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Probabilistic modeling and inference for sequential

space-varying blur identification

Yunshi Huang, Émilie Chouzenoux, Senior Member IEEE, and Vı́ctor Elvira, Senior Member IEEE

Abstract—The identification of parameters of spatially variant
blurs given a clean image and its blurry noisy version is a
challenging inverse problem of interest in many application fields,
such as biological microscopy and astronomical imaging. In this
paper, we consider a parametric model of the blur and introduce
an 1D state-space model to describe the statistical dependence
among the neighboring kernels. We apply a Bayesian approach
to estimate the posterior distribution of the kernel parameters
given the available data. Since this posterior is intractable for
most realistic models, we propose to approximate it through a
sequential Monte Carlo approach by processing all data in a
sequential and efficient manner. Additionally, we propose a new
sampling method to alleviate the particle degeneracy problem,
which is present in approximate Bayesian filtering, particularly in
challenging concentrated posterior distributions. The considered
method allows us to process sequentially image patches at
a reasonable computational and memory costs. Moreover, the
probabilistic approach we adopt in this paper provides uncer-
tainty quantification which is useful for image restoration. The
practical experimental results illustrate the improved estimation
performance of our novel approach, demonstrating also the
benefits of exploiting the spatial structure the parametric blurs
in the considered models.

Index Terms—Blur identification; spatially-variant blur;
Bayesian estimation; particle filtering.

I. INTRODUCTION

Images produced by optical instruments often suffer from

blur caused by light diffraction or object motion. The presence

of the blur provokes an infinitesimal point-source to be spread

in the acquired image defining the so-called Point Spread

Function (PSF). When the PSF is unknown, one can resort

to a blind deconvolution strategy [1], [2], [3], [4] to jointly

retrieve the image and blur. Another approach consists in first

identifying the blur and then removing it from the degraded

images using a non-blind restoration strategy [5], [6]. This

demands a good accuracy for the PSF estimation, which can

be efficiently reached by a preliminary acquisition step of

normalized and calibrated objects, such as fluorescent spher-

ical microbeads in microscopy [7], [8] or resolution charts

in digital camera calibration [9], [10]. The PSF identification

problem is formulated as a least-squares one. On top of

serving for image restoration purposes, the identified PSF can

also be fitted into a parametric non-linear model in order

to determine characteristics of the optical system [11], [12],

[13], [14]. In most realistic scenarios, the stationary PSF

model is not suitable due to extended depth of field [15],

[16], moving objects or cameras [17], [18], anisotropic optical

The authors acknowledge support from the Agence Nationale de la

Recherche of France under PISCES (ANR-17-CE40-0031-01) and MAJIC
(ANR-17-CE40-0004-01) projects.

lens aberrations [19], or atmospheric turbulence [20], [21],

[22]. Such image degradation sources give rise to a so-called

spatially variant blur [23], [24]. The PSF identification then

requires the recovery of a PSF map, describing the blur kernel

at each location of the spatial plane [25].

In this paper, we address the problem of estimating in a

sequential manner the parameters of spatially variant PSFs

from calibrated image acquisitions. We consider a flexible

piecewise constant parametric model for the space-varying

PSF map that allows us to describe smooth variations among

PSFs acting on neighbor regions. We formulate a state-

space model where each time step corresponds to a different

patch location. We adopt a probabilistic approach, aiming

at producing posterior distributions of the unknowns. The

probabilistic approach allows for dealing with the uncertainty

in a systematic manner and the inclusion of prior knowl-

edge about the unknowns. As a consequence, we are able

not only to provide uncertainty measures on the unknown

parameters, but also to propagate this uncertainty to useful

tasks where those estimated parameters are used (e.g., in

deblurring). In our approach, the prior probability density

function (pdf) of the parameters has a Markovian structure,

which allows us to inherit existing inference approaches for

the sequential inference. Note that more complicated local

dependencies could be modeled, e.g., via Markov random

fields, at the expense of losing the aforementioned simplic-

ity in the inference task. Our flexible formulation includes

the consideration of potential non-standard observation and

transition models. More precisely, we can operate virtually

with any non-linear and non-Gaussian model. Due to the

intractability of the Bayesian recursions, we resort to particle

filtering (PF) for an approximate inference solution. We start

by considering existing PF methods, such as the well-known

bootstrap PF (BPF) [26]. While the BPF can obtain adequate

results in some models, it presents some deficiencies, for

instance in scenarios with low observation noise, where the

peaky likelihood challenges the diversity among particles (see

for instance [27] about the particle degeneracy problem). Due

to these limitations, we propose a new PF method that we

call Generalized Interacting Annealed PF (GIAnPF). The new

PF tackles the particle degeneracy by considering a sequence

of intermediate distributions, that are annealed versions of

the filtering distribution. The considered sequential Bayesian

framework provides us with three key advantages, namely (i)

low computational cost and limited memory load due to a

sequential processing; (ii) a flexible choice of the state-space

models that enables us to consider non-linear relations and

non-Gaussian noise; and (iii) a measure of statistical uncer-
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tainty on the estimated parameters of kernels. The sequential

approach can be exploited to build online implementations

in applications involving very large scale images available

in batches. Dealing with the image in a sequential manner

also alleviates the need of large memory capacity, since the

information of previously processed patches does not need to

be stored.

We demonstrate the good performance of the proposed

approach as well as its robustness through several sets of

numerical experiments for three representative parametric blur

shapes. We also illustrate the validity of the resulting estima-

tions, to solve image restoration problems.

The rest of the paper is organized as follows. Section II

introduces the problem of spatially variant blur identification.

We review the literature around this topic and discuss the

construction of parametric blur models. Section III presents

the state-space models for parametric PSF estimation and

propose our algorithm for Bayesian inference. Section IV

shows abundant experimental validation, and Section V closes

the paper with some final remarks.

II. PROBLEM STATEMENT

Let us assume the clean image is x ∈ R
N and its corre-

sponding blurred and noisy image y ∈ R
N that is corrupted

by spatially variant blur and noise with given level. Each pair

of image x,y ∈ R
N are decomposed into a partition of T

patches (xt)
T
t=1 ∈ R

P , PT = N , and (yt)
T
t=1 ∈ R

P . We

assume that each patch of the observed image is given by:

yt = Xtht + nt. (1)

Hereabove, yt ∈ R
P represents the blurry noisy patch,

ht ∈ R
L is the blur kernel to be estimated at patch t, and

nt ∈ R
P models an additive noise. Moreover, Xt ∈ R

P×L is a

suitable matrix related to the blur of a patch t of original image

x. The model in Eq. (1) identifies with the PSF-interpolation

model from [28, Eq. (22)], where the interpolation strategy

depends on the choice made for Xt (see also [29], [24]). In

all our practical experiments, for simplicity and complexity

reasons, we will adopt the piecewise constant PSF model

from [28, Eq.20], that is the order 0 (i.e., nearest neighbor)

PSF-interpolation model. Note that several other strategies are

available for modeling the space-varying blur operator, for

instance in [30], [28], [31], [24], [32], with various modeling

accuracy and computational costs. Our choice in Eq. (1) is

particularly well suited for fast blur identification due to the

separability over patches. This model was also considered in

[33], [29], [34], [25]. In many practical situations, a prior over

the blur shape is available. It is thus convenient to introduce

a parametric model for those blur kernels, with the advantage

of reducing the number of unknowns to estimate in the blur

identification task. Each kernel is then assumed to read:

ht = h(ρt), t = 1, . . . , T (2)

where h is a known function, not depending on t, that

describes the general shape of the kernels, specified by pa-

rameters (ρt)
T
t=1 ∈ R

K , with K ≥ 1 typically much lower

than L. In this paper, we focus on the problem of sequential

parametric blur estimation, which amounts to retrieve, for

every t = 1, . . . , T , an estimate for ρt, given the knowledge of

the past and present observations (Xi,yi)
t
i=1 and the function

h(·). The main underlying assumption in our approach is

the smooth variation of the kernel shape parameters when

progressing sequentially along the patch indexes t = 1, . . . , T
(see discussion in Sec. III-B about patch ordering). Therefore,

our approach is particularly well suited for space-varying

blurs arising from optical aberrations (e.g., phase aberration

[35], atmospheric aberration [22]), and smooth motion (e.g.,

camera motion blur [36]). One can also refer to the smooth

varying PSF maps used as illustrative examples in [30],

[28]. As described in Section III, the spatial dependence is

encoded in the transition density among consecutive patches,

which acts as a prior pdf. We note that, as it is often the

case in Bayesian inference, vague enough priors are usually

adequate particularly when enough informative observations

are available. In contrast, this paper does not cover PSF maps

with abrupt changes, such as those considered in [17], [15].

