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Abstract

Blind deconvolution is fundamental in signal processing applications and, in particular, the single

channel case remains a challenging and formidable problem. This paper considers single channel blind

deconvolution in the case where the degraded observed signal may be modelled as the convolution of a

nonstationary source signal with a stationary distortion operator. The important feature that the source

is nonstationary while the channel is stationary facilitates the unambiguous identification of either the

source or channel, and deconvolution is possible, whereas if the source and channel are both stationary,

identification is ambiguous. The parameters for the channel are estimated by modelling the source as a

time-varying AR process and the distortion by an all-pole filter, and using the Bayesian framework for

parameter estimation. This estimate can then be used to deconvolve the observed signal. In contrast

to the classical histogram approach for estimating the channel poles, where the technique merely relies

on the fact that the channel is actually stationary rather than modelling is as so, the proposed Bayesian

method does take account for the channel’s stationarity in the model and, consequently, is more robust.

The properties of this model is investigated, and the advantage of utilising the nonstationarity of a system

rather than considering it as a curse is discussed.

Keywords

nonstationary processes, single channel blind deconvolution, speech dereverberation

I. Introduction

Blind deconvolution is fundamental in signal processing applications and, in particular, the

single channel case remains a challenging and formidable problem. In single channel blind decon-

volution, a degraded observed signal, x = {x(t), t ∈ T } ∈ R
T , T = {1, . . . , T} ⊂ Z, is modelled

as the convolution of an unknown source signal, s = {s(t), t ∈ T } ⊂ R
T , with an unknown

distortion operator, A. The distortion operator could, for example, represent the acoustical

properties of a room, the effect of multipath propagation in the reception of radio, or a non-

impulsive excitation in seismic applications. Acoustic reverberation [1] is a cause of significant

degradation in speech intelligibility for users of hearing aids [2] and is a problem in ‘hands-free’

telephony and speech recognition. The process of removing the effects of reverberation is known

as blind dereverberation, and belongs to the general problem of blind deconvolution. The task is

to estimate the distortion, A, or a scaled shifted version of the original signal, ŝ(t) = a s(t − τ),

where a, τ ∈ R, given only the observed signal, x. Throughout this paper, except where indi-

cated, the set notation G = {1, . . . , G} is used; e.g. Ui = {1, . . . , Ui}. Further, if γ , {α, β},
then γ−β , {α}.
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A. Nonstationary Signal Processing

Signal processing techniques over the past three decades have been dominated by the constraint

of stationarity – an appealing notion as many processes are endowed with the property of ergodic-

ity which allows quantities defined as ensemble averages, for example, autocorrelation functions,

to be estimated from a single realisation of the process by calculating time domain averages.

However, since the statistical properties of many processes, including speech, are nonstationary,

many existing techniques which assume stationarity produce poor results when applied to audio

restoration and other problems [3]. Since the estimation of the autocorrelation function of a

nonstationary processes is difficult, often requiring multiple data records which may not always

be available, nonstationarity is usually regarded as an undesirable feature. Nevertheless, it has

recently been recognised that nonstationarity can actually be a useful feature, and can be utilised

to produce superior results both in existing problems attempted using the stationarity assump-

tion, and previously intractable problems [4–7]. The advantage of utilising the nonstationarity

of a system rather than considering it as a curse is demonstrated in this paper, where solutions

are presented for the single channel blind deconvolution problem which could not be obtained if

nonstationarity was not taken into account.

B. Characteristics of Blind Deconvolution

Many blind deconvolution techniques assume the source signal is contained within a finite sup-

port [8–10] and, or, are independent and identically distributed (i. i. d.) [9, 11]. However, when

the source signal is highly correlated and belongs to a set of infinite support, these techniques

cannot be directly applied. Furthermore, many techniques assume quasi-stationarity of the sys-

tem, and do not take global nonstationarity into account. Utilising the global nonstationarity of

a system allows the identification of system characteristics which may otherwise be unattainable.

The problem is under-constrained and can only be solved by incorporating varying degrees

of prior knowledge regarding s(t) and A. A characteristic of blind deconvolution is that the

source signal and impulse response of the distortion operator must be irreducible for unambiguous

deconvolution [12]. An (real) irreducible signal is one that cannot be expressed as the convolution

of two or more signal components, on the understanding that the delta function is not a signal

component. Suppose the distortion operator, A, is linear time-invariant (LTI), then the observed

signal may be expressed as x(t) = h(t) ? s(t), where ? denotes convolution. If either h(t) or s(t)
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Fig. 1. General parametric model for blind deconvolution.

are reducible such that h(t) = h1(t) ? h2(t), and s(t) = s1(t) ? s2(t), then x(t) = h1(t) ? h2(t) ?

s1(t)?s2(t), and it is impossible to decide which component belongs to the source signal or to the

distortion operator without additional knowledge. Consequently, many linear systems become

reducible when they are considered stationary, and blind deconvolution is impossible. However,

if, in fact, s(t) and A are both quasi-stationary signals and locally reducible, but possess different

rates of global nonstationarity, then s(t) and A are no longer globally reducible and, therefore, in

this case blind deconvolution is possible.

There are two distinct approaches to this problem: 1] estimate s(t) as a ‘missing data’ problem

by treating the parameters of A as nuisance parameters, or, 2] estimate the parameters of A by

treating s(t) as a nuisance parameter, and then deconvolve x(t) with A to recover s(t). The

second approach is considered using parametric models for s(t) and A. The resulting model is

shown in Figure 1.

II. System Models

A. Nonstationary Models for Source Signal

For many time-series, the limitation of assuming a signal is stationary often results in poor

modelling and, in such cases, stationary models can prove ineffective for some applications. The

most common approach to modelling nonstationary processes is to represent the signal in the form

of a stationary model, commonly the autoregressive moving average (ARMA) model [13–15], and

to represent the time-varying parameters either as a linear combination of deterministic time-

varying basis functions, or as an unobserved random process. The choice of basis functions, of

which many have been proposed [14, 16, 17], is dependent on any prior belief of the variation of

the parameters [18, 19] and, without this knowledge, there exists no general rule for choosing

these functions. However, while a suitable nonstationary model must reflect the statistics of the

source signal, it is proposed that the sensitivity of a chosen model on the nature of the underlying

signal structure decreases when the additional information inherent in the nonstationarity of the
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process is utilised.

