from the nominal PSF. Our
approach is related to the recent papers of Tzikas et al. [25]
and Orieux et al. [26]. In [25], a pixel-wise, space-invariant
Gaussian kernel basis is assumed with a gradient-based image
prior. Orieux et al. introduced a Metropolis-within-Gibbs algo-
rithm to estimate the parameters that tune the device response.
The strategy [26] focuses on reconstruction with smoothness
constraints and requires recomputation of the entire PSF at
each step of the algorithm. This is computationally expensive,
especially for complex PSF models such as in the MRFM
instrument. Here, we propose an alternative that consists of
estimating the deviation from a given nominal PSF. More
precisely, the nominal point response of the device is assumed
known and the true PSF is modeled as a small perturbation
about the nominal response. Since we only need to estimate
linear perturbations about the nominal PSF relative to a low-
dimensional precomputed and truncated basis set, this leads to
reduction in computational complexity and an improvement in
convergence as compared to [25] and [26]. We approximate
the full posterior distribution of the PSF and the image using
samples generated by a Markov chain Monte Carlo (MCMC)
algorithm. Simulations and comparisons to other state-of-the-
art blind deconvolution algorithms are presented and quantify
the advantages of our algorithm for myopic sparse image
reconstruction. We then apply it to real MRFM tobacco virus
data made available by our IBM collaborators.
This paper is organized as follows. Section II formulates the

problem. Section III covers the Bayesian framework of image
modeling and Section IV proposes a solution in this frame-
work. Section V shows simulation results and an application
to the real MRFM data.

II. FORWARD IMAGING AND PSF MODEL

Let X denote the l1 × · · · × ln unknown nD positive
spin density image to be recovered (e.g., n = 2 or n =

3) and x ∈ R
M denote the vectorized version of X

with M = l1l2, . . . , ln . This image is to be reconstructed from
a collection of P(= M) measurements y = [y1, . . . , yP ]T via
the following noisy transformation:

y = T (κ, x)+ n (1)

where T (·, ·) is the n-dimensional convolution operator or the
mean response function E[y|κ, x], n is a P × 1 observation
noise vector, and κ is the kernel modeling the response of the
imaging device.
A typical PSF for MRFM is shown by Mamin et al. [13]

for horizontal and vertical MRFM tip configurations. In (1) n

is an additive Gaussian noise sequence, independent of x, dis-
tributed according to n ∼ N (0, σ 2IP). The PSF is assumed to
be known up to a perturbation 1κ about a known nominal κ0

κ = κ0 +1κ. (2)

In the MRFM application, the PSF is described by an
approximate parametric function that depends on the exper-
imental setup. Based on the physical parameters (gathered

in the vector ζ ) tuned during the experiment (external mag-
netic field, mass of the probe, etc.), an approximation κ0 of
the PSF can be derived. However, due to model mismatch
and experimental errors, the true PSF κ may deviate from the
nominal PSF κ0.
If a vector of the nominal values of parameters ζ 0 for

the parametric PSF model κgen(ζ ) is known, then direct
estimation of a parameter deviation 1ζ can be performed by
evaluation of κgen(ζ 0+1ζ ). However, in MRFM, as shown by
Mamin et al. [13], κgen(ζ ) is a nonlinear function with many
parameters that are required to satisfy “resonance conditions”
to produce a meaningful MRFM PSF. This makes direct
estimation of the PSF difficult.
In this paper, we take a similar approach to the “basis

expansions” in [27, Ch. 5], [25] for approximation of the
PSF deviation 1κ as linear models. We propose to model
the deviation 1κ as a linear combination of elements of an a

priori known basis vk , k = 1, . . . , K

1κ =

K∑

k=1

λkvk (3)

where {vk}k=1,...,K is a set of basis functions for the PSF
perturbations and λk , k = 1, . . . , K , are unknown coefficients.
To emphasize the influence of these coefficients on the actual
PSF, κ will be denoted κ (λ) with λ = [λ1, . . . , λK ]T . With
these notations, (1) can be rewritten as

y = T (κ(λ), x)+ n = H (λ) x + n (4)

where H (λ) is an P × M matrix that describes convolution
by the PSF kernel κ (λ).
We next address the problem of estimating the unobserved

image x and the PSF perturbation 1κ under sparsity con-
straints given the measurement y and the bilinear function
T (·, ·).

III. HIERARCHICAL BAYESIAN MODEL

A. Likelihood Function

Under the hypothesis that the noise in (1) is Gaussian, the
observation model likelihood function takes the form

f
(

y|x,λ, σ 2
)
=

(
1

2πσ 2

) P
2

exp

(
−
‖y− T (κ (λ) , x)‖2

2σ 2

)

(5)
where ‖·‖ denotes the standard ℓ2 norm ‖x‖2 = xT x. This
likelihood function will be denoted f (y|θ), where θ =

{x,λ, σ 2}.

B. Parameter Prior Distributions

In this section, we introduce prior distributions for the
parameters θ .

1) Image Prior: As the prior distribution for xi , we adopt
a mixture of a mass at zero and a single-sided exponential
distribution

f (xi |w, a) = (1− w)δ (xi )+
w

a
exp

(
−

xi

a

)
1R∗+ (xi) (6)



where w ∈ [0, 1], a ∈ [0,∞), δ (·) is the Dirac function, R∗+
is a set of real open interval (0,∞), and 1E (x) is the indicator
function of the set E

1E (x) =

{
1, if x ∈ E

0, otherwise.
(7)

By assuming the components xi to be a conditionally inde-
pendent (i = 1, . . . , M) given w, a, the following conditional
prior distribution is obtained for the image x

f (x|w, a) =

M∏

i=1

[
(1−w)δ (xi )+

w

a
exp

(
−

xi

a

)
1R∗+ (xi )

]
.

