2,603 research outputs found

    Image analysis, modeling, enhancement, restoration, feature extraction and their applications in nondestructive evaluation and radio astronomy

    Get PDF
    The principal topic of this dissertation is the development and application of signal and image processing to Nondestructive Evaluation (NDE) and radio astronomy;The dissertation consists of nine papers published or submitted for publication. Each of them has a specific and unique topic related to signal processing or image processing in NDE or radio astronomy. Those topics are listed in the following. (1) Time series analysis and modeling of Very Large Array (VLA) phase data. (2) Image analysis, feature extraction and various applied enhancement methods for industrial NDE X-ray radiographic images. (3) Enhancing NDE radiographic X-ray images by adaptive regional Kalman filtering. (4) Robotic image segmentation, modeling, and restoration with a rule based expert system. (5) Industrial NDE radiographic X-ray image modeling and Kalman filtering considering signal-dependent colored noise. (6) Computational study of Kalman filtering VLA phase data and its computational performance on a supercomputer. (7) A practical and fast maximum entropy deconvolution method for deblurring industrial NDE X-ray and infrared images. (8) Local feature enhancement of synthetic radio images by adaptive Kalman filtering. (9) A new technique for correcting phase data of a synthetic-aperture antenna array

    Model based estimation of image depth and displacement

    Get PDF
    Passive depth and displacement map determinations have become an important part of computer vision processing. Applications that make use of this type of information include autonomous navigation, robotic assembly, image sequence compression, structure identification, and 3-D motion estimation. With the reliance of such systems on visual image characteristics, a need to overcome image degradations, such as random image-capture noise, motion, and quantization effects, is clearly necessary. Many depth and displacement estimation algorithms also introduce additional distortions due to the gradient operations performed on the noisy intensity images. These degradations can limit the accuracy and reliability of the displacement or depth information extracted from such sequences. Recognizing the previously stated conditions, a new method to model and estimate a restored depth or displacement field is presented. Once a model has been established, the field can be filtered using currently established multidimensional algorithms. In particular, the reduced order model Kalman filter (ROMKF), which has been shown to be an effective tool in the reduction of image intensity distortions, was applied to the computed displacement fields. Results of the application of this model show significant improvements on the restored field. Previous attempts at restoring the depth or displacement fields assumed homogeneous characteristics which resulted in the smoothing of discontinuities. In these situations, edges were lost. An adaptive model parameter selection method is provided that maintains sharp edge boundaries in the restored field. This has been successfully applied to images representative of robotic scenarios. In order to accommodate image sequences, the standard 2-D ROMKF model is extended into 3-D by the incorporation of a deterministic component based on previously restored fields. The inclusion of past depth and displacement fields allows a means of incorporating the temporal information into the restoration process. A summary on the conditions that indicate which type of filtering should be applied to a field is provided

    On the optimality of a new class of 2D recursive filters

    Get PDF
    summary:The purpose of this paper is to prove the minimum variance property of a new class of 2D, recursive, finite-dimensional filters. The filtering algorithms are derived from general basic assumptions underlying the stochastic modelling of an image as a 2D gaussian random field. An appealing feature of the proposed algorithms is that the image pixels are estimated one at a time; this makes it possible to save computation time and memory requirement with respect to the filtering procedures based on strip processing. Experimental results show the effectiveness of the new filtering schemes

    Two-dimensional recursive parameter identification for adaptive Kalman filtering

    Get PDF
    Includes bibliographical references (page 1081).This paper is concerned with the development of a 2-D adaptive Kalman filtering by recursive adjustment of the parameters of an autoregressive (AR) image model with non symmetric half-plane (NSHP) region of support. The image and degradation models are formulated in a 2-D state-space model, for which the relevant 2-D Kalman filtering equations are given. The recursive parameter identification is achieved using the extension of the stochastic Newton approach to the 2-D case. This process can be implemented on-line to estimate the image model parameters based upon the local statistics in every processing window. Simulation results for removing an additive noise from a degraded image are also presented

    Full-plane block Kalman filter for image restoration, A

    Get PDF
    Includes bibliographical references.A new two-dimensional (2-D) block Kalman filtering method is presented which uses a full-plane image model to generate a more accurate filtered estimate of an image that has been corrupted by additive noise and full-plane blur. Causality is maintained within the filtering process by employing multiple concurrent block estimators. In addition, true state dynamics are preserved, resulting in an accurate Kalman gain matrix. Simulation results on a test image corrupted by additive white Gaussian noise are presented for various image models and compared to those of the previous block Kalman filtering methods

    Two-dimensional adaptive block Kalman filtering of SAR imagery

    Get PDF
    Includes bibliographical references.Speckle effects are commonly observed in synthetic aperture radar (SAR) imagery. In airborne SAR systems the effect of this degradation reduces the accuracy of detection substantially. Thus, the elimination of this noise is an important task in SAR imaging systems. In this paper a new method for speckle noise removal is introduced using 2-D adaptive block Kalman filtering (ABKF). The image process is represented by an autoregressive (AR) model with nonsymmetric half-plane (NSHP) region of support. New 2-D Kalman filtering equations are derived which take into account not only the effect of speckles as a multiplicative noise but also those of the additive receiver thermal noise and the blur. This method assumes local stationarity within a processing window, whereas the image can be assumed to be globally nonstationary. A recursive identification process using the stochastic Newton approach is also proposed which can be used on-line to estimate the filter parameters based upon the information within each new block of the image. Simulation results on several images are provided to indicate the effectiveness of the proposed method when used to remove the effects of speckle noise as well as that of the additive noise

    Signal Processing and Restoration

    Get PDF

    Probabilistic modeling and inference for sequential space-varying blur identification

    Get PDF
    International audienceThe identification of parameters of spatially variant blurs given a clean image and its blurry noisy version is a challenging inverse problem of interest in many application fields, such as biological microscopy and astronomical imaging. In this paper, we consider a parametric model of the blur and introduce an 1D state-space model to describe the statistical dependence among the neighboring kernels. We apply a Bayesian approach to estimate the posterior distribution of the kernel parameters given the available data. Since this posterior is intractable for most realistic models, we propose to approximate it through a sequential Monte Carlo approach by processing all data in a sequential and efficient manner. Additionally, we propose a new sampling method to alleviate the particle degeneracy problem, which is present in approximate Bayesian filtering, particularly in challenging concentrated posterior distributions. The considered method allows us to process sequentially image patches at a reasonable computational and memory costs. Moreover, the probabilistic approach we adopt in this paper provides uncertainty quantification which is useful for image restoration. The practical experimental results illustrate the improved estimation performance of our novel approach, demonstrating also the benefits of exploiting the spatial structure the parametric blurs in the considered models

    A class of adaptive directional image smoothing filters

    Get PDF
    Cataloged from PDF version of article.The gray level distribution around a pixel of an image usually tends to be more coherent in some directions compared to other directions. The idea of adaptive directional filtering is to estimate the direction of higher coherence around each pixel location and then to employ a window which approximates aline segment in that direction. Hence, the details of the image may be preserved while maintaining a satisfactory level of noise suppression performance. In this paper we describe a class of adaptive directional image smoothing filters based on generalized Gaussian distributions. We propose a measure of spread for the pixel values based on the maximum likelihood estimate of a scale parameter involved in the generalized Gaussian distribution. Several experimental results indicate a significant improvement compared to some standard filters. Copyright (C) 1996 Pattern Recognition Society

    Blind Single Channel Deconvolution using Nonstationary Signal Processing

    Get PDF
    corecore