The form for a time-varying ARMA (TVARMA) model of a time-series s(t) is given in terms

of a zero-mean nonstationary white noise process, e(t) ∼ N
(

0, σ2
e,t

)

, as:

s(t) = −
Qt
∑

q=1

b(t, q) s(t − q) +

Rt
∑

r=0

c(t, r) e(t − r) (1)

where {b(t, q), q ∈ Qt, t ∈ T } and {c(t, r), r ∈ Rt, t ∈ T } are the time-varying model parame-

ters; note, to avoid scaling ambiguities, {c(t, 0) , 1; t ∈ T }. The most general case of this model

is where the parameters are completely uncorrelated at each sample and, therefore, each sample

of s(t) would be represented by Qt+Rt+1 unknown coefficients. Since the parameter space is in-

creased at each sample by Qt +Rt, numerical problems result as there isn’t enough data, at least

from a single realisation of a process, to facilitate parameter estimation. Ergo, a practical case

is one where the parameters are highly correlated, and one such case is for stochastic processes

that are globally nonstationary, yet approximately locally stationary; these can be represented

by a quasi-stationary model.

A time-varying AR (TVAR) process is proposed for modelling a wide range of input signals;

this model is particularly appropriate for speech signals [14, 17, 20, 21]. Specifically, s(t), is

modelled by a block stationary AR (BSAR) process. Here, s(t) is partitioned into M contiguous

disjoint blocks, block i ∈ M beginning at sample ti with length Ti = ti+1 − ti and, in this block,

is given by a stationary AR model of order Qi. Using (1), this is equivalent to setting Qt = Qi,

Rt = 0, b(t, q) = bi(q), q ∈ Qi, σt = σi, ∀t ∈ Ti = {ti, . . . , ti+1 − 1} ⊂ Z
Ti and i ∈ M, yielding:

s(t) = −
Qi
∑

q=1

bi(q) s(t − q) + e(t) (2)

where e(t) ∼ N
(

0, σ2
i

)

, σi ∈ R
+, t ∈ Ti, i ∈ M.

B. Time-Invariant Channel Model

In this paper, the channel model is restricted to ones which are linear time-invariant. The use

of a linear time-varying (LTV) model will be considered in future work. The all-pole model is

used for the channel since, not only is it mathematically convenient, but it is widely used in many

fields for approximating rational transfer functions. The distortion operator, A, is modelled by
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a LTI all-pole filter of order P , such that:

x(t) = −
P
∑

p=1

a(p)x(t − p) + s(t), t ∈ Z (3)

where a = {a(p), p ∈ P} is the set of P model parameters. The appropriateness of this model

for the particular application of modelling room acoustics is discussed in §VI-A.

III. Bayesian Parameter Estimation

The posterior probability, p (θ | x, I), of a particular set of system parameters, θ, given the

state of the system, x, and an underlying model, I, is given by Bayes’s theorem:

p (θ | x, I) =
p (x | θ, I) p (θ | I)

p (x | I)
(4)

where p (x | θ, I) is the likelihood function and p (θ | I) represents any prior belief. The term

p (x | I) is the evidence and, although usually regarded as a normalising constant, is of interest

for model selection. The choice of priors for the system model introduced in §II are described

below.

A. Prior distribution on AR coefficients

In the case when a process is modelled by a real, stable, minimum-phase AR process of

order P with parameters a and excitation variance σ2, the parameter vector, a, should ideally

only take on values which lie in the stability domain. However, the terms in the likelihood

function for the AR parameters are usually in the form of a Gaussian distribution (see [22]) and,

in order to obtain analytically tractable results, a Gaussian prior is placed on the parameter

values: a |σ2 ∼ N
(

0P , σ2 δ2 IP

)

, δ ∈ R
+, where the prior on a becomes uninformative as the

hyperparameter, δ → ∞. IP ∈ R
P×P is the identity matrix.

B. Prior distribution for the Excitation Variance

A standard prior for application to scale parameters, such as variances, is the inverse-Gamma

density with the form σ2 | ν, γ ∼ IG
(

σ2, ν
)

γ, where:

IG
(

σ2
∣

∣ ν, γ
)

=
γν

Γ(ν)
(σ2)−(ν+1) exp

[

− γ

σ2

]

I(0,+∞]

(

σ2
)

(5)

where ν, γ are the hyperparameters, and IA (a) = 1 if a ∈ A and zero otherwise.
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e(t)

Room Acoustic Model

Observed
Signal

x(t)

Source
Signal

s(t)
i

Block Stationary
AR(Q ) bi

All-Pole Filter a

Fig. 2. Complete system model; the output, x(t), is a BSAR process, s(t), filtered by all-pole model with

parameters a.

IV. Histogram Technique

In this section, the histogram technique introduced in [23, 24], and recently implemented in

real time [25], is used to estimate the parameters for the distortion filter, A. This technique

relies on the fact that the channel is stationary, while the source is nonstationary. However,

since the channel is not explicitly modelled as stationary, a technique which explicitly models

the stationarity will perform better, and such an approach is outlined in §V.