(8)

This image prior is similar to the LAZE distribution [weighted
average of a Laplacian probability density function (pdf) and
an atom at zero] used, for example, by Ting et al. [11], [28].
As motivated by Ting et al. and Dobigeon et al. [11], [12], the
image prior in (6) has the interesting property of enforcing
some pixel values to be zero, reflecting the natural sparsity
of the MRFM images. Furthermore, the proposed prior in
(6) ensures positivity of the pixel values (spin density) to be
estimated.

2) PSF Parameter Prior: We assume that the parameters
λ1, . . . , λK are a priori independent and uniformly distributed
over known intervals associated with error tolerances centered
at 0. Specifically, define the interval

Sk = [−1λk,1λk ] (9)

and define the distribution of λ as

f (λ) =

K∏

k=1

1

21λk

1Sk
(λk) (10)

with λ = [λ1, . . . , λK ]T . In our experiment, the 1λk are set
to be large enough to be non-informative, i.e., an improper,
flat prior.

3) Noise Variance Prior: A noninformative Jeffreys’ prior
is selected as prior distribution for the noise variance

f
(
σ 2

)
∝

1

σ 2
. (11)

This model is equivalent to an inverse gamma prior with a non-
informative Jeffreys’ hyperprior, which can be seen by inte-
grating out the variable corresponding to the hyperprior [12].

C. Hyperparameter Priors

Define the hyperparameter vector associated with the image
and noise variance prior distributions as 8 = {a, w}. In
our hierarchical Bayesian framework, the estimation of these
hyperparameters requires prior distributions in the hyperpara-
meters. These priors are defined in [12] but for completeness
their definitions are reproduced below.

1) Hyperparameter a: A conjugate inverse-Gamma distrib-
ution is assumed for hyperparameter a

a|α ∼ IG (α0, α1) (12)

with α = [α0, α1]T . The fixed hyperparameters α0 and α1 have
been chosen to produce a vague prior, i.e., α0 = α1 = 10−10.

2) Hyperparameter w: A uniform distribution on the sim-
plex [0, 1] is selected as prior distribution for the mean
proportion of nonzero pixels

w ∼ U ([0, 1]) . (13)

Assuming that the individual hyperparameters are indepen-
dent, the full hyperparameter prior distribution for 8 can be
expressed as

f (8|α) = f (w) f (a)

∝
1

aα0+1
exp

(
−

α1

a

)
1[0,1] (w) 1R+ (a) . (14)

D. Posterior Distribution

The posterior distribution of {θ ,8} is

f (θ ,8|y) ∝ f (y|θ) f (θ |8) f (8) (15)

with
f (θ |8) = f (x|a, w) f (λ) f

(
σ 2

)
(16)

where f (y|θ) and f (8) have been defined in (5) and (14).
The conjugacy of priors in this hierarchical structure allows
one to integrate out the parameters σ 2, and the hyperparameter
8 in the full posterior distribution (15), yielding

f (x,λ|y, α0, α1) ∝

∫
f (θ,8|y)dwdadσ 2

∝
Be (1+ n1, 1 + n0)

‖y − T (κ (λ) , x)‖N

Ŵ (n1 + α0)

(‖x‖1 + α1)n1+α0

K∏

k=1

1

21λk

1Sk
(λk)

(17)

where Be is the beta function and Ŵ is the gamma function.
The next section presents the Metropolis-within-Gibbs algo-

rithm [29] that generates samples distributed according to the
posterior distribution f (x,λ|y). These samples are then used
to estimate x and λ.

IV. METROPOLIS-WITHIN-GIBBS ALGORITHM

FOR SEMI-BLIND SPARSE IMAGE RECONSTRUCTION

We describe in this section a Metropolis-within-Gibbs
sampling strategy that allows one to generate samples
{x(t),λ(t)}t=1,... distributed according to the posterior distri-
bution in (17). As sampling directly from (17) is a difficult
task, we will instead generate samples distributed according
to the joint posterior f (x,λ, σ 2|y, α0, α1). Sampling from
this posterior distribution is done by alternatively sampling
one of x,λ, and σ 2 conditioned on all other variables [12],
[30]. The contribution of this paper to [12] is to present an
algorithm that simultaneously estimates both the image and
PSF. The algorithm results in consistently stable output images
and PSFs.
The main steps of our proposed sampling algorithm are

given in Sections IV-A–IV-C (see also Algorithm 1).

A. Generation of Samples According to f (x|λ, σ 2, y, α0, α1)

To generate samples distributed according to
f (x|λ, σ 2, y, α0, α1), it is convenient to sample according to
f (x, w, a|λ, σ 2, y, α0, α1) by the following three-step
procedure.