As we will show below, we exploit the similarity of kernels

that are spatially close during the inference/estimation task.

More precisely, unlike in other approaches, here the data of

one patch is implicitly used to better estimate the parameter

of other patches, which explains the good performance of the

proposed modeling and methodology.

A. Related literature and contributions

The problem of space-varying blur identification has been

widely studied in the literature of image processing. It is

important to distinguish two types of approaches. First, there

exists a bunch of methods, for performing image deblurring in

the presence of an unknown space-varying blur degradation,

thus corresponding to blind image restoration [16], [29], [23],

[18] in the case of motion blur. We also refer the reader to the

recent work [37] for a review on this topic. Let us also mention

[24] for the case of multi-frame blind image restoration. Most

of these methods are focused on the restoration task, and not

on the quantitative estimation of the blur map itself. This

is at the exception of [16], [23], [18], that jointly restore

the image and a piecewise-constant map, obtained through a

segmentation-based strategy, describing the non-stationary blur

effects. Though image restoration is a problem of high interest,

in certain applications such as microscopy or astronomical

imaging, an accurate qualitative and quantitative knowledge of

the blur effects is key for a better understanding and improving

(e.g., through calibration) of the imaging device [19], [38],

[39], [40]. For performing blur identification, it is necessary to

make structural assumptions on the blur map to be estimated.

For e.g., [15] assumes a finite set of candidate defocus blurs,

to be tested in each location of the image, or [41] considers

parametric blurs depending only on a single parameter. The

blur estimation can also be facilitated by making use of a

calibrated image (e.g., fluorescent bead in microscopy, distant

star in astronomical imaging) in order to reduce the ill-

posedness of the identification problem. When the PSF is

stationary, and no parametric model of it is further assumed,

its estimation from calibrated image acquisition can be easily
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solved by a penalized least-squared algorithm (see for instance

[42] for an efficient method in the case of large size images).

The problem raised in this case is similar to the one arising

in high dynamic range image fusion, for which wavelet-based

methods have shown their efficiency [43], [44]. If, additionally,

a parametric model of the PSF is available, non-linear least

squares method, such as Levenberg-Macquart [13], or more

recent proximity-based algorithms [12], can be employed for

estimating directly the sought parameters. However, when PSF

is non stationary, the accurate identification of its shift-variant

evolution becomes much more challenging to resolve, even

when the image is calibrated (i.e., known). This problem is

typically addressed using optimization-based methods [25],

[34]. We also refer the reader to [38] and references therein,

for a review of the problem and recent insights, in the partic-

ular context of astronomical imaging. In the aforementioned

works, no parametric model of the PSF was assumed though

it is highlighted in [38] as a promising research direction.

Moreover, most available techniques address the problem in a

batch manner, requiring the loading of the full image before

the starting of the identification process, which can be at

the price of a high memory cost in high resolution imaging

or even incompatible with an on-the-fly image acquisition

(e.g., satellite imaging). Furthermore, up to our knowledge,

no Bayesian-based techniques have been proposed so far, so

that available strategies provide only point-wise estimators

for the PSF field. We conclude this state-of-the-art review by

emphasizing that several works exploit the smooth variability

of the PSFs within the field of view, with the aim to reduce

the cost of the non-stationary blur operator [28], [30] or to

perform PSF field interpolation [45], [46].

In this paper, we propose a Bayesian sampling method, for

the identification of parametrized space-varying blurs in the

context of calibrated images 1. Our contribution is threefold: (i)

the particle filtering strategy employed for sampling leads to a

sequential and fast estimation result; (ii) the proposed method

is versatile and easily adapted to diverse parametric blur

shapes; and (iii) the Bayesian framework allows us to provide

a posterior estimation, including uncertainty quantification, for

the PSF map parameters.

B. Relevant parametric PSF models

The general model of Eq. (2) enables to encompass various

blur shapes. Hereafter, we present three interesting classes

of parametric blur models, that will be used thereby in the

experiments of the paper. To simplify the notation, let us

ignore the subscript for patch t in this subsection. Without

loss of generality, we consider kernels with square support

parametrized by a grid with length
√
L (assumed to be an

odd integer), centered and regularly spaced, denoted G =

{−
√
L−1
2 ,−

√
L−1
2 + 1, . . . , 0, 1, . . . ,

√
L−1
2 }. The blur shape

is determined by the values of a given function h(c1, c2) for

(c1, c2) ∈ G2. Otherwise stated, (c1, c2) are the (signed) dis-

tances, in pixels, from the origin (i.e., the center position of the

squared kernel) in the horizontal and vertical axis, respectively.

1A limited version of this work was presented by the authors in the
conference paper [47].

The vector h(ρ) ∈ R
L is then simply deduced by ordering the

entries of matrix [h(c1, c2; ρ)](c1,c2)∈G2 ∈ R

√
L×

√
L, following

the lexicographic order2. The normalization constants and the

support size for each presented blur shape are presented in

Appendix A.

a) Generalized Gaussian blur: space-varying general-

ized Gaussian blur shapes have been employed for instance in

[48] in the context of out-of-focus image deblurring. Such blur

is parametrized by ρ = (θ, s) with θ ∈ R and s = (s1, s2) ∈
(0,+∞)2 the orientation and width parameters, respectively.

The parametric model then reads:

(∀(c1, c2) ∈ G2),

h(c1, c2;ρ) = λ exp

(

−1

2

([c1 c2]Σ
−1(θ, s)[c1 c2]

⊤)p

αp

)

,

(3)

with p > 0 and α > 0 the power and the scale of generalized

Gaussian model, respectively, and λ the normalization constant

(see (30) in App. A). Moreover,

Σ(θ, s) = Rθ

[

s21 0
0 s22

]

R⊤
θ (4)

with Rθ ∈ R
2×2 the rotation matrix defined by the orientation

angle θ,

Rθ =

[

cos θ − sin θ
sin θ cos θ

]

. (5)

We can ensure that the kernel value in its support corner is

less or equal than a h(0, 0;ρ), for some a ∈ (0, 1), as soon as

s1 ≤ smax, s2 ≤ smax with smax given in (31) in App. A. Note

that when p = α = 1 in (3), we recover the common Gaussian

blur model, used for instance in fluorescence microscopy in

[49]. An example is displayed in Fig. 1(left).

b) Defocus blur: Defocus space-varying blurs have been

considered for example in [50] in the context of depth esti-

mation in digital camera images. Defocus blur kernel can be

parametrized by ρ = (θ, s) with θ ∈ R and s ∈ (0,+∞)2.

The parametric model is,

(∀(c1, c2) ∈ G2)

h(c1, c2;ρ) =

{

λ if (c1, c2) ∈ C(θ, s)

0 otherwise
, (6)

with the normalization constant λ defined in (32) in App. A.

and the elliptical domain:

C(θ, s) =
{

(c1, c2) ∈ G2 such that

(c1 cos θ + c2 sin θ)
2

s21
+

(c1 sin θ − c2 cos θ)
2

s22
≤1

}

. (7)

The latter can easily be ensured to be included into the kernel

support, under the condition that s1 ≤ smax, s2 ≤ smax with

smax given in (33) in App. A. An example of such blur is

displayed in Fig. 1(middle).