A. Principle Underpinning Histogram Technique

Consider, in block i, the output, x(t), of a BSAR process, s(t), filtered by an all-pole model,

shown in Figure 2, as a windowed version of the infinite stationary sequence, xi(t):

xi(t) = −
P
∑

p=1

a(p)xi(t − p) + si(t)

si(t) = −
Qi
∑

q=1

bi(q) si(t − q) + ei(t)



























t ∈ T ⊂ Z (6)

where ei(t) ∼ N
(

0, σ2
i

)

, such that x(t) = xi(t), ∀t ∈ Ti ⊂ T . The power spectral density (PSD),

Pi(e
jω), of xi(t) is:

Pi(e
jω) ≡ 1

P
∏

p=1

∣

∣

∣
1 − ra(p) e−jω

∣

∣

∣

2

σ2
i

Qi
∏

q=1

∣

∣

∣
1 − rbi

(q) e−jω

∣

∣

∣

2

where ra ≡ [ ra(1) . . . ra(P ) ] are the roots of the all-pole filter, A, and rbi
≡ [ rbi

(1) . . . rbi
(Qi) ]

are the roots of the TVAR source model. This can be written as:

Pi(e
jω) =

σ2
i

∣

∣

∣

∣

1 +
Ri
∑

k=1

ci(k) e−jωk

∣

∣

∣

∣

2 ≡ σ2
i

Ri
∏

k=1

∣

∣

∣
1 − ri(k) e−jω

∣

∣

∣

2
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where Ri = P + Qi, ci(k) = [a(p) ? bi(q)]k, and ri ≡ [ ri(1) . . . ri(Ri) ] = {ra, rbi
} are the

roots of the combined AR model. In each block, suppose there is an estimate of ri denoted by

r̂i = {r̂ai
, r̂bi

}, where r̂ai
is an estimate of ra using the data in block i and, correspondingly, r̂bi

is an estimate of rbi
. Initially, it may appear impossible, without considerable prior knowledge,

to partition each pole set, r̂i, into subsets separately containing r̂ai
and r̂bi

. However, consider

constructing the set of all poles obtained by concatenating the poles estimated from each block,

i ∈ M; i.e. consider the set R , {r̂i, i ∈ M}. If all the poles in the set R are compared

simultaneously, a number of poles will be contained in a number of small local regions of support,

with each of these subsets containing estimates that are just statistical variations of the same

pole. Furthermore, there will be many subsets which contain just a few pole estimates; the

number of estimates within each subset obviously depends on the size of the local region of

support. It can be concluded that where the number of estimates within a particular fixed

region is large, the corresponding subset represents a stationary pole, and where the number is

small, the subset represents a nonstationary pole. If s(t) is modelled as a TVAR process and

is known to be comprised only of nonstationary poles, while A is known to be stationary, the

channel can be estimated from some estimate of the stationary poles based on the subsets which

contain a large number of pole estimates.

B. Probablistic Framework

To formalise the histogram method in a probablistic framework, consider a process given by

(6), defined for t ∈ Ti = {ti, . . . , ti + Ti}, where Ti is the block length, and Ti ∩ Tj 6= {∅} so

that the blocks are overlapping with spacing Li = Ti+1 − Ti. The excitation, e(t), in block

i is related to the observed signal, x(t), by ei = xi + Xi ci, where ei is a vector of samples

[ei]t−ti+1 = e(t), t ∈ Ti, and, similarly, [xi]t−ti+1 = x(t) and [Xi]t−ti+1,q = x(t− q), t ∈ Ti, q ∈ Qi

and [ci]k = ci(k), k ∈ Ri are the parameters of the combined AR model. The Jacobian J(xi, ei)

is unity and, thus, the likelihood function in block i is given by:

p
(

xi | ci, σ2
i , xi−1

)

= N
(

ei

∣

∣ 0, σ2
i ITi

)

(7)

Assuming again the prior distributions in §III:

ci |σ2
i ∼ N

(

0Ri
, δ2

i σ2
i IRi

)

, δi ∈ R
+,

σ2
i ∼ IG

(νi

2
,

γi

2

) (8)
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with δi, νi and γi are hyperparameters then, using Bayes’s rule in (4), it follows:

p
(

ci, σ2
i

∣

∣ xi, xi−1

)

∝ 1

σR̂i

i

exp

{

−γi + eT
i ei + δ−2

i cT
i ci

2σ2
i

}

(9)

where R̂i = Ti + Ri + νi + 2. The excitation variance can be marginalised using the standard

Gamma integral [26] to give the conditional density p (ci | xi, xi−1). Thus, by sampling and

histogramming the variates {ci, i ∈ M} from this distribution, estimates of the parameter a can

be obtained as described in §IV-A.

However, it is difficult to sample the parameters ci from the resulting distribution and, there-

fore, the Gibbs sampler is employed. The Gibbs sampler is a Markov chain Monte Carlo (MCMC)

technique that allows samples to be drawn from complicated probability density functions (pdfs)

by drawing samples from simpler conditional densities. This sampling method is described in

detail in, for example, [27]. In order to implement the Gibbs sampler, the conditional probabili-

ties p
(

ci | σ2
i , xi, xi−1

)

and p
(

σ2
i

∣

∣ ci, xi, xi−1

)

must be easily sampled. Using Bayes’s rule and

the given priors, it is easy to show that p
(

ci | σ2
i , xi, xi−1

)

, i ∈ M, is given by a multivariate

Gaussian with inverse covariance:

C−1
i =

XT
i Xi + δ−2

i IRi

σ2
i

and mode: ĉi = − (XT
i Xi + δ−2

i IRi
)−1 XT

i xi

while, p
(

σ2
i

∣

∣ ci, xi, xi−1

)

= IG
(

σ2
i

∣

∣

Ti + νi

2
,
eT

i ei + γi

2

)

Details for sampling these distribution is discussed in [27].

C. Examples

As a typical channel for a system, consider the frequency response of an acoustic gramophone

horn as measured in [24]. The magnitude response is shown in Figure 3(a), and using a maximum-

likelihood (ML) estimator for model selection, Spencer [24] showed that this response can be

accurately modelled by a 68th-order all-pole model. Moreover, the response upto 2.45 kHz can

be accurately modelled by an 8th-order model, as shown in Figure 3(b).

A synthetic BSAR process is used to model the source signal. The parameters for this process

are estimated by modelling discontiguous blocks of a real speech signal as a stationary AR(Q)

model and estimating the parameters using the autocorrelation method [20, 28]. This ensures
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Fig. 3. Power Spectral Density of Signal Recorded at Neck of Horn, and the corresponding AR model.