Algorithm 1 Metropolis-Within-Gibbs Sampling Algorithm
for Semi-blind Sparse Image Reconstruction
1: % Initialization:

2: Sample the unknown image x(0) from pdf in (8),
3: Sample the noise variance σ̃ 2(0) from the pdf in (11),
4: % Iterations:

5: for t = 1, 2, . . . , do

6: Sample hyperparameter w(t) from the pdf in (19),
7: Sample hyperparameter a(t) from the pdf in (20),
8: For i = 1, . . . , M , sample the pixel intensity x

(t)
i from

the pdf in (21),
9: For k = 1, . . . , K , sample the PSF parameter λ

(t)
k from

the pdf in (23), by using Metropolis-Hastings step (see
Algo. 2),

10: Sample the noise variance σ̃ 2(t) from the pdf in (26),
11: end for

1) Generation of Samples According to f (w|x, α0, α1): The
conditional posterior distribution of w is

f (w |x ) ∝ (1− w)n0+1−1wn1+1−1 (18)

where n1 = ‖x‖0 and n0 = M − ‖x‖0. Therefore, generation
of samples according to f (w |x ) is achieved as follows:

w|x ∼ Be (1+ n1, 1+ n0). (19)

2) Generation of Samples According to f (a |x ): The joint
posterior distribution (15) yields

a |x, α0, α1 ∼ IG (‖x‖0 + α0, ‖x‖1 + α1). (20)

3) Generation of Samples According to f (x|w, a, λ,σ
2, y.):

The posterior distribution of each component xi (i =

1, . . . , M) given all other variables is derived as

f
(

xi |w, a, λ,σ
2, x−i , y

)
∝ (1−wi )δ (xi )

+wiφ+

(
xi |µi , η

2
i

)
(21)

where x−i stands for the vector x whose i th component has
been removed and µi and η2i are defined as follows:

η2i =
σ 2

‖hi‖
2
, µi = η2i

(
hT

i ei

σ 2
−
1

a

)
(22)

with hi and ei defined in Appendix A.
In (21), φ+(·, m, s2) stands for the pdf of the truncated

Gaussian distribution defined on R
∗
+ with hidden mean m and

hidden variance s2. Therefore, from (21), xi |w, a, λ,σ
2, x−i , y

is a Bernoulli truncated-Gaussian variable with parameter
(wi , µi , η

2
i ).

To summarize, generation of samples distributed according
to f (x|w, σ 2, a, , y.) can be performed by updating the coor-
dinates of x using M Gibbs moves (requiring generation of
Bernoulli truncated-Gaussian variables). A pixel-wise fast and
recursive sampling strategy is presented in Appendix A and an
accelerated sparsity enforcing simulation scheme is described
in Appendix B.

Algorithm 2 Sampling According to f
(
λk |λ−k , x, σ 2, y

)

1: Sample ε ∼ N
(
0, s2p

)
,

2: Propose λ⋆
k according to λ⋆

k = λ
(t)
k + ε,

3: Draw u ∼ U ([0, 1]),

4: Set λ
(t+1)
k =

{
λ⋆

k, if u ≤ ρ
λ

(t)
k →λ⋆

k

,

λ
(t)
k , otherwise.

where U (E) stands for the uniform distribution on the set E.

B. Generation of Samples According to f (λ|x, σ 2, y)

The posterior distribution of the parameter λk conditioned
on the unknown image x, the noise variance σ 2, and the other
PSF parameters {λ j } j 6=k is

f
(
λk |λ−k, x, σ 2, y

)
∝ exp

[
−
‖y − T (κ (λ) , x)‖2

2σ 2

]
1Sk

(λk)

(23)

with λ−k = {λ j } j 6=k . We summarize in Algorithm 2 a
procedure for generating samples distributed according to the
posterior in (23) using a Metropolis–Hastings step with a
random walk proposition [29] from a centered Gaussian dis-
tribution. In order to sample efficiently, the detailed procedure
of how to choose an appropriate value of the variance s2k of
the proposal distribution for λk is described in Appendix C.
At iteration t of the algorithm, the acceptance probability of
a proposed state λ⋆

k is

ρ
λ

(t)
k →λ⋆

k

= min
(
1, ak1Sk

(
λ⋆

k

))
(24)

with

2σ 2 log ak=
∥∥∥y−T

(
κ

(
λ

(t)
k

)
, x

)∥∥∥
2
−

∥∥y−T
(
κ

(
λ⋆

k

)
, x

)∥∥2 .

(25)

Computing the transformation T (·, ·) at each step of the
sampler can be computationally costly. Appendix A pro-
vides a recursive strategy to efficiently sample according to
f (λ|x, σ 2, y).

C. Generation of Samples According to f
(
σ 2 |x, y,λ

)

Samples (σ 2)(t) are generated according to the inverse
gamma posterior

f (σ 2 |x, y,λ) = IG

(
P

2
,
‖y− T (κ(λ), x)‖2

2

)
. (26)

V. EXPERIMENTS

In this section, we present simulation results that compare
the proposed semi-blind Bayesian deconvolution algorithms
with the nonblind method [12], the AM algorithm [24], and
other blind deconvolution methods. Here, a nominal PSF κ0
was selected that corresponds to the mathematical MRFM
point response model proposed by Mamin et al. [13].
Using our MCMC algorithm described in Section IV,

the MMSE estimators of image and PSF are approximated



TABLE I

PARAMETERS USED TO COMPUTE THE MRFM PSF

Parameter
Value

Description Name

Amplitude of external magnetic field Bext 9.4× 103 G
Value of Bmag in the resonant slice Bres 1.0× 104 G
Radius of tip R0 4.0 nm
Distance from tip to sample d0 6.0 nm
Cantilever tip moment m 4.6× 105 emu
Peak cantilever oscillation oscillation xpk 0.8 nm
Maximum magnetic field gradient Gmax 125

(a) (b)

Fig. 1. Simulated true image and MRFM raw image exhibiting superposition
of point responses (see Fig. 2) and noise. (a) Sparse true image (‖x‖0 = 11).
(b) Raw MRFM observation.

by ensemble averages over the generated samples after the
burn-in period. The joint MAP estimator is selected among the
drawn samples, after the stationary distribution is achieved,
such that it maximizes the posterior distribution f (x,λ|y) [31].