2The lexicographic ordered vector associated to a matrix

[

a b
c d

]

is the

column vector [a b c d]⊤.
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c) Skew-normal blur: The skew-normal blur shape [51]

was first considered in [52] to build synthetic image de-

blurring problems. Its ability for modeling shift-variant PSFs

in real digital imaging sensors was then illustrated in [53].

This blur model depends of five positive parameters ρ =
(s1, s2, w, α1, α2), as follows:

(∀(c1, c2) ∈G2),

h(c1, c2;ρ) = λexp

(

−1

2

[

γ1
γ2

]⊤
S−1(w)

[

γ1
γ2

]

)

×
∫ α1γ1+α2γ2

−∞
exp

(

−z2

2

)

dz, (8)

where

γ1 =
c1

s1
, γ2 =

c2

s2
, S(w) =

[

1 w

w 1

]

, (9)

and the normalization constant λ given in (34), in App. A. As

shown in [51, Eq. (2.4)], parameters (w,α1, α2) must ensure

that the matrix below is positive definite:




1 w−δ1δ2

(1−δ21)
1
2 (1−δ22)

1
2

w−δ1δ2

(1−δ21)
1
2 (1−δ22)

1
2

1



 . (10)

which amounts to satisfying the following technical condi-

tions:

δ1δ2 −
√

(1− δ21)(1− δ22) < w < δ1δ2 +
√

(1− δ21)(1− δ22),

α1 =
δ1 − δ2w

√

(1− w2)(1− w2 − δ21 − δ22 + 2δ1δ2w)
, (11)

α2 =
δ2 − δ1w

√

(1− w2)(1− w2 − δ21 − δ22 + 2δ1δ2w)
,

for some (δ1, δ2) ∈ (−1, 1)2. Hereagain, the maximal propor-

tion a ∈ (0, 1) reached on the corner of the kernel support

can be imposed by setting s1 and s2 no greater than smax

given in (35), in App. A. The skew-normal blur reduces to the

Gaussian blur when α1 = α2 = 0. An example is displayed

in Fig. 1(right).

Fig. 1. (left) Gaussian blur with θ = 0, s = [0.2; 0.1]
√
L,α = 1, p = 1

and L = 152 ; (middle) defocus blur with θ = 0, s = [0.2; 0.1]
√
L and

L = 252; (right) skew-normal blur with s1 = 0.15
√
L, s2 = 0.15

√
L,w =

0, α1 = 1.5, α2 = 1.5 and L = 152.

III. SPACE-VARYING BLURS MODELING AND INFERENCE

In this section, we first present our novel modeling approach

for space-varying blur maps based on state-space models.

We describe the standard bootstrap particle filter (BPF) for

inference in such models. After pointing the limitations of the

BPF in this context, we propose the Generalized Interacting

Annealed PF (GIAnPF). Finally, we discuss the properties

of GIAnPF and the connections with other methods of the

literature.

A. State-space modeling for blur identification

We start by considering a generative state-space model

(SSM), where the hidden state represents the hidden (hence

unknown) parameters of the variant PSFs. This generative

modeling allows for a systematic Bayesian estimation of the

unknown parameters, which are considered hidden states in

the SSM literature [54]. It allows to explicitly model the

spatial smoothness of the PSF field. For example, the variation

among neighbor patches can be a small rotation and change

of width (see hereafter for a discussion regarding the order of

the patches). Let us consider a state-space model given by

p(ρ0), (12)

p(ρt|ρt−1), (13)

p(yt|ρt,Xt), (14)

for t = 1, ..., T , where p(ρ0) is the prior distribution,

p(ρt|ρt−1) is the transition model that generates the patch

parameters t given the previous patch t− 1, and p(yt|ρt,Xt)
is the observation model of patch t (that can be seen as the

likelihood function when yt is observed). The goal is to ap-

proximate probabilistically and sequentially the unknown pa-

rameters ρt for each patch t given subsets of data {Xt,yt}Tt=1.

In particular, one can obtain the so-called filtering posterior

distribution p(ρt|X1:t,y1:t), i.e., the posterior on ρt condi-

tioning on all data up to t.

B. Patch ordering for a sequential processing

The proposed approach requires setting the order in which

the data will be sequentially processed. The parameters of

consecutively processed patches must keep certain similarity

in such a way the spatial information can be exploited.

The underlying assumption in our approach is that the blurs

affecting consecutive patches in the sequence have similar

shape parameters. Otherwise stating, the parameters of the

blurs should not change abruptly when going from patch t

to patch t − 1. Smooth PSF maps can then be identified, as

soon as consecutive patches are spatially close. This is actually

not the case if the patches are numbered naively following

the lexicographic order, as illustrated in Figure 2(left). More

suitable ordering must be adopted. If no additional structural

assumption is available on the PSF map, we would suggest

the zig-zag order, reminiscent from the one used in DCT-

based image compression [55] (Fig. 2(middle)). Circular blur

maps, as those modeling phase aberrations ([28, Sec.3.4],[35],

[53],[34, Chap.4]), would be identified better by using a spiral

ordering (Fig. 2(right)). Phase aberrations (and thus, the PSF

width) tend to increase when getting further from the center.

The spiral ordering is thus more suitable as it implicitly

promotes changes of the PSF parameters depending mostly

on the distance to the image center. The spiral ordering will

be retained in most experiments of the paper.

The smooth variations between consecutive kernels can be

easily encoded using a Gaussian distribution for p(ρt|ρt−1). In

order to ensure that the sampled blurs do not have degenerate

shapes, range constraints can furthermore be enforced on

some parameters (e.g., strict positivity for the width param-

eter, bounded PSF support), simply by considering truncated
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Fig. 2. Patch ordering (in the case of 4 × 4 structure): (left) lexicographic
; (middle) zig-zag ; (right) spiral.

Gaussian distributions (see more details in Section IV). Note

that it would be also possible to learn an optimal pattern

to scan/process the data. Intuitively, the modeling/inference

results of our proposed method would benefit for finding

an order where consecutive kernels would be as similar as

possible. This could be done for instance by first running a

fast (but inaccurate) optimization-based strategy to choose the

ordering in which the SSM would be constructed.

C. Bayesian inference in SSMs through particle filtering

Linear-Gaussian state-space models are often used since

they allow for closed-form filtering and smoothing distribu-

tions via the well-known Kalman Filter (KF) [56]. However, in

this paper we focus on more complex models which broadens

the flexibility and applicability of our approach. Unfortunately,

in these models the targeted probability density functions (pdf)

are intractable and approximations are required. Extensions

of the Kalman filter exist, e.g., the extended Kalman filter

(EKF) or the unscented Kalman filter (UKF) although they

can greatly deviate from the true solution when the model

is heavily non-linear non-Gaussian. In order to tackle these

limitations, we consider an approach based on Monte Carlo ap-

proximations, and in particular on particle filtering (PF) [26].

We start by considering the bootstrap particle filtering

(BPF) in Table I, the first and arguably the most relevant

PF [26]. The BPF departs by simulating M samples (or

particles) from the prior distribution. Then, for each patch t, it

simulates M particles {ρ(m)
t }Mm=1 from the transition model

by conditioning on the previous particles (Step 2a). Then,

normalized importance weights are computed as the evaluation

of the likelihood at each ρ
(m)
t in such a way all weights sum

up to one (Step 2b). A resampling step is performed (Step

2d) in order to avoid particle degeneracy (see more details in

[57]). As a result, the BPF approximates the filtering posterior

distribution p(ρt|X1:t,y1:t) for each patch t from the set of

M weighted particles {ρ(m)
t , w

(m)
t }Mm=1.

Note that other existing PFs can be also used in this

problem, e.g., the auxiliary PFs (APFs) [58], [59], [60] or

the Rao-Blackwellized PF [27], [61], [54]. The research on

PF has been very active in the last decade, and new PFs have

been proposed in order to overcome existing challenges.

In the specific application we tackle here, we are facing

the well-known particle degeneracy problem, appearing due

to very informative observations (hence, peaky likelihood).

In particular, typical suitable parametric PSF models are very

sensitive w.r.t. some of their parameters and the variance of

the observation noise can be relatively low. Particle degeneracy

TABLE I
BPF ALGORITHM FOR SPACE-VARYING BLUR IDENTIFICATION.