(a)Histogram of samples in one block (b)Histogram of samples over all block

Fig. 4. Histogram for case when source model order Q = 12, number of blocks N = 100, and length of

each block Ti = 1000.

that the synthetic data, generated in contiguous blocks using these parameters, is stable, non-

stationary, and partially reflects the statistical properties of a real signal. The model orders

of both the filter and source are assumed to be known. Samples are drawn from the posterior

distribution given by (9) as discussed in §IV-B. Figure 4 shows the histogram of all the samples

on a grid covering the unit circle for the case when the source model order Q = 12, number

of blocks M = 100, and length of each block Ti = 1000. Figure 4(a) shows the histogram of

samples drawn from a single block, where it is seen that the peaks are located at the positions

of the BSAR poles, as well as the positions of the poles due to the filter; clearly, it is impossible

April 2, 2003 DRAFT
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(a)Histogram of samples in one block (b)Histogram of samples over all block

Fig. 5. Histogram for case when source model order Q = 50, number of blocks N = 100, and length of

each block Ti = 1000.

to distinguish the channel from the source, when a stationary model is used for the complete

system. However, Figure 4(b) shows the histogram of the samples from all blocks, and it is seen

that the peaks are now located at the position of the stationary poles which must belong to the

filter and to any poles representing the stationary components of the source signal. In this case,

there are no dominant peaks due to the source signal, and the channel has been identified.

If the source model order is increased to Q = 50, as in Figure 5, the pole-plane becomes highly

crowded, as emphasised in Figure 5(a). Thus, as shown in Figure 5(b), the stationary peaks with

high variance become swamped by the considerably larger number of source poles. Hence, in the

case of a large difference between the number of source and channel parameters, the histogram

model fails.

V. Bayesian Blind Deconvolution

The histogram technique does not constrain A to be stationary across block boundaries. It is

by virtue of the fact that the filter is actually stationary that the technique can detect the filter

parameters by considering the system poles. A more robust method of parameter estimation

is to account for the filter’s stationarity, and such an approach is demonstrated in this section.

This probabilistic approach was first presented in [6] and [7], and it will be shown that channels

can be estimated with model orders considerably higher than can be dealt with by the histogram

technique.
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A. Posterior Distribution for Channel Parameters

The source signal, s(t), is given by (2) and, therefore, the excitation samples in block i ∈ M
may be written as ei = si + Si bi, where [ei]t−ti+1 = e(t), t ∈ Ti, and, similarly, [si]t−ti+1 =

s(t), t ∈ Ti, bi is a vector of parameters [bi]q = bi(q), q ∈ Qi, and the data matrix [Si]t−ti+1,q =

s(t − q), t ∈ Ti, q ∈ Qi. The probability distribution for the excitation in block i is given by

ei ∼ N
(

0Ti
, σ2

i ITi

)

. Since p (s | I) = p (si, i ∈ M| I), and the BSAR process depends only on

the previous Qi outputs, such that, iff Qi ≤ Ti, p (si | si−1, . . . , s1, I) = p (si | si−1, I), then the

probability chain rule identity can be written as:

p (s | I) = p (s1 | I)
M
∏

i=2

p (si | si−1, I) (10)

Denoting σ = {σ2
i , i ∈ M}, b = {bi, i ∈ M}, θ = {a, σ,b}, the likelihood function for the

source signal, si, in block i ∈ M{−1}, where M{−1} denotes the set M not including the element

1, is:

p (si | si−1,θ−a, I) =
1

(
√

2πσi)Ti
exp

{

−‖si + Sibi‖2

2σ2
i

}

(11)

where i ∈ M{−1}, and ‖·‖ denotes the Euclidean norm. Note p (s1 | I) is dependent on the

initial values, s0, of s and, therefore, has a different distribution to (11), as discussed in [21,22].

However, if Q1 � T1, which is often the case with audio signals, it is common practice to

approximate p (s1 | I) by (11). Using (10), the likelihood function for the observed signal, x, is:

p (x | θ, φ, I) =

M
∏

i=1

p (si | si−1,θ−a, I) (12)

where s(t) ≡ s(t,a, x) is given by the relationship x = f(s,a), and φ = {τ , Ξ, δ, ν, γ} contains

the vector of changepoints, τ = {ti, i ∈ M}, the vector of model orders, Ξ = {Qi, i ∈ M}, and

the vectors of hyperparameters, δ = {δi, i ∈ M}, ν = {νi, i ∈ M}, and γ = {γi, i ∈ M} as

defined in the assigned priors below. Applying Bayes’s rule, the posterior pdf for the unknown

parameters θ becomes:

p (θ | x, φ, I) ∝ p (x | θ, φ, I) p (θ | φ, I)

assuming φ is known. Assuming {bi, σi} are independent between blocks, the assigned priors

are bi |σ2
i ∼ N

(

0Qi
, σ2

i δ2
i IQi

)

, δi ∈ R
+, and σ2

i ∼ IG
(

νi

2 , γi

2

)

, i ∈ M. Hence:

p (θ | φ, I) = p (a | φ, I) p (b | σ, φ, I) p (σ | φ, I)
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Since it is only of interest to estimate the channel parameters, a, the nuisance parameters, b and

σ, can be marginalised from equation (12) by integrating over θ−a, as shown in the Appendix,

yielding the posterior density:

p (a | x, φ, I) ∝ p (a | φ, I)

×
M
∏

i=1

{

γi + sT
i si − sT

i Si

(

ST
i Si + δ−2

i IQi

)−1
ST

i si

}−Ri

∣

∣ST
i Si + δ−2

i IQi

∣

∣

1
2

(13)

where Ri = Ti+νi+1
2 , i ∈ M. Equation (13) is written in terms of s(t) to emphasise that the

posterior can be efficiently calculated by ‘inverse filtering’ the data, x(t), before performing

matrix products. A maximum marginal a posteriori (MMAP) estimate for the parameters a can

by calculated by evaluating:

â = arg max
a

p (a | x, φ, I) (14)

B. Principle

The principle of the histogram technique of §IV can be extended to the constrained channel

model discussed above by writing (13) as:

ln p (a | x, φ, I) = ln p (a | I) +

M
∑

i=1

pi (a | xi, xi−1, φ, I)

where the log-pdf of the parameters, a, given only the data in the i-th block and the initial

conditions, xi−1, is given by pi (a | xi, xi−1, φ, I): the log of the term in the RHS of (13). Using

the transformation between the AR parameters and the AR poles, denoted by ra = roots (a), it

follows:

ln p̂ (ra | x, ·) = ln p̂ (ra | ·) +

M
∑

i=1

p̂i (ra | xi, ·) (15)

where p̂ (ra | x, ·) is the probability, p (a | x, ·), of the set of channel parameters, a, with cor-

responding poles ra, when plotted in the pole plane. The ‘·’ is used for brevity to denote all

known parameters. Consequently, p̂i (ra | xi, ·) can be considered as a probabilistic version of

the histogram over a block as discussed in §IV. The important distinguishing feature is that,

in contrast to the histogram approach where the peaks corresponding to the channel are not

constrained to be in the same position between blocks, ra is constrained to be stationary over

each block, and thus the peaks in the density p̂i (ra | xi, ·) corresponding to the channel are

in very similar positions for each block. Hence, the sum of the densities p̂i (ra | ·) , i ∈ M of
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Fig. 6. Power spectral density of the BSAR(2) synthetic source discussed in §V-B.

equation (15) is large where a number of poles coincide – i.e. at the location the stationary poles

– while the sum is small near the locations of the source poles which do not coincide in the

parameter or pole space.

To demonstrate this, consider filtering a BSAR(2) synthetic source signal by a second-order all-

pole filter, with N = 20 and Ti = 1000, ∀i ∈ M. The phase and magnitude of the pole locations

for this BSAR(2) process change linearly with block number. Thus, bi = [−2ri cos θi, r2
i ]T ,

which corresponds to a single complex pole-pair at rbi
= ri e

±jθi , i ∈ M. The rate of time-

variation is slow enough that the frozen-state approximation of system poles is appropriate [29].

For a typical data sequence generated from this process, Figure 7 shows the contour plots of pi

in the complex domain for i = 5 and 15, and Figure 8 shows a plot of exp(pi) for i = 15 to

highlight the ‘sharpness’ of the peaks in the densities. Figure 9 shows a contour plot of ln p̂i.

Figure 6 shows the PSD of the source signal, which is equivalent to averaging the PSDs of the

source signal in each block; clearly, the channel, which has a resonant at ω = 0.3π, cannot be

detected from this plot.

The stationary poles are estimated by maximising ln p (a | x, φ, I). In the figures, the actual

location of the stationary pole is denoted by a cross, the channel pole by a diamond, and the

MMAP estimate of the stationary pole is denoted by a square. Note that the estimate of the

channel using the data in one block matches the position of the source pole, not the channel pole

as desired. Further, the large circular dots denote the estimate of the channel when the entire

system is modelled as stationary, rather than accounting for the nonstationarity. This estimate
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Fig. 7. Plot of ln p̂i (ra | xi, ·) for i = 5 and 15. The actual location of the stationary pole is denoted by a

cross, the channel by a diamond, and the MMAP estimate of the stationary pole by a square. Additionally,

the small dots denotes the position of the full trajectory of the time-varying channel pole. Contours are

plotted at {10%, 20%, · · · , 90%, 92%, · · · , 98%}. The unit circle is also plotted.

Fig. 8. Plot of p̂15 (ra | x15, ·).

is completely wrong, while the estimate using the pdf of the channels over all blocks is very

accurate. Hence the benefits of explicitly utilising nonstationarity are clear.

C. Exploration of Parameter Space using Gibbs Sampler

In principle, a MMAP estimate for the unknown channel parameters, a, can by found by solving

(14). This optimisation can be performed using deterministic or stochastic optimisation methods.

It is not the intention of this paper to investigate these various techniques, as their pros and cons

are discussed elsewhere, e.g., in [27]. However, since sampling from the distribution in (13) is

difficult, estimates of the channel, a, are obtained using the Gibbs sampler by drawing variates,

θ, from the distribution p (θ | x). The Monte Carlo method can then be used to marginalise the
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Fig. 9. Plot of ln p̂ (ra | x, ·), showing how coninciding peaks in individual blocks sum to give a reliable

estimate of the channel peak. The same legends are used as in Figure 7.

nuisance parameters b and σ, and a minimum mean-square error (MMSE) estimate for a can

be calculated by finding the expected value of the samples. Since, as described in the previous

section, a dominant peak is expected in the distribution, it is reasonable to assume that the

MMSE estimate is approximately equal to the MMAP estimate.

To ensure the distributions are not dependent on δ, the Bayesian model is extended so that δ

is also considered as a parameter. The excitation in block i may be written as:

ei = si + Si bi or ei = yi + Yi a (16)

where [y]t−ti+1 = y(t) and [Y]t−ti+1,p = y(t−p), t ∈ Ti, p ∈ P, and y(t) ≡ y(t,bi,x) is a function

of the data, x, and the AR parameters in block i, bi:

y(t) = x(t) +

Qi
∑

q=1

bi(q)x(t − q) (17)

which is x(t) filtered by bi. The likelihood function is:

p (x | θ) =

M
∏

i=1

N
(

ei

∣

∣ 0, σ2
i ITi

)

(18)

Bayes’s rule gives: p (bi | θ−bi
, x) ∝ p (x | θ) p (bi). Using the priors discussed in §V-A, it

follows that p (bi | θ−bi
, x) is multivariate Gaussian with:

covariance: Ci =

{

ST
i Si + δ−2

i IQi

σ2
i

}−1
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and mode: b̂i = − (ST
i Si + δ−2

i IQi
)−1 ST

i si

and p
(

σ2
i

∣

∣ θ−σi
x
)

= IG
(

σ2
i

∣

∣

Ti + αi

2
,
eT

i ei + βi

2

)

Assuming a |σ2
a ∼ N

(

0P , σ2
a IP

)

, where σa ∈ R
+ is a hyperparameter, it may be shown that

p (a | θ−a, x) is a multivariate Gaussian with:

covariance: Ca =

{

1

σa
+

M
∑

i=1

YT
i Yi

σ2
i

}−1

and mode: â = −Ca

(

M
∑

i=1

YT
i yi

σ2
i

)

The Gibbs sampler is subsequently used in the experiments to obtain a MMSE estimate of a, as

discussed above.