A. Simulation on Simulated Sparse Images

We performed simulations of MRFM measurements for
PSF and image models similar to those described by
Dobigeon et al. [12]. The signal-to-noise ratio was set to
SNR = 10 dB. Several 32×32 synthetic sparse images, one of
which is depicted in Fig. 1(a), were used to produce the data
and were estimated using the proposed Bayesian method. The
assumed PSF κ0 is generated following the physical model
described by Mamin et al. [13] when the physical parameters
are tuned to the values displayed in Table I. This yields a
11× 11 2-D convolution kernel represented in Fig. 2(a). We
assume that the true PSF κ comes from the same physical
model where the radius of the tip and the distance from the
tip to the sample have been mis-specified with 2% error as
R = R0 − 2% = 3.92 and d = d0 + 2% = 6.12. This leads
to the convolution kernel depicted in Fig. 2(b). The observed
measurements y, shown in Fig. 1(b), are a 32 × 32 image of
size P = 1024.
The proposed algorithm requires the definition of K basis

vectors vk , k = 1, . . . , K , that span a subspace representing
possible perturbations 1κ . We empirically determined this
basis using the following PSF variational eigendecomposi-
tion approach. A set of 5000 experimental PSFs κ̃ j , j =

1, . . . , 5000, were generated following the model described
by Mamin et al. [13] with parameters d and R randomly
drawn according to Gaussian distribution1 centered at the

1We used a PSF generator provided by Dan Rugar’s group at IBM [13].
The variances of the Gaussian distributions are carefully tuned so that their
standard deviations produce a minimal volume ellipsoid that contains the set
of valid PSFs of the form specified in [13].

(a) (b)

Fig. 2. Assumed PSF κ0 and actual PSF κ . (a) Nominal MRFM PSF.
(b) True MRFM PSF.

Fig. 3. Scree plot of residual PCA approximation error in l2 norm (magnitude
is normalized up to the largest value, i.e., λmax := 1).

nominal values d0, R0, respectively. Then a standard principal
component analysis (PCA) of the residuals {κ̃ j−κ0} j=1,...,5000,
by allowing the maximum variance over the parameters that
produce valid MRFM PSFs, was used to identify K = 4
principal axes that are associated with the basis vectors vk .
The necessary number of basis vectors, K = 4 here, was
determined empirically by detecting a knee at the scree plot
shown in Fig. 3. The first four eigenfunctions, corresponding
to the first four largest eigenvalues, explain 98.69% of the
observed perturbations. The four principal patterns of basis
vectors are depicted in Fig. 4.
The proposed semi-blind Bayesian reconstruction algorithm

was applied to estimate both the sparse image and the PSF
coefficients of vk’s, using the prior in (6). From the observa-
tion shown in Fig. 1(b) the PSF estimated by the proposed
algorithm is shown in Fig. 5(a) and is in good agreement
with the true one. The corresponding maximum a posteriori

estimate (MAP) of the unknown image is depicted in Fig. 6.
The obtained coefficients of the PSF eigenfunctions are close
to true coefficients (Fig. 7).

B. Comparison to Other Methods

For comparison to a nonblind method, Fig. 6(b) shows
the estimate using the Bayesian nonblind method [12] with
a mismatched PSF. Fig. 6(c) shows the estimate gener-
ated by the AM algorithm. The nominal PSF described in
Section V-A is used in the AM algorithm and hereafter



Fig. 4. K = 4 principal vectors (vk ) of the perturbed PSF, identified
by PCA.

(c) (d)

(a) (b)

Fig. 5. Estimated PSF κ̂ of MRFM tip using our semi-blind method,
Amizic’s method (using TV prior), Almeida’s method (using progressive
regularization), and Tzikas’ method (using the kernel basis PSF model),
respectively. For a fair comparison, we used sparse image priors for the
methods. (See Section V-B for details on the methods.) (a) Proposed method.
(b) Amizic’s method. (c) Almeida’s method. (d) Tzikas’ method.

in other semi-blind algorithms, and the parameter values of
AM algorithm were set empirically according to the procedure
in [24]. Our proposed algorithm appears to outperform the
others (Fig. 6) while preserving fast convergence (Fig. 7).
Quantitative comparisons were obtained by generating dif-

ferent noises in 100 independent trials for a fixed true
image. Here, six different true images with six corresponding
different sparsity levels (‖x‖0 = 6, 11, 18, 30, 59, 97) were
tested. Fig. 8 presents the two histograms of the results
with the six sets in the corresponding two error criteria,
‖x̂ − x‖2, ‖x̂‖0, respectively, both of which indicate that our
method performs better and is more stable than the other two
methods.
Fig. 9 shows reconstruction error performance for sev-

eral measures of error used by Ting et al. [11] and
Dobigeon et al. [12] to compare different reconstruction
algorithms for sparse MRFM images. Notably, compared

(a) (b)

(c) (d)

(e)

Fig. 6. True sparse image and estimated images from Bayesian nonblind,
AM, our semi-blind, Almeida’s, and Tzikas’ methods. (a) MAP, proposed
method. (b) MAP, Bayesian non blind method with κ0. (c) AM. (d) Almeida’s
method. (e) Tzikas’ method.