1) Initialization. Draw M i.i.d. samples, {ρ(m)
0 }Mm=1 from the prior

p(ρ0).
2) Filtering step. For t = 1, ..., T :

a) Simulate

ρ
(m)
t ∼ p(ρt|ρ(m)

t−1), m = 1, ...,M (15)

b) Compute the normalized weights by

w
(m)
t ∝ p(yt|ρ(m)

t ,Xt), m = 1, ...,M. (16)

c) Resample M times from {ρ(m)
t }Mm=1 with associated prob-

abilities {w(m)
t }Mm=1, i.e., for m = 1, ...,M , let ρ

(m)
t =

ρ
(j)
t with probability w

(j)
t , j = 1, ...,M

3) Output: The filtering step provides M weighted particles

{ρ(m)
t , w

(m)
t }Mm=1 at each t, for the approximation of the filtering

distribution.

refers to the (undesirable) effect where few particles (or even

only one) remain after the resampling step. This reduces

the diversity of the particle approximation and endangers the

estimation of the blur parameters in the following patches.

In the next section, we present a new PF that addresses the

shortcomings of off-the-shelf PFs in such challenging scenario.

D. Generalized Interacting Annealed PF

In this paper we propose the novel Generalized Interacting

Annealed PF (GIAnPF) algorithm. It implements an annealing

mechanism (see for instance [62]) that overcomes the afore-

mentioned limitations. Instead of directly approximating the

targeted distribution, a sequence of modified distributions is

considered. In such way, the algorithm starts by considering

a more convenient distribution (i.e., sufficiently spread) while

the last distribution is the true posterior of interest (in our case,

the filtering distribution).

The GIAnPF algorithm is described in Table II. It starts by

simulating M particles from the prior distribution in Step 1.

However, unlike in the BPF or the APF, GIAnPF considers

a sequence of Q intermediate steps in the processing of the

data at each patch t. In the prediction step, M particles of the

previous annealing layer {ρ(m)
t,Q+1}Mm=1 are generated from the

transition model by conditioning on the particles at time t− 1
(Step 2a). Considering a sequence 0 = βQ+1 < βQ < · · · <
β1 < β0 = 1 and starting from q = Q with a relatively small

βQ, we first compute the weights by evaluating the tempered

likelihood at ρ
(m)
t,q+1 (Step 2b), then each particle is resampled

from the whole set of M particles with probability equal to

the associated normalized weights (Step 2c). Finally, the new

set of particles is simulated according to a transition kernel

(Step 2d). We perform one step of Metropolis-Hastings (M-H)

algorithm to sample from the transition kernel Tt,q+1(·) with

proposal N (·, κ2
q+1I), where κ2

q+1 is the variance of the kernel

[63], as it is common in sequential Monte Carlo samplers [64].

Note that in the last step, with q = 0, the exponent is β0 = 1,

and therefore the M-H targets the true posterior pdf of the

kernel parameters, which ensures the invariance of the particle

approximation.
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TABLE II
GENERALIZED INTERACTING ANNEALED PF FOR SPACE-VARYING BLUR

IDENTIFICATION.

1) Initialization. Draw M i.i.d. samples, {ρ(m)
0,0 }Mm=1 from the prior

p(ρ0). Set Q ∈ N.
2) Bayesian recursion. For t = 1, ..., T :

a) Propagate the particles as

ρ
(m)
t,Q+1 ∼ p(ρt,Q+1|ρ(m)

t−1,0), m = 1, ...,M (17)

For q = Q,Q− 1, . . . , 0,

b) Compute the normalized tempered weights as:

ξ(m) ∝ p(yt|ρ(m)
t,q+1,Xt)

βq−βq+1 , m = 1, . . . ,M
(18)

where 0 = βQ+1 < βQ < · · · < β1 < β0 = 1
c) resample

ρ
(m)
t,q+1 = ρ

(j)
t,q+1,with probability ξ(j),

for each m = 1, ...,M
d) sample as

ρ
(m)
t,q ∼ Tt,q+1(ρ

(m)
t,q+1), m = 1, . . . ,M (19)

3) Output: At each t, we provide a set of M unweighted particles

{ρ(m)
t,0 }Mm=1, for the approximation of the filtering distribution.

Rationale and parameter selection. The rationale of GIAnPF

is as follows. The first exponent, βQ, is chosen in such a way

the targeted distribution is a sufficiently flattened version of

the likelihood. Then, for each annealing layer q = Q, . . . , 1, a

larger βq−1 than the previous one is adopted so that the likeli-

hood used when evaluating the weights becomes increasingly

closer to the original one. The final particles at this time step

t, {ρ(m)
t,0 }Mm=1, are then those used for the approximation of

the filtering distribution.

This annealing procedure is especially helpful when the

likelihood varies a lot among the particles, so that only few

particles would have been chosen if the exact likelihood was

used to do the sampling. In Step 2b), we compute the tempered

weights to deal with the particle degeneracy problem. In Step

2c), the particle ρ
(m)
t,q+1 is resampled from the set of simulated

particles, {ρ(j)
t,q+1}Mj=1, with associated probabilities {ξ(j)}Mj=1.

In Step 2d), we apply one step of the M-H to the re-sampled

particles, to ensure that the particle approximation converges

to the true targeted distribution (i.e., without the tempering

exponent). Note that GIAnPF can be seen as a generalized

version of the BPF, since it contains this algorithm as particular

case when we set Q = 0 and the M-H iteration (Step 2d) is

avoided, i.e., with κq+1 = 0.

Connections to the literature. The GIAnPF connects with

several algorithms in the literature. As stated above, it can

be seen as a generalization of the BPF [26]. It also holds

clear links with annealing schemes such as [62], [65], [66],

[67]. In the context of PF, [48] conducts interacting MCMC

sampling procedure with the particles obtained from the BPF

as the starting point. In [68], the authors incorporate the

annealing strategy within a Rao-Blackwellised Particle Filter

and update the sample size using Kullback-Leibler Divergence

transformation. The algorithm proposed in [69] also bears

some similarities with GIAnPF in its use of an annealing

scheme in a PF. However, unlike in [69], our proposed method

keeps closer ties to the standard BPF by modifying the sam-

pling/weighting and adding an M-H update, which allows the

particle approximation to converge to the filtering distribution

with M (for any value of Q), and hence constructing consistent

estimators of the sought intractable integrals.

IV. EXPERIMENTAL RESULTS

A. Construction of an experimental database

We first describe the experimental database. It is composed

of a set of several pairs of clean/degraded images associated

to various choices for the patch decomposition, shift variant

blur maps, and noise levels.

1) Images: We consider three images of size N = 512 ×
512 (displayed in Fig. 4), namely, Chart, Cells, and

Hubble. These are representative images of calibrated objects

(e.g., resolution charts, fluorescent beads and distant stars)

typically used to estimate spatially variant blur parameters.

In all our experiments, patches of size 64 × 64 are used and

the blurry noisy version y is generated following Eqs. (1)-(2),

using i.i.d. zero-mean Gaussian noise with standard deviation

σn > 0, so that p(yt|ρt) = N (Xth(ρt), σ
2
nI).