D. Effect of Model Order

Thus far, it has been assumed the correct form of model for the problem is known, and that the

models for the source signal and channel accurately represent the system under consideration.

The validity of this assumption is briefly discussed in §II-B. Given this assumption, however, it

is necessary to find the most appropriate model order for the data. Both of these questions form

the problem of model selection. It is impossible to do an exhaustive investigation on the effect

of model order and so, as such, a number of experiments are selected to give sufficient evidence

from which conclusions can be drawn.

The results are summarised by considering an experiment in which the channel filter, A, is

known to be second-order, and the source signal consists of extracts of recorded speech. This

is simplest case when a surface plot of p (a | x, ·) can be made, and the effects of varying Ξ ,

{Qi, i ∈ M} investigated by visualising the changes in these plots. This is feasible only if

Qi = Q, i ∈ M. Figure 10 shows the following, in columns, from top to bottom, for different

beliefs of source signal model orders:

Contour plot of ln p̂i (ra | xi, ·)

In a particular data block, the source, which is actually a QA-th order AR process, where

QA = 12, is modelled as a QM -th order AR process, with the parameters estimated using the

covariance method [20]: the poles corresponding to this source model are denoted by a � in the
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contour plot of ln p̂i (·) in Figure 10. The position of the true source pole can be identified from

the plot in the second column, when the proposed source model order is equal to the actual

model order. Hence, this plot again indicates how the source poles influence the pdf of the

channel parameters when estimated using just a single block.

Contour and surface plots of ln p̂ (ra | x, ·)

The surface plots of ln p̂ (ra | x, ·) indicate the level of multimodality in the log distribution,

which is not apparent in the plot of the actual distributions. The large dots in the contour

plots denote the locations of the resulting channel estimates if the entire system is modelled as

stationary. The MMAP estimate obtained using the proposed deconvolution method is shown

as a (�), and the actual location of the filter parameters are denoted by a (×).

Surface plots of p̂ (ra | x, ·)

These indicate how pronounced the dominant modes are.

Discussion

As the hypothesised model order increases, ln p̂ (ra | x, ·) (and consequently ln p (a | x, ·))
flattens out considerably. However, whilst considerable over-modelling makes it difficult for the

peaks corresponding to the resonances of the filter to remain prominent in a particular data

block, over-modelling by a factor of 2 to 3 relative to the true model order has little impact

on the pdf of the channel parameters, given the entire data set. However, under-modelling the

source signal sometimes leads to unsatisfactory results. When an AR process is under-modelled,

the estimated spectrum often results in being relatively flat since the estimator is trying to

fit the entire spectrum simultaneously, and not just a particular subband containing one of

the resonant peaks. Therefore, when the source signal is under-modelled, the estimated source

spectrum remains flat, and the pole locations due to the source may appear stationary. As the

pdf flattens out, anomalous peaks emerge from these ‘false’ stationary pole locations. Additional

experiments indicate that if the channel is over-modelled, but not under-modelled, the estimated

spectrum is reasonably accurate and independent of hypothesised source model order. These

results suggest that utilising nonstationarity reduces the requirement of belief regarding the

models and accurate model order estimates may not be needed.
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Fig. 10. These plots show the effect of model order on parameter estimation and the posterior density

for an AR(2) system. From left to right, the TVAR model orders are Q = {6, 12, 18}. A synthetic 12-th

order AR process is passed through the channel. The channel is estimated assuming there are N = 50

blocks, and Ti = 1000. The symbols on the contour plots are described in the text.
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E. Effect of Observation Noise

The model shown in Figure 2 does not account for observation noise. In a more realistic model,

the observed signal, y(t) = x(t) + w(t), is given as the sum of the filtered speech, x(t), and the

observation noise, w(t), which has variance σ2
w, i.e. w(t) ∼ N

(

0, σ2
w

)

. It is necessary to defined

an “average signal-to-noise ratio (SNR)” as the average over all blocks of the SNRs for each

block:

ˆSNR =
1

M

M
∑

i=1

10 log

{

∑ti+1−1
t=ti

x2(t)
∑ti+1−1

t=ti
w2(t)

}

(19)

If, for a nonstationary signal, the SNR is defined in the usual sense as the ratio of the total signal

power over all the data to the total noise power, then in some data blocks, the “local SNR”

might be very good, whilst in other blocks, the SNR may be very bad. There are three relevant

measures used for the accuracy of the parameter estimates: the spectral distortion measure, the

pole error function (PoEF) and the parameter error function (PaEF).

Spectral Distortion Measure

If Ha(e
jω) is the frequency response of the AR process with parameters a, the spectral dis-

tortion measure gives an indication of the similarity of the estimated response of the channel,

Hâ(e
jω), and actual response, Ha(e

jω):

JH(ejω) = E

{

∑

ω

∣

∣

∣

∣

20 log

∣

∣

∣

∣

Hâ(e
jω)

Ha(ejω)

∣

∣

∣

∣

∣

∣

∣

∣

}

(20a)

Pole Error Function

The PoEF is a measure of the fit of pole estimates to the true pole locations and, using the

notation in §IV-A:

Jra = E

{

arg min
Qperm={q(p), p∈P}

∑

p∈P

‖ra(p) − r̂a(q(p))‖2
}

where the set Qperm = perm {1, . . . , P} is a permutation of the elements in P: i.e. Jra uniquely

associates each r̂a with an actual pole so as to minimise the total distance between the estimated

and actual poles.