Fig. 7. Estimated PSF coefficients for four PCs over 200 iterations. These
curves show fast convergence of our algorithm. “Ideal coefficients” are the
projection values of the true PSF onto the space spanned by four principal
PSF bases.

to the AM algorithm that aims to compensate “blindness”
of the unknown PSF and the previous nonblind method,
our method reveals a significant performance gain under
most of the investigated performance criteria and sparsity
conditions.
In addition to the AM and nonblind comparisons shown

in Fig. 8, we made direct comparisons between our sparse
MRFM reconstruction method and several state-of-the-art
blind image reconstruction methods [22], [23], [25], [32], [33].
In all cases, the algorithms were initialized with the nominal,
mismatched PSF and were applied to a sparse MRFM-type
image like in Fig. 1. For a fair comparison, we made a sparse
prior modification in the image model of other algorithms.
The total variation (TV)-based prior for the PSF suggested
by Amizic et al. [32] was also implemented. The obtained
PSF from this method was considerably worse than the one



(a)

(b)

Fig. 8. Histograms of l2 and l0 norm of the reconstruction error. Note
that the proposed semi-blind reconstructions exhibit smaller mean error and
more concentrated error distribution than the nonblind method in [12] and
the AM method in [24]. (a) Histograms of the normalized l2 norm errors.
x-axis is ‖(x/‖x‖) − (x̂/‖x̂‖)‖22/‖x‖0. (b) Histograms of the l0 measures.
x-axis is ‖x̂‖0.

estimated by our proposed method [see Fig. 5(b)] resulting in
a very poor quality image deconvolution.2

The recent blind deconvolution method proposed by
Almeida et al. [33] utilizes the “sharp Edge” property in
natural images, with initial, high-regularization in order to
effectively evaluate the PSF. This iterative approach has a
sequentially decreasing regularization parameter to reconstruct
fine details of the image. Adapted to sparse images, this
method performs worse than our method, in terms of image
and PSF estimation errors. The PSF and image estimates
from Almeida’s method are presented in Figs. 5(c) and 6(d),
respectively.

2Because this PSF is wrongly estimated and similar to the 2-D delta func-
tion, the image estimate looks similar to the denoised version of observation,
so we omit the image estimate.

(a) (b)

(c) (d)

Fig. 9. Error bar graphs of results from our myopic deconvolution algorithm.
For several image xs of different sparsity levels, errors are illustrated with
standard deviations. (Some of the sparsity measure and residual errors are too
large to be plotted together with results from other algorithms.) (a) ‖x̂‖0/‖x‖0:
estimated sparsity. Normalized true level is 1. (b) ‖(x/‖x‖)−(x̂/‖x̂‖)‖22/‖x‖0:
normalized error in reconstructed image. (c) ‖y − ŷ‖22/‖x‖0 : residual
(projection) error. (d) ‖(κ̂/‖κ̂‖) − (κ/‖κ‖)‖22, as a performance gauge of
our myopic method. At the initial stage of the algorithm, ‖(κ0/‖κ0‖) −
(κ/‖κ‖)‖22 = 0.5627.

Tzikas et al. [25] use a similar PSF model to our method
using basis kernels. However, no sparse image prior was
assumed in [25] making it unsuitable for sparse reconstruction
problems such as the MRFM problem considered in the
paper. For a fair comparison, we applied the suggested PSF
model [25] along with our sparse image prior. The results
of PSF and image estimation and the performance graph are
shown in Figs. 5(d), 6(e), and 9, respectively. In terms of PSF
estimation error, our algorithm outperforms the others.
We also compared against the mixture model-based algo-

rithm of Fergus et al. [22], and the related method of
Shan et al. [23], which are proposed for blind deconvo-
lution of shaking/motion blurs and do not incorporate any
sparsity penalization. When applied to the sparse MRFM
reconstruction problem, the algorithms in [22] and [23] per-
formed very poorly (produced divergent or trivial solutions,
not shown due to space limitations). This poor performance
is likely due to the fact that the shape of the MRFM
PSF and the sparse image model are significantly different
from those in blind deconvolution of camera shaking/motion
blurs. The generalized PSF model in [22] and [23] with the
sparse image prior is Tzikas’ model [25], which is described
above.
We used the iterative shrinkage/thresholding (IST)

algorithm with a true PSF to lower bound our myopic
reconstruction algorithm. The IST algorithm effectively



TABLE II

COMPUTATION TIME OF ALGORITHMS (IN SECONDS),

FOR THE DATA IN FIG. 1

Proposed method 19.06

Bayesian nonblind [12] 3.61

IST [34] 0.09

AM [24] 0.40

Almeida’s method [33] 5.63

Amizic’s method [32] 5.69

Tzikas’ method [25] 20.31

Fig. 10. Observed data at various tip-sample distances z.

reconstructs images with a sparsity constraint [34].
From Fig. 9(b) the performance of our result is as good as
that of the oracle IST. In Table II, we present comparison of
computation time3 of the proposed sparse semi-blind Bayes
reconstruction to that of several other algorithms.

C. Application to 3-D MRFM Image Reconstruction

In this section, we apply the semi-blind Bayesian recon-
struction algorithm to the 3-D MRFM tobacco virus data
[6] shown in Fig. 10. The necessary modification for our
algorithm to apply to 3-D data is simple because the extension
of our 2-D pixel-wise sampling method requires only one
more added dimension to extend to 3-D basis vectors and 3-D
convolution kernel. As seen in Appendix A, the voxel-wise
update of a vectorized image x can be generalized to n-D
data. This scalability is another benefit of our algorithm. The
implementation of the AM algorithm is impractical due to its
slow convergence rates [24]. Here, we only consider Bayesian
methods. The additive noise is assumed Gaussian consis-
tently with [4] and [6], so the noise model in Section III-A
is applied here.
The PSF basis vectors were obtained from a standard

PCA and the number of principal components in the PSF
perturbation was selected as 4 based on detecting the knee
in a scree plot. The same interpolation method as used in [12]
was adopted to account for unequal spatial sampling rates in
the supplied data for the PSF domain and the image domain.
In the PSF and image domains, along the z-axis, the grid

in PSF signal space is three times finer than the observation
sampling density, because the PSF sampling rate along the
z-axis is three times higher than the data sampling rate. To
interpolate this lower sampled data, we implemented a version
of the Bayes MC reconstruction that compensates for unequal
projection sampling in the z-directions using the interpolation
procedure of Dobigeon et al. [12].