2) Shift-variant blur maps: Five realistic space-varying

blur maps, associated to the three blur shapes presented in

Sec. II-B, are constructed. To this aim, we take inspiration

from the examples provided in [30, Fig.8], [6, Fig.7], [6, Fig.7]

and [53, Fig.4]. In most of our models, we will consider the

existence of an optical center for the device, and that the blur

width/orientation depends on the relative position of the patch

with respect to this center. Instead of considering deterministic

maps, as in the aforementioned works, we include some

randomized settings in the expressions so as to simulate more

realistic scenarios of an optical device whose effect on the

image may slightly vary with respect to external conditions

(temperature, laser power, planarity of the disposal). For a

pre-specified abscissa-ordinate system in the 2D image plan,

we denote, for a given patch t, ot = (o1,t, o2,t) the coordinates

of the patch center, ô = (ô1, ô2) the coordinates of the chosen

optical center of the device, and ℓt = ‖ot − ô‖ the Euclidian

distance between both. The associated parameters, gathered

in vector ρt, are defined as follows, for the five considered

models. Figure 3 displays examples of three realizations of

each of those, illustrating the variability among patches, and

also among different realizations for the same model.

a) Map 1: We assume Gaussian blurs, with size L =
152, with width and orientation parameters st and θt at each

patch t. We opt for the spiral patch ordering and we set, for

every t,

θt = arctan

(

o1,t − ô1

o2,t − ô2

)

+ ǫt, (20)

where ǫt ∼ N (π2 , σ
2
ǫ ),

s1,t = δ1,tℓt, s2,t = δ2,tℓt. (21)

where δ1,t ∼ U([δ1,min, δ1,max]), δ2,t ∼ U([δ2,min, δ2,max])
with (σǫ, δ1,min, δ1,max, δ2,min, δ2,max) positive scalars.
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Fig. 3. Three realizations (from left to right) of the space-varying blur Maps
1 to 5 (from top to bottom). Each column displays one realization from the
generative model. One can notice that, for each given row (i.e., blur map),
the three images displayed share the same global aspect (e.g., circular map
in rows 1, 2 or 5) with some slight variability, for instance in the blur kernel
widths and orientations.

b) Map 2: We consider Gaussian blurs with size L = 152

with width and orientation parameters st and θt at each patch

t. We use the spiral patch ordering and, for every t, we set

θt = arctan

(

o1,t − ô1

o2,t − ô2

)

+ ǫt, (22)

where ǫt ∼ N (π2 , σ
2
ǫ ),

{

s1,t =
1
8 (δ1,t|o1,t − ô1|+ 1)

s2,t =
1
8 (δ2,t|o2,t − ô2|+ 1)

(23)

with δ1,t ∼ U([δ1,min, δ1,max]), δ2,t ∼ U([δ2,min, δ2,max]) and

(σǫ, δ1,min, δ1,max, δ2,min, δ2,max) some positive scalars.

c) Map 3: We consider Gaussian blurs with size L = 152

with width and orientation parameters st and θt at each patch

t. The patches are ordered in lexicographic order and, for every

t, we set

θt ∼ U([0, π
8
]), (24)

and
{

s1,t =
1
8 (δ1,t − o1,t),

s2,t =
1
15 (δ2,t − o2,t),

(25)

where δ1,t ∼ U([δ1,min, δ1,max]), δ2,t ∼ U([δ2,min, δ2,max]),
and (δ1,min, δ1,max, δ2,min, δ2,max) are some positive scalars.

d) Map 4: We assume blurs with defocus shape, with

size L = 252 parametrized by width and orientation param-

eters st and θt at each patch t. We order the patches in

lexicographic order and, for every t, we set

θt ∼ U([0, π
8
]), (26)

and
{

s1,t =
1
3 (δ1,t − o1,t),

s2,t =
1
6 (δ2,t − o2,t),

(27)

with δ1,t ∼ U([δ1,min, δ1,max]), δ2,t ∼ U([δ2,min, δ2,max]), and

(δ1,min, δ1,max, δ2,min, δ2,max) some positive scalars.

e) Map 5: We specify here a generative model for the

particular case of the skew-normal blur, with size L = 152,

with the aim to mimic the shift-variant blur map that was

considered in the experiments of [53]. We order the patches

in spiral order and we set

ωt = sign

(

o1,t − ô1

o2,t − ô2

)

(

1− 2
∣

∣|o1,t − ô1| − |o2,t − ô2|
∣

∣

)

.

(28)

We then create a shift-variant map with skew normal shapes

of parameters






























s1,t =
1
3 (|o2,t − ô2|+ 1

2 )(ℓt +
1
5 ) + δ1,t,

s2,t =
1
3 (|o1,t − ô1|+ 1

2 )(ℓt +
1
5 ) + δ2,t,

wt =
7
5ωtℓt + δ3,t,

α1,t = δ4,t(1− ℓt),

α2,t = δ5,t(1− ℓt),

(29)

with δ1,t ∼ U([0, δ1,max]), δ2,t ∼
U([0, δ2,max]), δ3,t ∼ U([0, δ3,max]), δ4,t ∼
U([δ4,min, δ4,max]), δ5,t ∼ U([δ5,min, δ5,max]), where

(δ1,max, δ2,max, δ3,max, δ4,min, δ4,max, δ5,min, δ5,max) are

positive scalars.

We provide in Table VI in Appendix B the parameter values

retained for these five realistic maps.

Fig. 4. Test images Chart, Cells and Hubble.

3) Quantitative comparison methodology: We will run

several experiments of blur map estimation, using BPF and

GIAnPF methods, both on toy examples and on our realistic

dataset. The transition models considered in those schemes for

describing the spatial blur evolution are those given in Tab. VII

in Appendix B. More precisely, Model A will be employed to

retrieve Gaussian blur maps (e.g., those resulting from Maps 1,

2 and 3), Model B to retrieve defocus blur maps (e.g., in case

of Map 4) and Model C to estimate skew normal blur maps

(e.g., Map 5). The upper bounds smax defined in App. A are
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used, to preserve consistency of the estimated shapes with the

considered blur support width L. An analysis of robustness

to the setting for L will be presented in Sec. IV-D4. In order

to quantify the gain of exploiting the spatial structure of the

problem, we will compare the filtering pdf approximated by

BPF and GIAnPF algorithms, and the posterior distribution

that only considers the data corresponding to each patch

independently. In the latter case, we use importance sampling

(IS) [70] to approximate the intractable posterior. Note that

both PF and IS have a comparable computational complexity

per sample/particle, while PF allows to exploit the information

of previously processed data (i.e., patches), due to an implicit

sequential IS structure. We also perform comparisons with

two optimization-based methods considering non-parametric

models for the kernels. In the so-called NP formulation, the

kernels (ht)
T
t=1 are estimated by minimizing a least-squares

function under simplex and smoothness constraints, in a fully

parallel manner for each patch t. We also compared with

a more sophisticated non-parametric formulation where we

included, in addition to the NP cost function, the total-variation

based spatial regularization among kernels of neighboring

patches from [34, Chap.4], yielding NP+ method. Note that

both resulting constrained convex minimization problems are

solved with the FISTA algorithm [71]. In all experiments, the

relative mean squared error (RMSEh) averaged over patches

is used to evaluate the numerical performance of the blur

estimation, i.e., RMSEh = 1
T

∑T
t=1

||ht−ht||2
||ht||2 with ht and ht

the original kernels and the estimators respectively at patch

t. For methods providing a posterior estimation (i.e., BPF,

GIAnPF and IS), we calculate ht = h(ρt) with ρt the mean

estimator of the unknown parameters, while for NP and NP+,

ht is directly the solution to the optimization problem, in patch

t. We also include the standard deviation as well as the 95%

credible interval of the estimators of BPF, GIAnPF and IS

methods, to evaluate the statistical accuracy of the results.

All the presented results are averaged over 100 random runs,

and all the hyperparameters are tuned so as to minimize the

RMSE (averaged over 5 random trials). The best results will be

marked in bold cases in the tables. The numerical experiments

are conducted in a Matlab environment on a computer with

an Xeon(R) W-2135 processor (3.7 GHz clock frequency) and

12 GB of RAM.

B. Validation of the proposed method

We first discuss the settings and properties of the proposed

method in an illustrative toy synthetic example. Our tests are

conducted on the image Chart decomposed into T = 64
patches, and corrupted by skew-normal blurs whose param-

eters (ρt)
T
t=1 are generated following the transition model

C, with (σs, σw, σα) = (10−1, 2 · 10−1, 10−1) and, except

otherwise stated, a noise standard deviation σn = 0.05. The

blur parameter estimations are then conducted with BPF and

GIAnPF, assuming transition Model C with known hyperpa-

rameters.

a) Setting particle and layer numbers: The BPF method,

as well as the proposed GIAnPF method, requires the setting

of the number of particles. For GIAnPF, the number of

layers Q plays also a role. This is necessary to reach a

compromise between a precise target reconstruction and a

reasonable computational time, for setting those parameters.