Parameter Error Function

The PaEF is the expected “distance” between the actual parameters and their estimates:

Ja = E {‖â − a‖} (21)
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Fig. 11. Effect of observation noise on parameter estimates.

Parameter Accuracy vs. SNR

The influence of SNR on the accuracy of the parameter estimates can be investigated by

driving a channel with real speech, adding noise with variance σ2
w, and calculating the accuracy

of the estimates using the three measures discussed above. The noise variance is a function of

the average SNR, and is given by:

σ2
w =

10
1

10
( ˆSNR−P̂ )

T
, P̂ =

10

M

M
∑

i=1

log







ti+1−1
∑

t=ti

x2(t)







(22)

which has been derived from (19) by assuming the noise variance is constant across all blocks,

and T = Ti, i ∈ M. The channel estimates are calculated using the Gibbs sampler as discussed

in §V-C. The simulation is run a number of times, with different noise realisations. This ensures

that an average measure can be determined which is independent of a particular noise realisation.

In the simulation results given here, the channel used is shown in Figure 3(b), the speech is

modelled as a 20-th order AR process, 40 realisations of the noise sequence are generated, and

the Gibbs sampler is run for 2000 iterations, each run using a different initial condition. The

channel is estimated for average SNRs between −25 dB and 25 dB. Figure 11 shows the average

spectral distortion, and the PaEF, where the former has been scaled to fit on the same plot.

Note that the PaEF falls off approximately linearly across a wide range of SNRs. Interestingly,

the PoEF, not shown for clarity, falls off in the same way.

The performance of the proposed algorithm clearly falls with SNR and is susceptible to noise,

although this is as expected. This is since the implicit filtering of (3) used to obtain an estimate
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of the clean signal, s(t), for use in the calculation of p (a | x) in (13), has a noise gain greater than

one. Although the observation noise can be incorporated into the marginal posterior p (a | y),

it would appear that to do so leads to an intractable distribution where numerical methods are

required. The Kalman filter is particularly appropriate in such a case, and will be discussed

elsewhere.

However, a far simpler, and just as effective, approach to reduce the effect of observation noise

is to use the Wiener-Hopf filter (WHF) to obtain a maximum-likelihood estimate (MLE) of the

clean signal, s(t). The likelihood in equation (12) is then calculated using the MLE, ŝ(t). This

may straightforwardly be interpreted as replacing the ‘direct inverse’ relationship between x(t)

and s(t) in (3) by:

ŝ(t) =
∑

h(t, q) y(t − q) (23)

where the Wiener-Hopf filter, h(t, q), is chosen to minimise the mean squared error (MSE)

between the estimate of the desired signal of (23), ŝ(t), and s(t). The WHF can be expressed

in terms of the unknown channel parameters and the correlation function of the observed signal,

y(t). Hence, given a proposed set of channel parameters, the WHF can be calculated, and the

pdf of the channel parameters calculated as before. The marginal posterior for these channel

parameters can then be calculated by evaluating (13), or by modifying the Gibbs sampler as

appropriate.

F. Effect of Length and Number of Blocks

There is an inherent problem in the modelling of nonstationary processes by a block stationary

process: if the block length is large, the variance of the parameter estimate is small; however,

in that block, the actual parameter values may change significantly, such that the model no

longer accurately reflects the time-varying nature of the underlying signal. On the other hand,

if the block length is small, the variance of the estimate is large, although the block stationary

model will better represent the time-varying nature of the signal. This raises the question of

whether an optimum block length exists. Although the changepoints in τ (subsumed in φ) could

be blindly estimated, it is important to have an understanding of what the optimum is, and

why. However, experimentation with block length, particularly in the examples discussed in §VI

suggests that only an approximate estimate of the ‘optimal’ block length is required when taking

nonstationarity into account.
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Fig. 12. Actual and estimated frequency responses of the acoustic gramophone horn in the first example.

VI. Blind deconvolution in a simple acoustic environment: Gramophone horn

As an example of the approach used in this paper, consider again speech signal which is

recorded through an acoustic gramophone horn, as discussed in §IV-C. The frequency response

of the horn is shown in Figure 3(a). In the first of two examples, a synthetic BSAR process is used

to model the source signal, and generated as in §IV-C. This synthetic signal, with model order

Q = 80, is filtered by the horn. Choosing N = 80 blocks of length Ti = 1000, the channel upto a

bandwidth of 6667 Hz is estimated using the proposed Bayesian algorithm. The Gibbs sampler

is used to generate samples from which a MMSE estimate of the channel is made. Although the

hyper-hyperparameters were fixed at νi = γi = 0, the hyperparameters δi are estimated from the

data, using the prior distribution discussed in the Appendix. Figure 12 shows the actual and

estimated responses and it can be seen that although some resonances remain in the equalised

response, the magnitude of these resonances are far smaller than in the unequalised response.

Note that the accuracy of the channel estimate falls off at high-frequencies where there is no

signal energy. In this example, the model orders for the AR processes are assumed to be known,

and the block lengths are chosen heuristically. Reversible-jump MCMC techniques [30] could

be used to tackle the case when the AR models are unknown [31]. However, the investigations

presented in §V-D question whether accurate estimation of these unknowns is really necessary,

since the utilisation of nonstationarity reduces the dependence on such parameters.