3MATLAB is used under Windows 7 Enterprise and HP-Z200 (Quad
2.66 GHz) platform.

(a) (b)

Fig. 11. Results of applying the proposed semi-blind sparse image recon-
struction algorithm to the synthetic 3-D MRFM virus image. (a) Ground truth
synthetic virus image obtained from data by Degen et al. [6]. (b) Semi-blind
reconstruction of the synthetic virus data. Only the z-planes that have nonzero
image intensity are shown.

(c)

(a) (b)

Fig. 12. PSF estimation result. (a) True PSF. (b) Initial mismatched PSF. (c)
Estimated PSF.

To demonstrate that the proposed 3-D MCMC semi-blind
reconstruction algorithm is capable of reconstruction in the
presence of significant MRFM PSF mismatch, we first applied
it to a simulated version of the experimental data shown in
Fig. 10. We used the scanning electron microscope virus image
reported by Degen et al. [6] to create a synthetic 3-D MRFM
virus image, one slice of which is shown in Fig. 11(a). This 3-
D image was then passed through the MRFM forward model,
shown in Fig. 12(a), and 10 dB Gaussian noise was added. The
mismatched PSF depicted in Fig. 12(b) was used to initialize
our proposed semi-blind reconstruction algorithm. After 40
iterations, the algorithm reduced the initial normalized PSF
error ‖(κ0/‖κ0‖) − (κ/‖κ‖)‖2 from 0.7611 to ‖(κ̂/‖κ̂‖) −

(κ/‖κ‖)‖2 = 0.0295. Figs. 11(b) and 12(c) show the estimated
image and the estimated PSF, respectively.
We next applied the proposed semi-blind reconstruction

algorithm to the actual experimental data shown in Fig. 10
for which there is neither ground truth on the MRFM image



(a)

(b)

Fig. 13. Semi-blind MC Bayes method results and PSF coefficient curves.
1z = 4.3 nm, and pixel spacing is 8.3 nm × 16.6 nm in x × y, respectively.
The size of (x, y) plane is 498 nm × 531.2 nm. Smoothing is applied
for visualization. (a) MAP estimate in 3-D and the estimated image on the
sixth plane, showing a virus particle. (b) Estimated (left) and nominal (right)
PSFs. ‖(κ̂/‖κ̂‖) − (κ0/‖κ0‖)‖

2 = 0.0212. The difference between the two
is small. (Hard thresholding with level = max(P S F) × 10−4 is applied for
visualization.)

nor on the MRFM PSF. The image reconstruction results are
shown in Fig. 13. The small difference between the nominal
PSF and the estimated PSF indicates that the estimated PSF is
close to the assumed PSF. We empirically validated this small
difference by verifying that multiple runs of the Gibbs sampler
gave low variance PSF residual coefficients. We conclude from
this finding that the PSF model of Degen et al. [6] is in fact
nearly Bayes optimal for these experimental data. The blind
image reconstruction shown in Fig. 13 is similar to the image
reconstruction in Degen et al. [6] obtained from applying the
Landweber reconstruction algorithm with the nominal PSF.
Using the MCMC generated posterior distribution obtained

from the experimental MRFM data, we generated confidence
intervals, posterior mean, and posterior variance of the pixel
intensities of the unknown virus image. The posterior mean
and variance are presented in Fig. 14 for selected pixels.
In addition, to demonstrate the match between the estimated
region occupied by the virus particle and the actual region,
we evaluated Bayesian p-values for object regions. The

(a) (b)

Fig. 14. Posterior mean and variance at the sixth plane of the estimated
image, as shown in Fig. 13(a). (a) MMSE solution. Gray level image intensity
values range from 0 (black) to 7.34 × 10−12 (white). (b) Pixel-wise square
root of the image variance. White color indicates a high-variance. Gray level
image intensity values range from 0 (black) to 3.29× 10−12 (white).

Bayesian p-value for a specific region Ri having nonzero
intensity is pv(Ri ) = P({Ik = 1}k∈Ri |y) where P is a
probability measure and Ik is an indicator function at the kth
voxel. Assuming voxel-wise independence, the p-values are
easily computed from the posterior distribution and provide a
level of a posteriori confidence in the statistical significance of
the reconstruction. We found that over 95% of the Bayesian
p-values were greater than 0.5 for the nonzero regions of the
reconstruction.

D. Discussion

Joint identifiability is a common issue underlying all blind
deconvolution methods. (e.g., scale ambiguity.) Even though
the unicity of our solution is not proven, given the conditions
that: 1) span(κ) = κ0+span(

∑
κ i ) does not cover a kernel of

a delta function, κ = δ(·) and 2) the PSF solution is restricted
to this linear space of κ0, κi , the MAP estimate computed from
(17) is a reasonable solution that is not trivial the MAP criteria
promises a reasonable solution that is not trivial such as x̂ = y.
Due to this restriction and the sparse nature of the image to be
estimated, we can reasonably expect that the solution provided
by the algorithm is close to the true PSF. A study of unicity
of the solution would be worthwhile but is beyond the scope
of this paper as it would require study of the complicated and
implicit fixed points of the proposed Bayes objective function.
Note that proposed sparse image reconstruction algorithm

can be extended to exploit sparsity in other domains, such as
the wavelet domain. In this case, if we define W to be the
transformation matrix on x, the proposed semi-blind approach
can be applied to reconstruct the transformed signal z = Wx.
However, instead of assigning the single-sided exponential dis-
tribution as prior for z, a double-sided Laplacian distribution
might be used to cover the negative values of the pixels. The
estimation procedure for PSF coefficients, noise level, and
hyperparameters would be the same. For image estimation, the
vector hi used in (22) would be replaced with the i th column
of HW−1.