We display in Fig. 5 the averaged RMSE on 100 runs with

respect to the computational time, for different settings of the

parameters of BPF and GIAnPF. The associated values for

the parameters (βq)0≤q≤Q are chosen on a logarithmic grid

between 1 and 10−2, and βQ+1 = 0. For a given number of

particles M , the GIAnPF algorithm always generates a better

approximation of the unknown blurs than BPF, although at

the expense of a slightly increased. Note that, for the same

time budget, GIAnPF outperforms BPF. In all the upcoming

experiments, we will set M = 3000 for BPF, IS, and Q = 2
and M = 500 for GIAnPF, so that they have comparable time

requirement.

b) Alleviating the particle degeneracy: One of the ad-

vantages of the novel GIAnPF method is the promotion

of the diversity among the particles. In Fig. 6, we display

the normalized effective sample size (NESS), computed as

NESS = 1

M
∑

M
m=1 w

(m)
t

, where w
(m)
t are the normalized

weights (i.e., 0 ≤ NESS ≤ 1). We average the ESS over

100 runs and all the patches, divided by the corresponding

number of particles M , for various level of noise σn. The

results are also averaged over 10 independent generations of

the data. It can be seen that GIAnPF algorithm has higher

NESS, thus preserves much more diversity in the particles for

all analyzed noise levels. Similarly, Fig. 7 displays, for the

same experiment, the RMSE of the blur estimate using the

mean of the approximate posterior of each filter. We can see

that a larger diversity (larger NESS) translates into a smaller

error.
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Fig. 5. RMSEh with respect to computational time for BPF and GIAnPF,
using different settings of (M,Q).

C. Comparative performance on the experimental database

In this section, we compare the performance of GIAnPF and

other approaches in different scenarios arising from our exper-

imental database.

a) Quantitative performance: Table IV displays the

RMSEh obtained when estimating kernels of Maps 1 to 5,

from observations of Cells image, degraded by two noise
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Fig. 6. Normalized effective sample size (NESS) for BPF (blue) and GIAnPF
(red) for various noise level σn of the blurry noisy image.
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Fig. 7. RMSE in the blur estimation for BPF (blue) and GIAnPF (red) for
various noise level σn of the blurry noisy image.

levels, namely σn = 0.01 and σn = 0.05. Illustrative examples

of results are also provided in Figure 8. In all the Bayesian

methods, we display the blur maps resulting from kernel

parameters equal to the minimum MSE (MMSE) estimator,

i.e., the mean of the posterior distribution given the available

data. The methods IS and NP, which do not exploit the

spatial smoothness among neighboring kernels, reach the worst

performance. A visual inspection of Figure 8 confirms this

result. Among the spatially regularized methods, i.e., NP+,

BPF and GIAnPF, the former is still far from reaching the

quality of estimation of two latter methods though it improves

over NP. Such behavior is expected as BPF and GIAnPF

incorporate explicit knowledge about the parametric shape of

the blur, leading to less diversity and thus less error in the

restored blur maps. This can be seen in Figure 8. An analysis

of the sensitivity of the methods over an error in the assumed

parametric shape will be discussed in Section IV-D1. In all

cases presented in Table IV, the proposed method GIAnPF

performs similarly or better than the standard BPF. The ben-

efits from the annealing procedure are particularly noticeable

in the case of σn = 0.01. This improved performance can

be explained by the annealed approach of GIAnPF, which is

particularly effective when the posterior pdf of the parameters

Image size N = 2562 N = 5122 N = 10242 N = 20482

Patches T = 16 T = 64 T = 256 T = 1024

NP 36.16 (2.26) 135.5 (2.11) 4987 (19.48) 82273 (80.34)

NP+ 35.80 127.3 4473 71913

IS 5.21 (0.32) 21.85 (0.34) 91.29 (0.36) 374.7 (0.37)

BPF 5.09 20.15 85.53 345.4

GIAnPF 4.67 19.03 78.81 329.9

TABLE III
AVERAGED COMPUTATIONAL TIME IN SECONDS, FOR THE DIFFERENT

METHODS, IN THE CASE OF MAP 5 (I.E., L = 225 AND K = 5) APPLIED

TO VARIOUS IMAGES OF SIZE N , DECOMPOSED INTO T PATCHES. TIME

PER PATCH IS ALSO REPORTED FOR IS AND NP, AS THEY PROCESS

PATCHES INDEPENDENTLY.

has the probability mass concentrated in small regions of the

space, as it happens with low values of σn (due to a peaky

likelihood).

b) Complexity comparison: We perform a scalability

analysis of the different methods, by applying those to the

estimation of Map 5 blur map, from resized versions of the

large scale aerial image from [42]. The same hyperparameter

settings as in Table IV were used. In Table III, we report

the averaged computational time over 10 random trials. For

IS and NP, that are fully separable methods onto patches,

we also report the time per patch, that could be reached

using parallel implementation on T cores. Both of these

methods benefit from fast complexity cost assuming parallel

processing of the patches. It is worthy to notice that the

cost per patch of NP still increases for the largest images,

probably due to memory saturation issues, while IS has a

constant time requirement per patch. However, despite their

rapidity, let us recall that the qualitative results for both these

methods were rather poor on our experiments. The complexity

burden dramatically increases for the regularized optimization-

based method NP+. In the latter, the data is processed in a

batch way. Parallelization over patches for this method is not

straightforward, up to our knowledge, due to the non-separable

structure of the underlying optimization problem. In contrast,

the complexity of the proposed method stays very reasonable

even for the largest image example, though involving the

probabilistic estimation of T × K = 5120 parameters. As

in the previous experiment, BPF and GIAnPF again show a

similar computational cost.

c) Stability to the noise level: We display in Fig. 9 a

comparison of the RMSEh reached by the methods, when

estimating kernels from observations degraded by increasing

noise level σn. One can observe that NP and NP+ performance

rapidly deteriorates when the noise increases. In contrast, IS,

BPF and GIAnPF perform in a relatively stable way. Moreover,

the proposed GIAnPF method again outperforms the other

competitors. As expected, its superiority over the standard

BPF is less visible as σn becomes higher, since GIAnPF

is particularly dedicated to problems with peaky likelihoods,

which arise when the noise level is low.

D. Robustness analysis

In practical contexts, it is frequent that the assumed para-

metric PSF model is erroneous (e.g., over-simplified with
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Fig. 8. Original kernels and identification results using Cells image with T = 64 patches and σn = 0.01. From top to bottom : original kernels, restored
kernels with NP, NP+, IS, BPF, GIAnPF.

wrong support size) and/or that the calibrated image is only

partially known (e.g., in digital camera imaging, a noisy non-

blurry version can be acquired using short exposure settings).

Furthermore, the noise level in the blurred image is usually

estimated and not known with perfect accuracy. It is thus of

main importance to quantify the robustness of our method

to such model mismatch. To this aim, we conducted four

experiments, aiming at reproducing different realistic scenarios

of imperfect knowledge of the acquisition model. Except if

specified otherwise, in all the examples of this section, we

used the image Cells. The degraded image is obtained by

applying the space-varying Gaussian blur Map 1, and then

adding a noise with level equals to σn = 0.05.