In the second example, real speech is filtered by the full measured response of the acoustic

April 2, 2003 DRAFT



RE-SUBMITTED TO THE IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, MARCH 2003 24

0 1000 2000 3000 4000 5000 6000

−30

−20

−10

0

10

20

30

Actual and Estimated Response

Frequency (Hz)

G
ai

n 
(d

B
)

Estimated Response
Actual Response

(a)Actual and Estimated Response

0 1000 2000 3000 4000 5000 6000
−30

−20

−10

0

10

20

30

40

50
Equalised Response

Frequency (Hz)

G
ai

n 
(d

B
)

Equalised Response: Nonstationary Model
Equalised Response: Stationary Model

(b)Equalised Magnitude Response

Fig. 13. Actual and estimated frequency responses of the acoustic gramophone horn in the second

example.

horn. This test is as close as possible to actually measuring speech that has been “played”

through the horn. The results are shown in Figure 13, where an offset between the actual and

estimated responses has been included to make the graph clearer. The channel is modelled as

72-nd order, and the speech as 80-th order, with N = 80, Ti = 1000. Although the equalised

response is not particularly flat, acoustic listening tests indicate that the restored version is more

pleasing to the ear than the speech heard directly from the horn. This example highlights the

problem that although the frequency response of the channel estimate is close to the actual

response, any slight errors can introduce additional resonances in the equalised response; this

is a well-known problem with equalisation of resonant responses. However, the algorithm finds

a good estimate of the channel which can be used for restoration. Additionally, the equalised

response obtained when the system is modelled as stationary across all the data is extremely

poor. In both examples, the Gibbs sampler was started from a variety of positions and, in all

cases, converged towards the same solution.

A. All-pole model for Room Acoustics

The transfer function due to the acoustics of a room generally do not change considerably

with time, but do vary with the spatial locations of the sound source and observer. If the

observer is assumed to be spatially stationary, a LTI model for the room transfer function (RTF)

is appropriate. Typical all-pole model orders required for approximating RTFs are in the range
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50 ≤ P ≤ 500 [32]. Mourjopoulos and Paraskevas [32] state that all-pole model orders are

typically a factor of 40 lower than all-zero model orders, while several studies [33,34] state that

the gain achieved using pole-zero over all-zero modelling of reverberant environments is not as

high as generally thought throughout the literature. A significant advantage of the all-pole model

over other LTI models is its lower sensitivity to changes in source and observer positions.

For a rectangular room the number of poles, Ptheo, upto a frequency, fs � 500 Hz, increases

∝ f3
s [35]. As fs → ∞, Ptheo applies to arbitrary shaped rooms [1]. Since this estimate does

not take into account correlations between modes, it is a high upper bound and, for typical

rooms, is much higher than required for all-pole modelling. If the all-pole order, P = Ptheo,

the model corresponds well with the actual response; if P � Ptheo, as is typically the case, the

estimated poles correspond to the major resonances which have high Q factors [35]. Mourjopoulos

[32] concludes that in many applications dealing with room acoustics, it may be both sufficient

and more efficient to manipulate all-pole rather than high-order all-zero models, and is thus a

reasonable model for a range of acoustic environments.

VII. Conclusions

Single channel blind deconvolution is tackled by modelling the source signal as a BSAR pro-

cess, and the distortion operator as an all-pole filter. The Bayesian paradigm is used as a means

of parameter estimation, and the posterior density for the distortion filter parameters conditional

on the observed data is derived. The issues of selecting model order and block length have been

investigated. By utilising the nonstationarity of the system, less specific belief regarding the

model of the source signal is required. As long as the model of the source is nonstationary, the

stationary component of the system can be estimated. While there exists a plethora of non-

stationary, linear models, each of which is appropriate for different nonstationary systems, the

purpose of this paper is not to investigate their properties but, rather, it shows how nonstation-

arity can provide additional degrees of freedom that allow strong requirements on prior belief to

be relaxed, and the model investigated here has shown that. Several examples of blind decon-

volution of reasonably high-order channels have been investigated, and the results are extremely

encouraging, and far superior to the estimates obtained from a histogram approach.
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Appendix

This appendix details some of the steps in deriving the pdf in (13). The prior densities

for the BSAR coefficients and excitation variance are introduced in §III and §V, and rely on

the hyperparameters {δ, ν, γ}. The values for {δ, ν, γ} are unknown and often have a prior

assigned to them; these ‘hyper-priors’ also depend on hyper-hyperparameters. The form of the

posterior is less susceptible to changes in the hyper-hyperparameters, than to changes in the

hyperparameters. A complete Bayesian hierarchical model for a BSAR process may be found in

[31]. Here, a slightly less general form of Bayesian hierarchical model is chosen to ensure that

the underlying principle of utilising nonstationarity isn’t obscured. As such, {ν, γ} are assumed

to be known, and a hyperprior is placed on δ, such that the influence on the posterior of this

hyper-hyperparameter is minimal. A vague conjugate prior density is ascribed to δ2 using an

inverse-Gamma density: δ2 ∼ IG (αδ2 , βδ2). Assigning these priors to each block, and modifying

Bayes’s rule in §V-A, the joint density is:

p
(

θ, δ | x,φ−δ,I
)

=
p (a | I)

p (x | I)J (x, s)

×
M
∏

i=1

[

1

(
√

2πσi)Ti
exp

{

−(si + Sibi)
T (si + Sibi)

2σ2
i

}

× 1

(
√

2πδiσi)Qi

(

γi

2

)

νi
2 (σ2

i )
−(

νi
2

+1)

Γ(νi

2 )

β
α

δ2
i

δ2
i

(δ2
i )

−(α
δ2
i
+1)

Γ(αδ2
i
)

× exp
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− γi

2σ2
i

− bT
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2δ2
i σ

2
i

−
βδ2

i

δ2
i

}]

Since the transformation from s to x is linear, J (x, s) = 1. The AR parameters, b, are

marginalised using the form:

p (θ−b | x) =

∫

RQ1

· · ·
∫

R
QM

p (θ−b, b | x) dbM . . . db1
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using the standard Gaussian integral [26] to give:

p
(

θ−b, δ | x, φ−δ, I
)

=
p (a | I)

p (x | I)
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Finally, marginalising σ2
i :

p (a | x) =

∫ ∞

0
· · ·
∫ ∞

0
p (a, σ | x) dσ2

M . . . dσ2
1 (25)

using the standard Gamma integral [26] gives:

p
(

a, δ | x, φ−δ, I
)

=
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where Ri = Ti+νi+1
2 . If the prior on the hyper-parameter δ is omitted, this expression reduces to

(13).
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