VI. CONCLUSION

We have proposed an extension of the method of the
nonblind Bayes reconstruction by Dobigeon et al. [12] that
simultaneously estimates a partially known PSF and the
unknown but sparse image. The method uses a prior model
on the PSF that reflects a nominal PSF and uncertainty about



the nominal PSF. In our algorithm, the values of the parameters
of the convolution kernel were estimated by a Metropolis-
within-Gibbs algorithm, with an adaptive mechanism for tun-
ing random-walk step size for fast convergence. Our approach
can be used to empirically evaluate the accuracy of assumed
nominal PSF models in the presence of model uncertainty. In
our sparse reconstruction simulations, we demonstrated that
the semi-blind Bayesian algorithm has improved performance
as compared to the AM reconstruction and other blind decon-
volution algorithms and nonblind Bayes method under several
criteria.
Possible extensions of the proposed method may include

enforcing sparsity constraints on the result PSF and the
eigenfunctions, by using sparse PCA type algorithms. Also,
even with the selective sampling strategy that speeds up the
sampling, the MCMC methods are slower than nonstochastic
methods. This will be addressed in future work.

APPENDIX A
FAST RECURSIVE SAMPLING STRATEGY

In iterative MRFM algorithms such as AM and the proposed
Bayesian method, repeated evaluations of the transformation
T (κ (λ) , x) can be computationally difficult. For example, at
each iteration of the proposed Bayesian myopic deconvolution
algorithm, one must generate xi from its conditional distrib-
ution f (xi |w, a, λ,σ

2, x−i , y), which requires the calculation
of T (κ, x̃i ) where x̃i is the vector x whose i th element has
been replaced by 0. Moreover, sampling according to the
conditional posterior distributions of σ 2 and λk (23) and (26)
requires computations of T (κ, x).
By exploiting the bilinearity of the transformation T (·, ·),

we can reduce the complexity of the algorithm. We
describe below a strategy, similar to those presented in
[12, Appendix B], which only requires computation of T (·, ·)

at most M × (K + 1) times. First, let IM denote the M × M

identity matrix and ui its i th column. In the first step of the
analysis, the M vectors h

(0)
i (i = 1, . . . , M)

h
(0)
i = T (κ0, ui ) (27)

and KM vectors h
(k)
i (i = 1, . . . , M, k = 1, . . . , K )

h
(k)
i = T (vk, ui ) (28)

are computed. Then one can compute the quantity T (κ, x̃i )

and T (κ, x) at any stage of the Gibbs sampler without
evaluating T (·, ·), based on the following decomposition:

T (κ, x) =

M∑

i=1

xi h
(0)
i +

K∑

k=1

λk

M∑

i=1

xi h
(k)
i . (29)

The resulting procedure to update the i th coordinate of the
vector x is described in Algorithm 3.
Note that in step 7 of the algorithm above, T (κ, x) is recur-

sively computed. Once all the coordinates have been updated,
the current T (κ, x) can be directly used to sample according
to the posterior distribution of the noise variance in (26).
Moreover, this quantity can be used to sample according to the
conditional posterior distribution of λk in (23). More precisely,

Algorithm 3 Efficient Simulation According to
f (x|w, a, σ 2, y)

At iteration t of the Gibbs sampler, for i = 1, . . . , M, update
the i th coordinate of the vector

x(t,i−1) =
[
x

(t)
1 , . . . , x

(t)
i−1, x

(t−1)
i , x

(t−1)
i+1 , . . . , x

(t−1)
M

]T

via the following steps:

1: compute hi = h
(0)
i +

∑K
k=1 λkh

(k)
i ,

2: set T
(
κ, x̃

(t,i−1)
i

)
= T

(
κ, x(t,i−1)

)
− x

(t−1)
i hi ,

3: set ei = x − T
(
κ, x̃

(t,i−1)
i

)
,

4: compute µi , η2i and wi as defined in [6],
5: draw x

(t)
i according to (21),

6: set x(t,i) =
[
x

(t)
1 , . . . , x

(t)
i−1, x

(t)
i , x

(t−1)
i+1 , . . . , x

(t−1)
M

]T

,

7: set T
(
κ, x(t,i)

)
= T

(
κ, x̃

(t,i−1)
i

)
+ x

(t)
i hi .

evaluating T
(
κ

(
λ⋆

k

)
, x

)
in the acceptance probability (25) can

be recursively evaluated as follows:

T
(
κ

(
λ⋆

k

)
, x

)
= T

(
κ

(
λ

(t)
k

)
, x

)
−

(
λ

(t)
k − λ⋆

k

) M∑

i=1

xi h
(k)
i .