1) Choice of the parametric blur model: We first evaluated

the influence of a mismatch between the assumed blur shape,

and its actual one. We ran the different methods assuming in-

stead a generalized Gaussian blur shape with different powers

p, where p = 1 corresponds to the ground truth. The retrieved

average RMSEh of BPF, GIAnPF, IS when taking different

values for p are displayed in Fig. 10. We also displayed the

results of NP and NP+ approaches, that remain unchanged

since no parametric model for the kernels is considered in

those methods. As expected, the best performance are obtained

for the correct p = 1 setting. More interestingly, we can
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Noise level Noise level

σn = 0.01 σn = 0.05

M
ap

1

NP 0.2117 0.3209

NP+ 0.1756 0.2543

IS
0.1258 (0.0129) 0.3339 (0.0157)

0.1057-0.1545 0.3056-0.3620

BPF
0.1246 (0.0080) 0.1964 (0.0204)

0.1109-0.1446 0.1696-0.2646

GIAnPF
0.0680 (0.0065) 0.1564 (0.0122)

0.0578-0.0837 0.1347-0.1858

M
ap

2

NP 0.2474 0.2381

NP+ 0.1383 0.1385

IS
0.1653 (0.0072) 0.1653 (0.0072)

0.1471-0.1768 0.1471-0.1768

BPF
0.0917 (0.0093) 0.1246 (0.0143)

0.0812-0.1211 0.1026-0.1661

GIAnPF
0.0452 (0.0044) 0.1169 (0.0077)

0.0375-0.0549 0.1026-0.1307

M
ap

3

NP 0.1905 0.2723

NP+ 0.1480 0.1608

IS
0.1380 (0.0128) 0.4089 (0.0194)

0.1143-0.1626 0.3717-0.4503

BPF
0.0968 (0.0049) 0.1854 (0.0550)

0.0897-0.1063 0.1145-0.3611

GIAnPF
0.0396 (0.0034) 0.1288 (0.0114)

0.0345-0.0486 0.1116-0.1544

M
ap

4

NP 0.3263 0.4286

NP+ 0.2988 0.3772

IS
0.2746 (0.0187) 0.5554 (0.0204)

0.2443-0.3185 0.5208-0.6021

BPF
0.1360 (0.0098) 0.2847 (0.0236)

0.1174-0.1584 0.2459-0.3411

GIAnPF
0.0701 (0.0089) 0.2640 (0.0100)

0.0521-0.0860 0.2449-0.2833

M
ap

5

NP 0.1830 0.3578

NP+ 0.1415 0.2428

IS
0.1331 (0.0066) 0.1852 (0.0079)

0.1198-0.1469 0.1247-0.1407

BPF
0.0910 (0.0067) 0.1332 (0.0043)

0.0799-0.1066 0.1247-0.1407

GIAnPF
0.0688 (0.0075) 0.1322 (0.0061)

0.0587-0.0880 0.1214-0.1470

TABLE IV
RMSEh FOR NP, NP+ , IS, BPF, GIANPF. CELLS IMAGE

BLURRED BY SPACE-VARYING KERNELS GENERATED FOLLOWING

MAPS 1-5.

observe that, even if a wrong parametric model is adopted,

i.e., using p 6= 1, our proposed method GIAnPF still performs

better than its competitors, and in particular the non parametric

method NP+, for a wide range of values for p.

2) Noisy calibrated image: In the previous experiments,

we assumed that the original image x is known in a perfect

manner. However, in reality, it is commonly not the case. Here,

we consider the situation when only a noisy version of x is

provided in the estimation process, denoted x̃ = x+w where

w is an additive Gaussian noise follows N (0, σ2
xI). Eleven

different levels for the noise on x are considered, namely σx =
{0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.10}.

Note that this range of values covers from low noise level

values (where traditionally the particle-based filters struggle
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Fig. 9. Mean/variance of the RMSEh reached by the different methods.
Hubble image blurred by space-varying kernels generated following Map 5
and three different values for σn.
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Fig. 10. Mean/variance of the RMSEh with the different methods assuming
different powers within the generalized Gaussian blur shape (the ground truth
is p = 1).

to operate due to the mass being concentrated in small

regions; see for instance [64]) to relatively large noise values

(which makes the inference less accurate). We display in

Fig. 11 the averaged RMSE over 10 noisy realizations for

each σx, for the different approaches. The improvement of

our proposed method GIAnPF with respect to BPF is more

significant at low noise level, since particle degeneracy mostly

arises in such context. Moreover, Fig. 11 shows that GIAnPF

still outperforms its competitors when the noise level on x

increases.

3) Setting of noise level: In the previous analysis, the exact

observation noise variance σn was assumed to be known

and applied explicitly in our blur identification method. In

more realistic situations, such noise level would have to be

learned, leading to an estimate σ̂n. We ran the different blur

identification methods for the five different values σ̂n =
{0.01, 0.025, 0.05, 0.07, 0.1} (recall that the true observation

noise level here is σn = 0.05). Note that the optimization-

based methods are not sensitive to such change, so that the

results for NP and NP+ are unchanged. We display in Fig. 12

the average RMSE, for the different values for σ̂n. We can

notice that GIAnPF gives the best performance even when

the noise level is poorly estimated. As expected, it reaches

minimal mean and variance values when the ground truth noise
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Fig. 11. Mean/variance of the RMSEh reached by the different methods,
for various noise level σx deteriorating the input calibrated image.

level is used in the estimation process.
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Fig. 12. Mean/variance of the RMSEh reached by the different methods,
when using an erroneous noise level estimate σ̂n (the ground truth is σn =
0.05).

4) Setting of kernel size: In blur estimation, especially

when the blur is non-stationary, a challenge lies in the setting

a priori, of the kernel support width L. In this experiment

we propose to assess the different approaches in the case

where an erroneous L is assumed. In particular, we estimate

the blur from the image Cells, when it is degraded by

Map 1, and a noise level σn = 0.05. We run the different

methods/models, by setting the size for the kernel width as

L ∈ {5, 7, 9, 11, 13, 15, 19, 23, 27}, while the groundtruth is

L = 15. All the true/estimated kernels have been extended to

the largest tested size L = 27 by zero-padding, to allow valid

computation of estimation errors. We display in Fig. 13 the

obtained RMSE values. One can notice that all methods have

stable estimation error, as long as the assumed L is greater

or equal to L, which is indeed expected. In contrast, when

L < L, the results deteriorate for all methods. We observe that

the GIAnPF method outperforms its competitors in almost all

tested values for L.
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Fig. 13. Mean/variance of the RMSE for various kernel support width L
(ground truth size: L = 15).

E. Image restoration

We conclude this experimental section by illustrating the

ability of the obtained kernel estimates to lead to satisfying

and interpretable image restoration results. We assume that

we have access to a pair (x,y) of clean/degraded version of

a given calibrated image. We focus on the estimation of blurs

resulting from our synthetic blurred maps, and then the use

of those results for the restoration of several non-calibrated

images. Through this example, we also illustrate and discuss

the advantage of providing probabilistic blur estimates.

We consider the image Chart, and its degraded version

corrupted by the space-varying Map 4 with T = 64 and

noise with standard deviation σn = 0.1. We ran GIAnPF

method and NP+ approaches, identified as the two best blur

identification procedures in the previous section. As shown in

Fig. 14(left), we then perform the restoration of a set of four

natural images3, from their degraded version in Fig. 14(right),

following the same blur model, and noise level σx = 0, 0.01,

0.05 and 0.1. The restoration is performed in a non-blind

manner, by making use of the fast majorize-minimize memory-

gradient (3MG) algorithm from [72], that was recently adapted

to the problem of image retrieval under shift-varying blur

[73], [74]. Note that the variational formulation adopted in

3MG is very similar to the one in [28]. The regulariza-

tion parameters of 3MG are finetuned so as to maximize

SNRx = 20log10

(

||x||
||x−x̂||

)

, with x the original image, and

x̂ the restored one. We present the results in Table V, in

terms of SNRx between x and the restored images obtained

with the blur estimates of either GIAnPF or NP+. In the

case of GIAnPF, we ran the restoration with 100 samples

from the estimated posterior distribution of the blur maps,

for a single run of GIAnPF, which allows us to compute

the mean and the 95% confidence intervals for both image

quality metrics. In Fig. 15(left), we show the mean of the

pixel-wise squared error between the true kernel and these

100 samples obtained from the posterior distribution. This

metric, called Bayesian MSE, allows to assess the uncertainty

3http://sipi.usc.edu/database/

http://sipi.usc.edu/database/
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of GIAnPF on each kernel estimate. One can identify patches

with larger estimation errors, corresponding to flat zones in

the Chart images, thus making the blur estimation less

accurate. In contrast, the patches localized in zones with

significant content (sharp edges, in particular) benefit from

very good estimation quality for the associated blur (pixel-

wise error lower than 10−6). Standard deviation is shown in

Fig. 15(right), illustrating that the estimated distribution is

more spread for difficult patches, while it is rather peaky for

the patches that are better estimated. One can see from Table V

that GIAnPF outperforms NP+ in almost all examples, with up

to 0.4 improvement in SNR score. Examples of visual results

obtained from a given GIAnPF sample, are also displayed in

Fig. 14(right).