(30)

APPENDIX B
SPARSITY ENFORCING SELECTIVE SAMPLING

Since we have estimated the “overall sparsity,” 1− ŵ of x

from (19), we can expedite the sampling procedure of x by
selectively sampling only significant portions of entire pixels
of x. As a result, we expect (1− ŵ)× 100% of pixel domain
of x to be zero, which will not need to be resampled.
At time t , in order to approximate the quantile (1− ŵ) of

{w
(t)
i }i=1,...,M in (21) we evaluate the (1−ŵ) quantile value of

the previously obtained {w(t−1)
i }i=1,...,M . This approximation

accelerates the computation because the exact calculation
of {w(t)

i }i=1,...,M requires sampling of all xis. Let q =

quantile({w(t−1)
i }i=1,...,M , 1 − ŵ) and wthr = max(q, 1 − ŵ).

When w
(t)
i for x

(t)
i from (21) is less than wthr, then x

(t)
i is

not updated or is set to zero. Because MCMC sampling is
computationally expensive, especially for large size images,
this suggestion can be restricted to the burn-in period to save
computations.
In our experiment, the selective sampling of x applied

after third or fourth iterations produces equally good results
compared to the conventional MCMC sampling methods,
while reducing computation time by 30%–50% for nonblind
sparse reconstruction with a fixed PSF and by 10%–30% for
the semi-blind sparse reconstruction.

APPENDIX C
ADAPTIVE TUNING OF AN ACCEPTANCE RATE

IN THE RANDOM-WALK SAMPLING

For an efficient sampling of λk, k = 1, . . . , K , from the
desired distribution π(λk) = f (λk |λ−k, x, σ 2, y), we need to



Algorithm 4 Tuning s in the Gaussian Proposal Density q(·, ·)

Select upper and lower limits accH and accL . At each
time t = W, 2W, 3W, . . ., tune s via the following
steps:
1: Evaluate accs using (31) for the given time-frame window,

2: Update s ←





s × c, if accs > accH ,
s ÷ c, if accs < accL ,
s, otherwise.

properly tune the acceptance rate of the samples from the
proposal distribution. A careful selection of a step size is
critical for convergence of the method. For example, if the
step size is too large, most of the iterations will be rejected
and the sampling algorithm will be inefficient. On the other
hand, if the step size is too small, most of the random walk
moves are accepted but these moves are slow to cover the
probable space of the desired distribution, and the method is
once again inefficient.
The transition density of Metropolis–Hastings sampling

is q(λ(t), λ⋆(t))acc(λ(t), λ⋆(t)), where q(λ(t), λ⋆(t)) is the
proposal density from λ(t) and acc(λ(t), λ⋆(t)) is the acceptance
probability for the move from λ(t) to λ⋆(t). Here, we denote λk

by λ without a subscript for simplicity. We set q(λ(t), λ⋆(t))

to be a Gaussian density function of λ⋆(t), denoted by
q(λ(t), λ⋆(t)) = q(λ⋆(t) − λ(t)) = φ(λ⋆(t); λ(t), s2) with a
mean λ(t) and a variance s2, which produces a random walk
sample path. Since q(·, ·) is symmetrical, accs(λ

(t), λ⋆(t)) =

min(1, (π(λ⋆(t))q(λ⋆(t), λ(t))/π(λ(t))q(λ(t), λ⋆(t)))) = min
(1, (π(λ⋆(t))/π(λ(t)))) = ρλ(t)→λ⋆(t) , as derived in (24). Then
the acceptance probability from a parameter value λ(t) is
accs(λ

(t)) =
∫
λ⋆(t) q(λ(t), λ⋆(t))accs(λ

(t), λ⋆(t))dλ⋆(t). The
acceptance rate with a scale parameter s, acting as a step
size, can be expressed as accs =

∫
λ π(λ)accs(λ)dλ.

We evaluate these integrations by using Monte Carlo meth-
ods, accs ≈ (1/n1)

∑n1
t=1 accs(λ

(t)) with λ(t) ∼ π(λ(t)), and
accs(λ

(t)) ≈ (1/n2)
∑n2

t=1 accs(λ
(t), λ⋆(t)) with λ⋆(t) ∼ q(λ(t),

λ⋆(t)). In practice, this empirical version of the integration
value is evaluated as

accs ≈
1

W

W∑

t=1

accs

(
λ(t)λ⋆(t)

)
(31)

after the burn-in period. Therefore, we can evaluate the
acceptance rate with s by averaging the Boolean variables of
accs(λ

(t), λ⋆(t)), t = 1, . . . , W , over a time-frame window of
length W with realizations {λ(t), λ⋆(t)}t . In short, we iteratively
update s to achieve an appropriate acceptance rate accs as
described in Algorithm 4.
In practice, we fix the variance of the instrumental distribu-

tion at the end of a burn-in period. Consequently, the transition
kernel will be fixed and this guarantees both ergodicity and
stationary distribution. In our experiment, we set a conser-
vative acceptance range, accH = 0.6, accL = 0.4, referring
to [29], and W = 20, c = 4. This strategy can also be applied
to the direct parameter estimation described in Appendix D.

APPENDIX D
DIRECT SAMPLING OF PSF PARAMETER VALUES

As described in Section I, in the MRFM experiments, the
direct estimation of PSF parameters is difficult because of
the nonlinearity of κgen and the slow evaluation of κgen(ζ

′)

given a candidate value ζ ′. However, if κgen is simple and
evaluated quickly, then a direct sampling of parameter values
can be performed. To apply this sampling method, instead of
calculating a linearized convolution kernel κ (λ), we evaluate
the exact model PSF, κgen (ζ ), in (23) and (25). Also, the
proposed parameter vector ζ ⋆ correspondingly replaces a coef-
ficient vector λ⋆ and the updated PSF is used in the estimation
of other variables. This strategy turns out to be similar to the
approach adopted by Orieux et al. [26].
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