We then illustrate the usefulness of the probabilistic es-

timation with associated uncertainty quantification that GI-

AnPF provides, for the image restoration task. Specifically,

we focus on the restoration of Boat image degraded by Map

4 and no noise (i.e., σx = 0). We display in Fig. 16(left) the

uncertainty quantification, defined as the standard deviation

per pixel of the 100 restored images, obtained using the 100

samples from the estimated posterior of the blur maps, in a

single run of GIAnPF. This uncertainty map can be compared

with Fig. 16(right). The latter displays the mean square error

map, obtained by averaging the results of 100 restorations

performed with the MMSE estimator of the kernel parameters

(mean of the approximated posterior), obtained by 100 differ-

ent independent runs of GIAnPF. It is noticeable that our prob-

abilistic approach with the inference performed by GIAnPF is

able to quantify large uncertainty (see Fig. 16(left)) in areas

where the squared errors are also large (see Fig. 16(right)).

Let us point out that the uncertainty map from Fig. 16(left),

is obtained without the need of processing the data multiple

times, and does not require the knowledge of the original

boat image.

Image σx NP+ GIAnPF

Boat
0 20.1051 20.5247[20.3207-20.7045]

0.01 18.8952 18.0044 [17.8957-18.1138]

0.05 17.9529 17.9610[17.9485-17.9714]

0.1 17.2432 17.2755 [17.2674-17.2848]

Goldhill
0 20.7009 20.9611[20.6529-21.1522]

0.01 19.1551 20.2494 [20.1838-20.3108]

0.05 18.9202 18.9990[18.9728-19.0205]

0.1 18.2412 18.3510 [18.3356-18.3630]

Plane
0 23.2597 23.6970 [23.5257-23.8888]

0.01 22.1416 21.8859 [21.7679-21.9899]

0.05 20.4632 20.5290[20.5132-20.5487]

0.1 19.6010 19.6535 [19.6445-19.6654]

Cameraman
0 20.4253 20.4839 [19.7894-20.9030]

0.01 19.3293 19.8935 [19.7158-20.0245]

0.05 18.3764 18.6403 [18.5687-18.6794]

0.1 17.4996 17.7183 [17.6861-17.7376]

TABLE V
SNRx VALUES OF RESTORED IMAGES USING ESTIMATED BLUR DERIVED

FROM NP+ AND GIANPF APPLIED ON THE CALIBRATED IMAGE CHART .

Fig. 14. (left) Original images ; (middle) blurry noisy versions with σn =
0.01 ; (right) example of restored image using the mean blur estimate from
one run of GIAnPF.
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Fig. 15. Results of 100 samples from the posterior obtained with single run
of GIAnPF when applied to image Chart degraded by Map 4 and σn = 0.1:
(left) log10 of the pixel-wise mean squared error over the 100 samples. (right)
log10 of the pixel-wise standard deviation over the 100 samples.

V. CONCLUSION

This paper addresses the estimation of the PSF parameters

for spatially-varying blurs from calibrated image acquisitions.

We propose an original statistical modeling of the problem,

accounting for the spatial dependency among neighboring ker-

nels, and we apply a sequential Bayesian inference technique

in this context. In order to alleviate the particle degeneracy

problem brought by the BPF in some cases, we also propose

a new sampling method called the GIAnPF. Our results in

different scenarios illustrate the good performance of the

approach, including a useful uncertainty quantification. The

novel approach opens many possibilities beyond this work.

For instance, different noise distributions could be immediately
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Fig. 16. Uncertainty quantification vs error in the estimation of the kernels
by GIAnPF on the image boat ; (left) log10 of the pixel-wise standard
deviation of the restored image, when using 100 samples from the posterior
of the blur parameters, approximated by a single run of GIAnPF. (right) log10
of the mean pixel-wise quadratic error between the true and the restored image
when using the posterior mean estimator of the parameters approximated by
GIAnPF, averaged over 100 independent runs.

used. Moreover, other state-space models, not necessarily

Markovian, could be considered.

APPENDIX A

USEFUL CONSTANTS ON BLUR SHAPES

We list herebelow, for the reader reference, the expression

for the normalization constants and support size for the para-

metric blur shapes described in Section II-B.

a) Generalized Gaussian blur: The normalization con-

stant reads:

λ =
p

πΓ( 1p )2
1
pα

1

|Σ(θ, s)| 12
, (30)

where Γ(·) is the Gamma function. The support size is:

smax =
√
L
(

2α(−2 ln(a))1/p
)−1/2

. (31)

b) Defocus blur: The normalization constant is

λ = πs1s2L. (32)

The support size is:

smax = maxG =

√
L− 1

2
. (33)

c) Skew-normal blur: The normalization constant is

λ =
2

(2π)
3
2 |S(w)| 12

. (34)

The support size is:

smax =

√
L

2
√

− ln(a)
. (35)

APPENDIX B

NUMERICAL SETTINGS

We describe here the detailed numerical settings adopted

in the experimental parts for the proposed models and meth-

ods. Table VI shows the settings for the realistic blur maps

considered in Section IV-A2. Table VII lists the transition

models assumed when running BPF and GIAnPF, where

N[smin,smax](st−1, σ
2
s) denotes a truncated normal distribution,

i.e., the pdf is proportional to a normal pdf with mean st−1

and variance σ2
s in the support [smin, smax], and 0 otherwise.

Blur maps Parameters

Map 1 σǫ = 0.01, δ1,min = 0.595, δ1,max = 0.605,
δ2,min = 0.295, δ2,max = 0.305

Map 2 σǫ = 0.01, δ1,min = 2.95, δ1,max = 3.05,
δ2,min = 2.95, δ2,max = 3.05

Map 3 δ1,min = 2.45, δ1,max = 2.55,
δ2,min = 1.95, δ2,max = 2.05

Map 4 δ1,min = 1.45, δ1,max = 1.55,
δ2,min = 1.45, δ2,max = 1.55

Map 5 δ1,max = 0.01, δ2,max = 0.01, δ3,max = 0.1,
δ4,min = 1.5, δ4,max = 2, δ5,min = 2, δ5,max = 2.5

TABLE VI
NUMERICAL SETTINGS FOR THE GENERATION OF THE

EXPERIMENTAL SHIFT-VARIANT BLUR MAPS.

Parameters settings

M
o
d
el

A











θt ∼ N (θt−1, σ
2
θ)

s1,t ∼ N[smin,smax](st−1, σ
2
s)

s2,t ∼ N[smin,smax](st−1, σ
2
s)

smin = 10−2, smax set as

in (31).

M
o
d
el

B











θt ∼ N (θt−1, σ
2
θ)

s1,t ∼ N[smin,smax](st−1, σ
2
s)

s2,t ∼ N[smin,smax](st−1, σ
2
s)

smin = 4 · 10−2, smax as

in (33).

M
o
d
el

C



























s1,t ∼ N[smin,smax](st−1, σ
2
s)

s2,t ∼ N[smin,smax](st−1, σ
2
s)

w ∼ N[wmin,wmax](st−1, σ
2
w)

α1,t ∼ N[αmin,αmax](st−1, σ
2
α)

α2,t ∼ N[αmin,αmax](st−1, σ
2
α)

smin = 5 · 10−2, smax as

in (35), {wmin, wmax} =
{−0.9, 0.9},

{αmin, αmax} =
{0.5, 2}, so that (11)

holds.

TABLE VII
CONSIDERED TRANSITIONS MODELS AS IN EQ. (13).
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